1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 863 case TargetOpcode::G_ADD: 864 case TargetOpcode::G_SUB: { 865 // FIXME: add support for when SizeOp0 isn't an exact multiple of 866 // NarrowSize. 867 if (SizeOp0 % NarrowSize != 0) 868 return UnableToLegalize; 869 // Expand in terms of carry-setting/consuming G_ADDE instructions. 870 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 871 872 bool IsAdd = MI.getOpcode() == TargetOpcode::G_ADD; 873 auto Opo = IsAdd ? TargetOpcode::G_UADDO : TargetOpcode::G_USUBO; 874 auto Ope = IsAdd ? TargetOpcode::G_UADDE : TargetOpcode::G_USUBE; 875 876 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 877 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 878 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 879 880 Register BitIn; 881 for (int i = 0; i < NumParts; ++i) { 882 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 Register BitOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 if (i == 0) 886 MIRBuilder.buildInstr(Opo, {DstReg, BitOut}, 887 {Src1Regs[i], Src2Regs[i]}); 888 else { 889 MIRBuilder.buildInstr(Ope, {DstReg, BitOut}, 890 {Src1Regs[i], Src2Regs[i], BitIn}); 891 } 892 893 DstRegs.push_back(DstReg); 894 BitIn = BitOut; 895 } 896 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 897 MI.eraseFromParent(); 898 return Legalized; 899 } 900 case TargetOpcode::G_MUL: 901 case TargetOpcode::G_UMULH: 902 return narrowScalarMul(MI, NarrowTy); 903 case TargetOpcode::G_EXTRACT: 904 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 905 case TargetOpcode::G_INSERT: 906 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 907 case TargetOpcode::G_LOAD: { 908 auto &MMO = **MI.memoperands_begin(); 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 if (DstTy.isVector()) 912 return UnableToLegalize; 913 914 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 915 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 916 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 917 MIRBuilder.buildAnyExt(DstReg, TmpReg); 918 MI.eraseFromParent(); 919 return Legalized; 920 } 921 922 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 923 } 924 case TargetOpcode::G_ZEXTLOAD: 925 case TargetOpcode::G_SEXTLOAD: { 926 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 927 Register DstReg = MI.getOperand(0).getReg(); 928 Register PtrReg = MI.getOperand(1).getReg(); 929 930 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 931 auto &MMO = **MI.memoperands_begin(); 932 unsigned MemSize = MMO.getSizeInBits(); 933 934 if (MemSize == NarrowSize) { 935 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 936 } else if (MemSize < NarrowSize) { 937 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 938 } else if (MemSize > NarrowSize) { 939 // FIXME: Need to split the load. 940 return UnableToLegalize; 941 } 942 943 if (ZExt) 944 MIRBuilder.buildZExt(DstReg, TmpReg); 945 else 946 MIRBuilder.buildSExt(DstReg, TmpReg); 947 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 case TargetOpcode::G_STORE: { 952 const auto &MMO = **MI.memoperands_begin(); 953 954 Register SrcReg = MI.getOperand(0).getReg(); 955 LLT SrcTy = MRI.getType(SrcReg); 956 if (SrcTy.isVector()) 957 return UnableToLegalize; 958 959 int NumParts = SizeOp0 / NarrowSize; 960 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 961 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 962 if (SrcTy.isVector() && LeftoverBits != 0) 963 return UnableToLegalize; 964 965 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 966 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 967 auto &MMO = **MI.memoperands_begin(); 968 MIRBuilder.buildTrunc(TmpReg, SrcReg); 969 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 970 MI.eraseFromParent(); 971 return Legalized; 972 } 973 974 return reduceLoadStoreWidth(MI, 0, NarrowTy); 975 } 976 case TargetOpcode::G_SELECT: 977 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 978 case TargetOpcode::G_AND: 979 case TargetOpcode::G_OR: 980 case TargetOpcode::G_XOR: { 981 // Legalize bitwise operation: 982 // A = BinOp<Ty> B, C 983 // into: 984 // B1, ..., BN = G_UNMERGE_VALUES B 985 // C1, ..., CN = G_UNMERGE_VALUES C 986 // A1 = BinOp<Ty/N> B1, C2 987 // ... 988 // AN = BinOp<Ty/N> BN, CN 989 // A = G_MERGE_VALUES A1, ..., AN 990 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 991 } 992 case TargetOpcode::G_SHL: 993 case TargetOpcode::G_LSHR: 994 case TargetOpcode::G_ASHR: 995 return narrowScalarShift(MI, TypeIdx, NarrowTy); 996 case TargetOpcode::G_CTLZ: 997 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 998 case TargetOpcode::G_CTTZ: 999 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1000 case TargetOpcode::G_CTPOP: 1001 if (TypeIdx == 1) 1002 switch (MI.getOpcode()) { 1003 case TargetOpcode::G_CTLZ: 1004 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1005 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1006 case TargetOpcode::G_CTTZ: 1007 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1008 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1009 case TargetOpcode::G_CTPOP: 1010 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1011 default: 1012 return UnableToLegalize; 1013 } 1014 1015 Observer.changingInstr(MI); 1016 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1017 Observer.changedInstr(MI); 1018 return Legalized; 1019 case TargetOpcode::G_INTTOPTR: 1020 if (TypeIdx != 1) 1021 return UnableToLegalize; 1022 1023 Observer.changingInstr(MI); 1024 narrowScalarSrc(MI, NarrowTy, 1); 1025 Observer.changedInstr(MI); 1026 return Legalized; 1027 case TargetOpcode::G_PTRTOINT: 1028 if (TypeIdx != 0) 1029 return UnableToLegalize; 1030 1031 Observer.changingInstr(MI); 1032 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1033 Observer.changedInstr(MI); 1034 return Legalized; 1035 case TargetOpcode::G_PHI: { 1036 unsigned NumParts = SizeOp0 / NarrowSize; 1037 SmallVector<Register, 2> DstRegs(NumParts); 1038 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1039 Observer.changingInstr(MI); 1040 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1041 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1042 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1043 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1044 SrcRegs[i / 2]); 1045 } 1046 MachineBasicBlock &MBB = *MI.getParent(); 1047 MIRBuilder.setInsertPt(MBB, MI); 1048 for (unsigned i = 0; i < NumParts; ++i) { 1049 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1050 MachineInstrBuilder MIB = 1051 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1052 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1053 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1054 } 1055 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1056 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1057 Observer.changedInstr(MI); 1058 MI.eraseFromParent(); 1059 return Legalized; 1060 } 1061 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1062 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1063 if (TypeIdx != 2) 1064 return UnableToLegalize; 1065 1066 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1067 Observer.changingInstr(MI); 1068 narrowScalarSrc(MI, NarrowTy, OpIdx); 1069 Observer.changedInstr(MI); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_ICMP: { 1073 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1074 if (NarrowSize * 2 != SrcSize) 1075 return UnableToLegalize; 1076 1077 Observer.changingInstr(MI); 1078 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1079 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1080 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1081 1082 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1083 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1084 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1085 1086 CmpInst::Predicate Pred = 1087 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1088 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1089 1090 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1091 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1092 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1093 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1094 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1095 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1096 } else { 1097 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1098 MachineInstrBuilder CmpHEQ = 1099 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1100 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1101 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1102 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1103 } 1104 Observer.changedInstr(MI); 1105 MI.eraseFromParent(); 1106 return Legalized; 1107 } 1108 case TargetOpcode::G_SEXT_INREG: { 1109 if (TypeIdx != 0) 1110 return UnableToLegalize; 1111 1112 int64_t SizeInBits = MI.getOperand(2).getImm(); 1113 1114 // So long as the new type has more bits than the bits we're extending we 1115 // don't need to break it apart. 1116 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1117 Observer.changingInstr(MI); 1118 // We don't lose any non-extension bits by truncating the src and 1119 // sign-extending the dst. 1120 MachineOperand &MO1 = MI.getOperand(1); 1121 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1122 MO1.setReg(TruncMIB.getReg(0)); 1123 1124 MachineOperand &MO2 = MI.getOperand(0); 1125 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1126 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1127 MIRBuilder.buildSExt(MO2, DstExt); 1128 MO2.setReg(DstExt); 1129 Observer.changedInstr(MI); 1130 return Legalized; 1131 } 1132 1133 // Break it apart. Components below the extension point are unmodified. The 1134 // component containing the extension point becomes a narrower SEXT_INREG. 1135 // Components above it are ashr'd from the component containing the 1136 // extension point. 1137 if (SizeOp0 % NarrowSize != 0) 1138 return UnableToLegalize; 1139 int NumParts = SizeOp0 / NarrowSize; 1140 1141 // List the registers where the destination will be scattered. 1142 SmallVector<Register, 2> DstRegs; 1143 // List the registers where the source will be split. 1144 SmallVector<Register, 2> SrcRegs; 1145 1146 // Create all the temporary registers. 1147 for (int i = 0; i < NumParts; ++i) { 1148 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1149 1150 SrcRegs.push_back(SrcReg); 1151 } 1152 1153 // Explode the big arguments into smaller chunks. 1154 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1155 1156 Register AshrCstReg = 1157 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1158 .getReg(0); 1159 Register FullExtensionReg = 0; 1160 Register PartialExtensionReg = 0; 1161 1162 // Do the operation on each small part. 1163 for (int i = 0; i < NumParts; ++i) { 1164 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1165 DstRegs.push_back(SrcRegs[i]); 1166 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1167 assert(PartialExtensionReg && 1168 "Expected to visit partial extension before full"); 1169 if (FullExtensionReg) { 1170 DstRegs.push_back(FullExtensionReg); 1171 continue; 1172 } 1173 DstRegs.push_back( 1174 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1175 .getReg(0)); 1176 FullExtensionReg = DstRegs.back(); 1177 } else { 1178 DstRegs.push_back( 1179 MIRBuilder 1180 .buildInstr( 1181 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1182 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1183 .getReg(0)); 1184 PartialExtensionReg = DstRegs.back(); 1185 } 1186 } 1187 1188 // Gather the destination registers into the final destination. 1189 Register DstReg = MI.getOperand(0).getReg(); 1190 MIRBuilder.buildMerge(DstReg, DstRegs); 1191 MI.eraseFromParent(); 1192 return Legalized; 1193 } 1194 case TargetOpcode::G_BSWAP: 1195 case TargetOpcode::G_BITREVERSE: { 1196 if (SizeOp0 % NarrowSize != 0) 1197 return UnableToLegalize; 1198 1199 Observer.changingInstr(MI); 1200 SmallVector<Register, 2> SrcRegs, DstRegs; 1201 unsigned NumParts = SizeOp0 / NarrowSize; 1202 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1203 1204 for (unsigned i = 0; i < NumParts; ++i) { 1205 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1206 {SrcRegs[NumParts - 1 - i]}); 1207 DstRegs.push_back(DstPart.getReg(0)); 1208 } 1209 1210 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1211 1212 Observer.changedInstr(MI); 1213 MI.eraseFromParent(); 1214 return Legalized; 1215 } 1216 case TargetOpcode::G_PTR_ADD: 1217 case TargetOpcode::G_PTRMASK: { 1218 if (TypeIdx != 1) 1219 return UnableToLegalize; 1220 Observer.changingInstr(MI); 1221 narrowScalarSrc(MI, NarrowTy, 2); 1222 Observer.changedInstr(MI); 1223 return Legalized; 1224 } 1225 case TargetOpcode::G_FPTOUI: { 1226 if (TypeIdx != 0) 1227 return UnableToLegalize; 1228 Observer.changingInstr(MI); 1229 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1230 Observer.changedInstr(MI); 1231 return Legalized; 1232 } 1233 case TargetOpcode::G_FPTOSI: { 1234 if (TypeIdx != 0) 1235 return UnableToLegalize; 1236 Observer.changingInstr(MI); 1237 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1238 Observer.changedInstr(MI); 1239 return Legalized; 1240 } 1241 case TargetOpcode::G_FPEXT: 1242 if (TypeIdx != 0) 1243 return UnableToLegalize; 1244 Observer.changingInstr(MI); 1245 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1246 Observer.changedInstr(MI); 1247 return Legalized; 1248 } 1249 } 1250 1251 Register LegalizerHelper::coerceToScalar(Register Val) { 1252 LLT Ty = MRI.getType(Val); 1253 if (Ty.isScalar()) 1254 return Val; 1255 1256 const DataLayout &DL = MIRBuilder.getDataLayout(); 1257 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1258 if (Ty.isPointer()) { 1259 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1260 return Register(); 1261 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1262 } 1263 1264 Register NewVal = Val; 1265 1266 assert(Ty.isVector()); 1267 LLT EltTy = Ty.getElementType(); 1268 if (EltTy.isPointer()) 1269 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1270 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1271 } 1272 1273 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1274 unsigned OpIdx, unsigned ExtOpcode) { 1275 MachineOperand &MO = MI.getOperand(OpIdx); 1276 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1277 MO.setReg(ExtB.getReg(0)); 1278 } 1279 1280 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1281 unsigned OpIdx) { 1282 MachineOperand &MO = MI.getOperand(OpIdx); 1283 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1284 MO.setReg(ExtB.getReg(0)); 1285 } 1286 1287 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1288 unsigned OpIdx, unsigned TruncOpcode) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1291 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1292 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1293 MO.setReg(DstExt); 1294 } 1295 1296 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1297 unsigned OpIdx, unsigned ExtOpcode) { 1298 MachineOperand &MO = MI.getOperand(OpIdx); 1299 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1300 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1301 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1302 MO.setReg(DstTrunc); 1303 } 1304 1305 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1306 unsigned OpIdx) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1309 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1310 } 1311 1312 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1313 unsigned OpIdx) { 1314 MachineOperand &MO = MI.getOperand(OpIdx); 1315 1316 LLT OldTy = MRI.getType(MO.getReg()); 1317 unsigned OldElts = OldTy.getNumElements(); 1318 unsigned NewElts = MoreTy.getNumElements(); 1319 1320 unsigned NumParts = NewElts / OldElts; 1321 1322 // Use concat_vectors if the result is a multiple of the number of elements. 1323 if (NumParts * OldElts == NewElts) { 1324 SmallVector<Register, 8> Parts; 1325 Parts.push_back(MO.getReg()); 1326 1327 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1328 for (unsigned I = 1; I != NumParts; ++I) 1329 Parts.push_back(ImpDef); 1330 1331 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1332 MO.setReg(Concat.getReg(0)); 1333 return; 1334 } 1335 1336 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1337 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1338 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1339 MO.setReg(MoreReg); 1340 } 1341 1342 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1343 MachineOperand &Op = MI.getOperand(OpIdx); 1344 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1345 } 1346 1347 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1348 MachineOperand &MO = MI.getOperand(OpIdx); 1349 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1350 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1351 MIRBuilder.buildBitcast(MO, CastDst); 1352 MO.setReg(CastDst); 1353 } 1354 1355 LegalizerHelper::LegalizeResult 1356 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1357 LLT WideTy) { 1358 if (TypeIdx != 1) 1359 return UnableToLegalize; 1360 1361 Register DstReg = MI.getOperand(0).getReg(); 1362 LLT DstTy = MRI.getType(DstReg); 1363 if (DstTy.isVector()) 1364 return UnableToLegalize; 1365 1366 Register Src1 = MI.getOperand(1).getReg(); 1367 LLT SrcTy = MRI.getType(Src1); 1368 const int DstSize = DstTy.getSizeInBits(); 1369 const int SrcSize = SrcTy.getSizeInBits(); 1370 const int WideSize = WideTy.getSizeInBits(); 1371 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1372 1373 unsigned NumOps = MI.getNumOperands(); 1374 unsigned NumSrc = MI.getNumOperands() - 1; 1375 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1376 1377 if (WideSize >= DstSize) { 1378 // Directly pack the bits in the target type. 1379 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1380 1381 for (unsigned I = 2; I != NumOps; ++I) { 1382 const unsigned Offset = (I - 1) * PartSize; 1383 1384 Register SrcReg = MI.getOperand(I).getReg(); 1385 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1386 1387 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1388 1389 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1390 MRI.createGenericVirtualRegister(WideTy); 1391 1392 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1393 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1394 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1395 ResultReg = NextResult; 1396 } 1397 1398 if (WideSize > DstSize) 1399 MIRBuilder.buildTrunc(DstReg, ResultReg); 1400 else if (DstTy.isPointer()) 1401 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1402 1403 MI.eraseFromParent(); 1404 return Legalized; 1405 } 1406 1407 // Unmerge the original values to the GCD type, and recombine to the next 1408 // multiple greater than the original type. 1409 // 1410 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1411 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1412 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1413 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1414 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1415 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1416 // %12:_(s12) = G_MERGE_VALUES %10, %11 1417 // 1418 // Padding with undef if necessary: 1419 // 1420 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1421 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1422 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1423 // %7:_(s2) = G_IMPLICIT_DEF 1424 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1425 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1426 // %10:_(s12) = G_MERGE_VALUES %8, %9 1427 1428 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1429 LLT GCDTy = LLT::scalar(GCD); 1430 1431 SmallVector<Register, 8> Parts; 1432 SmallVector<Register, 8> NewMergeRegs; 1433 SmallVector<Register, 8> Unmerges; 1434 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1435 1436 // Decompose the original operands if they don't evenly divide. 1437 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1438 Register SrcReg = MI.getOperand(I).getReg(); 1439 if (GCD == SrcSize) { 1440 Unmerges.push_back(SrcReg); 1441 } else { 1442 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1443 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1444 Unmerges.push_back(Unmerge.getReg(J)); 1445 } 1446 } 1447 1448 // Pad with undef to the next size that is a multiple of the requested size. 1449 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1450 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1451 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1452 Unmerges.push_back(UndefReg); 1453 } 1454 1455 const int PartsPerGCD = WideSize / GCD; 1456 1457 // Build merges of each piece. 1458 ArrayRef<Register> Slicer(Unmerges); 1459 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1460 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1461 NewMergeRegs.push_back(Merge.getReg(0)); 1462 } 1463 1464 // A truncate may be necessary if the requested type doesn't evenly divide the 1465 // original result type. 1466 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1467 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1468 } else { 1469 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1470 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1471 } 1472 1473 MI.eraseFromParent(); 1474 return Legalized; 1475 } 1476 1477 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1478 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1479 LLT OrigTy = MRI.getType(OrigReg); 1480 LLT LCMTy = getLCMType(WideTy, OrigTy); 1481 1482 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1483 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1484 1485 Register UnmergeSrc = WideReg; 1486 1487 // Create a merge to the LCM type, padding with undef 1488 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1489 // => 1490 // %1:_(<4 x s32>) = G_FOO 1491 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1492 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1493 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1494 if (NumMergeParts > 1) { 1495 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1496 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1497 MergeParts[0] = WideReg; 1498 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1499 } 1500 1501 // Unmerge to the original register and pad with dead defs. 1502 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1503 UnmergeResults[0] = OrigReg; 1504 for (int I = 1; I != NumUnmergeParts; ++I) 1505 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1506 1507 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1508 return WideReg; 1509 } 1510 1511 LegalizerHelper::LegalizeResult 1512 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1513 LLT WideTy) { 1514 if (TypeIdx != 0) 1515 return UnableToLegalize; 1516 1517 int NumDst = MI.getNumOperands() - 1; 1518 Register SrcReg = MI.getOperand(NumDst).getReg(); 1519 LLT SrcTy = MRI.getType(SrcReg); 1520 if (SrcTy.isVector()) 1521 return UnableToLegalize; 1522 1523 Register Dst0Reg = MI.getOperand(0).getReg(); 1524 LLT DstTy = MRI.getType(Dst0Reg); 1525 if (!DstTy.isScalar()) 1526 return UnableToLegalize; 1527 1528 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1529 if (SrcTy.isPointer()) { 1530 const DataLayout &DL = MIRBuilder.getDataLayout(); 1531 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1532 LLVM_DEBUG( 1533 dbgs() << "Not casting non-integral address space integer\n"); 1534 return UnableToLegalize; 1535 } 1536 1537 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1538 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1539 } 1540 1541 // Widen SrcTy to WideTy. This does not affect the result, but since the 1542 // user requested this size, it is probably better handled than SrcTy and 1543 // should reduce the total number of legalization artifacts 1544 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1545 SrcTy = WideTy; 1546 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1547 } 1548 1549 // Theres no unmerge type to target. Directly extract the bits from the 1550 // source type 1551 unsigned DstSize = DstTy.getSizeInBits(); 1552 1553 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1554 for (int I = 1; I != NumDst; ++I) { 1555 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1556 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1557 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1558 } 1559 1560 MI.eraseFromParent(); 1561 return Legalized; 1562 } 1563 1564 // Extend the source to a wider type. 1565 LLT LCMTy = getLCMType(SrcTy, WideTy); 1566 1567 Register WideSrc = SrcReg; 1568 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1569 // TODO: If this is an integral address space, cast to integer and anyext. 