1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     unsigned NumParts = SizeOp0 / NarrowSize;
1067     SmallVector<Register, 2> DstRegs(NumParts);
1068     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1069     Observer.changingInstr(MI);
1070     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1071       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1072       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1073       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1074                    SrcRegs[i / 2]);
1075     }
1076     MachineBasicBlock &MBB = *MI.getParent();
1077     MIRBuilder.setInsertPt(MBB, MI);
1078     for (unsigned i = 0; i < NumParts; ++i) {
1079       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1080       MachineInstrBuilder MIB =
1081           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1082       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1083         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1084     }
1085     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1086     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1087     Observer.changedInstr(MI);
1088     MI.eraseFromParent();
1089     return Legalized;
1090   }
1091   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1092   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1093     if (TypeIdx != 2)
1094       return UnableToLegalize;
1095 
1096     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1097     Observer.changingInstr(MI);
1098     narrowScalarSrc(MI, NarrowTy, OpIdx);
1099     Observer.changedInstr(MI);
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_ICMP: {
1103     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1104     if (NarrowSize * 2 != SrcSize)
1105       return UnableToLegalize;
1106 
1107     Observer.changingInstr(MI);
1108     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1109     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1110     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1111 
1112     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1113     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1114     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1115 
1116     CmpInst::Predicate Pred =
1117         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1118     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1119 
1120     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1121       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1122       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1123       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1124       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1125       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1126     } else {
1127       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpHEQ =
1129           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1130       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1131           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1132       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1133     }
1134     Observer.changedInstr(MI);
1135     MI.eraseFromParent();
1136     return Legalized;
1137   }
1138   case TargetOpcode::G_SEXT_INREG: {
1139     if (TypeIdx != 0)
1140       return UnableToLegalize;
1141 
1142     int64_t SizeInBits = MI.getOperand(2).getImm();
1143 
1144     // So long as the new type has more bits than the bits we're extending we
1145     // don't need to break it apart.
1146     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1147       Observer.changingInstr(MI);
1148       // We don't lose any non-extension bits by truncating the src and
1149       // sign-extending the dst.
1150       MachineOperand &MO1 = MI.getOperand(1);
1151       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1152       MO1.setReg(TruncMIB.getReg(0));
1153 
1154       MachineOperand &MO2 = MI.getOperand(0);
1155       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1156       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1157       MIRBuilder.buildSExt(MO2, DstExt);
1158       MO2.setReg(DstExt);
1159       Observer.changedInstr(MI);
1160       return Legalized;
1161     }
1162 
1163     // Break it apart. Components below the extension point are unmodified. The
1164     // component containing the extension point becomes a narrower SEXT_INREG.
1165     // Components above it are ashr'd from the component containing the
1166     // extension point.
1167     if (SizeOp0 % NarrowSize != 0)
1168       return UnableToLegalize;
1169     int NumParts = SizeOp0 / NarrowSize;
1170 
1171     // List the registers where the destination will be scattered.
1172     SmallVector<Register, 2> DstRegs;
1173     // List the registers where the source will be split.
1174     SmallVector<Register, 2> SrcRegs;
1175 
1176     // Create all the temporary registers.
1177     for (int i = 0; i < NumParts; ++i) {
1178       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1179 
1180       SrcRegs.push_back(SrcReg);
1181     }
1182 
1183     // Explode the big arguments into smaller chunks.
1184     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1185 
1186     Register AshrCstReg =
1187         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1188             .getReg(0);
1189     Register FullExtensionReg = 0;
1190     Register PartialExtensionReg = 0;
1191 
1192     // Do the operation on each small part.
1193     for (int i = 0; i < NumParts; ++i) {
1194       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1195         DstRegs.push_back(SrcRegs[i]);
1196       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1197         assert(PartialExtensionReg &&
1198                "Expected to visit partial extension before full");
1199         if (FullExtensionReg) {
1200           DstRegs.push_back(FullExtensionReg);
1201           continue;
1202         }
1203         DstRegs.push_back(
1204             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1205                 .getReg(0));
1206         FullExtensionReg = DstRegs.back();
1207       } else {
1208         DstRegs.push_back(
1209             MIRBuilder
1210                 .buildInstr(
1211                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1212                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1213                 .getReg(0));
1214         PartialExtensionReg = DstRegs.back();
1215       }
1216     }
1217 
1218     // Gather the destination registers into the final destination.
1219     Register DstReg = MI.getOperand(0).getReg();
1220     MIRBuilder.buildMerge(DstReg, DstRegs);
1221     MI.eraseFromParent();
1222     return Legalized;
1223   }
1224   case TargetOpcode::G_BSWAP:
1225   case TargetOpcode::G_BITREVERSE: {
1226     if (SizeOp0 % NarrowSize != 0)
1227       return UnableToLegalize;
1228 
1229     Observer.changingInstr(MI);
1230     SmallVector<Register, 2> SrcRegs, DstRegs;
1231     unsigned NumParts = SizeOp0 / NarrowSize;
1232     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1233 
1234     for (unsigned i = 0; i < NumParts; ++i) {
1235       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1236                                            {SrcRegs[NumParts - 1 - i]});
1237       DstRegs.push_back(DstPart.getReg(0));
1238     }
1239 
1240     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1241 
1242     Observer.changedInstr(MI);
1243     MI.eraseFromParent();
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_PTR_ADD:
1247   case TargetOpcode::G_PTRMASK: {
1248     if (TypeIdx != 1)
1249       return UnableToLegalize;
1250     Observer.changingInstr(MI);
1251     narrowScalarSrc(MI, NarrowTy, 2);
1252     Observer.changedInstr(MI);
1253     return Legalized;
1254   }
1255   case TargetOpcode::G_FPTOUI: {
1256     if (TypeIdx != 0)
1257       return UnableToLegalize;
1258     Observer.changingInstr(MI);
1259     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1260     Observer.changedInstr(MI);
1261     return Legalized;
1262   }
1263   case TargetOpcode::G_FPTOSI: {
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271   case TargetOpcode::G_FPEXT:
1272     if (TypeIdx != 0)
1273       return UnableToLegalize;
1274     Observer.changingInstr(MI);
1275     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1276     Observer.changedInstr(MI);
1277     return Legalized;
1278   }
1279 }
1280 
1281 Register LegalizerHelper::coerceToScalar(Register Val) {
1282   LLT Ty = MRI.getType(Val);
1283   if (Ty.isScalar())
1284     return Val;
1285 
1286   const DataLayout &DL = MIRBuilder.getDataLayout();
1287   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1288   if (Ty.isPointer()) {
1289     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1290       return Register();
1291     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1292   }
1293 
1294   Register NewVal = Val;
1295 
1296   assert(Ty.isVector());
1297   LLT EltTy = Ty.getElementType();
1298   if (EltTy.isPointer())
1299     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1300   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1301 }
1302 
1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1304                                      unsigned OpIdx, unsigned ExtOpcode) {
1305   MachineOperand &MO = MI.getOperand(OpIdx);
1306   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1307   MO.setReg(ExtB.getReg(0));
1308 }
1309 
1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1311                                       unsigned OpIdx) {
1312   MachineOperand &MO = MI.getOperand(OpIdx);
1313   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1314   MO.setReg(ExtB.getReg(0));
1315 }
1316 
1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1318                                      unsigned OpIdx, unsigned TruncOpcode) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1323   MO.setReg(DstExt);
1324 }
1325 
1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1327                                       unsigned OpIdx, unsigned ExtOpcode) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1332   MO.setReg(DstTrunc);
1333 }
1334 
1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1336                                             unsigned OpIdx) {
1337   MachineOperand &MO = MI.getOperand(OpIdx);
1338   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1339   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1340 }
1341 
1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1343                                             unsigned OpIdx) {
1344   MachineOperand &MO = MI.getOperand(OpIdx);
1345 
1346   LLT OldTy = MRI.getType(MO.getReg());
1347   unsigned OldElts = OldTy.getNumElements();
1348   unsigned NewElts = MoreTy.getNumElements();
1349 
1350   unsigned NumParts = NewElts / OldElts;
1351 
1352   // Use concat_vectors if the result is a multiple of the number of elements.
1353   if (NumParts * OldElts == NewElts) {
1354     SmallVector<Register, 8> Parts;
1355     Parts.push_back(MO.getReg());
1356 
1357     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1358     for (unsigned I = 1; I != NumParts; ++I)
1359       Parts.push_back(ImpDef);
1360 
1361     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1362     MO.setReg(Concat.getReg(0));
1363     return;
1364   }
1365 
1366   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1367   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1368   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1369   MO.setReg(MoreReg);
1370 }
1371 
1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1373   MachineOperand &Op = MI.getOperand(OpIdx);
1374   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1375 }
1376 
1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1378   MachineOperand &MO = MI.getOperand(OpIdx);
1379   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1380   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1381   MIRBuilder.buildBitcast(MO, CastDst);
1382   MO.setReg(CastDst);
1383 }
1384 
1385 LegalizerHelper::LegalizeResult
1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1387                                         LLT WideTy) {
1388   if (TypeIdx != 1)
1389     return UnableToLegalize;
1390 
1391   Register DstReg = MI.getOperand(0).getReg();
1392   LLT DstTy = MRI.getType(DstReg);
1393   if (DstTy.isVector())
1394     return UnableToLegalize;
1395 
1396   Register Src1 = MI.getOperand(1).getReg();
1397   LLT SrcTy = MRI.getType(Src1);
1398   const int DstSize = DstTy.getSizeInBits();
1399   const int SrcSize = SrcTy.getSizeInBits();
1400   const int WideSize = WideTy.getSizeInBits();
1401   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1402 
1403   unsigned NumOps = MI.getNumOperands();
1404   unsigned NumSrc = MI.getNumOperands() - 1;
1405   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1406 
1407   if (WideSize >= DstSize) {
1408     // Directly pack the bits in the target type.
1409     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1410 
1411     for (unsigned I = 2; I != NumOps; ++I) {
1412       const unsigned Offset = (I - 1) * PartSize;
1413 
1414       Register SrcReg = MI.getOperand(I).getReg();
1415       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1416 
1417       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1418 
1419       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1420         MRI.createGenericVirtualRegister(WideTy);
1421 
1422       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1423       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1424       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1425       ResultReg = NextResult;
1426     }
1427 
1428     if (WideSize > DstSize)
1429       MIRBuilder.buildTrunc(DstReg, ResultReg);
1430     else if (DstTy.isPointer())
1431       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1432 
1433     MI.eraseFromParent();
1434     return Legalized;
1435   }
1436 
1437   // Unmerge the original values to the GCD type, and recombine to the next
1438   // multiple greater than the original type.
1439   //
1440   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1441   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1442   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1443   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1444   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1445   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1446   // %12:_(s12) = G_MERGE_VALUES %10, %11
1447   //
1448   // Padding with undef if necessary:
1449   //
1450   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1451   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1452   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1453   // %7:_(s2) = G_IMPLICIT_DEF
1454   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1455   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1456   // %10:_(s12) = G_MERGE_VALUES %8, %9
1457 
1458   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1459   LLT GCDTy = LLT::scalar(GCD);
1460 
1461   SmallVector<Register, 8> Parts;
1462   SmallVector<Register, 8> NewMergeRegs;
1463   SmallVector<Register, 8> Unmerges;
1464   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1465 
1466   // Decompose the original operands if they don't evenly divide.
1467   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1468     Register SrcReg = MI.getOperand(I).getReg();
1469     if (GCD == SrcSize) {
1470       Unmerges.push_back(SrcReg);
1471     } else {
1472       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1473       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1474         Unmerges.push_back(Unmerge.getReg(J));
1475     }
1476   }
1477 
1478   // Pad with undef to the next size that is a multiple of the requested size.
1479   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1480     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1481     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1482       Unmerges.push_back(UndefReg);
1483   }
1484 
1485   const int PartsPerGCD = WideSize / GCD;
1486 
1487   // Build merges of each piece.
1488   ArrayRef<Register> Slicer(Unmerges);
1489   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1490     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1491     NewMergeRegs.push_back(Merge.getReg(0));
1492   }
1493 
1494   // A truncate may be necessary if the requested type doesn't evenly divide the
1495   // original result type.
1496   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1497     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1498   } else {
1499     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1500     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1501   }
1502 
1503   MI.eraseFromParent();
1504   return Legalized;
1505 }
1506 
1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1508   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1509   LLT OrigTy = MRI.getType(OrigReg);
1510   LLT LCMTy = getLCMType(WideTy, OrigTy);
1511 
1512   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1513   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1514 
1515   Register UnmergeSrc = WideReg;
1516 
1517   // Create a merge to the LCM type, padding with undef
1518   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1519   // =>
1520   // %1:_(<4 x s32>) = G_FOO
1521   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1522   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1523   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1524   if (NumMergeParts > 1) {
1525     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1526     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1527     MergeParts[0] = WideReg;
1528     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1529   }
1530 
1531   // Unmerge to the original register and pad with dead defs.
1532   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1533   UnmergeResults[0] = OrigReg;
1534   for (int I = 1; I != NumUnmergeParts; ++I)
1535     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1536 
1537   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1538   return WideReg;
1539 }
1540 
1541 LegalizerHelper::LegalizeResult
1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1543                                           LLT WideTy) {
1544   if (TypeIdx != 0)
1545     return UnableToLegalize;
1546 
1547   int NumDst = MI.getNumOperands() - 1;
1548   Register SrcReg = MI.getOperand(NumDst).getReg();
1549   LLT SrcTy = MRI.getType(SrcReg);
1550   if (SrcTy.isVector())
1551     return UnableToLegalize;
1552 
1553   Register Dst0Reg = MI.getOperand(0).getReg();
1554   LLT DstTy = MRI.getType(Dst0Reg);
1555   if (!DstTy.isScalar())
1556     return UnableToLegalize;
1557 
1558   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1559     if (SrcTy.isPointer()) {
1560       const DataLayout &DL = MIRBuilder.getDataLayout();
1561       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1562         LLVM_DEBUG(
1563             dbgs() << "Not casting non-integral address space integer\n");
1564         return UnableToLegalize;
1565       }
1566 
1567       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1568       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Widen SrcTy to WideTy. This does not affect the result, but since the
1572     // user requested this size, it is probably better handled than SrcTy and
1573     // should reduce the total number of legalization artifacts
1574     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1575       SrcTy = WideTy;
1576       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1577     }
1578 
1579     // Theres no unmerge type to target. Directly extract the bits from the
1580     // source type
1581     unsigned DstSize = DstTy.getSizeInBits();
1582 
1583     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1584     for (int I = 1; I != NumDst; ++I) {
1585       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1586       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1587       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1588     }
1589 
1590     MI.eraseFromParent();
1591     return Legalized;
1592   }
1593 
1594   // Extend the source to a wider type.
1595   LLT LCMTy = getLCMType(SrcTy, WideTy);
1596 
1597   Register WideSrc = SrcReg;
1598   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1599     // TODO: If this is an integral address space, cast to integer and anyext.
1600     if (SrcTy.isPointer()) {
1601       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1602       return UnableToLegalize;
1603     }
1604 
1605     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1606   }
1607 
1608   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1609 
1610   // Create a sequence of unmerges and merges to the original results. Since we
1611   // may have widened the source, we will need to pad the results with dead defs
1612   // to cover the source register.
1613   // e.g. widen s48 to s64:
1614   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1615   //
1616   // =>
1617   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1618   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1619   //  ; unpack to GCD type, with extra dead defs
1620   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1621   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1622   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1623   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1624   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1625   const LLT GCDTy = getGCDType(WideTy, DstTy);
1626   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1627   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1628 
1629   // Directly unmerge to the destination without going through a GCD type
1630   // if possible
1631   if (PartsPerRemerge == 1) {
1632     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1633 
1634     for (int I = 0; I != NumUnmerge; ++I) {
1635       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1636 
1637       for (int J = 0; J != PartsPerUnmerge; ++J) {
1638         int Idx = I * PartsPerUnmerge + J;
1639         if (Idx < NumDst)
1640           MIB.addDef(MI.getOperand(Idx).getReg());
1641         else {
1642           // Create dead def for excess components.
1643           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1644         }
1645       }
1646 
1647       MIB.addUse(Unmerge.getReg(I));
1648     }
1649   } else {
1650     SmallVector<Register, 16> Parts;
1651     for (int J = 0; J != NumUnmerge; ++J)
1652       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1653 
1654     SmallVector<Register, 8> RemergeParts;
1655     for (int I = 0; I != NumDst; ++I) {
1656       for (int J = 0; J < PartsPerRemerge; ++J) {
1657         const int Idx = I * PartsPerRemerge + J;
1658         RemergeParts.emplace_back(Parts[Idx]);
1659       }
1660 
1661       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1662       RemergeParts.clear();
1663     }
1664   }
1665 
1666   MI.eraseFromParent();
1667   return Legalized;
1668 }
1669 
1670 LegalizerHelper::LegalizeResult
1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1672                                     LLT WideTy) {
1673   Register DstReg = MI.getOperand(0).getReg();
1674   Register SrcReg = MI.getOperand(1).getReg();
1675   LLT SrcTy = MRI.getType(SrcReg);
1676 
1677   LLT DstTy = MRI.getType(DstReg);
1678   unsigned Offset = MI.getOperand(2).getImm();
1679 
1680   if (TypeIdx == 0) {
1681     if (SrcTy.isVector() || DstTy.isVector())
1682       return UnableToLegalize;
1683 
1684     SrcOp Src(SrcReg);
1685     if (SrcTy.isPointer()) {
1686       // Extracts from pointers can be handled only if they are really just
1687       // simple integers.
1688       const DataLayout &DL = MIRBuilder.getDataLayout();
1689       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1690         return UnableToLegalize;
1691 
1692       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1693       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1694       SrcTy = SrcAsIntTy;
1695     }
1696 
1697     if (DstTy.isPointer())
1698       return UnableToLegalize;
1699 
1700     if (Offset == 0) {
1701       // Avoid a shift in the degenerate case.
1702       MIRBuilder.buildTrunc(DstReg,
1703                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1704       MI.eraseFromParent();
1705       return Legalized;
1706     }
1707 
1708     // Do a shift in the source type.
