1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD:
864   case TargetOpcode::G_SUB: {
865     // FIXME: add support for when SizeOp0 isn't an exact multiple of
866     // NarrowSize.
867     if (SizeOp0 % NarrowSize != 0)
868       return UnableToLegalize;
869     // Expand in terms of carry-setting/consuming G_ADDE instructions.
870     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
871 
872     bool IsAdd = MI.getOpcode() == TargetOpcode::G_ADD;
873     auto Opo = IsAdd ? TargetOpcode::G_UADDO : TargetOpcode::G_USUBO;
874     auto Ope = IsAdd ? TargetOpcode::G_UADDE : TargetOpcode::G_USUBE;
875 
876     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
877     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
878     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
879 
880     Register BitIn;
881     for (int i = 0; i < NumParts; ++i) {
882       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
883       Register BitOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
884 
885       if (i == 0)
886         MIRBuilder.buildInstr(Opo, {DstReg, BitOut},
887                               {Src1Regs[i], Src2Regs[i]});
888       else {
889         MIRBuilder.buildInstr(Ope, {DstReg, BitOut},
890                               {Src1Regs[i], Src2Regs[i], BitIn});
891       }
892 
893       DstRegs.push_back(DstReg);
894       BitIn = BitOut;
895     }
896     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
897     MI.eraseFromParent();
898     return Legalized;
899   }
900   case TargetOpcode::G_MUL:
901   case TargetOpcode::G_UMULH:
902     return narrowScalarMul(MI, NarrowTy);
903   case TargetOpcode::G_EXTRACT:
904     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
905   case TargetOpcode::G_INSERT:
906     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
907   case TargetOpcode::G_LOAD: {
908     auto &MMO = **MI.memoperands_begin();
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911     if (DstTy.isVector())
912       return UnableToLegalize;
913 
914     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
915       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
916       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
917       MIRBuilder.buildAnyExt(DstReg, TmpReg);
918       MI.eraseFromParent();
919       return Legalized;
920     }
921 
922     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
923   }
924   case TargetOpcode::G_ZEXTLOAD:
925   case TargetOpcode::G_SEXTLOAD: {
926     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
927     Register DstReg = MI.getOperand(0).getReg();
928     Register PtrReg = MI.getOperand(1).getReg();
929 
930     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
931     auto &MMO = **MI.memoperands_begin();
932     unsigned MemSize = MMO.getSizeInBits();
933 
934     if (MemSize == NarrowSize) {
935       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
936     } else if (MemSize < NarrowSize) {
937       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
938     } else if (MemSize > NarrowSize) {
939       // FIXME: Need to split the load.
940       return UnableToLegalize;
941     }
942 
943     if (ZExt)
944       MIRBuilder.buildZExt(DstReg, TmpReg);
945     else
946       MIRBuilder.buildSExt(DstReg, TmpReg);
947 
948     MI.eraseFromParent();
949     return Legalized;
950   }
951   case TargetOpcode::G_STORE: {
952     const auto &MMO = **MI.memoperands_begin();
953 
954     Register SrcReg = MI.getOperand(0).getReg();
955     LLT SrcTy = MRI.getType(SrcReg);
956     if (SrcTy.isVector())
957       return UnableToLegalize;
958 
959     int NumParts = SizeOp0 / NarrowSize;
960     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
961     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
962     if (SrcTy.isVector() && LeftoverBits != 0)
963       return UnableToLegalize;
964 
965     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
966       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
967       auto &MMO = **MI.memoperands_begin();
968       MIRBuilder.buildTrunc(TmpReg, SrcReg);
969       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
970       MI.eraseFromParent();
971       return Legalized;
972     }
973 
974     return reduceLoadStoreWidth(MI, 0, NarrowTy);
975   }
976   case TargetOpcode::G_SELECT:
977     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
978   case TargetOpcode::G_AND:
979   case TargetOpcode::G_OR:
980   case TargetOpcode::G_XOR: {
981     // Legalize bitwise operation:
982     // A = BinOp<Ty> B, C
983     // into:
984     // B1, ..., BN = G_UNMERGE_VALUES B
985     // C1, ..., CN = G_UNMERGE_VALUES C
986     // A1 = BinOp<Ty/N> B1, C2
987     // ...
988     // AN = BinOp<Ty/N> BN, CN
989     // A = G_MERGE_VALUES A1, ..., AN
990     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
991   }
992   case TargetOpcode::G_SHL:
993   case TargetOpcode::G_LSHR:
994   case TargetOpcode::G_ASHR:
995     return narrowScalarShift(MI, TypeIdx, NarrowTy);
996   case TargetOpcode::G_CTLZ:
997   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
998   case TargetOpcode::G_CTTZ:
999   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1000   case TargetOpcode::G_CTPOP:
1001     if (TypeIdx == 1)
1002       switch (MI.getOpcode()) {
1003       case TargetOpcode::G_CTLZ:
1004       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1005         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1006       case TargetOpcode::G_CTTZ:
1007       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1008         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1009       case TargetOpcode::G_CTPOP:
1010         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1011       default:
1012         return UnableToLegalize;
1013       }
1014 
1015     Observer.changingInstr(MI);
1016     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1017     Observer.changedInstr(MI);
1018     return Legalized;
1019   case TargetOpcode::G_INTTOPTR:
1020     if (TypeIdx != 1)
1021       return UnableToLegalize;
1022 
1023     Observer.changingInstr(MI);
1024     narrowScalarSrc(MI, NarrowTy, 1);
1025     Observer.changedInstr(MI);
1026     return Legalized;
1027   case TargetOpcode::G_PTRTOINT:
1028     if (TypeIdx != 0)
1029       return UnableToLegalize;
1030 
1031     Observer.changingInstr(MI);
1032     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1033     Observer.changedInstr(MI);
1034     return Legalized;
1035   case TargetOpcode::G_PHI: {
1036     unsigned NumParts = SizeOp0 / NarrowSize;
1037     SmallVector<Register, 2> DstRegs(NumParts);
1038     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1039     Observer.changingInstr(MI);
1040     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1041       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1042       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1043       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1044                    SrcRegs[i / 2]);
1045     }
1046     MachineBasicBlock &MBB = *MI.getParent();
1047     MIRBuilder.setInsertPt(MBB, MI);
1048     for (unsigned i = 0; i < NumParts; ++i) {
1049       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1050       MachineInstrBuilder MIB =
1051           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1052       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1053         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1054     }
1055     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1056     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1057     Observer.changedInstr(MI);
1058     MI.eraseFromParent();
1059     return Legalized;
1060   }
1061   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1062   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1063     if (TypeIdx != 2)
1064       return UnableToLegalize;
1065 
1066     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1067     Observer.changingInstr(MI);
1068     narrowScalarSrc(MI, NarrowTy, OpIdx);
1069     Observer.changedInstr(MI);
1070     return Legalized;
1071   }
1072   case TargetOpcode::G_ICMP: {
1073     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1074     if (NarrowSize * 2 != SrcSize)
1075       return UnableToLegalize;
1076 
1077     Observer.changingInstr(MI);
1078     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1079     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1080     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1081 
1082     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1083     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1084     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1085 
1086     CmpInst::Predicate Pred =
1087         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1088     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1089 
1090     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1091       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1092       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1093       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1094       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1095       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1096     } else {
1097       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1098       MachineInstrBuilder CmpHEQ =
1099           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1100       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1101           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1102       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1103     }
1104     Observer.changedInstr(MI);
1105     MI.eraseFromParent();
1106     return Legalized;
1107   }
1108   case TargetOpcode::G_SEXT_INREG: {
1109     if (TypeIdx != 0)
1110       return UnableToLegalize;
1111 
1112     int64_t SizeInBits = MI.getOperand(2).getImm();
1113 
1114     // So long as the new type has more bits than the bits we're extending we
1115     // don't need to break it apart.
1116     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1117       Observer.changingInstr(MI);
1118       // We don't lose any non-extension bits by truncating the src and
1119       // sign-extending the dst.
1120       MachineOperand &MO1 = MI.getOperand(1);
1121       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1122       MO1.setReg(TruncMIB.getReg(0));
1123 
1124       MachineOperand &MO2 = MI.getOperand(0);
1125       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1126       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1127       MIRBuilder.buildSExt(MO2, DstExt);
1128       MO2.setReg(DstExt);
1129       Observer.changedInstr(MI);
1130       return Legalized;
1131     }
1132 
1133     // Break it apart. Components below the extension point are unmodified. The
1134     // component containing the extension point becomes a narrower SEXT_INREG.
1135     // Components above it are ashr'd from the component containing the
1136     // extension point.
1137     if (SizeOp0 % NarrowSize != 0)
1138       return UnableToLegalize;
1139     int NumParts = SizeOp0 / NarrowSize;
1140 
1141     // List the registers where the destination will be scattered.
1142     SmallVector<Register, 2> DstRegs;
1143     // List the registers where the source will be split.
1144     SmallVector<Register, 2> SrcRegs;
1145 
1146     // Create all the temporary registers.
1147     for (int i = 0; i < NumParts; ++i) {
1148       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1149 
1150       SrcRegs.push_back(SrcReg);
1151     }
1152 
1153     // Explode the big arguments into smaller chunks.
1154     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1155 
1156     Register AshrCstReg =
1157         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1158             .getReg(0);
1159     Register FullExtensionReg = 0;
1160     Register PartialExtensionReg = 0;
1161 
1162     // Do the operation on each small part.
1163     for (int i = 0; i < NumParts; ++i) {
1164       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1165         DstRegs.push_back(SrcRegs[i]);
1166       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1167         assert(PartialExtensionReg &&
1168                "Expected to visit partial extension before full");
1169         if (FullExtensionReg) {
1170           DstRegs.push_back(FullExtensionReg);
1171           continue;
1172         }
1173         DstRegs.push_back(
1174             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1175                 .getReg(0));
1176         FullExtensionReg = DstRegs.back();
1177       } else {
1178         DstRegs.push_back(
1179             MIRBuilder
1180                 .buildInstr(
1181                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1182                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1183                 .getReg(0));
1184         PartialExtensionReg = DstRegs.back();
1185       }
1186     }
1187 
1188     // Gather the destination registers into the final destination.
1189     Register DstReg = MI.getOperand(0).getReg();
1190     MIRBuilder.buildMerge(DstReg, DstRegs);
1191     MI.eraseFromParent();
1192     return Legalized;
1193   }
1194   case TargetOpcode::G_BSWAP:
1195   case TargetOpcode::G_BITREVERSE: {
1196     if (SizeOp0 % NarrowSize != 0)
1197       return UnableToLegalize;
1198 
1199     Observer.changingInstr(MI);
1200     SmallVector<Register, 2> SrcRegs, DstRegs;
1201     unsigned NumParts = SizeOp0 / NarrowSize;
1202     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1203 
1204     for (unsigned i = 0; i < NumParts; ++i) {
1205       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1206                                            {SrcRegs[NumParts - 1 - i]});
1207       DstRegs.push_back(DstPart.getReg(0));
1208     }
1209 
1210     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1211 
1212     Observer.changedInstr(MI);
1213     MI.eraseFromParent();
1214     return Legalized;
1215   }
1216   case TargetOpcode::G_PTR_ADD:
1217   case TargetOpcode::G_PTRMASK: {
1218     if (TypeIdx != 1)
1219       return UnableToLegalize;
1220     Observer.changingInstr(MI);
1221     narrowScalarSrc(MI, NarrowTy, 2);
1222     Observer.changedInstr(MI);
1223     return Legalized;
1224   }
1225   case TargetOpcode::G_FPTOUI: {
1226     if (TypeIdx != 0)
1227       return UnableToLegalize;
1228     Observer.changingInstr(MI);
1229     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1230     Observer.changedInstr(MI);
1231     return Legalized;
1232   }
1233   case TargetOpcode::G_FPTOSI: {
1234     if (TypeIdx != 0)
1235       return UnableToLegalize;
1236     Observer.changingInstr(MI);
1237     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1238     Observer.changedInstr(MI);
1239     return Legalized;
1240   }
1241   case TargetOpcode::G_FPEXT:
1242     if (TypeIdx != 0)
1243       return UnableToLegalize;
1244     Observer.changingInstr(MI);
1245     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1246     Observer.changedInstr(MI);
1247     return Legalized;
1248   }
1249 }
1250 
1251 Register LegalizerHelper::coerceToScalar(Register Val) {
1252   LLT Ty = MRI.getType(Val);
1253   if (Ty.isScalar())
1254     return Val;
1255 
1256   const DataLayout &DL = MIRBuilder.getDataLayout();
1257   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1258   if (Ty.isPointer()) {
1259     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1260       return Register();
1261     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1262   }
1263 
1264   Register NewVal = Val;
1265 
1266   assert(Ty.isVector());
1267   LLT EltTy = Ty.getElementType();
1268   if (EltTy.isPointer())
1269     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1270   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1271 }
1272 
1273 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1274                                      unsigned OpIdx, unsigned ExtOpcode) {
1275   MachineOperand &MO = MI.getOperand(OpIdx);
1276   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1277   MO.setReg(ExtB.getReg(0));
1278 }
1279 
1280 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1281                                       unsigned OpIdx) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1284   MO.setReg(ExtB.getReg(0));
1285 }
1286 
1287 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1288                                      unsigned OpIdx, unsigned TruncOpcode) {
1289   MachineOperand &MO = MI.getOperand(OpIdx);
1290   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1291   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1292   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1293   MO.setReg(DstExt);
1294 }
1295 
1296 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1297                                       unsigned OpIdx, unsigned ExtOpcode) {
1298   MachineOperand &MO = MI.getOperand(OpIdx);
1299   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1300   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1301   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1302   MO.setReg(DstTrunc);
1303 }
1304 
1305 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1306                                             unsigned OpIdx) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1309   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1310 }
1311 
1312 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1313                                             unsigned OpIdx) {
1314   MachineOperand &MO = MI.getOperand(OpIdx);
1315 
1316   LLT OldTy = MRI.getType(MO.getReg());
1317   unsigned OldElts = OldTy.getNumElements();
1318   unsigned NewElts = MoreTy.getNumElements();
1319 
1320   unsigned NumParts = NewElts / OldElts;
1321 
1322   // Use concat_vectors if the result is a multiple of the number of elements.
1323   if (NumParts * OldElts == NewElts) {
1324     SmallVector<Register, 8> Parts;
1325     Parts.push_back(MO.getReg());
1326 
1327     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1328     for (unsigned I = 1; I != NumParts; ++I)
1329       Parts.push_back(ImpDef);
1330 
1331     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1332     MO.setReg(Concat.getReg(0));
1333     return;
1334   }
1335 
1336   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1337   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1338   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1339   MO.setReg(MoreReg);
1340 }
1341 
1342 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1343   MachineOperand &Op = MI.getOperand(OpIdx);
1344   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1345 }
1346 
1347 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1348   MachineOperand &MO = MI.getOperand(OpIdx);
1349   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1350   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1351   MIRBuilder.buildBitcast(MO, CastDst);
1352   MO.setReg(CastDst);
1353 }
1354 
1355 LegalizerHelper::LegalizeResult
1356 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1357                                         LLT WideTy) {
1358   if (TypeIdx != 1)
1359     return UnableToLegalize;
1360 
1361   Register DstReg = MI.getOperand(0).getReg();
1362   LLT DstTy = MRI.getType(DstReg);
1363   if (DstTy.isVector())
1364     return UnableToLegalize;
1365 
1366   Register Src1 = MI.getOperand(1).getReg();
1367   LLT SrcTy = MRI.getType(Src1);
1368   const int DstSize = DstTy.getSizeInBits();
1369   const int SrcSize = SrcTy.getSizeInBits();
1370   const int WideSize = WideTy.getSizeInBits();
1371   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1372 
1373   unsigned NumOps = MI.getNumOperands();
1374   unsigned NumSrc = MI.getNumOperands() - 1;
1375   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1376 
1377   if (WideSize >= DstSize) {
1378     // Directly pack the bits in the target type.
1379     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1380 
1381     for (unsigned I = 2; I != NumOps; ++I) {
1382       const unsigned Offset = (I - 1) * PartSize;
1383 
1384       Register SrcReg = MI.getOperand(I).getReg();
1385       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1386 
1387       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1388 
1389       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1390         MRI.createGenericVirtualRegister(WideTy);
1391 
1392       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1393       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1394       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1395       ResultReg = NextResult;
1396     }
1397 
1398     if (WideSize > DstSize)
1399       MIRBuilder.buildTrunc(DstReg, ResultReg);
1400     else if (DstTy.isPointer())
1401       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1402 
1403     MI.eraseFromParent();
1404     return Legalized;
1405   }
1406 
1407   // Unmerge the original values to the GCD type, and recombine to the next
1408   // multiple greater than the original type.
1409   //
1410   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1411   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1412   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1413   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1414   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1415   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1416   // %12:_(s12) = G_MERGE_VALUES %10, %11
1417   //
1418   // Padding with undef if necessary:
1419   //
1420   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1421   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1422   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1423   // %7:_(s2) = G_IMPLICIT_DEF
1424   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1425   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1426   // %10:_(s12) = G_MERGE_VALUES %8, %9
1427 
1428   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1429   LLT GCDTy = LLT::scalar(GCD);
1430 
1431   SmallVector<Register, 8> Parts;
1432   SmallVector<Register, 8> NewMergeRegs;
1433   SmallVector<Register, 8> Unmerges;
1434   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1435 
1436   // Decompose the original operands if they don't evenly divide.
1437   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1438     Register SrcReg = MI.getOperand(I).getReg();
1439     if (GCD == SrcSize) {
1440       Unmerges.push_back(SrcReg);
1441     } else {
1442       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1443       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1444         Unmerges.push_back(Unmerge.getReg(J));
1445     }
1446   }
1447 
1448   // Pad with undef to the next size that is a multiple of the requested size.
1449   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1450     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1451     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1452       Unmerges.push_back(UndefReg);
1453   }
1454 
1455   const int PartsPerGCD = WideSize / GCD;
1456 
1457   // Build merges of each piece.
1458   ArrayRef<Register> Slicer(Unmerges);
1459   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1460     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1461     NewMergeRegs.push_back(Merge.getReg(0));
1462   }
1463 
1464   // A truncate may be necessary if the requested type doesn't evenly divide the
1465   // original result type.
1466   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1467     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1468   } else {
1469     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1470     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1471   }
1472 
1473   MI.eraseFromParent();
1474   return Legalized;
1475 }
1476 
1477 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1478   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1479   LLT OrigTy = MRI.getType(OrigReg);
1480   LLT LCMTy = getLCMType(WideTy, OrigTy);
1481 
1482   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1483   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1484 
1485   Register UnmergeSrc = WideReg;
1486 
1487   // Create a merge to the LCM type, padding with undef
1488   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1489   // =>
1490   // %1:_(<4 x s32>) = G_FOO
1491   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1492   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1493   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1494   if (NumMergeParts > 1) {
1495     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1496     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1497     MergeParts[0] = WideReg;
1498     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1499   }
1500 
1501   // Unmerge to the original register and pad with dead defs.
1502   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1503   UnmergeResults[0] = OrigReg;
1504   for (int I = 1; I != NumUnmergeParts; ++I)
1505     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1506 
1507   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1508   return WideReg;
1509 }
1510 
1511 LegalizerHelper::LegalizeResult
1512 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1513                                           LLT WideTy) {
1514   if (TypeIdx != 0)
1515     return UnableToLegalize;
1516 
1517   int NumDst = MI.getNumOperands() - 1;
1518   Register SrcReg = MI.getOperand(NumDst).getReg();
1519   LLT SrcTy = MRI.getType(SrcReg);
1520   if (SrcTy.isVector())
1521     return UnableToLegalize;
1522 
1523   Register Dst0Reg = MI.getOperand(0).getReg();
1524   LLT DstTy = MRI.getType(Dst0Reg);
1525   if (!DstTy.isScalar())
1526     return UnableToLegalize;
1527 
1528   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1529     if (SrcTy.isPointer()) {
1530       const DataLayout &DL = MIRBuilder.getDataLayout();
1531       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1532         LLVM_DEBUG(
1533             dbgs() << "Not casting non-integral address space integer\n");
1534         return UnableToLegalize;
1535       }
1536 
1537       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1538       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1539     }
1540 
1541     // Widen SrcTy to WideTy. This does not affect the result, but since the
1542     // user requested this size, it is probably better handled than SrcTy and
1543     // should reduce the total number of legalization artifacts
1544     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1545       SrcTy = WideTy;
1546       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1547     }
1548 
1549     // Theres no unmerge type to target. Directly extract the bits from the
1550     // source type
1551     unsigned DstSize = DstTy.getSizeInBits();
1552 
1553     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1554     for (int I = 1; I != NumDst; ++I) {
1555       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1556       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1557       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1558     }
1559 
1560     MI.eraseFromParent();
1561     return Legalized;
1562   }
1563 
1564   // Extend the source to a wider type.
