1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 assert(Ty0.isScalar() && Ty1.isScalar() && "not yet handled"); 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 96 GISelChangeObserver &Observer, 97 MachineIRBuilder &Builder) 98 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 99 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 100 MIRBuilder.setMF(MF); 101 MIRBuilder.setChangeObserver(Observer); 102 } 103 104 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 105 GISelChangeObserver &Observer, 106 MachineIRBuilder &B) 107 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 108 MIRBuilder.setMF(MF); 109 MIRBuilder.setChangeObserver(Observer); 110 } 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 113 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 114 115 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 116 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 117 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 118 : UnableToLegalize; 119 auto Step = LI.getAction(MI, MRI); 120 switch (Step.Action) { 121 case Legal: 122 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 123 return AlreadyLegal; 124 case Libcall: 125 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 126 return libcall(MI); 127 case NarrowScalar: 128 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 129 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 130 case WidenScalar: 131 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 132 return widenScalar(MI, Step.TypeIdx, Step.NewType); 133 case Lower: 134 LLVM_DEBUG(dbgs() << ".. Lower\n"); 135 return lower(MI, Step.TypeIdx, Step.NewType); 136 case FewerElements: 137 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 138 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 139 case MoreElements: 140 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 141 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 142 case Custom: 143 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 144 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 145 : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 183 } else { 184 LeftoverTy = LLT::scalar(LeftoverSize); 185 } 186 187 // For irregular sizes, extract the individual parts. 188 for (unsigned I = 0; I != NumParts; ++I) { 189 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 190 VRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 192 } 193 194 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 195 Offset += LeftoverSize) { 196 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 197 LeftoverRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, Offset); 199 } 200 201 return true; 202 } 203 204 void LegalizerHelper::insertParts(Register DstReg, 205 LLT ResultTy, LLT PartTy, 206 ArrayRef<Register> PartRegs, 207 LLT LeftoverTy, 208 ArrayRef<Register> LeftoverRegs) { 209 if (!LeftoverTy.isValid()) { 210 assert(LeftoverRegs.empty()); 211 212 if (!ResultTy.isVector()) { 213 MIRBuilder.buildMerge(DstReg, PartRegs); 214 return; 215 } 216 217 if (PartTy.isVector()) 218 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 219 else 220 MIRBuilder.buildBuildVector(DstReg, PartRegs); 221 return; 222 } 223 224 unsigned PartSize = PartTy.getSizeInBits(); 225 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 226 227 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildUndef(CurResultReg); 229 230 unsigned Offset = 0; 231 for (Register PartReg : PartRegs) { 232 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 234 CurResultReg = NewResultReg; 235 Offset += PartSize; 236 } 237 238 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 239 // Use the original output register for the final insert to avoid a copy. 240 Register NewResultReg = (I + 1 == E) ? 241 DstReg : MRI.createGenericVirtualRegister(ResultTy); 242 243 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 244 CurResultReg = NewResultReg; 245 Offset += LeftoverPartSize; 246 } 247 } 248 249 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 250 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 251 const MachineInstr &MI) { 252 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 253 254 const int NumResults = MI.getNumOperands() - 1; 255 Regs.resize(NumResults); 256 for (int I = 0; I != NumResults; ++I) 257 Regs[I] = MI.getOperand(I).getReg(); 258 } 259 260 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 261 LLT NarrowTy, Register SrcReg) { 262 LLT SrcTy = MRI.getType(SrcReg); 263 264 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 265 if (SrcTy == GCDTy) { 266 // If the source already evenly divides the result type, we don't need to do 267 // anything. 268 Parts.push_back(SrcReg); 269 } else { 270 // Need to split into common type sized pieces. 271 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 272 getUnmergeResults(Parts, *Unmerge); 273 } 274 275 return GCDTy; 276 } 277 278 void LegalizerHelper::buildLCMMerge(Register DstReg, LLT NarrowTy, LLT GCDTy, 279 SmallVectorImpl<Register> &VRegs, 280 unsigned PadStrategy) { 281 LLT DstTy = MRI.getType(DstReg); 282 LLT LCMTy = getLCMType(DstTy, NarrowTy); 283 284 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 285 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 286 int NumOrigSrc = VRegs.size(); 287 288 Register PadReg; 289 290 // Get a value we can use to pad the source value if the sources won't evenly 291 // cover the result type. 292 if (NumOrigSrc < NumParts * NumSubParts) { 293 if (PadStrategy == TargetOpcode::G_ZEXT) 294 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 295 else if (PadStrategy == TargetOpcode::G_ANYEXT) 296 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 297 else { 298 assert(PadStrategy == TargetOpcode::G_SEXT); 299 300 // Shift the sign bit of the low register through the high register. 301 auto ShiftAmt = 302 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 303 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 304 } 305 } 306 307 // Registers for the final merge to be produced. 308 SmallVector<Register, 4> Remerge; 309 Remerge.resize(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge; 314 SubMerge.resize(NumSubParts); 315 316 // Once we've fully read off the end of the original source bits, we can reuse 317 // the same high bits for remaining padding elements. 318 Register AllPadReg; 319 320 // Build merges to the LCM type to cover the original result type. 321 for (int I = 0; I != NumParts; ++I) { 322 bool AllMergePartsArePadding = true; 323 324 // Build the requested merges to the requested type. 325 for (int J = 0; J != NumSubParts; ++J) { 326 int Idx = I * NumSubParts + J; 327 if (Idx >= NumOrigSrc) { 328 SubMerge[J] = PadReg; 329 continue; 330 } 331 332 SubMerge[J] = VRegs[Idx]; 333 334 // There are meaningful bits here we can't reuse later. 335 AllMergePartsArePadding = false; 336 } 337 338 // If we've filled up a complete piece with padding bits, we can directly 339 // emit the natural sized constant if applicable, rather than a merge of 340 // smaller constants. 341 if (AllMergePartsArePadding && !AllPadReg) { 342 if (PadStrategy == TargetOpcode::G_ANYEXT) 343 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 344 else if (PadStrategy == TargetOpcode::G_ZEXT) 345 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 346 347 // If this is a sign extension, we can't materialize a trivial constant 348 // with the right type and have to produce a merge. 349 } 350 351 if (AllPadReg) { 352 // Avoid creating additional instructions if we're just adding additional 353 // copies of padding bits. 354 Remerge[I] = AllPadReg; 355 continue; 356 } 357 358 if (NumSubParts == 1) 359 Remerge[I] = SubMerge[0]; 360 else 361 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 362 363 // In the sign extend padding case, re-use the first all-signbit merge. 364 if (AllMergePartsArePadding && !AllPadReg) 365 AllPadReg = Remerge[I]; 366 } 367 368 // Create the merge to the widened source, and extract the relevant bits into 369 // the result. 370 if (DstTy == LCMTy) 371 MIRBuilder.buildMerge(DstReg, Remerge); 372 else 373 MIRBuilder.buildTrunc(DstReg, MIRBuilder.buildMerge(LCMTy, Remerge)); 374 } 375 376 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 377 switch (Opcode) { 378 case TargetOpcode::G_SDIV: 379 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 380 switch (Size) { 381 case 32: 382 return RTLIB::SDIV_I32; 383 case 64: 384 return RTLIB::SDIV_I64; 385 case 128: 386 return RTLIB::SDIV_I128; 387 default: 388 llvm_unreachable("unexpected size"); 389 } 390 case TargetOpcode::G_UDIV: 391 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 392 switch (Size) { 393 case 32: 394 return RTLIB::UDIV_I32; 395 case 64: 396 return RTLIB::UDIV_I64; 397 case 128: 398 return RTLIB::UDIV_I128; 399 default: 400 llvm_unreachable("unexpected size"); 401 } 402 case TargetOpcode::G_SREM: 403 assert((Size == 32 || Size == 64) && "Unsupported size"); 404 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 405 case TargetOpcode::G_UREM: 406 assert((Size == 32 || Size == 64) && "Unsupported size"); 407 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 408 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 409 assert(Size == 32 && "Unsupported size"); 410 return RTLIB::CTLZ_I32; 411 case TargetOpcode::G_FADD: 412 assert((Size == 32 || Size == 64) && "Unsupported size"); 413 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 414 case TargetOpcode::G_FSUB: 415 assert((Size == 32 || Size == 64) && "Unsupported size"); 416 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 417 case TargetOpcode::G_FMUL: 418 assert((Size == 32 || Size == 64) && "Unsupported size"); 419 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 420 case TargetOpcode::G_FDIV: 421 assert((Size == 32 || Size == 64) && "Unsupported size"); 422 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 423 case TargetOpcode::G_FEXP: 424 assert((Size == 32 || Size == 64) && "Unsupported size"); 425 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 426 case TargetOpcode::G_FEXP2: 427 assert((Size == 32 || Size == 64) && "Unsupported size"); 428 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 429 case TargetOpcode::G_FREM: 430 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 431 case TargetOpcode::G_FPOW: 432 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 433 case TargetOpcode::G_FMA: 434 assert((Size == 32 || Size == 64) && "Unsupported size"); 435 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 436 case TargetOpcode::G_FSIN: 437 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 438 return Size == 128 ? RTLIB::SIN_F128 439 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 440 case TargetOpcode::G_FCOS: 441 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 442 return Size == 128 ? RTLIB::COS_F128 443 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 444 case TargetOpcode::G_FLOG10: 445 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 446 return Size == 128 ? RTLIB::LOG10_F128 447 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 448 case TargetOpcode::G_FLOG: 449 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 450 return Size == 128 ? RTLIB::LOG_F128 451 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 452 case TargetOpcode::G_FLOG2: 453 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 454 return Size == 128 ? RTLIB::LOG2_F128 455 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 456 case TargetOpcode::G_FCEIL: 457 assert((Size == 32 || Size == 64) && "Unsupported size"); 458 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 459 case TargetOpcode::G_FFLOOR: 460 assert((Size == 32 || Size == 64) && "Unsupported size"); 461 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 462 } 463 llvm_unreachable("Unknown libcall function"); 464 } 465 466 /// True if an instruction is in tail position in its caller. Intended for 467 /// legalizing libcalls as tail calls when possible. 468 static bool isLibCallInTailPosition(MachineInstr &MI) { 469 const Function &F = MI.getParent()->getParent()->getFunction(); 470 471 // Conservatively require the attributes of the call to match those of 472 // the return. Ignore NoAlias and NonNull because they don't affect the 473 // call sequence. 474 AttributeList CallerAttrs = F.getAttributes(); 475 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 476 .removeAttribute(Attribute::NoAlias) 477 .removeAttribute(Attribute::NonNull) 478 .hasAttributes()) 479 return false; 480 481 // It's not safe to eliminate the sign / zero extension of the return value. 482 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 483 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 484 return false; 485 486 // Only tail call if the following instruction is a standard return. 487 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 488 MachineInstr *Next = MI.getNextNode(); 489 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 490 return false; 491 492 return true; 493 } 494 495 LegalizerHelper::LegalizeResult 496 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 497 const CallLowering::ArgInfo &Result, 498 ArrayRef<CallLowering::ArgInfo> Args) { 499 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 500 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 501 const char *Name = TLI.getLibcallName(Libcall); 502 503 CallLowering::CallLoweringInfo Info; 504 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 505 Info.Callee = MachineOperand::CreateES(Name); 506 Info.OrigRet = Result; 507 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 508 if (!CLI.lowerCall(MIRBuilder, Info)) 509 return LegalizerHelper::UnableToLegalize; 510 511 return LegalizerHelper::Legalized; 512 } 513 514 // Useful for libcalls where all operands have the same type. 515 static LegalizerHelper::LegalizeResult 516 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 517 Type *OpType) { 518 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 519 520 SmallVector<CallLowering::ArgInfo, 3> Args; 521 for (unsigned i = 1; i < MI.getNumOperands(); i++) 522 Args.push_back({MI.getOperand(i).getReg(), OpType}); 523 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 524 Args); 525 } 526 527 LegalizerHelper::LegalizeResult 528 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 529 MachineInstr &MI) { 530 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 531 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 532 533 SmallVector<CallLowering::ArgInfo, 3> Args; 534 // Add all the args, except for the last which is an imm denoting 'tail'. 535 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 536 Register Reg = MI.getOperand(i).getReg(); 537 538 // Need derive an IR type for call lowering. 539 LLT OpLLT = MRI.getType(Reg); 540 Type *OpTy = nullptr; 541 if (OpLLT.isPointer()) 542 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 543 else 544 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 545 Args.push_back({Reg, OpTy}); 546 } 547 548 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 549 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 550 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 551 RTLIB::Libcall RTLibcall; 552 switch (ID) { 553 case Intrinsic::memcpy: 554 RTLibcall = RTLIB::MEMCPY; 555 break; 556 case Intrinsic::memset: 557 RTLibcall = RTLIB::MEMSET; 558 break; 559 case Intrinsic::memmove: 560 RTLibcall = RTLIB::MEMMOVE; 561 break; 562 default: 563 return LegalizerHelper::UnableToLegalize; 564 } 565 const char *Name = TLI.getLibcallName(RTLibcall); 566 567 MIRBuilder.setInstr(MI); 568 569 CallLowering::CallLoweringInfo Info; 570 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 571 Info.Callee = MachineOperand::CreateES(Name); 572 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 573 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 574 isLibCallInTailPosition(MI); 575 576 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 577 if (!CLI.lowerCall(MIRBuilder, Info)) 578 return LegalizerHelper::UnableToLegalize; 579 580 if (Info.LoweredTailCall) { 581 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 582 // We must have a return following the call to get past 583 // isLibCallInTailPosition. 584 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 585 "Expected instr following MI to be a return?"); 586 587 // We lowered a tail call, so the call is now the return from the block. 588 // Delete the old return. 589 MI.getNextNode()->eraseFromParent(); 590 } 591 592 return LegalizerHelper::Legalized; 593 } 594 595 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 596 Type *FromType) { 597 auto ToMVT = MVT::getVT(ToType); 598 auto FromMVT = MVT::getVT(FromType); 599 600 switch (Opcode) { 601 case TargetOpcode::G_FPEXT: 602 return RTLIB::getFPEXT(FromMVT, ToMVT); 603 case TargetOpcode::G_FPTRUNC: 604 return RTLIB::getFPROUND(FromMVT, ToMVT); 605 case TargetOpcode::G_FPTOSI: 606 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 607 case TargetOpcode::G_FPTOUI: 608 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 609 case TargetOpcode::G_SITOFP: 610 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 611 case TargetOpcode::G_UITOFP: 612 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 613 } 614 llvm_unreachable("Unsupported libcall function"); 615 } 616 617 static LegalizerHelper::LegalizeResult 618 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 619 Type *FromType) { 620 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 621 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 622 {{MI.getOperand(1).getReg(), FromType}}); 623 } 624 625 LegalizerHelper::LegalizeResult 626 LegalizerHelper::libcall(MachineInstr &MI) { 627 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 628 unsigned Size = LLTy.getSizeInBits(); 629 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 630 631 MIRBuilder.setInstr(MI); 632 633 switch (MI.getOpcode()) { 634 default: 635 return UnableToLegalize; 636 case TargetOpcode::G_SDIV: 637 case TargetOpcode::G_UDIV: 638 case TargetOpcode::G_SREM: 639 case TargetOpcode::G_UREM: 640 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 641 Type *HLTy = IntegerType::get(Ctx, Size); 642 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 643 if (Status != Legalized) 644 return Status; 645 break; 646 } 647 case TargetOpcode::G_FADD: 648 case TargetOpcode::G_FSUB: 649 case TargetOpcode::G_FMUL: 650 case TargetOpcode::G_FDIV: 651 case TargetOpcode::G_FMA: 652 case TargetOpcode::G_FPOW: 653 case TargetOpcode::G_FREM: 654 case TargetOpcode::G_FCOS: 655 case TargetOpcode::G_FSIN: 656 case TargetOpcode::G_FLOG10: 657 case TargetOpcode::G_FLOG: 658 case TargetOpcode::G_FLOG2: 659 case TargetOpcode::G_FEXP: 660 case TargetOpcode::G_FEXP2: 661 case TargetOpcode::G_FCEIL: 662 case TargetOpcode::G_FFLOOR: { 663 if (Size > 64) { 664 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 665 return UnableToLegalize; 666 } 667 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 668 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 669 if (Status != Legalized) 670 return Status; 671 break; 672 } 673 case TargetOpcode::G_FPEXT: { 674 // FIXME: Support other floating point types (half, fp128 etc) 675 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 676 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 677 if (ToSize != 64 || FromSize != 32) 678 return UnableToLegalize; 679 LegalizeResult Status = conversionLibcall( 680 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 681 if (Status != Legalized) 682 return Status; 683 break; 684 } 685 case TargetOpcode::G_FPTRUNC: { 686 // FIXME: Support other floating point types (half, fp128 etc) 687 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 688 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 689 if (ToSize != 32 || FromSize != 64) 690 return UnableToLegalize; 691 LegalizeResult Status = conversionLibcall( 692 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_FPTOSI: 698 case TargetOpcode::G_FPTOUI: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 707 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 case TargetOpcode::G_SITOFP: 713 case TargetOpcode::G_UITOFP: { 714 // FIXME: Support other types 715 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 716 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 717 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall( 720 MI, MIRBuilder, 721 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 722 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 } 728 729 MI.eraseFromParent(); 730 return Legalized; 731 } 732 733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 734 unsigned TypeIdx, 735 LLT NarrowTy) { 736 MIRBuilder.setInstr(MI); 737 738 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 740 741 switch (MI.getOpcode()) { 742 default: 743 return UnableToLegalize; 744 case TargetOpcode::G_IMPLICIT_DEF: { 745 // FIXME: add support for when SizeOp0 isn't an exact multiple of 746 // NarrowSize. 