1709     LLT ShiftTy = SrcTy;
1710     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1711       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1712       ShiftTy = WideTy;
1713     }
1714 
1715     auto LShr = MIRBuilder.buildLShr(
1716       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1717     MIRBuilder.buildTrunc(DstReg, LShr);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721 
1722   if (SrcTy.isScalar()) {
1723     Observer.changingInstr(MI);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     Observer.changedInstr(MI);
1726     return Legalized;
1727   }
1728 
1729   if (!SrcTy.isVector())
1730     return UnableToLegalize;
1731 
1732   if (DstTy != SrcTy.getElementType())
1733     return UnableToLegalize;
1734 
1735   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1736     return UnableToLegalize;
1737 
1738   Observer.changingInstr(MI);
1739   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740 
1741   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1742                           Offset);
1743   widenScalarDst(MI, WideTy.getScalarType(), 0);
1744   Observer.changedInstr(MI);
1745   return Legalized;
1746 }
1747 
1748 LegalizerHelper::LegalizeResult
1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1750                                    LLT WideTy) {
1751   if (TypeIdx != 0 || WideTy.isVector())
1752     return UnableToLegalize;
1753   Observer.changingInstr(MI);
1754   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755   widenScalarDst(MI, WideTy);
1756   Observer.changedInstr(MI);
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1762                                            LLT WideTy) {
1763   if (TypeIdx == 1)
1764     return UnableToLegalize; // TODO
1765 
1766   unsigned Opcode;
1767   unsigned ExtOpcode;
1768   Optional<Register> CarryIn = None;
1769   switch (MI.getOpcode()) {
1770   default:
1771     llvm_unreachable("Unexpected opcode!");
1772   case TargetOpcode::G_SADDO:
1773     Opcode = TargetOpcode::G_ADD;
1774     ExtOpcode = TargetOpcode::G_SEXT;
1775     break;
1776   case TargetOpcode::G_SSUBO:
1777     Opcode = TargetOpcode::G_SUB;
1778     ExtOpcode = TargetOpcode::G_SEXT;
1779     break;
1780   case TargetOpcode::G_UADDO:
1781     Opcode = TargetOpcode::G_ADD;
1782     ExtOpcode = TargetOpcode::G_ZEXT;
1783     break;
1784   case TargetOpcode::G_USUBO:
1785     Opcode = TargetOpcode::G_SUB;
1786     ExtOpcode = TargetOpcode::G_ZEXT;
1787     break;
1788   case TargetOpcode::G_SADDE:
1789     Opcode = TargetOpcode::G_UADDE;
1790     ExtOpcode = TargetOpcode::G_SEXT;
1791     CarryIn = MI.getOperand(4).getReg();
1792     break;
1793   case TargetOpcode::G_SSUBE:
1794     Opcode = TargetOpcode::G_USUBE;
1795     ExtOpcode = TargetOpcode::G_SEXT;
1796     CarryIn = MI.getOperand(4).getReg();
1797     break;
1798   case TargetOpcode::G_UADDE:
1799     Opcode = TargetOpcode::G_UADDE;
1800     ExtOpcode = TargetOpcode::G_ZEXT;
1801     CarryIn = MI.getOperand(4).getReg();
1802     break;
1803   case TargetOpcode::G_USUBE:
1804     Opcode = TargetOpcode::G_USUBE;
1805     ExtOpcode = TargetOpcode::G_ZEXT;
1806     CarryIn = MI.getOperand(4).getReg();
1807     break;
1808   }
1809 
1810   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1811   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1812   // Do the arithmetic in the larger type.
1813   Register NewOp;
1814   if (CarryIn) {
1815     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1816     NewOp = MIRBuilder
1817                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1818                             {LHSExt, RHSExt, *CarryIn})
1819                 .getReg(0);
1820   } else {
1821     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1822   }
1823   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1824   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1825   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1826   // There is no overflow if the ExtOp is the same as NewOp.
1827   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1828   // Now trunc the NewOp to the original result.
1829   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1830   MI.eraseFromParent();
1831   return Legalized;
1832 }
1833 
1834 LegalizerHelper::LegalizeResult
1835 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1836                                          LLT WideTy) {
1837   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1838                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1839                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1840   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1841                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1842   // We can convert this to:
1843   //   1. Any extend iN to iM
1844   //   2. SHL by M-N
1845   //   3. [US][ADD|SUB|SHL]SAT
1846   //   4. L/ASHR by M-N
1847   //
1848   // It may be more efficient to lower this to a min and a max operation in
1849   // the higher precision arithmetic if the promoted operation isn't legal,
1850   // but this decision is up to the target's lowering request.
1851   Register DstReg = MI.getOperand(0).getReg();
1852 
1853   unsigned NewBits = WideTy.getScalarSizeInBits();
1854   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1855 
1856   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1857   // must not left shift the RHS to preserve the shift amount.
1858   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1859   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1860                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1861   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1862   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1863   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1864 
1865   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1866                                         {ShiftL, ShiftR}, MI.getFlags());
1867 
1868   // Use a shift that will preserve the number of sign bits when the trunc is
1869   // folded away.
1870   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1871                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1872 
1873   MIRBuilder.buildTrunc(DstReg, Result);
1874   MI.eraseFromParent();
1875   return Legalized;
1876 }
1877 
1878 LegalizerHelper::LegalizeResult
1879 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1880   switch (MI.getOpcode()) {
1881   default:
1882     return UnableToLegalize;
1883   case TargetOpcode::G_EXTRACT:
1884     return widenScalarExtract(MI, TypeIdx, WideTy);
1885   case TargetOpcode::G_INSERT:
1886     return widenScalarInsert(MI, TypeIdx, WideTy);
1887   case TargetOpcode::G_MERGE_VALUES:
1888     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1889   case TargetOpcode::G_UNMERGE_VALUES:
1890     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1891   case TargetOpcode::G_SADDO:
1892   case TargetOpcode::G_SSUBO:
1893   case TargetOpcode::G_UADDO:
1894   case TargetOpcode::G_USUBO:
1895   case TargetOpcode::G_SADDE:
1896   case TargetOpcode::G_SSUBE:
1897   case TargetOpcode::G_UADDE:
1898   case TargetOpcode::G_USUBE:
1899     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1900   case TargetOpcode::G_SADDSAT:
1901   case TargetOpcode::G_SSUBSAT:
1902   case TargetOpcode::G_SSHLSAT:
1903   case TargetOpcode::G_UADDSAT:
1904   case TargetOpcode::G_USUBSAT:
1905   case TargetOpcode::G_USHLSAT:
1906     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1907   case TargetOpcode::G_CTTZ:
1908   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1909   case TargetOpcode::G_CTLZ:
1910   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1911   case TargetOpcode::G_CTPOP: {
1912     if (TypeIdx == 0) {
1913       Observer.changingInstr(MI);
1914       widenScalarDst(MI, WideTy, 0);
1915       Observer.changedInstr(MI);
1916       return Legalized;
1917     }
1918 
1919     Register SrcReg = MI.getOperand(1).getReg();
1920 
1921     // First ZEXT the input.
1922     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1923     LLT CurTy = MRI.getType(SrcReg);
1924     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1925       // The count is the same in the larger type except if the original
1926       // value was zero.  This can be handled by setting the bit just off
1927       // the top of the original type.
1928       auto TopBit =
1929           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1930       MIBSrc = MIRBuilder.buildOr(
1931         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1932     }
1933 
1934     // Perform the operation at the larger size.
1935     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1936     // This is already the correct result for CTPOP and CTTZs
1937     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1938         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1939       // The correct result is NewOp - (Difference in widety and current ty).
1940       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1941       MIBNewOp = MIRBuilder.buildSub(
1942           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1943     }
1944 
1945     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1946     MI.eraseFromParent();
1947     return Legalized;
1948   }
1949   case TargetOpcode::G_BSWAP: {
1950     Observer.changingInstr(MI);
1951     Register DstReg = MI.getOperand(0).getReg();
1952 
1953     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1954     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1955     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1956     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1957 
1958     MI.getOperand(0).setReg(DstExt);
1959 
1960     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1961 
1962     LLT Ty = MRI.getType(DstReg);
1963     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1964     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1965     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1966 
1967     MIRBuilder.buildTrunc(DstReg, ShrReg);
1968     Observer.changedInstr(MI);
1969     return Legalized;
1970   }
1971   case TargetOpcode::G_BITREVERSE: {
1972     Observer.changingInstr(MI);
1973 
1974     Register DstReg = MI.getOperand(0).getReg();
1975     LLT Ty = MRI.getType(DstReg);
1976     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1977 
1978     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1979     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1980     MI.getOperand(0).setReg(DstExt);
1981     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1982 
1983     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1984     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1985     MIRBuilder.buildTrunc(DstReg, Shift);
1986     Observer.changedInstr(MI);
1987     return Legalized;
1988   }
1989   case TargetOpcode::G_FREEZE:
1990     Observer.changingInstr(MI);
1991     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1992     widenScalarDst(MI, WideTy);
1993     Observer.changedInstr(MI);
1994     return Legalized;
1995 
1996   case TargetOpcode::G_ADD:
1997   case TargetOpcode::G_AND:
1998   case TargetOpcode::G_MUL:
1999   case TargetOpcode::G_OR:
2000   case TargetOpcode::G_XOR:
2001   case TargetOpcode::G_SUB:
2002     // Perform operation at larger width (any extension is fines here, high bits
2003     // don't affect the result) and then truncate the result back to the
2004     // original type.
2005     Observer.changingInstr(MI);
2006     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2007     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2008     widenScalarDst(MI, WideTy);
2009     Observer.changedInstr(MI);
2010     return Legalized;
2011 
2012   case TargetOpcode::G_SHL:
2013     Observer.changingInstr(MI);
2014 
2015     if (TypeIdx == 0) {
2016       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2017       widenScalarDst(MI, WideTy);
2018     } else {
2019       assert(TypeIdx == 1);
2020       // The "number of bits to shift" operand must preserve its value as an
2021       // unsigned integer:
2022       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2023     }
2024 
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_SDIV:
2029   case TargetOpcode::G_SREM:
2030   case TargetOpcode::G_SMIN:
2031   case TargetOpcode::G_SMAX:
2032     Observer.changingInstr(MI);
2033     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2034     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2035     widenScalarDst(MI, WideTy);
2036     Observer.changedInstr(MI);
2037     return Legalized;
2038 
2039   case TargetOpcode::G_ASHR:
2040   case TargetOpcode::G_LSHR:
2041     Observer.changingInstr(MI);
2042 
2043     if (TypeIdx == 0) {
2044       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2045         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2046 
2047       widenScalarSrc(MI, WideTy, 1, CvtOp);
2048       widenScalarDst(MI, WideTy);
2049     } else {
2050       assert(TypeIdx == 1);
2051       // The "number of bits to shift" operand must preserve its value as an
2052       // unsigned integer:
2053       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2054     }
2055 
2056     Observer.changedInstr(MI);
2057     return Legalized;
2058   case TargetOpcode::G_UDIV:
2059   case TargetOpcode::G_UREM:
2060   case TargetOpcode::G_UMIN:
2061   case TargetOpcode::G_UMAX:
2062     Observer.changingInstr(MI);
2063     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2064     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2065     widenScalarDst(MI, WideTy);
2066     Observer.changedInstr(MI);
2067     return Legalized;
2068 
2069   case TargetOpcode::G_SELECT:
2070     Observer.changingInstr(MI);
2071     if (TypeIdx == 0) {
2072       // Perform operation at larger width (any extension is fine here, high
2073       // bits don't affect the result) and then truncate the result back to the
2074       // original type.
2075       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2076       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2077       widenScalarDst(MI, WideTy);
2078     } else {
2079       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2080       // Explicit extension is required here since high bits affect the result.
2081       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2082     }
2083     Observer.changedInstr(MI);
2084     return Legalized;
2085 
2086   case TargetOpcode::G_FPTOSI:
2087   case TargetOpcode::G_FPTOUI:
2088     Observer.changingInstr(MI);
2089 
2090     if (TypeIdx == 0)
2091       widenScalarDst(MI, WideTy);
2092     else
2093       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2094 
2095     Observer.changedInstr(MI);
2096     return Legalized;
2097   case TargetOpcode::G_SITOFP:
2098     Observer.changingInstr(MI);
2099 
2100     if (TypeIdx == 0)
2101       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2102     else
2103       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2104 
2105     Observer.changedInstr(MI);
2106     return Legalized;
2107   case TargetOpcode::G_UITOFP:
2108     Observer.changingInstr(MI);
2109 
2110     if (TypeIdx == 0)
2111       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2112     else
2113       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2114 
2115     Observer.changedInstr(MI);
2116     return Legalized;
2117   case TargetOpcode::G_LOAD:
2118   case TargetOpcode::G_SEXTLOAD:
2119   case TargetOpcode::G_ZEXTLOAD:
2120     Observer.changingInstr(MI);
2121     widenScalarDst(MI, WideTy);
2122     Observer.changedInstr(MI);
2123     return Legalized;
2124 
2125   case TargetOpcode::G_STORE: {
2126     if (TypeIdx != 0)
2127       return UnableToLegalize;
2128 
2129     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2130     if (!Ty.isScalar())
2131       return UnableToLegalize;
2132 
2133     Observer.changingInstr(MI);
2134 
2135     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2136       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2137     widenScalarSrc(MI, WideTy, 0, ExtType);
2138 
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141   }
2142   case TargetOpcode::G_CONSTANT: {
2143     MachineOperand &SrcMO = MI.getOperand(1);
2144     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2145     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2146         MRI.getType(MI.getOperand(0).getReg()));
2147     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2148             ExtOpc == TargetOpcode::G_ANYEXT) &&
2149            "Illegal Extend");
2150     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2151     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2152                            ? SrcVal.sext(WideTy.getSizeInBits())
2153                            : SrcVal.zext(WideTy.getSizeInBits());
2154     Observer.changingInstr(MI);
2155     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2156 
2157     widenScalarDst(MI, WideTy);
2158     Observer.changedInstr(MI);
2159     return Legalized;
2160   }
2161   case TargetOpcode::G_FCONSTANT: {
2162     MachineOperand &SrcMO = MI.getOperand(1);
2163     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2164     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2165     bool LosesInfo;
2166     switch (WideTy.getSizeInBits()) {
2167     case 32:
2168       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2169                   &LosesInfo);
2170       break;
2171     case 64:
2172       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2173                   &LosesInfo);
2174       break;
2175     default:
2176       return UnableToLegalize;
2177     }
2178 
2179     assert(!LosesInfo && "extend should always be lossless");
2180 
2181     Observer.changingInstr(MI);
2182     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2183 
2184     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2185     Observer.changedInstr(MI);
2186     return Legalized;
2187   }
2188   case TargetOpcode::G_IMPLICIT_DEF: {
2189     Observer.changingInstr(MI);
2190     widenScalarDst(MI, WideTy);
2191     Observer.changedInstr(MI);
2192     return Legalized;
2193   }
2194   case TargetOpcode::G_BRCOND:
2195     Observer.changingInstr(MI);
2196     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2197     Observer.changedInstr(MI);
2198     return Legalized;
2199 
2200   case TargetOpcode::G_FCMP:
2201     Observer.changingInstr(MI);
2202     if (TypeIdx == 0)
2203       widenScalarDst(MI, WideTy);
2204     else {
2205       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2206       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2207     }
2208     Observer.changedInstr(MI);
2209     return Legalized;
2210 
2211   case TargetOpcode::G_ICMP:
2212     Observer.changingInstr(MI);
2213     if (TypeIdx == 0)
2214       widenScalarDst(MI, WideTy);
2215     else {
2216       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2217                                MI.getOperand(1).getPredicate()))
2218                                ? TargetOpcode::G_SEXT
2219                                : TargetOpcode::G_ZEXT;
2220       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2221       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2222     }
2223     Observer.changedInstr(MI);
2224     return Legalized;
2225 
2226   case TargetOpcode::G_PTR_ADD:
2227     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2228     Observer.changingInstr(MI);
2229     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232 
2233   case TargetOpcode::G_PHI: {
2234     assert(TypeIdx == 0 && "Expecting only Idx 0");
2235 
2236     Observer.changingInstr(MI);
2237     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2238       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2239       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2240       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2241     }
2242 
2243     MachineBasicBlock &MBB = *MI.getParent();
2244     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2245     widenScalarDst(MI, WideTy);
2246     Observer.changedInstr(MI);
2247     return Legalized;
2248   }
2249   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2250     if (TypeIdx == 0) {
2251       Register VecReg = MI.getOperand(1).getReg();
2252       LLT VecTy = MRI.getType(VecReg);
2253       Observer.changingInstr(MI);
2254 
2255       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2256                                      WideTy.getSizeInBits()),
2257                      1, TargetOpcode::G_SEXT);
2258 
2259       widenScalarDst(MI, WideTy, 0);
2260       Observer.changedInstr(MI);
2261       return Legalized;
2262     }
2263 
2264     if (TypeIdx != 2)
2265       return UnableToLegalize;
2266     Observer.changingInstr(MI);
2267     // TODO: Probably should be zext
2268     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2269     Observer.changedInstr(MI);
2270     return Legalized;
2271   }
2272   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2273     if (TypeIdx == 1) {
2274       Observer.changingInstr(MI);
2275 
2276       Register VecReg = MI.getOperand(1).getReg();
2277       LLT VecTy = MRI.getType(VecReg);
2278       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2279 
2280       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2281       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2282       widenScalarDst(MI, WideVecTy, 0);
2283       Observer.changedInstr(MI);
2284       return Legalized;
2285     }
2286 
2287     if (TypeIdx == 2) {
2288       Observer.changingInstr(MI);
2289       // TODO: Probably should be zext
2290       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2291       Observer.changedInstr(MI);
2292       return Legalized;
2293     }
2294 
2295     return UnableToLegalize;
2296   }
2297   case TargetOpcode::G_FADD:
2298   case TargetOpcode::G_FMUL:
2299   case TargetOpcode::G_FSUB:
2300   case TargetOpcode::G_FMA:
2301   case TargetOpcode::G_FMAD:
2302   case TargetOpcode::G_FNEG:
2303   case TargetOpcode::G_FABS:
2304   case TargetOpcode::G_FCANONICALIZE:
2305   case TargetOpcode::G_FMINNUM:
2306   case TargetOpcode::G_FMAXNUM:
2307   case TargetOpcode::G_FMINNUM_IEEE:
2308   case TargetOpcode::G_FMAXNUM_IEEE:
2309   case TargetOpcode::G_FMINIMUM:
2310   case TargetOpcode::G_FMAXIMUM:
2311   case TargetOpcode::G_FDIV:
2312   case TargetOpcode::G_FREM:
2313   case TargetOpcode::G_FCEIL:
2314   case TargetOpcode::G_FFLOOR:
2315   case TargetOpcode::G_FCOS:
2316   case TargetOpcode::G_FSIN:
2317   case TargetOpcode::G_FLOG10:
2318   case TargetOpcode::G_FLOG:
2319   case TargetOpcode::G_FLOG2:
2320   case TargetOpcode::G_FRINT:
2321   case TargetOpcode::G_FNEARBYINT:
2322   case TargetOpcode::G_FSQRT:
2323   case TargetOpcode::G_FEXP:
2324   case TargetOpcode::G_FEXP2:
2325   case TargetOpcode::G_FPOW:
2326   case TargetOpcode::G_INTRINSIC_TRUNC:
2327   case TargetOpcode::G_INTRINSIC_ROUND:
2328   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2329     assert(TypeIdx == 0);
2330     Observer.changingInstr(MI);
2331 
2332     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2333       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2334 
2335     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2336     Observer.changedInstr(MI);
2337     return Legalized;
2338   case TargetOpcode::G_FPOWI: {
2339     if (TypeIdx != 0)
2340       return UnableToLegalize;
2341     Observer.changingInstr(MI);
2342     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2343     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2344     Observer.changedInstr(MI);
2345     return Legalized;
2346   }
2347   case TargetOpcode::G_INTTOPTR:
2348     if (TypeIdx != 1)
2349       return UnableToLegalize;
2350 
2351     Observer.changingInstr(MI);
2352     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2353     Observer.changedInstr(MI);
2354     return Legalized;
2355   case TargetOpcode::G_PTRTOINT:
2356     if (TypeIdx != 0)
2357       return UnableToLegalize;
2358 
2359     Observer.changingInstr(MI);
2360     widenScalarDst(MI, WideTy, 0);
2361     Observer.changedInstr(MI);
2362     return Legalized;
2363   case TargetOpcode::G_BUILD_VECTOR: {
2364     Observer.changingInstr(MI);
2365 
2366     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2367     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2368       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2369 
2370     // Avoid changing the result vector type if the source element type was
2371     // requested.
