1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()) {
94   MIRBuilder.setChangeObserver(Observer);
95 }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
101   MIRBuilder.setChangeObserver(Observer);
102 }
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[I] = MI.getOperand(I).getReg();
253 }
254 
255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
256                                     LLT NarrowTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258 
259   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
260   if (SrcTy == GCDTy) {
261     // If the source already evenly divides the result type, we don't need to do
262     // anything.
263     Parts.push_back(SrcReg);
264   } else {
265     // Need to split into common type sized pieces.
266     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
267     getUnmergeResults(Parts, *Unmerge);
268   }
269 
270   return GCDTy;
271 }
272 
273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
274                                          SmallVectorImpl<Register> &VRegs,
275                                          unsigned PadStrategy) {
276   LLT LCMTy = getLCMType(DstTy, NarrowTy);
277 
278   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
279   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
280   int NumOrigSrc = VRegs.size();
281 
282   Register PadReg;
283 
284   // Get a value we can use to pad the source value if the sources won't evenly
285   // cover the result type.
286   if (NumOrigSrc < NumParts * NumSubParts) {
287     if (PadStrategy == TargetOpcode::G_ZEXT)
288       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
289     else if (PadStrategy == TargetOpcode::G_ANYEXT)
290       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
291     else {
292       assert(PadStrategy == TargetOpcode::G_SEXT);
293 
294       // Shift the sign bit of the low register through the high register.
295       auto ShiftAmt =
296         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
297       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
298     }
299   }
300 
301   // Registers for the final merge to be produced.
302   SmallVector<Register, 4> Remerge(NumParts);
303 
304   // Registers needed for intermediate merges, which will be merged into a
305   // source for Remerge.
306   SmallVector<Register, 4> SubMerge(NumSubParts);
307 
308   // Once we've fully read off the end of the original source bits, we can reuse
309   // the same high bits for remaining padding elements.
310   Register AllPadReg;
311 
312   // Build merges to the LCM type to cover the original result type.
313   for (int I = 0; I != NumParts; ++I) {
314     bool AllMergePartsArePadding = true;
315 
316     // Build the requested merges to the requested type.
317     for (int J = 0; J != NumSubParts; ++J) {
318       int Idx = I * NumSubParts + J;
319       if (Idx >= NumOrigSrc) {
320         SubMerge[J] = PadReg;
321         continue;
322       }
323 
324       SubMerge[J] = VRegs[Idx];
325 
326       // There are meaningful bits here we can't reuse later.
327       AllMergePartsArePadding = false;
328     }
329 
330     // If we've filled up a complete piece with padding bits, we can directly
331     // emit the natural sized constant if applicable, rather than a merge of
332     // smaller constants.
333     if (AllMergePartsArePadding && !AllPadReg) {
334       if (PadStrategy == TargetOpcode::G_ANYEXT)
335         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
336       else if (PadStrategy == TargetOpcode::G_ZEXT)
337         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
338 
339       // If this is a sign extension, we can't materialize a trivial constant
340       // with the right type and have to produce a merge.
341     }
342 
343     if (AllPadReg) {
344       // Avoid creating additional instructions if we're just adding additional
345       // copies of padding bits.
346       Remerge[I] = AllPadReg;
347       continue;
348     }
349 
350     if (NumSubParts == 1)
351       Remerge[I] = SubMerge[0];
352     else
353       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
354 
355     // In the sign extend padding case, re-use the first all-signbit merge.
356     if (AllMergePartsArePadding && !AllPadReg)
357       AllPadReg = Remerge[I];
358   }
359 
360   VRegs = std::move(Remerge);
361   return LCMTy;
362 }
363 
364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
365                                                ArrayRef<Register> RemergeRegs) {
366   LLT DstTy = MRI.getType(DstReg);
367 
368   // Create the merge to the widened source, and extract the relevant bits into
369   // the result.
370 
371   if (DstTy == LCMTy) {
372     MIRBuilder.buildMerge(DstReg, RemergeRegs);
373     return;
374   }
375 
376   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
377   if (DstTy.isScalar() && LCMTy.isScalar()) {
378     MIRBuilder.buildTrunc(DstReg, Remerge);
379     return;
380   }
381 
382   if (LCMTy.isVector()) {
383     MIRBuilder.buildExtract(DstReg, Remerge, 0);
384     return;
385   }
386 
387   llvm_unreachable("unhandled case");
388 }
389 
390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
391 #define RTLIBCASE_INT(LibcallPrefix)                                           \
392   do {                                                                         \
393     switch (Size) {                                                            \
394     case 32:                                                                   \
395       return RTLIB::LibcallPrefix##32;                                         \
396     case 64:                                                                   \
397       return RTLIB::LibcallPrefix##64;                                         \
398     case 128:                                                                  \
399       return RTLIB::LibcallPrefix##128;                                        \
400     default:                                                                   \
401       llvm_unreachable("unexpected size");                                     \
402     }                                                                          \
403   } while (0)
404 
405 #define RTLIBCASE(LibcallPrefix)                                               \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 80:                                                                   \
413       return RTLIB::LibcallPrefix##80;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421   switch (Opcode) {
422   case TargetOpcode::G_SDIV:
423     RTLIBCASE_INT(SDIV_I);
424   case TargetOpcode::G_UDIV:
425     RTLIBCASE_INT(UDIV_I);
426   case TargetOpcode::G_SREM:
427     RTLIBCASE_INT(SREM_I);
428   case TargetOpcode::G_UREM:
429     RTLIBCASE_INT(UREM_I);
430   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
431     RTLIBCASE_INT(CTLZ_I);
432   case TargetOpcode::G_FADD:
433     RTLIBCASE(ADD_F);
434   case TargetOpcode::G_FSUB:
435     RTLIBCASE(SUB_F);
436   case TargetOpcode::G_FMUL:
437     RTLIBCASE(MUL_F);
438   case TargetOpcode::G_FDIV:
439     RTLIBCASE(DIV_F);
440   case TargetOpcode::G_FEXP:
441     RTLIBCASE(EXP_F);
442   case TargetOpcode::G_FEXP2:
443     RTLIBCASE(EXP2_F);
444   case TargetOpcode::G_FREM:
445     RTLIBCASE(REM_F);
446   case TargetOpcode::G_FPOW:
447     RTLIBCASE(POW_F);
448   case TargetOpcode::G_FMA:
449     RTLIBCASE(FMA_F);
450   case TargetOpcode::G_FSIN:
451     RTLIBCASE(SIN_F);
452   case TargetOpcode::G_FCOS:
453     RTLIBCASE(COS_F);
454   case TargetOpcode::G_FLOG10:
455     RTLIBCASE(LOG10_F);
456   case TargetOpcode::G_FLOG:
457     RTLIBCASE(LOG_F);
458   case TargetOpcode::G_FLOG2:
459     RTLIBCASE(LOG2_F);
460   case TargetOpcode::G_FCEIL:
461     RTLIBCASE(CEIL_F);
462   case TargetOpcode::G_FFLOOR:
463     RTLIBCASE(FLOOR_F);
464   case TargetOpcode::G_FMINNUM:
465     RTLIBCASE(FMIN_F);
466   case TargetOpcode::G_FMAXNUM:
467     RTLIBCASE(FMAX_F);
468   case TargetOpcode::G_FSQRT:
469     RTLIBCASE(SQRT_F);
470   case TargetOpcode::G_FRINT:
471     RTLIBCASE(RINT_F);
472   case TargetOpcode::G_FNEARBYINT:
473     RTLIBCASE(NEARBYINT_F);
474   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
475     RTLIBCASE(ROUNDEVEN_F);
476   }
477   llvm_unreachable("Unknown libcall function");
478 }
479 
480 /// True if an instruction is in tail position in its caller. Intended for
481 /// legalizing libcalls as tail calls when possible.