747 if (SizeOp0 % NarrowSize != 0) 748 return UnableToLegalize; 749 int NumParts = SizeOp0 / NarrowSize; 750 751 SmallVector<Register, 2> DstRegs; 752 for (int i = 0; i < NumParts; ++i) 753 DstRegs.push_back( 754 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 755 756 Register DstReg = MI.getOperand(0).getReg(); 757 if(MRI.getType(DstReg).isVector()) 758 MIRBuilder.buildBuildVector(DstReg, DstRegs); 759 else 760 MIRBuilder.buildMerge(DstReg, DstRegs); 761 MI.eraseFromParent(); 762 return Legalized; 763 } 764 case TargetOpcode::G_CONSTANT: { 765 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 766 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 767 unsigned TotalSize = Ty.getSizeInBits(); 768 unsigned NarrowSize = NarrowTy.getSizeInBits(); 769 int NumParts = TotalSize / NarrowSize; 770 771 SmallVector<Register, 4> PartRegs; 772 for (int I = 0; I != NumParts; ++I) { 773 unsigned Offset = I * NarrowSize; 774 auto K = MIRBuilder.buildConstant(NarrowTy, 775 Val.lshr(Offset).trunc(NarrowSize)); 776 PartRegs.push_back(K.getReg(0)); 777 } 778 779 LLT LeftoverTy; 780 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 781 SmallVector<Register, 1> LeftoverRegs; 782 if (LeftoverBits != 0) { 783 LeftoverTy = LLT::scalar(LeftoverBits); 784 auto K = MIRBuilder.buildConstant( 785 LeftoverTy, 786 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 787 LeftoverRegs.push_back(K.getReg(0)); 788 } 789 790 insertParts(MI.getOperand(0).getReg(), 791 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 792 793 MI.eraseFromParent(); 794 return Legalized; 795 } 796 case TargetOpcode::G_SEXT: 797 case TargetOpcode::G_ZEXT: 798 case TargetOpcode::G_ANYEXT: 799 return narrowScalarExt(MI, TypeIdx, NarrowTy); 800 case TargetOpcode::G_TRUNC: { 801 if (TypeIdx != 1) 802 return UnableToLegalize; 803 804 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 805 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 806 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 807 return UnableToLegalize; 808 } 809 810 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 811 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 812 MI.eraseFromParent(); 813 return Legalized; 814 } 815 816 case TargetOpcode::G_ADD: { 817 // FIXME: add support for when SizeOp0 isn't an exact multiple of 818 // NarrowSize. 819 if (SizeOp0 % NarrowSize != 0) 820 return UnableToLegalize; 821 // Expand in terms of carry-setting/consuming G_ADDE instructions. 822 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 823 824 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 825 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 826 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 827 828 Register CarryIn; 829 for (int i = 0; i < NumParts; ++i) { 830 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 831 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 832 833 if (i == 0) 834 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 835 else { 836 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 837 Src2Regs[i], CarryIn); 838 } 839 840 DstRegs.push_back(DstReg); 841 CarryIn = CarryOut; 842 } 843 Register DstReg = MI.getOperand(0).getReg(); 844 if(MRI.getType(DstReg).isVector()) 845 MIRBuilder.buildBuildVector(DstReg, DstRegs); 846 else 847 MIRBuilder.buildMerge(DstReg, DstRegs); 848 MI.eraseFromParent(); 849 return Legalized; 850 } 851 case TargetOpcode::G_SUB: { 852 // FIXME: add support for when SizeOp0 isn't an exact multiple of 853 // NarrowSize. 854 if (SizeOp0 % NarrowSize != 0) 855 return UnableToLegalize; 856 857 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 858 859 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 860 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 861 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 862 863 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 864 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 865 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 866 {Src1Regs[0], Src2Regs[0]}); 867 DstRegs.push_back(DstReg); 868 Register BorrowIn = BorrowOut; 869 for (int i = 1; i < NumParts; ++i) { 870 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 871 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 872 873 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 874 {Src1Regs[i], Src2Regs[i], BorrowIn}); 875 876 DstRegs.push_back(DstReg); 877 BorrowIn = BorrowOut; 878 } 879 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 880 MI.eraseFromParent(); 881 return Legalized; 882 } 883 case TargetOpcode::G_MUL: 884 case TargetOpcode::G_UMULH: 885 return narrowScalarMul(MI, NarrowTy); 886 case TargetOpcode::G_EXTRACT: 887 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 888 case TargetOpcode::G_INSERT: 889 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_LOAD: { 891 const auto &MMO = **MI.memoperands_begin(); 892 Register DstReg = MI.getOperand(0).getReg(); 893 LLT DstTy = MRI.getType(DstReg); 894 if (DstTy.isVector()) 895 return UnableToLegalize; 896 897 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 898 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 899 auto &MMO = **MI.memoperands_begin(); 900 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 901 MIRBuilder.buildAnyExt(DstReg, TmpReg); 902 MI.eraseFromParent(); 903 return Legalized; 904 } 905 906 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 907 } 908 case TargetOpcode::G_ZEXTLOAD: 909 case TargetOpcode::G_SEXTLOAD: { 910 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 911 Register DstReg = MI.getOperand(0).getReg(); 912 Register PtrReg = MI.getOperand(1).getReg(); 913 914 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 915 auto &MMO = **MI.memoperands_begin(); 916 if (MMO.getSizeInBits() == NarrowSize) { 917 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 918 } else { 919 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 920 } 921 922 if (ZExt) 923 MIRBuilder.buildZExt(DstReg, TmpReg); 924 else 925 MIRBuilder.buildSExt(DstReg, TmpReg); 926 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_STORE: { 931 const auto &MMO = **MI.memoperands_begin(); 932 933 Register SrcReg = MI.getOperand(0).getReg(); 934 LLT SrcTy = MRI.getType(SrcReg); 935 if (SrcTy.isVector()) 936 return UnableToLegalize; 937 938 int NumParts = SizeOp0 / NarrowSize; 939 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 940 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 941 if (SrcTy.isVector() && LeftoverBits != 0) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 auto &MMO = **MI.memoperands_begin(); 947 MIRBuilder.buildTrunc(TmpReg, SrcReg); 948 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 949 MI.eraseFromParent(); 950 return Legalized; 951 } 952 953 return reduceLoadStoreWidth(MI, 0, NarrowTy); 954 } 955 case TargetOpcode::G_SELECT: 956 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 957 case TargetOpcode::G_AND: 958 case TargetOpcode::G_OR: 959 case TargetOpcode::G_XOR: { 960 // Legalize bitwise operation: 961 // A = BinOp<Ty> B, C 962 // into: 963 // B1, ..., BN = G_UNMERGE_VALUES B 964 // C1, ..., CN = G_UNMERGE_VALUES C 965 // A1 = BinOp<Ty/N> B1, C2 966 // ... 967 // AN = BinOp<Ty/N> BN, CN 968 // A = G_MERGE_VALUES A1, ..., AN 969 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 970 } 971 case TargetOpcode::G_SHL: 972 case TargetOpcode::G_LSHR: 973 case TargetOpcode::G_ASHR: 974 return narrowScalarShift(MI, TypeIdx, NarrowTy); 975 case TargetOpcode::G_CTLZ: 976 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 977 case TargetOpcode::G_CTTZ: 978 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 979 case TargetOpcode::G_CTPOP: 980 if (TypeIdx != 0) 981 return UnableToLegalize; // TODO 982 983 Observer.changingInstr(MI); 984 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 985 Observer.changedInstr(MI); 986 return Legalized; 987 case TargetOpcode::G_INTTOPTR: 988 if (TypeIdx != 1) 989 return UnableToLegalize; 990 991 Observer.changingInstr(MI); 992 narrowScalarSrc(MI, NarrowTy, 1); 993 Observer.changedInstr(MI); 994 return Legalized; 995 case TargetOpcode::G_PTRTOINT: 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 Observer.changingInstr(MI); 1000 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1001 Observer.changedInstr(MI); 1002 return Legalized; 1003 case TargetOpcode::G_PHI: { 1004 unsigned NumParts = SizeOp0 / NarrowSize; 1005 SmallVector<Register, 2> DstRegs; 1006 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 1007 DstRegs.resize(NumParts); 1008 SrcRegs.resize(MI.getNumOperands() / 2); 1009 Observer.changingInstr(MI); 1010 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1011 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1012 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1013 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1014 SrcRegs[i / 2]); 1015 } 1016 MachineBasicBlock &MBB = *MI.getParent(); 1017 MIRBuilder.setInsertPt(MBB, MI); 1018 for (unsigned i = 0; i < NumParts; ++i) { 1019 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1020 MachineInstrBuilder MIB = 1021 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1022 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1023 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1024 } 1025 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1026 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1027 Observer.changedInstr(MI); 1028 MI.eraseFromParent(); 1029 return Legalized; 1030 } 1031 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1032 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1033 if (TypeIdx != 2) 1034 return UnableToLegalize; 1035 1036 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1037 Observer.changingInstr(MI); 1038 narrowScalarSrc(MI, NarrowTy, OpIdx); 1039 Observer.changedInstr(MI); 1040 return Legalized; 1041 } 1042 case TargetOpcode::G_ICMP: { 1043 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1044 if (NarrowSize * 2 != SrcSize) 1045 return UnableToLegalize; 1046 1047 Observer.changingInstr(MI); 1048 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1049 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1050 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1051 1052 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1053 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1054 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1055 1056 CmpInst::Predicate Pred = 1057 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1058 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1059 1060 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1061 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1062 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1063 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1064 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1065 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1066 } else { 1067 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1068 MachineInstrBuilder CmpHEQ = 1069 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1070 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1071 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1072 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1073 } 1074 Observer.changedInstr(MI); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 case TargetOpcode::G_SEXT_INREG: { 1079 if (TypeIdx != 0) 1080 return UnableToLegalize; 1081 1082 if (!MI.getOperand(2).isImm()) 1083 return UnableToLegalize; 1084 int64_t SizeInBits = MI.getOperand(2).getImm(); 1085 1086 // So long as the new type has more bits than the bits we're extending we 1087 // don't need to break it apart. 1088 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1089 Observer.changingInstr(MI); 1090 // We don't lose any non-extension bits by truncating the src and 1091 // sign-extending the dst. 1092 MachineOperand &MO1 = MI.getOperand(1); 1093 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1094 MO1.setReg(TruncMIB.getReg(0)); 1095 1096 MachineOperand &MO2 = MI.getOperand(0); 1097 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1098 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1099 MIRBuilder.buildSExt(MO2, DstExt); 1100 MO2.setReg(DstExt); 1101 Observer.changedInstr(MI); 1102 return Legalized; 1103 } 1104 1105 // Break it apart. Components below the extension point are unmodified. The 1106 // component containing the extension point becomes a narrower SEXT_INREG. 1107 // Components above it are ashr'd from the component containing the 1108 // extension point. 1109 if (SizeOp0 % NarrowSize != 0) 1110 return UnableToLegalize; 1111 int NumParts = SizeOp0 / NarrowSize; 1112 1113 // List the registers where the destination will be scattered. 1114 SmallVector<Register, 2> DstRegs; 1115 // List the registers where the source will be split. 1116 SmallVector<Register, 2> SrcRegs; 1117 1118 // Create all the temporary registers. 1119 for (int i = 0; i < NumParts; ++i) { 1120 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1121 1122 SrcRegs.push_back(SrcReg); 1123 } 1124 1125 // Explode the big arguments into smaller chunks. 1126 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1127 1128 Register AshrCstReg = 1129 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1130 .getReg(0); 1131 Register FullExtensionReg = 0; 1132 Register PartialExtensionReg = 0; 1133 1134 // Do the operation on each small part. 1135 for (int i = 0; i < NumParts; ++i) { 1136 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1137 DstRegs.push_back(SrcRegs[i]); 1138 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1139 assert(PartialExtensionReg && 1140 "Expected to visit partial extension before full"); 1141 if (FullExtensionReg) { 1142 DstRegs.push_back(FullExtensionReg); 1143 continue; 1144 } 1145 DstRegs.push_back( 1146 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1147 .getReg(0)); 1148 FullExtensionReg = DstRegs.back(); 1149 } else { 1150 DstRegs.push_back( 1151 MIRBuilder 1152 .buildInstr( 1153 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1154 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1155 .getReg(0)); 1156 PartialExtensionReg = DstRegs.back(); 1157 } 1158 } 1159 1160 // Gather the destination registers into the final destination. 1161 Register DstReg = MI.getOperand(0).getReg(); 1162 MIRBuilder.buildMerge(DstReg, DstRegs); 1163 MI.eraseFromParent(); 1164 return Legalized; 1165 } 1166 case TargetOpcode::G_BSWAP: 1167 case TargetOpcode::G_BITREVERSE: { 1168 if (SizeOp0 % NarrowSize != 0) 1169 return UnableToLegalize; 1170 1171 Observer.changingInstr(MI); 1172 SmallVector<Register, 2> SrcRegs, DstRegs; 1173 unsigned NumParts = SizeOp0 / NarrowSize; 1174 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1175 1176 for (unsigned i = 0; i < NumParts; ++i) { 1177 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1178 {SrcRegs[NumParts - 1 - i]}); 1179 DstRegs.push_back(DstPart.getReg(0)); 1180 } 1181 1182 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1183 1184 Observer.changedInstr(MI); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 } 1189 } 1190 1191 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1192 unsigned OpIdx, unsigned ExtOpcode) { 1193 MachineOperand &MO = MI.getOperand(OpIdx); 1194 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1195 MO.setReg(ExtB.getReg(0)); 1196 } 1197 1198 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1199 unsigned OpIdx) { 1200 MachineOperand &MO = MI.getOperand(OpIdx); 1201 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1202 MO.setReg(ExtB.getReg(0)); 1203 } 1204 1205 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1206 unsigned OpIdx, unsigned TruncOpcode) { 1207 MachineOperand &MO = MI.getOperand(OpIdx); 1208 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1209 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1210 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1211 MO.setReg(DstExt); 1212 } 1213 1214 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1215 unsigned OpIdx, unsigned ExtOpcode) { 1216 MachineOperand &MO = MI.getOperand(OpIdx); 1217 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1218 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1219 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1220 MO.setReg(DstTrunc); 1221 } 1222 1223 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1224 unsigned OpIdx) { 1225 MachineOperand &MO = MI.getOperand(OpIdx); 1226 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1227 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1228 MIRBuilder.buildExtract(MO, DstExt, 0); 1229 MO.setReg(DstExt); 1230 } 1231 1232 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1233 unsigned OpIdx) { 1234 MachineOperand &MO = MI.getOperand(OpIdx); 1235 1236 LLT OldTy = MRI.getType(MO.getReg()); 1237 unsigned OldElts = OldTy.getNumElements(); 1238 unsigned NewElts = MoreTy.getNumElements(); 1239 1240 unsigned NumParts = NewElts / OldElts; 1241 1242 // Use concat_vectors if the result is a multiple of the number of elements. 