2372     if (TypeIdx == 1) {
2373       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2374     } else {
2375       widenScalarDst(MI, WideTy, 0);
2376     }
2377 
2378     Observer.changedInstr(MI);
2379     return Legalized;
2380   }
2381   case TargetOpcode::G_SEXT_INREG:
2382     if (TypeIdx != 0)
2383       return UnableToLegalize;
2384 
2385     Observer.changingInstr(MI);
2386     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2387     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2388     Observer.changedInstr(MI);
2389     return Legalized;
2390   case TargetOpcode::G_PTRMASK: {
2391     if (TypeIdx != 1)
2392       return UnableToLegalize;
2393     Observer.changingInstr(MI);
2394     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   }
2398   }
2399 }
2400 
2401 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2402                              MachineIRBuilder &B, Register Src, LLT Ty) {
2403   auto Unmerge = B.buildUnmerge(Ty, Src);
2404   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2405     Pieces.push_back(Unmerge.getReg(I));
2406 }
2407 
2408 LegalizerHelper::LegalizeResult
2409 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2410   Register Dst = MI.getOperand(0).getReg();
2411   Register Src = MI.getOperand(1).getReg();
2412   LLT DstTy = MRI.getType(Dst);
2413   LLT SrcTy = MRI.getType(Src);
2414 
2415   if (SrcTy.isVector()) {
2416     LLT SrcEltTy = SrcTy.getElementType();
2417     SmallVector<Register, 8> SrcRegs;
2418 
2419     if (DstTy.isVector()) {
2420       int NumDstElt = DstTy.getNumElements();
2421       int NumSrcElt = SrcTy.getNumElements();
2422 
2423       LLT DstEltTy = DstTy.getElementType();
2424       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2425       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2426 
2427       // If there's an element size mismatch, insert intermediate casts to match
2428       // the result element type.
2429       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2430         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2431         //
2432         // =>
2433         //
2434         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2435         // %3:_(<2 x s8>) = G_BITCAST %2
2436         // %4:_(<2 x s8>) = G_BITCAST %3
2437         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2438         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2439         SrcPartTy = SrcEltTy;
2440       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2441         //
2442         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2443         //
2444         // =>
2445         //
2446         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2447         // %3:_(s16) = G_BITCAST %2
2448         // %4:_(s16) = G_BITCAST %3
2449         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2450         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2451         DstCastTy = DstEltTy;
2452       }
2453 
2454       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2455       for (Register &SrcReg : SrcRegs)
2456         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2457     } else
2458       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2459 
2460     MIRBuilder.buildMerge(Dst, SrcRegs);
2461     MI.eraseFromParent();
2462     return Legalized;
2463   }
2464 
2465   if (DstTy.isVector()) {
2466     SmallVector<Register, 8> SrcRegs;
2467     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2468     MIRBuilder.buildMerge(Dst, SrcRegs);
2469     MI.eraseFromParent();
2470     return Legalized;
2471   }
2472 
2473   return UnableToLegalize;
2474 }
2475 
2476 /// Figure out the bit offset into a register when coercing a vector index for
2477 /// the wide element type. This is only for the case when promoting vector to
2478 /// one with larger elements.
2479 //
2480 ///
2481 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2482 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2483 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2484                                                    Register Idx,
2485                                                    unsigned NewEltSize,
2486                                                    unsigned OldEltSize) {
2487   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2488   LLT IdxTy = B.getMRI()->getType(Idx);
2489 
2490   // Now figure out the amount we need to shift to get the target bits.
2491   auto OffsetMask = B.buildConstant(
2492     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2493   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2494   return B.buildShl(IdxTy, OffsetIdx,
2495                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2496 }
2497 
2498 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2499 /// is casting to a vector with a smaller element size, perform multiple element
2500 /// extracts and merge the results. If this is coercing to a vector with larger
2501 /// elements, index the bitcasted vector and extract the target element with bit
2502 /// operations. This is intended to force the indexing in the native register
2503 /// size for architectures that can dynamically index the register file.
2504 LegalizerHelper::LegalizeResult
2505 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2506                                          LLT CastTy) {
2507   if (TypeIdx != 1)
2508     return UnableToLegalize;
2509 
2510   Register Dst = MI.getOperand(0).getReg();
2511   Register SrcVec = MI.getOperand(1).getReg();
2512   Register Idx = MI.getOperand(2).getReg();
2513   LLT SrcVecTy = MRI.getType(SrcVec);
2514   LLT IdxTy = MRI.getType(Idx);
2515 
2516   LLT SrcEltTy = SrcVecTy.getElementType();
2517   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2518   unsigned OldNumElts = SrcVecTy.getNumElements();
2519 
2520   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2521   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2522 
2523   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2524   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2525   if (NewNumElts > OldNumElts) {
2526     // Decreasing the vector element size
2527     //
2528     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2529     //  =>
2530     //  v4i32:castx = bitcast x:v2i64
2531     //
2532     // i64 = bitcast
2533     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2534     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2535     //
2536     if (NewNumElts % OldNumElts != 0)
2537       return UnableToLegalize;
2538 
2539     // Type of the intermediate result vector.
2540     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2541     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2542 
2543     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2544 
2545     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2546     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2547 
2548     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2549       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2550       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2551       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2552       NewOps[I] = Elt.getReg(0);
2553     }
2554 
2555     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2556     MIRBuilder.buildBitcast(Dst, NewVec);
2557     MI.eraseFromParent();
2558     return Legalized;
2559   }
2560 
2561   if (NewNumElts < OldNumElts) {
2562     if (NewEltSize % OldEltSize != 0)
2563       return UnableToLegalize;
2564 
2565     // This only depends on powers of 2 because we use bit tricks to figure out
2566     // the bit offset we need to shift to get the target element. A general
2567     // expansion could emit division/multiply.
2568     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2569       return UnableToLegalize;
2570 
2571     // Increasing the vector element size.
2572     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2573     //
2574     //   =>
2575     //
2576     // %cast = G_BITCAST %vec
2577     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2578     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2579     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2580     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2581     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2582     // %elt = G_TRUNC %elt_bits
2583 
2584     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2585     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2586 
2587     // Divide to get the index in the wider element type.
2588     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2589 
2590     Register WideElt = CastVec;
2591     if (CastTy.isVector()) {
2592       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2593                                                      ScaledIdx).getReg(0);
2594     }
2595 
2596     // Compute the bit offset into the register of the target element.
2597     Register OffsetBits = getBitcastWiderVectorElementOffset(
2598       MIRBuilder, Idx, NewEltSize, OldEltSize);
2599 
2600     // Shift the wide element to get the target element.
2601     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2602     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2603     MI.eraseFromParent();
2604     return Legalized;
2605   }
2606 
2607   return UnableToLegalize;
2608 }
2609 
2610 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2611 /// TargetReg, while preserving other bits in \p TargetReg.
2612 ///
2613 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2614 static Register buildBitFieldInsert(MachineIRBuilder &B,
2615                                     Register TargetReg, Register InsertReg,
2616                                     Register OffsetBits) {
2617   LLT TargetTy = B.getMRI()->getType(TargetReg);
2618   LLT InsertTy = B.getMRI()->getType(InsertReg);
2619   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2620   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2621 
2622   // Produce a bitmask of the value to insert
2623   auto EltMask = B.buildConstant(
2624     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2625                                    InsertTy.getSizeInBits()));
2626   // Shift it into position
2627   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2628   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2629 
2630   // Clear out the bits in the wide element
2631   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2632 
2633   // The value to insert has all zeros already, so stick it into the masked
2634   // wide element.
2635   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2636 }
2637 
2638 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2639 /// is increasing the element size, perform the indexing in the target element
2640 /// type, and use bit operations to insert at the element position. This is
2641 /// intended for architectures that can dynamically index the register file and
2642 /// want to force indexing in the native register size.
2643 LegalizerHelper::LegalizeResult
2644 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2645                                         LLT CastTy) {
2646   if (TypeIdx != 0)
2647     return UnableToLegalize;
2648 
2649   Register Dst = MI.getOperand(0).getReg();
2650   Register SrcVec = MI.getOperand(1).getReg();
2651   Register Val = MI.getOperand(2).getReg();
2652   Register Idx = MI.getOperand(3).getReg();
2653 
2654   LLT VecTy = MRI.getType(Dst);
2655   LLT IdxTy = MRI.getType(Idx);
2656 
2657   LLT VecEltTy = VecTy.getElementType();
2658   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2659   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2660   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2661 
2662   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2663   unsigned OldNumElts = VecTy.getNumElements();
2664 
2665   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2666   if (NewNumElts < OldNumElts) {
2667     if (NewEltSize % OldEltSize != 0)
2668       return UnableToLegalize;
2669 
2670     // This only depends on powers of 2 because we use bit tricks to figure out
2671     // the bit offset we need to shift to get the target element. A general
2672     // expansion could emit division/multiply.
2673     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2674       return UnableToLegalize;
2675 
2676     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2677     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2678 
2679     // Divide to get the index in the wider element type.
2680     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2681 
2682     Register ExtractedElt = CastVec;
2683     if (CastTy.isVector()) {
2684       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2685                                                           ScaledIdx).getReg(0);
2686     }
2687 
2688     // Compute the bit offset into the register of the target element.
2689     Register OffsetBits = getBitcastWiderVectorElementOffset(
2690       MIRBuilder, Idx, NewEltSize, OldEltSize);
2691 
2692     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2693                                                Val, OffsetBits);
2694     if (CastTy.isVector()) {
2695       InsertedElt = MIRBuilder.buildInsertVectorElement(
2696         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2697     }
2698 
2699     MIRBuilder.buildBitcast(Dst, InsertedElt);
2700     MI.eraseFromParent();
2701     return Legalized;
2702   }
2703 
2704   return UnableToLegalize;
2705 }
2706 
2707 LegalizerHelper::LegalizeResult
2708 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2709   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2710   Register DstReg = MI.getOperand(0).getReg();
2711   Register PtrReg = MI.getOperand(1).getReg();
2712   LLT DstTy = MRI.getType(DstReg);
2713   auto &MMO = **MI.memoperands_begin();
2714 
2715   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2716     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2717       // This load needs splitting into power of 2 sized loads.
2718       if (DstTy.isVector())
2719         return UnableToLegalize;
2720       if (isPowerOf2_32(DstTy.getSizeInBits()))
2721         return UnableToLegalize; // Don't know what we're being asked to do.
2722 
2723       // Our strategy here is to generate anyextending loads for the smaller
2724       // types up to next power-2 result type, and then combine the two larger
2725       // result values together, before truncating back down to the non-pow-2
2726       // type.
2727       // E.g. v1 = i24 load =>
2728       // v2 = i32 zextload (2 byte)
2729       // v3 = i32 load (1 byte)
2730       // v4 = i32 shl v3, 16
2731       // v5 = i32 or v4, v2
2732       // v1 = i24 trunc v5
2733       // By doing this we generate the correct truncate which should get
2734       // combined away as an artifact with a matching extend.
2735       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2736       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2737 
2738       MachineFunction &MF = MIRBuilder.getMF();
2739       MachineMemOperand *LargeMMO =
2740         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2741       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2742         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2743 
2744       LLT PtrTy = MRI.getType(PtrReg);
2745       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2746       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2747       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2748       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2749       auto LargeLoad = MIRBuilder.buildLoadInstr(
2750         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2751 
2752       auto OffsetCst = MIRBuilder.buildConstant(
2753         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2754       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2755       auto SmallPtr =
2756         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2757       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2758                                             *SmallMMO);
2759 
2760       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2761       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2762       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2763       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2764       MI.eraseFromParent();
2765       return Legalized;
2766     }
2767 
2768     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2769     MI.eraseFromParent();
2770     return Legalized;
2771   }
2772 
2773   if (DstTy.isScalar()) {
2774     Register TmpReg =
2775       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2776     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2777     switch (MI.getOpcode()) {
2778     default:
2779       llvm_unreachable("Unexpected opcode");
2780     case TargetOpcode::G_LOAD:
2781       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2782       break;
2783     case TargetOpcode::G_SEXTLOAD:
2784       MIRBuilder.buildSExt(DstReg, TmpReg);
2785       break;
2786     case TargetOpcode::G_ZEXTLOAD:
2787       MIRBuilder.buildZExt(DstReg, TmpReg);
2788       break;
2789     }
2790 
2791     MI.eraseFromParent();
2792     return Legalized;
2793   }
2794 
2795   return UnableToLegalize;
2796 }
2797 
2798 LegalizerHelper::LegalizeResult
2799 LegalizerHelper::lowerStore(MachineInstr &MI) {
2800   // Lower a non-power of 2 store into multiple pow-2 stores.
2801   // E.g. split an i24 store into an i16 store + i8 store.
2802   // We do this by first extending the stored value to the next largest power
2803   // of 2 type, and then using truncating stores to store the components.
2804   // By doing this, likewise with G_LOAD, generate an extend that can be
2805   // artifact-combined away instead of leaving behind extracts.
2806   Register SrcReg = MI.getOperand(0).getReg();
2807   Register PtrReg = MI.getOperand(1).getReg();
2808   LLT SrcTy = MRI.getType(SrcReg);
2809   MachineMemOperand &MMO = **MI.memoperands_begin();
2810   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2811     return UnableToLegalize;
2812   if (SrcTy.isVector())
2813     return UnableToLegalize;
2814   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2815     return UnableToLegalize; // Don't know what we're being asked to do.
2816 
2817   // Extend to the next pow-2.
2818   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2819   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2820 
2821   // Obtain the smaller value by shifting away the larger value.
2822   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2823   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2824   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2825   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2826 
2827   // Generate the PtrAdd and truncating stores.
2828   LLT PtrTy = MRI.getType(PtrReg);
2829   auto OffsetCst = MIRBuilder.buildConstant(
2830     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2831   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2832   auto SmallPtr =
2833     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2834 
2835   MachineFunction &MF = MIRBuilder.getMF();
2836   MachineMemOperand *LargeMMO =
2837     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2838   MachineMemOperand *SmallMMO =
2839     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2840   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2841   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2842   MI.eraseFromParent();
2843   return Legalized;
2844 }
2845 
2846 LegalizerHelper::LegalizeResult
2847 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2848   switch (MI.getOpcode()) {
2849   case TargetOpcode::G_LOAD: {
2850     if (TypeIdx != 0)
2851       return UnableToLegalize;
2852 
2853     Observer.changingInstr(MI);
2854     bitcastDst(MI, CastTy, 0);
2855     Observer.changedInstr(MI);
2856     return Legalized;
2857   }
2858   case TargetOpcode::G_STORE: {
2859     if (TypeIdx != 0)
2860       return UnableToLegalize;
2861 
2862     Observer.changingInstr(MI);
2863     bitcastSrc(MI, CastTy, 0);
2864     Observer.changedInstr(MI);
2865     return Legalized;
2866   }
2867   case TargetOpcode::G_SELECT: {
2868     if (TypeIdx != 0)
2869       return UnableToLegalize;
2870 
2871     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2872       LLVM_DEBUG(
2873           dbgs() << "bitcast action not implemented for vector select\n");
2874       return UnableToLegalize;
2875     }
2876 
2877     Observer.changingInstr(MI);
2878     bitcastSrc(MI, CastTy, 2);
2879     bitcastSrc(MI, CastTy, 3);
2880     bitcastDst(MI, CastTy, 0);
2881     Observer.changedInstr(MI);
2882     return Legalized;
2883   }
2884   case TargetOpcode::G_AND:
2885   case TargetOpcode::G_OR:
2886   case TargetOpcode::G_XOR: {
2887     Observer.changingInstr(MI);
2888     bitcastSrc(MI, CastTy, 1);
2889     bitcastSrc(MI, CastTy, 2);
2890     bitcastDst(MI, CastTy, 0);
2891     Observer.changedInstr(MI);
2892     return Legalized;
2893   }
2894   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2895     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2896   case TargetOpcode::G_INSERT_VECTOR_ELT:
2897     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2898   default:
2899     return UnableToLegalize;
2900   }
2901 }
2902 
2903 // Legalize an instruction by changing the opcode in place.
2904 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2905     Observer.changingInstr(MI);
2906     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2907     Observer.changedInstr(MI);
2908 }
2909 
2910 LegalizerHelper::LegalizeResult
2911 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2912   using namespace TargetOpcode;
2913 
2914   switch(MI.getOpcode()) {
2915   default:
2916     return UnableToLegalize;
2917   case TargetOpcode::G_BITCAST:
2918     return lowerBitcast(MI);
2919   case TargetOpcode::G_SREM:
2920   case TargetOpcode::G_UREM: {
2921     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2922     auto Quot =
2923         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2924                               {MI.getOperand(1), MI.getOperand(2)});
2925 
2926     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2927     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2928     MI.eraseFromParent();
2929     return Legalized;
2930   }
2931   case TargetOpcode::G_SADDO:
2932   case TargetOpcode::G_SSUBO:
2933     return lowerSADDO_SSUBO(MI);
2934   case TargetOpcode::G_UMULH:
2935   case TargetOpcode::G_SMULH:
2936     return lowerSMULH_UMULH(MI);
2937   case TargetOpcode::G_SMULO:
2938   case TargetOpcode::G_UMULO: {
2939     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2940     // result.
2941     Register Res = MI.getOperand(0).getReg();
2942     Register Overflow = MI.getOperand(1).getReg();
2943     Register LHS = MI.getOperand(2).getReg();
2944     Register RHS = MI.getOperand(3).getReg();
2945     LLT Ty = MRI.getType(Res);
2946 
2947     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2948                           ? TargetOpcode::G_SMULH
2949                           : TargetOpcode::G_UMULH;
2950 
2951     Observer.changingInstr(MI);
2952     const auto &TII = MIRBuilder.getTII();
2953     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2954     MI.RemoveOperand(1);
2955     Observer.changedInstr(MI);
2956 
2957     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2958     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2959 
2960     // Move insert point forward so we can use the Res register if needed.
2961     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2962 
2963     // For *signed* multiply, overflow is detected by checking:
2964     // (hi != (lo >> bitwidth-1))
2965     if (Opcode == TargetOpcode::G_SMULH) {
2966       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2967       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2968       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2969     } else {
2970       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2971     }
2972     return Legalized;
2973   }
2974   case TargetOpcode::G_FNEG: {
2975     Register Res = MI.getOperand(0).getReg();
2976     LLT Ty = MRI.getType(Res);
2977 
2978     // TODO: Handle vector types once we are able to
2979     // represent them.
2980     if (Ty.isVector())
2981       return UnableToLegalize;
2982     auto SignMask =
2983         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2984     Register SubByReg = MI.getOperand(1).getReg();
2985     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2986     MI.eraseFromParent();
2987     return Legalized;
2988   }
2989   case TargetOpcode::G_FSUB: {
2990     Register Res = MI.getOperand(0).getReg();
2991     LLT Ty = MRI.getType(Res);
2992 
2993     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2994     // First, check if G_FNEG is marked as Lower. If so, we may
2995     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2996     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2997       return UnableToLegalize;
2998     Register LHS = MI.getOperand(1).getReg();
2999     Register RHS = MI.getOperand(2).getReg();
3000     Register Neg = MRI.createGenericVirtualRegister(Ty);
3001     MIRBuilder.buildFNeg(Neg, RHS);
3002     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3003     MI.eraseFromParent();
3004     return Legalized;
3005   }
3006   case TargetOpcode::G_FMAD:
3007     return lowerFMad(MI);
3008   case TargetOpcode::G_FFLOOR:
3009     return lowerFFloor(MI);
3010   case TargetOpcode::G_INTRINSIC_ROUND:
3011     return lowerIntrinsicRound(MI);
3012   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3013     // Since round even is the assumed rounding mode for unconstrained FP
3014     // operations, rint and roundeven are the same operation.