482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
483                                     MachineInstr &MI) {
484   MachineBasicBlock &MBB = *MI.getParent();
485   const Function &F = MBB.getParent()->getFunction();
486 
487   // Conservatively require the attributes of the call to match those of
488   // the return. Ignore NoAlias and NonNull because they don't affect the
489   // call sequence.
490   AttributeList CallerAttrs = F.getAttributes();
491   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
492           .removeAttribute(Attribute::NoAlias)
493           .removeAttribute(Attribute::NonNull)
494           .hasAttributes())
495     return false;
496 
497   // It's not safe to eliminate the sign / zero extension of the return value.
498   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
499       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
500     return false;
501 
502   // Only tail call if the following instruction is a standard return.
503   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
504   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
505     return false;
506 
507   return true;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args,
514                     const CallingConv::ID CC) {
515   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
516 
517   CallLowering::CallLoweringInfo Info;
518   Info.CallConv = CC;
519   Info.Callee = MachineOperand::CreateES(Name);
520   Info.OrigRet = Result;
521   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
522   if (!CLI.lowerCall(MIRBuilder, Info))
523     return LegalizerHelper::UnableToLegalize;
524 
525   return LegalizerHelper::Legalized;
526 }
527 
528 LegalizerHelper::LegalizeResult
529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
530                     const CallLowering::ArgInfo &Result,
531                     ArrayRef<CallLowering::ArgInfo> Args) {
532   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
533   const char *Name = TLI.getLibcallName(Libcall);
534   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
535   return createLibcall(MIRBuilder, Name, Result, Args, CC);
536 }
537 
538 // Useful for libcalls where all operands have the same type.
539 static LegalizerHelper::LegalizeResult
540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
541               Type *OpType) {
542   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
543 
544   SmallVector<CallLowering::ArgInfo, 3> Args;
545   for (unsigned i = 1; i < MI.getNumOperands(); i++)
546     Args.push_back({MI.getOperand(i).getReg(), OpType});
547   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
548                        Args);
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
553                        MachineInstr &MI) {
554   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
555   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
556 
557   SmallVector<CallLowering::ArgInfo, 3> Args;
558   // Add all the args, except for the last which is an imm denoting 'tail'.
559   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
560     Register Reg = MI.getOperand(i).getReg();
561 
562     // Need derive an IR type for call lowering.
563     LLT OpLLT = MRI.getType(Reg);
564     Type *OpTy = nullptr;
565     if (OpLLT.isPointer())
566       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
567     else
568       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
569     Args.push_back({Reg, OpTy});
570   }
571 
572   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
575   RTLIB::Libcall RTLibcall;
576   switch (ID) {
577   case Intrinsic::memcpy:
578     RTLibcall = RTLIB::MEMCPY;
579     break;
580   case Intrinsic::memset:
581     RTLibcall = RTLIB::MEMSET;
582     break;
583   case Intrinsic::memmove:
584     RTLibcall = RTLIB::MEMMOVE;
585     break;
586   default:
587     return LegalizerHelper::UnableToLegalize;
588   }
589   const char *Name = TLI.getLibcallName(RTLibcall);
590 
591   MIRBuilder.setInstrAndDebugLoc(MI);
592 
593   CallLowering::CallLoweringInfo Info;
594   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
595   Info.Callee = MachineOperand::CreateES(Name);
596   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
597   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
598                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
599 
600   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
601   if (!CLI.lowerCall(MIRBuilder, Info))
602     return LegalizerHelper::UnableToLegalize;
603 
604   if (Info.LoweredTailCall) {
605     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
606     // We must have a return following the call (or debug insts) to get past
607     // isLibCallInTailPosition.
608     do {
609       MachineInstr *Next = MI.getNextNode();
610       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
611              "Expected instr following MI to be return or debug inst?");
612       // We lowered a tail call, so the call is now the return from the block.
613       // Delete the old return.