1565   LLT LCMTy = getLCMType(SrcTy, WideTy);
1566 
1567   Register WideSrc = SrcReg;
1568   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1569     // TODO: If this is an integral address space, cast to integer and anyext.
1570     if (SrcTy.isPointer()) {
1571       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1572       return UnableToLegalize;
1573     }
1574 
1575     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1576   }
1577 
1578   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1579 
1580   // Create a sequence of unmerges and merges to the original results. Since we
1581   // may have widened the source, we will need to pad the results with dead defs
1582   // to cover the source register.
1583   // e.g. widen s48 to s64:
1584   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1585   //
1586   // =>
1587   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1588   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1589   //  ; unpack to GCD type, with extra dead defs
1590   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1591   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1592   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1593   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1594   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1595   const LLT GCDTy = getGCDType(WideTy, DstTy);
1596   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1597   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1598 
1599   // Directly unmerge to the destination without going through a GCD type
1600   // if possible
1601   if (PartsPerRemerge == 1) {
1602     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1603 
1604     for (int I = 0; I != NumUnmerge; ++I) {
1605       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1606 
1607       for (int J = 0; J != PartsPerUnmerge; ++J) {
1608         int Idx = I * PartsPerUnmerge + J;
1609         if (Idx < NumDst)
1610           MIB.addDef(MI.getOperand(Idx).getReg());
1611         else {
1612           // Create dead def for excess components.
1613           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1614         }
1615       }
1616 
1617       MIB.addUse(Unmerge.getReg(I));
1618     }
1619   } else {
1620     SmallVector<Register, 16> Parts;
1621     for (int J = 0; J != NumUnmerge; ++J)
1622       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1623 
1624     SmallVector<Register, 8> RemergeParts;
1625     for (int I = 0; I != NumDst; ++I) {
1626       for (int J = 0; J < PartsPerRemerge; ++J) {
1627         const int Idx = I * PartsPerRemerge + J;
1628         RemergeParts.emplace_back(Parts[Idx]);
1629       }
1630 
1631       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1632       RemergeParts.clear();
1633     }
1634   }
1635 
1636   MI.eraseFromParent();
1637   return Legalized;
1638 }
1639 
1640 LegalizerHelper::LegalizeResult
1641 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1642                                     LLT WideTy) {
1643   Register DstReg = MI.getOperand(0).getReg();
1644   Register SrcReg = MI.getOperand(1).getReg();
1645   LLT SrcTy = MRI.getType(SrcReg);
1646 
1647   LLT DstTy = MRI.getType(DstReg);
1648   unsigned Offset = MI.getOperand(2).getImm();
1649 
1650   if (TypeIdx == 0) {
1651     if (SrcTy.isVector() || DstTy.isVector())
1652       return UnableToLegalize;
1653 
1654     SrcOp Src(SrcReg);
1655     if (SrcTy.isPointer()) {
1656       // Extracts from pointers can be handled only if they are really just
1657       // simple integers.
1658       const DataLayout &DL = MIRBuilder.getDataLayout();
1659       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1660         return UnableToLegalize;
1661 
1662       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1663       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1664       SrcTy = SrcAsIntTy;
1665     }
1666 
1667     if (DstTy.isPointer())
1668       return UnableToLegalize;
1669 
1670     if (Offset == 0) {
1671       // Avoid a shift in the degenerate case.
1672       MIRBuilder.buildTrunc(DstReg,
1673                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1674       MI.eraseFromParent();
1675       return Legalized;
1676     }
1677 
1678     // Do a shift in the source type.
1679     LLT ShiftTy = SrcTy;
1680     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1681       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1682       ShiftTy = WideTy;
1683     }
1684 
1685     auto LShr = MIRBuilder.buildLShr(
1686       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1687     MIRBuilder.buildTrunc(DstReg, LShr);
1688     MI.eraseFromParent();
1689     return Legalized;
1690   }
1691 
1692   if (SrcTy.isScalar()) {
1693     Observer.changingInstr(MI);
1694     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1695     Observer.changedInstr(MI);
1696     return Legalized;
1697   }
1698 
1699   if (!SrcTy.isVector())
1700     return UnableToLegalize;
1701 
1702   if (DstTy != SrcTy.getElementType())
1703     return UnableToLegalize;
1704 
1705   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1706     return UnableToLegalize;
1707 
1708   Observer.changingInstr(MI);
1709   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1710 
1711   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1712                           Offset);
1713   widenScalarDst(MI, WideTy.getScalarType(), 0);
1714   Observer.changedInstr(MI);
1715   return Legalized;
1716 }
1717 
1718 LegalizerHelper::LegalizeResult
1719 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1720                                    LLT WideTy) {
1721   if (TypeIdx != 0 || WideTy.isVector())
1722     return UnableToLegalize;
1723   Observer.changingInstr(MI);
1724   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725   widenScalarDst(MI, WideTy);
1726   Observer.changedInstr(MI);
1727   return Legalized;
1728 }
1729 
1730 LegalizerHelper::LegalizeResult
1731 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1732                                            LLT WideTy) {
1733   if (TypeIdx == 1)
1734     return UnableToLegalize; // TODO
1735 
1736   unsigned Opcode;
1737   unsigned ExtOpcode;
1738   Optional<Register> CarryIn = None;
1739   switch (MI.getOpcode()) {
1740   default:
1741     llvm_unreachable("Unexpected opcode!");
1742   case TargetOpcode::G_SADDO:
1743     Opcode = TargetOpcode::G_ADD;
1744     ExtOpcode = TargetOpcode::G_SEXT;
1745     break;
1746   case TargetOpcode::G_SSUBO:
1747     Opcode = TargetOpcode::G_SUB;
1748     ExtOpcode = TargetOpcode::G_SEXT;
1749     break;
1750   case TargetOpcode::G_UADDO:
1751     Opcode = TargetOpcode::G_ADD;
1752     ExtOpcode = TargetOpcode::G_ZEXT;
1753     break;
1754   case TargetOpcode::G_USUBO:
1755     Opcode = TargetOpcode::G_SUB;
1756     ExtOpcode = TargetOpcode::G_ZEXT;
1757     break;
1758   case TargetOpcode::G_SADDE:
1759     Opcode = TargetOpcode::G_UADDE;
1760     ExtOpcode = TargetOpcode::G_SEXT;
1761     CarryIn = MI.getOperand(4).getReg();
1762     break;
1763   case TargetOpcode::G_SSUBE:
1764     Opcode = TargetOpcode::G_USUBE;
1765     ExtOpcode = TargetOpcode::G_SEXT;
1766     CarryIn = MI.getOperand(4).getReg();
1767     break;
1768   case TargetOpcode::G_UADDE:
1769     Opcode = TargetOpcode::G_UADDE;
1770     ExtOpcode = TargetOpcode::G_ZEXT;
1771     CarryIn = MI.getOperand(4).getReg();
1772     break;
1773   case TargetOpcode::G_USUBE:
1774     Opcode = TargetOpcode::G_USUBE;
1775     ExtOpcode = TargetOpcode::G_ZEXT;
1776     CarryIn = MI.getOperand(4).getReg();
1777     break;
1778   }
1779 
1780   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1781   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1782   // Do the arithmetic in the larger type.
1783   Register NewOp;
1784   if (CarryIn) {
1785     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1786     NewOp = MIRBuilder
1787                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1788                             {LHSExt, RHSExt, *CarryIn})
1789                 .getReg(0);
1790   } else {
1791     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1792   }
1793   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1794   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1795   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1796   // There is no overflow if the ExtOp is the same as NewOp.
1797   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1798   // Now trunc the NewOp to the original result.
1799   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1800   MI.eraseFromParent();
1801   return Legalized;
1802 }
1803 
1804 LegalizerHelper::LegalizeResult
1805 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1806                                          LLT WideTy) {
1807   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1808                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1809                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1810   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1811                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1812   // We can convert this to:
1813   //   1. Any extend iN to iM
1814   //   2. SHL by M-N
1815   //   3. [US][ADD|SUB|SHL]SAT
1816   //   4. L/ASHR by M-N
1817   //
1818   // It may be more efficient to lower this to a min and a max operation in
1819   // the higher precision arithmetic if the promoted operation isn't legal,
1820   // but this decision is up to the target's lowering request.
1821   Register DstReg = MI.getOperand(0).getReg();
1822 
1823   unsigned NewBits = WideTy.getScalarSizeInBits();
1824   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1825 
1826   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1827   // must not left shift the RHS to preserve the shift amount.
1828   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1829   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1830                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1831   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1832   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1833   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1834 
1835   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1836                                         {ShiftL, ShiftR}, MI.getFlags());
1837 
1838   // Use a shift that will preserve the number of sign bits when the trunc is
1839   // folded away.
1840   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1841                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1842 
1843   MIRBuilder.buildTrunc(DstReg, Result);
1844   MI.eraseFromParent();
1845   return Legalized;
1846 }
1847 
1848 LegalizerHelper::LegalizeResult
1849 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1850   switch (MI.getOpcode()) {
1851   default:
1852     return UnableToLegalize;
1853   case TargetOpcode::G_EXTRACT:
1854     return widenScalarExtract(MI, TypeIdx, WideTy);
1855   case TargetOpcode::G_INSERT:
1856     return widenScalarInsert(MI, TypeIdx, WideTy);
1857   case TargetOpcode::G_MERGE_VALUES:
1858     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1859   case TargetOpcode::G_UNMERGE_VALUES:
1860     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1861   case TargetOpcode::G_SADDO:
1862   case TargetOpcode::G_SSUBO:
1863   case TargetOpcode::G_UADDO:
1864   case TargetOpcode::G_USUBO:
1865   case TargetOpcode::G_SADDE:
1866   case TargetOpcode::G_SSUBE:
1867   case TargetOpcode::G_UADDE:
1868   case TargetOpcode::G_USUBE:
1869     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1870   case TargetOpcode::G_SADDSAT:
1871   case TargetOpcode::G_SSUBSAT:
1872   case TargetOpcode::G_SSHLSAT:
1873   case TargetOpcode::G_UADDSAT:
1874   case TargetOpcode::G_USUBSAT:
1875   case TargetOpcode::G_USHLSAT:
1876     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1877   case TargetOpcode::G_CTTZ:
1878   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1879   case TargetOpcode::G_CTLZ:
1880   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1881   case TargetOpcode::G_CTPOP: {
1882     if (TypeIdx == 0) {
1883       Observer.changingInstr(MI);
1884       widenScalarDst(MI, WideTy, 0);
1885       Observer.changedInstr(MI);
1886       return Legalized;
1887     }
1888 
1889     Register SrcReg = MI.getOperand(1).getReg();
1890 
1891     // First ZEXT the input.
1892     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1893     LLT CurTy = MRI.getType(SrcReg);
1894     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1895       // The count is the same in the larger type except if the original
1896       // value was zero.  This can be handled by setting the bit just off
1897       // the top of the original type.
1898       auto TopBit =
1899           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1900       MIBSrc = MIRBuilder.buildOr(
1901         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1902     }
1903 
1904     // Perform the operation at the larger size.
1905     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1906     // This is already the correct result for CTPOP and CTTZs
1907     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1908         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1909       // The correct result is NewOp - (Difference in widety and current ty).
1910       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1911       MIBNewOp = MIRBuilder.buildSub(
1912           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1913     }
1914 
1915     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1916     MI.eraseFromParent();
1917     return Legalized;
1918   }
1919   case TargetOpcode::G_BSWAP: {
1920     Observer.changingInstr(MI);
1921     Register DstReg = MI.getOperand(0).getReg();
1922 
1923     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1924     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1925     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1926     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1927 
1928     MI.getOperand(0).setReg(DstExt);
1929 
1930     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1931 
1932     LLT Ty = MRI.getType(DstReg);
1933     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1934     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1935     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1936 
1937     MIRBuilder.buildTrunc(DstReg, ShrReg);
1938     Observer.changedInstr(MI);
1939     return Legalized;
1940   }
1941   case TargetOpcode::G_BITREVERSE: {
1942     Observer.changingInstr(MI);
1943 
1944     Register DstReg = MI.getOperand(0).getReg();
1945     LLT Ty = MRI.getType(DstReg);
1946     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1947 
1948     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1949     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1950     MI.getOperand(0).setReg(DstExt);
1951     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1952 
1953     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1954     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1955     MIRBuilder.buildTrunc(DstReg, Shift);
1956     Observer.changedInstr(MI);
1957     return Legalized;
1958   }
1959   case TargetOpcode::G_FREEZE:
1960     Observer.changingInstr(MI);
1961     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1962     widenScalarDst(MI, WideTy);
1963     Observer.changedInstr(MI);
1964     return Legalized;
1965 
1966   case TargetOpcode::G_ADD:
1967   case TargetOpcode::G_AND:
1968   case TargetOpcode::G_MUL:
1969   case TargetOpcode::G_OR:
1970   case TargetOpcode::G_XOR:
1971   case TargetOpcode::G_SUB:
1972     // Perform operation at larger width (any extension is fines here, high bits
1973     // don't affect the result) and then truncate the result back to the
1974     // original type.
1975     Observer.changingInstr(MI);
1976     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1977     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1978     widenScalarDst(MI, WideTy);
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981 
1982   case TargetOpcode::G_SHL:
1983     Observer.changingInstr(MI);
1984 
1985     if (TypeIdx == 0) {
1986       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1987       widenScalarDst(MI, WideTy);
1988     } else {
1989       assert(TypeIdx == 1);
1990       // The "number of bits to shift" operand must preserve its value as an
1991       // unsigned integer:
1992       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1993     }
1994 
1995     Observer.changedInstr(MI);
1996     return Legalized;
1997 
1998   case TargetOpcode::G_SDIV:
1999   case TargetOpcode::G_SREM:
2000   case TargetOpcode::G_SMIN:
2001   case TargetOpcode::G_SMAX:
2002     Observer.changingInstr(MI);
2003     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2004     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2005     widenScalarDst(MI, WideTy);
2006     Observer.changedInstr(MI);
2007     return Legalized;
2008 
2009   case TargetOpcode::G_ASHR:
2010   case TargetOpcode::G_LSHR:
2011     Observer.changingInstr(MI);
2012 
2013     if (TypeIdx == 0) {
2014       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2015         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2016 
2017       widenScalarSrc(MI, WideTy, 1, CvtOp);
2018       widenScalarDst(MI, WideTy);
2019     } else {
2020       assert(TypeIdx == 1);
2021       // The "number of bits to shift" operand must preserve its value as an
2022       // unsigned integer:
2023       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2024     }
2025 
2026     Observer.changedInstr(MI);
2027     return Legalized;
2028   case TargetOpcode::G_UDIV:
2029   case TargetOpcode::G_UREM:
2030   case TargetOpcode::G_UMIN:
2031   case TargetOpcode::G_UMAX:
2032     Observer.changingInstr(MI);
2033     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2034     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2035     widenScalarDst(MI, WideTy);
2036     Observer.changedInstr(MI);
2037     return Legalized;
2038 
2039   case TargetOpcode::G_SELECT:
2040     Observer.changingInstr(MI);
2041     if (TypeIdx == 0) {
2042       // Perform operation at larger width (any extension is fine here, high
2043       // bits don't affect the result) and then truncate the result back to the
2044       // original type.
2045       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2046       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2047       widenScalarDst(MI, WideTy);
2048     } else {
2049       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2050       // Explicit extension is required here since high bits affect the result.