1243 if (NumParts * OldElts == NewElts) { 1244 SmallVector<Register, 8> Parts; 1245 Parts.push_back(MO.getReg()); 1246 1247 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1248 for (unsigned I = 1; I != NumParts; ++I) 1249 Parts.push_back(ImpDef); 1250 1251 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1252 MO.setReg(Concat.getReg(0)); 1253 return; 1254 } 1255 1256 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1257 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1258 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1259 MO.setReg(MoreReg); 1260 } 1261 1262 LegalizerHelper::LegalizeResult 1263 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1264 LLT WideTy) { 1265 if (TypeIdx != 1) 1266 return UnableToLegalize; 1267 1268 Register DstReg = MI.getOperand(0).getReg(); 1269 LLT DstTy = MRI.getType(DstReg); 1270 if (DstTy.isVector()) 1271 return UnableToLegalize; 1272 1273 Register Src1 = MI.getOperand(1).getReg(); 1274 LLT SrcTy = MRI.getType(Src1); 1275 const int DstSize = DstTy.getSizeInBits(); 1276 const int SrcSize = SrcTy.getSizeInBits(); 1277 const int WideSize = WideTy.getSizeInBits(); 1278 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1279 1280 unsigned NumOps = MI.getNumOperands(); 1281 unsigned NumSrc = MI.getNumOperands() - 1; 1282 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1283 1284 if (WideSize >= DstSize) { 1285 // Directly pack the bits in the target type. 1286 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1287 1288 for (unsigned I = 2; I != NumOps; ++I) { 1289 const unsigned Offset = (I - 1) * PartSize; 1290 1291 Register SrcReg = MI.getOperand(I).getReg(); 1292 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1293 1294 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1295 1296 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1297 MRI.createGenericVirtualRegister(WideTy); 1298 1299 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1300 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1301 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1302 ResultReg = NextResult; 1303 } 1304 1305 if (WideSize > DstSize) 1306 MIRBuilder.buildTrunc(DstReg, ResultReg); 1307 else if (DstTy.isPointer()) 1308 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1309 1310 MI.eraseFromParent(); 1311 return Legalized; 1312 } 1313 1314 // Unmerge the original values to the GCD type, and recombine to the next 1315 // multiple greater than the original type. 1316 // 1317 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1318 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1319 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1320 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1321 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1322 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1323 // %12:_(s12) = G_MERGE_VALUES %10, %11 1324 // 1325 // Padding with undef if necessary: 1326 // 1327 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1328 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1329 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1330 // %7:_(s2) = G_IMPLICIT_DEF 1331 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1332 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1333 // %10:_(s12) = G_MERGE_VALUES %8, %9 1334 1335 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1336 LLT GCDTy = LLT::scalar(GCD); 1337 1338 SmallVector<Register, 8> Parts; 1339 SmallVector<Register, 8> NewMergeRegs; 1340 SmallVector<Register, 8> Unmerges; 1341 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1342 1343 // Decompose the original operands if they don't evenly divide. 1344 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1345 Register SrcReg = MI.getOperand(I).getReg(); 1346 if (GCD == SrcSize) { 1347 Unmerges.push_back(SrcReg); 1348 } else { 1349 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1350 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1351 Unmerges.push_back(Unmerge.getReg(J)); 1352 } 1353 } 1354 1355 // Pad with undef to the next size that is a multiple of the requested size. 1356 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1357 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1358 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1359 Unmerges.push_back(UndefReg); 1360 } 1361 1362 const int PartsPerGCD = WideSize / GCD; 1363 1364 // Build merges of each piece. 1365 ArrayRef<Register> Slicer(Unmerges); 1366 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1367 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1368 NewMergeRegs.push_back(Merge.getReg(0)); 1369 } 1370 1371 // A truncate may be necessary if the requested type doesn't evenly divide the 1372 // original result type. 1373 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1374 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1375 } else { 1376 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1377 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1378 } 1379 1380 MI.eraseFromParent(); 1381 return Legalized; 1382 } 1383 1384 LegalizerHelper::LegalizeResult 1385 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1386 LLT WideTy) { 1387 if (TypeIdx != 0) 1388 return UnableToLegalize; 1389 1390 unsigned NumDst = MI.getNumOperands() - 1; 1391 Register SrcReg = MI.getOperand(NumDst).getReg(); 1392 LLT SrcTy = MRI.getType(SrcReg); 1393 if (!SrcTy.isScalar()) 1394 return UnableToLegalize; 1395 1396 Register Dst0Reg = MI.getOperand(0).getReg(); 1397 LLT DstTy = MRI.getType(Dst0Reg); 1398 if (!DstTy.isScalar()) 1399 return UnableToLegalize; 1400 1401 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1402 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1403 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1404 1405 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1406 1407 for (unsigned I = 1; I != NumDst; ++I) { 1408 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1409 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1410 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1411 } 1412 1413 Observer.changingInstr(MI); 1414 1415 MI.getOperand(NumDst).setReg(WideSrc.getReg(0)); 1416 for (unsigned I = 0; I != NumDst; ++I) 1417 widenScalarDst(MI, WideTy, I); 1418 1419 Observer.changedInstr(MI); 1420 1421 return Legalized; 1422 } 1423 1424 LegalizerHelper::LegalizeResult 1425 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1426 LLT WideTy) { 1427 Register DstReg = MI.getOperand(0).getReg(); 1428 Register SrcReg = MI.getOperand(1).getReg(); 1429 LLT SrcTy = MRI.getType(SrcReg); 1430 1431 LLT DstTy = MRI.getType(DstReg); 1432 unsigned Offset = MI.getOperand(2).getImm(); 1433 1434 if (TypeIdx == 0) { 1435 if (SrcTy.isVector() || DstTy.isVector()) 1436 return UnableToLegalize; 1437 1438 SrcOp Src(SrcReg); 1439 if (SrcTy.isPointer()) { 1440 // Extracts from pointers can be handled only if they are really just 1441 // simple integers. 1442 const DataLayout &DL = MIRBuilder.getDataLayout(); 1443 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1444 return UnableToLegalize; 1445 1446 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1447 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1448 SrcTy = SrcAsIntTy; 1449 } 1450 1451 if (DstTy.isPointer()) 1452 return UnableToLegalize; 1453 1454 if (Offset == 0) { 1455 // Avoid a shift in the degenerate case. 1456 MIRBuilder.buildTrunc(DstReg, 1457 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1458 MI.eraseFromParent(); 1459 return Legalized; 1460 } 1461 1462 // Do a shift in the source type. 1463 LLT ShiftTy = SrcTy; 1464 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1465 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1466 ShiftTy = WideTy; 1467 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1468 return UnableToLegalize; 1469 1470 auto LShr = MIRBuilder.buildLShr( 1471 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1472 MIRBuilder.buildTrunc(DstReg, LShr); 1473 MI.eraseFromParent(); 1474 return Legalized; 1475 } 1476 1477 if (SrcTy.isScalar()) { 1478 Observer.changingInstr(MI); 1479 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1480 Observer.changedInstr(MI); 1481 return Legalized; 1482 } 1483 1484 if (!SrcTy.isVector()) 1485 return UnableToLegalize; 1486 1487 if (DstTy != SrcTy.getElementType()) 1488 return UnableToLegalize; 1489 1490 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1491 return UnableToLegalize; 1492 1493 Observer.changingInstr(MI); 1494 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1495 1496 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1497 Offset); 1498 widenScalarDst(MI, WideTy.getScalarType(), 0); 1499 Observer.changedInstr(MI); 1500 return Legalized; 1501 } 1502 1503 LegalizerHelper::LegalizeResult 1504 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1505 LLT WideTy) { 1506 if (TypeIdx != 0) 1507 return UnableToLegalize; 1508 Observer.changingInstr(MI); 1509 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1510 widenScalarDst(MI, WideTy); 1511 Observer.changedInstr(MI); 1512 return Legalized; 1513 } 1514 1515 LegalizerHelper::LegalizeResult 1516 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1517 MIRBuilder.setInstr(MI); 1518 1519 switch (MI.getOpcode()) { 1520 default: 1521 return UnableToLegalize; 1522 case TargetOpcode::G_EXTRACT: 1523 return widenScalarExtract(MI, TypeIdx, WideTy); 1524 case TargetOpcode::G_INSERT: 1525 return widenScalarInsert(MI, TypeIdx, WideTy); 1526 case TargetOpcode::G_MERGE_VALUES: 1527 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1528 case TargetOpcode::G_UNMERGE_VALUES: 1529 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1530 case TargetOpcode::G_UADDO: 1531 case TargetOpcode::G_USUBO: { 1532 if (TypeIdx == 1) 1533 return UnableToLegalize; // TODO 1534 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1535 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1536 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1537 ? TargetOpcode::G_ADD 1538 : TargetOpcode::G_SUB; 1539 // Do the arithmetic in the larger type. 1540 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1541 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1542 APInt Mask = 1543 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1544 auto AndOp = MIRBuilder.buildAnd( 1545 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1546 // There is no overflow if the AndOp is the same as NewOp. 1547 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1548 // Now trunc the NewOp to the original result. 1549 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1550 MI.eraseFromParent(); 1551 return Legalized; 1552 } 1553 case TargetOpcode::G_CTTZ: 1554 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1555 case TargetOpcode::G_CTLZ: 1556 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1557 case TargetOpcode::G_CTPOP: { 1558 if (TypeIdx == 0) { 1559 Observer.changingInstr(MI); 1560 widenScalarDst(MI, WideTy, 0); 1561 Observer.changedInstr(MI); 1562 return Legalized; 1563 } 1564 1565 Register SrcReg = MI.getOperand(1).getReg(); 1566 1567 // First ZEXT the input. 1568 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1569 LLT CurTy = MRI.getType(SrcReg); 1570 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1571 // The count is the same in the larger type except if the original 1572 // value was zero. This can be handled by setting the bit just off 1573 // the top of the original type. 1574 auto TopBit = 1575 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1576 MIBSrc = MIRBuilder.buildOr( 1577 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1578 } 1579 1580 // Perform the operation at the larger size. 1581 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1582 // This is already the correct result for CTPOP and CTTZs 1583 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1584 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1585 // The correct result is NewOp - (Difference in widety and current ty). 1586 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1587 MIBNewOp = MIRBuilder.buildSub( 1588 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1589 } 1590 1591 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1592 MI.eraseFromParent(); 1593 return Legalized; 1594 } 1595 case TargetOpcode::G_BSWAP: { 1596 Observer.changingInstr(MI); 1597 Register DstReg = MI.getOperand(0).getReg(); 1598 1599 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1600 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1601 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1602 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1603 1604 MI.getOperand(0).setReg(DstExt); 1605 1606 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1607 1608 LLT Ty = MRI.getType(DstReg); 1609 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1610 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1611 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1612 1613 MIRBuilder.buildTrunc(DstReg, ShrReg); 1614 Observer.changedInstr(MI); 1615 return Legalized; 1616 } 1617 case TargetOpcode::G_BITREVERSE: { 1618 Observer.changingInstr(MI); 1619 1620 Register DstReg = MI.getOperand(0).getReg(); 1621 LLT Ty = MRI.getType(DstReg); 1622 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1623 1624 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1625 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1626 MI.getOperand(0).setReg(DstExt); 1627 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1628 1629 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1630 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1631 MIRBuilder.buildTrunc(DstReg, Shift); 1632 Observer.changedInstr(MI); 1633 return Legalized; 1634 } 1635 case TargetOpcode::G_ADD: 1636 case TargetOpcode::G_AND: 1637 case TargetOpcode::G_MUL: 1638 case TargetOpcode::G_OR: 1639 case TargetOpcode::G_XOR: 1640 case TargetOpcode::G_SUB: 1641 // Perform operation at larger width (any extension is fines here, high bits 1642 // don't affect the result) and then truncate the result back to the 1643 // original type. 1644 Observer.changingInstr(MI); 1645 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1646 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1647 widenScalarDst(MI, WideTy); 1648 Observer.changedInstr(MI); 1649 return Legalized; 1650 1651 case TargetOpcode::G_SHL: 1652 Observer.changingInstr(MI); 1653 1654 if (TypeIdx == 0) { 1655 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1656 widenScalarDst(MI, WideTy); 1657 } else { 1658 assert(TypeIdx == 1); 1659 // The "number of bits to shift" operand must preserve its value as an 1660 // unsigned integer: 1661 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1662 } 1663 1664 Observer.changedInstr(MI); 1665 return Legalized; 1666 1667 case TargetOpcode::G_SDIV: 1668 case TargetOpcode::G_SREM: 1669 case TargetOpcode::G_SMIN: 1670 case TargetOpcode::G_SMAX: 1671 Observer.changingInstr(MI); 1672 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1673 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1674 widenScalarDst(MI, WideTy); 1675 Observer.changedInstr(MI); 1676 return Legalized; 1677 1678 case TargetOpcode::G_ASHR: 1679 case TargetOpcode::G_LSHR: 1680 Observer.changingInstr(MI); 1681 1682 if (TypeIdx == 0) { 1683 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1684 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1685 1686 widenScalarSrc(MI, WideTy, 1, CvtOp); 1687 widenScalarDst(MI, WideTy); 1688 } else { 1689 assert(TypeIdx == 1); 1690 // The "number of bits to shift" operand must preserve its value as an 1691 // unsigned integer: 1692 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1693 } 1694 1695 Observer.changedInstr(MI); 1696 return Legalized; 1697 case TargetOpcode::G_UDIV: 1698 case TargetOpcode::G_UREM: 1699 case TargetOpcode::G_UMIN: 1700 case TargetOpcode::G_UMAX: 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1703 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1704 widenScalarDst(MI, WideTy); 1705 Observer.changedInstr(MI); 1706 return Legalized; 1707 1708 case TargetOpcode::G_SELECT: 1709 Observer.changingInstr(MI); 1710 if (TypeIdx == 0) { 1711 // Perform operation at larger width (any extension is fine here, high 1712 // bits don't affect the result) and then truncate the result back to the 1713 // original type. 1714 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1715 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1716 widenScalarDst(MI, WideTy); 1717 } else { 1718 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1719 // Explicit extension is required here since high bits affect the result. 1720 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1721 } 1722 Observer.changedInstr(MI); 1723 return Legalized; 1724 1725 case TargetOpcode::G_FPTOSI: 1726 case TargetOpcode::G_FPTOUI: 1727 Observer.changingInstr(MI); 1728 1729 if (TypeIdx == 0) 1730 widenScalarDst(MI, WideTy); 1731 else 1732 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1733 1734 Observer.changedInstr(MI); 1735 return Legalized; 1736 case TargetOpcode::G_SITOFP: 1737 if (TypeIdx != 1) 1738 return UnableToLegalize; 1739 Observer.changingInstr(MI); 1740 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1741 Observer.changedInstr(MI); 1742 return Legalized; 1743 1744 case TargetOpcode::G_UITOFP: 1745 if (TypeIdx != 1) 1746 return UnableToLegalize; 1747 Observer.changingInstr(MI); 1748 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1749 Observer.changedInstr(MI); 1750 return Legalized; 1751 1752 case TargetOpcode::G_LOAD: 1753 case TargetOpcode::G_SEXTLOAD: 1754 case TargetOpcode::G_ZEXTLOAD: 1755 Observer.changingInstr(MI); 1756 widenScalarDst(MI, WideTy); 1757 Observer.changedInstr(MI); 1758 return Legalized; 1759 1760 case TargetOpcode::G_STORE: { 1761 if (TypeIdx != 0) 1762 return UnableToLegalize; 1763 1764 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1765 if (!isPowerOf2_32(Ty.getSizeInBits())) 1766 return UnableToLegalize; 1767 1768 Observer.changingInstr(MI); 1769 1770 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1771 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1772 widenScalarSrc(MI, WideTy, 0, ExtType); 1773 1774 Observer.changedInstr(MI); 1775 return Legalized; 1776 } 1777 case TargetOpcode::G_CONSTANT: { 1778 MachineOperand &SrcMO = MI.getOperand(1); 1779 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1780 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1781 MRI.getType(MI.getOperand(0).getReg())); 1782 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1783 ExtOpc == TargetOpcode::G_ANYEXT) && 1784 "Illegal Extend"); 1785 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1786 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1787 ? SrcVal.sext(WideTy.getSizeInBits()) 1788 : SrcVal.zext(WideTy.getSizeInBits()); 1789 Observer.changingInstr(MI); 1790 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1791 1792 widenScalarDst(MI, WideTy); 1793 Observer.changedInstr(MI); 1794 return Legalized; 1795 } 1796 case TargetOpcode::G_FCONSTANT: { 1797 MachineOperand &SrcMO = MI.getOperand(1); 1798 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1799 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1800 bool LosesInfo; 1801 switch (WideTy.getSizeInBits()) { 1802 case 32: 1803 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1804 &LosesInfo); 1805 break; 1806 case 64: 1807 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1808 &LosesInfo); 1809 break; 1810 default: 1811 return UnableToLegalize; 1812 } 1813 1814 assert(!LosesInfo && "extend should always be lossless"); 