614       Next->eraseFromParent();
615     } while (MI.getNextNode());
616   }
617 
618   return LegalizerHelper::Legalized;
619 }
620 
621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
622                                        Type *FromType) {
623   auto ToMVT = MVT::getVT(ToType);
624   auto FromMVT = MVT::getVT(FromType);
625 
626   switch (Opcode) {
627   case TargetOpcode::G_FPEXT:
628     return RTLIB::getFPEXT(FromMVT, ToMVT);
629   case TargetOpcode::G_FPTRUNC:
630     return RTLIB::getFPROUND(FromMVT, ToMVT);
631   case TargetOpcode::G_FPTOSI:
632     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
633   case TargetOpcode::G_FPTOUI:
634     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
635   case TargetOpcode::G_SITOFP:
636     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
637   case TargetOpcode::G_UITOFP:
638     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
639   }
640   llvm_unreachable("Unsupported libcall function");
641 }
642 
643 static LegalizerHelper::LegalizeResult
644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
645                   Type *FromType) {
646   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
647   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
648                        {{MI.getOperand(1).getReg(), FromType}});
649 }
650 
651 LegalizerHelper::LegalizeResult
652 LegalizerHelper::libcall(MachineInstr &MI) {
653   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
654   unsigned Size = LLTy.getSizeInBits();
655   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
656 
657   switch (MI.getOpcode()) {
658   default:
659     return UnableToLegalize;
660   case TargetOpcode::G_SDIV:
661   case TargetOpcode::G_UDIV:
662   case TargetOpcode::G_SREM:
663   case TargetOpcode::G_UREM:
664   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
665     Type *HLTy = IntegerType::get(Ctx, Size);
666     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
667     if (Status != Legalized)
668       return Status;
669     break;
670   }
671   case TargetOpcode::G_FADD:
672   case TargetOpcode::G_FSUB:
673   case TargetOpcode::G_FMUL:
674   case TargetOpcode::G_FDIV:
675   case TargetOpcode::G_FMA:
676   case TargetOpcode::G_FPOW:
677   case TargetOpcode::G_FREM:
678   case TargetOpcode::G_FCOS:
679   case TargetOpcode::G_FSIN:
680   case TargetOpcode::G_FLOG10:
681   case TargetOpcode::G_FLOG:
682   case TargetOpcode::G_FLOG2:
683   case TargetOpcode::G_FEXP:
684   case TargetOpcode::G_FEXP2:
685   case TargetOpcode::G_FCEIL:
686   case TargetOpcode::G_FFLOOR:
687   case TargetOpcode::G_FMINNUM:
688   case TargetOpcode::G_FMAXNUM:
689   case TargetOpcode::G_FSQRT:
690   case TargetOpcode::G_FRINT:
691   case TargetOpcode::G_FNEARBYINT:
692   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
693     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
694     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
695       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
696       return UnableToLegalize;
697     }
698     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
699     if (Status != Legalized)
700       return Status;
701     break;
702   }
703   case TargetOpcode::G_FPEXT:
704   case TargetOpcode::G_FPTRUNC: {
705     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
706     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
707     if (!FromTy || !ToTy)
708       return UnableToLegalize;
709     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
710     if (Status != Legalized)
711       return Status;
712     break;
713   }
714   case TargetOpcode::G_FPTOSI:
715   case TargetOpcode::G_FPTOUI: {
716     // FIXME: Support other types
717     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
718     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
719     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
720       return UnableToLegalize;
721     LegalizeResult Status = conversionLibcall(
722         MI, MIRBuilder,
723         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
724         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
725     if (Status != Legalized)
726       return Status;
727     break;
728   }
729   case TargetOpcode::G_SITOFP:
730   case TargetOpcode::G_UITOFP: {
731     // FIXME: Support other types
732     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
733     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
734     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
735       return UnableToLegalize;
736     LegalizeResult Status = conversionLibcall(
737         MI, MIRBuilder,
738         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
739         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
740     if (Status != Legalized)
741       return Status;
742     break;
743   }
744   }
745 
746   MI.eraseFromParent();
747   return Legalized;
748 }
749 
750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
751                                                               unsigned TypeIdx,
752                                                               LLT NarrowTy) {
753   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754   uint64_t NarrowSize = NarrowTy.getSizeInBits();
755 
756   switch (MI.getOpcode()) {
757   default:
758     return UnableToLegalize;
759   case TargetOpcode::G_IMPLICIT_DEF: {
760     Register DstReg = MI.getOperand(0).getReg();
761     LLT DstTy = MRI.getType(DstReg);
762 
763     // If SizeOp0 is not an exact multiple of NarrowSize, emit
764     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
765     // FIXME: Although this would also be legal for the general case, it causes
766     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
767     //  combines not being hit). This seems to be a problem related to the
768     //  artifact combiner.
769     if (SizeOp0 % NarrowSize != 0) {
770       LLT ImplicitTy = NarrowTy;
771       if (DstTy.isVector())
772         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
773 
774       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
775       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
776 
777       MI.eraseFromParent();
778       return Legalized;
779     }
780 
781     int NumParts = SizeOp0 / NarrowSize;
782 
783     SmallVector<Register, 2> DstRegs;
784     for (int i = 0; i < NumParts; ++i)
785       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
786 
787     if (DstTy.isVector())
788       MIRBuilder.buildBuildVector(DstReg, DstRegs);
789     else
790       MIRBuilder.buildMerge(DstReg, DstRegs);
791     MI.eraseFromParent();
792     return Legalized;
793   }
794   case TargetOpcode::G_CONSTANT: {
795     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
796     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
797     unsigned TotalSize = Ty.getSizeInBits();
798     unsigned NarrowSize = NarrowTy.getSizeInBits();
799     int NumParts = TotalSize / NarrowSize;
800 
801     SmallVector<Register, 4> PartRegs;
802     for (int I = 0; I != NumParts; ++I) {
803       unsigned Offset = I * NarrowSize;
804       auto K = MIRBuilder.buildConstant(NarrowTy,
805                                         Val.lshr(Offset).trunc(NarrowSize));
806       PartRegs.push_back(K.getReg(0));
807     }
808 
809     LLT LeftoverTy;
810     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
811     SmallVector<Register, 1> LeftoverRegs;
812     if (LeftoverBits != 0) {
813       LeftoverTy = LLT::scalar(LeftoverBits);
814       auto K = MIRBuilder.buildConstant(
815         LeftoverTy,
816         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
817       LeftoverRegs.push_back(K.getReg(0));
818     }
819 
820     insertParts(MI.getOperand(0).getReg(),
821                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
822 
823     MI.eraseFromParent();
824     return Legalized;
825   }
826   case TargetOpcode::G_SEXT:
827   case TargetOpcode::G_ZEXT:
828   case TargetOpcode::G_ANYEXT:
829     return narrowScalarExt(MI, TypeIdx, NarrowTy);
830   case TargetOpcode::G_TRUNC: {
831     if (TypeIdx != 1)
832       return UnableToLegalize;
833 
834     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
835     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
836       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
837       return UnableToLegalize;
838     }
839 
840     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
841     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
842     MI.eraseFromParent();
843     return Legalized;
844   }
845 
846   case TargetOpcode::G_FREEZE:
847     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
848 
849   case TargetOpcode::G_ADD: {
850     // FIXME: add support for when SizeOp0 isn't an exact multiple of
851     // NarrowSize.
852     if (SizeOp0 % NarrowSize != 0)
853       return UnableToLegalize;
854     // Expand in terms of carry-setting/consuming G_ADDE instructions.
855     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
856 
857     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
858     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
859     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
860 
861     Register CarryIn;
862     for (int i = 0; i < NumParts; ++i) {
863       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
864       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
865 
866       if (i == 0)
867         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
868       else {
869         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
870                               Src2Regs[i], CarryIn);
871       }
872 
873       DstRegs.push_back(DstReg);
874       CarryIn = CarryOut;
875     }
876     Register DstReg = MI.getOperand(0).getReg();
877     if(MRI.getType(DstReg).isVector())
878       MIRBuilder.buildBuildVector(DstReg, DstRegs);
879     else
880       MIRBuilder.buildMerge(DstReg, DstRegs);
881     MI.eraseFromParent();
882     return Legalized;
883   }
884   case TargetOpcode::G_SUB: {
885     // FIXME: add support for when SizeOp0 isn't an exact multiple of
886     // NarrowSize.