1570 if (SrcTy.isPointer()) { 1571 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1572 return UnableToLegalize; 1573 } 1574 1575 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1576 } 1577 1578 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1579 1580 // Create a sequence of unmerges and merges to the original results. Since we 1581 // may have widened the source, we will need to pad the results with dead defs 1582 // to cover the source register. 1583 // e.g. widen s48 to s64: 1584 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1585 // 1586 // => 1587 // %4:_(s192) = G_ANYEXT %0:_(s96) 1588 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1589 // ; unpack to GCD type, with extra dead defs 1590 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1591 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1592 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1593 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1594 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1595 const LLT GCDTy = getGCDType(WideTy, DstTy); 1596 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1597 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1598 1599 // Directly unmerge to the destination without going through a GCD type 1600 // if possible 1601 if (PartsPerRemerge == 1) { 1602 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1603 1604 for (int I = 0; I != NumUnmerge; ++I) { 1605 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1606 1607 for (int J = 0; J != PartsPerUnmerge; ++J) { 1608 int Idx = I * PartsPerUnmerge + J; 1609 if (Idx < NumDst) 1610 MIB.addDef(MI.getOperand(Idx).getReg()); 1611 else { 1612 // Create dead def for excess components. 1613 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1614 } 1615 } 1616 1617 MIB.addUse(Unmerge.getReg(I)); 1618 } 1619 } else { 1620 SmallVector<Register, 16> Parts; 1621 for (int J = 0; J != NumUnmerge; ++J) 1622 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1623 1624 SmallVector<Register, 8> RemergeParts; 1625 for (int I = 0; I != NumDst; ++I) { 1626 for (int J = 0; J < PartsPerRemerge; ++J) { 1627 const int Idx = I * PartsPerRemerge + J; 1628 RemergeParts.emplace_back(Parts[Idx]); 1629 } 1630 1631 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1632 RemergeParts.clear(); 1633 } 1634 } 1635 1636 MI.eraseFromParent(); 1637 return Legalized; 1638 } 1639 1640 LegalizerHelper::LegalizeResult 1641 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1642 LLT WideTy) { 1643 Register DstReg = MI.getOperand(0).getReg(); 1644 Register SrcReg = MI.getOperand(1).getReg(); 1645 LLT SrcTy = MRI.getType(SrcReg); 1646 1647 LLT DstTy = MRI.getType(DstReg); 1648 unsigned Offset = MI.getOperand(2).getImm(); 1649 1650 if (TypeIdx == 0) { 1651 if (SrcTy.isVector() || DstTy.isVector()) 1652 return UnableToLegalize; 1653 1654 SrcOp Src(SrcReg); 1655 if (SrcTy.isPointer()) { 1656 // Extracts from pointers can be handled only if they are really just 1657 // simple integers. 1658 const DataLayout &DL = MIRBuilder.getDataLayout(); 1659 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1660 return UnableToLegalize; 1661 1662 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1663 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1664 SrcTy = SrcAsIntTy; 1665 } 1666 1667 if (DstTy.isPointer()) 1668 return UnableToLegalize; 1669 1670 if (Offset == 0) { 1671 // Avoid a shift in the degenerate case. 1672 MIRBuilder.buildTrunc(DstReg, 1673 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1674 MI.eraseFromParent(); 1675 return Legalized; 1676 } 1677 1678 // Do a shift in the source type. 1679 LLT ShiftTy = SrcTy; 1680 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1681 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1682 ShiftTy = WideTy; 1683 } 1684 1685 auto LShr = MIRBuilder.buildLShr( 1686 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1687 MIRBuilder.buildTrunc(DstReg, LShr); 1688 MI.eraseFromParent(); 1689 return Legalized; 1690 } 1691 1692 if (SrcTy.isScalar()) { 1693 Observer.changingInstr(MI); 1694 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1695 Observer.changedInstr(MI); 1696 return Legalized; 1697 } 1698 1699 if (!SrcTy.isVector()) 1700 return UnableToLegalize; 1701 1702 if (DstTy != SrcTy.getElementType()) 1703 return UnableToLegalize; 1704 1705 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1706 return UnableToLegalize; 1707 1708 Observer.changingInstr(MI); 1709 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1710 1711 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1712 Offset); 1713 widenScalarDst(MI, WideTy.getScalarType(), 0); 1714 Observer.changedInstr(MI); 1715 return Legalized; 1716 } 1717 1718 LegalizerHelper::LegalizeResult 1719 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1720 LLT WideTy) { 1721 if (TypeIdx != 0 || WideTy.isVector()) 1722 return UnableToLegalize; 1723 Observer.changingInstr(MI); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 widenScalarDst(MI, WideTy); 1726 Observer.changedInstr(MI); 1727 return Legalized; 1728 } 1729 1730 LegalizerHelper::LegalizeResult 1731 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1732 LLT WideTy) { 1733 if (TypeIdx == 1) 1734 return UnableToLegalize; // TODO 1735 1736 unsigned Opcode; 1737 unsigned ExtOpcode; 1738 Optional<Register> CarryIn = None; 1739 switch (MI.getOpcode()) { 1740 default: 1741 llvm_unreachable("Unexpected opcode!"); 1742 case TargetOpcode::G_SADDO: 1743 Opcode = TargetOpcode::G_ADD; 1744 ExtOpcode = TargetOpcode::G_SEXT; 1745 break; 1746 case TargetOpcode::G_SSUBO: 1747 Opcode = TargetOpcode::G_SUB; 1748 ExtOpcode = TargetOpcode::G_SEXT; 1749 break; 1750 case TargetOpcode::G_UADDO: 1751 Opcode = TargetOpcode::G_ADD; 1752 ExtOpcode = TargetOpcode::G_ZEXT; 1753 break; 1754 case TargetOpcode::G_USUBO: 1755 Opcode = TargetOpcode::G_SUB; 1756 ExtOpcode = TargetOpcode::G_ZEXT; 1757 break; 1758 case TargetOpcode::G_SADDE: 1759 Opcode = TargetOpcode::G_UADDE; 1760 ExtOpcode = TargetOpcode::G_SEXT; 1761 CarryIn = MI.getOperand(4).getReg(); 1762 break; 1763 case TargetOpcode::G_SSUBE: 1764 Opcode = TargetOpcode::G_USUBE; 1765 ExtOpcode = TargetOpcode::G_SEXT; 1766 CarryIn = MI.getOperand(4).getReg(); 1767 break; 1768 case TargetOpcode::G_UADDE: 1769 Opcode = TargetOpcode::G_UADDE; 1770 ExtOpcode = TargetOpcode::G_ZEXT; 1771 CarryIn = MI.getOperand(4).getReg(); 1772 break; 1773 case TargetOpcode::G_USUBE: 1774 Opcode = TargetOpcode::G_USUBE; 1775 ExtOpcode = TargetOpcode::G_ZEXT; 1776 CarryIn = MI.getOperand(4).getReg(); 1777 break; 1778 } 1779 1780 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1781 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1782 // Do the arithmetic in the larger type. 1783 Register NewOp; 1784 if (CarryIn) { 1785 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1786 NewOp = MIRBuilder 1787 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1788 {LHSExt, RHSExt, *CarryIn}) 1789 .getReg(0); 1790 } else { 1791 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1792 } 1793 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1794 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1795 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1796 // There is no overflow if the ExtOp is the same as NewOp. 1797 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1798 // Now trunc the NewOp to the original result. 1799 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 1804 LegalizerHelper::LegalizeResult 1805 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1806 LLT WideTy) { 1807 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1808 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1809 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1810 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1811 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1812 // We can convert this to: 1813 // 1. Any extend iN to iM 1814 // 2. SHL by M-N 1815 // 3. [US][ADD|SUB|SHL]SAT 1816 // 4. L/ASHR by M-N 1817 // 1818 // It may be more efficient to lower this to a min and a max operation in 1819 // the higher precision arithmetic if the promoted operation isn't legal, 1820 // but this decision is up to the target's lowering request. 1821 Register DstReg = MI.getOperand(0).getReg(); 1822 1823 unsigned NewBits = WideTy.getScalarSizeInBits(); 1824 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1825 1826 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1827 // must not left shift the RHS to preserve the shift amount. 1828 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1829 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1830 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1831 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1832 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1833 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1834 1835 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1836 {ShiftL, ShiftR}, MI.getFlags()); 1837 1838 // Use a shift that will preserve the number of sign bits when the trunc is 1839 // folded away. 1840 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1841 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1842 1843 MIRBuilder.buildTrunc(DstReg, Result); 1844 MI.eraseFromParent(); 1845 return Legalized; 1846 } 1847 1848 LegalizerHelper::LegalizeResult 1849 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1850 switch (MI.getOpcode()) { 1851 default: 1852 return UnableToLegalize; 1853 case TargetOpcode::G_EXTRACT: 1854 return widenScalarExtract(MI, TypeIdx, WideTy); 1855 case TargetOpcode::G_INSERT: 1856 return widenScalarInsert(MI, TypeIdx, WideTy); 1857 case TargetOpcode::G_MERGE_VALUES: 1858 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1859 case TargetOpcode::G_UNMERGE_VALUES: 1860 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1861 case TargetOpcode::G_SADDO: 1862 case TargetOpcode::G_SSUBO: 1863 case TargetOpcode::G_UADDO: 1864 case TargetOpcode::G_USUBO: 1865 case TargetOpcode::G_SADDE: 1866 case TargetOpcode::G_SSUBE: 1867 case TargetOpcode::G_UADDE: 1868 case TargetOpcode::G_USUBE: 1869 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1870 case TargetOpcode::G_SADDSAT: 1871 case TargetOpcode::G_SSUBSAT: 1872 case TargetOpcode::G_SSHLSAT: 1873 case TargetOpcode::G_UADDSAT: 1874 case TargetOpcode::G_USUBSAT: 1875 case TargetOpcode::G_USHLSAT: 1876 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1877 case TargetOpcode::G_CTTZ: 1878 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1879 case TargetOpcode::G_CTLZ: 1880 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1881 case TargetOpcode::G_CTPOP: { 1882 if (TypeIdx == 0) { 1883 Observer.changingInstr(MI); 1884 widenScalarDst(MI, WideTy, 0); 1885 Observer.changedInstr(MI); 1886 return Legalized; 1887 } 1888 1889 Register SrcReg = MI.getOperand(1).getReg(); 1890 1891 // First ZEXT the input. 1892 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1893 LLT CurTy = MRI.getType(SrcReg); 1894 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1895 // The count is the same in the larger type except if the original 1896 // value was zero. This can be handled by setting the bit just off 1897 // the top of the original type. 1898 auto TopBit = 1899 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1900 MIBSrc = MIRBuilder.buildOr( 1901 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1902 } 1903 1904 // Perform the operation at the larger size. 1905 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1906 // This is already the correct result for CTPOP and CTTZs 1907 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1908 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1909 // The correct result is NewOp - (Difference in widety and current ty). 1910 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1911 MIBNewOp = MIRBuilder.buildSub( 1912 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1913 } 1914 1915 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1916 MI.eraseFromParent(); 1917 return Legalized; 1918 } 1919 case TargetOpcode::G_BSWAP: { 1920 Observer.changingInstr(MI); 1921 Register DstReg = MI.getOperand(0).getReg(); 1922 1923 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1924 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1925 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1926 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1927 1928 MI.getOperand(0).setReg(DstExt); 1929 1930 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1931 1932 LLT Ty = MRI.getType(DstReg); 1933 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1934 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1935 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1936 1937 MIRBuilder.buildTrunc(DstReg, ShrReg); 1938 Observer.changedInstr(MI); 1939 return Legalized; 1940 } 1941 case TargetOpcode::G_BITREVERSE: { 1942 Observer.changingInstr(MI); 1943 1944 Register DstReg = MI.getOperand(0).getReg(); 1945 LLT Ty = MRI.getType(DstReg); 1946 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1947 1948 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1949 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1950 MI.getOperand(0).setReg(DstExt); 1951 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1952 1953 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1954 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1955 MIRBuilder.buildTrunc(DstReg, Shift); 1956 Observer.changedInstr(MI); 1957 return Legalized; 1958 } 1959 case TargetOpcode::G_FREEZE: 1960 Observer.changingInstr(MI); 1961 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1962 widenScalarDst(MI, WideTy); 1963 Observer.changedInstr(MI); 1964 return Legalized; 1965 1966 case TargetOpcode::G_ADD: 1967 case TargetOpcode::G_AND: 1968 case TargetOpcode::G_MUL: 1969 case TargetOpcode::G_OR: 1970 case TargetOpcode::G_XOR: 1971 case TargetOpcode::G_SUB: 1972 // Perform operation at larger width (any extension is fines here, high bits 1973 // don't affect the result) and then truncate the result back to the 1974 // original type. 1975 Observer.changingInstr(MI); 1976 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1977 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1978 widenScalarDst(MI, WideTy); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_SHL: 1983 Observer.changingInstr(MI); 1984 1985 if (TypeIdx == 0) { 1986 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1987 widenScalarDst(MI, WideTy); 1988 } else { 1989 assert(TypeIdx == 1); 1990 // The "number of bits to shift" operand must preserve its value as an 1991 // unsigned integer: 1992 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1993 } 1994 1995 Observer.changedInstr(MI); 1996 return Legalized; 1997 1998 case TargetOpcode::G_SDIV: 1999 case TargetOpcode::G_SREM: 2000 case TargetOpcode::G_SMIN: 2001 case TargetOpcode::G_SMAX: 2002 Observer.changingInstr(MI); 2003 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2004 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2005 widenScalarDst(MI, WideTy); 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 2009 case TargetOpcode::G_ASHR: 2010 case TargetOpcode::G_LSHR: 2011 Observer.changingInstr(MI); 2012 2013 if (TypeIdx == 0) { 2014 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2015 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2016 2017 widenScalarSrc(MI, WideTy, 1, CvtOp); 2018 widenScalarDst(MI, WideTy); 2019 } else { 2020 assert(TypeIdx == 1); 2021 // The "number of bits to shift" operand must preserve its value as an 2022 // unsigned integer: 2023 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2024 } 2025 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 case TargetOpcode::G_UDIV: 2029 case TargetOpcode::G_UREM: 2030 case TargetOpcode::G_UMIN: 2031 case TargetOpcode::G_UMAX: 2032 Observer.changingInstr(MI); 2033 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2034 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2035 widenScalarDst(MI, WideTy); 2036 Observer.changedInstr(MI); 2037 return Legalized; 2038 2039 case TargetOpcode::G_SELECT: 2040 Observer.changingInstr(MI); 2041 if (TypeIdx == 0) { 2042 // Perform operation at larger width (any extension is fine here, high 2043 // bits don't affect the result) and then truncate the result back to the 2044 // original type. 2045 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2046 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2047 widenScalarDst(MI, WideTy); 2048 } else { 2049 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2050 // Explicit extension is required here since high bits affect the result. 2051 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2052 } 2053 Observer.changedInstr(MI); 2054 return Legalized; 2055 2056 case TargetOpcode::G_FPTOSI: 2057 case TargetOpcode::G_FPTOUI: 2058 Observer.changingInstr(MI); 2059 2060 if (TypeIdx == 0) 2061 widenScalarDst(MI, WideTy); 2062 else 2063 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2064 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_SITOFP: 2068 Observer.changingInstr(MI); 2069 2070 if (TypeIdx == 0) 2071 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2072 else 2073 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2074 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_UITOFP: 2078 Observer.changingInstr(MI); 2079 2080 if (TypeIdx == 0) 2081 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2082 else 2083 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2084 2085 Observer.changedInstr(MI); 2086 return Legalized; 2087 case TargetOpcode::G_LOAD: 2088 case TargetOpcode::G_SEXTLOAD: 2089 case TargetOpcode::G_ZEXTLOAD: 2090 Observer.changingInstr(MI); 2091 widenScalarDst(MI, WideTy); 2092 Observer.changedInstr(MI); 2093 return Legalized; 2094 2095 case TargetOpcode::G_STORE: { 2096 if (TypeIdx != 0) 2097 return UnableToLegalize; 2098 2099 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2100 if (!Ty.isScalar()) 2101 return UnableToLegalize; 2102 2103 Observer.changingInstr(MI); 2104 2105 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2106 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2107 widenScalarSrc(MI, WideTy, 0, ExtType); 2108 2109 Observer.changedInstr(MI); 2110 return Legalized; 2111 } 2112 case TargetOpcode::G_CONSTANT: { 2113 MachineOperand &SrcMO = MI.getOperand(1); 2114 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2115 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2116 MRI.getType(MI.getOperand(0).getReg())); 2117 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2118 ExtOpc == TargetOpcode::G_ANYEXT) && 2119 "Illegal Extend"); 2120 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2121 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2122 ? SrcVal.sext(WideTy.getSizeInBits()) 2123 : SrcVal.zext(WideTy.getSizeInBits()); 2124 Observer.changingInstr(MI); 2125 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2126 2127 widenScalarDst(MI, WideTy); 2128 Observer.changedInstr(MI); 2129 return Legalized; 2130 } 2131 case TargetOpcode::G_FCONSTANT: { 2132 MachineOperand &SrcMO = MI.getOperand(1); 2133 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2134 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2135 bool LosesInfo; 2136 switch (WideTy.getSizeInBits()) { 2137 case 32: 2138 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2139 &LosesInfo); 2140 break; 2141 case 64: 2142 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2143 &LosesInfo); 2144 break; 2145 default: 2146 return UnableToLegalize; 2147 } 2148 2149 assert(!LosesInfo && "extend should always be lossless"); 2150 2151 Observer.changingInstr(MI); 2152 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2153 2154 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2155 Observer.changedInstr(MI); 2156 return Legalized; 2157 } 2158 case TargetOpcode::G_IMPLICIT_DEF: { 2159 Observer.changingInstr(MI); 2160 widenScalarDst(MI, WideTy); 2161 Observer.changedInstr(MI); 2162 return Legalized; 2163 } 2164 case TargetOpcode::G_BRCOND: 2165 Observer.changingInstr(MI); 2166 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2167 Observer.changedInstr(MI); 2168 return Legalized; 2169 2170 case TargetOpcode::G_FCMP: 2171 Observer.changingInstr(MI); 2172 if (TypeIdx == 0) 2173 widenScalarDst(MI, WideTy); 2174 else { 2175 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2176 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2177 } 2178 Observer.changedInstr(MI); 2179 return Legalized; 2180 2181 case TargetOpcode::G_ICMP: 2182 Observer.changingInstr(MI); 2183 if (TypeIdx == 0) 2184 widenScalarDst(MI, WideTy); 2185 else { 2186 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2187 MI.getOperand(1).getPredicate())) 2188 ? TargetOpcode::G_SEXT 2189 : TargetOpcode::G_ZEXT; 2190 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2191 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2192 } 2193 Observer.changedInstr(MI); 2194 return Legalized; 2195 2196 case TargetOpcode::G_PTR_ADD: 2197 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2198 Observer.changingInstr(MI); 2199 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2200 Observer.changedInstr(MI); 2201 return Legalized; 2202 2203 case TargetOpcode::G_PHI: { 2204 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2205 2206 Observer.changingInstr(MI); 2207 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2208 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2209 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2210 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2211 } 2212 2213 MachineBasicBlock &MBB = *MI.getParent(); 2214 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2215 widenScalarDst(MI, WideTy); 2216 Observer.changedInstr(MI); 2217 return Legalized; 2218 } 2219 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2220 if (TypeIdx == 0) { 2221 Register VecReg = MI.getOperand(1).getReg(); 2222 LLT VecTy = MRI.getType(VecReg); 2223 Observer.changingInstr(MI); 2224 2225 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2226 WideTy.getSizeInBits()), 2227 1, TargetOpcode::G_SEXT); 2228 2229 widenScalarDst(MI, WideTy, 0); 2230 Observer.changedInstr(MI); 2231 return Legalized; 2232 } 2233 2234 if (TypeIdx != 2) 2235 return UnableToLegalize; 2236 Observer.changingInstr(MI); 2237 // TODO: Probably should be zext 2238 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 } 2242 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2243 if (TypeIdx == 1) { 2244 Observer.changingInstr(MI); 2245 2246 Register VecReg = MI.getOperand(1).getReg(); 2247 LLT VecTy = MRI.getType(VecReg); 2248 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2249 2250 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2251 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2252 widenScalarDst(MI, WideVecTy, 0); 2253 Observer.changedInstr(MI); 2254 return Legalized; 2255 } 2256 2257 if (TypeIdx == 2) { 2258 Observer.changingInstr(MI); 2259 // TODO: Probably should be zext 2260 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2261 Observer.changedInstr(MI); 2262 return Legalized; 2263 } 2264 2265 return UnableToLegalize; 2266 } 2267 case TargetOpcode::G_FADD: 2268 case TargetOpcode::G_FMUL: 2269 case TargetOpcode::G_FSUB: 2270 case TargetOpcode::G_FMA: 2271 case TargetOpcode::G_FMAD: 2272 case TargetOpcode::G_FNEG: 2273 case TargetOpcode::G_FABS: 2274 case TargetOpcode::G_FCANONICALIZE: 2275 case TargetOpcode::G_FMINNUM: 2276 case TargetOpcode::G_FMAXNUM: 2277 case TargetOpcode::G_FMINNUM_IEEE: 2278 case TargetOpcode::G_FMAXNUM_IEEE: 2279 case TargetOpcode::G_FMINIMUM: 2280 case TargetOpcode::G_FMAXIMUM: 2281 case TargetOpcode::G_FDIV: 2282 case TargetOpcode::G_FREM: 2283 case TargetOpcode::G_FCEIL: 2284 case TargetOpcode::G_FFLOOR: 2285 case TargetOpcode::G_FCOS: 2286 case TargetOpcode::G_FSIN: 2287 case TargetOpcode::G_FLOG10: 2288 case TargetOpcode::G_FLOG: 2289 case TargetOpcode::G_FLOG2: 2290 case TargetOpcode::G_FRINT: 2291 case TargetOpcode::G_FNEARBYINT: 2292 case TargetOpcode::G_FSQRT: 2293 case TargetOpcode::G_FEXP: 2294 case TargetOpcode::G_FEXP2: 2295 case TargetOpcode::G_FPOW: 2296 case TargetOpcode::G_INTRINSIC_TRUNC: 2297 case TargetOpcode::G_INTRINSIC_ROUND: 2298 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2299 assert(TypeIdx == 0); 2300 Observer.changingInstr(MI); 2301 2302 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2303 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2304 2305 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2306 Observer.changedInstr(MI); 2307 return Legalized; 2308 case TargetOpcode::G_FPOWI: { 2309 if (TypeIdx != 0) 2310 return UnableToLegalize; 2311 Observer.changingInstr(MI); 2312 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2313 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2314 Observer.changedInstr(MI); 2315 return Legalized; 2316 } 2317 case TargetOpcode::G_INTTOPTR: 2318 if (TypeIdx != 1) 2319 return UnableToLegalize; 2320 2321 Observer.changingInstr(MI); 2322 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2323 Observer.changedInstr(MI); 2324 return Legalized; 2325 case TargetOpcode::G_PTRTOINT: 2326 if (TypeIdx != 0) 2327 return UnableToLegalize; 2328 2329 Observer.changingInstr(MI); 2330 widenScalarDst(MI, WideTy, 0); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 case TargetOpcode::G_BUILD_VECTOR: { 2334 Observer.changingInstr(MI); 2335 2336 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2337 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2338 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2339 2340 // Avoid changing the result vector type if the source element type was 2341 // requested. 