1815 1816 Observer.changingInstr(MI); 1817 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1818 1819 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1820 Observer.changedInstr(MI); 1821 return Legalized; 1822 } 1823 case TargetOpcode::G_IMPLICIT_DEF: { 1824 Observer.changingInstr(MI); 1825 widenScalarDst(MI, WideTy); 1826 Observer.changedInstr(MI); 1827 return Legalized; 1828 } 1829 case TargetOpcode::G_BRCOND: 1830 Observer.changingInstr(MI); 1831 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 1835 case TargetOpcode::G_FCMP: 1836 Observer.changingInstr(MI); 1837 if (TypeIdx == 0) 1838 widenScalarDst(MI, WideTy); 1839 else { 1840 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1841 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1842 } 1843 Observer.changedInstr(MI); 1844 return Legalized; 1845 1846 case TargetOpcode::G_ICMP: 1847 Observer.changingInstr(MI); 1848 if (TypeIdx == 0) 1849 widenScalarDst(MI, WideTy); 1850 else { 1851 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1852 MI.getOperand(1).getPredicate())) 1853 ? TargetOpcode::G_SEXT 1854 : TargetOpcode::G_ZEXT; 1855 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1856 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1857 } 1858 Observer.changedInstr(MI); 1859 return Legalized; 1860 1861 case TargetOpcode::G_PTR_ADD: 1862 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1863 Observer.changingInstr(MI); 1864 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1865 Observer.changedInstr(MI); 1866 return Legalized; 1867 1868 case TargetOpcode::G_PHI: { 1869 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1870 1871 Observer.changingInstr(MI); 1872 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1873 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1874 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1875 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1876 } 1877 1878 MachineBasicBlock &MBB = *MI.getParent(); 1879 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1880 widenScalarDst(MI, WideTy); 1881 Observer.changedInstr(MI); 1882 return Legalized; 1883 } 1884 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1885 if (TypeIdx == 0) { 1886 Register VecReg = MI.getOperand(1).getReg(); 1887 LLT VecTy = MRI.getType(VecReg); 1888 Observer.changingInstr(MI); 1889 1890 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1891 WideTy.getSizeInBits()), 1892 1, TargetOpcode::G_SEXT); 1893 1894 widenScalarDst(MI, WideTy, 0); 1895 Observer.changedInstr(MI); 1896 return Legalized; 1897 } 1898 1899 if (TypeIdx != 2) 1900 return UnableToLegalize; 1901 Observer.changingInstr(MI); 1902 // TODO: Probably should be zext 1903 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1904 Observer.changedInstr(MI); 1905 return Legalized; 1906 } 1907 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1908 if (TypeIdx == 1) { 1909 Observer.changingInstr(MI); 1910 1911 Register VecReg = MI.getOperand(1).getReg(); 1912 LLT VecTy = MRI.getType(VecReg); 1913 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1914 1915 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1916 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1917 widenScalarDst(MI, WideVecTy, 0); 1918 Observer.changedInstr(MI); 1919 return Legalized; 1920 } 1921 1922 if (TypeIdx == 2) { 1923 Observer.changingInstr(MI); 1924 // TODO: Probably should be zext 1925 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1926 Observer.changedInstr(MI); 1927 } 1928 1929 return Legalized; 1930 } 1931 case TargetOpcode::G_FADD: 1932 case TargetOpcode::G_FMUL: 1933 case TargetOpcode::G_FSUB: 1934 case TargetOpcode::G_FMA: 1935 case TargetOpcode::G_FMAD: 1936 case TargetOpcode::G_FNEG: 1937 case TargetOpcode::G_FABS: 1938 case TargetOpcode::G_FCANONICALIZE: 1939 case TargetOpcode::G_FMINNUM: 1940 case TargetOpcode::G_FMAXNUM: 1941 case TargetOpcode::G_FMINNUM_IEEE: 1942 case TargetOpcode::G_FMAXNUM_IEEE: 1943 case TargetOpcode::G_FMINIMUM: 1944 case TargetOpcode::G_FMAXIMUM: 1945 case TargetOpcode::G_FDIV: 1946 case TargetOpcode::G_FREM: 1947 case TargetOpcode::G_FCEIL: 1948 case TargetOpcode::G_FFLOOR: 1949 case TargetOpcode::G_FCOS: 1950 case TargetOpcode::G_FSIN: 1951 case TargetOpcode::G_FLOG10: 1952 case TargetOpcode::G_FLOG: 1953 case TargetOpcode::G_FLOG2: 1954 case TargetOpcode::G_FRINT: 1955 case TargetOpcode::G_FNEARBYINT: 1956 case TargetOpcode::G_FSQRT: 1957 case TargetOpcode::G_FEXP: 1958 case TargetOpcode::G_FEXP2: 1959 case TargetOpcode::G_FPOW: 1960 case TargetOpcode::G_INTRINSIC_TRUNC: 1961 case TargetOpcode::G_INTRINSIC_ROUND: 1962 assert(TypeIdx == 0); 1963 Observer.changingInstr(MI); 1964 1965 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1966 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1967 1968 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 case TargetOpcode::G_INTTOPTR: 1972 if (TypeIdx != 1) 1973 return UnableToLegalize; 1974 1975 Observer.changingInstr(MI); 1976 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1977 Observer.changedInstr(MI); 1978 return Legalized; 1979 case TargetOpcode::G_PTRTOINT: 1980 if (TypeIdx != 0) 1981 return UnableToLegalize; 1982 1983 Observer.changingInstr(MI); 1984 widenScalarDst(MI, WideTy, 0); 1985 Observer.changedInstr(MI); 1986 return Legalized; 1987 case TargetOpcode::G_BUILD_VECTOR: { 1988 Observer.changingInstr(MI); 1989 1990 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1991 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1992 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1993 1994 // Avoid changing the result vector type if the source element type was 1995 // requested. 1996 if (TypeIdx == 1) { 1997 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1998 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1999 } else { 2000 widenScalarDst(MI, WideTy, 0); 2001 } 2002 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 } 2006 case TargetOpcode::G_SEXT_INREG: 2007 if (TypeIdx != 0) 2008 return UnableToLegalize; 2009 2010 Observer.changingInstr(MI); 2011 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2012 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2013 Observer.changedInstr(MI); 2014 return Legalized; 2015 } 2016 } 2017 2018 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2019 MachineIRBuilder &B, Register Src, LLT Ty) { 2020 auto Unmerge = B.buildUnmerge(Ty, Src); 2021 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2022 Pieces.push_back(Unmerge.getReg(I)); 2023 } 2024 2025 LegalizerHelper::LegalizeResult 2026 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2027 Register Dst = MI.getOperand(0).getReg(); 2028 Register Src = MI.getOperand(1).getReg(); 2029 LLT DstTy = MRI.getType(Dst); 2030 LLT SrcTy = MRI.getType(Src); 2031 2032 if (SrcTy.isVector() && !DstTy.isVector()) { 2033 SmallVector<Register, 8> SrcRegs; 2034 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2035 MIRBuilder.buildMerge(Dst, SrcRegs); 2036 MI.eraseFromParent(); 2037 return Legalized; 2038 } 2039 2040 if (DstTy.isVector() && !SrcTy.isVector()) { 2041 SmallVector<Register, 8> SrcRegs; 2042 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2043 MIRBuilder.buildMerge(Dst, SrcRegs); 2044 MI.eraseFromParent(); 2045 return Legalized; 2046 } 2047 2048 return UnableToLegalize; 2049 } 2050 2051 LegalizerHelper::LegalizeResult 2052 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2053 using namespace TargetOpcode; 2054 MIRBuilder.setInstr(MI); 2055 2056 switch(MI.getOpcode()) { 2057 default: 2058 return UnableToLegalize; 2059 case TargetOpcode::G_BITCAST: 2060 return lowerBitcast(MI); 2061 case TargetOpcode::G_SREM: 2062 case TargetOpcode::G_UREM: { 2063 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2064 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2065 {MI.getOperand(1), MI.getOperand(2)}); 2066 2067 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2068 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2069 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2070 MI.eraseFromParent(); 2071 return Legalized; 2072 } 2073 case TargetOpcode::G_SADDO: 2074 case TargetOpcode::G_SSUBO: 2075 return lowerSADDO_SSUBO(MI); 2076 case TargetOpcode::G_SMULO: 2077 case TargetOpcode::G_UMULO: { 2078 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2079 // result. 2080 Register Res = MI.getOperand(0).getReg(); 2081 Register Overflow = MI.getOperand(1).getReg(); 2082 Register LHS = MI.getOperand(2).getReg(); 2083 Register RHS = MI.getOperand(3).getReg(); 2084 2085 MIRBuilder.buildMul(Res, LHS, RHS); 2086 2087 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2088 ? TargetOpcode::G_SMULH 2089 : TargetOpcode::G_UMULH; 2090 2091 Register HiPart = MRI.createGenericVirtualRegister(Ty); 2092 MIRBuilder.buildInstr(Opcode) 2093 .addDef(HiPart) 2094 .addUse(LHS) 2095 .addUse(RHS); 2096 2097 Register Zero = MRI.createGenericVirtualRegister(Ty); 2098 MIRBuilder.buildConstant(Zero, 0); 2099 2100 // For *signed* multiply, overflow is detected by checking: 2101 // (hi != (lo >> bitwidth-1)) 2102 if (Opcode == TargetOpcode::G_SMULH) { 2103 Register Shifted = MRI.createGenericVirtualRegister(Ty); 2104 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 2105 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 2106 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 2107 .addDef(Shifted) 2108 .addUse(Res) 2109 .addUse(ShiftAmt); 2110 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2111 } else { 2112 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2113 } 2114 MI.eraseFromParent(); 2115 return Legalized; 2116 } 2117 case TargetOpcode::G_FNEG: { 2118 // TODO: Handle vector types once we are able to 2119 // represent them. 2120 if (Ty.isVector()) 2121 return UnableToLegalize; 2122 Register Res = MI.getOperand(0).getReg(); 2123 Type *ZeroTy; 2124 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2125 switch (Ty.getSizeInBits()) { 2126 case 16: 2127 ZeroTy = Type::getHalfTy(Ctx); 2128 break; 2129 case 32: 2130 ZeroTy = Type::getFloatTy(Ctx); 2131 break; 2132 case 64: 2133 ZeroTy = Type::getDoubleTy(Ctx); 2134 break; 2135 case 128: 2136 ZeroTy = Type::getFP128Ty(Ctx); 2137 break; 2138 default: 2139 llvm_unreachable("unexpected floating-point type"); 2140 } 2141 ConstantFP &ZeroForNegation = 2142 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2143 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2144 Register SubByReg = MI.getOperand(1).getReg(); 2145 Register ZeroReg = Zero.getReg(0); 2146 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2147 MI.eraseFromParent(); 2148 return Legalized; 2149 } 2150 case TargetOpcode::G_FSUB: { 2151 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2152 // First, check if G_FNEG is marked as Lower. If so, we may 2153 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2154 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2155 return UnableToLegalize; 2156 Register Res = MI.getOperand(0).getReg(); 2157 Register LHS = MI.getOperand(1).getReg(); 2158 Register RHS = MI.getOperand(2).getReg(); 2159 Register Neg = MRI.createGenericVirtualRegister(Ty); 2160 MIRBuilder.buildFNeg(Neg, RHS); 2161 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2162 MI.eraseFromParent(); 2163 return Legalized; 2164 } 2165 case TargetOpcode::G_FMAD: 2166 return lowerFMad(MI); 2167 case TargetOpcode::G_INTRINSIC_ROUND: 2168 return lowerIntrinsicRound(MI); 2169 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2170 Register OldValRes = MI.getOperand(0).getReg(); 2171 Register SuccessRes = MI.getOperand(1).getReg(); 2172 Register Addr = MI.getOperand(2).getReg(); 2173 Register CmpVal = MI.getOperand(3).getReg(); 2174 Register NewVal = MI.getOperand(4).getReg(); 2175 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2176 **MI.memoperands_begin()); 2177 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2178 MI.eraseFromParent(); 2179 return Legalized; 2180 } 2181 case TargetOpcode::G_LOAD: 2182 case TargetOpcode::G_SEXTLOAD: 2183 case TargetOpcode::G_ZEXTLOAD: { 2184 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2185 Register DstReg = MI.getOperand(0).getReg(); 2186 Register PtrReg = MI.getOperand(1).getReg(); 2187 LLT DstTy = MRI.getType(DstReg); 2188 auto &MMO = **MI.memoperands_begin(); 2189 2190 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2191 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2192 // This load needs splitting into power of 2 sized loads. 2193 if (DstTy.isVector()) 2194 return UnableToLegalize; 2195 if (isPowerOf2_32(DstTy.getSizeInBits())) 2196 return UnableToLegalize; // Don't know what we're being asked to do. 2197 2198 // Our strategy here is to generate anyextending loads for the smaller 2199 // types up to next power-2 result type, and then combine the two larger 2200 // result values together, before truncating back down to the non-pow-2 2201 // type. 2202 // E.g. v1 = i24 load => 2203 // v2 = i32 load (2 byte) 2204 // v3 = i32 load (1 byte) 2205 // v4 = i32 shl v3, 16 2206 // v5 = i32 or v4, v2 2207 // v1 = i24 trunc v5 2208 // By doing this we generate the correct truncate which should get 2209 // combined away as an artifact with a matching extend. 2210 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2211 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2212 2213 MachineFunction &MF = MIRBuilder.getMF(); 2214 MachineMemOperand *LargeMMO = 2215 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2216 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2217 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2218 2219 LLT PtrTy = MRI.getType(PtrReg); 2220 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2221 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2222 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2223 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2224 auto LargeLoad = 2225 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2226 2227 auto OffsetCst = 2228 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2229 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2230 auto SmallPtr = 2231 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2232 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2233 *SmallMMO); 2234 2235 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2236 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2237 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2238 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2239 MI.eraseFromParent(); 2240 return Legalized; 2241 } 2242 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2243 MI.eraseFromParent(); 2244 return Legalized; 2245 } 2246 2247 if (DstTy.isScalar()) { 2248 Register TmpReg = 2249 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2250 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2251 switch (MI.getOpcode()) { 2252 default: 2253 llvm_unreachable("Unexpected opcode"); 2254 case TargetOpcode::G_LOAD: 2255 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2256 break; 2257 case TargetOpcode::G_SEXTLOAD: 2258 MIRBuilder.buildSExt(DstReg, TmpReg); 2259 break; 2260 case TargetOpcode::G_ZEXTLOAD: 2261 MIRBuilder.buildZExt(DstReg, TmpReg); 2262 break; 2263 } 2264 MI.eraseFromParent(); 2265 return Legalized; 2266 } 2267 2268 return UnableToLegalize; 2269 } 2270 case TargetOpcode::G_STORE: { 2271 // Lower a non-power of 2 store into multiple pow-2 stores. 2272 // E.g. split an i24 store into an i16 store + i8 store. 2273 // We do this by first extending the stored value to the next largest power 2274 // of 2 type, and then using truncating stores to store the components. 2275 // By doing this, likewise with G_LOAD, generate an extend that can be 2276 // artifact-combined away instead of leaving behind extracts. 2277 Register SrcReg = MI.getOperand(0).getReg(); 2278 Register PtrReg = MI.getOperand(1).getReg(); 2279 LLT SrcTy = MRI.getType(SrcReg); 2280 MachineMemOperand &MMO = **MI.memoperands_begin(); 2281 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2282 return UnableToLegalize; 2283 if (SrcTy.isVector()) 2284 return UnableToLegalize; 2285 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2286 return UnableToLegalize; // Don't know what we're being asked to do. 2287 2288 // Extend to the next pow-2. 2289 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2290 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2291 2292 // Obtain the smaller value by shifting away the larger value. 2293 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2294 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2295 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2296 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2297 2298 // Generate the PtrAdd and truncating stores. 