887     if (SizeOp0 % NarrowSize != 0)
888       return UnableToLegalize;
889 
890     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
891 
892     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
893     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
894     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
895 
896     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
897     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
898     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
899                           {Src1Regs[0], Src2Regs[0]});
900     DstRegs.push_back(DstReg);
901     Register BorrowIn = BorrowOut;
902     for (int i = 1; i < NumParts; ++i) {
903       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
904       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
905 
906       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
907                             {Src1Regs[i], Src2Regs[i], BorrowIn});
908 
909       DstRegs.push_back(DstReg);
910       BorrowIn = BorrowOut;
911     }
912     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
913     MI.eraseFromParent();
914     return Legalized;
915   }
916   case TargetOpcode::G_MUL:
917   case TargetOpcode::G_UMULH:
918     return narrowScalarMul(MI, NarrowTy);
919   case TargetOpcode::G_EXTRACT:
920     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
921   case TargetOpcode::G_INSERT:
922     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
923   case TargetOpcode::G_LOAD: {
924     const auto &MMO = **MI.memoperands_begin();
925     Register DstReg = MI.getOperand(0).getReg();
926     LLT DstTy = MRI.getType(DstReg);
927     if (DstTy.isVector())
928       return UnableToLegalize;
929 
930     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
931       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932       auto &MMO = **MI.memoperands_begin();
933       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
934       MIRBuilder.buildAnyExt(DstReg, TmpReg);
935       MI.eraseFromParent();
936       return Legalized;
937     }
938 
939     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
940   }
941   case TargetOpcode::G_ZEXTLOAD:
942   case TargetOpcode::G_SEXTLOAD: {
943     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
944     Register DstReg = MI.getOperand(0).getReg();
945     Register PtrReg = MI.getOperand(1).getReg();
946 
947     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
948     auto &MMO = **MI.memoperands_begin();
949     if (MMO.getSizeInBits() == NarrowSize) {
950       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
951     } else {
952       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
953     }
954 
955     if (ZExt)
956       MIRBuilder.buildZExt(DstReg, TmpReg);
957     else
958       MIRBuilder.buildSExt(DstReg, TmpReg);
959 
960     MI.eraseFromParent();
961     return Legalized;
962   }
963   case TargetOpcode::G_STORE: {
964     const auto &MMO = **MI.memoperands_begin();
965 
966     Register SrcReg = MI.getOperand(0).getReg();
967     LLT SrcTy = MRI.getType(SrcReg);
968     if (SrcTy.isVector())
969       return UnableToLegalize;
970 
971     int NumParts = SizeOp0 / NarrowSize;
972     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
973     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
974     if (SrcTy.isVector() && LeftoverBits != 0)
975       return UnableToLegalize;
976 
977     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
978       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
979       auto &MMO = **MI.memoperands_begin();
980       MIRBuilder.buildTrunc(TmpReg, SrcReg);
981       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
982       MI.eraseFromParent();
983       return Legalized;
984     }
985 
986     return reduceLoadStoreWidth(MI, 0, NarrowTy);
987   }
988   case TargetOpcode::G_SELECT:
989     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
990   case TargetOpcode::G_AND:
991   case TargetOpcode::G_OR:
992   case TargetOpcode::G_XOR: {
993     // Legalize bitwise operation:
994     // A = BinOp<Ty> B, C
995     // into:
996     // B1, ..., BN = G_UNMERGE_VALUES B
997     // C1, ..., CN = G_UNMERGE_VALUES C
998     // A1 = BinOp<Ty/N> B1, C2
999     // ...
1000     // AN = BinOp<Ty/N> BN, CN
1001     // A = G_MERGE_VALUES A1, ..., AN
1002     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1003   }
1004   case TargetOpcode::G_SHL:
1005   case TargetOpcode::G_LSHR:
1006   case TargetOpcode::G_ASHR:
1007     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_CTLZ:
1009   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1010   case TargetOpcode::G_CTTZ:
1011   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1012   case TargetOpcode::G_CTPOP:
1013     if (TypeIdx == 1)
1014       switch (MI.getOpcode()) {
1015       case TargetOpcode::G_CTLZ:
1016       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1017         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1018       case TargetOpcode::G_CTTZ:
1019       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1020         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1021       case TargetOpcode::G_CTPOP:
1022         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1023       default:
1024         return UnableToLegalize;
1025       }
1026 
1027     Observer.changingInstr(MI);
1028     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1029     Observer.changedInstr(MI);
1030     return Legalized;
1031   case TargetOpcode::G_INTTOPTR:
1032     if (TypeIdx != 1)
1033       return UnableToLegalize;
1034 
1035     Observer.changingInstr(MI);
1036     narrowScalarSrc(MI, NarrowTy, 1);
1037     Observer.changedInstr(MI);
1038     return Legalized;
1039   case TargetOpcode::G_PTRTOINT:
1040     if (TypeIdx != 0)
1041       return UnableToLegalize;
1042 
1043     Observer.changingInstr(MI);
1044     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1045     Observer.changedInstr(MI);
1046     return Legalized;
1047   case TargetOpcode::G_PHI: {
1048     unsigned NumParts = SizeOp0 / NarrowSize;
1049     SmallVector<Register, 2> DstRegs(NumParts);
1050     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1051     Observer.changingInstr(MI);
1052     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1053       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1054       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1055       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1056                    SrcRegs[i / 2]);
1057     }
1058     MachineBasicBlock &MBB = *MI.getParent();
1059     MIRBuilder.setInsertPt(MBB, MI);
1060     for (unsigned i = 0; i < NumParts; ++i) {
1061       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1062       MachineInstrBuilder MIB =
1063           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1064       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1065         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1066     }
1067     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1068     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1069     Observer.changedInstr(MI);
1070     MI.eraseFromParent();
1071     return Legalized;
1072   }
1073   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1074   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1075     if (TypeIdx != 2)
1076       return UnableToLegalize;
1077 
1078     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1079     Observer.changingInstr(MI);
1080     narrowScalarSrc(MI, NarrowTy, OpIdx);
1081     Observer.changedInstr(MI);
1082     return Legalized;
1083   }
1084   case TargetOpcode::G_ICMP: {
1085     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1086     if (NarrowSize * 2 != SrcSize)
1087       return UnableToLegalize;
1088 
1089     Observer.changingInstr(MI);
1090     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1091     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1092     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1093 
1094     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1095     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1096     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1097 
1098     CmpInst::Predicate Pred =
1099         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1100     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1101 
1102     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1103       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1104       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1105       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1106       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1107       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1108     } else {
1109       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1110       MachineInstrBuilder CmpHEQ =
1111           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1112       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1113           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1114       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1115     }
1116     Observer.changedInstr(MI);
1117     MI.eraseFromParent();
1118     return Legalized;
1119   }
1120   case TargetOpcode::G_SEXT_INREG: {
1121     if (TypeIdx != 0)
1122       return UnableToLegalize;
1123 
1124     int64_t SizeInBits = MI.getOperand(2).getImm();
1125 
1126     // So long as the new type has more bits than the bits we're extending we
1127     // don't need to break it apart.