2342 if (TypeIdx == 1) { 2343 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2344 } else { 2345 widenScalarDst(MI, WideTy, 0); 2346 } 2347 2348 Observer.changedInstr(MI); 2349 return Legalized; 2350 } 2351 case TargetOpcode::G_SEXT_INREG: 2352 if (TypeIdx != 0) 2353 return UnableToLegalize; 2354 2355 Observer.changingInstr(MI); 2356 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2357 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2358 Observer.changedInstr(MI); 2359 return Legalized; 2360 case TargetOpcode::G_PTRMASK: { 2361 if (TypeIdx != 1) 2362 return UnableToLegalize; 2363 Observer.changingInstr(MI); 2364 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2365 Observer.changedInstr(MI); 2366 return Legalized; 2367 } 2368 } 2369 } 2370 2371 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2372 MachineIRBuilder &B, Register Src, LLT Ty) { 2373 auto Unmerge = B.buildUnmerge(Ty, Src); 2374 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2375 Pieces.push_back(Unmerge.getReg(I)); 2376 } 2377 2378 LegalizerHelper::LegalizeResult 2379 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2380 Register Dst = MI.getOperand(0).getReg(); 2381 Register Src = MI.getOperand(1).getReg(); 2382 LLT DstTy = MRI.getType(Dst); 2383 LLT SrcTy = MRI.getType(Src); 2384 2385 if (SrcTy.isVector()) { 2386 LLT SrcEltTy = SrcTy.getElementType(); 2387 SmallVector<Register, 8> SrcRegs; 2388 2389 if (DstTy.isVector()) { 2390 int NumDstElt = DstTy.getNumElements(); 2391 int NumSrcElt = SrcTy.getNumElements(); 2392 2393 LLT DstEltTy = DstTy.getElementType(); 2394 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2395 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2396 2397 // If there's an element size mismatch, insert intermediate casts to match 2398 // the result element type. 2399 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2400 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2401 // 2402 // => 2403 // 2404 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2405 // %3:_(<2 x s8>) = G_BITCAST %2 2406 // %4:_(<2 x s8>) = G_BITCAST %3 2407 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2408 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2409 SrcPartTy = SrcEltTy; 2410 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2411 // 2412 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2413 // 2414 // => 2415 // 2416 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2417 // %3:_(s16) = G_BITCAST %2 2418 // %4:_(s16) = G_BITCAST %3 2419 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2420 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2421 DstCastTy = DstEltTy; 2422 } 2423 2424 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2425 for (Register &SrcReg : SrcRegs) 2426 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2427 } else 2428 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2429 2430 MIRBuilder.buildMerge(Dst, SrcRegs); 2431 MI.eraseFromParent(); 2432 return Legalized; 2433 } 2434 2435 if (DstTy.isVector()) { 2436 SmallVector<Register, 8> SrcRegs; 2437 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2438 MIRBuilder.buildMerge(Dst, SrcRegs); 2439 MI.eraseFromParent(); 2440 return Legalized; 2441 } 2442 2443 return UnableToLegalize; 2444 } 2445 2446 /// Figure out the bit offset into a register when coercing a vector index for 2447 /// the wide element type. This is only for the case when promoting vector to 2448 /// one with larger elements. 2449 // 2450 /// 2451 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2452 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2453 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2454 Register Idx, 2455 unsigned NewEltSize, 2456 unsigned OldEltSize) { 2457 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2458 LLT IdxTy = B.getMRI()->getType(Idx); 2459 2460 // Now figure out the amount we need to shift to get the target bits. 2461 auto OffsetMask = B.buildConstant( 2462 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2463 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2464 return B.buildShl(IdxTy, OffsetIdx, 2465 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2466 } 2467 2468 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2469 /// is casting to a vector with a smaller element size, perform multiple element 2470 /// extracts and merge the results. If this is coercing to a vector with larger 2471 /// elements, index the bitcasted vector and extract the target element with bit 2472 /// operations. This is intended to force the indexing in the native register 2473 /// size for architectures that can dynamically index the register file. 2474 LegalizerHelper::LegalizeResult 2475 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2476 LLT CastTy) { 2477 if (TypeIdx != 1) 2478 return UnableToLegalize; 2479 2480 Register Dst = MI.getOperand(0).getReg(); 2481 Register SrcVec = MI.getOperand(1).getReg(); 2482 Register Idx = MI.getOperand(2).getReg(); 2483 LLT SrcVecTy = MRI.getType(SrcVec); 2484 LLT IdxTy = MRI.getType(Idx); 2485 2486 LLT SrcEltTy = SrcVecTy.getElementType(); 2487 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2488 unsigned OldNumElts = SrcVecTy.getNumElements(); 2489 2490 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2491 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2492 2493 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2494 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2495 if (NewNumElts > OldNumElts) { 2496 // Decreasing the vector element size 2497 // 2498 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2499 // => 2500 // v4i32:castx = bitcast x:v2i64 2501 // 2502 // i64 = bitcast 2503 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2504 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2505 // 2506 if (NewNumElts % OldNumElts != 0) 2507 return UnableToLegalize; 2508 2509 // Type of the intermediate result vector. 2510 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2511 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2512 2513 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2514 2515 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2516 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2517 2518 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2519 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2520 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2521 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2522 NewOps[I] = Elt.getReg(0); 2523 } 2524 2525 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2526 MIRBuilder.buildBitcast(Dst, NewVec); 2527 MI.eraseFromParent(); 2528 return Legalized; 2529 } 2530 2531 if (NewNumElts < OldNumElts) { 2532 if (NewEltSize % OldEltSize != 0) 2533 return UnableToLegalize; 2534 2535 // This only depends on powers of 2 because we use bit tricks to figure out 2536 // the bit offset we need to shift to get the target element. A general 2537 // expansion could emit division/multiply. 2538 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2539 return UnableToLegalize; 2540 2541 // Increasing the vector element size. 2542 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2543 // 2544 // => 2545 // 2546 // %cast = G_BITCAST %vec 2547 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2548 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2549 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2550 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2551 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2552 // %elt = G_TRUNC %elt_bits 2553 2554 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2555 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2556 2557 // Divide to get the index in the wider element type. 2558 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2559 2560 Register WideElt = CastVec; 2561 if (CastTy.isVector()) { 2562 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2563 ScaledIdx).getReg(0); 2564 } 2565 2566 // Compute the bit offset into the register of the target element. 2567 Register OffsetBits = getBitcastWiderVectorElementOffset( 2568 MIRBuilder, Idx, NewEltSize, OldEltSize); 2569 2570 // Shift the wide element to get the target element. 2571 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2572 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2573 MI.eraseFromParent(); 2574 return Legalized; 2575 } 2576 2577 return UnableToLegalize; 2578 } 2579 2580 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2581 /// TargetReg, while preserving other bits in \p TargetReg. 2582 /// 2583 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2584 static Register buildBitFieldInsert(MachineIRBuilder &B, 2585 Register TargetReg, Register InsertReg, 2586 Register OffsetBits) { 2587 LLT TargetTy = B.getMRI()->getType(TargetReg); 2588 LLT InsertTy = B.getMRI()->getType(InsertReg); 2589 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2590 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2591 2592 // Produce a bitmask of the value to insert 2593 auto EltMask = B.buildConstant( 2594 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2595 InsertTy.getSizeInBits())); 2596 // Shift it into position 2597 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2598 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2599 2600 // Clear out the bits in the wide element 2601 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2602 2603 // The value to insert has all zeros already, so stick it into the masked 2604 // wide element. 2605 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2606 } 2607 2608 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2609 /// is increasing the element size, perform the indexing in the target element 2610 /// type, and use bit operations to insert at the element position. This is 2611 /// intended for architectures that can dynamically index the register file and 2612 /// want to force indexing in the native register size. 2613 LegalizerHelper::LegalizeResult 2614 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2615 LLT CastTy) { 2616 if (TypeIdx != 0) 2617 return UnableToLegalize; 2618 2619 Register Dst = MI.getOperand(0).getReg(); 2620 Register SrcVec = MI.getOperand(1).getReg(); 2621 Register Val = MI.getOperand(2).getReg(); 2622 Register Idx = MI.getOperand(3).getReg(); 2623 2624 LLT VecTy = MRI.getType(Dst); 2625 LLT IdxTy = MRI.getType(Idx); 2626 2627 LLT VecEltTy = VecTy.getElementType(); 2628 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2629 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2630 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2631 2632 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2633 unsigned OldNumElts = VecTy.getNumElements(); 2634 2635 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2636 if (NewNumElts < OldNumElts) { 2637 if (NewEltSize % OldEltSize != 0) 2638 return UnableToLegalize; 2639 2640 // This only depends on powers of 2 because we use bit tricks to figure out 2641 // the bit offset we need to shift to get the target element. A general 2642 // expansion could emit division/multiply. 2643 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2644 return UnableToLegalize; 2645 2646 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2647 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2648 2649 // Divide to get the index in the wider element type. 2650 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2651 2652 Register ExtractedElt = CastVec; 2653 if (CastTy.isVector()) { 2654 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2655 ScaledIdx).getReg(0); 2656 } 2657 2658 // Compute the bit offset into the register of the target element. 2659 Register OffsetBits = getBitcastWiderVectorElementOffset( 2660 MIRBuilder, Idx, NewEltSize, OldEltSize); 2661 2662 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2663 Val, OffsetBits); 2664 if (CastTy.isVector()) { 2665 InsertedElt = MIRBuilder.buildInsertVectorElement( 2666 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2667 } 2668 2669 MIRBuilder.buildBitcast(Dst, InsertedElt); 2670 MI.eraseFromParent(); 2671 return Legalized; 2672 } 2673 2674 return UnableToLegalize; 2675 } 2676 2677 LegalizerHelper::LegalizeResult 2678 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2679 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2680 Register DstReg = MI.getOperand(0).getReg(); 2681 Register PtrReg = MI.getOperand(1).getReg(); 2682 LLT DstTy = MRI.getType(DstReg); 2683 auto &MMO = **MI.memoperands_begin(); 2684 2685 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2686 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2687 // This load needs splitting into power of 2 sized loads. 2688 if (DstTy.isVector()) 2689 return UnableToLegalize; 2690 if (isPowerOf2_32(DstTy.getSizeInBits())) 2691 return UnableToLegalize; // Don't know what we're being asked to do. 2692 2693 // Our strategy here is to generate anyextending loads for the smaller 2694 // types up to next power-2 result type, and then combine the two larger 2695 // result values together, before truncating back down to the non-pow-2 2696 // type. 2697 // E.g. v1 = i24 load => 2698 // v2 = i32 zextload (2 byte) 2699 // v3 = i32 load (1 byte) 2700 // v4 = i32 shl v3, 16 2701 // v5 = i32 or v4, v2 2702 // v1 = i24 trunc v5 2703 // By doing this we generate the correct truncate which should get 2704 // combined away as an artifact with a matching extend. 2705 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2706 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2707 2708 MachineFunction &MF = MIRBuilder.getMF(); 2709 MachineMemOperand *LargeMMO = 2710 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2711 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2712 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2713 2714 LLT PtrTy = MRI.getType(PtrReg); 2715 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2716 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2717 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2718 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2719 auto LargeLoad = MIRBuilder.buildLoadInstr( 2720 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2721 2722 auto OffsetCst = MIRBuilder.buildConstant( 2723 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2724 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2725 auto SmallPtr = 2726 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2727 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2728 *SmallMMO); 2729 2730 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2731 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2732 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2733 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2734 MI.eraseFromParent(); 2735 return Legalized; 2736 } 2737 2738 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2739 MI.eraseFromParent(); 2740 return Legalized; 2741 } 2742 2743 if (DstTy.isScalar()) { 2744 Register TmpReg = 2745 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2746 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2747 switch (MI.getOpcode()) { 2748 default: 2749 llvm_unreachable("Unexpected opcode"); 2750 case TargetOpcode::G_LOAD: 2751 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2752 break; 2753 case TargetOpcode::G_SEXTLOAD: 2754 MIRBuilder.buildSExt(DstReg, TmpReg); 2755 break; 2756 case TargetOpcode::G_ZEXTLOAD: 2757 MIRBuilder.buildZExt(DstReg, TmpReg); 2758 break; 2759 } 2760 2761 MI.eraseFromParent(); 2762 return Legalized; 2763 } 2764 2765 return UnableToLegalize; 2766 } 2767 2768 LegalizerHelper::LegalizeResult 2769 LegalizerHelper::lowerStore(MachineInstr &MI) { 2770 // Lower a non-power of 2 store into multiple pow-2 stores. 2771 // E.g. split an i24 store into an i16 store + i8 store. 2772 // We do this by first extending the stored value to the next largest power 2773 // of 2 type, and then using truncating stores to store the components. 2774 // By doing this, likewise with G_LOAD, generate an extend that can be 2775 // artifact-combined away instead of leaving behind extracts. 2776 Register SrcReg = MI.getOperand(0).getReg(); 2777 Register PtrReg = MI.getOperand(1).getReg(); 2778 LLT SrcTy = MRI.getType(SrcReg); 2779 MachineMemOperand &MMO = **MI.memoperands_begin(); 2780 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2781 return UnableToLegalize; 2782 if (SrcTy.isVector()) 2783 return UnableToLegalize; 2784 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2785 return UnableToLegalize; // Don't know what we're being asked to do. 2786 2787 // Extend to the next pow-2. 2788 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2789 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2790 2791 // Obtain the smaller value by shifting away the larger value. 2792 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2793 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2794 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2795 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2796 2797 // Generate the PtrAdd and truncating stores. 2798 LLT PtrTy = MRI.getType(PtrReg); 2799 auto OffsetCst = MIRBuilder.buildConstant( 2800 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2801 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2802 auto SmallPtr = 2803 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2804 2805 MachineFunction &MF = MIRBuilder.getMF(); 2806 MachineMemOperand *LargeMMO = 2807 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2808 MachineMemOperand *SmallMMO = 2809 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2810 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2811 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2812 MI.eraseFromParent(); 2813 return Legalized; 2814 } 2815 2816 LegalizerHelper::LegalizeResult 2817 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2818 switch (MI.getOpcode()) { 2819 case TargetOpcode::G_LOAD: { 2820 if (TypeIdx != 0) 2821 return UnableToLegalize; 2822 2823 Observer.changingInstr(MI); 2824 bitcastDst(MI, CastTy, 0); 2825 Observer.changedInstr(MI); 2826 return Legalized; 2827 } 2828 case TargetOpcode::G_STORE: { 2829 if (TypeIdx != 0) 2830 return UnableToLegalize; 2831 2832 Observer.changingInstr(MI); 2833 bitcastSrc(MI, CastTy, 0); 2834 Observer.changedInstr(MI); 2835 return Legalized; 2836 } 2837 case TargetOpcode::G_SELECT: { 2838 if (TypeIdx != 0) 2839 return UnableToLegalize; 2840 2841 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2842 LLVM_DEBUG( 2843 dbgs() << "bitcast action not implemented for vector select\n"); 2844 return UnableToLegalize; 2845 } 2846 2847 Observer.changingInstr(MI); 2848 bitcastSrc(MI, CastTy, 2); 2849 bitcastSrc(MI, CastTy, 3); 2850 bitcastDst(MI, CastTy, 0); 2851 Observer.changedInstr(MI); 2852 return Legalized; 2853 } 2854 case TargetOpcode::G_AND: 2855 case TargetOpcode::G_OR: 2856 case TargetOpcode::G_XOR: { 2857 Observer.changingInstr(MI); 2858 bitcastSrc(MI, CastTy, 1); 2859 bitcastSrc(MI, CastTy, 2); 2860 bitcastDst(MI, CastTy, 0); 2861 Observer.changedInstr(MI); 2862 return Legalized; 2863 } 2864 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2865 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2866 case TargetOpcode::G_INSERT_VECTOR_ELT: 2867 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2868 default: 2869 return UnableToLegalize; 2870 } 2871 } 2872 2873 // Legalize an instruction by changing the opcode in place. 2874 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2875 Observer.changingInstr(MI); 2876 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2877 Observer.changedInstr(MI); 2878 } 2879 2880 LegalizerHelper::LegalizeResult 2881 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2882 using namespace TargetOpcode; 2883 2884 switch(MI.getOpcode()) { 2885 default: 2886 return UnableToLegalize; 2887 case TargetOpcode::G_BITCAST: 2888 return lowerBitcast(MI); 2889 case TargetOpcode::G_SREM: 2890 case TargetOpcode::G_UREM: { 2891 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2892 auto Quot = 2893 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2894 {MI.getOperand(1), MI.getOperand(2)}); 2895 2896 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2897 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2898 MI.eraseFromParent(); 2899 return Legalized; 2900 } 2901 case TargetOpcode::G_SADDO: 2902 case TargetOpcode::G_SSUBO: 2903 return lowerSADDO_SSUBO(MI); 2904 case TargetOpcode::G_UMULH: 2905 case TargetOpcode::G_SMULH: 2906 return lowerSMULH_UMULH(MI); 2907 case TargetOpcode::G_SMULO: 2908 case TargetOpcode::G_UMULO: { 2909 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2910 // result. 