3015     changeOpcode(MI, TargetOpcode::G_FRINT);
3016     return Legalized;
3017   }
3018   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3019     Register OldValRes = MI.getOperand(0).getReg();
3020     Register SuccessRes = MI.getOperand(1).getReg();
3021     Register Addr = MI.getOperand(2).getReg();
3022     Register CmpVal = MI.getOperand(3).getReg();
3023     Register NewVal = MI.getOperand(4).getReg();
3024     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3025                                   **MI.memoperands_begin());
3026     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3027     MI.eraseFromParent();
3028     return Legalized;
3029   }
3030   case TargetOpcode::G_LOAD:
3031   case TargetOpcode::G_SEXTLOAD:
3032   case TargetOpcode::G_ZEXTLOAD:
3033     return lowerLoad(MI);
3034   case TargetOpcode::G_STORE:
3035     return lowerStore(MI);
3036   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3037   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3038   case TargetOpcode::G_CTLZ:
3039   case TargetOpcode::G_CTTZ:
3040   case TargetOpcode::G_CTPOP:
3041     return lowerBitCount(MI);
3042   case G_UADDO: {
3043     Register Res = MI.getOperand(0).getReg();
3044     Register CarryOut = MI.getOperand(1).getReg();
3045     Register LHS = MI.getOperand(2).getReg();
3046     Register RHS = MI.getOperand(3).getReg();
3047 
3048     MIRBuilder.buildAdd(Res, LHS, RHS);
3049     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3050 
3051     MI.eraseFromParent();
3052     return Legalized;
3053   }
3054   case G_UADDE: {
3055     Register Res = MI.getOperand(0).getReg();
3056     Register CarryOut = MI.getOperand(1).getReg();
3057     Register LHS = MI.getOperand(2).getReg();
3058     Register RHS = MI.getOperand(3).getReg();
3059     Register CarryIn = MI.getOperand(4).getReg();
3060     LLT Ty = MRI.getType(Res);
3061 
3062     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3063     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3064     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3065     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3066 
3067     MI.eraseFromParent();
3068     return Legalized;
3069   }
3070   case G_USUBO: {
3071     Register Res = MI.getOperand(0).getReg();
3072     Register BorrowOut = MI.getOperand(1).getReg();
3073     Register LHS = MI.getOperand(2).getReg();
3074     Register RHS = MI.getOperand(3).getReg();
3075 
3076     MIRBuilder.buildSub(Res, LHS, RHS);
3077     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3078 
3079     MI.eraseFromParent();
3080     return Legalized;
3081   }
3082   case G_USUBE: {
3083     Register Res = MI.getOperand(0).getReg();
3084     Register BorrowOut = MI.getOperand(1).getReg();
3085     Register LHS = MI.getOperand(2).getReg();
3086     Register RHS = MI.getOperand(3).getReg();
3087     Register BorrowIn = MI.getOperand(4).getReg();
3088     const LLT CondTy = MRI.getType(BorrowOut);
3089     const LLT Ty = MRI.getType(Res);
3090 
3091     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3092     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3093     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3094 
3095     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3096     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3097     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3098 
3099     MI.eraseFromParent();
3100     return Legalized;
3101   }
3102   case G_UITOFP:
3103     return lowerUITOFP(MI);
3104   case G_SITOFP:
3105     return lowerSITOFP(MI);
3106   case G_FPTOUI:
3107     return lowerFPTOUI(MI);
3108   case G_FPTOSI:
3109     return lowerFPTOSI(MI);
3110   case G_FPTRUNC:
3111     return lowerFPTRUNC(MI);
3112   case G_FPOWI:
3113     return lowerFPOWI(MI);
3114   case G_SMIN:
3115   case G_SMAX:
3116   case G_UMIN:
3117   case G_UMAX:
3118     return lowerMinMax(MI);
3119   case G_FCOPYSIGN:
3120     return lowerFCopySign(MI);
3121   case G_FMINNUM:
3122   case G_FMAXNUM:
3123     return lowerFMinNumMaxNum(MI);
3124   case G_MERGE_VALUES:
3125     return lowerMergeValues(MI);
3126   case G_UNMERGE_VALUES:
3127     return lowerUnmergeValues(MI);
3128   case TargetOpcode::G_SEXT_INREG: {
3129     assert(MI.getOperand(2).isImm() && "Expected immediate");
3130     int64_t SizeInBits = MI.getOperand(2).getImm();
3131 
3132     Register DstReg = MI.getOperand(0).getReg();
3133     Register SrcReg = MI.getOperand(1).getReg();
3134     LLT DstTy = MRI.getType(DstReg);
3135     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3136 
3137     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3138     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3139     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3140     MI.eraseFromParent();
3141     return Legalized;
3142   }
3143   case G_EXTRACT_VECTOR_ELT:
3144   case G_INSERT_VECTOR_ELT:
3145     return lowerExtractInsertVectorElt(MI);
3146   case G_SHUFFLE_VECTOR:
3147     return lowerShuffleVector(MI);
3148   case G_DYN_STACKALLOC:
3149     return lowerDynStackAlloc(MI);
3150   case G_EXTRACT:
3151     return lowerExtract(MI);
3152   case G_INSERT:
3153     return lowerInsert(MI);
3154   case G_BSWAP:
3155     return lowerBswap(MI);
3156   case G_BITREVERSE:
3157     return lowerBitreverse(MI);
3158   case G_READ_REGISTER:
3159   case G_WRITE_REGISTER:
3160     return lowerReadWriteRegister(MI);
3161   case G_UADDSAT:
3162   case G_USUBSAT: {
3163     // Try to make a reasonable guess about which lowering strategy to use. The
3164     // target can override this with custom lowering and calling the
3165     // implementation functions.
3166     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3167     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3168       return lowerAddSubSatToMinMax(MI);
3169     return lowerAddSubSatToAddoSubo(MI);
3170   }
3171   case G_SADDSAT:
3172   case G_SSUBSAT: {
3173     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3174 
3175     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3176     // since it's a shorter expansion. However, we would need to figure out the
3177     // preferred boolean type for the carry out for the query.
3178     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3179       return lowerAddSubSatToMinMax(MI);
3180     return lowerAddSubSatToAddoSubo(MI);
3181   }
3182   case G_SSHLSAT:
3183   case G_USHLSAT:
3184     return lowerShlSat(MI);
3185   case G_ABS: {
3186     // Expand %res = G_ABS %a into:
3187     // %v1 = G_ASHR %a, scalar_size-1
3188     // %v2 = G_ADD %a, %v1
3189     // %res = G_XOR %v2, %v1
3190     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3191     Register OpReg = MI.getOperand(1).getReg();
3192     auto ShiftAmt =
3193         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3194     auto Shift =
3195         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3196     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3197     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3198     MI.eraseFromParent();
3199     return Legalized;
3200   }
3201   case G_SELECT:
3202     return lowerSelect(MI);
3203   }
3204 }
3205 
3206 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3207                                                   Align MinAlign) const {
3208   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3209   // datalayout for the preferred alignment. Also there should be a target hook
3210   // for this to allow targets to reduce the alignment and ignore the
3211   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3212   // the type.
3213   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3214 }
3215 
3216 MachineInstrBuilder
3217 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3218                                       MachinePointerInfo &PtrInfo) {
3219   MachineFunction &MF = MIRBuilder.getMF();
3220   const DataLayout &DL = MIRBuilder.getDataLayout();
3221   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3222 
3223   unsigned AddrSpace = DL.getAllocaAddrSpace();
3224   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3225 
3226   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3227   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3228 }
3229 
3230 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3231                                         LLT VecTy) {
3232   int64_t IdxVal;
3233   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3234     return IdxReg;
3235 
3236   LLT IdxTy = B.getMRI()->getType(IdxReg);
3237   unsigned NElts = VecTy.getNumElements();
3238   if (isPowerOf2_32(NElts)) {
3239     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3240     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3241   }
3242 
3243   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3244       .getReg(0);
3245 }
3246 
3247 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3248                                                   Register Index) {
3249   LLT EltTy = VecTy.getElementType();
3250 
3251   // Calculate the element offset and add it to the pointer.
3252   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3253   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3254          "Converting bits to bytes lost precision");
3255 
3256   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3257 
3258   LLT IdxTy = MRI.getType(Index);
3259   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3260                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3261 
3262   LLT PtrTy = MRI.getType(VecPtr);
3263   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3264 }
3265 
3266 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3267     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3268   Register DstReg = MI.getOperand(0).getReg();
3269   LLT DstTy = MRI.getType(DstReg);
3270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3271 
3272   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3273 
3274   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3275   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3276 
3277   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3278   MI.eraseFromParent();
3279   return Legalized;
3280 }
3281 
3282 // Handle splitting vector operations which need to have the same number of
3283 // elements in each type index, but each type index may have a different element
3284 // type.
3285 //
3286 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3287 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3288 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3289 //
3290 // Also handles some irregular breakdown cases, e.g.
3291 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3292 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3293 //             s64 = G_SHL s64, s32
3294 LegalizerHelper::LegalizeResult
3295 LegalizerHelper::fewerElementsVectorMultiEltType(
3296   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3297   if (TypeIdx != 0)
3298     return UnableToLegalize;
3299 
3300   const LLT NarrowTy0 = NarrowTyArg;
3301   const unsigned NewNumElts =
3302       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3303 
3304   const Register DstReg = MI.getOperand(0).getReg();
3305   LLT DstTy = MRI.getType(DstReg);
3306   LLT LeftoverTy0;
3307 
3308   // All of the operands need to have the same number of elements, so if we can
3309   // determine a type breakdown for the result type, we can for all of the
3310   // source types.
3311   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3312   if (NumParts < 0)
3313     return UnableToLegalize;
3314 
3315   SmallVector<MachineInstrBuilder, 4> NewInsts;
3316 
3317   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3318   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3319 
3320   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3321     Register SrcReg = MI.getOperand(I).getReg();
3322     LLT SrcTyI = MRI.getType(SrcReg);
3323     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3324     LLT LeftoverTyI;
3325 
3326     // Split this operand into the requested typed registers, and any leftover
3327     // required to reproduce the original type.
3328     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3329                       LeftoverRegs))
3330       return UnableToLegalize;
3331 
3332     if (I == 1) {
3333       // For the first operand, create an instruction for each part and setup
3334       // the result.
3335       for (Register PartReg : PartRegs) {
3336         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3337         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3338                                .addDef(PartDstReg)
3339                                .addUse(PartReg));
3340         DstRegs.push_back(PartDstReg);
3341       }
3342 
3343       for (Register LeftoverReg : LeftoverRegs) {
3344         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3345         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3346                                .addDef(PartDstReg)
3347                                .addUse(LeftoverReg));
3348         LeftoverDstRegs.push_back(PartDstReg);
3349       }
3350     } else {
3351       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3352 
3353       // Add the newly created operand splits to the existing instructions. The
3354       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3355       // pieces.
3356       unsigned InstCount = 0;
3357       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3358         NewInsts[InstCount++].addUse(PartRegs[J]);
3359       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3360         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3361     }
3362 
3363     PartRegs.clear();
3364     LeftoverRegs.clear();
3365   }
3366 
3367   // Insert the newly built operations and rebuild the result register.
3368   for (auto &MIB : NewInsts)
3369     MIRBuilder.insertInstr(MIB);
3370 
3371   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3372 
3373   MI.eraseFromParent();
3374   return Legalized;
3375 }
3376 
3377 LegalizerHelper::LegalizeResult
3378 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3379                                           LLT NarrowTy) {
3380   if (TypeIdx != 0)
3381     return UnableToLegalize;
3382 
3383   Register DstReg = MI.getOperand(0).getReg();
3384   Register SrcReg = MI.getOperand(1).getReg();
3385   LLT DstTy = MRI.getType(DstReg);
3386   LLT SrcTy = MRI.getType(SrcReg);
3387 
3388   LLT NarrowTy0 = NarrowTy;
3389   LLT NarrowTy1;
3390   unsigned NumParts;
3391 
3392   if (NarrowTy.isVector()) {
3393     // Uneven breakdown not handled.
3394     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3395     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3396       return UnableToLegalize;
3397 
3398     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3399   } else {
3400     NumParts = DstTy.getNumElements();
3401     NarrowTy1 = SrcTy.getElementType();
3402   }
3403 
3404   SmallVector<Register, 4> SrcRegs, DstRegs;
3405   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3406 
3407   for (unsigned I = 0; I < NumParts; ++I) {
3408     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3409     MachineInstr *NewInst =
3410         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3411 
3412     NewInst->setFlags(MI.getFlags());
3413     DstRegs.push_back(DstReg);
3414   }
3415 
3416   if (NarrowTy.isVector())
3417     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3418   else
3419     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3420 
3421   MI.eraseFromParent();
3422   return Legalized;
3423 }
3424 
3425 LegalizerHelper::LegalizeResult
3426 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3427                                         LLT NarrowTy) {
3428   Register DstReg = MI.getOperand(0).getReg();
3429   Register Src0Reg = MI.getOperand(2).getReg();
3430   LLT DstTy = MRI.getType(DstReg);
3431   LLT SrcTy = MRI.getType(Src0Reg);
3432 
3433   unsigned NumParts;
3434   LLT NarrowTy0, NarrowTy1;
3435 
3436   if (TypeIdx == 0) {
3437     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3438     unsigned OldElts = DstTy.getNumElements();
3439 
3440     NarrowTy0 = NarrowTy;
3441     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3442     NarrowTy1 = NarrowTy.isVector() ?
3443       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3444       SrcTy.getElementType();
3445 
3446   } else {
3447     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3448     unsigned OldElts = SrcTy.getNumElements();
3449 
3450     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3451       NarrowTy.getNumElements();
3452     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3453                             DstTy.getScalarSizeInBits());
3454     NarrowTy1 = NarrowTy;
3455   }
3456 
3457   // FIXME: Don't know how to handle the situation where the small vectors
3458   // aren't all the same size yet.
3459   if (NarrowTy1.isVector() &&
3460       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3461     return UnableToLegalize;
3462 
3463   CmpInst::Predicate Pred
3464     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3465 
3466   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3467   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3468   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3469 
3470   for (unsigned I = 0; I < NumParts; ++I) {
3471     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3472     DstRegs.push_back(DstReg);
3473 
3474     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3475       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3476     else {
3477       MachineInstr *NewCmp
3478         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3479       NewCmp->setFlags(MI.getFlags());
3480     }
3481   }
3482 
3483   if (NarrowTy1.isVector())
3484     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3485   else
3486     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3487 
3488   MI.eraseFromParent();
3489   return Legalized;
3490 }
3491 
3492 LegalizerHelper::LegalizeResult
3493 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3494                                            LLT NarrowTy) {
3495   Register DstReg = MI.getOperand(0).getReg();
3496   Register CondReg = MI.getOperand(1).getReg();
3497 
3498   unsigned NumParts = 0;
3499   LLT NarrowTy0, NarrowTy1;
3500 
3501   LLT DstTy = MRI.getType(DstReg);
3502   LLT CondTy = MRI.getType(CondReg);
3503   unsigned Size = DstTy.getSizeInBits();
3504 
3505   assert(TypeIdx == 0 || CondTy.isVector());
3506 
3507   if (TypeIdx == 0) {
3508     NarrowTy0 = NarrowTy;
3509     NarrowTy1 = CondTy;
3510 
3511     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3512     // FIXME: Don't know how to handle the situation where the small vectors
3513     // aren't all the same size yet.
3514     if (Size % NarrowSize != 0)
3515       return UnableToLegalize;
3516 
3517     NumParts = Size / NarrowSize;
3518 
3519     // Need to break down the condition type
3520     if (CondTy.isVector()) {
3521       if (CondTy.getNumElements() == NumParts)
3522         NarrowTy1 = CondTy.getElementType();
3523       else
3524         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3525                                 CondTy.getScalarSizeInBits());
3526     }
3527   } else {
3528     NumParts = CondTy.getNumElements();
3529     if (NarrowTy.isVector()) {
3530       // TODO: Handle uneven breakdown.
3531       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3532         return UnableToLegalize;
3533 
3534       return UnableToLegalize;
3535     } else {
3536       NarrowTy0 = DstTy.getElementType();
3537       NarrowTy1 = NarrowTy;
3538     }
3539   }
3540 
3541   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3542   if (CondTy.isVector())
3543     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3544 
3545   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3546   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3547 
3548   for (unsigned i = 0; i < NumParts; ++i) {
3549     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3550     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3551                            Src1Regs[i], Src2Regs[i]);
3552     DstRegs.push_back(DstReg);
3553   }
3554 
3555   if (NarrowTy0.isVector())
3556     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3557   else
3558     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3559 
3560   MI.eraseFromParent();
3561   return Legalized;
3562 }
3563 
3564 LegalizerHelper::LegalizeResult
3565 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3566                                         LLT NarrowTy) {
3567   const Register DstReg = MI.getOperand(0).getReg();
3568   LLT PhiTy = MRI.getType(DstReg);
3569   LLT LeftoverTy;
3570 
3571   // All of the operands need to have the same number of elements, so if we can
3572   // determine a type breakdown for the result type, we can for all of the
3573   // source types.
3574   int NumParts, NumLeftover;
3575   std::tie(NumParts, NumLeftover)
3576     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3577   if (NumParts < 0)
3578     return UnableToLegalize;
3579 
3580   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3581   SmallVector<MachineInstrBuilder, 4> NewInsts;
3582 
3583   const int TotalNumParts = NumParts + NumLeftover;
3584 
3585   // Insert the new phis in the result block first.
3586   for (int I = 0; I != TotalNumParts; ++I) {
3587     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3588     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3589     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3590                        .addDef(PartDstReg));
3591     if (I < NumParts)
3592       DstRegs.push_back(PartDstReg);
3593     else
3594       LeftoverDstRegs.push_back(PartDstReg);
3595   }
3596 
3597   MachineBasicBlock *MBB = MI.getParent();
3598   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3599   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3600 
3601   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3602 
3603   // Insert code to extract the incoming values in each predecessor block.
3604   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3605     PartRegs.clear();
3606     LeftoverRegs.clear();
3607 
3608     Register SrcReg = MI.getOperand(I).getReg();
3609     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3610     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3611 
3612     LLT Unused;
3613     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3614                       LeftoverRegs))
3615       return UnableToLegalize;
3616 
3617     // Add the newly created operand splits to the existing instructions. The
3618     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3619     // pieces.
3620     for (int J = 0; J != TotalNumParts; ++J) {
3621       MachineInstrBuilder MIB = NewInsts[J];
3622       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3623       MIB.addMBB(&OpMBB);
3624     }
3625   }
3626 
3627   MI.eraseFromParent();
3628   return Legalized;
3629 }
3630 
3631 LegalizerHelper::LegalizeResult
3632 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3633                                                   unsigned TypeIdx,
3634                                                   LLT NarrowTy) {
3635   if (TypeIdx != 1)
3636     return UnableToLegalize;
3637 
3638   const int NumDst = MI.getNumOperands() - 1;
3639   const Register SrcReg = MI.getOperand(NumDst).getReg();
3640   LLT SrcTy = MRI.getType(SrcReg);
3641 
3642   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3643 
3644   // TODO: Create sequence of extracts.