1128     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1129       Observer.changingInstr(MI);
1130       // We don't lose any non-extension bits by truncating the src and
1131       // sign-extending the dst.
1132       MachineOperand &MO1 = MI.getOperand(1);
1133       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1134       MO1.setReg(TruncMIB.getReg(0));
1135 
1136       MachineOperand &MO2 = MI.getOperand(0);
1137       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1138       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1139       MIRBuilder.buildSExt(MO2, DstExt);
1140       MO2.setReg(DstExt);
1141       Observer.changedInstr(MI);
1142       return Legalized;
1143     }
1144 
1145     // Break it apart. Components below the extension point are unmodified. The
1146     // component containing the extension point becomes a narrower SEXT_INREG.
1147     // Components above it are ashr'd from the component containing the
1148     // extension point.
1149     if (SizeOp0 % NarrowSize != 0)
1150       return UnableToLegalize;
1151     int NumParts = SizeOp0 / NarrowSize;
1152 
1153     // List the registers where the destination will be scattered.
1154     SmallVector<Register, 2> DstRegs;
1155     // List the registers where the source will be split.
1156     SmallVector<Register, 2> SrcRegs;
1157 
1158     // Create all the temporary registers.
1159     for (int i = 0; i < NumParts; ++i) {
1160       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1161 
1162       SrcRegs.push_back(SrcReg);
1163     }
1164 
1165     // Explode the big arguments into smaller chunks.
1166     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1167 
1168     Register AshrCstReg =
1169         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1170             .getReg(0);
1171     Register FullExtensionReg = 0;
1172     Register PartialExtensionReg = 0;
1173 
1174     // Do the operation on each small part.
1175     for (int i = 0; i < NumParts; ++i) {
1176       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1177         DstRegs.push_back(SrcRegs[i]);
1178       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1179         assert(PartialExtensionReg &&
1180                "Expected to visit partial extension before full");
1181         if (FullExtensionReg) {
1182           DstRegs.push_back(FullExtensionReg);
1183           continue;
1184         }
1185         DstRegs.push_back(
1186             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1187                 .getReg(0));
1188         FullExtensionReg = DstRegs.back();
1189       } else {
1190         DstRegs.push_back(
1191             MIRBuilder
1192                 .buildInstr(
1193                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1194                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1195                 .getReg(0));
1196         PartialExtensionReg = DstRegs.back();
1197       }
1198     }
1199 
1200     // Gather the destination registers into the final destination.
1201     Register DstReg = MI.getOperand(0).getReg();
1202     MIRBuilder.buildMerge(DstReg, DstRegs);
1203     MI.eraseFromParent();
1204     return Legalized;
1205   }
1206   case TargetOpcode::G_BSWAP:
1207   case TargetOpcode::G_BITREVERSE: {
1208     if (SizeOp0 % NarrowSize != 0)
1209       return UnableToLegalize;
1210 
1211     Observer.changingInstr(MI);
1212     SmallVector<Register, 2> SrcRegs, DstRegs;
1213     unsigned NumParts = SizeOp0 / NarrowSize;
1214     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1215 
1216     for (unsigned i = 0; i < NumParts; ++i) {
1217       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1218                                            {SrcRegs[NumParts - 1 - i]});
1219       DstRegs.push_back(DstPart.getReg(0));
1220     }
1221 
1222     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1223 
1224     Observer.changedInstr(MI);
1225     MI.eraseFromParent();
1226     return Legalized;
1227   }
1228   case TargetOpcode::G_PTR_ADD:
1229   case TargetOpcode::G_PTRMASK: {
1230     if (TypeIdx != 1)
1231       return UnableToLegalize;
1232     Observer.changingInstr(MI);
1233     narrowScalarSrc(MI, NarrowTy, 2);
1234     Observer.changedInstr(MI);
1235     return Legalized;
1236   }
1237   case TargetOpcode::G_FPTOUI: {
1238     if (TypeIdx != 0)
1239       return UnableToLegalize;
1240     Observer.changingInstr(MI);
1241     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1242     Observer.changedInstr(MI);
1243     return Legalized;
1244   }
1245   case TargetOpcode::G_FPTOSI: {
1246     if (TypeIdx != 0)
1247       return UnableToLegalize;
1248     Observer.changingInstr(MI);
1249     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1250     Observer.changedInstr(MI);
1251     return Legalized;
1252   }
1253   case TargetOpcode::G_FPEXT:
1254     if (TypeIdx != 0)
1255       return UnableToLegalize;
1256     Observer.changingInstr(MI);
1257     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1258     Observer.changedInstr(MI);
1259     return Legalized;
1260   }
1261 }
1262 
1263 Register LegalizerHelper::coerceToScalar(Register Val) {
1264   LLT Ty = MRI.getType(Val);
1265   if (Ty.isScalar())
1266     return Val;
1267 
1268   const DataLayout &DL = MIRBuilder.getDataLayout();
1269   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1270   if (Ty.isPointer()) {
1271     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1272       return Register();
1273     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1274   }
1275 
1276   Register NewVal = Val;
1277 
1278   assert(Ty.isVector());
1279   LLT EltTy = Ty.getElementType();
1280   if (EltTy.isPointer())
1281     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1282   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1283 }
1284 
1285 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1286                                      unsigned OpIdx, unsigned ExtOpcode) {
1287   MachineOperand &MO = MI.getOperand(OpIdx);
1288   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1289   MO.setReg(ExtB.getReg(0));
1290 }
1291 
1292 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1293                                       unsigned OpIdx) {
1294   MachineOperand &MO = MI.getOperand(OpIdx);
1295   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1296   MO.setReg(ExtB.getReg(0));
1297 }
1298 
1299 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1300                                      unsigned OpIdx, unsigned TruncOpcode) {
1301   MachineOperand &MO = MI.getOperand(OpIdx);
1302   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1303   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1304   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1305   MO.setReg(DstExt);
1306 }
1307 
1308 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1309                                       unsigned OpIdx, unsigned ExtOpcode) {
1310   MachineOperand &MO = MI.getOperand(OpIdx);
1311   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1312   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1313   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1314   MO.setReg(DstTrunc);
1315 }
1316 
1317 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1318                                             unsigned OpIdx) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1321   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1322 }
1323 
1324 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1325                                             unsigned OpIdx) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327 
1328   LLT OldTy = MRI.getType(MO.getReg());
1329   unsigned OldElts = OldTy.getNumElements();
1330   unsigned NewElts = MoreTy.getNumElements();
1331 
1332   unsigned NumParts = NewElts / OldElts;
1333 
1334   // Use concat_vectors if the result is a multiple of the number of elements.