2911 Register Res = MI.getOperand(0).getReg(); 2912 Register Overflow = MI.getOperand(1).getReg(); 2913 Register LHS = MI.getOperand(2).getReg(); 2914 Register RHS = MI.getOperand(3).getReg(); 2915 LLT Ty = MRI.getType(Res); 2916 2917 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2918 ? TargetOpcode::G_SMULH 2919 : TargetOpcode::G_UMULH; 2920 2921 Observer.changingInstr(MI); 2922 const auto &TII = MIRBuilder.getTII(); 2923 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2924 MI.RemoveOperand(1); 2925 Observer.changedInstr(MI); 2926 2927 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2928 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2929 2930 // Move insert point forward so we can use the Res register if needed. 2931 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2932 2933 // For *signed* multiply, overflow is detected by checking: 2934 // (hi != (lo >> bitwidth-1)) 2935 if (Opcode == TargetOpcode::G_SMULH) { 2936 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2937 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2938 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2939 } else { 2940 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2941 } 2942 return Legalized; 2943 } 2944 case TargetOpcode::G_FNEG: { 2945 Register Res = MI.getOperand(0).getReg(); 2946 LLT Ty = MRI.getType(Res); 2947 2948 // TODO: Handle vector types once we are able to 2949 // represent them. 2950 if (Ty.isVector()) 2951 return UnableToLegalize; 2952 auto SignMask = 2953 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2954 Register SubByReg = MI.getOperand(1).getReg(); 2955 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 case TargetOpcode::G_FSUB: { 2960 Register Res = MI.getOperand(0).getReg(); 2961 LLT Ty = MRI.getType(Res); 2962 2963 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2964 // First, check if G_FNEG is marked as Lower. If so, we may 2965 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2966 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2967 return UnableToLegalize; 2968 Register LHS = MI.getOperand(1).getReg(); 2969 Register RHS = MI.getOperand(2).getReg(); 2970 Register Neg = MRI.createGenericVirtualRegister(Ty); 2971 MIRBuilder.buildFNeg(Neg, RHS); 2972 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2973 MI.eraseFromParent(); 2974 return Legalized; 2975 } 2976 case TargetOpcode::G_FMAD: 2977 return lowerFMad(MI); 2978 case TargetOpcode::G_FFLOOR: 2979 return lowerFFloor(MI); 2980 case TargetOpcode::G_INTRINSIC_ROUND: 2981 return lowerIntrinsicRound(MI); 2982 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2983 // Since round even is the assumed rounding mode for unconstrained FP 2984 // operations, rint and roundeven are the same operation. 2985 changeOpcode(MI, TargetOpcode::G_FRINT); 2986 return Legalized; 2987 } 2988 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2989 Register OldValRes = MI.getOperand(0).getReg(); 2990 Register SuccessRes = MI.getOperand(1).getReg(); 2991 Register Addr = MI.getOperand(2).getReg(); 2992 Register CmpVal = MI.getOperand(3).getReg(); 2993 Register NewVal = MI.getOperand(4).getReg(); 2994 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2995 **MI.memoperands_begin()); 2996 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2997 MI.eraseFromParent(); 2998 return Legalized; 2999 } 3000 case TargetOpcode::G_LOAD: 3001 case TargetOpcode::G_SEXTLOAD: 3002 case TargetOpcode::G_ZEXTLOAD: 3003 return lowerLoad(MI); 3004 case TargetOpcode::G_STORE: 3005 return lowerStore(MI); 3006 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3007 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3008 case TargetOpcode::G_CTLZ: 3009 case TargetOpcode::G_CTTZ: 3010 case TargetOpcode::G_CTPOP: 3011 return lowerBitCount(MI); 3012 case G_UADDO: { 3013 Register Res = MI.getOperand(0).getReg(); 3014 Register CarryOut = MI.getOperand(1).getReg(); 3015 Register LHS = MI.getOperand(2).getReg(); 3016 Register RHS = MI.getOperand(3).getReg(); 3017 3018 MIRBuilder.buildAdd(Res, LHS, RHS); 3019 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3020 3021 MI.eraseFromParent(); 3022 return Legalized; 3023 } 3024 case G_UADDE: { 3025 Register Res = MI.getOperand(0).getReg(); 3026 Register CarryOut = MI.getOperand(1).getReg(); 3027 Register LHS = MI.getOperand(2).getReg(); 3028 Register RHS = MI.getOperand(3).getReg(); 3029 Register CarryIn = MI.getOperand(4).getReg(); 3030 LLT Ty = MRI.getType(Res); 3031 3032 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3033 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3034 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3035 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3036 3037 MI.eraseFromParent(); 3038 return Legalized; 3039 } 3040 case G_USUBO: { 3041 Register Res = MI.getOperand(0).getReg(); 3042 Register BorrowOut = MI.getOperand(1).getReg(); 3043 Register LHS = MI.getOperand(2).getReg(); 3044 Register RHS = MI.getOperand(3).getReg(); 3045 3046 MIRBuilder.buildSub(Res, LHS, RHS); 3047 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3048 3049 MI.eraseFromParent(); 3050 return Legalized; 3051 } 3052 case G_USUBE: { 3053 Register Res = MI.getOperand(0).getReg(); 3054 Register BorrowOut = MI.getOperand(1).getReg(); 3055 Register LHS = MI.getOperand(2).getReg(); 3056 Register RHS = MI.getOperand(3).getReg(); 3057 Register BorrowIn = MI.getOperand(4).getReg(); 3058 const LLT CondTy = MRI.getType(BorrowOut); 3059 const LLT Ty = MRI.getType(Res); 3060 3061 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3062 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3063 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3064 3065 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3066 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3067 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3068 3069 MI.eraseFromParent(); 3070 return Legalized; 3071 } 3072 case G_UITOFP: 3073 return lowerUITOFP(MI); 3074 case G_SITOFP: 3075 return lowerSITOFP(MI); 3076 case G_FPTOUI: 3077 return lowerFPTOUI(MI); 3078 case G_FPTOSI: 3079 return lowerFPTOSI(MI); 3080 case G_FPTRUNC: 3081 return lowerFPTRUNC(MI); 3082 case G_FPOWI: 3083 return lowerFPOWI(MI); 3084 case G_SMIN: 3085 case G_SMAX: 3086 case G_UMIN: 3087 case G_UMAX: 3088 return lowerMinMax(MI); 3089 case G_FCOPYSIGN: 3090 return lowerFCopySign(MI); 3091 case G_FMINNUM: 3092 case G_FMAXNUM: 3093 return lowerFMinNumMaxNum(MI); 3094 case G_MERGE_VALUES: 3095 return lowerMergeValues(MI); 3096 case G_UNMERGE_VALUES: 3097 return lowerUnmergeValues(MI); 3098 case TargetOpcode::G_SEXT_INREG: { 3099 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3100 int64_t SizeInBits = MI.getOperand(2).getImm(); 3101 3102 Register DstReg = MI.getOperand(0).getReg(); 3103 Register SrcReg = MI.getOperand(1).getReg(); 3104 LLT DstTy = MRI.getType(DstReg); 3105 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3106 3107 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3108 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3109 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3110 MI.eraseFromParent(); 3111 return Legalized; 3112 } 3113 case G_EXTRACT_VECTOR_ELT: 3114 case G_INSERT_VECTOR_ELT: 3115 return lowerExtractInsertVectorElt(MI); 3116 case G_SHUFFLE_VECTOR: 3117 return lowerShuffleVector(MI); 3118 case G_DYN_STACKALLOC: 3119 return lowerDynStackAlloc(MI); 3120 case G_EXTRACT: 3121 return lowerExtract(MI); 3122 case G_INSERT: 3123 return lowerInsert(MI); 3124 case G_BSWAP: 3125 return lowerBswap(MI); 3126 case G_BITREVERSE: 3127 return lowerBitreverse(MI); 3128 case G_READ_REGISTER: 3129 case G_WRITE_REGISTER: 3130 return lowerReadWriteRegister(MI); 3131 case G_UADDSAT: 3132 case G_USUBSAT: { 3133 // Try to make a reasonable guess about which lowering strategy to use. The 3134 // target can override this with custom lowering and calling the 3135 // implementation functions. 3136 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3137 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3138 return lowerAddSubSatToMinMax(MI); 3139 return lowerAddSubSatToAddoSubo(MI); 3140 } 3141 case G_SADDSAT: 3142 case G_SSUBSAT: { 3143 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3144 3145 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3146 // since it's a shorter expansion. However, we would need to figure out the 3147 // preferred boolean type for the carry out for the query. 3148 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3149 return lowerAddSubSatToMinMax(MI); 3150 return lowerAddSubSatToAddoSubo(MI); 3151 } 3152 case G_SSHLSAT: 3153 case G_USHLSAT: 3154 return lowerShlSat(MI); 3155 case G_ABS: { 3156 // Expand %res = G_ABS %a into: 3157 // %v1 = G_ASHR %a, scalar_size-1 3158 // %v2 = G_ADD %a, %v1 3159 // %res = G_XOR %v2, %v1 3160 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3161 Register OpReg = MI.getOperand(1).getReg(); 3162 auto ShiftAmt = 3163 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3164 auto Shift = 3165 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3166 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3167 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3168 MI.eraseFromParent(); 3169 return Legalized; 3170 } 3171 case G_SELECT: 3172 return lowerSelect(MI); 3173 } 3174 } 3175 3176 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3177 Align MinAlign) const { 3178 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3179 // datalayout for the preferred alignment. Also there should be a target hook 3180 // for this to allow targets to reduce the alignment and ignore the 3181 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3182 // the type. 3183 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3184 } 3185 3186 MachineInstrBuilder 3187 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3188 MachinePointerInfo &PtrInfo) { 3189 MachineFunction &MF = MIRBuilder.getMF(); 3190 const DataLayout &DL = MIRBuilder.getDataLayout(); 3191 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3192 3193 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3194 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3195 3196 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3197 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3198 } 3199 3200 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3201 LLT VecTy) { 3202 int64_t IdxVal; 3203 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3204 return IdxReg; 3205 3206 LLT IdxTy = B.getMRI()->getType(IdxReg); 3207 unsigned NElts = VecTy.getNumElements(); 3208 if (isPowerOf2_32(NElts)) { 3209 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3210 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3211 } 3212 3213 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3214 .getReg(0); 3215 } 3216 3217 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3218 Register Index) { 3219 LLT EltTy = VecTy.getElementType(); 3220 3221 // Calculate the element offset and add it to the pointer. 3222 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3223 assert(EltSize * 8 == EltTy.getSizeInBits() && 3224 "Converting bits to bytes lost precision"); 3225 3226 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3227 3228 LLT IdxTy = MRI.getType(Index); 3229 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3230 MIRBuilder.buildConstant(IdxTy, EltSize)); 3231 3232 LLT PtrTy = MRI.getType(VecPtr); 3233 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3234 } 3235 3236 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3237 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3238 Register DstReg = MI.getOperand(0).getReg(); 3239 LLT DstTy = MRI.getType(DstReg); 3240 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3241 3242 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3243 3244 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3245 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3246 3247 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3248 MI.eraseFromParent(); 3249 return Legalized; 3250 } 3251 3252 // Handle splitting vector operations which need to have the same number of 3253 // elements in each type index, but each type index may have a different element 3254 // type. 3255 // 3256 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3257 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3258 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3259 // 3260 // Also handles some irregular breakdown cases, e.g. 3261 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3262 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3263 // s64 = G_SHL s64, s32 3264 LegalizerHelper::LegalizeResult 3265 LegalizerHelper::fewerElementsVectorMultiEltType( 3266 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3267 if (TypeIdx != 0) 3268 return UnableToLegalize; 3269 3270 const LLT NarrowTy0 = NarrowTyArg; 3271 const unsigned NewNumElts = 3272 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3273 3274 const Register DstReg = MI.getOperand(0).getReg(); 3275 LLT DstTy = MRI.getType(DstReg); 3276 LLT LeftoverTy0; 3277 3278 // All of the operands need to have the same number of elements, so if we can 3279 // determine a type breakdown for the result type, we can for all of the 3280 // source types. 3281 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3282 if (NumParts < 0) 3283 return UnableToLegalize; 3284 3285 SmallVector<MachineInstrBuilder, 4> NewInsts; 3286 3287 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3288 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3289 3290 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3291 Register SrcReg = MI.getOperand(I).getReg(); 3292 LLT SrcTyI = MRI.getType(SrcReg); 3293 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3294 LLT LeftoverTyI; 3295 3296 // Split this operand into the requested typed registers, and any leftover 3297 // required to reproduce the original type. 3298 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3299 LeftoverRegs)) 3300 return UnableToLegalize; 3301 3302 if (I == 1) { 3303 // For the first operand, create an instruction for each part and setup 3304 // the result. 3305 for (Register PartReg : PartRegs) { 3306 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3307 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3308 .addDef(PartDstReg) 3309 .addUse(PartReg)); 3310 DstRegs.push_back(PartDstReg); 3311 } 3312 3313 for (Register LeftoverReg : LeftoverRegs) { 3314 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3315 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3316 .addDef(PartDstReg) 3317 .addUse(LeftoverReg)); 3318 LeftoverDstRegs.push_back(PartDstReg); 3319 } 3320 } else { 3321 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3322 3323 // Add the newly created operand splits to the existing instructions. The 3324 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3325 // pieces. 3326 unsigned InstCount = 0; 3327 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3328 NewInsts[InstCount++].addUse(PartRegs[J]); 3329 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3330 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3331 } 3332 3333 PartRegs.clear(); 3334 LeftoverRegs.clear(); 3335 } 3336 3337 // Insert the newly built operations and rebuild the result register. 3338 for (auto &MIB : NewInsts) 3339 MIRBuilder.insertInstr(MIB); 3340 3341 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3342 3343 MI.eraseFromParent(); 3344 return Legalized; 3345 } 3346 3347 LegalizerHelper::LegalizeResult 3348 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3349 LLT NarrowTy) { 3350 if (TypeIdx != 0) 3351 return UnableToLegalize; 3352 3353 Register DstReg = MI.getOperand(0).getReg(); 3354 Register SrcReg = MI.getOperand(1).getReg(); 3355 LLT DstTy = MRI.getType(DstReg); 3356 LLT SrcTy = MRI.getType(SrcReg); 3357 3358 LLT NarrowTy0 = NarrowTy; 3359 LLT NarrowTy1; 3360 unsigned NumParts; 3361 3362 if (NarrowTy.isVector()) { 3363 // Uneven breakdown not handled. 3364 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3365 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3366 return UnableToLegalize; 3367 3368 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3369 } else { 3370 NumParts = DstTy.getNumElements(); 3371 NarrowTy1 = SrcTy.getElementType(); 3372 } 3373 3374 SmallVector<Register, 4> SrcRegs, DstRegs; 3375 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3376 3377 for (unsigned I = 0; I < NumParts; ++I) { 3378 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3379 MachineInstr *NewInst = 3380 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3381 3382 NewInst->setFlags(MI.getFlags()); 3383 DstRegs.push_back(DstReg); 3384 } 3385 3386 if (NarrowTy.isVector()) 3387 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3388 else 3389 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3390 3391 MI.eraseFromParent(); 3392 return Legalized; 3393 } 3394 3395 LegalizerHelper::LegalizeResult 3396 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3397 LLT NarrowTy) { 3398 Register DstReg = MI.getOperand(0).getReg(); 3399 Register Src0Reg = MI.getOperand(2).getReg(); 3400 LLT DstTy = MRI.getType(DstReg); 3401 LLT SrcTy = MRI.getType(Src0Reg); 3402 3403 unsigned NumParts; 3404 LLT NarrowTy0, NarrowTy1; 3405 3406 if (TypeIdx == 0) { 3407 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3408 unsigned OldElts = DstTy.getNumElements(); 3409 3410 NarrowTy0 = NarrowTy; 3411 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3412 NarrowTy1 = NarrowTy.isVector() ? 3413 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3414 SrcTy.getElementType(); 3415 3416 } else { 3417 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3418 unsigned OldElts = SrcTy.getNumElements(); 3419 3420 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3421 NarrowTy.getNumElements(); 3422 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3423 DstTy.getScalarSizeInBits()); 3424 NarrowTy1 = NarrowTy; 3425 } 3426 3427 // FIXME: Don't know how to handle the situation where the small vectors 3428 // aren't all the same size yet. 3429 if (NarrowTy1.isVector() && 3430 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3431 return UnableToLegalize; 3432 3433 CmpInst::Predicate Pred 3434 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3435 3436 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3437 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3438 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3439 3440 for (unsigned I = 0; I < NumParts; ++I) { 3441 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3442 DstRegs.push_back(DstReg); 3443 3444 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3445 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3446 else { 3447 MachineInstr *NewCmp 3448 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3449 NewCmp->setFlags(MI.getFlags()); 3450 } 3451 } 3452 3453 if (NarrowTy1.isVector()) 3454 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3455 else 3456 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3457 3458 MI.eraseFromParent(); 3459 return Legalized; 3460 } 3461 3462 LegalizerHelper::LegalizeResult 3463 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3464 LLT NarrowTy) { 3465 Register DstReg = MI.getOperand(0).getReg(); 3466 Register CondReg = MI.getOperand(1).getReg(); 3467 3468 unsigned NumParts = 0; 3469 LLT NarrowTy0, NarrowTy1; 3470 3471 LLT DstTy = MRI.getType(DstReg); 3472 LLT CondTy = MRI.getType(CondReg); 3473 unsigned Size = DstTy.getSizeInBits(); 3474 3475 assert(TypeIdx == 0 || CondTy.isVector()); 3476 3477 if (TypeIdx == 0) { 3478 NarrowTy0 = NarrowTy; 3479 NarrowTy1 = CondTy; 3480 3481 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3482 // FIXME: Don't know how to handle the situation where the small vectors 3483 // aren't all the same size yet. 3484 if (Size % NarrowSize != 0) 3485 return UnableToLegalize; 3486 3487 NumParts = Size / NarrowSize; 3488 3489 // Need to break down the condition type 3490 if (CondTy.isVector()) { 3491 if (CondTy.getNumElements() == NumParts) 3492 NarrowTy1 = CondTy.getElementType(); 3493 else 3494 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3495 CondTy.getScalarSizeInBits()); 3496 } 3497 } else { 3498 NumParts = CondTy.getNumElements(); 3499 if (NarrowTy.isVector()) { 3500 // TODO: Handle uneven breakdown. 3501 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3502 return UnableToLegalize; 3503 3504 return UnableToLegalize; 3505 } else { 3506 NarrowTy0 = DstTy.getElementType(); 3507 NarrowTy1 = NarrowTy; 3508 } 3509 } 3510 3511 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3512 if (CondTy.isVector()) 3513 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3514 3515 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3516 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3517 3518 for (unsigned i = 0; i < NumParts; ++i) { 3519 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3520 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3521 Src1Regs[i], Src2Regs[i]); 3522 DstRegs.push_back(DstReg); 3523 } 3524 3525 if (NarrowTy0.isVector()) 3526 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3527 else 3528 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3529 3530 MI.eraseFromParent(); 3531 return Legalized; 3532 } 3533 3534 LegalizerHelper::LegalizeResult 3535 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3536 LLT NarrowTy) { 3537 const Register DstReg = MI.getOperand(0).getReg(); 3538 LLT PhiTy = MRI.getType(DstReg); 3539 LLT LeftoverTy; 3540 3541 // All of the operands need to have the same number of elements, so if we can 3542 // determine a type breakdown for the result type, we can for all of the 3543 // source types. 3544 int NumParts, NumLeftover; 3545 std::tie(NumParts, NumLeftover) 3546 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3547 if (NumParts < 0) 3548 return UnableToLegalize; 3549 3550 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3551 SmallVector<MachineInstrBuilder, 4> NewInsts; 3552 3553 const int TotalNumParts = NumParts + NumLeftover; 3554 3555 // Insert the new phis in the result block first. 3556 for (int I = 0; I != TotalNumParts; ++I) { 3557 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3558 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3559 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3560 .addDef(PartDstReg)); 3561 if (I < NumParts) 3562 DstRegs.push_back(PartDstReg); 3563 else 3564 LeftoverDstRegs.push_back(PartDstReg); 3565 } 3566 3567 MachineBasicBlock *MBB = MI.getParent(); 3568 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3569 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3570 3571 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3572 3573 // Insert code to extract the incoming values in each predecessor block. 