2051       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2052     }
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055 
2056   case TargetOpcode::G_FPTOSI:
2057   case TargetOpcode::G_FPTOUI:
2058     Observer.changingInstr(MI);
2059 
2060     if (TypeIdx == 0)
2061       widenScalarDst(MI, WideTy);
2062     else
2063       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2064 
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   case TargetOpcode::G_SITOFP:
2068     Observer.changingInstr(MI);
2069 
2070     if (TypeIdx == 0)
2071       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2072     else
2073       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2074 
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   case TargetOpcode::G_UITOFP:
2078     Observer.changingInstr(MI);
2079 
2080     if (TypeIdx == 0)
2081       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2082     else
2083       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2084 
2085     Observer.changedInstr(MI);
2086     return Legalized;
2087   case TargetOpcode::G_LOAD:
2088   case TargetOpcode::G_SEXTLOAD:
2089   case TargetOpcode::G_ZEXTLOAD:
2090     Observer.changingInstr(MI);
2091     widenScalarDst(MI, WideTy);
2092     Observer.changedInstr(MI);
2093     return Legalized;
2094 
2095   case TargetOpcode::G_STORE: {
2096     if (TypeIdx != 0)
2097       return UnableToLegalize;
2098 
2099     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2100     if (!Ty.isScalar())
2101       return UnableToLegalize;
2102 
2103     Observer.changingInstr(MI);
2104 
2105     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2106       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2107     widenScalarSrc(MI, WideTy, 0, ExtType);
2108 
2109     Observer.changedInstr(MI);
2110     return Legalized;
2111   }
2112   case TargetOpcode::G_CONSTANT: {
2113     MachineOperand &SrcMO = MI.getOperand(1);
2114     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2115     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2116         MRI.getType(MI.getOperand(0).getReg()));
2117     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2118             ExtOpc == TargetOpcode::G_ANYEXT) &&
2119            "Illegal Extend");
2120     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2121     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2122                            ? SrcVal.sext(WideTy.getSizeInBits())
2123                            : SrcVal.zext(WideTy.getSizeInBits());
2124     Observer.changingInstr(MI);
2125     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2126 
2127     widenScalarDst(MI, WideTy);
2128     Observer.changedInstr(MI);
2129     return Legalized;
2130   }
2131   case TargetOpcode::G_FCONSTANT: {
2132     MachineOperand &SrcMO = MI.getOperand(1);
2133     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2134     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2135     bool LosesInfo;
2136     switch (WideTy.getSizeInBits()) {
2137     case 32:
2138       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2139                   &LosesInfo);
2140       break;
2141     case 64:
2142       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2143                   &LosesInfo);
2144       break;
2145     default:
2146       return UnableToLegalize;
2147     }
2148 
2149     assert(!LosesInfo && "extend should always be lossless");
2150 
2151     Observer.changingInstr(MI);
2152     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2153 
2154     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2155     Observer.changedInstr(MI);
2156     return Legalized;
2157   }
2158   case TargetOpcode::G_IMPLICIT_DEF: {
2159     Observer.changingInstr(MI);
2160     widenScalarDst(MI, WideTy);
2161     Observer.changedInstr(MI);
2162     return Legalized;
2163   }
2164   case TargetOpcode::G_BRCOND:
2165     Observer.changingInstr(MI);
2166     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2167     Observer.changedInstr(MI);
2168     return Legalized;
2169 
2170   case TargetOpcode::G_FCMP:
2171     Observer.changingInstr(MI);
2172     if (TypeIdx == 0)
2173       widenScalarDst(MI, WideTy);
2174     else {
2175       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2176       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2177     }
2178     Observer.changedInstr(MI);
2179     return Legalized;
2180 
2181   case TargetOpcode::G_ICMP:
2182     Observer.changingInstr(MI);
2183     if (TypeIdx == 0)
2184       widenScalarDst(MI, WideTy);
2185     else {
2186       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2187                                MI.getOperand(1).getPredicate()))
2188                                ? TargetOpcode::G_SEXT
2189                                : TargetOpcode::G_ZEXT;
2190       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2191       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2192     }
2193     Observer.changedInstr(MI);
2194     return Legalized;
2195 
2196   case TargetOpcode::G_PTR_ADD:
2197     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2198     Observer.changingInstr(MI);
2199     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2200     Observer.changedInstr(MI);
2201     return Legalized;
2202 
2203   case TargetOpcode::G_PHI: {
2204     assert(TypeIdx == 0 && "Expecting only Idx 0");
2205 
2206     Observer.changingInstr(MI);
2207     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2208       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2209       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2210       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2211     }
2212 
2213     MachineBasicBlock &MBB = *MI.getParent();
2214     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2215     widenScalarDst(MI, WideTy);
2216     Observer.changedInstr(MI);
2217     return Legalized;
2218   }
2219   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2220     if (TypeIdx == 0) {
2221       Register VecReg = MI.getOperand(1).getReg();
2222       LLT VecTy = MRI.getType(VecReg);
2223       Observer.changingInstr(MI);
2224 
2225       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2226                                      WideTy.getSizeInBits()),
2227                      1, TargetOpcode::G_SEXT);
2228 
2229       widenScalarDst(MI, WideTy, 0);
2230       Observer.changedInstr(MI);
2231       return Legalized;
2232     }
2233 
2234     if (TypeIdx != 2)
2235       return UnableToLegalize;
2236     Observer.changingInstr(MI);
2237     // TODO: Probably should be zext
2238     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2239     Observer.changedInstr(MI);
2240     return Legalized;
2241   }
2242   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2243     if (TypeIdx == 1) {
2244       Observer.changingInstr(MI);
2245 
2246       Register VecReg = MI.getOperand(1).getReg();
2247       LLT VecTy = MRI.getType(VecReg);
2248       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2249 
2250       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2251       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2252       widenScalarDst(MI, WideVecTy, 0);
2253       Observer.changedInstr(MI);
2254       return Legalized;
2255     }
2256 
2257     if (TypeIdx == 2) {
2258       Observer.changingInstr(MI);
2259       // TODO: Probably should be zext
2260       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2261       Observer.changedInstr(MI);
2262       return Legalized;
2263     }
2264 
2265     return UnableToLegalize;
2266   }
2267   case TargetOpcode::G_FADD:
2268   case TargetOpcode::G_FMUL:
2269   case TargetOpcode::G_FSUB:
2270   case TargetOpcode::G_FMA:
2271   case TargetOpcode::G_FMAD:
2272   case TargetOpcode::G_FNEG:
2273   case TargetOpcode::G_FABS:
2274   case TargetOpcode::G_FCANONICALIZE:
2275   case TargetOpcode::G_FMINNUM:
2276   case TargetOpcode::G_FMAXNUM:
2277   case TargetOpcode::G_FMINNUM_IEEE:
2278   case TargetOpcode::G_FMAXNUM_IEEE:
2279   case TargetOpcode::G_FMINIMUM:
2280   case TargetOpcode::G_FMAXIMUM:
2281   case TargetOpcode::G_FDIV:
2282   case TargetOpcode::G_FREM:
2283   case TargetOpcode::G_FCEIL:
2284   case TargetOpcode::G_FFLOOR:
2285   case TargetOpcode::G_FCOS:
2286   case TargetOpcode::G_FSIN:
2287   case TargetOpcode::G_FLOG10:
2288   case TargetOpcode::G_FLOG:
2289   case TargetOpcode::G_FLOG2:
2290   case TargetOpcode::G_FRINT:
2291   case TargetOpcode::G_FNEARBYINT:
2292   case TargetOpcode::G_FSQRT:
2293   case TargetOpcode::G_FEXP:
2294   case TargetOpcode::G_FEXP2:
2295   case TargetOpcode::G_FPOW:
2296   case TargetOpcode::G_INTRINSIC_TRUNC:
2297   case TargetOpcode::G_INTRINSIC_ROUND:
2298   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2299     assert(TypeIdx == 0);
2300     Observer.changingInstr(MI);
2301 
2302     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2303       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2304 
2305     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2306     Observer.changedInstr(MI);
2307     return Legalized;
2308   case TargetOpcode::G_FPOWI: {
2309     if (TypeIdx != 0)
2310       return UnableToLegalize;
2311     Observer.changingInstr(MI);
2312     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2313     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2314     Observer.changedInstr(MI);
2315     return Legalized;
2316   }
2317   case TargetOpcode::G_INTTOPTR:
2318     if (TypeIdx != 1)
2319       return UnableToLegalize;
2320 
2321     Observer.changingInstr(MI);
2322     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2323     Observer.changedInstr(MI);
2324     return Legalized;
2325   case TargetOpcode::G_PTRTOINT:
2326     if (TypeIdx != 0)
2327       return UnableToLegalize;
2328 
2329     Observer.changingInstr(MI);
2330     widenScalarDst(MI, WideTy, 0);
2331     Observer.changedInstr(MI);
2332     return Legalized;
2333   case TargetOpcode::G_BUILD_VECTOR: {
2334     Observer.changingInstr(MI);
2335 
2336     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2337     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2338       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2339 
2340     // Avoid changing the result vector type if the source element type was
2341     // requested.
2342     if (TypeIdx == 1) {
2343       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2344     } else {
2345       widenScalarDst(MI, WideTy, 0);
2346     }
2347 
2348     Observer.changedInstr(MI);
2349     return Legalized;
2350   }
2351   case TargetOpcode::G_SEXT_INREG:
2352     if (TypeIdx != 0)
2353       return UnableToLegalize;
2354 
2355     Observer.changingInstr(MI);
2356     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2357     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2358     Observer.changedInstr(MI);
2359     return Legalized;
2360   case TargetOpcode::G_PTRMASK: {
2361     if (TypeIdx != 1)
2362       return UnableToLegalize;
2363     Observer.changingInstr(MI);
2364     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2365     Observer.changedInstr(MI);
2366     return Legalized;
2367   }
2368   }
2369 }
2370 
2371 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2372                              MachineIRBuilder &B, Register Src, LLT Ty) {
2373   auto Unmerge = B.buildUnmerge(Ty, Src);
2374   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2375     Pieces.push_back(Unmerge.getReg(I));
2376 }
2377 
2378 LegalizerHelper::LegalizeResult
2379 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2380   Register Dst = MI.getOperand(0).getReg();
2381   Register Src = MI.getOperand(1).getReg();
2382   LLT DstTy = MRI.getType(Dst);
2383   LLT SrcTy = MRI.getType(Src);
2384 
2385   if (SrcTy.isVector()) {
2386     LLT SrcEltTy = SrcTy.getElementType();
2387     SmallVector<Register, 8> SrcRegs;
2388 
2389     if (DstTy.isVector()) {
2390       int NumDstElt = DstTy.getNumElements();
2391       int NumSrcElt = SrcTy.getNumElements();
2392 
2393       LLT DstEltTy = DstTy.getElementType();
2394       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2395       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2396 
2397       // If there's an element size mismatch, insert intermediate casts to match
2398       // the result element type.
2399       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2400         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2401         //
2402         // =>
2403         //
2404         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2405         // %3:_(<2 x s8>) = G_BITCAST %2
2406         // %4:_(<2 x s8>) = G_BITCAST %3
2407         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2408         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2409         SrcPartTy = SrcEltTy;
2410       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2411         //
2412         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2413         //
2414         // =>
2415         //
2416         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2417         // %3:_(s16) = G_BITCAST %2
2418         // %4:_(s16) = G_BITCAST %3
2419         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2420         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2421         DstCastTy = DstEltTy;
2422       }
2423 
2424       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2425       for (Register &SrcReg : SrcRegs)
2426         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2427     } else
2428       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2429 
2430     MIRBuilder.buildMerge(Dst, SrcRegs);
2431     MI.eraseFromParent();
2432     return Legalized;
2433   }
2434 
2435   if (DstTy.isVector()) {
2436     SmallVector<Register, 8> SrcRegs;
2437     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2438     MIRBuilder.buildMerge(Dst, SrcRegs);
2439     MI.eraseFromParent();
2440     return Legalized;
2441   }
2442 
2443   return UnableToLegalize;
2444 }
2445 
2446 /// Figure out the bit offset into a register when coercing a vector index for
2447 /// the wide element type. This is only for the case when promoting vector to
2448 /// one with larger elements.
2449 //
2450 ///
2451 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2452 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2453 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2454                                                    Register Idx,
2455                                                    unsigned NewEltSize,
2456                                                    unsigned OldEltSize) {
2457   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2458   LLT IdxTy = B.getMRI()->getType(Idx);
2459 
2460   // Now figure out the amount we need to shift to get the target bits.
2461   auto OffsetMask = B.buildConstant(
2462     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2463   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2464   return B.buildShl(IdxTy, OffsetIdx,
2465                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2466 }
2467 
2468 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2469 /// is casting to a vector with a smaller element size, perform multiple element
2470 /// extracts and merge the results. If this is coercing to a vector with larger
2471 /// elements, index the bitcasted vector and extract the target element with bit
2472 /// operations. This is intended to force the indexing in the native register
2473 /// size for architectures that can dynamically index the register file.
2474 LegalizerHelper::LegalizeResult
2475 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2476                                          LLT CastTy) {
2477   if (TypeIdx != 1)
2478     return UnableToLegalize;
2479 
2480   Register Dst = MI.getOperand(0).getReg();
2481   Register SrcVec = MI.getOperand(1).getReg();
2482   Register Idx = MI.getOperand(2).getReg();
2483   LLT SrcVecTy = MRI.getType(SrcVec);
2484   LLT IdxTy = MRI.getType(Idx);
2485 
2486   LLT SrcEltTy = SrcVecTy.getElementType();
2487   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2488   unsigned OldNumElts = SrcVecTy.getNumElements();
2489 
2490   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2491   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2492 
2493   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2494   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2495   if (NewNumElts > OldNumElts) {
2496     // Decreasing the vector element size
2497     //
2498     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2499     //  =>
2500     //  v4i32:castx = bitcast x:v2i64
2501     //
2502     // i64 = bitcast
2503     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2504     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2505     //
2506     if (NewNumElts % OldNumElts != 0)
2507       return UnableToLegalize;
2508 
2509     // Type of the intermediate result vector.
2510     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2511     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2512 
2513     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2514 
2515     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2516     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2517 
2518     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2519       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2520       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2521       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2522       NewOps[I] = Elt.getReg(0);
2523     }
2524 
2525     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2526     MIRBuilder.buildBitcast(Dst, NewVec);
2527     MI.eraseFromParent();
2528     return Legalized;
2529   }
2530 
2531   if (NewNumElts < OldNumElts) {
2532     if (NewEltSize % OldEltSize != 0)
2533       return UnableToLegalize;
2534 
2535     // This only depends on powers of 2 because we use bit tricks to figure out
2536     // the bit offset we need to shift to get the target element. A general
2537     // expansion could emit division/multiply.
2538     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2539       return UnableToLegalize;
2540 
2541     // Increasing the vector element size.
2542     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2543     //
2544     //   =>
2545     //
2546     // %cast = G_BITCAST %vec
2547     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2548     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2549     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2550     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2551     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2552     // %elt = G_TRUNC %elt_bits
2553 
2554     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2555     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2556 
2557     // Divide to get the index in the wider element type.
2558     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2559 
2560     Register WideElt = CastVec;
2561     if (CastTy.isVector()) {
2562       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2563                                                      ScaledIdx).getReg(0);
2564     }
2565 
2566     // Compute the bit offset into the register of the target element.
2567     Register OffsetBits = getBitcastWiderVectorElementOffset(
2568       MIRBuilder, Idx, NewEltSize, OldEltSize);
2569 
2570     // Shift the wide element to get the target element.
2571     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2572     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2573     MI.eraseFromParent();
2574     return Legalized;
2575   }
2576 
2577   return UnableToLegalize;
2578 }
2579 
2580 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2581 /// TargetReg, while preserving other bits in \p TargetReg.
2582 ///
2583 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2584 static Register buildBitFieldInsert(MachineIRBuilder &B,
2585                                     Register TargetReg, Register InsertReg,
2586                                     Register OffsetBits) {
2587   LLT TargetTy = B.getMRI()->getType(TargetReg);
2588   LLT InsertTy = B.getMRI()->getType(InsertReg);
2589   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2590   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2591 
2592   // Produce a bitmask of the value to insert
2593   auto EltMask = B.buildConstant(
2594     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2595                                    InsertTy.getSizeInBits()));
2596   // Shift it into position
2597   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2598   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2599 
2600   // Clear out the bits in the wide element
2601   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2602 
2603   // The value to insert has all zeros already, so stick it into the masked
2604   // wide element.
2605   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2606 }
2607 
2608 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2609 /// is increasing the element size, perform the indexing in the target element
2610 /// type, and use bit operations to insert at the element position. This is
2611 /// intended for architectures that can dynamically index the register file and
2612 /// want to force indexing in the native register size.
2613 LegalizerHelper::LegalizeResult
2614 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2615                                         LLT CastTy) {
2616   if (TypeIdx != 0)
2617     return UnableToLegalize;
2618 
2619   Register Dst = MI.getOperand(0).getReg();
2620   Register SrcVec = MI.getOperand(1).getReg();
2621   Register Val = MI.getOperand(2).getReg();
2622   Register Idx = MI.getOperand(3).getReg();
2623 
2624   LLT VecTy = MRI.getType(Dst);
2625   LLT IdxTy = MRI.getType(Idx);
2626 
2627   LLT VecEltTy = VecTy.getElementType();
2628   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2629   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2630   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2631 
2632   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2633   unsigned OldNumElts = VecTy.getNumElements();
2634 
2635   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2636   if (NewNumElts < OldNumElts) {
2637     if (NewEltSize % OldEltSize != 0)
2638       return UnableToLegalize;
2639 
2640     // This only depends on powers of 2 because we use bit tricks to figure out
2641     // the bit offset we need to shift to get the target element. A general
2642     // expansion could emit division/multiply.
2643     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2644       return UnableToLegalize;
2645 
2646     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2647     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2648 
2649     // Divide to get the index in the wider element type.
2650     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2651 
2652     Register ExtractedElt = CastVec;
2653     if (CastTy.isVector()) {
2654       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2655                                                           ScaledIdx).getReg(0);
2656     }
2657 
2658     // Compute the bit offset into the register of the target element.
2659     Register OffsetBits = getBitcastWiderVectorElementOffset(
2660       MIRBuilder, Idx, NewEltSize, OldEltSize);
2661 
2662     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2663                                                Val, OffsetBits);
2664     if (CastTy.isVector()) {
2665       InsertedElt = MIRBuilder.buildInsertVectorElement(
2666         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2667     }
2668 
2669     MIRBuilder.buildBitcast(Dst, InsertedElt);
2670     MI.eraseFromParent();
2671     return Legalized;
2672   }
2673 
2674   return UnableToLegalize;
2675 }
2676 
2677 LegalizerHelper::LegalizeResult
2678 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2679   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2680   Register DstReg = MI.getOperand(0).getReg();
2681   Register PtrReg = MI.getOperand(1).getReg();
2682   LLT DstTy = MRI.getType(DstReg);
2683   auto &MMO = **MI.memoperands_begin();
2684 
2685   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2686     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2687       // This load needs splitting into power of 2 sized loads.
2688       if (DstTy.isVector())
2689         return UnableToLegalize;
2690       if (isPowerOf2_32(DstTy.getSizeInBits()))
2691         return UnableToLegalize; // Don't know what we're being asked to do.
2692 
2693       // Our strategy here is to generate anyextending loads for the smaller
2694       // types up to next power-2 result type, and then combine the two larger
2695       // result values together, before truncating back down to the non-pow-2
2696       // type.
2697       // E.g. v1 = i24 load =>
2698       // v2 = i32 zextload (2 byte)
2699       // v3 = i32 load (1 byte)
2700       // v4 = i32 shl v3, 16
2701       // v5 = i32 or v4, v2
2702       // v1 = i24 trunc v5
2703       // By doing this we generate the correct truncate which should get
2704       // combined away as an artifact with a matching extend.
2705       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2706       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2707 
2708       MachineFunction &MF = MIRBuilder.getMF();
2709       MachineMemOperand *LargeMMO =
2710         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2711       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2712         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2713 
2714       LLT PtrTy = MRI.getType(PtrReg);
2715       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2716       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2717       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2718       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2719       auto LargeLoad = MIRBuilder.buildLoadInstr(
2720         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2721 
2722       auto OffsetCst = MIRBuilder.buildConstant(
2723         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2724       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2725       auto SmallPtr =
2726         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2727       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2728                                             *SmallMMO);
2729 
2730       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2731       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2732       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2733       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2734       MI.eraseFromParent();
2735       return Legalized;
2736     }
2737 
2738     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2739     MI.eraseFromParent();
2740     return Legalized;
2741   }
2742 
2743   if (DstTy.isScalar()) {
2744     Register TmpReg =
2745       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2746     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2747     switch (MI.getOpcode()) {
2748     default:
2749       llvm_unreachable("Unexpected opcode");
2750     case TargetOpcode::G_LOAD:
2751       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2752       break;
2753     case TargetOpcode::G_SEXTLOAD:
2754       MIRBuilder.buildSExt(DstReg, TmpReg);
2755       break;
2756     case TargetOpcode::G_ZEXTLOAD:
2757       MIRBuilder.buildZExt(DstReg, TmpReg);
2758       break;
2759     }
2760 
2761     MI.eraseFromParent();
2762     return Legalized;
2763   }
2764 
2765   return UnableToLegalize;
2766 }
2767 
2768 LegalizerHelper::LegalizeResult
2769 LegalizerHelper::lowerStore(MachineInstr &MI) {
2770   // Lower a non-power of 2 store into multiple pow-2 stores.
2771   // E.g. split an i24 store into an i16 store + i8 store.
2772   // We do this by first extending the stored value to the next largest power
2773   // of 2 type, and then using truncating stores to store the components.
2774   // By doing this, likewise with G_LOAD, generate an extend that can be
2775   // artifact-combined away instead of leaving behind extracts.
2776   Register SrcReg = MI.getOperand(0).getReg();
2777   Register PtrReg = MI.getOperand(1).getReg();
2778   LLT SrcTy = MRI.getType(SrcReg);
2779   MachineMemOperand &MMO = **MI.memoperands_begin();
2780   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2781     return UnableToLegalize;
2782   if (SrcTy.isVector())
2783     return UnableToLegalize;
2784   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2785     return UnableToLegalize; // Don't know what we're being asked to do.
2786 
2787   // Extend to the next pow-2.
2788   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2789   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2790 
2791   // Obtain the smaller value by shifting away the larger value.
2792   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2793   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2794   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2795   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2796 
2797   // Generate the PtrAdd and truncating stores.
2798   LLT PtrTy = MRI.getType(PtrReg);
2799   auto OffsetCst = MIRBuilder.buildConstant(
2800     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2801   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2802   auto SmallPtr =
2803     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2804 
2805   MachineFunction &MF = MIRBuilder.getMF();
2806   MachineMemOperand *LargeMMO =
2807     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2808   MachineMemOperand *SmallMMO =
2809     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2810   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2811   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2812   MI.eraseFromParent();
2813   return Legalized;
2814 }
2815 
2816 LegalizerHelper::LegalizeResult
2817 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2818   switch (MI.getOpcode()) {
2819   case TargetOpcode::G_LOAD: {
2820     if (TypeIdx != 0)
2821       return UnableToLegalize;
2822 
2823     Observer.changingInstr(MI);
2824     bitcastDst(MI, CastTy, 0);
2825     Observer.changedInstr(MI);
2826     return Legalized;
2827   }
2828   case TargetOpcode::G_STORE: {
2829     if (TypeIdx != 0)
2830       return UnableToLegalize;
2831 
2832     Observer.changingInstr(MI);
2833     bitcastSrc(MI, CastTy, 0);
2834     Observer.changedInstr(MI);
2835     return Legalized;
2836   }
2837   case TargetOpcode::G_SELECT: {
2838     if (TypeIdx != 0)
2839       return UnableToLegalize;
2840 
2841     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2842       LLVM_DEBUG(
2843           dbgs() << "bitcast action not implemented for vector select\n");
2844       return UnableToLegalize;
2845     }
2846 
2847     Observer.changingInstr(MI);
2848     bitcastSrc(MI, CastTy, 2);
2849     bitcastSrc(MI, CastTy, 3);
2850     bitcastDst(MI, CastTy, 0);
2851     Observer.changedInstr(MI);
2852     return Legalized;
2853   }
2854   case TargetOpcode::G_AND:
2855   case TargetOpcode::G_OR:
2856   case TargetOpcode::G_XOR: {
2857     Observer.changingInstr(MI);
2858     bitcastSrc(MI, CastTy, 1);
2859     bitcastSrc(MI, CastTy, 2);
2860     bitcastDst(MI, CastTy, 0);
2861     Observer.changedInstr(MI);
2862     return Legalized;
2863   }
2864   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2865     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2866   case TargetOpcode::G_INSERT_VECTOR_ELT:
2867     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2868   default:
2869     return UnableToLegalize;
2870   }
2871 }
2872 
2873 // Legalize an instruction by changing the opcode in place.