2299 LLT PtrTy = MRI.getType(PtrReg); 2300 auto OffsetCst = 2301 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2302 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2303 auto SmallPtr = 2304 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2305 2306 MachineFunction &MF = MIRBuilder.getMF(); 2307 MachineMemOperand *LargeMMO = 2308 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2309 MachineMemOperand *SmallMMO = 2310 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2311 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2312 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2313 MI.eraseFromParent(); 2314 return Legalized; 2315 } 2316 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2317 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2318 case TargetOpcode::G_CTLZ: 2319 case TargetOpcode::G_CTTZ: 2320 case TargetOpcode::G_CTPOP: 2321 return lowerBitCount(MI, TypeIdx, Ty); 2322 case G_UADDO: { 2323 Register Res = MI.getOperand(0).getReg(); 2324 Register CarryOut = MI.getOperand(1).getReg(); 2325 Register LHS = MI.getOperand(2).getReg(); 2326 Register RHS = MI.getOperand(3).getReg(); 2327 2328 MIRBuilder.buildAdd(Res, LHS, RHS); 2329 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2330 2331 MI.eraseFromParent(); 2332 return Legalized; 2333 } 2334 case G_UADDE: { 2335 Register Res = MI.getOperand(0).getReg(); 2336 Register CarryOut = MI.getOperand(1).getReg(); 2337 Register LHS = MI.getOperand(2).getReg(); 2338 Register RHS = MI.getOperand(3).getReg(); 2339 Register CarryIn = MI.getOperand(4).getReg(); 2340 2341 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2342 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2343 2344 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2345 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2346 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2347 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2348 2349 MI.eraseFromParent(); 2350 return Legalized; 2351 } 2352 case G_USUBO: { 2353 Register Res = MI.getOperand(0).getReg(); 2354 Register BorrowOut = MI.getOperand(1).getReg(); 2355 Register LHS = MI.getOperand(2).getReg(); 2356 Register RHS = MI.getOperand(3).getReg(); 2357 2358 MIRBuilder.buildSub(Res, LHS, RHS); 2359 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2360 2361 MI.eraseFromParent(); 2362 return Legalized; 2363 } 2364 case G_USUBE: { 2365 Register Res = MI.getOperand(0).getReg(); 2366 Register BorrowOut = MI.getOperand(1).getReg(); 2367 Register LHS = MI.getOperand(2).getReg(); 2368 Register RHS = MI.getOperand(3).getReg(); 2369 Register BorrowIn = MI.getOperand(4).getReg(); 2370 2371 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2372 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2373 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2374 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2375 2376 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2377 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2378 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2379 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2380 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2381 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2382 2383 MI.eraseFromParent(); 2384 return Legalized; 2385 } 2386 case G_UITOFP: 2387 return lowerUITOFP(MI, TypeIdx, Ty); 2388 case G_SITOFP: 2389 return lowerSITOFP(MI, TypeIdx, Ty); 2390 case G_FPTOUI: 2391 return lowerFPTOUI(MI, TypeIdx, Ty); 2392 case G_SMIN: 2393 case G_SMAX: 2394 case G_UMIN: 2395 case G_UMAX: 2396 return lowerMinMax(MI, TypeIdx, Ty); 2397 case G_FCOPYSIGN: 2398 return lowerFCopySign(MI, TypeIdx, Ty); 2399 case G_FMINNUM: 2400 case G_FMAXNUM: 2401 return lowerFMinNumMaxNum(MI); 2402 case G_UNMERGE_VALUES: 2403 return lowerUnmergeValues(MI); 2404 case TargetOpcode::G_SEXT_INREG: { 2405 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2406 int64_t SizeInBits = MI.getOperand(2).getImm(); 2407 2408 Register DstReg = MI.getOperand(0).getReg(); 2409 Register SrcReg = MI.getOperand(1).getReg(); 2410 LLT DstTy = MRI.getType(DstReg); 2411 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2412 2413 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2414 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2415 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2416 MI.eraseFromParent(); 2417 return Legalized; 2418 } 2419 case G_SHUFFLE_VECTOR: 2420 return lowerShuffleVector(MI); 2421 case G_DYN_STACKALLOC: 2422 return lowerDynStackAlloc(MI); 2423 case G_EXTRACT: 2424 return lowerExtract(MI); 2425 case G_INSERT: 2426 return lowerInsert(MI); 2427 case G_BSWAP: 2428 return lowerBswap(MI); 2429 case G_BITREVERSE: 2430 return lowerBitreverse(MI); 2431 case G_READ_REGISTER: 2432 return lowerReadRegister(MI); 2433 } 2434 } 2435 2436 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2437 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2438 SmallVector<Register, 2> DstRegs; 2439 2440 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2441 Register DstReg = MI.getOperand(0).getReg(); 2442 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2443 int NumParts = Size / NarrowSize; 2444 // FIXME: Don't know how to handle the situation where the small vectors 2445 // aren't all the same size yet. 2446 if (Size % NarrowSize != 0) 2447 return UnableToLegalize; 2448 2449 for (int i = 0; i < NumParts; ++i) { 2450 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2451 MIRBuilder.buildUndef(TmpReg); 2452 DstRegs.push_back(TmpReg); 2453 } 2454 2455 if (NarrowTy.isVector()) 2456 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2457 else 2458 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2459 2460 MI.eraseFromParent(); 2461 return Legalized; 2462 } 2463 2464 LegalizerHelper::LegalizeResult 2465 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2466 LLT NarrowTy) { 2467 const unsigned Opc = MI.getOpcode(); 2468 const unsigned NumOps = MI.getNumOperands() - 1; 2469 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2470 const Register DstReg = MI.getOperand(0).getReg(); 2471 const unsigned Flags = MI.getFlags(); 2472 const LLT DstTy = MRI.getType(DstReg); 2473 const unsigned Size = DstTy.getSizeInBits(); 2474 const int NumParts = Size / NarrowSize; 2475 const LLT EltTy = DstTy.getElementType(); 2476 const unsigned EltSize = EltTy.getSizeInBits(); 2477 const unsigned BitsForNumParts = NarrowSize * NumParts; 2478 2479 // Check if we have any leftovers. If we do, then only handle the case where 2480 // the leftover is one element. 2481 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2482 return UnableToLegalize; 2483 2484 if (BitsForNumParts != Size) { 2485 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2486 MIRBuilder.buildUndef(AccumDstReg); 2487 2488 // Handle the pieces which evenly divide into the requested type with 2489 // extract/op/insert sequence. 2490 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2491 SmallVector<SrcOp, 4> SrcOps; 2492 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2493 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2494 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2495 SrcOps.push_back(PartOpReg); 2496 } 2497 2498 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2499 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2500 2501 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2502 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2503 AccumDstReg = PartInsertReg; 2504 } 2505 2506 // Handle the remaining element sized leftover piece. 2507 SmallVector<SrcOp, 4> SrcOps; 2508 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2509 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2510 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2511 SrcOps.push_back(PartOpReg); 2512 } 2513 2514 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2515 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2516 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2517 MI.eraseFromParent(); 2518 2519 return Legalized; 2520 } 2521 2522 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2523 2524 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2525 2526 if (NumOps >= 2) 2527 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2528 2529 if (NumOps >= 3) 2530 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2531 2532 for (int i = 0; i < NumParts; ++i) { 2533 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2534 2535 if (NumOps == 1) 2536 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2537 else if (NumOps == 2) { 2538 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2539 } else if (NumOps == 3) { 2540 MIRBuilder.buildInstr(Opc, {DstReg}, 2541 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2542 } 2543 2544 DstRegs.push_back(DstReg); 2545 } 2546 2547 if (NarrowTy.isVector()) 2548 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2549 else 2550 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2551 2552 MI.eraseFromParent(); 2553 return Legalized; 2554 } 2555 2556 // Handle splitting vector operations which need to have the same number of 2557 // elements in each type index, but each type index may have a different element 2558 // type. 2559 // 2560 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2561 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2562 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2563 // 2564 // Also handles some irregular breakdown cases, e.g. 2565 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2566 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2567 // s64 = G_SHL s64, s32 2568 LegalizerHelper::LegalizeResult 2569 LegalizerHelper::fewerElementsVectorMultiEltType( 2570 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2571 if (TypeIdx != 0) 2572 return UnableToLegalize; 2573 2574 const LLT NarrowTy0 = NarrowTyArg; 2575 const unsigned NewNumElts = 2576 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2577 2578 const Register DstReg = MI.getOperand(0).getReg(); 2579 LLT DstTy = MRI.getType(DstReg); 2580 LLT LeftoverTy0; 2581 2582 // All of the operands need to have the same number of elements, so if we can 2583 // determine a type breakdown for the result type, we can for all of the 2584 // source types. 2585 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2586 if (NumParts < 0) 2587 return UnableToLegalize; 2588 2589 SmallVector<MachineInstrBuilder, 4> NewInsts; 2590 2591 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2592 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2593 2594 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2595 LLT LeftoverTy; 2596 Register SrcReg = MI.getOperand(I).getReg(); 2597 LLT SrcTyI = MRI.getType(SrcReg); 2598 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2599 LLT LeftoverTyI; 2600 2601 // Split this operand into the requested typed registers, and any leftover 2602 // required to reproduce the original type. 2603 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2604 LeftoverRegs)) 2605 return UnableToLegalize; 2606 2607 if (I == 1) { 2608 // For the first operand, create an instruction for each part and setup 2609 // the result. 2610 for (Register PartReg : PartRegs) { 2611 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2612 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2613 .addDef(PartDstReg) 2614 .addUse(PartReg)); 2615 DstRegs.push_back(PartDstReg); 2616 } 2617 2618 for (Register LeftoverReg : LeftoverRegs) { 2619 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2620 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2621 .addDef(PartDstReg) 2622 .addUse(LeftoverReg)); 2623 LeftoverDstRegs.push_back(PartDstReg); 2624 } 2625 } else { 2626 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2627 2628 // Add the newly created operand splits to the existing instructions. The 2629 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2630 // pieces. 2631 unsigned InstCount = 0; 2632 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2633 NewInsts[InstCount++].addUse(PartRegs[J]); 2634 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2635 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2636 } 2637 2638 PartRegs.clear(); 2639 LeftoverRegs.clear(); 2640 } 2641 2642 // Insert the newly built operations and rebuild the result register. 2643 for (auto &MIB : NewInsts) 2644 MIRBuilder.insertInstr(MIB); 2645 2646 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2647 2648 MI.eraseFromParent(); 2649 return Legalized; 2650 } 2651 2652 LegalizerHelper::LegalizeResult 2653 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2654 LLT NarrowTy) { 2655 if (TypeIdx != 0) 2656 return UnableToLegalize; 2657 2658 Register DstReg = MI.getOperand(0).getReg(); 2659 Register SrcReg = MI.getOperand(1).getReg(); 2660 LLT DstTy = MRI.getType(DstReg); 2661 LLT SrcTy = MRI.getType(SrcReg); 2662 2663 LLT NarrowTy0 = NarrowTy; 2664 LLT NarrowTy1; 2665 unsigned NumParts; 2666 2667 if (NarrowTy.isVector()) { 2668 // Uneven breakdown not handled. 2669 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2670 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2671 return UnableToLegalize; 2672 2673 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2674 } else { 2675 NumParts = DstTy.getNumElements(); 2676 NarrowTy1 = SrcTy.getElementType(); 2677 } 2678 2679 SmallVector<Register, 4> SrcRegs, DstRegs; 2680 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2681 2682 for (unsigned I = 0; I < NumParts; ++I) { 2683 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2684 MachineInstr *NewInst = 2685 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2686 2687 NewInst->setFlags(MI.getFlags()); 2688 DstRegs.push_back(DstReg); 2689 } 2690 2691 if (NarrowTy.isVector()) 2692 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2693 else 2694 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2695 2696 MI.eraseFromParent(); 2697 return Legalized; 2698 } 2699 2700 LegalizerHelper::LegalizeResult 2701 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2702 LLT NarrowTy) { 2703 Register DstReg = MI.getOperand(0).getReg(); 2704 Register Src0Reg = MI.getOperand(2).getReg(); 2705 LLT DstTy = MRI.getType(DstReg); 2706 LLT SrcTy = MRI.getType(Src0Reg); 2707 2708 unsigned NumParts; 2709 LLT NarrowTy0, NarrowTy1; 2710 2711 if (TypeIdx == 0) { 2712 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2713 unsigned OldElts = DstTy.getNumElements(); 2714 2715 NarrowTy0 = NarrowTy; 2716 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2717 NarrowTy1 = NarrowTy.isVector() ? 2718 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2719 SrcTy.getElementType(); 2720 2721 } else { 2722 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2723 unsigned OldElts = SrcTy.getNumElements(); 2724 2725 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2726 NarrowTy.getNumElements(); 2727 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2728 DstTy.getScalarSizeInBits()); 2729 NarrowTy1 = NarrowTy; 2730 } 2731 2732 // FIXME: Don't know how to handle the situation where the small vectors 2733 // aren't all the same size yet. 2734 if (NarrowTy1.isVector() && 2735 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2736 return UnableToLegalize; 2737 2738 CmpInst::Predicate Pred 2739 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2740 2741 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2742 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2743 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2744 2745 for (unsigned I = 0; I < NumParts; ++I) { 2746 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2747 DstRegs.push_back(DstReg); 2748 2749 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2750 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2751 else { 2752 MachineInstr *NewCmp 2753 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2754 NewCmp->setFlags(MI.getFlags()); 2755 } 2756 } 2757 2758 if (NarrowTy1.isVector()) 2759 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2760 else 2761 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2762 2763 MI.eraseFromParent(); 2764 return Legalized; 2765 } 2766 2767 LegalizerHelper::LegalizeResult 2768 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2769 LLT NarrowTy) { 2770 Register DstReg = MI.getOperand(0).getReg(); 2771 Register CondReg = MI.getOperand(1).getReg(); 2772 2773 unsigned NumParts = 0; 2774 LLT NarrowTy0, NarrowTy1; 2775 2776 LLT DstTy = MRI.getType(DstReg); 2777 LLT CondTy = MRI.getType(CondReg); 2778 unsigned Size = DstTy.getSizeInBits(); 2779 2780 assert(TypeIdx == 0 || CondTy.isVector()); 2781 2782 if (TypeIdx == 0) { 2783 NarrowTy0 = NarrowTy; 2784 NarrowTy1 = CondTy; 2785 2786 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2787 // FIXME: Don't know how to handle the situation where the small vectors 2788 // aren't all the same size yet. 2789 if (Size % NarrowSize != 0) 2790 return UnableToLegalize; 2791 2792 NumParts = Size / NarrowSize; 2793 2794 // Need to break down the condition type 2795 if (CondTy.isVector()) { 2796 if (CondTy.getNumElements() == NumParts) 2797 NarrowTy1 = CondTy.getElementType(); 2798 else 2799 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2800 CondTy.getScalarSizeInBits()); 2801 } 2802 } else { 2803 NumParts = CondTy.getNumElements(); 2804 if (NarrowTy.isVector()) { 2805 // TODO: Handle uneven breakdown. 2806 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2807 return UnableToLegalize; 2808 2809 return UnableToLegalize; 2810 } else { 2811 NarrowTy0 = DstTy.getElementType(); 2812 NarrowTy1 = NarrowTy; 2813 } 2814 } 2815 2816 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2817 if (CondTy.isVector()) 2818 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2819 2820 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2821 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2822 2823 for (unsigned i = 0; i < NumParts; ++i) { 2824 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2825 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2826 Src1Regs[i], Src2Regs[i]); 2827 DstRegs.push_back(DstReg); 2828 } 2829 2830 if (NarrowTy0.isVector()) 2831 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2832 else 2833 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2834 2835 MI.eraseFromParent(); 2836 return Legalized; 2837 } 2838 2839 LegalizerHelper::LegalizeResult 2840 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2841 LLT NarrowTy) { 2842 const Register DstReg = MI.getOperand(0).getReg(); 2843 LLT PhiTy = MRI.getType(DstReg); 2844 LLT LeftoverTy; 2845 2846 // All of the operands need to have the same number of elements, so if we can 2847 // determine a type breakdown for the result type, we can for all of the 2848 // source types. 2849 int NumParts, NumLeftover; 2850 std::tie(NumParts, NumLeftover) 2851 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2852 if (NumParts < 0) 2853 return UnableToLegalize; 2854 2855 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2856 SmallVector<MachineInstrBuilder, 4> NewInsts; 2857 2858 const int TotalNumParts = NumParts + NumLeftover; 2859 2860 // Insert the new phis in the result block first. 2861 for (int I = 0; I != TotalNumParts; ++I) { 2862 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2863 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2864 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2865 .addDef(PartDstReg)); 2866 if (I < NumParts) 2867 DstRegs.push_back(PartDstReg); 2868 else 2869 LeftoverDstRegs.push_back(PartDstReg); 2870 } 2871 2872 MachineBasicBlock *MBB = MI.getParent(); 2873 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2874 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2875 2876 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2877 2878 // Insert code to extract the incoming values in each predecessor block. 2879 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2880 PartRegs.clear(); 2881 LeftoverRegs.clear(); 2882 2883 Register SrcReg = MI.getOperand(I).getReg(); 2884 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2885 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2886 2887 LLT Unused; 2888 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2889 LeftoverRegs)) 2890 return UnableToLegalize; 2891 2892 // Add the newly created operand splits to the existing instructions. The 2893 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2894 // pieces. 2895 for (int J = 0; J != TotalNumParts; ++J) { 2896 MachineInstrBuilder MIB = NewInsts[J]; 2897 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2898 MIB.addMBB(&OpMBB); 2899 } 2900 } 2901 2902 MI.eraseFromParent(); 2903 return Legalized; 2904 } 2905 2906 LegalizerHelper::LegalizeResult 2907 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2908 unsigned TypeIdx, 2909 LLT NarrowTy) { 2910 if (TypeIdx != 1) 2911 return UnableToLegalize; 2912 2913 const int NumDst = MI.getNumOperands() - 1; 2914 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2915 LLT SrcTy = MRI.getType(SrcReg); 2916 2917 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2918 2919 // TODO: Create sequence of extracts. 2920 if (DstTy == NarrowTy) 2921 return UnableToLegalize; 2922 2923 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2924 if (DstTy == GCDTy) { 2925 // This would just be a copy of the same unmerge. 2926 // TODO: Create extracts, pad with undef and create intermediate merges. 