3574 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3575 PartRegs.clear(); 3576 LeftoverRegs.clear(); 3577 3578 Register SrcReg = MI.getOperand(I).getReg(); 3579 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3580 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3581 3582 LLT Unused; 3583 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3584 LeftoverRegs)) 3585 return UnableToLegalize; 3586 3587 // Add the newly created operand splits to the existing instructions. The 3588 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3589 // pieces. 3590 for (int J = 0; J != TotalNumParts; ++J) { 3591 MachineInstrBuilder MIB = NewInsts[J]; 3592 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3593 MIB.addMBB(&OpMBB); 3594 } 3595 } 3596 3597 MI.eraseFromParent(); 3598 return Legalized; 3599 } 3600 3601 LegalizerHelper::LegalizeResult 3602 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3603 unsigned TypeIdx, 3604 LLT NarrowTy) { 3605 if (TypeIdx != 1) 3606 return UnableToLegalize; 3607 3608 const int NumDst = MI.getNumOperands() - 1; 3609 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3610 LLT SrcTy = MRI.getType(SrcReg); 3611 3612 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3613 3614 // TODO: Create sequence of extracts. 3615 if (DstTy == NarrowTy) 3616 return UnableToLegalize; 3617 3618 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3619 if (DstTy == GCDTy) { 3620 // This would just be a copy of the same unmerge. 3621 // TODO: Create extracts, pad with undef and create intermediate merges. 3622 return UnableToLegalize; 3623 } 3624 3625 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3626 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3627 const int PartsPerUnmerge = NumDst / NumUnmerge; 3628 3629 for (int I = 0; I != NumUnmerge; ++I) { 3630 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3631 3632 for (int J = 0; J != PartsPerUnmerge; ++J) 3633 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3634 MIB.addUse(Unmerge.getReg(I)); 3635 } 3636 3637 MI.eraseFromParent(); 3638 return Legalized; 3639 } 3640 3641 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3642 // a vector 3643 // 3644 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3645 // undef as necessary. 3646 // 3647 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3648 // -> <2 x s16> 3649 // 3650 // %4:_(s16) = G_IMPLICIT_DEF 3651 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3652 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3653 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3654 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3655 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3656 LegalizerHelper::LegalizeResult 3657 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3658 LLT NarrowTy) { 3659 Register DstReg = MI.getOperand(0).getReg(); 3660 LLT DstTy = MRI.getType(DstReg); 3661 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3662 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3663 3664 // Break into a common type 3665 SmallVector<Register, 16> Parts; 3666 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3667 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3668 3669 // Build the requested new merge, padding with undef. 3670 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3671 TargetOpcode::G_ANYEXT); 3672 3673 // Pack into the original result register. 3674 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3675 3676 MI.eraseFromParent(); 3677 return Legalized; 3678 } 3679 3680 LegalizerHelper::LegalizeResult 3681 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3682 unsigned TypeIdx, 3683 LLT NarrowVecTy) { 3684 Register DstReg = MI.getOperand(0).getReg(); 3685 Register SrcVec = MI.getOperand(1).getReg(); 3686 Register InsertVal; 3687 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3688 3689 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3690 if (IsInsert) 3691 InsertVal = MI.getOperand(2).getReg(); 3692 3693 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3694 3695 // TODO: Handle total scalarization case. 3696 if (!NarrowVecTy.isVector()) 3697 return UnableToLegalize; 3698 3699 LLT VecTy = MRI.getType(SrcVec); 3700 3701 // If the index is a constant, we can really break this down as you would 3702 // expect, and index into the target size pieces. 3703 int64_t IdxVal; 3704 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3705 // Avoid out of bounds indexing the pieces. 3706 if (IdxVal >= VecTy.getNumElements()) { 3707 MIRBuilder.buildUndef(DstReg); 3708 MI.eraseFromParent(); 3709 return Legalized; 3710 } 3711 3712 SmallVector<Register, 8> VecParts; 3713 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3714 3715 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3716 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3717 TargetOpcode::G_ANYEXT); 3718 3719 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3720 3721 LLT IdxTy = MRI.getType(Idx); 3722 int64_t PartIdx = IdxVal / NewNumElts; 3723 auto NewIdx = 3724 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3725 3726 if (IsInsert) { 3727 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3728 3729 // Use the adjusted index to insert into one of the subvectors. 3730 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3731 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3732 VecParts[PartIdx] = InsertPart.getReg(0); 3733 3734 // Recombine the inserted subvector with the others to reform the result 3735 // vector. 3736 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3737 } else { 3738 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3739 } 3740 3741 MI.eraseFromParent(); 3742 return Legalized; 3743 } 3744 3745 // With a variable index, we can't perform the operation in a smaller type, so 3746 // we're forced to expand this. 3747 // 3748 // TODO: We could emit a chain of compare/select to figure out which piece to 3749 // index. 3750 return lowerExtractInsertVectorElt(MI); 3751 } 3752 3753 LegalizerHelper::LegalizeResult 3754 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3755 LLT NarrowTy) { 3756 // FIXME: Don't know how to handle secondary types yet. 3757 if (TypeIdx != 0) 3758 return UnableToLegalize; 3759 3760 MachineMemOperand *MMO = *MI.memoperands_begin(); 3761 3762 // This implementation doesn't work for atomics. Give up instead of doing 3763 // something invalid. 3764 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3765 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3766 return UnableToLegalize; 3767 3768 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3769 Register ValReg = MI.getOperand(0).getReg(); 3770 Register AddrReg = MI.getOperand(1).getReg(); 3771 LLT ValTy = MRI.getType(ValReg); 3772 3773 // FIXME: Do we need a distinct NarrowMemory legalize action? 3774 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3775 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3776 return UnableToLegalize; 3777 } 3778 3779 int NumParts = -1; 3780 int NumLeftover = -1; 3781 LLT LeftoverTy; 3782 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3783 if (IsLoad) { 3784 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3785 } else { 3786 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3787 NarrowLeftoverRegs)) { 3788 NumParts = NarrowRegs.size(); 3789 NumLeftover = NarrowLeftoverRegs.size(); 3790 } 3791 } 3792 3793 if (NumParts == -1) 3794 return UnableToLegalize; 3795 3796 LLT PtrTy = MRI.getType(AddrReg); 3797 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3798 3799 unsigned TotalSize = ValTy.getSizeInBits(); 3800 3801 // Split the load/store into PartTy sized pieces starting at Offset. If this 3802 // is a load, return the new registers in ValRegs. For a store, each elements 3803 // of ValRegs should be PartTy. Returns the next offset that needs to be 3804 // handled. 3805 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3806 unsigned Offset) -> unsigned { 3807 MachineFunction &MF = MIRBuilder.getMF(); 3808 unsigned PartSize = PartTy.getSizeInBits(); 3809 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3810 Offset += PartSize, ++Idx) { 3811 unsigned ByteSize = PartSize / 8; 3812 unsigned ByteOffset = Offset / 8; 3813 Register NewAddrReg; 3814 3815 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3816 3817 MachineMemOperand *NewMMO = 3818 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3819 3820 if (IsLoad) { 3821 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3822 ValRegs.push_back(Dst); 3823 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3824 } else { 3825 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3826 } 3827 } 3828 3829 return Offset; 3830 }; 3831 3832 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3833 3834 // Handle the rest of the register if this isn't an even type breakdown. 3835 if (LeftoverTy.isValid()) 3836 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3837 3838 if (IsLoad) { 3839 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3840 LeftoverTy, NarrowLeftoverRegs); 3841 } 3842 3843 MI.eraseFromParent(); 3844 return Legalized; 3845 } 3846 3847 LegalizerHelper::LegalizeResult 3848 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3849 LLT NarrowTy) { 3850 assert(TypeIdx == 0 && "only one type index expected"); 3851 3852 const unsigned Opc = MI.getOpcode(); 3853 const int NumOps = MI.getNumOperands() - 1; 3854 const Register DstReg = MI.getOperand(0).getReg(); 3855 const unsigned Flags = MI.getFlags(); 3856 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3857 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3858 3859 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3860 3861 // First of all check whether we are narrowing (changing the element type) 3862 // or reducing the vector elements 3863 const LLT DstTy = MRI.getType(DstReg); 3864 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3865 3866 SmallVector<Register, 8> ExtractedRegs[3]; 3867 SmallVector<Register, 8> Parts; 3868 3869 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3870 3871 // Break down all the sources into NarrowTy pieces we can operate on. This may 3872 // involve creating merges to a wider type, padded with undef. 3873 for (int I = 0; I != NumOps; ++I) { 3874 Register SrcReg = MI.getOperand(I + 1).getReg(); 3875 LLT SrcTy = MRI.getType(SrcReg); 3876 3877 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3878 // For fewerElements, this is a smaller vector with the same element type. 3879 LLT OpNarrowTy; 3880 if (IsNarrow) { 3881 OpNarrowTy = NarrowScalarTy; 3882 3883 // In case of narrowing, we need to cast vectors to scalars for this to 3884 // work properly 3885 // FIXME: Can we do without the bitcast here if we're narrowing? 3886 if (SrcTy.isVector()) { 3887 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3888 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3889 } 3890 } else { 3891 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3892 } 3893 3894 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3895 3896 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3897 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3898 TargetOpcode::G_ANYEXT); 3899 } 3900 3901 SmallVector<Register, 8> ResultRegs; 3902 3903 // Input operands for each sub-instruction. 3904 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3905 3906 int NumParts = ExtractedRegs[0].size(); 3907 const unsigned DstSize = DstTy.getSizeInBits(); 3908 const LLT DstScalarTy = LLT::scalar(DstSize); 3909 3910 // Narrowing needs to use scalar types 3911 LLT DstLCMTy, NarrowDstTy; 3912 if (IsNarrow) { 3913 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3914 NarrowDstTy = NarrowScalarTy; 3915 } else { 3916 DstLCMTy = getLCMType(DstTy, NarrowTy); 3917 NarrowDstTy = NarrowTy; 3918 } 3919 3920 // We widened the source registers to satisfy merge/unmerge size 3921 // constraints. We'll have some extra fully undef parts. 3922 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3923 3924 for (int I = 0; I != NumRealParts; ++I) { 3925 // Emit this instruction on each of the split pieces. 3926 for (int J = 0; J != NumOps; ++J) 3927 InputRegs[J] = ExtractedRegs[J][I]; 3928 3929 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3930 ResultRegs.push_back(Inst.getReg(0)); 3931 } 3932 3933 // Fill out the widened result with undef instead of creating instructions 3934 // with undef inputs. 3935 int NumUndefParts = NumParts - NumRealParts; 3936 if (NumUndefParts != 0) 3937 ResultRegs.append(NumUndefParts, 3938 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3939 3940 // Extract the possibly padded result. Use a scratch register if we need to do 3941 // a final bitcast, otherwise use the original result register. 3942 Register MergeDstReg; 3943 if (IsNarrow && DstTy.isVector()) 3944 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3945 else 3946 MergeDstReg = DstReg; 3947 3948 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3949 3950 // Recast to vector if we narrowed a vector 3951 if (IsNarrow && DstTy.isVector()) 3952 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3953 3954 MI.eraseFromParent(); 3955 return Legalized; 3956 } 3957 3958 LegalizerHelper::LegalizeResult 3959 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3960 LLT NarrowTy) { 3961 Register DstReg = MI.getOperand(0).getReg(); 3962 Register SrcReg = MI.getOperand(1).getReg(); 3963 int64_t Imm = MI.getOperand(2).getImm(); 3964 3965 LLT DstTy = MRI.getType(DstReg); 3966 3967 SmallVector<Register, 8> Parts; 3968 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3969 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3970 3971 for (Register &R : Parts) 3972 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3973 3974 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3975 3976 MI.eraseFromParent(); 3977 return Legalized; 3978 } 3979 3980 LegalizerHelper::LegalizeResult 3981 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3982 LLT NarrowTy) { 3983 using namespace TargetOpcode; 3984 3985 switch (MI.getOpcode()) { 3986 case G_IMPLICIT_DEF: 3987 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3988 case G_TRUNC: 3989 case G_AND: 3990 case G_OR: 3991 case G_XOR: 3992 case G_ADD: 3993 case G_SUB: 3994 case G_MUL: 3995 case G_PTR_ADD: 3996 case G_SMULH: 3997 case G_UMULH: 3998 case G_FADD: 3999 case G_FMUL: 4000 case G_FSUB: 4001 case G_FNEG: 4002 case G_FABS: 4003 case G_FCANONICALIZE: 4004 case G_FDIV: 4005 case G_FREM: 4006 case G_FMA: 4007 case G_FMAD: 4008 case G_FPOW: 4009 case G_FEXP: 4010 case G_FEXP2: 4011 case G_FLOG: 4012 case G_FLOG2: 4013 case G_FLOG10: 4014 case G_FNEARBYINT: 4015 case G_FCEIL: 4016 case G_FFLOOR: 4017 case G_FRINT: 4018 case G_INTRINSIC_ROUND: 4019 case G_INTRINSIC_ROUNDEVEN: 4020 case G_INTRINSIC_TRUNC: 4021 case G_FCOS: 4022 case G_FSIN: 4023 case G_FSQRT: 4024 case G_BSWAP: 4025 case G_BITREVERSE: 4026 case G_SDIV: 4027 case G_UDIV: 4028 case G_SREM: 4029 case G_UREM: 4030 case G_SMIN: 4031 case G_SMAX: 4032 case G_UMIN: 4033 case G_UMAX: 4034 case G_FMINNUM: 4035 case G_FMAXNUM: 4036 case G_FMINNUM_IEEE: 4037 case G_FMAXNUM_IEEE: 4038 case G_FMINIMUM: 4039 case G_FMAXIMUM: 4040 case G_FSHL: 4041 case G_FSHR: 4042 case G_FREEZE: 4043 case G_SADDSAT: 4044 case G_SSUBSAT: 4045 case G_UADDSAT: 4046 case G_USUBSAT: 4047 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4048 case G_SHL: 4049 case G_LSHR: 4050 case G_ASHR: 4051 case G_SSHLSAT: 4052 case G_USHLSAT: 4053 case G_CTLZ: 4054 case G_CTLZ_ZERO_UNDEF: 4055 case G_CTTZ: 4056 case G_CTTZ_ZERO_UNDEF: 4057 case G_CTPOP: 4058 case G_FCOPYSIGN: 4059 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4060 case G_ZEXT: 4061 case G_SEXT: 4062 case G_ANYEXT: 4063 case G_FPEXT: 4064 case G_FPTRUNC: 4065 case G_SITOFP: 4066 case G_UITOFP: 4067 case G_FPTOSI: 4068 case G_FPTOUI: 4069 case G_INTTOPTR: 4070 case G_PTRTOINT: 4071 case G_ADDRSPACE_CAST: 4072 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4073 case G_ICMP: 4074 case G_FCMP: 4075 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4076 case G_SELECT: 4077 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4078 case G_PHI: 4079 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4080 case G_UNMERGE_VALUES: 4081 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4082 case G_BUILD_VECTOR: 4083 assert(TypeIdx == 0 && "not a vector type index"); 4084 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4085 case G_CONCAT_VECTORS: 4086 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4087 return UnableToLegalize; 4088 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4089 case G_EXTRACT_VECTOR_ELT: 4090 case G_INSERT_VECTOR_ELT: 4091 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4092 case G_LOAD: 4093 case G_STORE: 4094 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4095 case G_SEXT_INREG: 4096 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4097 default: 4098 return UnableToLegalize; 4099 } 4100 } 4101 4102 LegalizerHelper::LegalizeResult 4103 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4104 const LLT HalfTy, const LLT AmtTy) { 4105 4106 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4107 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4108 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4109 4110 if (Amt.isNullValue()) { 4111 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4112 MI.eraseFromParent(); 4113 return Legalized; 4114 } 4115 4116 LLT NVT = HalfTy; 4117 unsigned NVTBits = HalfTy.getSizeInBits(); 4118 unsigned VTBits = 2 * NVTBits; 4119 4120 SrcOp Lo(Register(0)), Hi(Register(0)); 4121 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4122 if (Amt.ugt(VTBits)) { 4123 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4124 } else if (Amt.ugt(NVTBits)) { 4125 Lo = MIRBuilder.buildConstant(NVT, 0); 4126 Hi = MIRBuilder.buildShl(NVT, InL, 4127 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4128 } else if (Amt == NVTBits) { 4129 Lo = MIRBuilder.buildConstant(NVT, 0); 4130 Hi = InL; 4131 } else { 4132 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4133 auto OrLHS = 4134 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4135 auto OrRHS = MIRBuilder.buildLShr( 4136 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4137 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4138 } 4139 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4140 if (Amt.ugt(VTBits)) { 4141 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4142 } else if (Amt.ugt(NVTBits)) { 4143 Lo = MIRBuilder.buildLShr(NVT, InH, 4144 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4145 Hi = MIRBuilder.buildConstant(NVT, 0); 4146 } else if (Amt == NVTBits) { 4147 Lo = InH; 4148 Hi = MIRBuilder.buildConstant(NVT, 0); 4149 } else { 4150 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4151 4152 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4153 auto OrRHS = MIRBuilder.buildShl( 4154 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4155 4156 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4157 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4158 } 4159 } else { 4160 if (Amt.ugt(VTBits)) { 4161 Hi = Lo = MIRBuilder.buildAShr( 4162 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4163 } else if (Amt.ugt(NVTBits)) { 4164 Lo = MIRBuilder.buildAShr(NVT, InH, 4165 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4166 Hi = MIRBuilder.buildAShr(NVT, InH, 4167 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4168 } else if (Amt == NVTBits) { 4169 Lo = InH; 4170 Hi = MIRBuilder.buildAShr(NVT, InH, 4171 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4172 } else { 4173 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4174 4175 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4176 auto OrRHS = MIRBuilder.buildShl( 4177 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4178 4179 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4180 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4181 } 4182 } 4183 4184 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4185 MI.eraseFromParent(); 4186 4187 return Legalized; 4188 } 4189 4190 // TODO: Optimize if constant shift amount. 4191 LegalizerHelper::LegalizeResult 4192 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4193 LLT RequestedTy) { 4194 if (TypeIdx == 1) { 4195 Observer.changingInstr(MI); 4196 narrowScalarSrc(MI, RequestedTy, 2); 4197 Observer.changedInstr(MI); 4198 return Legalized; 4199 } 4200 4201 Register DstReg = MI.getOperand(0).getReg(); 4202 LLT DstTy = MRI.getType(DstReg); 4203 if (DstTy.isVector()) 4204 return UnableToLegalize; 4205 4206 Register Amt = MI.getOperand(2).getReg(); 4207 LLT ShiftAmtTy = MRI.getType(Amt); 4208 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4209 if (DstEltSize % 2 != 0) 4210 return UnableToLegalize; 4211 4212 // Ignore the input type. We can only go to exactly half the size of the 4213 // input. If that isn't small enough, the resulting pieces will be further 4214 // legalized. 4215 const unsigned NewBitSize = DstEltSize / 2; 4216 const LLT HalfTy = LLT::scalar(NewBitSize); 4217 const LLT CondTy = LLT::scalar(1); 4218 4219 if (const MachineInstr *KShiftAmt = 4220 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4221 return narrowScalarShiftByConstant( 4222 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4223 } 4224 4225 // TODO: Expand with known bits. 4226 4227 // Handle the fully general expansion by an unknown amount. 