2874 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2875     Observer.changingInstr(MI);
2876     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2877     Observer.changedInstr(MI);
2878 }
2879 
2880 LegalizerHelper::LegalizeResult
2881 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2882   using namespace TargetOpcode;
2883 
2884   switch(MI.getOpcode()) {
2885   default:
2886     return UnableToLegalize;
2887   case TargetOpcode::G_BITCAST:
2888     return lowerBitcast(MI);
2889   case TargetOpcode::G_SREM:
2890   case TargetOpcode::G_UREM: {
2891     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2892     auto Quot =
2893         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2894                               {MI.getOperand(1), MI.getOperand(2)});
2895 
2896     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2897     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2898     MI.eraseFromParent();
2899     return Legalized;
2900   }
2901   case TargetOpcode::G_SADDO:
2902   case TargetOpcode::G_SSUBO:
2903     return lowerSADDO_SSUBO(MI);
2904   case TargetOpcode::G_UMULH:
2905   case TargetOpcode::G_SMULH:
2906     return lowerSMULH_UMULH(MI);
2907   case TargetOpcode::G_SMULO:
2908   case TargetOpcode::G_UMULO: {
2909     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2910     // result.
2911     Register Res = MI.getOperand(0).getReg();
2912     Register Overflow = MI.getOperand(1).getReg();
2913     Register LHS = MI.getOperand(2).getReg();
2914     Register RHS = MI.getOperand(3).getReg();
2915     LLT Ty = MRI.getType(Res);
2916 
2917     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2918                           ? TargetOpcode::G_SMULH
2919                           : TargetOpcode::G_UMULH;
2920 
2921     Observer.changingInstr(MI);
2922     const auto &TII = MIRBuilder.getTII();
2923     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2924     MI.RemoveOperand(1);
2925     Observer.changedInstr(MI);
2926 
2927     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2928     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2929 
2930     // Move insert point forward so we can use the Res register if needed.
2931     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2932 
2933     // For *signed* multiply, overflow is detected by checking:
2934     // (hi != (lo >> bitwidth-1))
2935     if (Opcode == TargetOpcode::G_SMULH) {
2936       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2937       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2938       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2939     } else {
2940       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2941     }
2942     return Legalized;
2943   }
2944   case TargetOpcode::G_FNEG: {
2945     Register Res = MI.getOperand(0).getReg();
2946     LLT Ty = MRI.getType(Res);
2947 
2948     // TODO: Handle vector types once we are able to
2949     // represent them.
2950     if (Ty.isVector())
2951       return UnableToLegalize;
2952     auto SignMask =
2953         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2954     Register SubByReg = MI.getOperand(1).getReg();
2955     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2956     MI.eraseFromParent();
2957     return Legalized;
2958   }
2959   case TargetOpcode::G_FSUB: {
2960     Register Res = MI.getOperand(0).getReg();
2961     LLT Ty = MRI.getType(Res);
2962 
2963     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2964     // First, check if G_FNEG is marked as Lower. If so, we may
2965     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2966     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2967       return UnableToLegalize;
2968     Register LHS = MI.getOperand(1).getReg();
2969     Register RHS = MI.getOperand(2).getReg();
2970     Register Neg = MRI.createGenericVirtualRegister(Ty);
2971     MIRBuilder.buildFNeg(Neg, RHS);
2972     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2973     MI.eraseFromParent();
2974     return Legalized;
2975   }
2976   case TargetOpcode::G_FMAD:
2977     return lowerFMad(MI);
2978   case TargetOpcode::G_FFLOOR:
2979     return lowerFFloor(MI);
2980   case TargetOpcode::G_INTRINSIC_ROUND:
2981     return lowerIntrinsicRound(MI);
2982   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2983     // Since round even is the assumed rounding mode for unconstrained FP
2984     // operations, rint and roundeven are the same operation.
2985     changeOpcode(MI, TargetOpcode::G_FRINT);
2986     return Legalized;
2987   }
2988   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2989     Register OldValRes = MI.getOperand(0).getReg();
2990     Register SuccessRes = MI.getOperand(1).getReg();
2991     Register Addr = MI.getOperand(2).getReg();
2992     Register CmpVal = MI.getOperand(3).getReg();
2993     Register NewVal = MI.getOperand(4).getReg();
2994     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2995                                   **MI.memoperands_begin());
2996     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2997     MI.eraseFromParent();
2998     return Legalized;
2999   }
3000   case TargetOpcode::G_LOAD:
3001   case TargetOpcode::G_SEXTLOAD:
3002   case TargetOpcode::G_ZEXTLOAD:
3003     return lowerLoad(MI);
3004   case TargetOpcode::G_STORE:
3005     return lowerStore(MI);
3006   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3007   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3008   case TargetOpcode::G_CTLZ:
3009   case TargetOpcode::G_CTTZ:
3010   case TargetOpcode::G_CTPOP:
3011     return lowerBitCount(MI);
3012   case G_UADDO: {
3013     Register Res = MI.getOperand(0).getReg();
3014     Register CarryOut = MI.getOperand(1).getReg();
3015     Register LHS = MI.getOperand(2).getReg();
3016     Register RHS = MI.getOperand(3).getReg();
3017 
3018     MIRBuilder.buildAdd(Res, LHS, RHS);
3019     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3020 
3021     MI.eraseFromParent();
3022     return Legalized;
3023   }
3024   case G_UADDE: {
3025     Register Res = MI.getOperand(0).getReg();
3026     Register CarryOut = MI.getOperand(1).getReg();
3027     Register LHS = MI.getOperand(2).getReg();
3028     Register RHS = MI.getOperand(3).getReg();
3029     Register CarryIn = MI.getOperand(4).getReg();
3030     LLT Ty = MRI.getType(Res);
3031 
3032     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3033     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3034     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3035     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3036 
3037     MI.eraseFromParent();
3038     return Legalized;
3039   }
3040   case G_USUBO: {
3041     Register Res = MI.getOperand(0).getReg();
3042     Register BorrowOut = MI.getOperand(1).getReg();
3043     Register LHS = MI.getOperand(2).getReg();
3044     Register RHS = MI.getOperand(3).getReg();
3045 
3046     MIRBuilder.buildSub(Res, LHS, RHS);
3047     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3048 
3049     MI.eraseFromParent();
3050     return Legalized;
3051   }
3052   case G_USUBE: {
3053     Register Res = MI.getOperand(0).getReg();
3054     Register BorrowOut = MI.getOperand(1).getReg();
3055     Register LHS = MI.getOperand(2).getReg();
3056     Register RHS = MI.getOperand(3).getReg();
3057     Register BorrowIn = MI.getOperand(4).getReg();
3058     const LLT CondTy = MRI.getType(BorrowOut);
3059     const LLT Ty = MRI.getType(Res);
3060 
3061     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3062     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3063     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3064 
3065     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3066     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3067     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3068 
3069     MI.eraseFromParent();
3070     return Legalized;
3071   }
3072   case G_UITOFP:
3073     return lowerUITOFP(MI);
3074   case G_SITOFP:
3075     return lowerSITOFP(MI);
3076   case G_FPTOUI:
3077     return lowerFPTOUI(MI);
3078   case G_FPTOSI:
3079     return lowerFPTOSI(MI);
3080   case G_FPTRUNC:
3081     return lowerFPTRUNC(MI);
3082   case G_FPOWI:
3083     return lowerFPOWI(MI);
3084   case G_SMIN:
3085   case G_SMAX:
3086   case G_UMIN:
3087   case G_UMAX:
3088     return lowerMinMax(MI);
3089   case G_FCOPYSIGN:
3090     return lowerFCopySign(MI);
3091   case G_FMINNUM:
3092   case G_FMAXNUM:
3093     return lowerFMinNumMaxNum(MI);
3094   case G_MERGE_VALUES:
3095     return lowerMergeValues(MI);
3096   case G_UNMERGE_VALUES:
3097     return lowerUnmergeValues(MI);
3098   case TargetOpcode::G_SEXT_INREG: {
3099     assert(MI.getOperand(2).isImm() && "Expected immediate");
3100     int64_t SizeInBits = MI.getOperand(2).getImm();
3101 
3102     Register DstReg = MI.getOperand(0).getReg();
3103     Register SrcReg = MI.getOperand(1).getReg();
3104     LLT DstTy = MRI.getType(DstReg);
3105     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3106 
3107     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3108     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3109     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3110     MI.eraseFromParent();
3111     return Legalized;
3112   }
3113   case G_EXTRACT_VECTOR_ELT:
3114   case G_INSERT_VECTOR_ELT:
3115     return lowerExtractInsertVectorElt(MI);
3116   case G_SHUFFLE_VECTOR:
3117     return lowerShuffleVector(MI);
3118   case G_DYN_STACKALLOC:
3119     return lowerDynStackAlloc(MI);
3120   case G_EXTRACT:
3121     return lowerExtract(MI);
3122   case G_INSERT:
3123     return lowerInsert(MI);
3124   case G_BSWAP:
3125     return lowerBswap(MI);
3126   case G_BITREVERSE:
3127     return lowerBitreverse(MI);
3128   case G_READ_REGISTER:
3129   case G_WRITE_REGISTER:
3130     return lowerReadWriteRegister(MI);
3131   case G_UADDSAT:
3132   case G_USUBSAT: {
3133     // Try to make a reasonable guess about which lowering strategy to use. The
3134     // target can override this with custom lowering and calling the
3135     // implementation functions.
3136     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3137     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3138       return lowerAddSubSatToMinMax(MI);
3139     return lowerAddSubSatToAddoSubo(MI);
3140   }
3141   case G_SADDSAT:
3142   case G_SSUBSAT: {
3143     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3144 
3145     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3146     // since it's a shorter expansion. However, we would need to figure out the
3147     // preferred boolean type for the carry out for the query.
3148     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3149       return lowerAddSubSatToMinMax(MI);
3150     return lowerAddSubSatToAddoSubo(MI);
3151   }
3152   case G_SSHLSAT:
3153   case G_USHLSAT:
3154     return lowerShlSat(MI);
3155   case G_ABS: {
3156     // Expand %res = G_ABS %a into:
3157     // %v1 = G_ASHR %a, scalar_size-1
3158     // %v2 = G_ADD %a, %v1
3159     // %res = G_XOR %v2, %v1
3160     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3161     Register OpReg = MI.getOperand(1).getReg();
3162     auto ShiftAmt =
3163         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3164     auto Shift =
3165         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3166     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3167     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3168     MI.eraseFromParent();
3169     return Legalized;
3170   }
3171   case G_SELECT:
3172     return lowerSelect(MI);
3173   }
3174 }
3175 
3176 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3177                                                   Align MinAlign) const {
3178   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3179   // datalayout for the preferred alignment. Also there should be a target hook
3180   // for this to allow targets to reduce the alignment and ignore the
3181   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3182   // the type.
3183   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3184 }
3185 
3186 MachineInstrBuilder
3187 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3188                                       MachinePointerInfo &PtrInfo) {
3189   MachineFunction &MF = MIRBuilder.getMF();
3190   const DataLayout &DL = MIRBuilder.getDataLayout();
3191   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3192 
3193   unsigned AddrSpace = DL.getAllocaAddrSpace();
3194   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3195 
3196   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3197   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3198 }
3199 
3200 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3201                                         LLT VecTy) {
3202   int64_t IdxVal;
3203   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3204     return IdxReg;
3205 
3206   LLT IdxTy = B.getMRI()->getType(IdxReg);
3207   unsigned NElts = VecTy.getNumElements();
3208   if (isPowerOf2_32(NElts)) {
3209     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3210     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3211   }
3212 
3213   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3214       .getReg(0);
3215 }
3216 
3217 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3218                                                   Register Index) {
3219   LLT EltTy = VecTy.getElementType();
3220 
3221   // Calculate the element offset and add it to the pointer.
3222   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3223   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3224          "Converting bits to bytes lost precision");
3225 
3226   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3227 
3228   LLT IdxTy = MRI.getType(Index);
3229   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3230                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3231 
3232   LLT PtrTy = MRI.getType(VecPtr);
3233   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3234 }
3235 
3236 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3237     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3238   Register DstReg = MI.getOperand(0).getReg();
3239   LLT DstTy = MRI.getType(DstReg);
3240   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3241 
3242   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3243 
3244   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3245   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3246 
3247   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3248   MI.eraseFromParent();
3249   return Legalized;
3250 }
3251 
3252 // Handle splitting vector operations which need to have the same number of
3253 // elements in each type index, but each type index may have a different element
3254 // type.
3255 //
3256 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3257 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3258 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3259 //
3260 // Also handles some irregular breakdown cases, e.g.
3261 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3262 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3263 //             s64 = G_SHL s64, s32
3264 LegalizerHelper::LegalizeResult
3265 LegalizerHelper::fewerElementsVectorMultiEltType(
3266   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3267   if (TypeIdx != 0)
3268     return UnableToLegalize;
3269 
3270   const LLT NarrowTy0 = NarrowTyArg;
3271   const unsigned NewNumElts =
3272       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3273 
3274   const Register DstReg = MI.getOperand(0).getReg();
3275   LLT DstTy = MRI.getType(DstReg);
3276   LLT LeftoverTy0;
3277 
3278   // All of the operands need to have the same number of elements, so if we can
3279   // determine a type breakdown for the result type, we can for all of the
3280   // source types.
3281   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3282   if (NumParts < 0)
3283     return UnableToLegalize;
3284 
3285   SmallVector<MachineInstrBuilder, 4> NewInsts;
3286 
3287   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3288   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3289 
3290   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3291     Register SrcReg = MI.getOperand(I).getReg();
3292     LLT SrcTyI = MRI.getType(SrcReg);
3293     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3294     LLT LeftoverTyI;
3295 
3296     // Split this operand into the requested typed registers, and any leftover
3297     // required to reproduce the original type.
3298     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3299                       LeftoverRegs))
3300       return UnableToLegalize;
3301 
3302     if (I == 1) {
3303       // For the first operand, create an instruction for each part and setup
3304       // the result.
3305       for (Register PartReg : PartRegs) {
3306         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3307         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3308                                .addDef(PartDstReg)
3309                                .addUse(PartReg));
3310         DstRegs.push_back(PartDstReg);
3311       }
3312 
3313       for (Register LeftoverReg : LeftoverRegs) {
3314         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3315         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3316                                .addDef(PartDstReg)
3317                                .addUse(LeftoverReg));
3318         LeftoverDstRegs.push_back(PartDstReg);
3319       }
3320     } else {
3321       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3322 
3323       // Add the newly created operand splits to the existing instructions. The
3324       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3325       // pieces.
3326       unsigned InstCount = 0;
3327       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3328         NewInsts[InstCount++].addUse(PartRegs[J]);
3329       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3330         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3331     }
3332 
3333     PartRegs.clear();
3334     LeftoverRegs.clear();
3335   }
3336 
3337   // Insert the newly built operations and rebuild the result register.
3338   for (auto &MIB : NewInsts)
3339     MIRBuilder.insertInstr(MIB);
3340 
3341   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3342 
3343   MI.eraseFromParent();
3344   return Legalized;
3345 }
3346 
3347 LegalizerHelper::LegalizeResult
3348 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3349                                           LLT NarrowTy) {
3350   if (TypeIdx != 0)
3351     return UnableToLegalize;
3352 
3353   Register DstReg = MI.getOperand(0).getReg();
3354   Register SrcReg = MI.getOperand(1).getReg();
3355   LLT DstTy = MRI.getType(DstReg);
3356   LLT SrcTy = MRI.getType(SrcReg);
3357 
3358   LLT NarrowTy0 = NarrowTy;
3359   LLT NarrowTy1;
3360   unsigned NumParts;
3361 
3362   if (NarrowTy.isVector()) {
3363     // Uneven breakdown not handled.
3364     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3365     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3366       return UnableToLegalize;
3367 
3368     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3369   } else {
3370     NumParts = DstTy.getNumElements();
3371     NarrowTy1 = SrcTy.getElementType();
3372   }
3373 
3374   SmallVector<Register, 4> SrcRegs, DstRegs;
3375   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3376 
3377   for (unsigned I = 0; I < NumParts; ++I) {
3378     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3379     MachineInstr *NewInst =
3380         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3381 
3382     NewInst->setFlags(MI.getFlags());
3383     DstRegs.push_back(DstReg);
3384   }
3385 
3386   if (NarrowTy.isVector())
3387     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3388   else
3389     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3390 
3391   MI.eraseFromParent();
3392   return Legalized;
3393 }
3394 
3395 LegalizerHelper::LegalizeResult
3396 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3397                                         LLT NarrowTy) {
3398   Register DstReg = MI.getOperand(0).getReg();
3399   Register Src0Reg = MI.getOperand(2).getReg();
3400   LLT DstTy = MRI.getType(DstReg);
3401   LLT SrcTy = MRI.getType(Src0Reg);
3402 
3403   unsigned NumParts;
3404   LLT NarrowTy0, NarrowTy1;
3405 
3406   if (TypeIdx == 0) {
3407     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3408     unsigned OldElts = DstTy.getNumElements();
3409 
3410     NarrowTy0 = NarrowTy;
3411     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3412     NarrowTy1 = NarrowTy.isVector() ?
3413       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3414       SrcTy.getElementType();
3415 
3416   } else {
3417     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3418     unsigned OldElts = SrcTy.getNumElements();
3419 
3420     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3421       NarrowTy.getNumElements();
3422     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3423                             DstTy.getScalarSizeInBits());
3424     NarrowTy1 = NarrowTy;
3425   }
3426 
3427   // FIXME: Don't know how to handle the situation where the small vectors
3428   // aren't all the same size yet.
3429   if (NarrowTy1.isVector() &&
3430       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3431     return UnableToLegalize;
3432 
3433   CmpInst::Predicate Pred
3434     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3435 
3436   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3437   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3438   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3439 
3440   for (unsigned I = 0; I < NumParts; ++I) {
3441     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3442     DstRegs.push_back(DstReg);
3443 
3444     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3445       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3446     else {
3447       MachineInstr *NewCmp
3448         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3449       NewCmp->setFlags(MI.getFlags());
3450     }
3451   }
3452 
3453   if (NarrowTy1.isVector())
3454     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3455   else
3456     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3457 
3458   MI.eraseFromParent();
3459   return Legalized;
3460 }
3461 
3462 LegalizerHelper::LegalizeResult
3463 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3464                                            LLT NarrowTy) {
3465   Register DstReg = MI.getOperand(0).getReg();
3466   Register CondReg = MI.getOperand(1).getReg();
3467 
3468   unsigned NumParts = 0;
3469   LLT NarrowTy0, NarrowTy1;
3470 
3471   LLT DstTy = MRI.getType(DstReg);
3472   LLT CondTy = MRI.getType(CondReg);
3473   unsigned Size = DstTy.getSizeInBits();
3474 
3475   assert(TypeIdx == 0 || CondTy.isVector());
3476 
3477   if (TypeIdx == 0) {
3478     NarrowTy0 = NarrowTy;
3479     NarrowTy1 = CondTy;
3480 
3481     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3482     // FIXME: Don't know how to handle the situation where the small vectors
3483     // aren't all the same size yet.
3484     if (Size % NarrowSize != 0)
3485       return UnableToLegalize;
3486 
3487     NumParts = Size / NarrowSize;
3488 
3489     // Need to break down the condition type
3490     if (CondTy.isVector()) {
3491       if (CondTy.getNumElements() == NumParts)
3492         NarrowTy1 = CondTy.getElementType();
3493       else
3494         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3495                                 CondTy.getScalarSizeInBits());
3496     }
3497   } else {
3498     NumParts = CondTy.getNumElements();
3499     if (NarrowTy.isVector()) {
3500       // TODO: Handle uneven breakdown.