2927 return UnableToLegalize; 2928 } 2929 2930 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2931 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2932 const int PartsPerUnmerge = NumDst / NumUnmerge; 2933 2934 for (int I = 0; I != NumUnmerge; ++I) { 2935 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2936 2937 for (int J = 0; J != PartsPerUnmerge; ++J) 2938 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2939 MIB.addUse(Unmerge.getReg(I)); 2940 } 2941 2942 MI.eraseFromParent(); 2943 return Legalized; 2944 } 2945 2946 LegalizerHelper::LegalizeResult 2947 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2948 unsigned TypeIdx, 2949 LLT NarrowTy) { 2950 assert(TypeIdx == 0 && "not a vector type index"); 2951 Register DstReg = MI.getOperand(0).getReg(); 2952 LLT DstTy = MRI.getType(DstReg); 2953 LLT SrcTy = DstTy.getElementType(); 2954 2955 int DstNumElts = DstTy.getNumElements(); 2956 int NarrowNumElts = NarrowTy.getNumElements(); 2957 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2958 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2959 2960 SmallVector<Register, 8> ConcatOps; 2961 SmallVector<Register, 8> SubBuildVector; 2962 2963 Register UndefReg; 2964 if (WidenedDstTy != DstTy) 2965 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2966 2967 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2968 // necessary. 2969 // 2970 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2971 // -> <2 x s16> 2972 // 2973 // %4:_(s16) = G_IMPLICIT_DEF 2974 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2975 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2976 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2977 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2978 for (int I = 0; I != NumConcat; ++I) { 2979 for (int J = 0; J != NarrowNumElts; ++J) { 2980 int SrcIdx = NarrowNumElts * I + J; 2981 2982 if (SrcIdx < DstNumElts) { 2983 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2984 SubBuildVector.push_back(SrcReg); 2985 } else 2986 SubBuildVector.push_back(UndefReg); 2987 } 2988 2989 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2990 ConcatOps.push_back(BuildVec.getReg(0)); 2991 SubBuildVector.clear(); 2992 } 2993 2994 if (DstTy == WidenedDstTy) 2995 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2996 else { 2997 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 2998 MIRBuilder.buildExtract(DstReg, Concat, 0); 2999 } 3000 3001 MI.eraseFromParent(); 3002 return Legalized; 3003 } 3004 3005 LegalizerHelper::LegalizeResult 3006 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3007 LLT NarrowTy) { 3008 // FIXME: Don't know how to handle secondary types yet. 3009 if (TypeIdx != 0) 3010 return UnableToLegalize; 3011 3012 MachineMemOperand *MMO = *MI.memoperands_begin(); 3013 3014 // This implementation doesn't work for atomics. Give up instead of doing 3015 // something invalid. 3016 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3017 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3018 return UnableToLegalize; 3019 3020 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3021 Register ValReg = MI.getOperand(0).getReg(); 3022 Register AddrReg = MI.getOperand(1).getReg(); 3023 LLT ValTy = MRI.getType(ValReg); 3024 3025 int NumParts = -1; 3026 int NumLeftover = -1; 3027 LLT LeftoverTy; 3028 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3029 if (IsLoad) { 3030 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3031 } else { 3032 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3033 NarrowLeftoverRegs)) { 3034 NumParts = NarrowRegs.size(); 3035 NumLeftover = NarrowLeftoverRegs.size(); 3036 } 3037 } 3038 3039 if (NumParts == -1) 3040 return UnableToLegalize; 3041 3042 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3043 3044 unsigned TotalSize = ValTy.getSizeInBits(); 3045 3046 // Split the load/store into PartTy sized pieces starting at Offset. If this 3047 // is a load, return the new registers in ValRegs. For a store, each elements 3048 // of ValRegs should be PartTy. Returns the next offset that needs to be 3049 // handled. 3050 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3051 unsigned Offset) -> unsigned { 3052 MachineFunction &MF = MIRBuilder.getMF(); 3053 unsigned PartSize = PartTy.getSizeInBits(); 3054 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3055 Offset += PartSize, ++Idx) { 3056 unsigned ByteSize = PartSize / 8; 3057 unsigned ByteOffset = Offset / 8; 3058 Register NewAddrReg; 3059 3060 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3061 3062 MachineMemOperand *NewMMO = 3063 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3064 3065 if (IsLoad) { 3066 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3067 ValRegs.push_back(Dst); 3068 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3069 } else { 3070 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3071 } 3072 } 3073 3074 return Offset; 3075 }; 3076 3077 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3078 3079 // Handle the rest of the register if this isn't an even type breakdown. 3080 if (LeftoverTy.isValid()) 3081 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3082 3083 if (IsLoad) { 3084 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3085 LeftoverTy, NarrowLeftoverRegs); 3086 } 3087 3088 MI.eraseFromParent(); 3089 return Legalized; 3090 } 3091 3092 LegalizerHelper::LegalizeResult 3093 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3094 LLT NarrowTy) { 3095 using namespace TargetOpcode; 3096 3097 MIRBuilder.setInstr(MI); 3098 switch (MI.getOpcode()) { 3099 case G_IMPLICIT_DEF: 3100 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3101 case G_AND: 3102 case G_OR: 3103 case G_XOR: 3104 case G_ADD: 3105 case G_SUB: 3106 case G_MUL: 3107 case G_SMULH: 3108 case G_UMULH: 3109 case G_FADD: 3110 case G_FMUL: 3111 case G_FSUB: 3112 case G_FNEG: 3113 case G_FABS: 3114 case G_FCANONICALIZE: 3115 case G_FDIV: 3116 case G_FREM: 3117 case G_FMA: 3118 case G_FMAD: 3119 case G_FPOW: 3120 case G_FEXP: 3121 case G_FEXP2: 3122 case G_FLOG: 3123 case G_FLOG2: 3124 case G_FLOG10: 3125 case G_FNEARBYINT: 3126 case G_FCEIL: 3127 case G_FFLOOR: 3128 case G_FRINT: 3129 case G_INTRINSIC_ROUND: 3130 case G_INTRINSIC_TRUNC: 3131 case G_FCOS: 3132 case G_FSIN: 3133 case G_FSQRT: 3134 case G_BSWAP: 3135 case G_BITREVERSE: 3136 case G_SDIV: 3137 case G_UDIV: 3138 case G_SREM: 3139 case G_UREM: 3140 case G_SMIN: 3141 case G_SMAX: 3142 case G_UMIN: 3143 case G_UMAX: 3144 case G_FMINNUM: 3145 case G_FMAXNUM: 3146 case G_FMINNUM_IEEE: 3147 case G_FMAXNUM_IEEE: 3148 case G_FMINIMUM: 3149 case G_FMAXIMUM: 3150 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3151 case G_SHL: 3152 case G_LSHR: 3153 case G_ASHR: 3154 case G_CTLZ: 3155 case G_CTLZ_ZERO_UNDEF: 3156 case G_CTTZ: 3157 case G_CTTZ_ZERO_UNDEF: 3158 case G_CTPOP: 3159 case G_FCOPYSIGN: 3160 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3161 case G_ZEXT: 3162 case G_SEXT: 3163 case G_ANYEXT: 3164 case G_FPEXT: 3165 case G_FPTRUNC: 3166 case G_SITOFP: 3167 case G_UITOFP: 3168 case G_FPTOSI: 3169 case G_FPTOUI: 3170 case G_INTTOPTR: 3171 case G_PTRTOINT: 3172 case G_ADDRSPACE_CAST: 3173 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3174 case G_ICMP: 3175 case G_FCMP: 3176 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3177 case G_SELECT: 3178 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3179 case G_PHI: 3180 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3181 case G_UNMERGE_VALUES: 3182 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3183 case G_BUILD_VECTOR: 3184 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3185 case G_LOAD: 3186 case G_STORE: 3187 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3188 default: 3189 return UnableToLegalize; 3190 } 3191 } 3192 3193 LegalizerHelper::LegalizeResult 3194 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3195 const LLT HalfTy, const LLT AmtTy) { 3196 3197 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3198 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3199 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3200 3201 if (Amt.isNullValue()) { 3202 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3203 MI.eraseFromParent(); 3204 return Legalized; 3205 } 3206 3207 LLT NVT = HalfTy; 3208 unsigned NVTBits = HalfTy.getSizeInBits(); 3209 unsigned VTBits = 2 * NVTBits; 3210 3211 SrcOp Lo(Register(0)), Hi(Register(0)); 3212 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3213 if (Amt.ugt(VTBits)) { 3214 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3215 } else if (Amt.ugt(NVTBits)) { 3216 Lo = MIRBuilder.buildConstant(NVT, 0); 3217 Hi = MIRBuilder.buildShl(NVT, InL, 3218 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3219 } else if (Amt == NVTBits) { 3220 Lo = MIRBuilder.buildConstant(NVT, 0); 3221 Hi = InL; 3222 } else { 3223 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3224 auto OrLHS = 3225 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3226 auto OrRHS = MIRBuilder.buildLShr( 3227 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3228 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3229 } 3230 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3231 if (Amt.ugt(VTBits)) { 3232 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3233 } else if (Amt.ugt(NVTBits)) { 3234 Lo = MIRBuilder.buildLShr(NVT, InH, 3235 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3236 Hi = MIRBuilder.buildConstant(NVT, 0); 3237 } else if (Amt == NVTBits) { 3238 Lo = InH; 3239 Hi = MIRBuilder.buildConstant(NVT, 0); 3240 } else { 3241 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3242 3243 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3244 auto OrRHS = MIRBuilder.buildShl( 3245 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3246 3247 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3248 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3249 } 3250 } else { 3251 if (Amt.ugt(VTBits)) { 3252 Hi = Lo = MIRBuilder.buildAShr( 3253 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3254 } else if (Amt.ugt(NVTBits)) { 3255 Lo = MIRBuilder.buildAShr(NVT, InH, 3256 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3257 Hi = MIRBuilder.buildAShr(NVT, InH, 3258 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3259 } else if (Amt == NVTBits) { 3260 Lo = InH; 3261 Hi = MIRBuilder.buildAShr(NVT, InH, 3262 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3263 } else { 3264 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3265 3266 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3267 auto OrRHS = MIRBuilder.buildShl( 3268 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3269 3270 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3271 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3272 } 3273 } 3274 3275 MIRBuilder.buildMerge(MI.getOperand(0), {Lo.getReg(), Hi.getReg()}); 3276 MI.eraseFromParent(); 3277 3278 return Legalized; 3279 } 3280 3281 // TODO: Optimize if constant shift amount. 3282 LegalizerHelper::LegalizeResult 3283 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3284 LLT RequestedTy) { 3285 if (TypeIdx == 1) { 3286 Observer.changingInstr(MI); 3287 narrowScalarSrc(MI, RequestedTy, 2); 3288 Observer.changedInstr(MI); 3289 return Legalized; 3290 } 3291 3292 Register DstReg = MI.getOperand(0).getReg(); 3293 LLT DstTy = MRI.getType(DstReg); 3294 if (DstTy.isVector()) 3295 return UnableToLegalize; 3296 3297 Register Amt = MI.getOperand(2).getReg(); 3298 LLT ShiftAmtTy = MRI.getType(Amt); 3299 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3300 if (DstEltSize % 2 != 0) 3301 return UnableToLegalize; 3302 3303 // Ignore the input type. We can only go to exactly half the size of the 3304 // input. If that isn't small enough, the resulting pieces will be further 3305 // legalized. 3306 const unsigned NewBitSize = DstEltSize / 2; 3307 const LLT HalfTy = LLT::scalar(NewBitSize); 3308 const LLT CondTy = LLT::scalar(1); 3309 3310 if (const MachineInstr *KShiftAmt = 3311 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3312 return narrowScalarShiftByConstant( 3313 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3314 } 3315 3316 // TODO: Expand with known bits. 3317 3318 // Handle the fully general expansion by an unknown amount. 3319 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3320 3321 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3322 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3323 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3324 3325 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3326 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3327 3328 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3329 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3330 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3331 3332 Register ResultRegs[2]; 3333 switch (MI.getOpcode()) { 3334 case TargetOpcode::G_SHL: { 3335 // Short: ShAmt < NewBitSize 3336 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3337 3338 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3339 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3340 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3341 3342 // Long: ShAmt >= NewBitSize 3343 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3344 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3345 3346 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3347 auto Hi = MIRBuilder.buildSelect( 3348 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3349 3350 ResultRegs[0] = Lo.getReg(0); 3351 ResultRegs[1] = Hi.getReg(0); 3352 break; 3353 } 3354 case TargetOpcode::G_LSHR: 3355 case TargetOpcode::G_ASHR: { 3356 // Short: ShAmt < NewBitSize 3357 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3358 3359 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3360 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3361 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3362 3363 // Long: ShAmt >= NewBitSize 3364 MachineInstrBuilder HiL; 3365 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3366 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3367 } else { 3368 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3369 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3370 } 3371 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3372 {InH, AmtExcess}); // Lo from Hi part. 3373 3374 auto Lo = MIRBuilder.buildSelect( 3375 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3376 3377 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3378 3379 ResultRegs[0] = Lo.getReg(0); 3380 ResultRegs[1] = Hi.getReg(0); 3381 break; 3382 } 3383 default: 3384 llvm_unreachable("not a shift"); 3385 } 3386 3387 MIRBuilder.buildMerge(DstReg, ResultRegs); 3388 MI.eraseFromParent(); 3389 return Legalized; 3390 } 3391 3392 LegalizerHelper::LegalizeResult 3393 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3394 LLT MoreTy) { 3395 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3396 3397 Observer.changingInstr(MI); 3398 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3399 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3400 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3401 moreElementsVectorSrc(MI, MoreTy, I); 3402 } 3403 3404 MachineBasicBlock &MBB = *MI.getParent(); 3405 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3406 moreElementsVectorDst(MI, MoreTy, 0); 3407 Observer.changedInstr(MI); 3408 return Legalized; 3409 } 3410 3411 LegalizerHelper::LegalizeResult 3412 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3413 LLT MoreTy) { 3414 MIRBuilder.setInstr(MI); 3415 unsigned Opc = MI.getOpcode(); 3416 switch (Opc) { 3417 case TargetOpcode::G_IMPLICIT_DEF: 3418 case TargetOpcode::G_LOAD: { 3419 if (TypeIdx != 0) 3420 return UnableToLegalize; 3421 Observer.changingInstr(MI); 3422 moreElementsVectorDst(MI, MoreTy, 0); 3423 Observer.changedInstr(MI); 3424 return Legalized; 3425 } 3426 case TargetOpcode::G_STORE: 3427 if (TypeIdx != 0) 3428 return UnableToLegalize; 3429 Observer.changingInstr(MI); 3430 moreElementsVectorSrc(MI, MoreTy, 0); 3431 Observer.changedInstr(MI); 3432 return Legalized; 3433 case TargetOpcode::G_AND: 3434 case TargetOpcode::G_OR: 3435 case TargetOpcode::G_XOR: 3436 case TargetOpcode::G_SMIN: 3437 case TargetOpcode::G_SMAX: 3438 case TargetOpcode::G_UMIN: 3439 case TargetOpcode::G_UMAX: 3440 case TargetOpcode::G_FMINNUM: 3441 case TargetOpcode::G_FMAXNUM: 3442 case TargetOpcode::G_FMINNUM_IEEE: 3443 case TargetOpcode::G_FMAXNUM_IEEE: 3444 case TargetOpcode::G_FMINIMUM: 3445 case TargetOpcode::G_FMAXIMUM: { 3446 Observer.changingInstr(MI); 3447 moreElementsVectorSrc(MI, MoreTy, 1); 3448 moreElementsVectorSrc(MI, MoreTy, 2); 3449 moreElementsVectorDst(MI, MoreTy, 0); 3450 Observer.changedInstr(MI); 3451 return Legalized; 3452 } 3453 case TargetOpcode::G_EXTRACT: 3454 if (TypeIdx != 1) 3455 return UnableToLegalize; 3456 Observer.changingInstr(MI); 3457 moreElementsVectorSrc(MI, MoreTy, 1); 3458 Observer.changedInstr(MI); 3459 return Legalized; 3460 case TargetOpcode::G_INSERT: 3461 if (TypeIdx != 0) 3462 return UnableToLegalize; 3463 Observer.changingInstr(MI); 3464 moreElementsVectorSrc(MI, MoreTy, 1); 3465 moreElementsVectorDst(MI, MoreTy, 0); 3466 Observer.changedInstr(MI); 3467 return Legalized; 3468 case TargetOpcode::G_SELECT: 3469 if (TypeIdx != 0) 3470 return UnableToLegalize; 3471 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3472 return UnableToLegalize; 3473 3474 Observer.changingInstr(MI); 3475 moreElementsVectorSrc(MI, MoreTy, 2); 3476 moreElementsVectorSrc(MI, MoreTy, 3); 3477 moreElementsVectorDst(MI, MoreTy, 0); 3478 Observer.changedInstr(MI); 3479 return Legalized; 3480 case TargetOpcode::G_UNMERGE_VALUES: { 3481 if (TypeIdx != 1) 3482 return UnableToLegalize; 3483 3484 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3485 int NumDst = MI.getNumOperands() - 1; 3486 moreElementsVectorSrc(MI, MoreTy, NumDst); 3487 3488 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3489 for (int I = 0; I != NumDst; ++I) 3490 MIB.addDef(MI.getOperand(I).getReg()); 3491 3492 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3493 for (int I = NumDst; I != NewNumDst; ++I) 3494 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3495 3496 MIB.addUse(MI.getOperand(NumDst).getReg()); 3497 MI.eraseFromParent(); 3498 return Legalized; 3499 } 3500 case TargetOpcode::G_PHI: 3501 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3502 default: 3503 return UnableToLegalize; 3504 } 3505 } 3506 3507 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3508 ArrayRef<Register> Src1Regs, 3509 ArrayRef<Register> Src2Regs, 3510 LLT NarrowTy) { 3511 MachineIRBuilder &B = MIRBuilder; 3512 unsigned SrcParts = Src1Regs.size(); 3513 unsigned DstParts = DstRegs.size(); 3514 3515 unsigned DstIdx = 0; // Low bits of the result. 3516 Register FactorSum = 3517 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3518 DstRegs[DstIdx] = FactorSum; 3519 3520 unsigned CarrySumPrevDstIdx; 3521 SmallVector<Register, 4> Factors; 3522 3523 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3524 // Collect low parts of muls for DstIdx. 3525 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3526 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3527 MachineInstrBuilder Mul = 3528 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3529 Factors.push_back(Mul.getReg(0)); 3530 } 3531 // Collect high parts of muls from previous DstIdx. 