4228 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4229 4230 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4231 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4232 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4233 4234 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4235 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4236 4237 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4238 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4239 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4240 4241 Register ResultRegs[2]; 4242 switch (MI.getOpcode()) { 4243 case TargetOpcode::G_SHL: { 4244 // Short: ShAmt < NewBitSize 4245 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4246 4247 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4248 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4249 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4250 4251 // Long: ShAmt >= NewBitSize 4252 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4253 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4254 4255 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4256 auto Hi = MIRBuilder.buildSelect( 4257 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4258 4259 ResultRegs[0] = Lo.getReg(0); 4260 ResultRegs[1] = Hi.getReg(0); 4261 break; 4262 } 4263 case TargetOpcode::G_LSHR: 4264 case TargetOpcode::G_ASHR: { 4265 // Short: ShAmt < NewBitSize 4266 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4267 4268 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4269 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4270 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4271 4272 // Long: ShAmt >= NewBitSize 4273 MachineInstrBuilder HiL; 4274 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4275 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4276 } else { 4277 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4278 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4279 } 4280 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4281 {InH, AmtExcess}); // Lo from Hi part. 4282 4283 auto Lo = MIRBuilder.buildSelect( 4284 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4285 4286 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4287 4288 ResultRegs[0] = Lo.getReg(0); 4289 ResultRegs[1] = Hi.getReg(0); 4290 break; 4291 } 4292 default: 4293 llvm_unreachable("not a shift"); 4294 } 4295 4296 MIRBuilder.buildMerge(DstReg, ResultRegs); 4297 MI.eraseFromParent(); 4298 return Legalized; 4299 } 4300 4301 LegalizerHelper::LegalizeResult 4302 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4303 LLT MoreTy) { 4304 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4305 4306 Observer.changingInstr(MI); 4307 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4308 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4309 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4310 moreElementsVectorSrc(MI, MoreTy, I); 4311 } 4312 4313 MachineBasicBlock &MBB = *MI.getParent(); 4314 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4315 moreElementsVectorDst(MI, MoreTy, 0); 4316 Observer.changedInstr(MI); 4317 return Legalized; 4318 } 4319 4320 LegalizerHelper::LegalizeResult 4321 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4322 LLT MoreTy) { 4323 unsigned Opc = MI.getOpcode(); 4324 switch (Opc) { 4325 case TargetOpcode::G_IMPLICIT_DEF: 4326 case TargetOpcode::G_LOAD: { 4327 if (TypeIdx != 0) 4328 return UnableToLegalize; 4329 Observer.changingInstr(MI); 4330 moreElementsVectorDst(MI, MoreTy, 0); 4331 Observer.changedInstr(MI); 4332 return Legalized; 4333 } 4334 case TargetOpcode::G_STORE: 4335 if (TypeIdx != 0) 4336 return UnableToLegalize; 4337 Observer.changingInstr(MI); 4338 moreElementsVectorSrc(MI, MoreTy, 0); 4339 Observer.changedInstr(MI); 4340 return Legalized; 4341 case TargetOpcode::G_AND: 4342 case TargetOpcode::G_OR: 4343 case TargetOpcode::G_XOR: 4344 case TargetOpcode::G_SMIN: 4345 case TargetOpcode::G_SMAX: 4346 case TargetOpcode::G_UMIN: 4347 case TargetOpcode::G_UMAX: 4348 case TargetOpcode::G_FMINNUM: 4349 case TargetOpcode::G_FMAXNUM: 4350 case TargetOpcode::G_FMINNUM_IEEE: 4351 case TargetOpcode::G_FMAXNUM_IEEE: 4352 case TargetOpcode::G_FMINIMUM: 4353 case TargetOpcode::G_FMAXIMUM: { 4354 Observer.changingInstr(MI); 4355 moreElementsVectorSrc(MI, MoreTy, 1); 4356 moreElementsVectorSrc(MI, MoreTy, 2); 4357 moreElementsVectorDst(MI, MoreTy, 0); 4358 Observer.changedInstr(MI); 4359 return Legalized; 4360 } 4361 case TargetOpcode::G_EXTRACT: 4362 if (TypeIdx != 1) 4363 return UnableToLegalize; 4364 Observer.changingInstr(MI); 4365 moreElementsVectorSrc(MI, MoreTy, 1); 4366 Observer.changedInstr(MI); 4367 return Legalized; 4368 case TargetOpcode::G_INSERT: 4369 case TargetOpcode::G_FREEZE: 4370 if (TypeIdx != 0) 4371 return UnableToLegalize; 4372 Observer.changingInstr(MI); 4373 moreElementsVectorSrc(MI, MoreTy, 1); 4374 moreElementsVectorDst(MI, MoreTy, 0); 4375 Observer.changedInstr(MI); 4376 return Legalized; 4377 case TargetOpcode::G_SELECT: 4378 if (TypeIdx != 0) 4379 return UnableToLegalize; 4380 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4381 return UnableToLegalize; 4382 4383 Observer.changingInstr(MI); 4384 moreElementsVectorSrc(MI, MoreTy, 2); 4385 moreElementsVectorSrc(MI, MoreTy, 3); 4386 moreElementsVectorDst(MI, MoreTy, 0); 4387 Observer.changedInstr(MI); 4388 return Legalized; 4389 case TargetOpcode::G_UNMERGE_VALUES: { 4390 if (TypeIdx != 1) 4391 return UnableToLegalize; 4392 4393 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4394 int NumDst = MI.getNumOperands() - 1; 4395 moreElementsVectorSrc(MI, MoreTy, NumDst); 4396 4397 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4398 for (int I = 0; I != NumDst; ++I) 4399 MIB.addDef(MI.getOperand(I).getReg()); 4400 4401 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4402 for (int I = NumDst; I != NewNumDst; ++I) 4403 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4404 4405 MIB.addUse(MI.getOperand(NumDst).getReg()); 4406 MI.eraseFromParent(); 4407 return Legalized; 4408 } 4409 case TargetOpcode::G_PHI: 4410 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4411 default: 4412 return UnableToLegalize; 4413 } 4414 } 4415 4416 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4417 ArrayRef<Register> Src1Regs, 4418 ArrayRef<Register> Src2Regs, 4419 LLT NarrowTy) { 4420 MachineIRBuilder &B = MIRBuilder; 4421 unsigned SrcParts = Src1Regs.size(); 4422 unsigned DstParts = DstRegs.size(); 4423 4424 unsigned DstIdx = 0; // Low bits of the result. 4425 Register FactorSum = 4426 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4427 DstRegs[DstIdx] = FactorSum; 4428 4429 unsigned CarrySumPrevDstIdx; 4430 SmallVector<Register, 4> Factors; 4431 4432 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4433 // Collect low parts of muls for DstIdx. 4434 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4435 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4436 MachineInstrBuilder Mul = 4437 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4438 Factors.push_back(Mul.getReg(0)); 4439 } 4440 // Collect high parts of muls from previous DstIdx. 4441 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4442 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4443 MachineInstrBuilder Umulh = 4444 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4445 Factors.push_back(Umulh.getReg(0)); 4446 } 4447 // Add CarrySum from additions calculated for previous DstIdx. 4448 if (DstIdx != 1) { 4449 Factors.push_back(CarrySumPrevDstIdx); 4450 } 4451 4452 Register CarrySum; 4453 // Add all factors and accumulate all carries into CarrySum. 4454 if (DstIdx != DstParts - 1) { 4455 MachineInstrBuilder Uaddo = 4456 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4457 FactorSum = Uaddo.getReg(0); 4458 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4459 for (unsigned i = 2; i < Factors.size(); ++i) { 4460 MachineInstrBuilder Uaddo = 4461 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4462 FactorSum = Uaddo.getReg(0); 4463 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4464 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4465 } 4466 } else { 4467 // Since value for the next index is not calculated, neither is CarrySum. 4468 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4469 for (unsigned i = 2; i < Factors.size(); ++i) 4470 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4471 } 4472 4473 CarrySumPrevDstIdx = CarrySum; 4474 DstRegs[DstIdx] = FactorSum; 4475 Factors.clear(); 4476 } 4477 } 4478 4479 LegalizerHelper::LegalizeResult 4480 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4481 Register DstReg = MI.getOperand(0).getReg(); 4482 Register Src1 = MI.getOperand(1).getReg(); 4483 Register Src2 = MI.getOperand(2).getReg(); 4484 4485 LLT Ty = MRI.getType(DstReg); 4486 if (Ty.isVector()) 4487 return UnableToLegalize; 4488 4489 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4490 unsigned DstSize = Ty.getSizeInBits(); 4491 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4492 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4493 return UnableToLegalize; 4494 4495 unsigned NumDstParts = DstSize / NarrowSize; 4496 unsigned NumSrcParts = SrcSize / NarrowSize; 4497 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4498 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4499 4500 SmallVector<Register, 2> Src1Parts, Src2Parts; 4501 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4502 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4503 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4504 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4505 4506 // Take only high half of registers if this is high mul. 4507 ArrayRef<Register> DstRegs( 4508 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4509 MIRBuilder.buildMerge(DstReg, DstRegs); 4510 MI.eraseFromParent(); 4511 return Legalized; 4512 } 4513 4514 LegalizerHelper::LegalizeResult 4515 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4516 LLT NarrowTy) { 4517 if (TypeIdx != 1) 4518 return UnableToLegalize; 4519 4520 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4521 4522 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4523 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4524 // NarrowSize. 4525 if (SizeOp1 % NarrowSize != 0) 4526 return UnableToLegalize; 4527 int NumParts = SizeOp1 / NarrowSize; 4528 4529 SmallVector<Register, 2> SrcRegs, DstRegs; 4530 SmallVector<uint64_t, 2> Indexes; 4531 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4532 4533 Register OpReg = MI.getOperand(0).getReg(); 4534 uint64_t OpStart = MI.getOperand(2).getImm(); 4535 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4536 for (int i = 0; i < NumParts; ++i) { 4537 unsigned SrcStart = i * NarrowSize; 4538 4539 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4540 // No part of the extract uses this subregister, ignore it. 4541 continue; 4542 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4543 // The entire subregister is extracted, forward the value. 4544 DstRegs.push_back(SrcRegs[i]); 4545 continue; 4546 } 4547 4548 // OpSegStart is where this destination segment would start in OpReg if it 4549 // extended infinitely in both directions. 4550 int64_t ExtractOffset; 4551 uint64_t SegSize; 4552 if (OpStart < SrcStart) { 4553 ExtractOffset = 0; 4554 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4555 } else { 4556 ExtractOffset = OpStart - SrcStart; 4557 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4558 } 4559 4560 Register SegReg = SrcRegs[i]; 4561 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4562 // A genuine extract is needed. 4563 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4564 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4565 } 4566 4567 DstRegs.push_back(SegReg); 4568 } 4569 4570 Register DstReg = MI.getOperand(0).getReg(); 4571 if (MRI.getType(DstReg).isVector()) 4572 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4573 else if (DstRegs.size() > 1) 4574 MIRBuilder.buildMerge(DstReg, DstRegs); 4575 else 4576 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4577 MI.eraseFromParent(); 4578 return Legalized; 4579 } 4580 4581 LegalizerHelper::LegalizeResult 4582 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4583 LLT NarrowTy) { 4584 // FIXME: Don't know how to handle secondary types yet. 4585 if (TypeIdx != 0) 4586 return UnableToLegalize; 4587 4588 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4589 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4590 4591 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4592 // NarrowSize. 4593 if (SizeOp0 % NarrowSize != 0) 4594 return UnableToLegalize; 4595 4596 int NumParts = SizeOp0 / NarrowSize; 4597 4598 SmallVector<Register, 2> SrcRegs, DstRegs; 4599 SmallVector<uint64_t, 2> Indexes; 4600 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4601 4602 Register OpReg = MI.getOperand(2).getReg(); 4603 uint64_t OpStart = MI.getOperand(3).getImm(); 4604 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4605 for (int i = 0; i < NumParts; ++i) { 4606 unsigned DstStart = i * NarrowSize; 4607 4608 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4609 // No part of the insert affects this subregister, forward the original. 4610 DstRegs.push_back(SrcRegs[i]); 4611 continue; 4612 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4613 // The entire subregister is defined by this insert, forward the new 4614 // value. 4615 DstRegs.push_back(OpReg); 4616 continue; 4617 } 4618 4619 // OpSegStart is where this destination segment would start in OpReg if it 4620 // extended infinitely in both directions. 4621 int64_t ExtractOffset, InsertOffset; 4622 uint64_t SegSize; 4623 if (OpStart < DstStart) { 4624 InsertOffset = 0; 4625 ExtractOffset = DstStart - OpStart; 4626 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4627 } else { 4628 InsertOffset = OpStart - DstStart; 4629 ExtractOffset = 0; 4630 SegSize = 4631 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4632 } 4633 4634 Register SegReg = OpReg; 4635 if (ExtractOffset != 0 || SegSize != OpSize) { 4636 // A genuine extract is needed. 4637 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4638 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4639 } 4640 4641 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4642 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4643 DstRegs.push_back(DstReg); 4644 } 4645 4646 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4647 Register DstReg = MI.getOperand(0).getReg(); 4648 if(MRI.getType(DstReg).isVector()) 4649 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4650 else 4651 MIRBuilder.buildMerge(DstReg, DstRegs); 4652 MI.eraseFromParent(); 4653 return Legalized; 4654 } 4655 4656 LegalizerHelper::LegalizeResult 4657 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4658 LLT NarrowTy) { 4659 Register DstReg = MI.getOperand(0).getReg(); 4660 LLT DstTy = MRI.getType(DstReg); 4661 4662 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4663 4664 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4665 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4666 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4667 LLT LeftoverTy; 4668 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4669 Src0Regs, Src0LeftoverRegs)) 4670 return UnableToLegalize; 4671 4672 LLT Unused; 4673 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4674 Src1Regs, Src1LeftoverRegs)) 4675 llvm_unreachable("inconsistent extractParts result"); 4676 4677 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4678 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4679 {Src0Regs[I], Src1Regs[I]}); 4680 DstRegs.push_back(Inst.getReg(0)); 4681 } 4682 4683 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4684 auto Inst = MIRBuilder.buildInstr( 4685 MI.getOpcode(), 4686 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4687 DstLeftoverRegs.push_back(Inst.getReg(0)); 4688 } 4689 4690 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4691 LeftoverTy, DstLeftoverRegs); 4692 4693 MI.eraseFromParent(); 4694 return Legalized; 4695 } 4696 4697 LegalizerHelper::LegalizeResult 4698 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4699 LLT NarrowTy) { 4700 if (TypeIdx != 0) 4701 return UnableToLegalize; 4702 4703 Register DstReg = MI.getOperand(0).getReg(); 4704 Register SrcReg = MI.getOperand(1).getReg(); 4705 4706 LLT DstTy = MRI.getType(DstReg); 4707 if (DstTy.isVector()) 4708 return UnableToLegalize; 4709 4710 SmallVector<Register, 8> Parts; 4711 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4712 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4713 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4714 4715 MI.eraseFromParent(); 4716 return Legalized; 4717 } 4718 4719 LegalizerHelper::LegalizeResult 4720 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4721 LLT NarrowTy) { 4722 if (TypeIdx != 0) 4723 return UnableToLegalize; 4724 4725 Register CondReg = MI.getOperand(1).getReg(); 4726 LLT CondTy = MRI.getType(CondReg); 4727 if (CondTy.isVector()) // TODO: Handle vselect 4728 return UnableToLegalize; 4729 4730 Register DstReg = MI.getOperand(0).getReg(); 4731 LLT DstTy = MRI.getType(DstReg); 4732 4733 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4734 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4735 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4736 LLT LeftoverTy; 4737 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4738 Src1Regs, Src1LeftoverRegs)) 4739 return UnableToLegalize; 4740 4741 LLT Unused; 4742 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4743 Src2Regs, Src2LeftoverRegs)) 4744 llvm_unreachable("inconsistent extractParts result"); 4745 4746 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4747 auto Select = MIRBuilder.buildSelect(NarrowTy, 4748 CondReg, Src1Regs[I], Src2Regs[I]); 4749 DstRegs.push_back(Select.getReg(0)); 4750 } 4751 4752 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4753 auto Select = MIRBuilder.buildSelect( 4754 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4755 DstLeftoverRegs.push_back(Select.getReg(0)); 4756 } 4757 4758 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4759 LeftoverTy, DstLeftoverRegs); 4760 4761 MI.eraseFromParent(); 4762 return Legalized; 4763 } 4764 4765 LegalizerHelper::LegalizeResult 4766 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4767 LLT NarrowTy) { 4768 if (TypeIdx != 1) 4769 return UnableToLegalize; 4770 4771 Register DstReg = MI.getOperand(0).getReg(); 4772 Register SrcReg = MI.getOperand(1).getReg(); 4773 LLT DstTy = MRI.getType(DstReg); 4774 LLT SrcTy = MRI.getType(SrcReg); 4775 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4776 4777 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4778 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4779 4780 MachineIRBuilder &B = MIRBuilder; 4781 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4782 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4783 auto C_0 = B.buildConstant(NarrowTy, 0); 4784 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4785 UnmergeSrc.getReg(1), C_0); 4786 auto LoCTLZ = IsUndef ? 4787 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4788 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4789 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4790 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4791 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4792 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4793 4794 MI.eraseFromParent(); 4795 return Legalized; 4796 } 4797 4798 return UnableToLegalize; 4799 } 4800 4801 LegalizerHelper::LegalizeResult 4802 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4803 LLT NarrowTy) { 4804 if (TypeIdx != 1) 4805 return UnableToLegalize; 4806 4807 Register DstReg = MI.getOperand(0).getReg(); 4808 Register SrcReg = MI.getOperand(1).getReg(); 4809 LLT DstTy = MRI.getType(DstReg); 4810 LLT SrcTy = MRI.getType(SrcReg); 4811 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4812 4813 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4814 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4815 4816 MachineIRBuilder &B = MIRBuilder; 4817 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4818 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4819 auto C_0 = B.buildConstant(NarrowTy, 0); 4820 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4821 UnmergeSrc.getReg(0), C_0); 4822 auto HiCTTZ = IsUndef ? 4823 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4824 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4825 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4826 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4827 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4828 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4829 4830 MI.eraseFromParent(); 4831 return Legalized; 4832 } 4833 4834 return UnableToLegalize; 4835 } 4836 4837 LegalizerHelper::LegalizeResult 4838 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4839 LLT NarrowTy) { 4840 if (TypeIdx != 1) 4841 return UnableToLegalize; 4842 4843 Register DstReg = MI.getOperand(0).getReg(); 4844 LLT DstTy = MRI.getType(DstReg); 4845 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4846 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4847 4848 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4849 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4850 4851 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4852 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4853 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4854 4855 MI.eraseFromParent(); 4856 return Legalized; 4857 } 4858 4859 return UnableToLegalize; 4860 } 4861 4862 LegalizerHelper::LegalizeResult 4863 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4864 unsigned Opc = MI.getOpcode(); 4865 const auto &TII = MIRBuilder.getTII(); 4866 auto isSupported = [this](const LegalityQuery &Q) { 4867 auto QAction = LI.getAction(Q).Action; 4868 return QAction == Legal || QAction == Libcall || QAction == Custom; 4869 }; 4870 switch (Opc) { 4871 default: 4872 return UnableToLegalize; 4873 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4874 // This trivially expands to CTLZ. 4875 Observer.changingInstr(MI); 4876 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4877 Observer.changedInstr(MI); 4878 return Legalized; 4879 } 4880 case TargetOpcode::G_CTLZ: { 4881 Register DstReg = MI.getOperand(0).getReg(); 4882 Register SrcReg = MI.getOperand(1).getReg(); 4883 LLT DstTy = MRI.getType(DstReg); 4884 LLT SrcTy = MRI.getType(SrcReg); 4885 unsigned Len = SrcTy.getSizeInBits(); 4886 4887 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4888 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4889 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4890 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4891 auto ICmp = MIRBuilder.buildICmp( 4892 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4893 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4894 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4895 MI.eraseFromParent(); 4896 return Legalized; 4897 } 4898 // for now, we do this: 4899 // NewLen = NextPowerOf2(Len); 4900 // x = x | (x >> 1); 4901 // x = x | (x >> 2); 4902 // ... 4903 // x = x | (x >>16); 4904 // x = x | (x >>32); // for 64-bit input 4905 // Upto NewLen/2 4906 // return Len - popcount(x); 4907 // 4908 // Ref: "Hacker's Delight" by Henry Warren 4909 Register Op = SrcReg; 4910 unsigned NewLen = PowerOf2Ceil(Len); 4911 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4912 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4913 auto MIBOp = MIRBuilder.buildOr( 4914 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4915 Op = MIBOp.getReg(0); 4916 } 4917 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4918 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4919 MIBPop); 4920 MI.eraseFromParent(); 4921 return Legalized; 4922 } 4923 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4924 // This trivially expands to CTTZ. 4925 Observer.changingInstr(MI); 4926 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4927 Observer.changedInstr(MI); 4928 return Legalized; 4929 } 4930 case TargetOpcode::G_CTTZ: { 4931 Register DstReg = MI.getOperand(0).getReg(); 4932 Register SrcReg = MI.getOperand(1).getReg(); 4933 LLT DstTy = MRI.getType(DstReg); 4934 LLT SrcTy = MRI.getType(SrcReg); 4935 4936 unsigned Len = SrcTy.getSizeInBits(); 4937 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4938 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4939 // zero. 4940 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4941 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4942 auto ICmp = MIRBuilder.buildICmp( 4943 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4944 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4945 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4946 MI.eraseFromParent(); 4947 return Legalized; 4948 } 4949 // for now, we use: { return popcount(~x & (x - 1)); } 4950 // unless the target has ctlz but not ctpop, in which case we use: 4951 // { return 32 - nlz(~x & (x-1)); } 4952 // Ref: "Hacker's Delight" by Henry Warren 4953 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4954 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4955 auto MIBTmp = MIRBuilder.buildAnd( 4956 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4957 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4958 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4959 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4960 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4961 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4962 MI.eraseFromParent(); 4963 return Legalized; 4964 } 4965 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4966 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4967 return Legalized; 4968 } 4969 case TargetOpcode::G_CTPOP: { 4970 Register SrcReg = MI.getOperand(1).getReg(); 4971 LLT Ty = MRI.getType(SrcReg); 4972 unsigned Size = Ty.getSizeInBits(); 4973 MachineIRBuilder &B = MIRBuilder; 4974 4975 // Count set bits in blocks of 2 bits. Default approach would be 4976 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4977 // We use following formula instead: 4978 // B2Count = val - { (val >> 1) & 0x55555555 } 4979 // since it gives same result in blocks of 2 with one instruction less. 4980 auto C_1 = B.buildConstant(Ty, 1); 4981 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4982 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4983 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4984 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4985 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4986 4987 // In order to get count in blocks of 4 add values from adjacent block of 2. 