3501       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3502         return UnableToLegalize;
3503 
3504       return UnableToLegalize;
3505     } else {
3506       NarrowTy0 = DstTy.getElementType();
3507       NarrowTy1 = NarrowTy;
3508     }
3509   }
3510 
3511   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3512   if (CondTy.isVector())
3513     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3514 
3515   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3516   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3517 
3518   for (unsigned i = 0; i < NumParts; ++i) {
3519     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3520     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3521                            Src1Regs[i], Src2Regs[i]);
3522     DstRegs.push_back(DstReg);
3523   }
3524 
3525   if (NarrowTy0.isVector())
3526     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3527   else
3528     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3529 
3530   MI.eraseFromParent();
3531   return Legalized;
3532 }
3533 
3534 LegalizerHelper::LegalizeResult
3535 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3536                                         LLT NarrowTy) {
3537   const Register DstReg = MI.getOperand(0).getReg();
3538   LLT PhiTy = MRI.getType(DstReg);
3539   LLT LeftoverTy;
3540 
3541   // All of the operands need to have the same number of elements, so if we can
3542   // determine a type breakdown for the result type, we can for all of the
3543   // source types.
3544   int NumParts, NumLeftover;
3545   std::tie(NumParts, NumLeftover)
3546     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3547   if (NumParts < 0)
3548     return UnableToLegalize;
3549 
3550   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3551   SmallVector<MachineInstrBuilder, 4> NewInsts;
3552 
3553   const int TotalNumParts = NumParts + NumLeftover;
3554 
3555   // Insert the new phis in the result block first.
3556   for (int I = 0; I != TotalNumParts; ++I) {
3557     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3558     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3559     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3560                        .addDef(PartDstReg));
3561     if (I < NumParts)
3562       DstRegs.push_back(PartDstReg);
3563     else
3564       LeftoverDstRegs.push_back(PartDstReg);
3565   }
3566 
3567   MachineBasicBlock *MBB = MI.getParent();
3568   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3569   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3570 
3571   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3572 
3573   // Insert code to extract the incoming values in each predecessor block.
3574   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3575     PartRegs.clear();
3576     LeftoverRegs.clear();
3577 
3578     Register SrcReg = MI.getOperand(I).getReg();
3579     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3580     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3581 
3582     LLT Unused;
3583     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3584                       LeftoverRegs))
3585       return UnableToLegalize;
3586 
3587     // Add the newly created operand splits to the existing instructions. The
3588     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3589     // pieces.
3590     for (int J = 0; J != TotalNumParts; ++J) {
3591       MachineInstrBuilder MIB = NewInsts[J];
3592       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3593       MIB.addMBB(&OpMBB);
3594     }
3595   }
3596 
3597   MI.eraseFromParent();
3598   return Legalized;
3599 }
3600 
3601 LegalizerHelper::LegalizeResult
3602 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3603                                                   unsigned TypeIdx,
3604                                                   LLT NarrowTy) {
3605   if (TypeIdx != 1)
3606     return UnableToLegalize;
3607 
3608   const int NumDst = MI.getNumOperands() - 1;
3609   const Register SrcReg = MI.getOperand(NumDst).getReg();
3610   LLT SrcTy = MRI.getType(SrcReg);
3611 
3612   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3613 
3614   // TODO: Create sequence of extracts.
3615   if (DstTy == NarrowTy)
3616     return UnableToLegalize;
3617 
3618   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3619   if (DstTy == GCDTy) {
3620     // This would just be a copy of the same unmerge.
3621     // TODO: Create extracts, pad with undef and create intermediate merges.
3622     return UnableToLegalize;
3623   }
3624 
3625   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3626   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3627   const int PartsPerUnmerge = NumDst / NumUnmerge;
3628 
3629   for (int I = 0; I != NumUnmerge; ++I) {
3630     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3631 
3632     for (int J = 0; J != PartsPerUnmerge; ++J)
3633       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3634     MIB.addUse(Unmerge.getReg(I));
3635   }
3636 
3637   MI.eraseFromParent();
3638   return Legalized;
3639 }
3640 
3641 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3642 // a vector
3643 //
3644 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3645 // undef as necessary.
3646 //
3647 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3648 //   -> <2 x s16>
3649 //
3650 // %4:_(s16) = G_IMPLICIT_DEF
3651 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3652 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3653 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3654 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3655 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3656 LegalizerHelper::LegalizeResult
3657 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3658                                           LLT NarrowTy) {
3659   Register DstReg = MI.getOperand(0).getReg();
3660   LLT DstTy = MRI.getType(DstReg);
3661   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3662   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3663 
3664   // Break into a common type
3665   SmallVector<Register, 16> Parts;
3666   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3667     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3668 
3669   // Build the requested new merge, padding with undef.
3670   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3671                                   TargetOpcode::G_ANYEXT);
3672 
3673   // Pack into the original result register.
3674   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3675 
3676   MI.eraseFromParent();
3677   return Legalized;
3678 }
3679 
3680 LegalizerHelper::LegalizeResult
3681 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3682                                                            unsigned TypeIdx,
3683                                                            LLT NarrowVecTy) {
3684   Register DstReg = MI.getOperand(0).getReg();
3685   Register SrcVec = MI.getOperand(1).getReg();
3686   Register InsertVal;
3687   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3688 
3689   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3690   if (IsInsert)
3691     InsertVal = MI.getOperand(2).getReg();
3692 
3693   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3694 
3695   // TODO: Handle total scalarization case.
3696   if (!NarrowVecTy.isVector())
3697     return UnableToLegalize;
3698 
3699   LLT VecTy = MRI.getType(SrcVec);
3700 
3701   // If the index is a constant, we can really break this down as you would
3702   // expect, and index into the target size pieces.
3703   int64_t IdxVal;
3704   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3705     // Avoid out of bounds indexing the pieces.
3706     if (IdxVal >= VecTy.getNumElements()) {
3707       MIRBuilder.buildUndef(DstReg);
3708       MI.eraseFromParent();
3709       return Legalized;
3710     }
3711 
3712     SmallVector<Register, 8> VecParts;
3713     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3714 
3715     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3716     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3717                                     TargetOpcode::G_ANYEXT);
3718 
3719     unsigned NewNumElts = NarrowVecTy.getNumElements();
3720 
3721     LLT IdxTy = MRI.getType(Idx);
3722     int64_t PartIdx = IdxVal / NewNumElts;
3723     auto NewIdx =
3724         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3725 
3726     if (IsInsert) {
3727       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3728 
3729       // Use the adjusted index to insert into one of the subvectors.
3730       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3731           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3732       VecParts[PartIdx] = InsertPart.getReg(0);
3733 
3734       // Recombine the inserted subvector with the others to reform the result
3735       // vector.
3736       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3737     } else {
3738       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3739     }
3740 
3741     MI.eraseFromParent();
3742     return Legalized;
3743   }
3744 
3745   // With a variable index, we can't perform the operation in a smaller type, so
3746   // we're forced to expand this.
3747   //
3748   // TODO: We could emit a chain of compare/select to figure out which piece to
3749   // index.
3750   return lowerExtractInsertVectorElt(MI);
3751 }
3752 
3753 LegalizerHelper::LegalizeResult
3754 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3755                                       LLT NarrowTy) {
3756   // FIXME: Don't know how to handle secondary types yet.
3757   if (TypeIdx != 0)
3758     return UnableToLegalize;
3759 
3760   MachineMemOperand *MMO = *MI.memoperands_begin();
3761 
3762   // This implementation doesn't work for atomics. Give up instead of doing
3763   // something invalid.
3764   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3765       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3766     return UnableToLegalize;
3767 
3768   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3769   Register ValReg = MI.getOperand(0).getReg();
3770   Register AddrReg = MI.getOperand(1).getReg();
3771   LLT ValTy = MRI.getType(ValReg);
3772 
3773   // FIXME: Do we need a distinct NarrowMemory legalize action?
3774   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3775     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3776     return UnableToLegalize;
3777   }
3778 
3779   int NumParts = -1;
3780   int NumLeftover = -1;
3781   LLT LeftoverTy;
3782   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3783   if (IsLoad) {
3784     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3785   } else {
3786     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3787                      NarrowLeftoverRegs)) {
3788       NumParts = NarrowRegs.size();
3789       NumLeftover = NarrowLeftoverRegs.size();
3790     }
3791   }
3792 
3793   if (NumParts == -1)
3794     return UnableToLegalize;
3795 
3796   LLT PtrTy = MRI.getType(AddrReg);
3797   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3798 
3799   unsigned TotalSize = ValTy.getSizeInBits();
3800 
3801   // Split the load/store into PartTy sized pieces starting at Offset. If this
3802   // is a load, return the new registers in ValRegs. For a store, each elements
3803   // of ValRegs should be PartTy. Returns the next offset that needs to be
3804   // handled.
3805   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3806                              unsigned Offset) -> unsigned {
3807     MachineFunction &MF = MIRBuilder.getMF();
3808     unsigned PartSize = PartTy.getSizeInBits();
3809     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3810          Offset += PartSize, ++Idx) {
3811       unsigned ByteSize = PartSize / 8;
3812       unsigned ByteOffset = Offset / 8;
3813       Register NewAddrReg;
3814 
3815       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3816 
3817       MachineMemOperand *NewMMO =
3818         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3819 
3820       if (IsLoad) {
3821         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3822         ValRegs.push_back(Dst);
3823         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3824       } else {
3825         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3826       }
3827     }
3828 
3829     return Offset;
3830   };
3831 
3832   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3833 
3834   // Handle the rest of the register if this isn't an even type breakdown.
3835   if (LeftoverTy.isValid())
3836     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3837 
3838   if (IsLoad) {
3839     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3840                 LeftoverTy, NarrowLeftoverRegs);
3841   }
3842 
3843   MI.eraseFromParent();
3844   return Legalized;
3845 }
3846 
3847 LegalizerHelper::LegalizeResult
3848 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3849                                       LLT NarrowTy) {
3850   assert(TypeIdx == 0 && "only one type index expected");
3851 
3852   const unsigned Opc = MI.getOpcode();
3853   const int NumOps = MI.getNumOperands() - 1;
3854   const Register DstReg = MI.getOperand(0).getReg();
3855   const unsigned Flags = MI.getFlags();
3856   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3857   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3858 
3859   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3860 
3861   // First of all check whether we are narrowing (changing the element type)
3862   // or reducing the vector elements
3863   const LLT DstTy = MRI.getType(DstReg);
3864   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3865 
3866   SmallVector<Register, 8> ExtractedRegs[3];
3867   SmallVector<Register, 8> Parts;
3868 
3869   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3870 
3871   // Break down all the sources into NarrowTy pieces we can operate on. This may
3872   // involve creating merges to a wider type, padded with undef.
3873   for (int I = 0; I != NumOps; ++I) {
3874     Register SrcReg = MI.getOperand(I + 1).getReg();
3875     LLT SrcTy = MRI.getType(SrcReg);
3876 
3877     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3878     // For fewerElements, this is a smaller vector with the same element type.
3879     LLT OpNarrowTy;
3880     if (IsNarrow) {
3881       OpNarrowTy = NarrowScalarTy;
3882 
3883       // In case of narrowing, we need to cast vectors to scalars for this to
3884       // work properly
3885       // FIXME: Can we do without the bitcast here if we're narrowing?
3886       if (SrcTy.isVector()) {
3887         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3888         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3889       }
3890     } else {
3891       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3892     }
3893 
3894     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3895 
3896     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3897     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3898                         TargetOpcode::G_ANYEXT);
3899   }
3900 
3901   SmallVector<Register, 8> ResultRegs;
3902 
3903   // Input operands for each sub-instruction.
3904   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3905 
3906   int NumParts = ExtractedRegs[0].size();
3907   const unsigned DstSize = DstTy.getSizeInBits();
3908   const LLT DstScalarTy = LLT::scalar(DstSize);
3909 
3910   // Narrowing needs to use scalar types
3911   LLT DstLCMTy, NarrowDstTy;
3912   if (IsNarrow) {
3913     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3914     NarrowDstTy = NarrowScalarTy;
3915   } else {
3916     DstLCMTy = getLCMType(DstTy, NarrowTy);
3917     NarrowDstTy = NarrowTy;
3918   }
3919 
3920   // We widened the source registers to satisfy merge/unmerge size
3921   // constraints. We'll have some extra fully undef parts.
3922   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3923 
3924   for (int I = 0; I != NumRealParts; ++I) {
3925     // Emit this instruction on each of the split pieces.
3926     for (int J = 0; J != NumOps; ++J)
3927       InputRegs[J] = ExtractedRegs[J][I];
3928 
3929     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3930     ResultRegs.push_back(Inst.getReg(0));
3931   }
3932 
3933   // Fill out the widened result with undef instead of creating instructions
3934   // with undef inputs.
3935   int NumUndefParts = NumParts - NumRealParts;
3936   if (NumUndefParts != 0)
3937     ResultRegs.append(NumUndefParts,
3938                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3939 
3940   // Extract the possibly padded result. Use a scratch register if we need to do
3941   // a final bitcast, otherwise use the original result register.
3942   Register MergeDstReg;
3943   if (IsNarrow && DstTy.isVector())
3944     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3945   else
3946     MergeDstReg = DstReg;
3947 
3948   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3949 
3950   // Recast to vector if we narrowed a vector
3951   if (IsNarrow && DstTy.isVector())
3952     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3953 
3954   MI.eraseFromParent();
3955   return Legalized;
3956 }
3957 
3958 LegalizerHelper::LegalizeResult
3959 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3960                                               LLT NarrowTy) {
3961   Register DstReg = MI.getOperand(0).getReg();
3962   Register SrcReg = MI.getOperand(1).getReg();
3963   int64_t Imm = MI.getOperand(2).getImm();
3964 
3965   LLT DstTy = MRI.getType(DstReg);
3966 
3967   SmallVector<Register, 8> Parts;
3968   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3969   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3970 
3971   for (Register &R : Parts)
3972     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3973 
3974   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3975 
3976   MI.eraseFromParent();
3977   return Legalized;
3978 }
3979 
3980 LegalizerHelper::LegalizeResult
3981 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3982                                      LLT NarrowTy) {
3983   using namespace TargetOpcode;
3984 
3985   switch (MI.getOpcode()) {
3986   case G_IMPLICIT_DEF:
3987     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3988   case G_TRUNC:
3989   case G_AND:
3990   case G_OR:
3991   case G_XOR:
3992   case G_ADD:
3993   case G_SUB:
3994   case G_MUL:
3995   case G_PTR_ADD:
3996   case G_SMULH:
3997   case G_UMULH:
3998   case G_FADD:
3999   case G_FMUL:
4000   case G_FSUB:
4001   case G_FNEG:
4002   case G_FABS:
4003   case G_FCANONICALIZE:
4004   case G_FDIV:
4005   case G_FREM:
4006   case G_FMA:
4007   case G_FMAD:
4008   case G_FPOW:
4009   case G_FEXP:
4010   case G_FEXP2:
4011   case G_FLOG:
4012   case G_FLOG2:
4013   case G_FLOG10:
4014   case G_FNEARBYINT:
4015   case G_FCEIL:
4016   case G_FFLOOR:
4017   case G_FRINT:
4018   case G_INTRINSIC_ROUND:
4019   case G_INTRINSIC_ROUNDEVEN:
4020   case G_INTRINSIC_TRUNC:
4021   case G_FCOS:
4022   case G_FSIN:
4023   case G_FSQRT:
4024   case G_BSWAP:
4025   case G_BITREVERSE:
4026   case G_SDIV:
4027   case G_UDIV:
4028   case G_SREM:
4029   case G_UREM:
4030   case G_SMIN:
4031   case G_SMAX:
4032   case G_UMIN:
4033   case G_UMAX:
4034   case G_FMINNUM:
4035   case G_FMAXNUM:
4036   case G_FMINNUM_IEEE:
4037   case G_FMAXNUM_IEEE:
4038   case G_FMINIMUM:
4039   case G_FMAXIMUM:
4040   case G_FSHL:
4041   case G_FSHR:
4042   case G_FREEZE:
4043   case G_SADDSAT:
4044   case G_SSUBSAT:
4045   case G_UADDSAT:
4046   case G_USUBSAT:
4047     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4048   case G_SHL:
4049   case G_LSHR:
4050   case G_ASHR:
4051   case G_SSHLSAT:
4052   case G_USHLSAT:
4053   case G_CTLZ:
4054   case G_CTLZ_ZERO_UNDEF:
4055   case G_CTTZ:
4056   case G_CTTZ_ZERO_UNDEF:
4057   case G_CTPOP:
4058   case G_FCOPYSIGN:
4059     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4060   case G_ZEXT:
4061   case G_SEXT:
4062   case G_ANYEXT:
4063   case G_FPEXT:
4064   case G_FPTRUNC:
4065   case G_SITOFP:
4066   case G_UITOFP:
4067   case G_FPTOSI:
4068   case G_FPTOUI:
4069   case G_INTTOPTR:
4070   case G_PTRTOINT:
4071   case G_ADDRSPACE_CAST:
4072     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4073   case G_ICMP:
4074   case G_FCMP:
4075     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4076   case G_SELECT:
4077     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4078   case G_PHI:
4079     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4080   case G_UNMERGE_VALUES:
4081     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4082   case G_BUILD_VECTOR:
4083     assert(TypeIdx == 0 && "not a vector type index");
4084     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4085   case G_CONCAT_VECTORS:
4086     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4087       return UnableToLegalize;
4088     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4089   case G_EXTRACT_VECTOR_ELT:
4090   case G_INSERT_VECTOR_ELT:
4091     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4092   case G_LOAD:
4093   case G_STORE:
4094     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4095   case G_SEXT_INREG:
4096     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4097   default:
4098     return UnableToLegalize;
4099   }
4100 }
4101 
4102 LegalizerHelper::LegalizeResult
4103 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4104                                              const LLT HalfTy, const LLT AmtTy) {
4105 
4106   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4107   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4108   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4109 
4110   if (Amt.isNullValue()) {
4111     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4112     MI.eraseFromParent();
4113     return Legalized;
4114   }
4115 
4116   LLT NVT = HalfTy;
4117   unsigned NVTBits = HalfTy.getSizeInBits();
4118   unsigned VTBits = 2 * NVTBits;
4119 
4120   SrcOp Lo(Register(0)), Hi(Register(0));
4121   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4122     if (Amt.ugt(VTBits)) {
4123       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4124     } else if (Amt.ugt(NVTBits)) {
4125       Lo = MIRBuilder.buildConstant(NVT, 0);
4126       Hi = MIRBuilder.buildShl(NVT, InL,
4127                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4128     } else if (Amt == NVTBits) {
4129       Lo = MIRBuilder.buildConstant(NVT, 0);
4130       Hi = InL;
4131     } else {
4132       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4133       auto OrLHS =
4134           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4135       auto OrRHS = MIRBuilder.buildLShr(
4136           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4137       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4138     }
4139   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4140     if (Amt.ugt(VTBits)) {
4141       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4142     } else if (Amt.ugt(NVTBits)) {
4143       Lo = MIRBuilder.buildLShr(NVT, InH,
4144                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4145       Hi = MIRBuilder.buildConstant(NVT, 0);
4146     } else if (Amt == NVTBits) {
4147       Lo = InH;
4148       Hi = MIRBuilder.buildConstant(NVT, 0);
4149     } else {
4150       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4151 
4152       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4153       auto OrRHS = MIRBuilder.buildShl(
4154           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4155 
4156       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4157       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4158     }
4159   } else {
4160     if (Amt.ugt(VTBits)) {
4161       Hi = Lo = MIRBuilder.buildAShr(
4162           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4163     } else if (Amt.ugt(NVTBits)) {
4164       Lo = MIRBuilder.buildAShr(NVT, InH,
4165                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4166       Hi = MIRBuilder.buildAShr(NVT, InH,
4167                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4168     } else if (Amt == NVTBits) {
4169       Lo = InH;
4170       Hi = MIRBuilder.buildAShr(NVT, InH,
4171                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4172     } else {
4173       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4174 
4175       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4176       auto OrRHS = MIRBuilder.buildShl(
4177           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4178 
4179       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4180       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4181     }
4182   }
4183 
4184   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4185   MI.eraseFromParent();
4186 
4187   return Legalized;
4188 }
4189 
4190 // TODO: Optimize if constant shift amount.