1335   if (NumParts * OldElts == NewElts) {
1336     SmallVector<Register, 8> Parts;
1337     Parts.push_back(MO.getReg());
1338 
1339     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1340     for (unsigned I = 1; I != NumParts; ++I)
1341       Parts.push_back(ImpDef);
1342 
1343     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1344     MO.setReg(Concat.getReg(0));
1345     return;
1346   }
1347 
1348   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1349   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1350   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1351   MO.setReg(MoreReg);
1352 }
1353 
1354 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1355   MachineOperand &Op = MI.getOperand(OpIdx);
1356   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1357 }
1358 
1359 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1360   MachineOperand &MO = MI.getOperand(OpIdx);
1361   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1362   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1363   MIRBuilder.buildBitcast(MO, CastDst);
1364   MO.setReg(CastDst);
1365 }
1366 
1367 LegalizerHelper::LegalizeResult
1368 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1369                                         LLT WideTy) {
1370   if (TypeIdx != 1)
1371     return UnableToLegalize;
1372 
1373   Register DstReg = MI.getOperand(0).getReg();
1374   LLT DstTy = MRI.getType(DstReg);
1375   if (DstTy.isVector())
1376     return UnableToLegalize;
1377 
1378   Register Src1 = MI.getOperand(1).getReg();
1379   LLT SrcTy = MRI.getType(Src1);
1380   const int DstSize = DstTy.getSizeInBits();
1381   const int SrcSize = SrcTy.getSizeInBits();
1382   const int WideSize = WideTy.getSizeInBits();
1383   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1384 
1385   unsigned NumOps = MI.getNumOperands();
1386   unsigned NumSrc = MI.getNumOperands() - 1;
1387   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1388 
1389   if (WideSize >= DstSize) {
1390     // Directly pack the bits in the target type.
1391     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1392 
1393     for (unsigned I = 2; I != NumOps; ++I) {
1394       const unsigned Offset = (I - 1) * PartSize;
1395 
1396       Register SrcReg = MI.getOperand(I).getReg();
1397       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1398 
1399       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1400 
1401       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1402         MRI.createGenericVirtualRegister(WideTy);
1403 
1404       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1405       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1406       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1407       ResultReg = NextResult;
1408     }
1409 
1410     if (WideSize > DstSize)
1411       MIRBuilder.buildTrunc(DstReg, ResultReg);
1412     else if (DstTy.isPointer())
1413       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1414 
1415     MI.eraseFromParent();
1416     return Legalized;
1417   }
1418 
1419   // Unmerge the original values to the GCD type, and recombine to the next
1420   // multiple greater than the original type.
1421   //
1422   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1423   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1424   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1425   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1426   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1427   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1428   // %12:_(s12) = G_MERGE_VALUES %10, %11
1429   //
1430   // Padding with undef if necessary:
1431   //
1432   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1433   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1434   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1435   // %7:_(s2) = G_IMPLICIT_DEF
1436   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1437   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1438   // %10:_(s12) = G_MERGE_VALUES %8, %9
1439 
1440   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1441   LLT GCDTy = LLT::scalar(GCD);
1442 
1443   SmallVector<Register, 8> Parts;
1444   SmallVector<Register, 8> NewMergeRegs;
1445   SmallVector<Register, 8> Unmerges;
1446   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1447 
1448   // Decompose the original operands if they don't evenly divide.
1449   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1450     Register SrcReg = MI.getOperand(I).getReg();
1451     if (GCD == SrcSize) {
1452       Unmerges.push_back(SrcReg);
1453     } else {
1454       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1455       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1456         Unmerges.push_back(Unmerge.getReg(J));
1457     }
1458   }
1459 
1460   // Pad with undef to the next size that is a multiple of the requested size.
1461   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1462     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1463     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1464       Unmerges.push_back(UndefReg);
1465   }
1466 
1467   const int PartsPerGCD = WideSize / GCD;
1468 
1469   // Build merges of each piece.
1470   ArrayRef<Register> Slicer(Unmerges);
1471   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1472     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1473     NewMergeRegs.push_back(Merge.getReg(0));
1474   }
1475 
1476   // A truncate may be necessary if the requested type doesn't evenly divide the
1477   // original result type.
1478   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1479     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1480   } else {
1481     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1482     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1483   }
1484 
1485   MI.eraseFromParent();
1486   return Legalized;
1487 }
1488 
1489 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1490   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1491   LLT OrigTy = MRI.getType(OrigReg);
1492   LLT LCMTy = getLCMType(WideTy, OrigTy);
1493 
1494   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1495   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1496 
1497   Register UnmergeSrc = WideReg;
1498 
1499   // Create a merge to the LCM type, padding with undef
1500   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1501   // =>
1502   // %1:_(<4 x s32>) = G_FOO
1503   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1504   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1505   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1506   if (NumMergeParts > 1) {
1507     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1508     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1509     MergeParts[0] = WideReg;
1510     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1511   }
1512 
1513   // Unmerge to the original register and pad with dead defs.
1514   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1515   UnmergeResults[0] = OrigReg;
1516   for (int I = 1; I != NumUnmergeParts; ++I)
1517     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1518 
1519   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1520   return WideReg;
1521 }
1522 
1523 LegalizerHelper::LegalizeResult
1524 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1525                                           LLT WideTy) {
1526   if (TypeIdx != 0)
1527     return UnableToLegalize;
1528 
1529   int NumDst = MI.getNumOperands() - 1;
1530   Register SrcReg = MI.getOperand(NumDst).getReg();
1531   LLT SrcTy = MRI.getType(SrcReg);
1532   if (SrcTy.isVector())
1533     return UnableToLegalize;
1534 
1535   Register Dst0Reg = MI.getOperand(0).getReg();
1536   LLT DstTy = MRI.getType(Dst0Reg);
1537   if (!DstTy.isScalar())
1538     return UnableToLegalize;
1539 
1540   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1541     if (SrcTy.isPointer()) {
1542       const DataLayout &DL = MIRBuilder.getDataLayout();
1543       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1544         LLVM_DEBUG(
1545             dbgs() << "Not casting non-integral address space integer\n");
1546         return UnableToLegalize;
1547       }
1548 
1549       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1550       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1551     }
1552 
1553     // Widen SrcTy to WideTy. This does not affect the result, but since the
1554     // user requested this size, it is probably better handled than SrcTy and
1555     // should reduce the total number of legalization artifacts
1556     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1557       SrcTy = WideTy;
1558       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1559     }
1560 
1561     // Theres no unmerge type to target. Directly extract the bits from the
1562     // source type
1563     unsigned DstSize = DstTy.getSizeInBits();
1564 
1565     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1566     for (int I = 1; I != NumDst; ++I) {
1567       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1568       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1569       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1570     }
1571 
1572     MI.eraseFromParent();
1573     return Legalized;
1574   }
1575 
1576   // Extend the source to a wider type.