3532 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3533 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3534 MachineInstrBuilder Umulh = 3535 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3536 Factors.push_back(Umulh.getReg(0)); 3537 } 3538 // Add CarrySum from additions calculated for previous DstIdx. 3539 if (DstIdx != 1) { 3540 Factors.push_back(CarrySumPrevDstIdx); 3541 } 3542 3543 Register CarrySum; 3544 // Add all factors and accumulate all carries into CarrySum. 3545 if (DstIdx != DstParts - 1) { 3546 MachineInstrBuilder Uaddo = 3547 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3548 FactorSum = Uaddo.getReg(0); 3549 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3550 for (unsigned i = 2; i < Factors.size(); ++i) { 3551 MachineInstrBuilder Uaddo = 3552 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3553 FactorSum = Uaddo.getReg(0); 3554 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3555 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3556 } 3557 } else { 3558 // Since value for the next index is not calculated, neither is CarrySum. 3559 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3560 for (unsigned i = 2; i < Factors.size(); ++i) 3561 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3562 } 3563 3564 CarrySumPrevDstIdx = CarrySum; 3565 DstRegs[DstIdx] = FactorSum; 3566 Factors.clear(); 3567 } 3568 } 3569 3570 LegalizerHelper::LegalizeResult 3571 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3572 Register DstReg = MI.getOperand(0).getReg(); 3573 Register Src1 = MI.getOperand(1).getReg(); 3574 Register Src2 = MI.getOperand(2).getReg(); 3575 3576 LLT Ty = MRI.getType(DstReg); 3577 if (Ty.isVector()) 3578 return UnableToLegalize; 3579 3580 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3581 unsigned DstSize = Ty.getSizeInBits(); 3582 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3583 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3584 return UnableToLegalize; 3585 3586 unsigned NumDstParts = DstSize / NarrowSize; 3587 unsigned NumSrcParts = SrcSize / NarrowSize; 3588 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3589 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3590 3591 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3592 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3593 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3594 DstTmpRegs.resize(DstTmpParts); 3595 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3596 3597 // Take only high half of registers if this is high mul. 3598 ArrayRef<Register> DstRegs( 3599 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3600 MIRBuilder.buildMerge(DstReg, DstRegs); 3601 MI.eraseFromParent(); 3602 return Legalized; 3603 } 3604 3605 LegalizerHelper::LegalizeResult 3606 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3607 LLT NarrowTy) { 3608 if (TypeIdx != 1) 3609 return UnableToLegalize; 3610 3611 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3612 3613 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3614 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3615 // NarrowSize. 3616 if (SizeOp1 % NarrowSize != 0) 3617 return UnableToLegalize; 3618 int NumParts = SizeOp1 / NarrowSize; 3619 3620 SmallVector<Register, 2> SrcRegs, DstRegs; 3621 SmallVector<uint64_t, 2> Indexes; 3622 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3623 3624 Register OpReg = MI.getOperand(0).getReg(); 3625 uint64_t OpStart = MI.getOperand(2).getImm(); 3626 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3627 for (int i = 0; i < NumParts; ++i) { 3628 unsigned SrcStart = i * NarrowSize; 3629 3630 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3631 // No part of the extract uses this subregister, ignore it. 3632 continue; 3633 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3634 // The entire subregister is extracted, forward the value. 3635 DstRegs.push_back(SrcRegs[i]); 3636 continue; 3637 } 3638 3639 // OpSegStart is where this destination segment would start in OpReg if it 3640 // extended infinitely in both directions. 3641 int64_t ExtractOffset; 3642 uint64_t SegSize; 3643 if (OpStart < SrcStart) { 3644 ExtractOffset = 0; 3645 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3646 } else { 3647 ExtractOffset = OpStart - SrcStart; 3648 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3649 } 3650 3651 Register SegReg = SrcRegs[i]; 3652 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3653 // A genuine extract is needed. 3654 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3655 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3656 } 3657 3658 DstRegs.push_back(SegReg); 3659 } 3660 3661 Register DstReg = MI.getOperand(0).getReg(); 3662 if(MRI.getType(DstReg).isVector()) 3663 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3664 else 3665 MIRBuilder.buildMerge(DstReg, DstRegs); 3666 MI.eraseFromParent(); 3667 return Legalized; 3668 } 3669 3670 LegalizerHelper::LegalizeResult 3671 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3672 LLT NarrowTy) { 3673 // FIXME: Don't know how to handle secondary types yet. 3674 if (TypeIdx != 0) 3675 return UnableToLegalize; 3676 3677 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3678 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3679 3680 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3681 // NarrowSize. 3682 if (SizeOp0 % NarrowSize != 0) 3683 return UnableToLegalize; 3684 3685 int NumParts = SizeOp0 / NarrowSize; 3686 3687 SmallVector<Register, 2> SrcRegs, DstRegs; 3688 SmallVector<uint64_t, 2> Indexes; 3689 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3690 3691 Register OpReg = MI.getOperand(2).getReg(); 3692 uint64_t OpStart = MI.getOperand(3).getImm(); 3693 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3694 for (int i = 0; i < NumParts; ++i) { 3695 unsigned DstStart = i * NarrowSize; 3696 3697 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3698 // No part of the insert affects this subregister, forward the original. 3699 DstRegs.push_back(SrcRegs[i]); 3700 continue; 3701 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3702 // The entire subregister is defined by this insert, forward the new 3703 // value. 3704 DstRegs.push_back(OpReg); 3705 continue; 3706 } 3707 3708 // OpSegStart is where this destination segment would start in OpReg if it 3709 // extended infinitely in both directions. 3710 int64_t ExtractOffset, InsertOffset; 3711 uint64_t SegSize; 3712 if (OpStart < DstStart) { 3713 InsertOffset = 0; 3714 ExtractOffset = DstStart - OpStart; 3715 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3716 } else { 3717 InsertOffset = OpStart - DstStart; 3718 ExtractOffset = 0; 3719 SegSize = 3720 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3721 } 3722 3723 Register SegReg = OpReg; 3724 if (ExtractOffset != 0 || SegSize != OpSize) { 3725 // A genuine extract is needed. 3726 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3727 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3728 } 3729 3730 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3731 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3732 DstRegs.push_back(DstReg); 3733 } 3734 3735 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3736 Register DstReg = MI.getOperand(0).getReg(); 3737 if(MRI.getType(DstReg).isVector()) 3738 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3739 else 3740 MIRBuilder.buildMerge(DstReg, DstRegs); 3741 MI.eraseFromParent(); 3742 return Legalized; 3743 } 3744 3745 LegalizerHelper::LegalizeResult 3746 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3747 LLT NarrowTy) { 3748 Register DstReg = MI.getOperand(0).getReg(); 3749 LLT DstTy = MRI.getType(DstReg); 3750 3751 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3752 3753 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3754 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3755 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3756 LLT LeftoverTy; 3757 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3758 Src0Regs, Src0LeftoverRegs)) 3759 return UnableToLegalize; 3760 3761 LLT Unused; 3762 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3763 Src1Regs, Src1LeftoverRegs)) 3764 llvm_unreachable("inconsistent extractParts result"); 3765 3766 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3767 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3768 {Src0Regs[I], Src1Regs[I]}); 3769 DstRegs.push_back(Inst.getReg(0)); 3770 } 3771 3772 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3773 auto Inst = MIRBuilder.buildInstr( 3774 MI.getOpcode(), 3775 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3776 DstLeftoverRegs.push_back(Inst.getReg(0)); 3777 } 3778 3779 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3780 LeftoverTy, DstLeftoverRegs); 3781 3782 MI.eraseFromParent(); 3783 return Legalized; 3784 } 3785 3786 LegalizerHelper::LegalizeResult 3787 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3788 LLT NarrowTy) { 3789 if (TypeIdx != 0) 3790 return UnableToLegalize; 3791 3792 Register DstReg = MI.getOperand(0).getReg(); 3793 Register SrcReg = MI.getOperand(1).getReg(); 3794 3795 LLT DstTy = MRI.getType(DstReg); 3796 if (DstTy.isVector()) 3797 return UnableToLegalize; 3798 3799 SmallVector<Register, 8> Parts; 3800 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3801 buildLCMMerge(DstReg, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3802 MI.eraseFromParent(); 3803 return Legalized; 3804 } 3805 3806 LegalizerHelper::LegalizeResult 3807 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3808 LLT NarrowTy) { 3809 if (TypeIdx != 0) 3810 return UnableToLegalize; 3811 3812 Register CondReg = MI.getOperand(1).getReg(); 3813 LLT CondTy = MRI.getType(CondReg); 3814 if (CondTy.isVector()) // TODO: Handle vselect 3815 return UnableToLegalize; 3816 3817 Register DstReg = MI.getOperand(0).getReg(); 3818 LLT DstTy = MRI.getType(DstReg); 3819 3820 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3821 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3822 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3823 LLT LeftoverTy; 3824 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3825 Src1Regs, Src1LeftoverRegs)) 3826 return UnableToLegalize; 3827 3828 LLT Unused; 3829 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3830 Src2Regs, Src2LeftoverRegs)) 3831 llvm_unreachable("inconsistent extractParts result"); 3832 3833 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3834 auto Select = MIRBuilder.buildSelect(NarrowTy, 3835 CondReg, Src1Regs[I], Src2Regs[I]); 3836 DstRegs.push_back(Select.getReg(0)); 3837 } 3838 3839 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3840 auto Select = MIRBuilder.buildSelect( 3841 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3842 DstLeftoverRegs.push_back(Select.getReg(0)); 3843 } 3844 3845 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3846 LeftoverTy, DstLeftoverRegs); 3847 3848 MI.eraseFromParent(); 3849 return Legalized; 3850 } 3851 3852 LegalizerHelper::LegalizeResult 3853 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3854 unsigned Opc = MI.getOpcode(); 3855 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3856 auto isSupported = [this](const LegalityQuery &Q) { 3857 auto QAction = LI.getAction(Q).Action; 3858 return QAction == Legal || QAction == Libcall || QAction == Custom; 3859 }; 3860 switch (Opc) { 3861 default: 3862 return UnableToLegalize; 3863 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3864 // This trivially expands to CTLZ. 3865 Observer.changingInstr(MI); 3866 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3867 Observer.changedInstr(MI); 3868 return Legalized; 3869 } 3870 case TargetOpcode::G_CTLZ: { 3871 Register SrcReg = MI.getOperand(1).getReg(); 3872 unsigned Len = Ty.getSizeInBits(); 3873 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3874 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3875 auto MIBCtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(Ty, SrcReg); 3876 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3877 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3878 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3879 SrcReg, MIBZero); 3880 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCtlzZU); 3881 MI.eraseFromParent(); 3882 return Legalized; 3883 } 3884 // for now, we do this: 3885 // NewLen = NextPowerOf2(Len); 3886 // x = x | (x >> 1); 3887 // x = x | (x >> 2); 3888 // ... 3889 // x = x | (x >>16); 3890 // x = x | (x >>32); // for 64-bit input 3891 // Upto NewLen/2 3892 // return Len - popcount(x); 3893 // 3894 // Ref: "Hacker's Delight" by Henry Warren 3895 Register Op = SrcReg; 3896 unsigned NewLen = PowerOf2Ceil(Len); 3897 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3898 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3899 auto MIBOp = 3900 MIRBuilder.buildOr(Ty, Op, MIRBuilder.buildLShr(Ty, Op, MIBShiftAmt)); 3901 Op = MIBOp.getReg(0); 3902 } 3903 auto MIBPop = MIRBuilder.buildCTPOP(Ty, Op); 3904 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(Ty, Len), 3905 MIBPop); 3906 MI.eraseFromParent(); 3907 return Legalized; 3908 } 3909 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3910 // This trivially expands to CTTZ. 3911 Observer.changingInstr(MI); 3912 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3913 Observer.changedInstr(MI); 3914 return Legalized; 3915 } 3916 case TargetOpcode::G_CTTZ: { 3917 Register SrcReg = MI.getOperand(1).getReg(); 3918 unsigned Len = Ty.getSizeInBits(); 3919 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3920 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3921 // zero. 3922 auto MIBCttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(Ty, SrcReg); 3923 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3924 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3925 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3926 SrcReg, MIBZero); 3927 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCttzZU); 3928 MI.eraseFromParent(); 3929 return Legalized; 3930 } 3931 // for now, we use: { return popcount(~x & (x - 1)); } 3932 // unless the target has ctlz but not ctpop, in which case we use: 3933 // { return 32 - nlz(~x & (x-1)); } 3934 // Ref: "Hacker's Delight" by Henry Warren 3935 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3936 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 3937 auto MIBTmp = MIRBuilder.buildAnd( 3938 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 3939 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3940 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3941 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3942 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 3943 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 3944 MI.eraseFromParent(); 3945 return Legalized; 3946 } 3947 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3948 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 3949 return Legalized; 3950 } 3951 } 3952 } 3953 3954 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3955 // representation. 3956 LegalizerHelper::LegalizeResult 3957 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3958 Register Dst = MI.getOperand(0).getReg(); 3959 Register Src = MI.getOperand(1).getReg(); 3960 const LLT S64 = LLT::scalar(64); 3961 const LLT S32 = LLT::scalar(32); 3962 const LLT S1 = LLT::scalar(1); 3963 3964 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3965 3966 // unsigned cul2f(ulong u) { 3967 // uint lz = clz(u); 3968 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3969 // u = (u << lz) & 0x7fffffffffffffffUL; 3970 // ulong t = u & 0xffffffffffUL; 3971 // uint v = (e << 23) | (uint)(u >> 40); 3972 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3973 // return as_float(v + r); 3974 // } 3975 3976 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3977 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3978 3979 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3980 3981 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3982 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3983 3984 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3985 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3986 3987 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3988 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3989 3990 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3991 3992 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3993 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3994 3995 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3996 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3997 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3998 3999 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4000 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4001 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4002 auto One = MIRBuilder.buildConstant(S32, 1); 4003 4004 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4005 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4006 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4007 MIRBuilder.buildAdd(Dst, V, R); 4008 4009 return Legalized; 4010 } 4011 4012 LegalizerHelper::LegalizeResult 4013 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4014 Register Dst = MI.getOperand(0).getReg(); 4015 Register Src = MI.getOperand(1).getReg(); 4016 LLT DstTy = MRI.getType(Dst); 4017 LLT SrcTy = MRI.getType(Src); 4018 4019 if (SrcTy == LLT::scalar(1)) { 4020 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4021 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4022 MIRBuilder.buildSelect(Dst, Src, True, False); 4023 MI.eraseFromParent(); 4024 return Legalized; 4025 } 4026 4027 if (SrcTy != LLT::scalar(64)) 4028 return UnableToLegalize; 4029 4030 if (DstTy == LLT::scalar(32)) { 4031 // TODO: SelectionDAG has several alternative expansions to port which may 4032 // be more reasonble depending on the available instructions. If a target 4033 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4034 // intermediate type, this is probably worse. 4035 return lowerU64ToF32BitOps(MI); 4036 } 4037 4038 return UnableToLegalize; 4039 } 4040 4041 LegalizerHelper::LegalizeResult 4042 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4043 Register Dst = MI.getOperand(0).getReg(); 4044 Register Src = MI.getOperand(1).getReg(); 4045 LLT DstTy = MRI.getType(Dst); 4046 LLT SrcTy = MRI.getType(Src); 4047 4048 const LLT S64 = LLT::scalar(64); 4049 const LLT S32 = LLT::scalar(32); 4050 const LLT S1 = LLT::scalar(1); 4051 4052 if (SrcTy == S1) { 4053 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4054 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4055 MIRBuilder.buildSelect(Dst, Src, True, False); 4056 MI.eraseFromParent(); 4057 return Legalized; 4058 } 4059 4060 if (SrcTy != S64) 4061 return UnableToLegalize; 4062 4063 if (DstTy == S32) { 4064 // signed cl2f(long l) { 4065 // long s = l >> 63; 4066 // float r = cul2f((l + s) ^ s); 4067 // return s ? -r : r; 4068 // } 4069 Register L = Src; 4070 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4071 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4072 4073 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4074 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4075 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4076 4077 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4078 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4079 MIRBuilder.buildConstant(S64, 0)); 4080 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4081 return Legalized; 4082 } 4083 4084 return UnableToLegalize; 4085 } 4086 4087 LegalizerHelper::LegalizeResult 4088 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4089 Register Dst = MI.getOperand(0).getReg(); 4090 Register Src = MI.getOperand(1).getReg(); 4091 LLT DstTy = MRI.getType(Dst); 4092 LLT SrcTy = MRI.getType(Src); 4093 const LLT S64 = LLT::scalar(64); 4094 const LLT S32 = LLT::scalar(32); 4095 4096 if (SrcTy != S64 && SrcTy != S32) 4097 return UnableToLegalize; 4098 if (DstTy != S32 && DstTy != S64) 4099 return UnableToLegalize; 4100 4101 // FPTOSI gives same result as FPTOUI for positive signed integers. 