3645   if (DstTy == NarrowTy)
3646     return UnableToLegalize;
3647 
3648   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3649   if (DstTy == GCDTy) {
3650     // This would just be a copy of the same unmerge.
3651     // TODO: Create extracts, pad with undef and create intermediate merges.
3652     return UnableToLegalize;
3653   }
3654 
3655   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3656   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3657   const int PartsPerUnmerge = NumDst / NumUnmerge;
3658 
3659   for (int I = 0; I != NumUnmerge; ++I) {
3660     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3661 
3662     for (int J = 0; J != PartsPerUnmerge; ++J)
3663       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3664     MIB.addUse(Unmerge.getReg(I));
3665   }
3666 
3667   MI.eraseFromParent();
3668   return Legalized;
3669 }
3670 
3671 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3672 // a vector
3673 //
3674 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3675 // undef as necessary.
3676 //
3677 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3678 //   -> <2 x s16>
3679 //
3680 // %4:_(s16) = G_IMPLICIT_DEF
3681 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3682 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3683 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3684 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3685 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3686 LegalizerHelper::LegalizeResult
3687 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3688                                           LLT NarrowTy) {
3689   Register DstReg = MI.getOperand(0).getReg();
3690   LLT DstTy = MRI.getType(DstReg);
3691   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3692   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3693 
3694   // Break into a common type
3695   SmallVector<Register, 16> Parts;
3696   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3697     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3698 
3699   // Build the requested new merge, padding with undef.
3700   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3701                                   TargetOpcode::G_ANYEXT);
3702 
3703   // Pack into the original result register.
3704   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3705 
3706   MI.eraseFromParent();
3707   return Legalized;
3708 }
3709 
3710 LegalizerHelper::LegalizeResult
3711 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3712                                                            unsigned TypeIdx,
3713                                                            LLT NarrowVecTy) {
3714   Register DstReg = MI.getOperand(0).getReg();
3715   Register SrcVec = MI.getOperand(1).getReg();
3716   Register InsertVal;
3717   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3718 
3719   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3720   if (IsInsert)
3721     InsertVal = MI.getOperand(2).getReg();
3722 
3723   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3724 
3725   // TODO: Handle total scalarization case.
3726   if (!NarrowVecTy.isVector())
3727     return UnableToLegalize;
3728 
3729   LLT VecTy = MRI.getType(SrcVec);
3730 
3731   // If the index is a constant, we can really break this down as you would
3732   // expect, and index into the target size pieces.
3733   int64_t IdxVal;
3734   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3735     // Avoid out of bounds indexing the pieces.
3736     if (IdxVal >= VecTy.getNumElements()) {
3737       MIRBuilder.buildUndef(DstReg);
3738       MI.eraseFromParent();
3739       return Legalized;
3740     }
3741 
3742     SmallVector<Register, 8> VecParts;
3743     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3744 
3745     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3746     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3747                                     TargetOpcode::G_ANYEXT);
3748 
3749     unsigned NewNumElts = NarrowVecTy.getNumElements();
3750 
3751     LLT IdxTy = MRI.getType(Idx);
3752     int64_t PartIdx = IdxVal / NewNumElts;
3753     auto NewIdx =
3754         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3755 
3756     if (IsInsert) {
3757       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3758 
3759       // Use the adjusted index to insert into one of the subvectors.
3760       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3761           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3762       VecParts[PartIdx] = InsertPart.getReg(0);
3763 
3764       // Recombine the inserted subvector with the others to reform the result
3765       // vector.
3766       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3767     } else {
3768       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3769     }
3770 
3771     MI.eraseFromParent();
3772     return Legalized;
3773   }
3774 
3775   // With a variable index, we can't perform the operation in a smaller type, so
3776   // we're forced to expand this.
3777   //
3778   // TODO: We could emit a chain of compare/select to figure out which piece to
3779   // index.
3780   return lowerExtractInsertVectorElt(MI);
3781 }
3782 
3783 LegalizerHelper::LegalizeResult
3784 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3785                                       LLT NarrowTy) {
3786   // FIXME: Don't know how to handle secondary types yet.
3787   if (TypeIdx != 0)
3788     return UnableToLegalize;
3789 
3790   MachineMemOperand *MMO = *MI.memoperands_begin();
3791 
3792   // This implementation doesn't work for atomics. Give up instead of doing
3793   // something invalid.
3794   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3795       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3796     return UnableToLegalize;
3797 
3798   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3799   Register ValReg = MI.getOperand(0).getReg();
3800   Register AddrReg = MI.getOperand(1).getReg();
3801   LLT ValTy = MRI.getType(ValReg);
3802 
3803   // FIXME: Do we need a distinct NarrowMemory legalize action?
3804   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3805     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3806     return UnableToLegalize;
3807   }
3808 
3809   int NumParts = -1;
3810   int NumLeftover = -1;
3811   LLT LeftoverTy;
3812   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3813   if (IsLoad) {
3814     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3815   } else {
3816     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3817                      NarrowLeftoverRegs)) {
3818       NumParts = NarrowRegs.size();
3819       NumLeftover = NarrowLeftoverRegs.size();
3820     }
3821   }
3822 
3823   if (NumParts == -1)
3824     return UnableToLegalize;
3825 
3826   LLT PtrTy = MRI.getType(AddrReg);
3827   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3828 
3829   unsigned TotalSize = ValTy.getSizeInBits();
3830 
3831   // Split the load/store into PartTy sized pieces starting at Offset. If this
3832   // is a load, return the new registers in ValRegs. For a store, each elements
3833   // of ValRegs should be PartTy. Returns the next offset that needs to be
3834   // handled.
3835   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3836                              unsigned Offset) -> unsigned {
3837     MachineFunction &MF = MIRBuilder.getMF();
3838     unsigned PartSize = PartTy.getSizeInBits();
3839     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3840          Offset += PartSize, ++Idx) {
3841       unsigned ByteSize = PartSize / 8;
3842       unsigned ByteOffset = Offset / 8;
3843       Register NewAddrReg;
3844 
3845       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3846 
3847       MachineMemOperand *NewMMO =
3848         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3849 
3850       if (IsLoad) {
3851         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3852         ValRegs.push_back(Dst);
3853         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3854       } else {
3855         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3856       }
3857     }
3858 
3859     return Offset;
3860   };
3861 
3862   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3863 
3864   // Handle the rest of the register if this isn't an even type breakdown.
3865   if (LeftoverTy.isValid())
3866     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3867 
3868   if (IsLoad) {
3869     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3870                 LeftoverTy, NarrowLeftoverRegs);
3871   }
3872 
3873   MI.eraseFromParent();
3874   return Legalized;
3875 }
3876 
3877 LegalizerHelper::LegalizeResult
3878 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3879                                       LLT NarrowTy) {
3880   assert(TypeIdx == 0 && "only one type index expected");
3881 
3882   const unsigned Opc = MI.getOpcode();
3883   const int NumOps = MI.getNumOperands() - 1;
3884   const Register DstReg = MI.getOperand(0).getReg();
3885   const unsigned Flags = MI.getFlags();
3886   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3887   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3888 
3889   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3890 
3891   // First of all check whether we are narrowing (changing the element type)
3892   // or reducing the vector elements
3893   const LLT DstTy = MRI.getType(DstReg);
3894   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3895 
3896   SmallVector<Register, 8> ExtractedRegs[3];
3897   SmallVector<Register, 8> Parts;
3898 
3899   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3900 
3901   // Break down all the sources into NarrowTy pieces we can operate on. This may
3902   // involve creating merges to a wider type, padded with undef.
3903   for (int I = 0; I != NumOps; ++I) {
3904     Register SrcReg = MI.getOperand(I + 1).getReg();
3905     LLT SrcTy = MRI.getType(SrcReg);
3906 
3907     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3908     // For fewerElements, this is a smaller vector with the same element type.
3909     LLT OpNarrowTy;
3910     if (IsNarrow) {
3911       OpNarrowTy = NarrowScalarTy;
3912 
3913       // In case of narrowing, we need to cast vectors to scalars for this to
3914       // work properly
3915       // FIXME: Can we do without the bitcast here if we're narrowing?
3916       if (SrcTy.isVector()) {
3917         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3918         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3919       }
3920     } else {
3921       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3922     }
3923 
3924     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3925 
3926     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3927     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3928                         TargetOpcode::G_ANYEXT);
3929   }
3930 
3931   SmallVector<Register, 8> ResultRegs;
3932 
3933   // Input operands for each sub-instruction.
3934   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3935 
3936   int NumParts = ExtractedRegs[0].size();
3937   const unsigned DstSize = DstTy.getSizeInBits();
3938   const LLT DstScalarTy = LLT::scalar(DstSize);
3939 
3940   // Narrowing needs to use scalar types
3941   LLT DstLCMTy, NarrowDstTy;
3942   if (IsNarrow) {
3943     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3944     NarrowDstTy = NarrowScalarTy;
3945   } else {
3946     DstLCMTy = getLCMType(DstTy, NarrowTy);
3947     NarrowDstTy = NarrowTy;
3948   }
3949 
3950   // We widened the source registers to satisfy merge/unmerge size
3951   // constraints. We'll have some extra fully undef parts.
3952   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3953 
3954   for (int I = 0; I != NumRealParts; ++I) {
3955     // Emit this instruction on each of the split pieces.
3956     for (int J = 0; J != NumOps; ++J)
3957       InputRegs[J] = ExtractedRegs[J][I];
3958 
3959     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3960     ResultRegs.push_back(Inst.getReg(0));
3961   }
3962 
3963   // Fill out the widened result with undef instead of creating instructions
3964   // with undef inputs.
3965   int NumUndefParts = NumParts - NumRealParts;
3966   if (NumUndefParts != 0)
3967     ResultRegs.append(NumUndefParts,
3968                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3969 
3970   // Extract the possibly padded result. Use a scratch register if we need to do
3971   // a final bitcast, otherwise use the original result register.
3972   Register MergeDstReg;
3973   if (IsNarrow && DstTy.isVector())
3974     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3975   else
3976     MergeDstReg = DstReg;
3977 
3978   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3979 
3980   // Recast to vector if we narrowed a vector
3981   if (IsNarrow && DstTy.isVector())
3982     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3983 
3984   MI.eraseFromParent();
3985   return Legalized;
3986 }
3987 
3988 LegalizerHelper::LegalizeResult
3989 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3990                                               LLT NarrowTy) {
3991   Register DstReg = MI.getOperand(0).getReg();
3992   Register SrcReg = MI.getOperand(1).getReg();
3993   int64_t Imm = MI.getOperand(2).getImm();
3994 
3995   LLT DstTy = MRI.getType(DstReg);
3996 
3997   SmallVector<Register, 8> Parts;
3998   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3999   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4000 
4001   for (Register &R : Parts)
4002     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4003 
4004   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4005 
4006   MI.eraseFromParent();
4007   return Legalized;
4008 }
4009 
4010 LegalizerHelper::LegalizeResult
4011 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4012                                      LLT NarrowTy) {
4013   using namespace TargetOpcode;
4014 
4015   switch (MI.getOpcode()) {
4016   case G_IMPLICIT_DEF:
4017     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4018   case G_TRUNC:
4019   case G_AND:
4020   case G_OR:
4021   case G_XOR:
4022   case G_ADD:
4023   case G_SUB:
4024   case G_MUL:
4025   case G_PTR_ADD:
4026   case G_SMULH:
4027   case G_UMULH:
4028   case G_FADD:
4029   case G_FMUL:
4030   case G_FSUB:
4031   case G_FNEG:
4032   case G_FABS:
4033   case G_FCANONICALIZE:
4034   case G_FDIV:
4035   case G_FREM:
4036   case G_FMA:
4037   case G_FMAD:
4038   case G_FPOW:
4039   case G_FEXP:
4040   case G_FEXP2:
4041   case G_FLOG:
4042   case G_FLOG2:
4043   case G_FLOG10:
4044   case G_FNEARBYINT:
4045   case G_FCEIL:
4046   case G_FFLOOR:
4047   case G_FRINT:
4048   case G_INTRINSIC_ROUND:
4049   case G_INTRINSIC_ROUNDEVEN:
4050   case G_INTRINSIC_TRUNC:
4051   case G_FCOS:
4052   case G_FSIN:
4053   case G_FSQRT:
4054   case G_BSWAP:
4055   case G_BITREVERSE:
4056   case G_SDIV:
4057   case G_UDIV:
4058   case G_SREM:
4059   case G_UREM:
4060   case G_SMIN:
4061   case G_SMAX:
4062   case G_UMIN:
4063   case G_UMAX:
4064   case G_FMINNUM:
4065   case G_FMAXNUM:
4066   case G_FMINNUM_IEEE:
4067   case G_FMAXNUM_IEEE:
4068   case G_FMINIMUM:
4069   case G_FMAXIMUM:
4070   case G_FSHL:
4071   case G_FSHR:
4072   case G_FREEZE:
4073   case G_SADDSAT:
4074   case G_SSUBSAT:
4075   case G_UADDSAT:
4076   case G_USUBSAT:
4077     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4078   case G_SHL:
4079   case G_LSHR:
4080   case G_ASHR:
4081   case G_SSHLSAT:
4082   case G_USHLSAT:
4083   case G_CTLZ:
4084   case G_CTLZ_ZERO_UNDEF:
4085   case G_CTTZ:
4086   case G_CTTZ_ZERO_UNDEF:
4087   case G_CTPOP:
4088   case G_FCOPYSIGN:
4089     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4090   case G_ZEXT:
4091   case G_SEXT:
4092   case G_ANYEXT:
4093   case G_FPEXT:
4094   case G_FPTRUNC:
4095   case G_SITOFP:
4096   case G_UITOFP:
4097   case G_FPTOSI:
4098   case G_FPTOUI:
4099   case G_INTTOPTR:
4100   case G_PTRTOINT:
4101   case G_ADDRSPACE_CAST:
4102     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4103   case G_ICMP:
4104   case G_FCMP:
4105     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4106   case G_SELECT:
4107     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4108   case G_PHI:
4109     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4110   case G_UNMERGE_VALUES:
4111     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4112   case G_BUILD_VECTOR:
4113     assert(TypeIdx == 0 && "not a vector type index");
4114     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4115   case G_CONCAT_VECTORS:
4116     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4117       return UnableToLegalize;
4118     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4119   case G_EXTRACT_VECTOR_ELT:
4120   case G_INSERT_VECTOR_ELT:
4121     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4122   case G_LOAD:
4123   case G_STORE:
4124     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4125   case G_SEXT_INREG:
4126     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4127   default:
4128     return UnableToLegalize;
4129   }
4130 }
4131 
4132 LegalizerHelper::LegalizeResult
4133 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4134                                              const LLT HalfTy, const LLT AmtTy) {
4135 
4136   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4137   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4138   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4139 
4140   if (Amt.isNullValue()) {
4141     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4142     MI.eraseFromParent();
4143     return Legalized;
4144   }
4145 
4146   LLT NVT = HalfTy;
4147   unsigned NVTBits = HalfTy.getSizeInBits();
4148   unsigned VTBits = 2 * NVTBits;
4149 
4150   SrcOp Lo(Register(0)), Hi(Register(0));
4151   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4152     if (Amt.ugt(VTBits)) {
4153       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4154     } else if (Amt.ugt(NVTBits)) {
4155       Lo = MIRBuilder.buildConstant(NVT, 0);
4156       Hi = MIRBuilder.buildShl(NVT, InL,
4157                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4158     } else if (Amt == NVTBits) {
4159       Lo = MIRBuilder.buildConstant(NVT, 0);
4160       Hi = InL;
4161     } else {
4162       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4163       auto OrLHS =
4164           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4165       auto OrRHS = MIRBuilder.buildLShr(
4166           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4167       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4168     }
4169   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4170     if (Amt.ugt(VTBits)) {
4171       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4172     } else if (Amt.ugt(NVTBits)) {
4173       Lo = MIRBuilder.buildLShr(NVT, InH,
4174                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4175       Hi = MIRBuilder.buildConstant(NVT, 0);
4176     } else if (Amt == NVTBits) {
4177       Lo = InH;
4178       Hi = MIRBuilder.buildConstant(NVT, 0);
4179     } else {
4180       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4181 
4182       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4183       auto OrRHS = MIRBuilder.buildShl(
4184           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4185 
4186       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4187       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4188     }
4189   } else {
4190     if (Amt.ugt(VTBits)) {
4191       Hi = Lo = MIRBuilder.buildAShr(
4192           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4193     } else if (Amt.ugt(NVTBits)) {
4194       Lo = MIRBuilder.buildAShr(NVT, InH,
4195                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4196       Hi = MIRBuilder.buildAShr(NVT, InH,
4197                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4198     } else if (Amt == NVTBits) {
4199       Lo = InH;
4200       Hi = MIRBuilder.buildAShr(NVT, InH,
4201                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4202     } else {
4203       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4204 
4205       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4206       auto OrRHS = MIRBuilder.buildShl(
4207           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4208 
4209       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4210       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4211     }
4212   }
4213 
4214   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4215   MI.eraseFromParent();
4216 
4217   return Legalized;
4218 }
4219 
4220 // TODO: Optimize if constant shift amount.
4221 LegalizerHelper::LegalizeResult
4222 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4223                                    LLT RequestedTy) {
4224   if (TypeIdx == 1) {
4225     Observer.changingInstr(MI);
4226     narrowScalarSrc(MI, RequestedTy, 2);
4227     Observer.changedInstr(MI);
4228     return Legalized;
4229   }
4230 
4231   Register DstReg = MI.getOperand(0).getReg();
4232   LLT DstTy = MRI.getType(DstReg);
4233   if (DstTy.isVector())
4234     return UnableToLegalize;
4235 
4236   Register Amt = MI.getOperand(2).getReg();
4237   LLT ShiftAmtTy = MRI.getType(Amt);
4238   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4239   if (DstEltSize % 2 != 0)
4240     return UnableToLegalize;
4241 
4242   // Ignore the input type. We can only go to exactly half the size of the
4243   // input. If that isn't small enough, the resulting pieces will be further
4244   // legalized.
4245   const unsigned NewBitSize = DstEltSize / 2;
4246   const LLT HalfTy = LLT::scalar(NewBitSize);
4247   const LLT CondTy = LLT::scalar(1);
4248 
4249   if (const MachineInstr *KShiftAmt =
4250           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4251     return narrowScalarShiftByConstant(
4252         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4253   }
4254 
4255   // TODO: Expand with known bits.
4256 
4257   // Handle the fully general expansion by an unknown amount.
4258   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4259 
4260   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4261   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4262   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4263 
4264   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4265   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4266 
4267   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4268   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4269   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4270 
4271   Register ResultRegs[2];
4272   switch (MI.getOpcode()) {
4273   case TargetOpcode::G_SHL: {
4274     // Short: ShAmt < NewBitSize
4275     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4276 
4277     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4278     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4279     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4280 
4281     // Long: ShAmt >= NewBitSize
4282     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4283     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4284 
4285     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4286     auto Hi = MIRBuilder.buildSelect(
4287         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4288 
4289     ResultRegs[0] = Lo.getReg(0);
4290     ResultRegs[1] = Hi.getReg(0);
4291     break;
4292   }
4293   case TargetOpcode::G_LSHR:
4294   case TargetOpcode::G_ASHR: {
4295     // Short: ShAmt < NewBitSize
4296     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4297 
4298     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4299     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4300     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4301 
4302     // Long: ShAmt >= NewBitSize
4303     MachineInstrBuilder HiL;
4304     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4305       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4306     } else {
4307       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4308       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4309     }
4310     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4311                                      {InH, AmtExcess});     // Lo from Hi part.