4191 LegalizerHelper::LegalizeResult
4192 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4193                                    LLT RequestedTy) {
4194   if (TypeIdx == 1) {
4195     Observer.changingInstr(MI);
4196     narrowScalarSrc(MI, RequestedTy, 2);
4197     Observer.changedInstr(MI);
4198     return Legalized;
4199   }
4200 
4201   Register DstReg = MI.getOperand(0).getReg();
4202   LLT DstTy = MRI.getType(DstReg);
4203   if (DstTy.isVector())
4204     return UnableToLegalize;
4205 
4206   Register Amt = MI.getOperand(2).getReg();
4207   LLT ShiftAmtTy = MRI.getType(Amt);
4208   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4209   if (DstEltSize % 2 != 0)
4210     return UnableToLegalize;
4211 
4212   // Ignore the input type. We can only go to exactly half the size of the
4213   // input. If that isn't small enough, the resulting pieces will be further
4214   // legalized.
4215   const unsigned NewBitSize = DstEltSize / 2;
4216   const LLT HalfTy = LLT::scalar(NewBitSize);
4217   const LLT CondTy = LLT::scalar(1);
4218 
4219   if (const MachineInstr *KShiftAmt =
4220           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4221     return narrowScalarShiftByConstant(
4222         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4223   }
4224 
4225   // TODO: Expand with known bits.
4226 
4227   // Handle the fully general expansion by an unknown amount.
4228   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4229 
4230   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4231   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4232   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4233 
4234   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4235   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4236 
4237   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4238   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4239   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4240 
4241   Register ResultRegs[2];
4242   switch (MI.getOpcode()) {
4243   case TargetOpcode::G_SHL: {
4244     // Short: ShAmt < NewBitSize
4245     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4246 
4247     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4248     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4249     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4250 
4251     // Long: ShAmt >= NewBitSize
4252     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4253     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4254 
4255     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4256     auto Hi = MIRBuilder.buildSelect(
4257         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4258 
4259     ResultRegs[0] = Lo.getReg(0);
4260     ResultRegs[1] = Hi.getReg(0);
4261     break;
4262   }
4263   case TargetOpcode::G_LSHR:
4264   case TargetOpcode::G_ASHR: {
4265     // Short: ShAmt < NewBitSize
4266     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4267 
4268     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4269     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4270     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4271 
4272     // Long: ShAmt >= NewBitSize
4273     MachineInstrBuilder HiL;
4274     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4275       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4276     } else {
4277       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4278       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4279     }
4280     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4281                                      {InH, AmtExcess});     // Lo from Hi part.
4282 
4283     auto Lo = MIRBuilder.buildSelect(
4284         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4285 
4286     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4287 
4288     ResultRegs[0] = Lo.getReg(0);
4289     ResultRegs[1] = Hi.getReg(0);
4290     break;
4291   }
4292   default:
4293     llvm_unreachable("not a shift");
4294   }
4295 
4296   MIRBuilder.buildMerge(DstReg, ResultRegs);
4297   MI.eraseFromParent();
4298   return Legalized;
4299 }
4300 
4301 LegalizerHelper::LegalizeResult
4302 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4303                                        LLT MoreTy) {
4304   assert(TypeIdx == 0 && "Expecting only Idx 0");
4305 
4306   Observer.changingInstr(MI);
4307   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4308     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4309     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4310     moreElementsVectorSrc(MI, MoreTy, I);
4311   }
4312 
4313   MachineBasicBlock &MBB = *MI.getParent();
4314   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4315   moreElementsVectorDst(MI, MoreTy, 0);
4316   Observer.changedInstr(MI);
4317   return Legalized;
4318 }
4319 
4320 LegalizerHelper::LegalizeResult
4321 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4322                                     LLT MoreTy) {
4323   unsigned Opc = MI.getOpcode();
4324   switch (Opc) {
4325   case TargetOpcode::G_IMPLICIT_DEF:
4326   case TargetOpcode::G_LOAD: {
4327     if (TypeIdx != 0)
4328       return UnableToLegalize;
4329     Observer.changingInstr(MI);
4330     moreElementsVectorDst(MI, MoreTy, 0);
4331     Observer.changedInstr(MI);
4332     return Legalized;
4333   }
4334   case TargetOpcode::G_STORE:
4335     if (TypeIdx != 0)
4336       return UnableToLegalize;
4337     Observer.changingInstr(MI);
4338     moreElementsVectorSrc(MI, MoreTy, 0);
4339     Observer.changedInstr(MI);
4340     return Legalized;
4341   case TargetOpcode::G_AND:
4342   case TargetOpcode::G_OR:
4343   case TargetOpcode::G_XOR:
4344   case TargetOpcode::G_SMIN:
4345   case TargetOpcode::G_SMAX:
4346   case TargetOpcode::G_UMIN:
4347   case TargetOpcode::G_UMAX:
4348   case TargetOpcode::G_FMINNUM:
4349   case TargetOpcode::G_FMAXNUM:
4350   case TargetOpcode::G_FMINNUM_IEEE:
4351   case TargetOpcode::G_FMAXNUM_IEEE:
4352   case TargetOpcode::G_FMINIMUM:
4353   case TargetOpcode::G_FMAXIMUM: {
4354     Observer.changingInstr(MI);
4355     moreElementsVectorSrc(MI, MoreTy, 1);
4356     moreElementsVectorSrc(MI, MoreTy, 2);
4357     moreElementsVectorDst(MI, MoreTy, 0);
4358     Observer.changedInstr(MI);
4359     return Legalized;
4360   }
4361   case TargetOpcode::G_EXTRACT:
4362     if (TypeIdx != 1)
4363       return UnableToLegalize;
4364     Observer.changingInstr(MI);
4365     moreElementsVectorSrc(MI, MoreTy, 1);
4366     Observer.changedInstr(MI);
4367     return Legalized;
4368   case TargetOpcode::G_INSERT:
4369   case TargetOpcode::G_FREEZE:
4370     if (TypeIdx != 0)
4371       return UnableToLegalize;
4372     Observer.changingInstr(MI);
4373     moreElementsVectorSrc(MI, MoreTy, 1);
4374     moreElementsVectorDst(MI, MoreTy, 0);
4375     Observer.changedInstr(MI);
4376     return Legalized;
4377   case TargetOpcode::G_SELECT:
4378     if (TypeIdx != 0)
4379       return UnableToLegalize;
4380     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4381       return UnableToLegalize;
4382 
4383     Observer.changingInstr(MI);
4384     moreElementsVectorSrc(MI, MoreTy, 2);
4385     moreElementsVectorSrc(MI, MoreTy, 3);
4386     moreElementsVectorDst(MI, MoreTy, 0);
4387     Observer.changedInstr(MI);
4388     return Legalized;
4389   case TargetOpcode::G_UNMERGE_VALUES: {
4390     if (TypeIdx != 1)
4391       return UnableToLegalize;
4392 
4393     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4394     int NumDst = MI.getNumOperands() - 1;
4395     moreElementsVectorSrc(MI, MoreTy, NumDst);
4396 
4397     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4398     for (int I = 0; I != NumDst; ++I)
4399       MIB.addDef(MI.getOperand(I).getReg());
4400 
4401     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4402     for (int I = NumDst; I != NewNumDst; ++I)
4403       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4404 
4405     MIB.addUse(MI.getOperand(NumDst).getReg());
4406     MI.eraseFromParent();
4407     return Legalized;
4408   }
4409   case TargetOpcode::G_PHI:
4410     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4411   default:
4412     return UnableToLegalize;
4413   }
4414 }
4415 
4416 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4417                                         ArrayRef<Register> Src1Regs,
4418                                         ArrayRef<Register> Src2Regs,
4419                                         LLT NarrowTy) {
4420   MachineIRBuilder &B = MIRBuilder;
4421   unsigned SrcParts = Src1Regs.size();
4422   unsigned DstParts = DstRegs.size();
4423 
4424   unsigned DstIdx = 0; // Low bits of the result.
4425   Register FactorSum =
4426       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4427   DstRegs[DstIdx] = FactorSum;
4428 
4429   unsigned CarrySumPrevDstIdx;
4430   SmallVector<Register, 4> Factors;
4431 
4432   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4433     // Collect low parts of muls for DstIdx.
4434     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4435          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4436       MachineInstrBuilder Mul =
4437           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4438       Factors.push_back(Mul.getReg(0));
4439     }
4440     // Collect high parts of muls from previous DstIdx.
4441     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4442          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4443       MachineInstrBuilder Umulh =
4444           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4445       Factors.push_back(Umulh.getReg(0));
4446     }
4447     // Add CarrySum from additions calculated for previous DstIdx.
4448     if (DstIdx != 1) {
4449       Factors.push_back(CarrySumPrevDstIdx);
4450     }
4451 
4452     Register CarrySum;
4453     // Add all factors and accumulate all carries into CarrySum.
4454     if (DstIdx != DstParts - 1) {
4455       MachineInstrBuilder Uaddo =
4456           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4457       FactorSum = Uaddo.getReg(0);
4458       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4459       for (unsigned i = 2; i < Factors.size(); ++i) {
4460         MachineInstrBuilder Uaddo =
4461             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4462         FactorSum = Uaddo.getReg(0);
4463         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4464         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4465       }
4466     } else {
4467       // Since value for the next index is not calculated, neither is CarrySum.
4468       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4469       for (unsigned i = 2; i < Factors.size(); ++i)
4470         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4471     }
4472 
4473     CarrySumPrevDstIdx = CarrySum;
4474     DstRegs[DstIdx] = FactorSum;
4475     Factors.clear();
4476   }
4477 }
4478 
4479 LegalizerHelper::LegalizeResult
4480 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4481   Register DstReg = MI.getOperand(0).getReg();
4482   Register Src1 = MI.getOperand(1).getReg();
4483   Register Src2 = MI.getOperand(2).getReg();
4484 
4485   LLT Ty = MRI.getType(DstReg);
4486   if (Ty.isVector())
4487     return UnableToLegalize;
4488 
4489   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4490   unsigned DstSize = Ty.getSizeInBits();
4491   unsigned NarrowSize = NarrowTy.getSizeInBits();
4492   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4493     return UnableToLegalize;
4494 
4495   unsigned NumDstParts = DstSize / NarrowSize;
4496   unsigned NumSrcParts = SrcSize / NarrowSize;
4497   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4498   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4499 
4500   SmallVector<Register, 2> Src1Parts, Src2Parts;
4501   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4502   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4503   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4504   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4505 
4506   // Take only high half of registers if this is high mul.
4507   ArrayRef<Register> DstRegs(
4508       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4509   MIRBuilder.buildMerge(DstReg, DstRegs);
4510   MI.eraseFromParent();
4511   return Legalized;
4512 }
4513 
4514 LegalizerHelper::LegalizeResult
4515 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4516                                      LLT NarrowTy) {
4517   if (TypeIdx != 1)
4518     return UnableToLegalize;
4519 
4520   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4521 
4522   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4523   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4524   // NarrowSize.
4525   if (SizeOp1 % NarrowSize != 0)
4526     return UnableToLegalize;
4527   int NumParts = SizeOp1 / NarrowSize;
4528 
4529   SmallVector<Register, 2> SrcRegs, DstRegs;
4530   SmallVector<uint64_t, 2> Indexes;
4531   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4532 
4533   Register OpReg = MI.getOperand(0).getReg();
4534   uint64_t OpStart = MI.getOperand(2).getImm();
4535   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4536   for (int i = 0; i < NumParts; ++i) {
4537     unsigned SrcStart = i * NarrowSize;
4538 
4539     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4540       // No part of the extract uses this subregister, ignore it.
4541       continue;
4542     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4543       // The entire subregister is extracted, forward the value.
4544       DstRegs.push_back(SrcRegs[i]);
4545       continue;
4546     }
4547 
4548     // OpSegStart is where this destination segment would start in OpReg if it
4549     // extended infinitely in both directions.
4550     int64_t ExtractOffset;
4551     uint64_t SegSize;
4552     if (OpStart < SrcStart) {
4553       ExtractOffset = 0;
4554       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4555     } else {
4556       ExtractOffset = OpStart - SrcStart;
4557       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4558     }
4559 
4560     Register SegReg = SrcRegs[i];
4561     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4562       // A genuine extract is needed.
4563       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4564       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4565     }
4566 
4567     DstRegs.push_back(SegReg);
4568   }
4569 
4570   Register DstReg = MI.getOperand(0).getReg();
4571   if (MRI.getType(DstReg).isVector())
4572     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4573   else if (DstRegs.size() > 1)
4574     MIRBuilder.buildMerge(DstReg, DstRegs);
4575   else
4576     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4577   MI.eraseFromParent();
4578   return Legalized;
4579 }
4580 
4581 LegalizerHelper::LegalizeResult
4582 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4583                                     LLT NarrowTy) {
4584   // FIXME: Don't know how to handle secondary types yet.
4585   if (TypeIdx != 0)
4586     return UnableToLegalize;
4587 
4588   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4589   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4590 
4591   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4592   // NarrowSize.
4593   if (SizeOp0 % NarrowSize != 0)
4594     return UnableToLegalize;
4595 
4596   int NumParts = SizeOp0 / NarrowSize;
4597 
4598   SmallVector<Register, 2> SrcRegs, DstRegs;
4599   SmallVector<uint64_t, 2> Indexes;
4600   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4601 
4602   Register OpReg = MI.getOperand(2).getReg();
4603   uint64_t OpStart = MI.getOperand(3).getImm();
4604   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4605   for (int i = 0; i < NumParts; ++i) {
4606     unsigned DstStart = i * NarrowSize;
4607 
4608     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4609       // No part of the insert affects this subregister, forward the original.
4610       DstRegs.push_back(SrcRegs[i]);
4611       continue;
4612     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4613       // The entire subregister is defined by this insert, forward the new
4614       // value.
4615       DstRegs.push_back(OpReg);
4616       continue;
4617     }
4618 
4619     // OpSegStart is where this destination segment would start in OpReg if it
4620     // extended infinitely in both directions.
4621     int64_t ExtractOffset, InsertOffset;
4622     uint64_t SegSize;
4623     if (OpStart < DstStart) {
4624       InsertOffset = 0;
4625       ExtractOffset = DstStart - OpStart;
4626       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4627     } else {
4628       InsertOffset = OpStart - DstStart;
4629       ExtractOffset = 0;
4630       SegSize =
4631         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4632     }
4633 
4634     Register SegReg = OpReg;
4635     if (ExtractOffset != 0 || SegSize != OpSize) {
4636       // A genuine extract is needed.
4637       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4638       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4639     }
4640 
4641     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4642     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4643     DstRegs.push_back(DstReg);
4644   }
4645 
4646   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4647   Register DstReg = MI.getOperand(0).getReg();
4648   if(MRI.getType(DstReg).isVector())
4649     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4650   else
4651     MIRBuilder.buildMerge(DstReg, DstRegs);
4652   MI.eraseFromParent();
4653   return Legalized;
4654 }
4655 
4656 LegalizerHelper::LegalizeResult
4657 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4658                                    LLT NarrowTy) {
4659   Register DstReg = MI.getOperand(0).getReg();
4660   LLT DstTy = MRI.getType(DstReg);
4661 
4662   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4663 
4664   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4665   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4666   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4667   LLT LeftoverTy;
4668   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4669                     Src0Regs, Src0LeftoverRegs))
4670     return UnableToLegalize;
4671 
4672   LLT Unused;
4673   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4674                     Src1Regs, Src1LeftoverRegs))
4675     llvm_unreachable("inconsistent extractParts result");
4676 
4677   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4678     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4679                                         {Src0Regs[I], Src1Regs[I]});
4680     DstRegs.push_back(Inst.getReg(0));
4681   }
4682 
4683   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4684     auto Inst = MIRBuilder.buildInstr(
4685       MI.getOpcode(),
4686       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4687     DstLeftoverRegs.push_back(Inst.getReg(0));
4688   }
4689 
4690   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4691               LeftoverTy, DstLeftoverRegs);
4692 
4693   MI.eraseFromParent();
4694   return Legalized;
4695 }
4696 
4697 LegalizerHelper::LegalizeResult
4698 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4699                                  LLT NarrowTy) {
4700   if (TypeIdx != 0)
4701     return UnableToLegalize;
4702 
4703   Register DstReg = MI.getOperand(0).getReg();
4704   Register SrcReg = MI.getOperand(1).getReg();
4705 
4706   LLT DstTy = MRI.getType(DstReg);
4707   if (DstTy.isVector())
4708     return UnableToLegalize;
4709 
4710   SmallVector<Register, 8> Parts;
4711   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4712   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4713   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4714 
4715   MI.eraseFromParent();
4716   return Legalized;
4717 }
4718 
4719 LegalizerHelper::LegalizeResult
4720 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4721                                     LLT NarrowTy) {
4722   if (TypeIdx != 0)
4723     return UnableToLegalize;
4724 
4725   Register CondReg = MI.getOperand(1).getReg();
4726   LLT CondTy = MRI.getType(CondReg);
4727   if (CondTy.isVector()) // TODO: Handle vselect
4728     return UnableToLegalize;
4729 
4730   Register DstReg = MI.getOperand(0).getReg();
4731   LLT DstTy = MRI.getType(DstReg);
4732 
4733   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4734   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4735   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4736   LLT LeftoverTy;
4737   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4738                     Src1Regs, Src1LeftoverRegs))
4739     return UnableToLegalize;
4740 
4741   LLT Unused;
4742   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4743                     Src2Regs, Src2LeftoverRegs))
4744     llvm_unreachable("inconsistent extractParts result");
4745 
4746   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4747     auto Select = MIRBuilder.buildSelect(NarrowTy,
4748                                          CondReg, Src1Regs[I], Src2Regs[I]);
4749     DstRegs.push_back(Select.getReg(0));
4750   }
4751 
4752   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4753     auto Select = MIRBuilder.buildSelect(
4754       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4755     DstLeftoverRegs.push_back(Select.getReg(0));
4756   }
4757 
4758   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4759               LeftoverTy, DstLeftoverRegs);
4760 
4761   MI.eraseFromParent();
4762   return Legalized;
4763 }
4764 
4765 LegalizerHelper::LegalizeResult
4766 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4767                                   LLT NarrowTy) {
4768   if (TypeIdx != 1)
4769     return UnableToLegalize;
4770 
4771   Register DstReg = MI.getOperand(0).getReg();
4772   Register SrcReg = MI.getOperand(1).getReg();
4773   LLT DstTy = MRI.getType(DstReg);
4774   LLT SrcTy = MRI.getType(SrcReg);
4775   unsigned NarrowSize = NarrowTy.getSizeInBits();
4776 
4777   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4778     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4779 
4780     MachineIRBuilder &B = MIRBuilder;
4781     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4782     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4783     auto C_0 = B.buildConstant(NarrowTy, 0);
4784     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4785                                 UnmergeSrc.getReg(1), C_0);
4786     auto LoCTLZ = IsUndef ?
4787       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4788       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4789     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4790     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4791     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4792     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4793 
4794     MI.eraseFromParent();
4795     return Legalized;
4796   }
4797 
4798   return UnableToLegalize;
4799 }
4800 
4801 LegalizerHelper::LegalizeResult
4802 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4803                                   LLT NarrowTy) {
4804   if (TypeIdx != 1)
4805     return UnableToLegalize;
4806 
4807   Register DstReg = MI.getOperand(0).getReg();
4808   Register SrcReg = MI.getOperand(1).getReg();
4809   LLT DstTy = MRI.getType(DstReg);
4810   LLT SrcTy = MRI.getType(SrcReg);
4811   unsigned NarrowSize = NarrowTy.getSizeInBits();
4812 
4813   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4814     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4815 
4816     MachineIRBuilder &B = MIRBuilder;
4817     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4818     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4819     auto C_0 = B.buildConstant(NarrowTy, 0);
4820     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4821                                 UnmergeSrc.getReg(0), C_0);
4822     auto HiCTTZ = IsUndef ?