1577   LLT LCMTy = getLCMType(SrcTy, WideTy);
1578 
1579   Register WideSrc = SrcReg;
1580   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1581     // TODO: If this is an integral address space, cast to integer and anyext.
1582     if (SrcTy.isPointer()) {
1583       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1584       return UnableToLegalize;
1585     }
1586 
1587     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1588   }
1589 
1590   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1591 
1592   // Create a sequence of unmerges to the original results. since we may have
1593   // widened the source, we will need to pad the results with dead defs to cover
1594   // the source register.
1595   // e.g. widen s16 to s32:
1596   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1597   //
1598   // =>
1599   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1600   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1601   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1602   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1603 
1604   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1605   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1606 
1607   for (int I = 0; I != NumUnmerge; ++I) {
1608     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1609 
1610     for (int J = 0; J != PartsPerUnmerge; ++J) {
1611       int Idx = I * PartsPerUnmerge + J;
1612       if (Idx < NumDst)
1613         MIB.addDef(MI.getOperand(Idx).getReg());
1614       else {
1615         // Create dead def for excess components.
1616         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1617       }
1618     }
1619 
1620     MIB.addUse(Unmerge.getReg(I));
1621   }
1622 
1623   MI.eraseFromParent();
1624   return Legalized;
1625 }
1626 
1627 LegalizerHelper::LegalizeResult
1628 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1629                                     LLT WideTy) {
1630   Register DstReg = MI.getOperand(0).getReg();
1631   Register SrcReg = MI.getOperand(1).getReg();
1632   LLT SrcTy = MRI.getType(SrcReg);
1633 
1634   LLT DstTy = MRI.getType(DstReg);
1635   unsigned Offset = MI.getOperand(2).getImm();
1636 
1637   if (TypeIdx == 0) {
1638     if (SrcTy.isVector() || DstTy.isVector())
1639       return UnableToLegalize;
1640 
1641     SrcOp Src(SrcReg);
1642     if (SrcTy.isPointer()) {
1643       // Extracts from pointers can be handled only if they are really just
1644       // simple integers.
1645       const DataLayout &DL = MIRBuilder.getDataLayout();
1646       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1647         return UnableToLegalize;
1648 
1649       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1650       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1651       SrcTy = SrcAsIntTy;
1652     }
1653 
1654     if (DstTy.isPointer())
1655       return UnableToLegalize;
1656 
1657     if (Offset == 0) {
1658       // Avoid a shift in the degenerate case.
1659       MIRBuilder.buildTrunc(DstReg,
1660                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1661       MI.eraseFromParent();
1662       return Legalized;
1663     }
1664 
1665     // Do a shift in the source type.
1666     LLT ShiftTy = SrcTy;
1667     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1668       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1669       ShiftTy = WideTy;
1670     }
1671 
1672     auto LShr = MIRBuilder.buildLShr(
1673       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1674     MIRBuilder.buildTrunc(DstReg, LShr);
1675     MI.eraseFromParent();
1676     return Legalized;
1677   }
1678 
1679   if (SrcTy.isScalar()) {
1680     Observer.changingInstr(MI);
1681     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1682     Observer.changedInstr(MI);
1683     return Legalized;
1684   }
1685 
1686   if (!SrcTy.isVector())
1687     return UnableToLegalize;
1688 
1689   if (DstTy != SrcTy.getElementType())
1690     return UnableToLegalize;
1691 
1692   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1693     return UnableToLegalize;
1694 
1695   Observer.changingInstr(MI);
1696   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1697 
1698   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1699                           Offset);
1700   widenScalarDst(MI, WideTy.getScalarType(), 0);
1701   Observer.changedInstr(MI);
1702   return Legalized;
1703 }
1704 
1705 LegalizerHelper::LegalizeResult
1706 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1707                                    LLT WideTy) {
1708   if (TypeIdx != 0 || WideTy.isVector())
1709     return UnableToLegalize;
1710   Observer.changingInstr(MI);
1711   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1712   widenScalarDst(MI, WideTy);
1713   Observer.changedInstr(MI);
1714   return Legalized;
1715 }
1716 
1717 LegalizerHelper::LegalizeResult
1718 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx,
1719                                       LLT WideTy) {
1720   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1721                   MI.getOpcode() == TargetOpcode::G_SSUBSAT;
1722   // We can convert this to:
1723   //   1. Any extend iN to iM
1724   //   2. SHL by M-N
1725   //   3. [US][ADD|SUB]SAT
1726   //   4. L/ASHR by M-N
1727   //
1728   // It may be more efficient to lower this to a min and a max operation in
1729   // the higher precision arithmetic if the promoted operation isn't legal,
1730   // but this decision is up to the target's lowering request.
1731   Register DstReg = MI.getOperand(0).getReg();
1732 
1733   unsigned NewBits = WideTy.getScalarSizeInBits();
1734   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1735 
1736   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1737   auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1738   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1739   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1740   auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1741 
1742   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1743                                         {ShiftL, ShiftR}, MI.getFlags());
1744 
1745   // Use a shift that will preserve the number of sign bits when the trunc is
1746   // folded away.
1747   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1748                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1749 
1750   MIRBuilder.buildTrunc(DstReg, Result);
1751   MI.eraseFromParent();
1752   return Legalized;
1753 }
1754 
1755 LegalizerHelper::LegalizeResult
1756 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1757   switch (MI.getOpcode()) {
1758   default:
1759     return UnableToLegalize;
1760   case TargetOpcode::G_EXTRACT:
1761     return widenScalarExtract(MI, TypeIdx, WideTy);
1762   case TargetOpcode::G_INSERT:
1763     return widenScalarInsert(MI, TypeIdx, WideTy);
1764   case TargetOpcode::G_MERGE_VALUES:
1765     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1766   case TargetOpcode::G_UNMERGE_VALUES:
1767     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1768   case TargetOpcode::G_UADDO:
1769   case TargetOpcode::G_USUBO: {
1770     if (TypeIdx == 1)
1771       return UnableToLegalize; // TODO
1772     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1773     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1774     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1775                           ? TargetOpcode::G_ADD
1776                           : TargetOpcode::G_SUB;
1777     // Do the arithmetic in the larger type.
1778     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1779     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1780     APInt Mask =
1781         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1782     auto AndOp = MIRBuilder.buildAnd(
1783         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1784     // There is no overflow if the AndOp is the same as NewOp.
1785     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1786     // Now trunc the NewOp to the original result.