4312 
4313     auto Lo = MIRBuilder.buildSelect(
4314         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4315 
4316     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4317 
4318     ResultRegs[0] = Lo.getReg(0);
4319     ResultRegs[1] = Hi.getReg(0);
4320     break;
4321   }
4322   default:
4323     llvm_unreachable("not a shift");
4324   }
4325 
4326   MIRBuilder.buildMerge(DstReg, ResultRegs);
4327   MI.eraseFromParent();
4328   return Legalized;
4329 }
4330 
4331 LegalizerHelper::LegalizeResult
4332 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4333                                        LLT MoreTy) {
4334   assert(TypeIdx == 0 && "Expecting only Idx 0");
4335 
4336   Observer.changingInstr(MI);
4337   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4338     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4339     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4340     moreElementsVectorSrc(MI, MoreTy, I);
4341   }
4342 
4343   MachineBasicBlock &MBB = *MI.getParent();
4344   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4345   moreElementsVectorDst(MI, MoreTy, 0);
4346   Observer.changedInstr(MI);
4347   return Legalized;
4348 }
4349 
4350 LegalizerHelper::LegalizeResult
4351 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4352                                     LLT MoreTy) {
4353   unsigned Opc = MI.getOpcode();
4354   switch (Opc) {
4355   case TargetOpcode::G_IMPLICIT_DEF:
4356   case TargetOpcode::G_LOAD: {
4357     if (TypeIdx != 0)
4358       return UnableToLegalize;
4359     Observer.changingInstr(MI);
4360     moreElementsVectorDst(MI, MoreTy, 0);
4361     Observer.changedInstr(MI);
4362     return Legalized;
4363   }
4364   case TargetOpcode::G_STORE:
4365     if (TypeIdx != 0)
4366       return UnableToLegalize;
4367     Observer.changingInstr(MI);
4368     moreElementsVectorSrc(MI, MoreTy, 0);
4369     Observer.changedInstr(MI);
4370     return Legalized;
4371   case TargetOpcode::G_AND:
4372   case TargetOpcode::G_OR:
4373   case TargetOpcode::G_XOR:
4374   case TargetOpcode::G_SMIN:
4375   case TargetOpcode::G_SMAX:
4376   case TargetOpcode::G_UMIN:
4377   case TargetOpcode::G_UMAX:
4378   case TargetOpcode::G_FMINNUM:
4379   case TargetOpcode::G_FMAXNUM:
4380   case TargetOpcode::G_FMINNUM_IEEE:
4381   case TargetOpcode::G_FMAXNUM_IEEE:
4382   case TargetOpcode::G_FMINIMUM:
4383   case TargetOpcode::G_FMAXIMUM: {
4384     Observer.changingInstr(MI);
4385     moreElementsVectorSrc(MI, MoreTy, 1);
4386     moreElementsVectorSrc(MI, MoreTy, 2);
4387     moreElementsVectorDst(MI, MoreTy, 0);
4388     Observer.changedInstr(MI);
4389     return Legalized;
4390   }
4391   case TargetOpcode::G_EXTRACT:
4392     if (TypeIdx != 1)
4393       return UnableToLegalize;
4394     Observer.changingInstr(MI);
4395     moreElementsVectorSrc(MI, MoreTy, 1);
4396     Observer.changedInstr(MI);
4397     return Legalized;
4398   case TargetOpcode::G_INSERT:
4399   case TargetOpcode::G_FREEZE:
4400     if (TypeIdx != 0)
4401       return UnableToLegalize;
4402     Observer.changingInstr(MI);
4403     moreElementsVectorSrc(MI, MoreTy, 1);
4404     moreElementsVectorDst(MI, MoreTy, 0);
4405     Observer.changedInstr(MI);
4406     return Legalized;
4407   case TargetOpcode::G_SELECT:
4408     if (TypeIdx != 0)
4409       return UnableToLegalize;
4410     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4411       return UnableToLegalize;
4412 
4413     Observer.changingInstr(MI);
4414     moreElementsVectorSrc(MI, MoreTy, 2);
4415     moreElementsVectorSrc(MI, MoreTy, 3);
4416     moreElementsVectorDst(MI, MoreTy, 0);
4417     Observer.changedInstr(MI);
4418     return Legalized;
4419   case TargetOpcode::G_UNMERGE_VALUES: {
4420     if (TypeIdx != 1)
4421       return UnableToLegalize;
4422 
4423     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4424     int NumDst = MI.getNumOperands() - 1;
4425     moreElementsVectorSrc(MI, MoreTy, NumDst);
4426 
4427     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4428     for (int I = 0; I != NumDst; ++I)
4429       MIB.addDef(MI.getOperand(I).getReg());
4430 
4431     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4432     for (int I = NumDst; I != NewNumDst; ++I)
4433       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4434 
4435     MIB.addUse(MI.getOperand(NumDst).getReg());
4436     MI.eraseFromParent();
4437     return Legalized;
4438   }
4439   case TargetOpcode::G_PHI:
4440     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4441   default:
4442     return UnableToLegalize;
4443   }
4444 }
4445 
4446 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4447                                         ArrayRef<Register> Src1Regs,
4448                                         ArrayRef<Register> Src2Regs,
4449                                         LLT NarrowTy) {
4450   MachineIRBuilder &B = MIRBuilder;
4451   unsigned SrcParts = Src1Regs.size();
4452   unsigned DstParts = DstRegs.size();
4453 
4454   unsigned DstIdx = 0; // Low bits of the result.
4455   Register FactorSum =
4456       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4457   DstRegs[DstIdx] = FactorSum;
4458 
4459   unsigned CarrySumPrevDstIdx;
4460   SmallVector<Register, 4> Factors;
4461 
4462   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4463     // Collect low parts of muls for DstIdx.
4464     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4465          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4466       MachineInstrBuilder Mul =
4467           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4468       Factors.push_back(Mul.getReg(0));
4469     }
4470     // Collect high parts of muls from previous DstIdx.
4471     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4472          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4473       MachineInstrBuilder Umulh =
4474           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4475       Factors.push_back(Umulh.getReg(0));
4476     }
4477     // Add CarrySum from additions calculated for previous DstIdx.
4478     if (DstIdx != 1) {
4479       Factors.push_back(CarrySumPrevDstIdx);
4480     }
4481 
4482     Register CarrySum;
4483     // Add all factors and accumulate all carries into CarrySum.
4484     if (DstIdx != DstParts - 1) {
4485       MachineInstrBuilder Uaddo =
4486           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4487       FactorSum = Uaddo.getReg(0);
4488       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4489       for (unsigned i = 2; i < Factors.size(); ++i) {
4490         MachineInstrBuilder Uaddo =
4491             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4492         FactorSum = Uaddo.getReg(0);
4493         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4494         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4495       }
4496     } else {
4497       // Since value for the next index is not calculated, neither is CarrySum.
4498       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4499       for (unsigned i = 2; i < Factors.size(); ++i)
4500         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4501     }
4502 
4503     CarrySumPrevDstIdx = CarrySum;
4504     DstRegs[DstIdx] = FactorSum;
4505     Factors.clear();
4506   }
4507 }
4508 
4509 LegalizerHelper::LegalizeResult
4510 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4511   Register DstReg = MI.getOperand(0).getReg();
4512   Register Src1 = MI.getOperand(1).getReg();
4513   Register Src2 = MI.getOperand(2).getReg();
4514 
4515   LLT Ty = MRI.getType(DstReg);
4516   if (Ty.isVector())
4517     return UnableToLegalize;
4518 
4519   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4520   unsigned DstSize = Ty.getSizeInBits();
4521   unsigned NarrowSize = NarrowTy.getSizeInBits();
4522   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4523     return UnableToLegalize;
4524 
4525   unsigned NumDstParts = DstSize / NarrowSize;
4526   unsigned NumSrcParts = SrcSize / NarrowSize;
4527   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4528   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4529 
4530   SmallVector<Register, 2> Src1Parts, Src2Parts;
4531   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4532   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4533   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4534   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4535 
4536   // Take only high half of registers if this is high mul.
4537   ArrayRef<Register> DstRegs(
4538       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4539   MIRBuilder.buildMerge(DstReg, DstRegs);
4540   MI.eraseFromParent();
4541   return Legalized;
4542 }
4543 
4544 LegalizerHelper::LegalizeResult
4545 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4546                                      LLT NarrowTy) {
4547   if (TypeIdx != 1)
4548     return UnableToLegalize;
4549 
4550   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4551 
4552   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4553   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4554   // NarrowSize.
4555   if (SizeOp1 % NarrowSize != 0)
4556     return UnableToLegalize;
4557   int NumParts = SizeOp1 / NarrowSize;
4558 
4559   SmallVector<Register, 2> SrcRegs, DstRegs;
4560   SmallVector<uint64_t, 2> Indexes;
4561   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4562 
4563   Register OpReg = MI.getOperand(0).getReg();
4564   uint64_t OpStart = MI.getOperand(2).getImm();
4565   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4566   for (int i = 0; i < NumParts; ++i) {
4567     unsigned SrcStart = i * NarrowSize;
4568 
4569     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4570       // No part of the extract uses this subregister, ignore it.
4571       continue;
4572     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4573       // The entire subregister is extracted, forward the value.
4574       DstRegs.push_back(SrcRegs[i]);
4575       continue;
4576     }
4577 
4578     // OpSegStart is where this destination segment would start in OpReg if it
4579     // extended infinitely in both directions.
4580     int64_t ExtractOffset;
4581     uint64_t SegSize;
4582     if (OpStart < SrcStart) {
4583       ExtractOffset = 0;
4584       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4585     } else {
4586       ExtractOffset = OpStart - SrcStart;
4587       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4588     }
4589 
4590     Register SegReg = SrcRegs[i];
4591     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4592       // A genuine extract is needed.
4593       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4594       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4595     }
4596 
4597     DstRegs.push_back(SegReg);
4598   }
4599 
4600   Register DstReg = MI.getOperand(0).getReg();
4601   if (MRI.getType(DstReg).isVector())
4602     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4603   else if (DstRegs.size() > 1)
4604     MIRBuilder.buildMerge(DstReg, DstRegs);
4605   else
4606     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4607   MI.eraseFromParent();
4608   return Legalized;
4609 }
4610 
4611 LegalizerHelper::LegalizeResult
4612 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4613                                     LLT NarrowTy) {
4614   // FIXME: Don't know how to handle secondary types yet.
4615   if (TypeIdx != 0)
4616     return UnableToLegalize;
4617 
4618   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4619   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4620 
4621   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4622   // NarrowSize.
4623   if (SizeOp0 % NarrowSize != 0)
4624     return UnableToLegalize;
4625 
4626   int NumParts = SizeOp0 / NarrowSize;
4627 
4628   SmallVector<Register, 2> SrcRegs, DstRegs;
4629   SmallVector<uint64_t, 2> Indexes;
4630   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4631 
4632   Register OpReg = MI.getOperand(2).getReg();
4633   uint64_t OpStart = MI.getOperand(3).getImm();
4634   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4635   for (int i = 0; i < NumParts; ++i) {
4636     unsigned DstStart = i * NarrowSize;
4637 
4638     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4639       // No part of the insert affects this subregister, forward the original.
4640       DstRegs.push_back(SrcRegs[i]);
4641       continue;
4642     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4643       // The entire subregister is defined by this insert, forward the new
4644       // value.
4645       DstRegs.push_back(OpReg);
4646       continue;
4647     }
4648 
4649     // OpSegStart is where this destination segment would start in OpReg if it
4650     // extended infinitely in both directions.
4651     int64_t ExtractOffset, InsertOffset;
4652     uint64_t SegSize;
4653     if (OpStart < DstStart) {
4654       InsertOffset = 0;
4655       ExtractOffset = DstStart - OpStart;
4656       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4657     } else {
4658       InsertOffset = OpStart - DstStart;
4659       ExtractOffset = 0;
4660       SegSize =
4661         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4662     }
4663 
4664     Register SegReg = OpReg;
4665     if (ExtractOffset != 0 || SegSize != OpSize) {
4666       // A genuine extract is needed.
4667       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4668       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4669     }
4670 
4671     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4672     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4673     DstRegs.push_back(DstReg);
4674   }
4675 
4676   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4677   Register DstReg = MI.getOperand(0).getReg();
4678   if(MRI.getType(DstReg).isVector())
4679     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4680   else
4681     MIRBuilder.buildMerge(DstReg, DstRegs);
4682   MI.eraseFromParent();
4683   return Legalized;
4684 }
4685 
4686 LegalizerHelper::LegalizeResult
4687 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4688                                    LLT NarrowTy) {
4689   Register DstReg = MI.getOperand(0).getReg();
4690   LLT DstTy = MRI.getType(DstReg);
4691 
4692   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4693 
4694   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4695   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4696   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4697   LLT LeftoverTy;
4698   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4699                     Src0Regs, Src0LeftoverRegs))
4700     return UnableToLegalize;
4701 
4702   LLT Unused;
4703   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4704                     Src1Regs, Src1LeftoverRegs))
4705     llvm_unreachable("inconsistent extractParts result");
4706 
4707   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4708     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4709                                         {Src0Regs[I], Src1Regs[I]});
4710     DstRegs.push_back(Inst.getReg(0));
4711   }
4712 
4713   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4714     auto Inst = MIRBuilder.buildInstr(
4715       MI.getOpcode(),
4716       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4717     DstLeftoverRegs.push_back(Inst.getReg(0));
4718   }
4719 
4720   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4721               LeftoverTy, DstLeftoverRegs);
4722 
4723   MI.eraseFromParent();
4724   return Legalized;
4725 }
4726 
4727 LegalizerHelper::LegalizeResult
4728 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4729                                  LLT NarrowTy) {
4730   if (TypeIdx != 0)
4731     return UnableToLegalize;
4732 
4733   Register DstReg = MI.getOperand(0).getReg();
4734   Register SrcReg = MI.getOperand(1).getReg();
4735 
4736   LLT DstTy = MRI.getType(DstReg);
4737   if (DstTy.isVector())
4738     return UnableToLegalize;
4739 
4740   SmallVector<Register, 8> Parts;
4741   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4742   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4743   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4744 
4745   MI.eraseFromParent();
4746   return Legalized;
4747 }
4748 
4749 LegalizerHelper::LegalizeResult
4750 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4751                                     LLT NarrowTy) {
4752   if (TypeIdx != 0)
4753     return UnableToLegalize;
4754 
4755   Register CondReg = MI.getOperand(1).getReg();
4756   LLT CondTy = MRI.getType(CondReg);
4757   if (CondTy.isVector()) // TODO: Handle vselect
4758     return UnableToLegalize;
4759 
4760   Register DstReg = MI.getOperand(0).getReg();
4761   LLT DstTy = MRI.getType(DstReg);
4762 
4763   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4764   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4765   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4766   LLT LeftoverTy;
4767   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4768                     Src1Regs, Src1LeftoverRegs))
4769     return UnableToLegalize;
4770 
4771   LLT Unused;
4772   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4773                     Src2Regs, Src2LeftoverRegs))
4774     llvm_unreachable("inconsistent extractParts result");
4775 
4776   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4777     auto Select = MIRBuilder.buildSelect(NarrowTy,
4778                                          CondReg, Src1Regs[I], Src2Regs[I]);
4779     DstRegs.push_back(Select.getReg(0));
4780   }
4781 
4782   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4783     auto Select = MIRBuilder.buildSelect(
4784       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4785     DstLeftoverRegs.push_back(Select.getReg(0));
4786   }
4787 
4788   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4789               LeftoverTy, DstLeftoverRegs);
4790 
4791   MI.eraseFromParent();
4792   return Legalized;
4793 }
4794 
4795 LegalizerHelper::LegalizeResult
4796 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4797                                   LLT NarrowTy) {
4798   if (TypeIdx != 1)
4799     return UnableToLegalize;
4800 
4801   Register DstReg = MI.getOperand(0).getReg();
4802   Register SrcReg = MI.getOperand(1).getReg();
4803   LLT DstTy = MRI.getType(DstReg);
4804   LLT SrcTy = MRI.getType(SrcReg);
4805   unsigned NarrowSize = NarrowTy.getSizeInBits();
4806 
4807   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4808     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4809 
4810     MachineIRBuilder &B = MIRBuilder;
4811     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4812     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4813     auto C_0 = B.buildConstant(NarrowTy, 0);
4814     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4815                                 UnmergeSrc.getReg(1), C_0);
4816     auto LoCTLZ = IsUndef ?
4817       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4818       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4819     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4820     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4821     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4822     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4823 
4824     MI.eraseFromParent();
4825     return Legalized;
4826   }
4827 
4828   return UnableToLegalize;
4829 }
4830 
4831 LegalizerHelper::LegalizeResult
4832 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4833                                   LLT NarrowTy) {
4834   if (TypeIdx != 1)
4835     return UnableToLegalize;
4836 
4837   Register DstReg = MI.getOperand(0).getReg();
4838   Register SrcReg = MI.getOperand(1).getReg();
4839   LLT DstTy = MRI.getType(DstReg);
4840   LLT SrcTy = MRI.getType(SrcReg);
4841   unsigned NarrowSize = NarrowTy.getSizeInBits();
4842 
4843   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4844     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4845 
4846     MachineIRBuilder &B = MIRBuilder;
4847     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4848     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4849     auto C_0 = B.buildConstant(NarrowTy, 0);
4850     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4851                                 UnmergeSrc.getReg(0), C_0);
4852     auto HiCTTZ = IsUndef ?
4853       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4854       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4855     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4856     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4857     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4858     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4859 
4860     MI.eraseFromParent();
4861     return Legalized;
4862   }
4863 
4864   return UnableToLegalize;
4865 }
4866 
4867 LegalizerHelper::LegalizeResult
4868 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4869                                    LLT NarrowTy) {
4870   if (TypeIdx != 1)
4871     return UnableToLegalize;
4872 
4873   Register DstReg = MI.getOperand(0).getReg();
4874   LLT DstTy = MRI.getType(DstReg);
4875   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4876   unsigned NarrowSize = NarrowTy.getSizeInBits();
4877 
4878   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4879     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4880 
4881     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4882     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4883     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4884 
4885     MI.eraseFromParent();
4886     return Legalized;
4887   }
4888 
4889   return UnableToLegalize;
4890 }
4891 
4892 LegalizerHelper::LegalizeResult
4893 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4894   unsigned Opc = MI.getOpcode();
4895   const auto &TII = MIRBuilder.getTII();
4896   auto isSupported = [this](const LegalityQuery &Q) {
4897     auto QAction = LI.getAction(Q).Action;
4898     return QAction == Legal || QAction == Libcall || QAction == Custom;
4899   };
4900   switch (Opc) {
4901   default:
4902     return UnableToLegalize;
4903   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4904     // This trivially expands to CTLZ.
4905     Observer.changingInstr(MI);
4906     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4907     Observer.changedInstr(MI);
4908     return Legalized;
4909   }
4910   case TargetOpcode::G_CTLZ: {
4911     Register DstReg = MI.getOperand(0).getReg();
4912     Register SrcReg = MI.getOperand(1).getReg();
4913     LLT DstTy = MRI.getType(DstReg);
4914     LLT SrcTy = MRI.getType(SrcReg);
4915     unsigned Len = SrcTy.getSizeInBits();
4916 
4917     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4918       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4919       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4920       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4921       auto ICmp = MIRBuilder.buildICmp(
4922           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4923       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4924       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4925       MI.eraseFromParent();
4926       return Legalized;
4927     }
4928     // for now, we do this:
4929     // NewLen = NextPowerOf2(Len);
4930     // x = x | (x >> 1);
4931     // x = x | (x >> 2);
4932     // ...