4988 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4989 auto C_2 = B.buildConstant(Ty, 2); 4990 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4991 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4992 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4993 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4994 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4995 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4996 4997 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4998 // addition since count value sits in range {0,...,8} and 4 bits are enough 4999 // to hold such binary values. After addition high 4 bits still hold count 5000 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5001 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5002 auto C_4 = B.buildConstant(Ty, 4); 5003 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5004 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5005 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5006 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5007 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5008 5009 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5010 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5011 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5012 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5013 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5014 5015 // Shift count result from 8 high bits to low bits. 5016 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5017 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5018 5019 MI.eraseFromParent(); 5020 return Legalized; 5021 } 5022 } 5023 } 5024 5025 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5026 // representation. 5027 LegalizerHelper::LegalizeResult 5028 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5029 Register Dst = MI.getOperand(0).getReg(); 5030 Register Src = MI.getOperand(1).getReg(); 5031 const LLT S64 = LLT::scalar(64); 5032 const LLT S32 = LLT::scalar(32); 5033 const LLT S1 = LLT::scalar(1); 5034 5035 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5036 5037 // unsigned cul2f(ulong u) { 5038 // uint lz = clz(u); 5039 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5040 // u = (u << lz) & 0x7fffffffffffffffUL; 5041 // ulong t = u & 0xffffffffffUL; 5042 // uint v = (e << 23) | (uint)(u >> 40); 5043 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5044 // return as_float(v + r); 5045 // } 5046 5047 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5048 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5049 5050 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5051 5052 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5053 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5054 5055 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5056 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5057 5058 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5059 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5060 5061 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5062 5063 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5064 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5065 5066 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5067 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5068 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5069 5070 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5071 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5072 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5073 auto One = MIRBuilder.buildConstant(S32, 1); 5074 5075 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5076 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5077 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5078 MIRBuilder.buildAdd(Dst, V, R); 5079 5080 MI.eraseFromParent(); 5081 return Legalized; 5082 } 5083 5084 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5085 Register Dst = MI.getOperand(0).getReg(); 5086 Register Src = MI.getOperand(1).getReg(); 5087 LLT DstTy = MRI.getType(Dst); 5088 LLT SrcTy = MRI.getType(Src); 5089 5090 if (SrcTy == LLT::scalar(1)) { 5091 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5092 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5093 MIRBuilder.buildSelect(Dst, Src, True, False); 5094 MI.eraseFromParent(); 5095 return Legalized; 5096 } 5097 5098 if (SrcTy != LLT::scalar(64)) 5099 return UnableToLegalize; 5100 5101 if (DstTy == LLT::scalar(32)) { 5102 // TODO: SelectionDAG has several alternative expansions to port which may 5103 // be more reasonble depending on the available instructions. If a target 5104 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5105 // intermediate type, this is probably worse. 5106 return lowerU64ToF32BitOps(MI); 5107 } 5108 5109 return UnableToLegalize; 5110 } 5111 5112 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5113 Register Dst = MI.getOperand(0).getReg(); 5114 Register Src = MI.getOperand(1).getReg(); 5115 LLT DstTy = MRI.getType(Dst); 5116 LLT SrcTy = MRI.getType(Src); 5117 5118 const LLT S64 = LLT::scalar(64); 5119 const LLT S32 = LLT::scalar(32); 5120 const LLT S1 = LLT::scalar(1); 5121 5122 if (SrcTy == S1) { 5123 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5124 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5125 MIRBuilder.buildSelect(Dst, Src, True, False); 5126 MI.eraseFromParent(); 5127 return Legalized; 5128 } 5129 5130 if (SrcTy != S64) 5131 return UnableToLegalize; 5132 5133 if (DstTy == S32) { 5134 // signed cl2f(long l) { 5135 // long s = l >> 63; 5136 // float r = cul2f((l + s) ^ s); 5137 // return s ? -r : r; 5138 // } 5139 Register L = Src; 5140 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5141 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5142 5143 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5144 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5145 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5146 5147 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5148 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5149 MIRBuilder.buildConstant(S64, 0)); 5150 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5151 MI.eraseFromParent(); 5152 return Legalized; 5153 } 5154 5155 return UnableToLegalize; 5156 } 5157 5158 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5159 Register Dst = MI.getOperand(0).getReg(); 5160 Register Src = MI.getOperand(1).getReg(); 5161 LLT DstTy = MRI.getType(Dst); 5162 LLT SrcTy = MRI.getType(Src); 5163 const LLT S64 = LLT::scalar(64); 5164 const LLT S32 = LLT::scalar(32); 5165 5166 if (SrcTy != S64 && SrcTy != S32) 5167 return UnableToLegalize; 5168 if (DstTy != S32 && DstTy != S64) 5169 return UnableToLegalize; 5170 5171 // FPTOSI gives same result as FPTOUI for positive signed integers. 5172 // FPTOUI needs to deal with fp values that convert to unsigned integers 5173 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5174 5175 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5176 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5177 : APFloat::IEEEdouble(), 5178 APInt::getNullValue(SrcTy.getSizeInBits())); 5179 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5180 5181 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5182 5183 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5184 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5185 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5186 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5187 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5188 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5189 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5190 5191 const LLT S1 = LLT::scalar(1); 5192 5193 MachineInstrBuilder FCMP = 5194 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5195 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5196 5197 MI.eraseFromParent(); 5198 return Legalized; 5199 } 5200 5201 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5202 Register Dst = MI.getOperand(0).getReg(); 5203 Register Src = MI.getOperand(1).getReg(); 5204 LLT DstTy = MRI.getType(Dst); 5205 LLT SrcTy = MRI.getType(Src); 5206 const LLT S64 = LLT::scalar(64); 5207 const LLT S32 = LLT::scalar(32); 5208 5209 // FIXME: Only f32 to i64 conversions are supported. 5210 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5211 return UnableToLegalize; 5212 5213 // Expand f32 -> i64 conversion 5214 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5215 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5216 5217 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5218 5219 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5220 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5221 5222 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5223 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5224 5225 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5226 APInt::getSignMask(SrcEltBits)); 5227 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5228 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5229 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5230 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5231 5232 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5233 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5234 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5235 5236 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5237 R = MIRBuilder.buildZExt(DstTy, R); 5238 5239 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5240 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5241 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5242 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5243 5244 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5245 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5246 5247 const LLT S1 = LLT::scalar(1); 5248 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5249 S1, Exponent, ExponentLoBit); 5250 5251 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5252 5253 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5254 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5255 5256 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5257 5258 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5259 S1, Exponent, ZeroSrcTy); 5260 5261 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5262 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5263 5264 MI.eraseFromParent(); 5265 return Legalized; 5266 } 5267 5268 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5269 LegalizerHelper::LegalizeResult 5270 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5271 Register Dst = MI.getOperand(0).getReg(); 5272 Register Src = MI.getOperand(1).getReg(); 5273 5274 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5275 return UnableToLegalize; 5276 5277 const unsigned ExpMask = 0x7ff; 5278 const unsigned ExpBiasf64 = 1023; 5279 const unsigned ExpBiasf16 = 15; 5280 const LLT S32 = LLT::scalar(32); 5281 const LLT S1 = LLT::scalar(1); 5282 5283 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5284 Register U = Unmerge.getReg(0); 5285 Register UH = Unmerge.getReg(1); 5286 5287 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5288 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5289 5290 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5291 // add the f16 bias (15) to get the biased exponent for the f16 format. 5292 E = MIRBuilder.buildAdd( 5293 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5294 5295 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5296 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5297 5298 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5299 MIRBuilder.buildConstant(S32, 0x1ff)); 5300 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5301 5302 auto Zero = MIRBuilder.buildConstant(S32, 0); 5303 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5304 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5305 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5306 5307 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5308 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5309 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5310 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5311 5312 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5313 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5314 5315 // N = M | (E << 12); 5316 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5317 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5318 5319 // B = clamp(1-E, 0, 13); 5320 auto One = MIRBuilder.buildConstant(S32, 1); 5321 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5322 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5323 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5324 5325 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5326 MIRBuilder.buildConstant(S32, 0x1000)); 5327 5328 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5329 auto D0 = MIRBuilder.buildShl(S32, D, B); 5330 5331 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5332 D0, SigSetHigh); 5333 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5334 D = MIRBuilder.buildOr(S32, D, D1); 5335 5336 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5337 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5338 5339 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5340 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5341 5342 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5343 MIRBuilder.buildConstant(S32, 3)); 5344 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5345 5346 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5347 MIRBuilder.buildConstant(S32, 5)); 5348 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5349 5350 V1 = MIRBuilder.buildOr(S32, V0, V1); 5351 V = MIRBuilder.buildAdd(S32, V, V1); 5352 5353 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5354 E, MIRBuilder.buildConstant(S32, 30)); 5355 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5356 MIRBuilder.buildConstant(S32, 0x7c00), V); 5357 5358 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5359 E, MIRBuilder.buildConstant(S32, 1039)); 5360 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5361 5362 // Extract the sign bit. 5363 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5364 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5365 5366 // Insert the sign bit 5367 V = MIRBuilder.buildOr(S32, Sign, V); 5368 5369 MIRBuilder.buildTrunc(Dst, V); 5370 MI.eraseFromParent(); 5371 return Legalized; 5372 } 5373 5374 LegalizerHelper::LegalizeResult 5375 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5376 Register Dst = MI.getOperand(0).getReg(); 5377 Register Src = MI.getOperand(1).getReg(); 5378 5379 LLT DstTy = MRI.getType(Dst); 5380 LLT SrcTy = MRI.getType(Src); 5381 const LLT S64 = LLT::scalar(64); 5382 const LLT S16 = LLT::scalar(16); 5383 5384 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5385 return lowerFPTRUNC_F64_TO_F16(MI); 5386 5387 return UnableToLegalize; 5388 } 5389 5390 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5391 // multiplication tree. 5392 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5393 Register Dst = MI.getOperand(0).getReg(); 5394 Register Src0 = MI.getOperand(1).getReg(); 5395 Register Src1 = MI.getOperand(2).getReg(); 5396 LLT Ty = MRI.getType(Dst); 5397 5398 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5399 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5400 MI.eraseFromParent(); 5401 return Legalized; 5402 } 5403 5404 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5405 switch (Opc) { 5406 case TargetOpcode::G_SMIN: 5407 return CmpInst::ICMP_SLT; 5408 case TargetOpcode::G_SMAX: 5409 return CmpInst::ICMP_SGT; 5410 case TargetOpcode::G_UMIN: 5411 return CmpInst::ICMP_ULT; 5412 case TargetOpcode::G_UMAX: 5413 return CmpInst::ICMP_UGT; 5414 default: 5415 llvm_unreachable("not in integer min/max"); 5416 } 5417 } 5418 5419 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5420 Register Dst = MI.getOperand(0).getReg(); 5421 Register Src0 = MI.getOperand(1).getReg(); 5422 Register Src1 = MI.getOperand(2).getReg(); 5423 5424 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5425 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5426 5427 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5428 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5429 5430 MI.eraseFromParent(); 5431 return Legalized; 5432 } 5433 5434 LegalizerHelper::LegalizeResult 5435 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5436 Register Dst = MI.getOperand(0).getReg(); 5437 Register Src0 = MI.getOperand(1).getReg(); 5438 Register Src1 = MI.getOperand(2).getReg(); 5439 5440 const LLT Src0Ty = MRI.getType(Src0); 5441 const LLT Src1Ty = MRI.getType(Src1); 5442 5443 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5444 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5445 5446 auto SignBitMask = MIRBuilder.buildConstant( 5447 Src0Ty, APInt::getSignMask(Src0Size)); 5448 5449 auto NotSignBitMask = MIRBuilder.buildConstant( 5450 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5451 5452 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 5453 Register And1; 5454 if (Src0Ty == Src1Ty) { 5455 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 5456 } else if (Src0Size > Src1Size) { 5457 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5458 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5459 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5460 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 5461 } else { 5462 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5463 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5464 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5465 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 5466 } 5467 5468 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5469 // constants are a nan and -0.0, but the final result should preserve 5470 // everything. 5471 unsigned Flags = MI.getFlags(); 5472 MIRBuilder.buildOr(Dst, And0, And1, Flags); 5473 5474 MI.eraseFromParent(); 5475 return Legalized; 5476 } 5477 5478 LegalizerHelper::LegalizeResult 5479 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5480 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5481 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5482 5483 Register Dst = MI.getOperand(0).getReg(); 5484 Register Src0 = MI.getOperand(1).getReg(); 5485 Register Src1 = MI.getOperand(2).getReg(); 5486 LLT Ty = MRI.getType(Dst); 5487 5488 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5489 // Insert canonicalizes if it's possible we need to quiet to get correct 5490 // sNaN behavior. 5491 5492 // Note this must be done here, and not as an optimization combine in the 5493 // absence of a dedicate quiet-snan instruction as we're using an 5494 // omni-purpose G_FCANONICALIZE. 5495 if (!isKnownNeverSNaN(Src0, MRI)) 5496 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5497 5498 if (!isKnownNeverSNaN(Src1, MRI)) 5499 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5500 } 5501 5502 // If there are no nans, it's safe to simply replace this with the non-IEEE 5503 // version. 5504 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5505 MI.eraseFromParent(); 5506 return Legalized; 5507 } 5508 5509 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5510 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5511 Register DstReg = MI.getOperand(0).getReg(); 5512 LLT Ty = MRI.getType(DstReg); 5513 unsigned Flags = MI.getFlags(); 5514 5515 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5516 Flags); 5517 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5518 MI.eraseFromParent(); 5519 return Legalized; 5520 } 5521 5522 LegalizerHelper::LegalizeResult 5523 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5524 Register DstReg = MI.getOperand(0).getReg(); 5525 Register X = MI.getOperand(1).getReg(); 5526 const unsigned Flags = MI.getFlags(); 5527 const LLT Ty = MRI.getType(DstReg); 5528 const LLT CondTy = Ty.changeElementSize(1); 5529 5530 // round(x) => 5531 // t = trunc(x); 5532 // d = fabs(x - t); 5533 // o = copysign(1.0f, x); 5534 // return t + (d >= 0.5 ? o : 0.0); 5535 5536 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5537 5538 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5539 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5540 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5541 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5542 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5543 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5544 5545 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5546 Flags); 5547 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5548 5549 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5550 5551 MI.eraseFromParent(); 5552 return Legalized; 5553 } 5554 5555 LegalizerHelper::LegalizeResult 5556 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5557 Register DstReg = MI.getOperand(0).getReg(); 5558 Register SrcReg = MI.getOperand(1).getReg(); 5559 unsigned Flags = MI.getFlags(); 5560 LLT Ty = MRI.getType(DstReg); 5561 const LLT CondTy = Ty.changeElementSize(1); 5562 5563 // result = trunc(src); 5564 // if (src < 0.0 && src != result) 5565 // result += -1.0. 5566 5567 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5568 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5569 5570 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5571 SrcReg, Zero, Flags); 5572 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5573 SrcReg, Trunc, Flags); 5574 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5575 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5576 5577 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5578 MI.eraseFromParent(); 5579 return Legalized; 5580 } 5581 5582 LegalizerHelper::LegalizeResult 5583 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5584 const unsigned NumOps = MI.getNumOperands(); 5585 Register DstReg = MI.getOperand(0).getReg(); 5586 Register Src0Reg = MI.getOperand(1).getReg(); 5587 LLT DstTy = MRI.getType(DstReg); 5588 LLT SrcTy = MRI.getType(Src0Reg); 5589 unsigned PartSize = SrcTy.getSizeInBits(); 5590 5591 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5592 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5593 5594 for (unsigned I = 2; I != NumOps; ++I) { 5595 const unsigned Offset = (I - 1) * PartSize; 5596 5597 Register SrcReg = MI.getOperand(I).getReg(); 5598 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5599 5600 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5601 MRI.createGenericVirtualRegister(WideTy); 5602 5603 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5604 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5605 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5606 ResultReg = NextResult; 5607 } 5608 5609 if (DstTy.isPointer()) { 5610 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5611 DstTy.getAddressSpace())) { 5612 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5613 return UnableToLegalize; 5614 } 5615 5616 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5617 } 5618 5619 MI.eraseFromParent(); 5620 return Legalized; 5621 } 5622 5623 LegalizerHelper::LegalizeResult 5624 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5625 const unsigned NumDst = MI.getNumOperands() - 1; 5626 Register SrcReg = MI.getOperand(NumDst).getReg(); 5627 Register Dst0Reg = MI.getOperand(0).getReg(); 5628 LLT DstTy = MRI.getType(Dst0Reg); 5629 if (DstTy.isPointer()) 5630 return UnableToLegalize; // TODO 5631 5632 SrcReg = coerceToScalar(SrcReg); 5633 if (!SrcReg) 5634 return UnableToLegalize; 5635 5636 // Expand scalarizing unmerge as bitcast to integer and shift. 