4102 // FPTOUI needs to deal with fp values that convert to unsigned integers 4103 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4104 4105 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4106 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4107 : APFloat::IEEEdouble(), 4108 APInt::getNullValue(SrcTy.getSizeInBits())); 4109 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4110 4111 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4112 4113 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4114 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4115 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4116 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4117 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4118 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4119 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4120 4121 const LLT S1 = LLT::scalar(1); 4122 4123 MachineInstrBuilder FCMP = 4124 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4125 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4126 4127 MI.eraseFromParent(); 4128 return Legalized; 4129 } 4130 4131 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4132 switch (Opc) { 4133 case TargetOpcode::G_SMIN: 4134 return CmpInst::ICMP_SLT; 4135 case TargetOpcode::G_SMAX: 4136 return CmpInst::ICMP_SGT; 4137 case TargetOpcode::G_UMIN: 4138 return CmpInst::ICMP_ULT; 4139 case TargetOpcode::G_UMAX: 4140 return CmpInst::ICMP_UGT; 4141 default: 4142 llvm_unreachable("not in integer min/max"); 4143 } 4144 } 4145 4146 LegalizerHelper::LegalizeResult 4147 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4148 Register Dst = MI.getOperand(0).getReg(); 4149 Register Src0 = MI.getOperand(1).getReg(); 4150 Register Src1 = MI.getOperand(2).getReg(); 4151 4152 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4153 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4154 4155 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4156 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4157 4158 MI.eraseFromParent(); 4159 return Legalized; 4160 } 4161 4162 LegalizerHelper::LegalizeResult 4163 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4164 Register Dst = MI.getOperand(0).getReg(); 4165 Register Src0 = MI.getOperand(1).getReg(); 4166 Register Src1 = MI.getOperand(2).getReg(); 4167 4168 const LLT Src0Ty = MRI.getType(Src0); 4169 const LLT Src1Ty = MRI.getType(Src1); 4170 4171 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4172 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4173 4174 auto SignBitMask = MIRBuilder.buildConstant( 4175 Src0Ty, APInt::getSignMask(Src0Size)); 4176 4177 auto NotSignBitMask = MIRBuilder.buildConstant( 4178 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4179 4180 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4181 MachineInstr *Or; 4182 4183 if (Src0Ty == Src1Ty) { 4184 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4185 Or = MIRBuilder.buildOr(Dst, And0, And1); 4186 } else if (Src0Size > Src1Size) { 4187 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4188 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4189 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4190 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4191 Or = MIRBuilder.buildOr(Dst, And0, And1); 4192 } else { 4193 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4194 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4195 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4196 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4197 Or = MIRBuilder.buildOr(Dst, And0, And1); 4198 } 4199 4200 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4201 // constants are a nan and -0.0, but the final result should preserve 4202 // everything. 4203 if (unsigned Flags = MI.getFlags()) 4204 Or->setFlags(Flags); 4205 4206 MI.eraseFromParent(); 4207 return Legalized; 4208 } 4209 4210 LegalizerHelper::LegalizeResult 4211 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4212 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4213 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4214 4215 Register Dst = MI.getOperand(0).getReg(); 4216 Register Src0 = MI.getOperand(1).getReg(); 4217 Register Src1 = MI.getOperand(2).getReg(); 4218 LLT Ty = MRI.getType(Dst); 4219 4220 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4221 // Insert canonicalizes if it's possible we need to quiet to get correct 4222 // sNaN behavior. 4223 4224 // Note this must be done here, and not as an optimization combine in the 4225 // absence of a dedicate quiet-snan instruction as we're using an 4226 // omni-purpose G_FCANONICALIZE. 4227 if (!isKnownNeverSNaN(Src0, MRI)) 4228 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4229 4230 if (!isKnownNeverSNaN(Src1, MRI)) 4231 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4232 } 4233 4234 // If there are no nans, it's safe to simply replace this with the non-IEEE 4235 // version. 4236 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4237 MI.eraseFromParent(); 4238 return Legalized; 4239 } 4240 4241 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4242 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4243 Register DstReg = MI.getOperand(0).getReg(); 4244 LLT Ty = MRI.getType(DstReg); 4245 unsigned Flags = MI.getFlags(); 4246 4247 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4248 Flags); 4249 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4250 MI.eraseFromParent(); 4251 return Legalized; 4252 } 4253 4254 LegalizerHelper::LegalizeResult 4255 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4256 Register DstReg = MI.getOperand(0).getReg(); 4257 Register SrcReg = MI.getOperand(1).getReg(); 4258 unsigned Flags = MI.getFlags(); 4259 LLT Ty = MRI.getType(DstReg); 4260 const LLT CondTy = Ty.changeElementSize(1); 4261 4262 // result = trunc(src); 4263 // if (src < 0.0 && src != result) 4264 // result += -1.0. 4265 4266 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4267 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4268 4269 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4270 SrcReg, Zero, Flags); 4271 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4272 SrcReg, Trunc, Flags); 4273 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4274 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4275 4276 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4277 MI.eraseFromParent(); 4278 return Legalized; 4279 } 4280 4281 LegalizerHelper::LegalizeResult 4282 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4283 const unsigned NumDst = MI.getNumOperands() - 1; 4284 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4285 LLT SrcTy = MRI.getType(SrcReg); 4286 4287 Register Dst0Reg = MI.getOperand(0).getReg(); 4288 LLT DstTy = MRI.getType(Dst0Reg); 4289 4290 4291 // Expand scalarizing unmerge as bitcast to integer and shift. 4292 if (!DstTy.isVector() && SrcTy.isVector() && 4293 SrcTy.getElementType() == DstTy) { 4294 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4295 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4296 4297 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4298 4299 const unsigned DstSize = DstTy.getSizeInBits(); 4300 unsigned Offset = DstSize; 4301 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4302 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4303 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4304 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4305 } 4306 4307 MI.eraseFromParent(); 4308 return Legalized; 4309 } 4310 4311 return UnableToLegalize; 4312 } 4313 4314 LegalizerHelper::LegalizeResult 4315 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4316 Register DstReg = MI.getOperand(0).getReg(); 4317 Register Src0Reg = MI.getOperand(1).getReg(); 4318 Register Src1Reg = MI.getOperand(2).getReg(); 4319 LLT Src0Ty = MRI.getType(Src0Reg); 4320 LLT DstTy = MRI.getType(DstReg); 4321 LLT IdxTy = LLT::scalar(32); 4322 4323 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4324 4325 if (DstTy.isScalar()) { 4326 if (Src0Ty.isVector()) 4327 return UnableToLegalize; 4328 4329 // This is just a SELECT. 4330 assert(Mask.size() == 1 && "Expected a single mask element"); 4331 Register Val; 4332 if (Mask[0] < 0 || Mask[0] > 1) 4333 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4334 else 4335 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4336 MIRBuilder.buildCopy(DstReg, Val); 4337 MI.eraseFromParent(); 4338 return Legalized; 4339 } 4340 4341 Register Undef; 4342 SmallVector<Register, 32> BuildVec; 4343 LLT EltTy = DstTy.getElementType(); 4344 4345 for (int Idx : Mask) { 4346 if (Idx < 0) { 4347 if (!Undef.isValid()) 4348 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4349 BuildVec.push_back(Undef); 4350 continue; 4351 } 4352 4353 if (Src0Ty.isScalar()) { 4354 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4355 } else { 4356 int NumElts = Src0Ty.getNumElements(); 4357 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4358 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4359 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4360 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4361 BuildVec.push_back(Extract.getReg(0)); 4362 } 4363 } 4364 4365 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4366 MI.eraseFromParent(); 4367 return Legalized; 4368 } 4369 4370 LegalizerHelper::LegalizeResult 4371 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4372 Register Dst = MI.getOperand(0).getReg(); 4373 Register AllocSize = MI.getOperand(1).getReg(); 4374 unsigned Align = MI.getOperand(2).getImm(); 4375 4376 const auto &MF = *MI.getMF(); 4377 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4378 4379 LLT PtrTy = MRI.getType(Dst); 4380 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4381 4382 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4383 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4384 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4385 4386 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4387 // have to generate an extra instruction to negate the alloc and then use 4388 // G_PTR_ADD to add the negative offset. 4389 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4390 if (Align) { 4391 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4392 AlignMask.negate(); 4393 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4394 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4395 } 4396 4397 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4398 MIRBuilder.buildCopy(SPReg, SPTmp); 4399 MIRBuilder.buildCopy(Dst, SPTmp); 4400 4401 MI.eraseFromParent(); 4402 return Legalized; 4403 } 4404 4405 LegalizerHelper::LegalizeResult 4406 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4407 Register Dst = MI.getOperand(0).getReg(); 4408 Register Src = MI.getOperand(1).getReg(); 4409 unsigned Offset = MI.getOperand(2).getImm(); 4410 4411 LLT DstTy = MRI.getType(Dst); 4412 LLT SrcTy = MRI.getType(Src); 4413 4414 if (DstTy.isScalar() && 4415 (SrcTy.isScalar() || 4416 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4417 LLT SrcIntTy = SrcTy; 4418 if (!SrcTy.isScalar()) { 4419 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4420 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4421 } 4422 4423 if (Offset == 0) 4424 MIRBuilder.buildTrunc(Dst, Src); 4425 else { 4426 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4427 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4428 MIRBuilder.buildTrunc(Dst, Shr); 4429 } 4430 4431 MI.eraseFromParent(); 4432 return Legalized; 4433 } 4434 4435 return UnableToLegalize; 4436 } 4437 4438 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4439 Register Dst = MI.getOperand(0).getReg(); 4440 Register Src = MI.getOperand(1).getReg(); 4441 Register InsertSrc = MI.getOperand(2).getReg(); 4442 uint64_t Offset = MI.getOperand(3).getImm(); 4443 4444 LLT DstTy = MRI.getType(Src); 4445 LLT InsertTy = MRI.getType(InsertSrc); 4446 4447 if (InsertTy.isScalar() && 4448 (DstTy.isScalar() || 4449 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4450 LLT IntDstTy = DstTy; 4451 if (!DstTy.isScalar()) { 4452 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4453 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4454 } 4455 4456 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4457 if (Offset != 0) { 4458 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4459 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4460 } 4461 4462 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4463 InsertTy.getSizeInBits()); 4464 4465 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4466 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4467 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4468 4469 MIRBuilder.buildBitcast(Dst, Or); 4470 MI.eraseFromParent(); 4471 return Legalized; 4472 } 4473 4474 return UnableToLegalize; 4475 } 4476 4477 LegalizerHelper::LegalizeResult 4478 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4479 Register Dst0 = MI.getOperand(0).getReg(); 4480 Register Dst1 = MI.getOperand(1).getReg(); 4481 Register LHS = MI.getOperand(2).getReg(); 4482 Register RHS = MI.getOperand(3).getReg(); 4483 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4484 4485 LLT Ty = MRI.getType(Dst0); 4486 LLT BoolTy = MRI.getType(Dst1); 4487 4488 if (IsAdd) 4489 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4490 else 4491 MIRBuilder.buildSub(Dst0, LHS, RHS); 4492 4493 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4494 4495 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4496 4497 // For an addition, the result should be less than one of the operands (LHS) 4498 // if and only if the other operand (RHS) is negative, otherwise there will 4499 // be overflow. 4500 // For a subtraction, the result should be less than one of the operands 4501 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4502 // otherwise there will be overflow. 4503 auto ResultLowerThanLHS = 4504 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4505 auto ConditionRHS = MIRBuilder.buildICmp( 4506 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4507 4508 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4509 MI.eraseFromParent(); 4510 return Legalized; 4511 } 4512 4513 LegalizerHelper::LegalizeResult 4514 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4515 Register Dst = MI.getOperand(0).getReg(); 4516 Register Src = MI.getOperand(1).getReg(); 4517 const LLT Ty = MRI.getType(Src); 4518 unsigned SizeInBytes = Ty.getSizeInBytes(); 4519 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4520 4521 // Swap most and least significant byte, set remaining bytes in Res to zero. 4522 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4523 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4524 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4525 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4526 4527 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4528 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4529 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4530 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4531 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4532 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4533 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4534 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4535 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4536 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4537 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4538 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4539 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4540 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4541 } 4542 Res.getInstr()->getOperand(0).setReg(Dst); 4543 4544 MI.eraseFromParent(); 4545 return Legalized; 4546 } 4547 4548 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4549 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4550 MachineInstrBuilder Src, APInt Mask) { 4551 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4552 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4553 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4554 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4555 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4556 return B.buildOr(Dst, LHS, RHS); 4557 } 4558 4559 LegalizerHelper::LegalizeResult 4560 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4561 Register Dst = MI.getOperand(0).getReg(); 4562 Register Src = MI.getOperand(1).getReg(); 4563 const LLT Ty = MRI.getType(Src); 4564 unsigned Size = Ty.getSizeInBits(); 4565 4566 MachineInstrBuilder BSWAP = 4567 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4568 4569 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4570 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4571 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4572 MachineInstrBuilder Swap4 = 4573 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4574 4575 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4576 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4577 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4578 MachineInstrBuilder Swap2 = 4579 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4580 4581 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4582 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4583 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4584 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4585 4586 MI.eraseFromParent(); 4587 return Legalized; 4588 } 4589 4590 LegalizerHelper::LegalizeResult 4591 LegalizerHelper::lowerReadRegister(MachineInstr &MI) { 4592 Register Dst = MI.getOperand(0).getReg(); 4593 const LLT Ty = MRI.getType(Dst); 4594 const MDString *RegStr = cast<MDString>( 4595 cast<MDNode>(MI.getOperand(1).getMetadata())->getOperand(0)); 4596 4597 MachineFunction &MF = MIRBuilder.getMF(); 4598 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4599 const TargetLowering *TLI = STI.getTargetLowering(); 4600 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4601 if (!Reg.isValid()) 4602 return UnableToLegalize; 4603 4604 MIRBuilder.buildCopy(Dst, Reg); 4605 MI.eraseFromParent(); 4606 return Legalized; 4607 } 4608