4933     // x = x | (x >>16);
4934     // x = x | (x >>32); // for 64-bit input
4935     // Upto NewLen/2
4936     // return Len - popcount(x);
4937     //
4938     // Ref: "Hacker's Delight" by Henry Warren
4939     Register Op = SrcReg;
4940     unsigned NewLen = PowerOf2Ceil(Len);
4941     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4942       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4943       auto MIBOp = MIRBuilder.buildOr(
4944           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4945       Op = MIBOp.getReg(0);
4946     }
4947     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4948     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4949                         MIBPop);
4950     MI.eraseFromParent();
4951     return Legalized;
4952   }
4953   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4954     // This trivially expands to CTTZ.
4955     Observer.changingInstr(MI);
4956     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4957     Observer.changedInstr(MI);
4958     return Legalized;
4959   }
4960   case TargetOpcode::G_CTTZ: {
4961     Register DstReg = MI.getOperand(0).getReg();
4962     Register SrcReg = MI.getOperand(1).getReg();
4963     LLT DstTy = MRI.getType(DstReg);
4964     LLT SrcTy = MRI.getType(SrcReg);
4965 
4966     unsigned Len = SrcTy.getSizeInBits();
4967     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4968       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4969       // zero.
4970       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4971       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4972       auto ICmp = MIRBuilder.buildICmp(
4973           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4974       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4975       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4976       MI.eraseFromParent();
4977       return Legalized;
4978     }
4979     // for now, we use: { return popcount(~x & (x - 1)); }
4980     // unless the target has ctlz but not ctpop, in which case we use:
4981     // { return 32 - nlz(~x & (x-1)); }
4982     // Ref: "Hacker's Delight" by Henry Warren
4983     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4984     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4985     auto MIBTmp = MIRBuilder.buildAnd(
4986         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4987     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4988         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4989       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4990       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4991                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4992       MI.eraseFromParent();
4993       return Legalized;
4994     }
4995     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4996     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4997     return Legalized;
4998   }
4999   case TargetOpcode::G_CTPOP: {
5000     Register SrcReg = MI.getOperand(1).getReg();
5001     LLT Ty = MRI.getType(SrcReg);
5002     unsigned Size = Ty.getSizeInBits();
5003     MachineIRBuilder &B = MIRBuilder;
5004 
5005     // Count set bits in blocks of 2 bits. Default approach would be
5006     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5007     // We use following formula instead:
5008     // B2Count = val - { (val >> 1) & 0x55555555 }
5009     // since it gives same result in blocks of 2 with one instruction less.
5010     auto C_1 = B.buildConstant(Ty, 1);
5011     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5012     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5013     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5014     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5015     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5016 
5017     // In order to get count in blocks of 4 add values from adjacent block of 2.
5018     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5019     auto C_2 = B.buildConstant(Ty, 2);
5020     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5021     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5022     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5023     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5024     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5025     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5026 
5027     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5028     // addition since count value sits in range {0,...,8} and 4 bits are enough
5029     // to hold such binary values. After addition high 4 bits still hold count
5030     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5031     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5032     auto C_4 = B.buildConstant(Ty, 4);
5033     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5034     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5035     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5036     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5037     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5038 
5039     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5040     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5041     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5042     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5043     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5044 
5045     // Shift count result from 8 high bits to low bits.
5046     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5047     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5048 
5049     MI.eraseFromParent();
5050     return Legalized;
5051   }
5052   }
5053 }
5054 
5055 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5056 // representation.
5057 LegalizerHelper::LegalizeResult
5058 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5059   Register Dst = MI.getOperand(0).getReg();
5060   Register Src = MI.getOperand(1).getReg();
5061   const LLT S64 = LLT::scalar(64);
5062   const LLT S32 = LLT::scalar(32);
5063   const LLT S1 = LLT::scalar(1);
5064 
5065   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5066 
5067   // unsigned cul2f(ulong u) {
5068   //   uint lz = clz(u);
5069   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5070   //   u = (u << lz) & 0x7fffffffffffffffUL;
5071   //   ulong t = u & 0xffffffffffUL;
5072   //   uint v = (e << 23) | (uint)(u >> 40);
5073   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5074   //   return as_float(v + r);
5075   // }
5076 
5077   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5078   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5079 
5080   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5081 
5082   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5083   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5084 
5085   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5086   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5087 
5088   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5089   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5090 
5091   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5092 
5093   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5094   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5095 
5096   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5097   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5098   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5099 
5100   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5101   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5102   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5103   auto One = MIRBuilder.buildConstant(S32, 1);
5104 
5105   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5106   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5107   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5108   MIRBuilder.buildAdd(Dst, V, R);
5109 
5110   MI.eraseFromParent();
5111   return Legalized;
5112 }
5113 
5114 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5115   Register Dst = MI.getOperand(0).getReg();
5116   Register Src = MI.getOperand(1).getReg();
5117   LLT DstTy = MRI.getType(Dst);
5118   LLT SrcTy = MRI.getType(Src);
5119 
5120   if (SrcTy == LLT::scalar(1)) {
5121     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5122     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5123     MIRBuilder.buildSelect(Dst, Src, True, False);
5124     MI.eraseFromParent();
5125     return Legalized;
5126   }
5127 
5128   if (SrcTy != LLT::scalar(64))
5129     return UnableToLegalize;
5130 
5131   if (DstTy == LLT::scalar(32)) {
5132     // TODO: SelectionDAG has several alternative expansions to port which may
5133     // be more reasonble depending on the available instructions. If a target
5134     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5135     // intermediate type, this is probably worse.
5136     return lowerU64ToF32BitOps(MI);
5137   }
5138 
5139   return UnableToLegalize;
5140 }
5141 
5142 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5143   Register Dst = MI.getOperand(0).getReg();
5144   Register Src = MI.getOperand(1).getReg();
5145   LLT DstTy = MRI.getType(Dst);
5146   LLT SrcTy = MRI.getType(Src);
5147 
5148   const LLT S64 = LLT::scalar(64);
5149   const LLT S32 = LLT::scalar(32);
5150   const LLT S1 = LLT::scalar(1);
5151 
5152   if (SrcTy == S1) {
5153     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5154     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5155     MIRBuilder.buildSelect(Dst, Src, True, False);
5156     MI.eraseFromParent();
5157     return Legalized;
5158   }
5159 
5160   if (SrcTy != S64)
5161     return UnableToLegalize;
5162 
5163   if (DstTy == S32) {
5164     // signed cl2f(long l) {
5165     //   long s = l >> 63;
5166     //   float r = cul2f((l + s) ^ s);
5167     //   return s ? -r : r;
5168     // }
5169     Register L = Src;
5170     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5171     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5172 
5173     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5174     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5175     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5176 
5177     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5178     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5179                                             MIRBuilder.buildConstant(S64, 0));
5180     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5181     MI.eraseFromParent();
5182     return Legalized;
5183   }
5184 
5185   return UnableToLegalize;
5186 }
5187 
5188 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5189   Register Dst = MI.getOperand(0).getReg();
5190   Register Src = MI.getOperand(1).getReg();
5191   LLT DstTy = MRI.getType(Dst);
5192   LLT SrcTy = MRI.getType(Src);
5193   const LLT S64 = LLT::scalar(64);
5194   const LLT S32 = LLT::scalar(32);
5195 
5196   if (SrcTy != S64 && SrcTy != S32)
5197     return UnableToLegalize;
5198   if (DstTy != S32 && DstTy != S64)
5199     return UnableToLegalize;
5200 
5201   // FPTOSI gives same result as FPTOUI for positive signed integers.
5202   // FPTOUI needs to deal with fp values that convert to unsigned integers
5203   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5204 
5205   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5206   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5207                                                 : APFloat::IEEEdouble(),
5208                     APInt::getNullValue(SrcTy.getSizeInBits()));
5209   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5210 
5211   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5212 
5213   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5214   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5215   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5216   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5217   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5218   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5219   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5220 
5221   const LLT S1 = LLT::scalar(1);
5222 
5223   MachineInstrBuilder FCMP =
5224       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5225   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5226 
5227   MI.eraseFromParent();
5228   return Legalized;
5229 }
5230 
5231 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5232   Register Dst = MI.getOperand(0).getReg();
5233   Register Src = MI.getOperand(1).getReg();
5234   LLT DstTy = MRI.getType(Dst);
5235   LLT SrcTy = MRI.getType(Src);
5236   const LLT S64 = LLT::scalar(64);
5237   const LLT S32 = LLT::scalar(32);
5238 
5239   // FIXME: Only f32 to i64 conversions are supported.
5240   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5241     return UnableToLegalize;
5242 
5243   // Expand f32 -> i64 conversion
5244   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5245   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5246 
5247   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5248 
5249   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5250   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5251 
5252   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5253   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5254 
5255   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5256                                            APInt::getSignMask(SrcEltBits));
5257   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5258   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5259   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5260   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5261 
5262   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5263   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5264   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5265 
5266   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5267   R = MIRBuilder.buildZExt(DstTy, R);
5268 
5269   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5270   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5271   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5272   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5273 
5274   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5275   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5276 
5277   const LLT S1 = LLT::scalar(1);
5278   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5279                                     S1, Exponent, ExponentLoBit);
5280 
5281   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5282 
5283   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5284   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5285 
5286   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5287 
5288   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5289                                           S1, Exponent, ZeroSrcTy);
5290 
5291   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5292   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5293 
5294   MI.eraseFromParent();
5295   return Legalized;
5296 }
5297 
5298 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5299 LegalizerHelper::LegalizeResult
5300 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5301   Register Dst = MI.getOperand(0).getReg();
5302   Register Src = MI.getOperand(1).getReg();
5303 
5304   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5305     return UnableToLegalize;
5306 
5307   const unsigned ExpMask = 0x7ff;
5308   const unsigned ExpBiasf64 = 1023;
5309   const unsigned ExpBiasf16 = 15;
5310   const LLT S32 = LLT::scalar(32);
5311   const LLT S1 = LLT::scalar(1);
5312 
5313   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5314   Register U = Unmerge.getReg(0);
5315   Register UH = Unmerge.getReg(1);
5316 
5317   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5318   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5319 
5320   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5321   // add the f16 bias (15) to get the biased exponent for the f16 format.
5322   E = MIRBuilder.buildAdd(
5323     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5324 
5325   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5326   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5327 
5328   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5329                                        MIRBuilder.buildConstant(S32, 0x1ff));
5330   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5331 
5332   auto Zero = MIRBuilder.buildConstant(S32, 0);
5333   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5334   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5335   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5336 
5337   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5338   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5339   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5340   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5341 
5342   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5343   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5344 
5345   // N = M | (E << 12);
5346   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5347   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5348 
5349   // B = clamp(1-E, 0, 13);
5350   auto One = MIRBuilder.buildConstant(S32, 1);
5351   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5352   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5353   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5354 
5355   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5356                                        MIRBuilder.buildConstant(S32, 0x1000));
5357 
5358   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5359   auto D0 = MIRBuilder.buildShl(S32, D, B);
5360 
5361   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5362                                              D0, SigSetHigh);
5363   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5364   D = MIRBuilder.buildOr(S32, D, D1);
5365 
5366   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5367   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5368 
5369   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5370   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5371 
5372   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5373                                        MIRBuilder.buildConstant(S32, 3));
5374   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5375 
5376   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5377                                        MIRBuilder.buildConstant(S32, 5));
5378   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5379 
5380   V1 = MIRBuilder.buildOr(S32, V0, V1);
5381   V = MIRBuilder.buildAdd(S32, V, V1);
5382 
5383   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5384                                        E, MIRBuilder.buildConstant(S32, 30));
5385   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5386                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5387 
5388   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5389                                          E, MIRBuilder.buildConstant(S32, 1039));
5390   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5391 
5392   // Extract the sign bit.
5393   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5394   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5395 
5396   // Insert the sign bit
5397   V = MIRBuilder.buildOr(S32, Sign, V);
5398 
5399   MIRBuilder.buildTrunc(Dst, V);
5400   MI.eraseFromParent();
5401   return Legalized;
5402 }
5403 
5404 LegalizerHelper::LegalizeResult
5405 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5406   Register Dst = MI.getOperand(0).getReg();
5407   Register Src = MI.getOperand(1).getReg();
5408 
5409   LLT DstTy = MRI.getType(Dst);
5410   LLT SrcTy = MRI.getType(Src);
5411   const LLT S64 = LLT::scalar(64);
5412   const LLT S16 = LLT::scalar(16);
5413 
5414   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5415     return lowerFPTRUNC_F64_TO_F16(MI);
5416 
5417   return UnableToLegalize;
5418 }
5419 
5420 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5421 // multiplication tree.
5422 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5423   Register Dst = MI.getOperand(0).getReg();
5424   Register Src0 = MI.getOperand(1).getReg();
5425   Register Src1 = MI.getOperand(2).getReg();
5426   LLT Ty = MRI.getType(Dst);
5427 
5428   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5429   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5430   MI.eraseFromParent();
5431   return Legalized;
5432 }
5433 
5434 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5435   switch (Opc) {
5436   case TargetOpcode::G_SMIN:
5437     return CmpInst::ICMP_SLT;
5438   case TargetOpcode::G_SMAX:
5439     return CmpInst::ICMP_SGT;
5440   case TargetOpcode::G_UMIN:
5441     return CmpInst::ICMP_ULT;
5442   case TargetOpcode::G_UMAX:
5443     return CmpInst::ICMP_UGT;
5444   default:
5445     llvm_unreachable("not in integer min/max");
5446   }
5447 }
5448 
5449 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5450   Register Dst = MI.getOperand(0).getReg();
5451   Register Src0 = MI.getOperand(1).getReg();
5452   Register Src1 = MI.getOperand(2).getReg();
5453 
5454   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5455   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5456 
5457   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5458   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5459 
5460   MI.eraseFromParent();
5461   return Legalized;
5462 }
5463 
5464 LegalizerHelper::LegalizeResult
5465 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5466   Register Dst = MI.getOperand(0).getReg();
5467   Register Src0 = MI.getOperand(1).getReg();
5468   Register Src1 = MI.getOperand(2).getReg();
5469 
5470   const LLT Src0Ty = MRI.getType(Src0);
5471   const LLT Src1Ty = MRI.getType(Src1);
5472 
5473   const int Src0Size = Src0Ty.getScalarSizeInBits();
5474   const int Src1Size = Src1Ty.getScalarSizeInBits();
5475 
5476   auto SignBitMask = MIRBuilder.buildConstant(
5477     Src0Ty, APInt::getSignMask(Src0Size));
5478 
5479   auto NotSignBitMask = MIRBuilder.buildConstant(
5480     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5481 
5482   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5483   MachineInstr *Or;
5484 
5485   if (Src0Ty == Src1Ty) {
5486     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5487     Or = MIRBuilder.buildOr(Dst, And0, And1);
5488   } else if (Src0Size > Src1Size) {
5489     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5490     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5491     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5492     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5493     Or = MIRBuilder.buildOr(Dst, And0, And1);
5494   } else {
5495     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5496     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5497     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5498     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5499     Or = MIRBuilder.buildOr(Dst, And0, And1);
5500   }
5501 
5502   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5503   // constants are a nan and -0.0, but the final result should preserve
5504   // everything.
5505   if (unsigned Flags = MI.getFlags())
5506     Or->setFlags(Flags);
5507 
5508   MI.eraseFromParent();
5509   return Legalized;
5510 }
5511 
5512 LegalizerHelper::LegalizeResult
5513 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5514   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5515     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5516 
5517   Register Dst = MI.getOperand(0).getReg();
5518   Register Src0 = MI.getOperand(1).getReg();
5519   Register Src1 = MI.getOperand(2).getReg();
5520   LLT Ty = MRI.getType(Dst);
5521 
5522   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5523     // Insert canonicalizes if it's possible we need to quiet to get correct
5524     // sNaN behavior.
5525 
5526     // Note this must be done here, and not as an optimization combine in the
5527     // absence of a dedicate quiet-snan instruction as we're using an
5528     // omni-purpose G_FCANONICALIZE.
5529     if (!isKnownNeverSNaN(Src0, MRI))
5530       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5531 
5532     if (!isKnownNeverSNaN(Src1, MRI))
5533       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5534   }
5535 
5536   // If there are no nans, it's safe to simply replace this with the non-IEEE
5537   // version.
5538   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5539   MI.eraseFromParent();
5540   return Legalized;
5541 }
5542 
5543 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5544   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5545   Register DstReg = MI.getOperand(0).getReg();
5546   LLT Ty = MRI.getType(DstReg);
5547   unsigned Flags = MI.getFlags();
5548 
5549   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5550                                   Flags);
5551   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5552   MI.eraseFromParent();
5553   return Legalized;
5554 }
5555 
5556 LegalizerHelper::LegalizeResult
5557 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5558   Register DstReg = MI.getOperand(0).getReg();
5559   Register X = MI.getOperand(1).getReg();
5560   const unsigned Flags = MI.getFlags();
5561   const LLT Ty = MRI.getType(DstReg);
5562   const LLT CondTy = Ty.changeElementSize(1);
5563 
5564   // round(x) =>
5565   //  t = trunc(x);
5566   //  d = fabs(x - t);
5567   //  o = copysign(1.0f, x);
5568   //  return t + (d >= 0.5 ? o : 0.0);
5569 
5570   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5571 
5572   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5573   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5574   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5575   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5576   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5577   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5578 
5579   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5580                                   Flags);
5581   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5582 
5583   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5584 
5585   MI.eraseFromParent();
5586   return Legalized;
5587 }
5588 
5589 LegalizerHelper::LegalizeResult
5590 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5591   Register DstReg = MI.getOperand(0).getReg();
5592   Register SrcReg = MI.getOperand(1).getReg();
5593   unsigned Flags = MI.getFlags();
5594   LLT Ty = MRI.getType(DstReg);
5595   const LLT CondTy = Ty.changeElementSize(1);
5596 
5597   // result = trunc(src);
5598   // if (src < 0.0 && src != result)
5599   //   result += -1.0.
5600 
5601   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5602   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5603 
5604   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5605                                   SrcReg, Zero, Flags);
5606   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5607                                       SrcReg, Trunc, Flags);
5608   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5609   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5610 
5611   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5612   MI.eraseFromParent();
5613   return Legalized;
5614 }
5615 
5616 LegalizerHelper::LegalizeResult
5617 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5618   const unsigned NumOps = MI.getNumOperands();
5619   Register DstReg = MI.getOperand(0).getReg();
5620   Register Src0Reg = MI.getOperand(1).getReg();
5621   LLT DstTy = MRI.getType(DstReg);
5622   LLT SrcTy = MRI.getType(Src0Reg);
5623   unsigned PartSize = SrcTy.getSizeInBits();
5624 
5625   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5626   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5627 
5628   for (unsigned I = 2; I != NumOps; ++I) {
5629     const unsigned Offset = (I - 1) * PartSize;
5630 
5631     Register SrcReg = MI.getOperand(I).getReg();
5632     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5633 
5634     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5635       MRI.createGenericVirtualRegister(WideTy);
5636 
5637     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5638     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5639     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5640     ResultReg = NextResult;
5641   }
5642 
5643   if (DstTy.isPointer()) {
5644     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5645           DstTy.getAddressSpace())) {
5646       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5647       return UnableToLegalize;
5648     }
5649 
5650     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5651   }
5652 
5653   MI.eraseFromParent();
5654   return Legalized;
5655 }
5656 
5657 LegalizerHelper::LegalizeResult
5658 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5659   const unsigned NumDst = MI.getNumOperands() - 1;
5660   Register SrcReg = MI.getOperand(NumDst).getReg();
5661   Register Dst0Reg = MI.getOperand(0).getReg();
5662   LLT DstTy = MRI.getType(Dst0Reg);
5663   if (DstTy.isPointer())
5664     return UnableToLegalize; // TODO
5665 
5666   SrcReg = coerceToScalar(SrcReg);
5667   if (!SrcReg)
5668     return UnableToLegalize;
5669 
5670   // Expand scalarizing unmerge as bitcast to integer and shift.