5637 LLT IntTy = MRI.getType(SrcReg); 5638 5639 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5640 5641 const unsigned DstSize = DstTy.getSizeInBits(); 5642 unsigned Offset = DstSize; 5643 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5644 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5645 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5646 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5647 } 5648 5649 MI.eraseFromParent(); 5650 return Legalized; 5651 } 5652 5653 /// Lower a vector extract or insert by writing the vector to a stack temporary 5654 /// and reloading the element or vector. 5655 /// 5656 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5657 /// => 5658 /// %stack_temp = G_FRAME_INDEX 5659 /// G_STORE %vec, %stack_temp 5660 /// %idx = clamp(%idx, %vec.getNumElements()) 5661 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5662 /// %dst = G_LOAD %element_ptr 5663 LegalizerHelper::LegalizeResult 5664 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5665 Register DstReg = MI.getOperand(0).getReg(); 5666 Register SrcVec = MI.getOperand(1).getReg(); 5667 Register InsertVal; 5668 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5669 InsertVal = MI.getOperand(2).getReg(); 5670 5671 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5672 5673 LLT VecTy = MRI.getType(SrcVec); 5674 LLT EltTy = VecTy.getElementType(); 5675 if (!EltTy.isByteSized()) { // Not implemented. 5676 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5677 return UnableToLegalize; 5678 } 5679 5680 unsigned EltBytes = EltTy.getSizeInBytes(); 5681 Align VecAlign = getStackTemporaryAlignment(VecTy); 5682 Align EltAlign; 5683 5684 MachinePointerInfo PtrInfo; 5685 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5686 VecAlign, PtrInfo); 5687 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5688 5689 // Get the pointer to the element, and be sure not to hit undefined behavior 5690 // if the index is out of bounds. 5691 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5692 5693 int64_t IdxVal; 5694 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5695 int64_t Offset = IdxVal * EltBytes; 5696 PtrInfo = PtrInfo.getWithOffset(Offset); 5697 EltAlign = commonAlignment(VecAlign, Offset); 5698 } else { 5699 // We lose information with a variable offset. 5700 EltAlign = getStackTemporaryAlignment(EltTy); 5701 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5702 } 5703 5704 if (InsertVal) { 5705 // Write the inserted element 5706 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5707 5708 // Reload the whole vector. 5709 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5710 } else { 5711 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5712 } 5713 5714 MI.eraseFromParent(); 5715 return Legalized; 5716 } 5717 5718 LegalizerHelper::LegalizeResult 5719 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5720 Register DstReg = MI.getOperand(0).getReg(); 5721 Register Src0Reg = MI.getOperand(1).getReg(); 5722 Register Src1Reg = MI.getOperand(2).getReg(); 5723 LLT Src0Ty = MRI.getType(Src0Reg); 5724 LLT DstTy = MRI.getType(DstReg); 5725 LLT IdxTy = LLT::scalar(32); 5726 5727 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5728 5729 if (DstTy.isScalar()) { 5730 if (Src0Ty.isVector()) 5731 return UnableToLegalize; 5732 5733 // This is just a SELECT. 5734 assert(Mask.size() == 1 && "Expected a single mask element"); 5735 Register Val; 5736 if (Mask[0] < 0 || Mask[0] > 1) 5737 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5738 else 5739 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5740 MIRBuilder.buildCopy(DstReg, Val); 5741 MI.eraseFromParent(); 5742 return Legalized; 5743 } 5744 5745 Register Undef; 5746 SmallVector<Register, 32> BuildVec; 5747 LLT EltTy = DstTy.getElementType(); 5748 5749 for (int Idx : Mask) { 5750 if (Idx < 0) { 5751 if (!Undef.isValid()) 5752 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5753 BuildVec.push_back(Undef); 5754 continue; 5755 } 5756 5757 if (Src0Ty.isScalar()) { 5758 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5759 } else { 5760 int NumElts = Src0Ty.getNumElements(); 5761 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5762 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5763 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5764 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5765 BuildVec.push_back(Extract.getReg(0)); 5766 } 5767 } 5768 5769 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5770 MI.eraseFromParent(); 5771 return Legalized; 5772 } 5773 5774 LegalizerHelper::LegalizeResult 5775 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5776 const auto &MF = *MI.getMF(); 5777 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5778 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5779 return UnableToLegalize; 5780 5781 Register Dst = MI.getOperand(0).getReg(); 5782 Register AllocSize = MI.getOperand(1).getReg(); 5783 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5784 5785 LLT PtrTy = MRI.getType(Dst); 5786 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5787 5788 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5789 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5790 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5791 5792 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5793 // have to generate an extra instruction to negate the alloc and then use 5794 // G_PTR_ADD to add the negative offset. 5795 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5796 if (Alignment > Align(1)) { 5797 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5798 AlignMask.negate(); 5799 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5800 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5801 } 5802 5803 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5804 MIRBuilder.buildCopy(SPReg, SPTmp); 5805 MIRBuilder.buildCopy(Dst, SPTmp); 5806 5807 MI.eraseFromParent(); 5808 return Legalized; 5809 } 5810 5811 LegalizerHelper::LegalizeResult 5812 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5813 Register Dst = MI.getOperand(0).getReg(); 5814 Register Src = MI.getOperand(1).getReg(); 5815 unsigned Offset = MI.getOperand(2).getImm(); 5816 5817 LLT DstTy = MRI.getType(Dst); 5818 LLT SrcTy = MRI.getType(Src); 5819 5820 if (DstTy.isScalar() && 5821 (SrcTy.isScalar() || 5822 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5823 LLT SrcIntTy = SrcTy; 5824 if (!SrcTy.isScalar()) { 5825 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5826 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5827 } 5828 5829 if (Offset == 0) 5830 MIRBuilder.buildTrunc(Dst, Src); 5831 else { 5832 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5833 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5834 MIRBuilder.buildTrunc(Dst, Shr); 5835 } 5836 5837 MI.eraseFromParent(); 5838 return Legalized; 5839 } 5840 5841 return UnableToLegalize; 5842 } 5843 5844 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5845 Register Dst = MI.getOperand(0).getReg(); 5846 Register Src = MI.getOperand(1).getReg(); 5847 Register InsertSrc = MI.getOperand(2).getReg(); 5848 uint64_t Offset = MI.getOperand(3).getImm(); 5849 5850 LLT DstTy = MRI.getType(Src); 5851 LLT InsertTy = MRI.getType(InsertSrc); 5852 5853 if (InsertTy.isVector() || 5854 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5855 return UnableToLegalize; 5856 5857 const DataLayout &DL = MIRBuilder.getDataLayout(); 5858 if ((DstTy.isPointer() && 5859 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5860 (InsertTy.isPointer() && 5861 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5862 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5863 return UnableToLegalize; 5864 } 5865 5866 LLT IntDstTy = DstTy; 5867 5868 if (!DstTy.isScalar()) { 5869 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5870 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5871 } 5872 5873 if (!InsertTy.isScalar()) { 5874 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5875 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5876 } 5877 5878 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5879 if (Offset != 0) { 5880 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5881 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5882 } 5883 5884 APInt MaskVal = APInt::getBitsSetWithWrap( 5885 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5886 5887 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5888 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5889 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5890 5891 MIRBuilder.buildCast(Dst, Or); 5892 MI.eraseFromParent(); 5893 return Legalized; 5894 } 5895 5896 LegalizerHelper::LegalizeResult 5897 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5898 Register Dst0 = MI.getOperand(0).getReg(); 5899 Register Dst1 = MI.getOperand(1).getReg(); 5900 Register LHS = MI.getOperand(2).getReg(); 5901 Register RHS = MI.getOperand(3).getReg(); 5902 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5903 5904 LLT Ty = MRI.getType(Dst0); 5905 LLT BoolTy = MRI.getType(Dst1); 5906 5907 if (IsAdd) 5908 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5909 else 5910 MIRBuilder.buildSub(Dst0, LHS, RHS); 5911 5912 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5913 5914 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5915 5916 // For an addition, the result should be less than one of the operands (LHS) 5917 // if and only if the other operand (RHS) is negative, otherwise there will 5918 // be overflow. 5919 // For a subtraction, the result should be less than one of the operands 5920 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5921 // otherwise there will be overflow. 5922 auto ResultLowerThanLHS = 5923 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5924 auto ConditionRHS = MIRBuilder.buildICmp( 5925 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5926 5927 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5928 MI.eraseFromParent(); 5929 return Legalized; 5930 } 5931 5932 LegalizerHelper::LegalizeResult 5933 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5934 Register Res = MI.getOperand(0).getReg(); 5935 Register LHS = MI.getOperand(1).getReg(); 5936 Register RHS = MI.getOperand(2).getReg(); 5937 LLT Ty = MRI.getType(Res); 5938 bool IsSigned; 5939 bool IsAdd; 5940 unsigned BaseOp; 5941 switch (MI.getOpcode()) { 5942 default: 5943 llvm_unreachable("unexpected addsat/subsat opcode"); 5944 case TargetOpcode::G_UADDSAT: 5945 IsSigned = false; 5946 IsAdd = true; 5947 BaseOp = TargetOpcode::G_ADD; 5948 break; 5949 case TargetOpcode::G_SADDSAT: 5950 IsSigned = true; 5951 IsAdd = true; 5952 BaseOp = TargetOpcode::G_ADD; 5953 break; 5954 case TargetOpcode::G_USUBSAT: 5955 IsSigned = false; 5956 IsAdd = false; 5957 BaseOp = TargetOpcode::G_SUB; 5958 break; 5959 case TargetOpcode::G_SSUBSAT: 5960 IsSigned = true; 5961 IsAdd = false; 5962 BaseOp = TargetOpcode::G_SUB; 5963 break; 5964 } 5965 5966 if (IsSigned) { 5967 // sadd.sat(a, b) -> 5968 // hi = 0x7fffffff - smax(a, 0) 5969 // lo = 0x80000000 - smin(a, 0) 5970 // a + smin(smax(lo, b), hi) 5971 // ssub.sat(a, b) -> 5972 // lo = smax(a, -1) - 0x7fffffff 5973 // hi = smin(a, -1) - 0x80000000 5974 // a - smin(smax(lo, b), hi) 5975 // TODO: AMDGPU can use a "median of 3" instruction here: 5976 // a +/- med3(lo, b, hi) 5977 uint64_t NumBits = Ty.getScalarSizeInBits(); 5978 auto MaxVal = 5979 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5980 auto MinVal = 5981 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5982 MachineInstrBuilder Hi, Lo; 5983 if (IsAdd) { 5984 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5985 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5986 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5987 } else { 5988 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5989 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5990 MaxVal); 5991 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5992 MinVal); 5993 } 5994 auto RHSClamped = 5995 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5996 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5997 } else { 5998 // uadd.sat(a, b) -> a + umin(~a, b) 5999 // usub.sat(a, b) -> a - umin(a, b) 6000 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6001 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6002 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6003 } 6004 6005 MI.eraseFromParent(); 6006 return Legalized; 6007 } 6008 6009 LegalizerHelper::LegalizeResult 6010 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6011 Register Res = MI.getOperand(0).getReg(); 6012 Register LHS = MI.getOperand(1).getReg(); 6013 Register RHS = MI.getOperand(2).getReg(); 6014 LLT Ty = MRI.getType(Res); 6015 LLT BoolTy = Ty.changeElementSize(1); 6016 bool IsSigned; 6017 bool IsAdd; 6018 unsigned OverflowOp; 6019 switch (MI.getOpcode()) { 6020 default: 6021 llvm_unreachable("unexpected addsat/subsat opcode"); 6022 case TargetOpcode::G_UADDSAT: 6023 IsSigned = false; 6024 IsAdd = true; 6025 OverflowOp = TargetOpcode::G_UADDO; 6026 break; 6027 case TargetOpcode::G_SADDSAT: 6028 IsSigned = true; 6029 IsAdd = true; 6030 OverflowOp = TargetOpcode::G_SADDO; 6031 break; 6032 case TargetOpcode::G_USUBSAT: 6033 IsSigned = false; 6034 IsAdd = false; 6035 OverflowOp = TargetOpcode::G_USUBO; 6036 break; 6037 case TargetOpcode::G_SSUBSAT: 6038 IsSigned = true; 6039 IsAdd = false; 6040 OverflowOp = TargetOpcode::G_SSUBO; 6041 break; 6042 } 6043 6044 auto OverflowRes = 6045 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6046 Register Tmp = OverflowRes.getReg(0); 6047 Register Ov = OverflowRes.getReg(1); 6048 MachineInstrBuilder Clamp; 6049 if (IsSigned) { 6050 // sadd.sat(a, b) -> 6051 // {tmp, ov} = saddo(a, b) 6052 // ov ? (tmp >>s 31) + 0x80000000 : r 6053 // ssub.sat(a, b) -> 6054 // {tmp, ov} = ssubo(a, b) 6055 // ov ? (tmp >>s 31) + 0x80000000 : r 6056 uint64_t NumBits = Ty.getScalarSizeInBits(); 6057 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6058 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6059 auto MinVal = 6060 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6061 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6062 } else { 6063 // uadd.sat(a, b) -> 6064 // {tmp, ov} = uaddo(a, b) 6065 // ov ? 0xffffffff : tmp 6066 // usub.sat(a, b) -> 6067 // {tmp, ov} = usubo(a, b) 6068 // ov ? 0 : tmp 6069 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6070 } 6071 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6072 6073 MI.eraseFromParent(); 6074 return Legalized; 6075 } 6076 6077 LegalizerHelper::LegalizeResult 6078 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6079 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6080 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6081 "Expected shlsat opcode!"); 6082 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6083 Register Res = MI.getOperand(0).getReg(); 6084 Register LHS = MI.getOperand(1).getReg(); 6085 Register RHS = MI.getOperand(2).getReg(); 6086 LLT Ty = MRI.getType(Res); 6087 LLT BoolTy = Ty.changeElementSize(1); 6088 6089 unsigned BW = Ty.getScalarSizeInBits(); 6090 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6091 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6092 : MIRBuilder.buildLShr(Ty, Result, RHS); 6093 6094 MachineInstrBuilder SatVal; 6095 if (IsSigned) { 6096 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6097 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6098 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6099 MIRBuilder.buildConstant(Ty, 0)); 6100 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6101 } else { 6102 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6103 } 6104 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6105 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6106 6107 MI.eraseFromParent(); 6108 return Legalized; 6109 } 6110 6111 LegalizerHelper::LegalizeResult 6112 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6113 Register Dst = MI.getOperand(0).getReg(); 6114 Register Src = MI.getOperand(1).getReg(); 6115 const LLT Ty = MRI.getType(Src); 6116 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6117 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6118 6119 // Swap most and least significant byte, set remaining bytes in Res to zero. 6120 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6121 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6122 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6123 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6124 6125 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6126 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6127 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6128 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6129 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6130 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6131 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6132 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6133 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6134 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6135 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6136 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6137 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6138 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6139 } 6140 Res.getInstr()->getOperand(0).setReg(Dst); 6141 6142 MI.eraseFromParent(); 6143 return Legalized; 6144 } 6145 6146 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6147 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6148 MachineInstrBuilder Src, APInt Mask) { 6149 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6150 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6151 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6152 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6153 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6154 return B.buildOr(Dst, LHS, RHS); 6155 } 6156 6157 LegalizerHelper::LegalizeResult 6158 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6159 Register Dst = MI.getOperand(0).getReg(); 6160 Register Src = MI.getOperand(1).getReg(); 6161 const LLT Ty = MRI.getType(Src); 6162 unsigned Size = Ty.getSizeInBits(); 6163 6164 MachineInstrBuilder BSWAP = 6165 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6166 6167 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6168 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6169 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6170 MachineInstrBuilder Swap4 = 6171 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6172 6173 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6174 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6175 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6176 MachineInstrBuilder Swap2 = 6177 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6178 6179 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6180 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6181 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6182 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6183 6184 MI.eraseFromParent(); 6185 return Legalized; 6186 } 6187 6188 LegalizerHelper::LegalizeResult 6189 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6190 MachineFunction &MF = MIRBuilder.getMF(); 6191 6192 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6193 int NameOpIdx = IsRead ? 1 : 0; 6194 int ValRegIndex = IsRead ? 0 : 1; 6195 6196 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6197 const LLT Ty = MRI.getType(ValReg); 6198 const MDString *RegStr = cast<MDString>( 6199 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6200 6201 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6202 if (!PhysReg.isValid()) 6203 return UnableToLegalize; 6204 6205 if (IsRead) 6206 MIRBuilder.buildCopy(ValReg, PhysReg); 6207 else 6208 MIRBuilder.buildCopy(PhysReg, ValReg); 6209 6210 MI.eraseFromParent(); 6211 return Legalized; 6212 } 6213 6214 LegalizerHelper::LegalizeResult 6215 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6216 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6217 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6218 Register Result = MI.getOperand(0).getReg(); 6219 LLT OrigTy = MRI.getType(Result); 6220 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6221 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6222 6223 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6224 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6225 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6226 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6227 6228 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6229 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6230 MIRBuilder.buildTrunc(Result, Shifted); 6231 6232 MI.eraseFromParent(); 6233 return Legalized; 6234 } 6235 6236 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6237 // Implement vector G_SELECT in terms of XOR, AND, OR. 6238 Register DstReg = MI.getOperand(0).getReg(); 6239 Register MaskReg = MI.getOperand(1).getReg(); 6240 Register Op1Reg = MI.getOperand(2).getReg(); 6241 Register Op2Reg = MI.getOperand(3).getReg(); 6242 LLT DstTy = MRI.getType(DstReg); 6243 LLT MaskTy = MRI.getType(MaskReg); 6244 LLT Op1Ty = MRI.getType(Op1Reg); 6245 if (!DstTy.isVector()) 6246 return UnableToLegalize; 6247 6248 // Vector selects can have a scalar predicate. If so, splat into a vector and 6249 // finish for later legalization attempts to try again. 6250 if (MaskTy.isScalar()) { 6251 Register MaskElt = MaskReg; 6252 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6253 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6254 // Generate a vector splat idiom to be pattern matched later. 6255 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6256 Observer.changingInstr(MI); 6257 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6258 Observer.changedInstr(MI); 6259 return Legalized; 6260 } 6261 6262 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6263 return UnableToLegalize; 6264 } 6265 6266 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6267 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6268 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6269 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6270 MI.eraseFromParent(); 6271 return Legalized; 6272 } 6273