4823       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4824       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4825     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4826     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4827     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4828     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4829 
4830     MI.eraseFromParent();
4831     return Legalized;
4832   }
4833 
4834   return UnableToLegalize;
4835 }
4836 
4837 LegalizerHelper::LegalizeResult
4838 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4839                                    LLT NarrowTy) {
4840   if (TypeIdx != 1)
4841     return UnableToLegalize;
4842 
4843   Register DstReg = MI.getOperand(0).getReg();
4844   LLT DstTy = MRI.getType(DstReg);
4845   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4846   unsigned NarrowSize = NarrowTy.getSizeInBits();
4847 
4848   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4849     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4850 
4851     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4852     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4853     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4854 
4855     MI.eraseFromParent();
4856     return Legalized;
4857   }
4858 
4859   return UnableToLegalize;
4860 }
4861 
4862 LegalizerHelper::LegalizeResult
4863 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4864   unsigned Opc = MI.getOpcode();
4865   const auto &TII = MIRBuilder.getTII();
4866   auto isSupported = [this](const LegalityQuery &Q) {
4867     auto QAction = LI.getAction(Q).Action;
4868     return QAction == Legal || QAction == Libcall || QAction == Custom;
4869   };
4870   switch (Opc) {
4871   default:
4872     return UnableToLegalize;
4873   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4874     // This trivially expands to CTLZ.
4875     Observer.changingInstr(MI);
4876     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4877     Observer.changedInstr(MI);
4878     return Legalized;
4879   }
4880   case TargetOpcode::G_CTLZ: {
4881     Register DstReg = MI.getOperand(0).getReg();
4882     Register SrcReg = MI.getOperand(1).getReg();
4883     LLT DstTy = MRI.getType(DstReg);
4884     LLT SrcTy = MRI.getType(SrcReg);
4885     unsigned Len = SrcTy.getSizeInBits();
4886 
4887     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4888       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4889       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4890       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4891       auto ICmp = MIRBuilder.buildICmp(
4892           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4893       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4894       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4895       MI.eraseFromParent();
4896       return Legalized;
4897     }
4898     // for now, we do this:
4899     // NewLen = NextPowerOf2(Len);
4900     // x = x | (x >> 1);
4901     // x = x | (x >> 2);
4902     // ...
4903     // x = x | (x >>16);
4904     // x = x | (x >>32); // for 64-bit input
4905     // Upto NewLen/2
4906     // return Len - popcount(x);
4907     //
4908     // Ref: "Hacker's Delight" by Henry Warren
4909     Register Op = SrcReg;
4910     unsigned NewLen = PowerOf2Ceil(Len);
4911     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4912       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4913       auto MIBOp = MIRBuilder.buildOr(
4914           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4915       Op = MIBOp.getReg(0);
4916     }
4917     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4918     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4919                         MIBPop);
4920     MI.eraseFromParent();
4921     return Legalized;
4922   }
4923   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4924     // This trivially expands to CTTZ.
4925     Observer.changingInstr(MI);
4926     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4927     Observer.changedInstr(MI);
4928     return Legalized;
4929   }
4930   case TargetOpcode::G_CTTZ: {
4931     Register DstReg = MI.getOperand(0).getReg();
4932     Register SrcReg = MI.getOperand(1).getReg();
4933     LLT DstTy = MRI.getType(DstReg);
4934     LLT SrcTy = MRI.getType(SrcReg);
4935 
4936     unsigned Len = SrcTy.getSizeInBits();
4937     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4938       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4939       // zero.
4940       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4941       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4942       auto ICmp = MIRBuilder.buildICmp(
4943           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4944       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4945       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4946       MI.eraseFromParent();
4947       return Legalized;
4948     }
4949     // for now, we use: { return popcount(~x & (x - 1)); }
4950     // unless the target has ctlz but not ctpop, in which case we use:
4951     // { return 32 - nlz(~x & (x-1)); }
4952     // Ref: "Hacker's Delight" by Henry Warren
4953     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4954     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4955     auto MIBTmp = MIRBuilder.buildAnd(
4956         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4957     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4958         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4959       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4960       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4961                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4962       MI.eraseFromParent();
4963       return Legalized;
4964     }
4965     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4966     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4967     return Legalized;
4968   }
4969   case TargetOpcode::G_CTPOP: {
4970     Register SrcReg = MI.getOperand(1).getReg();
4971     LLT Ty = MRI.getType(SrcReg);
4972     unsigned Size = Ty.getSizeInBits();
4973     MachineIRBuilder &B = MIRBuilder;
4974 
4975     // Count set bits in blocks of 2 bits. Default approach would be
4976     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4977     // We use following formula instead:
4978     // B2Count = val - { (val >> 1) & 0x55555555 }
4979     // since it gives same result in blocks of 2 with one instruction less.
4980     auto C_1 = B.buildConstant(Ty, 1);
4981     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4982     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4983     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4984     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4985     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4986 
4987     // In order to get count in blocks of 4 add values from adjacent block of 2.
4988     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4989     auto C_2 = B.buildConstant(Ty, 2);
4990     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4991     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4992     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4993     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4994     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4995     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4996 
4997     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4998     // addition since count value sits in range {0,...,8} and 4 bits are enough
4999     // to hold such binary values. After addition high 4 bits still hold count
5000     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5001     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5002     auto C_4 = B.buildConstant(Ty, 4);
5003     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5004     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5005     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5006     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5007     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5008 
5009     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5010     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5011     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5012     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5013     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5014 
5015     // Shift count result from 8 high bits to low bits.
5016     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5017     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5018 
5019     MI.eraseFromParent();
5020     return Legalized;
5021   }
5022   }
5023 }
5024 
5025 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5026 // representation.
5027 LegalizerHelper::LegalizeResult
5028 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5029   Register Dst = MI.getOperand(0).getReg();
5030   Register Src = MI.getOperand(1).getReg();
5031   const LLT S64 = LLT::scalar(64);
5032   const LLT S32 = LLT::scalar(32);
5033   const LLT S1 = LLT::scalar(1);
5034 
5035   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5036 
5037   // unsigned cul2f(ulong u) {
5038   //   uint lz = clz(u);
5039   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5040   //   u = (u << lz) & 0x7fffffffffffffffUL;
5041   //   ulong t = u & 0xffffffffffUL;
5042   //   uint v = (e << 23) | (uint)(u >> 40);
5043   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5044   //   return as_float(v + r);
5045   // }
5046 
5047   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5048   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5049 
5050   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5051 
5052   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5053   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5054 
5055   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5056   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5057 
5058   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5059   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5060 
5061   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5062 
5063   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5064   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5065 
5066   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5067   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5068   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5069 
5070   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5071   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5072   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5073   auto One = MIRBuilder.buildConstant(S32, 1);
5074 
5075   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5076   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5077   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5078   MIRBuilder.buildAdd(Dst, V, R);
5079 
5080   MI.eraseFromParent();
5081   return Legalized;
5082 }
5083 
5084 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5085   Register Dst = MI.getOperand(0).getReg();
5086   Register Src = MI.getOperand(1).getReg();
5087   LLT DstTy = MRI.getType(Dst);
5088   LLT SrcTy = MRI.getType(Src);
5089 
5090   if (SrcTy == LLT::scalar(1)) {
5091     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5092     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5093     MIRBuilder.buildSelect(Dst, Src, True, False);
5094     MI.eraseFromParent();
5095     return Legalized;
5096   }
5097 
5098   if (SrcTy != LLT::scalar(64))
5099     return UnableToLegalize;
5100 
5101   if (DstTy == LLT::scalar(32)) {
5102     // TODO: SelectionDAG has several alternative expansions to port which may
5103     // be more reasonble depending on the available instructions. If a target
5104     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5105     // intermediate type, this is probably worse.
5106     return lowerU64ToF32BitOps(MI);
5107   }
5108 
5109   return UnableToLegalize;
5110 }
5111 
5112 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5113   Register Dst = MI.getOperand(0).getReg();
5114   Register Src = MI.getOperand(1).getReg();
5115   LLT DstTy = MRI.getType(Dst);
5116   LLT SrcTy = MRI.getType(Src);
5117 
5118   const LLT S64 = LLT::scalar(64);
5119   const LLT S32 = LLT::scalar(32);
5120   const LLT S1 = LLT::scalar(1);
5121 
5122   if (SrcTy == S1) {
5123     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5124     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5125     MIRBuilder.buildSelect(Dst, Src, True, False);
5126     MI.eraseFromParent();
5127     return Legalized;
5128   }
5129 
5130   if (SrcTy != S64)
5131     return UnableToLegalize;
5132 
5133   if (DstTy == S32) {
5134     // signed cl2f(long l) {
5135     //   long s = l >> 63;
5136     //   float r = cul2f((l + s) ^ s);
5137     //   return s ? -r : r;
5138     // }
5139     Register L = Src;
5140     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5141     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5142 
5143     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5144     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5145     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5146 
5147     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5148     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5149                                             MIRBuilder.buildConstant(S64, 0));
5150     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5151     MI.eraseFromParent();
5152     return Legalized;
5153   }
5154 
5155   return UnableToLegalize;
5156 }
5157 
5158 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5159   Register Dst = MI.getOperand(0).getReg();
5160   Register Src = MI.getOperand(1).getReg();
5161   LLT DstTy = MRI.getType(Dst);
5162   LLT SrcTy = MRI.getType(Src);
5163   const LLT S64 = LLT::scalar(64);
5164   const LLT S32 = LLT::scalar(32);
5165 
5166   if (SrcTy != S64 && SrcTy != S32)
5167     return UnableToLegalize;
5168   if (DstTy != S32 && DstTy != S64)
5169     return UnableToLegalize;
5170 
5171   // FPTOSI gives same result as FPTOUI for positive signed integers.
5172   // FPTOUI needs to deal with fp values that convert to unsigned integers
5173   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5174 
5175   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5176   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5177                                                 : APFloat::IEEEdouble(),
5178                     APInt::getNullValue(SrcTy.getSizeInBits()));
5179   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5180 
5181   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5182 
5183   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5184   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5185   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5186   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5187   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5188   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5189   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5190 
5191   const LLT S1 = LLT::scalar(1);
5192 
5193   MachineInstrBuilder FCMP =
5194       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5195   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5196 
5197   MI.eraseFromParent();
5198   return Legalized;
5199 }
5200 
5201 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5202   Register Dst = MI.getOperand(0).getReg();
5203   Register Src = MI.getOperand(1).getReg();
5204   LLT DstTy = MRI.getType(Dst);
5205   LLT SrcTy = MRI.getType(Src);
5206   const LLT S64 = LLT::scalar(64);
5207   const LLT S32 = LLT::scalar(32);
5208 
5209   // FIXME: Only f32 to i64 conversions are supported.
5210   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5211     return UnableToLegalize;
5212 
5213   // Expand f32 -> i64 conversion
5214   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5215   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5216 
5217   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5218 
5219   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5220   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5221 
5222   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5223   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5224 
5225   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5226                                            APInt::getSignMask(SrcEltBits));
5227   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5228   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5229   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5230   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5231 
5232   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5233   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5234   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5235 
5236   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5237   R = MIRBuilder.buildZExt(DstTy, R);
5238 
5239   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5240   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5241   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5242   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5243 
5244   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5245   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5246 
5247   const LLT S1 = LLT::scalar(1);
5248   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5249                                     S1, Exponent, ExponentLoBit);
5250 
5251   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5252 
5253   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5254   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5255 
5256   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5257 
5258   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5259                                           S1, Exponent, ZeroSrcTy);
5260 
5261   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5262   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5263 
5264   MI.eraseFromParent();
5265   return Legalized;
5266 }
5267 
5268 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5269 LegalizerHelper::LegalizeResult
5270 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5271   Register Dst = MI.getOperand(0).getReg();
5272   Register Src = MI.getOperand(1).getReg();
5273 
5274   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5275     return UnableToLegalize;
5276 
5277   const unsigned ExpMask = 0x7ff;
5278   const unsigned ExpBiasf64 = 1023;
5279   const unsigned ExpBiasf16 = 15;
5280   const LLT S32 = LLT::scalar(32);
5281   const LLT S1 = LLT::scalar(1);
5282 
5283   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5284   Register U = Unmerge.getReg(0);
5285   Register UH = Unmerge.getReg(1);
5286 
5287   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5288   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5289 
5290   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5291   // add the f16 bias (15) to get the biased exponent for the f16 format.
5292   E = MIRBuilder.buildAdd(
5293     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5294 
5295   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5296   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5297 
5298   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5299                                        MIRBuilder.buildConstant(S32, 0x1ff));
5300   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5301 
5302   auto Zero = MIRBuilder.buildConstant(S32, 0);
5303   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5304   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5305   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5306 
5307   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5308   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5309   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5310   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5311 
5312   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5313   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5314 
5315   // N = M | (E << 12);
5316   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5317   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5318 
5319   // B = clamp(1-E, 0, 13);
5320   auto One = MIRBuilder.buildConstant(S32, 1);
5321   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5322   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5323   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5324 
5325   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5326                                        MIRBuilder.buildConstant(S32, 0x1000));
5327 
5328   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5329   auto D0 = MIRBuilder.buildShl(S32, D, B);
5330 
5331   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5332                                              D0, SigSetHigh);
5333   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5334   D = MIRBuilder.buildOr(S32, D, D1);
5335 
5336   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5337   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5338 
5339   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5340   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5341 
5342   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5343                                        MIRBuilder.buildConstant(S32, 3));
5344   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5345 
5346   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5347                                        MIRBuilder.buildConstant(S32, 5));
5348   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5349 
5350   V1 = MIRBuilder.buildOr(S32, V0, V1);
5351   V = MIRBuilder.buildAdd(S32, V, V1);
5352 
5353   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5354                                        E, MIRBuilder.buildConstant(S32, 30));
5355   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5356                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5357 
5358   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5359                                          E, MIRBuilder.buildConstant(S32, 1039));
5360   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5361 
5362   // Extract the sign bit.
5363   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5364   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5365 
5366   // Insert the sign bit
5367   V = MIRBuilder.buildOr(S32, Sign, V);
5368 
5369   MIRBuilder.buildTrunc(Dst, V);
5370   MI.eraseFromParent();
5371   return Legalized;
5372 }
5373 
5374 LegalizerHelper::LegalizeResult
5375 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5376   Register Dst = MI.getOperand(0).getReg();
5377   Register Src = MI.getOperand(1).getReg();
5378 
5379   LLT DstTy = MRI.getType(Dst);
5380   LLT SrcTy = MRI.getType(Src);
5381   const LLT S64 = LLT::scalar(64);
5382   const LLT S16 = LLT::scalar(16);
5383 
5384   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5385     return lowerFPTRUNC_F64_TO_F16(MI);
5386 
5387   return UnableToLegalize;
5388 }
5389 
5390 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5391 // multiplication tree.
5392 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5393   Register Dst = MI.getOperand(0).getReg();
5394   Register Src0 = MI.getOperand(1).getReg();
5395   Register Src1 = MI.getOperand(2).getReg();
5396   LLT Ty = MRI.getType(Dst);
5397 
5398   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5399   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5400   MI.eraseFromParent();
5401   return Legalized;
5402 }
5403 
5404 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5405   switch (Opc) {
5406   case TargetOpcode::G_SMIN:
5407     return CmpInst::ICMP_SLT;
5408   case TargetOpcode::G_SMAX:
5409     return CmpInst::ICMP_SGT;
5410   case TargetOpcode::G_UMIN:
5411     return CmpInst::ICMP_ULT;
5412   case TargetOpcode::G_UMAX:
5413     return CmpInst::ICMP_UGT;
5414   default:
5415     llvm_unreachable("not in integer min/max");
5416   }
5417 }
5418 
5419 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5420   Register Dst = MI.getOperand(0).getReg();
5421   Register Src0 = MI.getOperand(1).getReg();
5422   Register Src1 = MI.getOperand(2).getReg();
5423 
5424   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5425   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5426 
5427   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5428   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5429 
5430   MI.eraseFromParent();
5431   return Legalized;
5432 }
5433 
5434 LegalizerHelper::LegalizeResult
5435 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5436   Register Dst = MI.getOperand(0).getReg();
5437   Register Src0 = MI.getOperand(1).getReg();
5438   Register Src1 = MI.getOperand(2).getReg();
5439 
5440   const LLT Src0Ty = MRI.getType(Src0);
5441   const LLT Src1Ty = MRI.getType(Src1);
5442 
5443   const int Src0Size = Src0Ty.getScalarSizeInBits();
5444   const int Src1Size = Src1Ty.getScalarSizeInBits();
5445 
5446   auto SignBitMask = MIRBuilder.buildConstant(
5447     Src0Ty, APInt::getSignMask(Src0Size));
5448 
5449   auto NotSignBitMask = MIRBuilder.buildConstant(
5450     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5451 
5452   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
5453   Register And1;
5454   if (Src0Ty == Src1Ty) {
5455     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
5456   } else if (Src0Size > Src1Size) {
5457     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5458     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5459     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5460     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
5461   } else {
5462     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5463     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5464     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5465     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
5466   }
5467 
5468   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5469   // constants are a nan and -0.0, but the final result should preserve
5470   // everything.
5471   unsigned Flags = MI.getFlags();
5472   MIRBuilder.buildOr(Dst, And0, And1, Flags);
5473 
5474   MI.eraseFromParent();
5475   return Legalized;
5476 }
5477 
5478 LegalizerHelper::LegalizeResult
5479 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5480   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5481     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5482 
5483   Register Dst = MI.getOperand(0).getReg();
5484   Register Src0 = MI.getOperand(1).getReg();
5485   Register Src1 = MI.getOperand(2).getReg();
5486   LLT Ty = MRI.getType(Dst);
5487 
5488   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5489     // Insert canonicalizes if it's possible we need to quiet to get correct
5490     // sNaN behavior.
5491 
5492     // Note this must be done here, and not as an optimization combine in the
5493     // absence of a dedicate quiet-snan instruction as we're using an
5494     // omni-purpose G_FCANONICALIZE.
5495     if (!isKnownNeverSNaN(Src0, MRI))
5496       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5497 
5498     if (!isKnownNeverSNaN(Src1, MRI))
5499       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5500   }
5501 
5502   // If there are no nans, it's safe to simply replace this with the non-IEEE
5503   // version.
5504   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5505   MI.eraseFromParent();
5506   return Legalized;
5507 }
5508 
5509 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5510   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5511   Register DstReg = MI.getOperand(0).getReg();
5512   LLT Ty = MRI.getType(DstReg);
5513   unsigned Flags = MI.getFlags();
5514 
5515   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5516                                   Flags);
5517   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5518   MI.eraseFromParent();
5519   return Legalized;
5520 }
5521 
5522 LegalizerHelper::LegalizeResult
5523 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5524   Register DstReg = MI.getOperand(0).getReg();
5525   Register X = MI.getOperand(1).getReg();
5526   const unsigned Flags = MI.getFlags();
5527   const LLT Ty = MRI.getType(DstReg);
5528   const LLT CondTy = Ty.changeElementSize(1);
5529 
5530   // round(x) =>
5531   //  t = trunc(x);
5532   //  d = fabs(x - t);
5533   //  o = copysign(1.0f, x);
5534   //  return t + (d >= 0.5 ? o : 0.0);
5535 
5536   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5537 
5538   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5539   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5540   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5541   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5542   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5543   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5544 
5545   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5546                                   Flags);
5547   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5548 
5549   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5550 
5551   MI.eraseFromParent();
5552   return Legalized;
5553 }
5554 
5555 LegalizerHelper::LegalizeResult
5556 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5557   Register DstReg = MI.getOperand(0).getReg();
5558   Register SrcReg = MI.getOperand(1).getReg();
5559   unsigned Flags = MI.getFlags();
5560   LLT Ty = MRI.getType(DstReg);
5561   const LLT CondTy = Ty.changeElementSize(1);
5562 
5563   // result = trunc(src);
5564   // if (src < 0.0 && src != result)
5565   //   result += -1.0.