5671   LLT IntTy = MRI.getType(SrcReg);
5672 
5673   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5674 
5675   const unsigned DstSize = DstTy.getSizeInBits();
5676   unsigned Offset = DstSize;
5677   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5678     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5679     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5680     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5681   }
5682 
5683   MI.eraseFromParent();
5684   return Legalized;
5685 }
5686 
5687 /// Lower a vector extract or insert by writing the vector to a stack temporary
5688 /// and reloading the element or vector.
5689 ///
5690 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5691 ///  =>
5692 ///  %stack_temp = G_FRAME_INDEX
5693 ///  G_STORE %vec, %stack_temp
5694 ///  %idx = clamp(%idx, %vec.getNumElements())
5695 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5696 ///  %dst = G_LOAD %element_ptr
5697 LegalizerHelper::LegalizeResult
5698 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5699   Register DstReg = MI.getOperand(0).getReg();
5700   Register SrcVec = MI.getOperand(1).getReg();
5701   Register InsertVal;
5702   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5703     InsertVal = MI.getOperand(2).getReg();
5704 
5705   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5706 
5707   LLT VecTy = MRI.getType(SrcVec);
5708   LLT EltTy = VecTy.getElementType();
5709   if (!EltTy.isByteSized()) { // Not implemented.
5710     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5711     return UnableToLegalize;
5712   }
5713 
5714   unsigned EltBytes = EltTy.getSizeInBytes();
5715   Align VecAlign = getStackTemporaryAlignment(VecTy);
5716   Align EltAlign;
5717 
5718   MachinePointerInfo PtrInfo;
5719   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5720                                         VecAlign, PtrInfo);
5721   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5722 
5723   // Get the pointer to the element, and be sure not to hit undefined behavior
5724   // if the index is out of bounds.
5725   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5726 
5727   int64_t IdxVal;
5728   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5729     int64_t Offset = IdxVal * EltBytes;
5730     PtrInfo = PtrInfo.getWithOffset(Offset);
5731     EltAlign = commonAlignment(VecAlign, Offset);
5732   } else {
5733     // We lose information with a variable offset.
5734     EltAlign = getStackTemporaryAlignment(EltTy);
5735     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5736   }
5737 
5738   if (InsertVal) {
5739     // Write the inserted element
5740     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5741 
5742     // Reload the whole vector.
5743     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5744   } else {
5745     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5746   }
5747 
5748   MI.eraseFromParent();
5749   return Legalized;
5750 }
5751 
5752 LegalizerHelper::LegalizeResult
5753 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5754   Register DstReg = MI.getOperand(0).getReg();
5755   Register Src0Reg = MI.getOperand(1).getReg();
5756   Register Src1Reg = MI.getOperand(2).getReg();
5757   LLT Src0Ty = MRI.getType(Src0Reg);
5758   LLT DstTy = MRI.getType(DstReg);
5759   LLT IdxTy = LLT::scalar(32);
5760 
5761   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5762 
5763   if (DstTy.isScalar()) {
5764     if (Src0Ty.isVector())
5765       return UnableToLegalize;
5766 
5767     // This is just a SELECT.
5768     assert(Mask.size() == 1 && "Expected a single mask element");
5769     Register Val;
5770     if (Mask[0] < 0 || Mask[0] > 1)
5771       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5772     else
5773       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5774     MIRBuilder.buildCopy(DstReg, Val);
5775     MI.eraseFromParent();
5776     return Legalized;
5777   }
5778 
5779   Register Undef;
5780   SmallVector<Register, 32> BuildVec;
5781   LLT EltTy = DstTy.getElementType();
5782 
5783   for (int Idx : Mask) {
5784     if (Idx < 0) {
5785       if (!Undef.isValid())
5786         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5787       BuildVec.push_back(Undef);
5788       continue;
5789     }
5790 
5791     if (Src0Ty.isScalar()) {
5792       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5793     } else {
5794       int NumElts = Src0Ty.getNumElements();
5795       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5796       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5797       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5798       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5799       BuildVec.push_back(Extract.getReg(0));
5800     }
5801   }
5802 
5803   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5804   MI.eraseFromParent();
5805   return Legalized;
5806 }
5807 
5808 LegalizerHelper::LegalizeResult
5809 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5810   const auto &MF = *MI.getMF();
5811   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5812   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5813     return UnableToLegalize;
5814 
5815   Register Dst = MI.getOperand(0).getReg();
5816   Register AllocSize = MI.getOperand(1).getReg();
5817   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5818 
5819   LLT PtrTy = MRI.getType(Dst);
5820   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5821 
5822   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5823   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5824   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5825 
5826   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5827   // have to generate an extra instruction to negate the alloc and then use
5828   // G_PTR_ADD to add the negative offset.
5829   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5830   if (Alignment > Align(1)) {
5831     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5832     AlignMask.negate();
5833     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5834     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5835   }
5836 
5837   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5838   MIRBuilder.buildCopy(SPReg, SPTmp);
5839   MIRBuilder.buildCopy(Dst, SPTmp);
5840 
5841   MI.eraseFromParent();
5842   return Legalized;
5843 }
5844 
5845 LegalizerHelper::LegalizeResult
5846 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5847   Register Dst = MI.getOperand(0).getReg();
5848   Register Src = MI.getOperand(1).getReg();
5849   unsigned Offset = MI.getOperand(2).getImm();
5850 
5851   LLT DstTy = MRI.getType(Dst);
5852   LLT SrcTy = MRI.getType(Src);
5853 
5854   if (DstTy.isScalar() &&
5855       (SrcTy.isScalar() ||
5856        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5857     LLT SrcIntTy = SrcTy;
5858     if (!SrcTy.isScalar()) {
5859       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5860       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5861     }
5862 
5863     if (Offset == 0)
5864       MIRBuilder.buildTrunc(Dst, Src);
5865     else {
5866       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5867       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5868       MIRBuilder.buildTrunc(Dst, Shr);
5869     }
5870 
5871     MI.eraseFromParent();
5872     return Legalized;
5873   }
5874 
5875   return UnableToLegalize;
5876 }
5877 
5878 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5879   Register Dst = MI.getOperand(0).getReg();
5880   Register Src = MI.getOperand(1).getReg();
5881   Register InsertSrc = MI.getOperand(2).getReg();
5882   uint64_t Offset = MI.getOperand(3).getImm();
5883 
5884   LLT DstTy = MRI.getType(Src);
5885   LLT InsertTy = MRI.getType(InsertSrc);
5886 
5887   if (InsertTy.isVector() ||
5888       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5889     return UnableToLegalize;
5890 
5891   const DataLayout &DL = MIRBuilder.getDataLayout();
5892   if ((DstTy.isPointer() &&
5893        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5894       (InsertTy.isPointer() &&
5895        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5896     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5897     return UnableToLegalize;
5898   }
5899 
5900   LLT IntDstTy = DstTy;
5901 
5902   if (!DstTy.isScalar()) {
5903     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5904     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5905   }
5906 
5907   if (!InsertTy.isScalar()) {
5908     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5909     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5910   }
5911 
5912   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5913   if (Offset != 0) {
5914     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5915     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5916   }
5917 
5918   APInt MaskVal = APInt::getBitsSetWithWrap(
5919       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5920 
5921   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5922   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5923   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5924 
5925   MIRBuilder.buildCast(Dst, Or);
5926   MI.eraseFromParent();
5927   return Legalized;
5928 }
5929 
5930 LegalizerHelper::LegalizeResult
5931 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5932   Register Dst0 = MI.getOperand(0).getReg();
5933   Register Dst1 = MI.getOperand(1).getReg();
5934   Register LHS = MI.getOperand(2).getReg();
5935   Register RHS = MI.getOperand(3).getReg();
5936   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5937 
5938   LLT Ty = MRI.getType(Dst0);
5939   LLT BoolTy = MRI.getType(Dst1);
5940 
5941   if (IsAdd)
5942     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5943   else
5944     MIRBuilder.buildSub(Dst0, LHS, RHS);
5945 
5946   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5947 
5948   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5949 
5950   // For an addition, the result should be less than one of the operands (LHS)
5951   // if and only if the other operand (RHS) is negative, otherwise there will
5952   // be overflow.
5953   // For a subtraction, the result should be less than one of the operands
5954   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5955   // otherwise there will be overflow.
5956   auto ResultLowerThanLHS =
5957       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5958   auto ConditionRHS = MIRBuilder.buildICmp(
5959       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5960 
5961   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5962   MI.eraseFromParent();
5963   return Legalized;
5964 }
5965 
5966 LegalizerHelper::LegalizeResult
5967 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5968   Register Res = MI.getOperand(0).getReg();
5969   Register LHS = MI.getOperand(1).getReg();
5970   Register RHS = MI.getOperand(2).getReg();
5971   LLT Ty = MRI.getType(Res);
5972   bool IsSigned;
5973   bool IsAdd;
5974   unsigned BaseOp;
5975   switch (MI.getOpcode()) {
5976   default:
5977     llvm_unreachable("unexpected addsat/subsat opcode");
5978   case TargetOpcode::G_UADDSAT:
5979     IsSigned = false;
5980     IsAdd = true;
5981     BaseOp = TargetOpcode::G_ADD;
5982     break;
5983   case TargetOpcode::G_SADDSAT:
5984     IsSigned = true;
5985     IsAdd = true;
5986     BaseOp = TargetOpcode::G_ADD;
5987     break;
5988   case TargetOpcode::G_USUBSAT:
5989     IsSigned = false;
5990     IsAdd = false;
5991     BaseOp = TargetOpcode::G_SUB;
5992     break;
5993   case TargetOpcode::G_SSUBSAT:
5994     IsSigned = true;
5995     IsAdd = false;
5996     BaseOp = TargetOpcode::G_SUB;
5997     break;
5998   }
5999 
6000   if (IsSigned) {
6001     // sadd.sat(a, b) ->
6002     //   hi = 0x7fffffff - smax(a, 0)
6003     //   lo = 0x80000000 - smin(a, 0)
6004     //   a + smin(smax(lo, b), hi)
6005     // ssub.sat(a, b) ->
6006     //   lo = smax(a, -1) - 0x7fffffff
6007     //   hi = smin(a, -1) - 0x80000000
6008     //   a - smin(smax(lo, b), hi)
6009     // TODO: AMDGPU can use a "median of 3" instruction here:
6010     //   a +/- med3(lo, b, hi)
6011     uint64_t NumBits = Ty.getScalarSizeInBits();
6012     auto MaxVal =
6013         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6014     auto MinVal =
6015         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6016     MachineInstrBuilder Hi, Lo;
6017     if (IsAdd) {
6018       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6019       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6020       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6021     } else {
6022       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6023       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6024                                MaxVal);
6025       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6026                                MinVal);
6027     }
6028     auto RHSClamped =
6029         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6030     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6031   } else {
6032     // uadd.sat(a, b) -> a + umin(~a, b)
6033     // usub.sat(a, b) -> a - umin(a, b)
6034     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6035     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6036     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6037   }
6038 
6039   MI.eraseFromParent();
6040   return Legalized;
6041 }
6042 
6043 LegalizerHelper::LegalizeResult
6044 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6045   Register Res = MI.getOperand(0).getReg();
6046   Register LHS = MI.getOperand(1).getReg();
6047   Register RHS = MI.getOperand(2).getReg();
6048   LLT Ty = MRI.getType(Res);
6049   LLT BoolTy = Ty.changeElementSize(1);
6050   bool IsSigned;
6051   bool IsAdd;
6052   unsigned OverflowOp;
6053   switch (MI.getOpcode()) {
6054   default:
6055     llvm_unreachable("unexpected addsat/subsat opcode");
6056   case TargetOpcode::G_UADDSAT:
6057     IsSigned = false;
6058     IsAdd = true;
6059     OverflowOp = TargetOpcode::G_UADDO;
6060     break;
6061   case TargetOpcode::G_SADDSAT:
6062     IsSigned = true;
6063     IsAdd = true;
6064     OverflowOp = TargetOpcode::G_SADDO;
6065     break;
6066   case TargetOpcode::G_USUBSAT:
6067     IsSigned = false;
6068     IsAdd = false;
6069     OverflowOp = TargetOpcode::G_USUBO;
6070     break;
6071   case TargetOpcode::G_SSUBSAT:
6072     IsSigned = true;
6073     IsAdd = false;
6074     OverflowOp = TargetOpcode::G_SSUBO;
6075     break;
6076   }
6077 
6078   auto OverflowRes =
6079       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6080   Register Tmp = OverflowRes.getReg(0);
6081   Register Ov = OverflowRes.getReg(1);
6082   MachineInstrBuilder Clamp;
6083   if (IsSigned) {
6084     // sadd.sat(a, b) ->
6085     //   {tmp, ov} = saddo(a, b)
6086     //   ov ? (tmp >>s 31) + 0x80000000 : r
6087     // ssub.sat(a, b) ->
6088     //   {tmp, ov} = ssubo(a, b)
6089     //   ov ? (tmp >>s 31) + 0x80000000 : r
6090     uint64_t NumBits = Ty.getScalarSizeInBits();
6091     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6092     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6093     auto MinVal =
6094         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6095     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6096   } else {
6097     // uadd.sat(a, b) ->
6098     //   {tmp, ov} = uaddo(a, b)
6099     //   ov ? 0xffffffff : tmp
6100     // usub.sat(a, b) ->
6101     //   {tmp, ov} = usubo(a, b)
6102     //   ov ? 0 : tmp
6103     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6104   }
6105   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6106 
6107   MI.eraseFromParent();
6108   return Legalized;
6109 }
6110 
6111 LegalizerHelper::LegalizeResult
6112 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6113   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6114           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6115          "Expected shlsat opcode!");
6116   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6117   Register Res = MI.getOperand(0).getReg();
6118   Register LHS = MI.getOperand(1).getReg();
6119   Register RHS = MI.getOperand(2).getReg();
6120   LLT Ty = MRI.getType(Res);
6121   LLT BoolTy = Ty.changeElementSize(1);
6122 
6123   unsigned BW = Ty.getScalarSizeInBits();
6124   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6125   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6126                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6127 
6128   MachineInstrBuilder SatVal;
6129   if (IsSigned) {
6130     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6131     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6132     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6133                                     MIRBuilder.buildConstant(Ty, 0));
6134     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6135   } else {
6136     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6137   }
6138   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6139   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6140 
6141   MI.eraseFromParent();
6142   return Legalized;
6143 }
6144 
6145 LegalizerHelper::LegalizeResult
6146 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6147   Register Dst = MI.getOperand(0).getReg();
6148   Register Src = MI.getOperand(1).getReg();
6149   const LLT Ty = MRI.getType(Src);
6150   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6151   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6152 
6153   // Swap most and least significant byte, set remaining bytes in Res to zero.
6154   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6155   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6156   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6157   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6158 
6159   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6160   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6161     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6162     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6163     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6164     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6165     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6166     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6167     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6168     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6169     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6170     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6171     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6172     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6173   }
6174   Res.getInstr()->getOperand(0).setReg(Dst);
6175 
6176   MI.eraseFromParent();
6177   return Legalized;
6178 }
6179 
6180 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6181 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6182                                  MachineInstrBuilder Src, APInt Mask) {
6183   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6184   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6185   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6186   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6187   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6188   return B.buildOr(Dst, LHS, RHS);
6189 }
6190 
6191 LegalizerHelper::LegalizeResult
6192 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6193   Register Dst = MI.getOperand(0).getReg();
6194   Register Src = MI.getOperand(1).getReg();
6195   const LLT Ty = MRI.getType(Src);
6196   unsigned Size = Ty.getSizeInBits();
6197 
6198   MachineInstrBuilder BSWAP =
6199       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6200 
6201   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6202   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6203   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6204   MachineInstrBuilder Swap4 =
6205       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6206 
6207   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6208   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6209   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6210   MachineInstrBuilder Swap2 =
6211       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6212 
6213   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6214   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6215   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6216   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6217 
6218   MI.eraseFromParent();
6219   return Legalized;
6220 }
6221 
6222 LegalizerHelper::LegalizeResult
6223 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6224   MachineFunction &MF = MIRBuilder.getMF();
6225 
6226   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6227   int NameOpIdx = IsRead ? 1 : 0;
6228   int ValRegIndex = IsRead ? 0 : 1;
6229 
6230   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6231   const LLT Ty = MRI.getType(ValReg);
6232   const MDString *RegStr = cast<MDString>(
6233     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6234 
6235   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6236   if (!PhysReg.isValid())
6237     return UnableToLegalize;
6238 
6239   if (IsRead)
6240     MIRBuilder.buildCopy(ValReg, PhysReg);
6241   else
6242     MIRBuilder.buildCopy(PhysReg, ValReg);
6243 
6244   MI.eraseFromParent();
6245   return Legalized;
6246 }
6247 
6248 LegalizerHelper::LegalizeResult
6249 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6250   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6251   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6252   Register Result = MI.getOperand(0).getReg();
6253   LLT OrigTy = MRI.getType(Result);
6254   auto SizeInBits = OrigTy.getScalarSizeInBits();
6255   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6256 
6257   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6258   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6259   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6260   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6261 
6262   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6263   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6264   MIRBuilder.buildTrunc(Result, Shifted);
6265 
6266   MI.eraseFromParent();
6267   return Legalized;
6268 }
6269 
6270 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6271   // Implement vector G_SELECT in terms of XOR, AND, OR.
6272   Register DstReg = MI.getOperand(0).getReg();
6273   Register MaskReg = MI.getOperand(1).getReg();
6274   Register Op1Reg = MI.getOperand(2).getReg();
6275   Register Op2Reg = MI.getOperand(3).getReg();
6276   LLT DstTy = MRI.getType(DstReg);
6277   LLT MaskTy = MRI.getType(MaskReg);
6278   LLT Op1Ty = MRI.getType(Op1Reg);
6279   if (!DstTy.isVector())
6280     return UnableToLegalize;
6281 
6282   // Vector selects can have a scalar predicate. If so, splat into a vector and
6283   // finish for later legalization attempts to try again.
6284   if (MaskTy.isScalar()) {
6285     Register MaskElt = MaskReg;
6286     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6287       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6288     // Generate a vector splat idiom to be pattern matched later.
6289     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6290     Observer.changingInstr(MI);
6291     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6292     Observer.changedInstr(MI);
6293     return Legalized;
6294   }
6295 
6296   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6297     return UnableToLegalize;
6298   }
6299 
6300   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6301   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6302   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6303   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6304   MI.eraseFromParent();
6305   return Legalized;
6306 }
6307