5566 
5567   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5568   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5569 
5570   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5571                                   SrcReg, Zero, Flags);
5572   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5573                                       SrcReg, Trunc, Flags);
5574   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5575   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5576 
5577   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5578   MI.eraseFromParent();
5579   return Legalized;
5580 }
5581 
5582 LegalizerHelper::LegalizeResult
5583 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5584   const unsigned NumOps = MI.getNumOperands();
5585   Register DstReg = MI.getOperand(0).getReg();
5586   Register Src0Reg = MI.getOperand(1).getReg();
5587   LLT DstTy = MRI.getType(DstReg);
5588   LLT SrcTy = MRI.getType(Src0Reg);
5589   unsigned PartSize = SrcTy.getSizeInBits();
5590 
5591   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5592   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5593 
5594   for (unsigned I = 2; I != NumOps; ++I) {
5595     const unsigned Offset = (I - 1) * PartSize;
5596 
5597     Register SrcReg = MI.getOperand(I).getReg();
5598     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5599 
5600     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5601       MRI.createGenericVirtualRegister(WideTy);
5602 
5603     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5604     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5605     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5606     ResultReg = NextResult;
5607   }
5608 
5609   if (DstTy.isPointer()) {
5610     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5611           DstTy.getAddressSpace())) {
5612       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5613       return UnableToLegalize;
5614     }
5615 
5616     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5617   }
5618 
5619   MI.eraseFromParent();
5620   return Legalized;
5621 }
5622 
5623 LegalizerHelper::LegalizeResult
5624 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5625   const unsigned NumDst = MI.getNumOperands() - 1;
5626   Register SrcReg = MI.getOperand(NumDst).getReg();
5627   Register Dst0Reg = MI.getOperand(0).getReg();
5628   LLT DstTy = MRI.getType(Dst0Reg);
5629   if (DstTy.isPointer())
5630     return UnableToLegalize; // TODO
5631 
5632   SrcReg = coerceToScalar(SrcReg);
5633   if (!SrcReg)
5634     return UnableToLegalize;
5635 
5636   // Expand scalarizing unmerge as bitcast to integer and shift.
5637   LLT IntTy = MRI.getType(SrcReg);
5638 
5639   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5640 
5641   const unsigned DstSize = DstTy.getSizeInBits();
5642   unsigned Offset = DstSize;
5643   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5644     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5645     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5646     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5647   }
5648 
5649   MI.eraseFromParent();
5650   return Legalized;
5651 }
5652 
5653 /// Lower a vector extract or insert by writing the vector to a stack temporary
5654 /// and reloading the element or vector.
5655 ///
5656 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5657 ///  =>
5658 ///  %stack_temp = G_FRAME_INDEX
5659 ///  G_STORE %vec, %stack_temp
5660 ///  %idx = clamp(%idx, %vec.getNumElements())
5661 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5662 ///  %dst = G_LOAD %element_ptr
5663 LegalizerHelper::LegalizeResult
5664 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5665   Register DstReg = MI.getOperand(0).getReg();
5666   Register SrcVec = MI.getOperand(1).getReg();
5667   Register InsertVal;
5668   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5669     InsertVal = MI.getOperand(2).getReg();
5670 
5671   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5672 
5673   LLT VecTy = MRI.getType(SrcVec);
5674   LLT EltTy = VecTy.getElementType();
5675   if (!EltTy.isByteSized()) { // Not implemented.
5676     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5677     return UnableToLegalize;
5678   }
5679 
5680   unsigned EltBytes = EltTy.getSizeInBytes();
5681   Align VecAlign = getStackTemporaryAlignment(VecTy);
5682   Align EltAlign;
5683 
5684   MachinePointerInfo PtrInfo;
5685   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5686                                         VecAlign, PtrInfo);
5687   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5688 
5689   // Get the pointer to the element, and be sure not to hit undefined behavior
5690   // if the index is out of bounds.
5691   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5692 
5693   int64_t IdxVal;
5694   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5695     int64_t Offset = IdxVal * EltBytes;
5696     PtrInfo = PtrInfo.getWithOffset(Offset);
5697     EltAlign = commonAlignment(VecAlign, Offset);
5698   } else {
5699     // We lose information with a variable offset.
5700     EltAlign = getStackTemporaryAlignment(EltTy);
5701     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5702   }
5703 
5704   if (InsertVal) {
5705     // Write the inserted element
5706     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5707 
5708     // Reload the whole vector.
5709     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5710   } else {
5711     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5712   }
5713 
5714   MI.eraseFromParent();
5715   return Legalized;
5716 }
5717 
5718 LegalizerHelper::LegalizeResult
5719 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5720   Register DstReg = MI.getOperand(0).getReg();
5721   Register Src0Reg = MI.getOperand(1).getReg();
5722   Register Src1Reg = MI.getOperand(2).getReg();
5723   LLT Src0Ty = MRI.getType(Src0Reg);
5724   LLT DstTy = MRI.getType(DstReg);
5725   LLT IdxTy = LLT::scalar(32);
5726 
5727   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5728 
5729   if (DstTy.isScalar()) {
5730     if (Src0Ty.isVector())
5731       return UnableToLegalize;
5732 
5733     // This is just a SELECT.
5734     assert(Mask.size() == 1 && "Expected a single mask element");
5735     Register Val;
5736     if (Mask[0] < 0 || Mask[0] > 1)
5737       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5738     else
5739       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5740     MIRBuilder.buildCopy(DstReg, Val);
5741     MI.eraseFromParent();
5742     return Legalized;
5743   }
5744 
5745   Register Undef;
5746   SmallVector<Register, 32> BuildVec;
5747   LLT EltTy = DstTy.getElementType();
5748 
5749   for (int Idx : Mask) {
5750     if (Idx < 0) {
5751       if (!Undef.isValid())
5752         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5753       BuildVec.push_back(Undef);
5754       continue;
5755     }
5756 
5757     if (Src0Ty.isScalar()) {
5758       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5759     } else {
5760       int NumElts = Src0Ty.getNumElements();
5761       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5762       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5763       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5764       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5765       BuildVec.push_back(Extract.getReg(0));
5766     }
5767   }
5768 
5769   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5770   MI.eraseFromParent();
5771   return Legalized;
5772 }
5773 
5774 LegalizerHelper::LegalizeResult
5775 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5776   const auto &MF = *MI.getMF();
5777   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5778   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5779     return UnableToLegalize;
5780 
5781   Register Dst = MI.getOperand(0).getReg();
5782   Register AllocSize = MI.getOperand(1).getReg();
5783   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5784 
5785   LLT PtrTy = MRI.getType(Dst);
5786   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5787 
5788   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5789   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5790   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5791 
5792   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5793   // have to generate an extra instruction to negate the alloc and then use
5794   // G_PTR_ADD to add the negative offset.
5795   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5796   if (Alignment > Align(1)) {
5797     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5798     AlignMask.negate();
5799     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5800     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5801   }
5802 
5803   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5804   MIRBuilder.buildCopy(SPReg, SPTmp);
5805   MIRBuilder.buildCopy(Dst, SPTmp);
5806 
5807   MI.eraseFromParent();
5808   return Legalized;
5809 }
5810 
5811 LegalizerHelper::LegalizeResult
5812 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5813   Register Dst = MI.getOperand(0).getReg();
5814   Register Src = MI.getOperand(1).getReg();
5815   unsigned Offset = MI.getOperand(2).getImm();
5816 
5817   LLT DstTy = MRI.getType(Dst);
5818   LLT SrcTy = MRI.getType(Src);
5819 
5820   if (DstTy.isScalar() &&
5821       (SrcTy.isScalar() ||
5822        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5823     LLT SrcIntTy = SrcTy;
5824     if (!SrcTy.isScalar()) {
5825       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5826       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5827     }
5828 
5829     if (Offset == 0)
5830       MIRBuilder.buildTrunc(Dst, Src);
5831     else {
5832       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5833       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5834       MIRBuilder.buildTrunc(Dst, Shr);
5835     }
5836 
5837     MI.eraseFromParent();
5838     return Legalized;
5839   }
5840 
5841   return UnableToLegalize;
5842 }
5843 
5844 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5845   Register Dst = MI.getOperand(0).getReg();
5846   Register Src = MI.getOperand(1).getReg();
5847   Register InsertSrc = MI.getOperand(2).getReg();
5848   uint64_t Offset = MI.getOperand(3).getImm();
5849 
5850   LLT DstTy = MRI.getType(Src);
5851   LLT InsertTy = MRI.getType(InsertSrc);
5852 
5853   if (InsertTy.isVector() ||
5854       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5855     return UnableToLegalize;
5856 
5857   const DataLayout &DL = MIRBuilder.getDataLayout();
5858   if ((DstTy.isPointer() &&
5859        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5860       (InsertTy.isPointer() &&
5861        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5862     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5863     return UnableToLegalize;
5864   }
5865 
5866   LLT IntDstTy = DstTy;
5867 
5868   if (!DstTy.isScalar()) {
5869     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5870     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5871   }
5872 
5873   if (!InsertTy.isScalar()) {
5874     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5875     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5876   }
5877 
5878   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5879   if (Offset != 0) {
5880     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5881     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5882   }
5883 
5884   APInt MaskVal = APInt::getBitsSetWithWrap(
5885       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5886 
5887   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5888   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5889   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5890 
5891   MIRBuilder.buildCast(Dst, Or);
5892   MI.eraseFromParent();
5893   return Legalized;
5894 }
5895 
5896 LegalizerHelper::LegalizeResult
5897 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5898   Register Dst0 = MI.getOperand(0).getReg();
5899   Register Dst1 = MI.getOperand(1).getReg();
5900   Register LHS = MI.getOperand(2).getReg();
5901   Register RHS = MI.getOperand(3).getReg();
5902   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5903 
5904   LLT Ty = MRI.getType(Dst0);
5905   LLT BoolTy = MRI.getType(Dst1);
5906 
5907   if (IsAdd)
5908     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5909   else
5910     MIRBuilder.buildSub(Dst0, LHS, RHS);
5911 
5912   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5913 
5914   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5915 
5916   // For an addition, the result should be less than one of the operands (LHS)
5917   // if and only if the other operand (RHS) is negative, otherwise there will
5918   // be overflow.
5919   // For a subtraction, the result should be less than one of the operands
5920   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5921   // otherwise there will be overflow.
5922   auto ResultLowerThanLHS =
5923       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5924   auto ConditionRHS = MIRBuilder.buildICmp(
5925       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5926 
5927   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5928   MI.eraseFromParent();
5929   return Legalized;
5930 }
5931 
5932 LegalizerHelper::LegalizeResult
5933 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5934   Register Res = MI.getOperand(0).getReg();
5935   Register LHS = MI.getOperand(1).getReg();
5936   Register RHS = MI.getOperand(2).getReg();
5937   LLT Ty = MRI.getType(Res);
5938   bool IsSigned;
5939   bool IsAdd;
5940   unsigned BaseOp;
5941   switch (MI.getOpcode()) {
5942   default:
5943     llvm_unreachable("unexpected addsat/subsat opcode");
5944   case TargetOpcode::G_UADDSAT:
5945     IsSigned = false;
5946     IsAdd = true;
5947     BaseOp = TargetOpcode::G_ADD;
5948     break;
5949   case TargetOpcode::G_SADDSAT:
5950     IsSigned = true;
5951     IsAdd = true;
5952     BaseOp = TargetOpcode::G_ADD;
5953     break;
5954   case TargetOpcode::G_USUBSAT:
5955     IsSigned = false;
5956     IsAdd = false;
5957     BaseOp = TargetOpcode::G_SUB;
5958     break;
5959   case TargetOpcode::G_SSUBSAT:
5960     IsSigned = true;
5961     IsAdd = false;
5962     BaseOp = TargetOpcode::G_SUB;
5963     break;
5964   }
5965 
5966   if (IsSigned) {
5967     // sadd.sat(a, b) ->
5968     //   hi = 0x7fffffff - smax(a, 0)
5969     //   lo = 0x80000000 - smin(a, 0)
5970     //   a + smin(smax(lo, b), hi)
5971     // ssub.sat(a, b) ->
5972     //   lo = smax(a, -1) - 0x7fffffff
5973     //   hi = smin(a, -1) - 0x80000000
5974     //   a - smin(smax(lo, b), hi)
5975     // TODO: AMDGPU can use a "median of 3" instruction here:
5976     //   a +/- med3(lo, b, hi)
5977     uint64_t NumBits = Ty.getScalarSizeInBits();
5978     auto MaxVal =
5979         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5980     auto MinVal =
5981         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5982     MachineInstrBuilder Hi, Lo;
5983     if (IsAdd) {
5984       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5985       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5986       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5987     } else {
5988       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5989       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5990                                MaxVal);
5991       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5992                                MinVal);
5993     }
5994     auto RHSClamped =
5995         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5996     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5997   } else {
5998     // uadd.sat(a, b) -> a + umin(~a, b)
5999     // usub.sat(a, b) -> a - umin(a, b)
6000     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6001     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6002     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6003   }
6004 
6005   MI.eraseFromParent();
6006   return Legalized;
6007 }
6008 
6009 LegalizerHelper::LegalizeResult
6010 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6011   Register Res = MI.getOperand(0).getReg();
6012   Register LHS = MI.getOperand(1).getReg();
6013   Register RHS = MI.getOperand(2).getReg();
6014   LLT Ty = MRI.getType(Res);
6015   LLT BoolTy = Ty.changeElementSize(1);
6016   bool IsSigned;
6017   bool IsAdd;
6018   unsigned OverflowOp;
6019   switch (MI.getOpcode()) {
6020   default:
6021     llvm_unreachable("unexpected addsat/subsat opcode");
6022   case TargetOpcode::G_UADDSAT:
6023     IsSigned = false;
6024     IsAdd = true;
6025     OverflowOp = TargetOpcode::G_UADDO;
6026     break;
6027   case TargetOpcode::G_SADDSAT:
6028     IsSigned = true;
6029     IsAdd = true;
6030     OverflowOp = TargetOpcode::G_SADDO;
6031     break;
6032   case TargetOpcode::G_USUBSAT:
6033     IsSigned = false;
6034     IsAdd = false;
6035     OverflowOp = TargetOpcode::G_USUBO;
6036     break;
6037   case TargetOpcode::G_SSUBSAT:
6038     IsSigned = true;
6039     IsAdd = false;
6040     OverflowOp = TargetOpcode::G_SSUBO;
6041     break;
6042   }
6043 
6044   auto OverflowRes =
6045       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6046   Register Tmp = OverflowRes.getReg(0);
6047   Register Ov = OverflowRes.getReg(1);
6048   MachineInstrBuilder Clamp;
6049   if (IsSigned) {
6050     // sadd.sat(a, b) ->
6051     //   {tmp, ov} = saddo(a, b)
6052     //   ov ? (tmp >>s 31) + 0x80000000 : r
6053     // ssub.sat(a, b) ->
6054     //   {tmp, ov} = ssubo(a, b)
6055     //   ov ? (tmp >>s 31) + 0x80000000 : r
6056     uint64_t NumBits = Ty.getScalarSizeInBits();
6057     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6058     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6059     auto MinVal =
6060         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6061     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6062   } else {
6063     // uadd.sat(a, b) ->
6064     //   {tmp, ov} = uaddo(a, b)
6065     //   ov ? 0xffffffff : tmp
6066     // usub.sat(a, b) ->
6067     //   {tmp, ov} = usubo(a, b)
6068     //   ov ? 0 : tmp
6069     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6070   }
6071   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6072 
6073   MI.eraseFromParent();
6074   return Legalized;
6075 }
6076 
6077 LegalizerHelper::LegalizeResult
6078 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6079   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6080           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6081          "Expected shlsat opcode!");
6082   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6083   Register Res = MI.getOperand(0).getReg();
6084   Register LHS = MI.getOperand(1).getReg();
6085   Register RHS = MI.getOperand(2).getReg();
6086   LLT Ty = MRI.getType(Res);
6087   LLT BoolTy = Ty.changeElementSize(1);
6088 
6089   unsigned BW = Ty.getScalarSizeInBits();
6090   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6091   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6092                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6093 
6094   MachineInstrBuilder SatVal;
6095   if (IsSigned) {
6096     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6097     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6098     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6099                                     MIRBuilder.buildConstant(Ty, 0));
6100     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6101   } else {
6102     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6103   }
6104   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6105   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6106 
6107   MI.eraseFromParent();
6108   return Legalized;
6109 }
6110 
6111 LegalizerHelper::LegalizeResult
6112 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6113   Register Dst = MI.getOperand(0).getReg();
6114   Register Src = MI.getOperand(1).getReg();
6115   const LLT Ty = MRI.getType(Src);
6116   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6117   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6118 
6119   // Swap most and least significant byte, set remaining bytes in Res to zero.
6120   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6121   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6122   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6123   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6124 
6125   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6126   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6127     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6128     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6129     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6130     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6131     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6132     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6133     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6134     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6135     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6136     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6137     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6138     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6139   }
6140   Res.getInstr()->getOperand(0).setReg(Dst);
6141 
6142   MI.eraseFromParent();
6143   return Legalized;
6144 }
6145 
6146 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6147 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6148                                  MachineInstrBuilder Src, APInt Mask) {
6149   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6150   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6151   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6152   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6153   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6154   return B.buildOr(Dst, LHS, RHS);
6155 }
6156 
6157 LegalizerHelper::LegalizeResult
6158 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6159   Register Dst = MI.getOperand(0).getReg();
6160   Register Src = MI.getOperand(1).getReg();
6161   const LLT Ty = MRI.getType(Src);
6162   unsigned Size = Ty.getSizeInBits();
6163 
6164   MachineInstrBuilder BSWAP =
6165       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6166 
6167   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6168   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6169   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6170   MachineInstrBuilder Swap4 =
6171       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6172 
6173   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6174   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6175   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6176   MachineInstrBuilder Swap2 =
6177       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6178 
6179   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6180   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6181   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6182   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6183 
6184   MI.eraseFromParent();
6185   return Legalized;
6186 }
6187 
6188 LegalizerHelper::LegalizeResult
6189 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6190   MachineFunction &MF = MIRBuilder.getMF();
6191 
6192   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6193   int NameOpIdx = IsRead ? 1 : 0;
6194   int ValRegIndex = IsRead ? 0 : 1;
6195 
6196   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6197   const LLT Ty = MRI.getType(ValReg);
6198   const MDString *RegStr = cast<MDString>(
6199     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6200 
6201   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6202   if (!PhysReg.isValid())
6203     return UnableToLegalize;
6204 
6205   if (IsRead)
6206     MIRBuilder.buildCopy(ValReg, PhysReg);
6207   else
6208     MIRBuilder.buildCopy(PhysReg, ValReg);
6209 
6210   MI.eraseFromParent();
6211   return Legalized;
6212 }
6213 
6214 LegalizerHelper::LegalizeResult
6215 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6216   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6217   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6218   Register Result = MI.getOperand(0).getReg();
6219   LLT OrigTy = MRI.getType(Result);
6220   auto SizeInBits = OrigTy.getScalarSizeInBits();
6221   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6222 
6223   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6224   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6225   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6226   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6227 
6228   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6229   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6230   MIRBuilder.buildTrunc(Result, Shifted);
6231 
6232   MI.eraseFromParent();
6233   return Legalized;
6234 }
6235 
6236 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6237   // Implement vector G_SELECT in terms of XOR, AND, OR.
6238   Register DstReg = MI.getOperand(0).getReg();
6239   Register MaskReg = MI.getOperand(1).getReg();
6240   Register Op1Reg = MI.getOperand(2).getReg();
6241   Register Op2Reg = MI.getOperand(3).getReg();
6242   LLT DstTy = MRI.getType(DstReg);
6243   LLT MaskTy = MRI.getType(MaskReg);
6244   LLT Op1Ty = MRI.getType(Op1Reg);
6245   if (!DstTy.isVector())
6246     return UnableToLegalize;
6247 
6248   // Vector selects can have a scalar predicate. If so, splat into a vector and
6249   // finish for later legalization attempts to try again.
6250   if (MaskTy.isScalar()) {
6251     Register MaskElt = MaskReg;
6252     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6253       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6254     // Generate a vector splat idiom to be pattern matched later.
6255     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6256     Observer.changingInstr(MI);
6257     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6258     Observer.changedInstr(MI);
6259     return Legalized;
6260   }
6261 
6262   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6263     return UnableToLegalize;
6264   }
6265 
6266   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6267   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6268   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6269   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6270   MI.eraseFromParent();
6271   return Legalized;
6272 }
6273