1787     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1788     MI.eraseFromParent();
1789     return Legalized;
1790   }
1791   case TargetOpcode::G_SADDSAT:
1792   case TargetOpcode::G_SSUBSAT:
1793   case TargetOpcode::G_UADDSAT:
1794   case TargetOpcode::G_USUBSAT:
1795     return widenScalarAddSubSat(MI, TypeIdx, WideTy);
1796   case TargetOpcode::G_CTTZ:
1797   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1798   case TargetOpcode::G_CTLZ:
1799   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1800   case TargetOpcode::G_CTPOP: {
1801     if (TypeIdx == 0) {
1802       Observer.changingInstr(MI);
1803       widenScalarDst(MI, WideTy, 0);
1804       Observer.changedInstr(MI);
1805       return Legalized;
1806     }
1807 
1808     Register SrcReg = MI.getOperand(1).getReg();
1809 
1810     // First ZEXT the input.
1811     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1812     LLT CurTy = MRI.getType(SrcReg);
1813     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1814       // The count is the same in the larger type except if the original
1815       // value was zero.  This can be handled by setting the bit just off
1816       // the top of the original type.
1817       auto TopBit =
1818           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1819       MIBSrc = MIRBuilder.buildOr(
1820         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1821     }
1822 
1823     // Perform the operation at the larger size.
1824     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1825     // This is already the correct result for CTPOP and CTTZs
1826     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1827         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1828       // The correct result is NewOp - (Difference in widety and current ty).
1829       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1830       MIBNewOp = MIRBuilder.buildSub(
1831           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1832     }
1833 
1834     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1835     MI.eraseFromParent();
1836     return Legalized;
1837   }
1838   case TargetOpcode::G_BSWAP: {
1839     Observer.changingInstr(MI);
1840     Register DstReg = MI.getOperand(0).getReg();
1841 
1842     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1843     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1844     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1845     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1846 
1847     MI.getOperand(0).setReg(DstExt);
1848 
1849     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1850 
1851     LLT Ty = MRI.getType(DstReg);
1852     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1853     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1854     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1855 
1856     MIRBuilder.buildTrunc(DstReg, ShrReg);
1857     Observer.changedInstr(MI);
1858     return Legalized;
1859   }
1860   case TargetOpcode::G_BITREVERSE: {
1861     Observer.changingInstr(MI);
1862 
1863     Register DstReg = MI.getOperand(0).getReg();
1864     LLT Ty = MRI.getType(DstReg);
1865     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1866 
1867     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1868     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1869     MI.getOperand(0).setReg(DstExt);
1870     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1871 
1872     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1873     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1874     MIRBuilder.buildTrunc(DstReg, Shift);
1875     Observer.changedInstr(MI);
1876     return Legalized;
1877   }
1878   case TargetOpcode::G_FREEZE:
1879     Observer.changingInstr(MI);
1880     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1881     widenScalarDst(MI, WideTy);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884 
1885   case TargetOpcode::G_ADD:
1886   case TargetOpcode::G_AND:
1887   case TargetOpcode::G_MUL:
1888   case TargetOpcode::G_OR:
1889   case TargetOpcode::G_XOR:
1890   case TargetOpcode::G_SUB:
1891     // Perform operation at larger width (any extension is fines here, high bits
1892     // don't affect the result) and then truncate the result back to the
1893     // original type.
1894     Observer.changingInstr(MI);
1895     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1896     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1897     widenScalarDst(MI, WideTy);
1898     Observer.changedInstr(MI);
1899     return Legalized;
1900 
1901   case TargetOpcode::G_SHL:
1902     Observer.changingInstr(MI);
1903 
1904     if (TypeIdx == 0) {
1905       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1906       widenScalarDst(MI, WideTy);
1907     } else {
1908       assert(TypeIdx == 1);
1909       // The "number of bits to shift" operand must preserve its value as an
1910       // unsigned integer:
1911       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1912     }
1913 
1914     Observer.changedInstr(MI);
1915     return Legalized;
1916 
1917   case TargetOpcode::G_SDIV:
1918   case TargetOpcode::G_SREM:
1919   case TargetOpcode::G_SMIN:
1920   case TargetOpcode::G_SMAX:
1921     Observer.changingInstr(MI);
1922     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1923     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1924     widenScalarDst(MI, WideTy);
1925     Observer.changedInstr(MI);
1926     return Legalized;
1927 
1928   case TargetOpcode::G_ASHR:
1929   case TargetOpcode::G_LSHR:
1930     Observer.changingInstr(MI);
1931 
1932     if (TypeIdx == 0) {
1933       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1934         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1935 
1936       widenScalarSrc(MI, WideTy, 1, CvtOp);
1937       widenScalarDst(MI, WideTy);
1938     } else {
1939       assert(TypeIdx == 1);
1940       // The "number of bits to shift" operand must preserve its value as an
1941       // unsigned integer:
1942       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1943     }
1944 
1945     Observer.changedInstr(MI);
1946     return Legalized;
1947   case TargetOpcode::G_UDIV:
1948   case TargetOpcode::G_UREM:
1949   case TargetOpcode::G_UMIN:
1950   case TargetOpcode::G_UMAX:
1951     Observer.changingInstr(MI);
1952     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1953     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1954     widenScalarDst(MI, WideTy);
1955     Observer.changedInstr(MI);
1956     return Legalized;
1957 
1958   case TargetOpcode::G_SELECT:
1959     Observer.changingInstr(MI);
1960     if (TypeIdx == 0) {
1961       // Perform operation at larger width (any extension is fine here, high
1962       // bits don't affect the result) and then truncate the result back to the
1963       // original type.
1964       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1965       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1966       widenScalarDst(MI, WideTy);
1967     } else {
1968       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1969       // Explicit extension is required here since high bits affect the result.
1970       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1971     }
1972     Observer.changedInstr(MI);
1973     return Legalized;
1974 
1975   case TargetOpcode::G_FPTOSI:
1976   case TargetOpcode::G_FPTOUI:
1977     Observer.changingInstr(MI);
1978 
1979     if (TypeIdx == 0)
1980       widenScalarDst(MI, WideTy);
1981     else
1982       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1983 
1984     Observer.changedInstr(MI);
1985     return Legalized;
1986   case TargetOpcode::G_SITOFP:
1987     Observer.changingInstr(MI);
1988 
1989     if (TypeIdx == 0)
1990       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1991     else
1992       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1993 
1994     Observer.changedInstr(MI);
1995     return Legalized;
1996   case TargetOpcode::G_UITOFP:
1997     Observer.changingInstr(MI);
1998 
1999     if (TypeIdx == 0)
2000       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2001     else
2002       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2003 
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006   case TargetOpcode::G_LOAD:
2007   case TargetOpcode::G_SEXTLOAD:
2008   case TargetOpcode::G_ZEXTLOAD:
2009     Observer.changingInstr(MI);
2010     widenScalarDst(MI, WideTy);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013 
2014   case TargetOpcode::G_STORE: {
2015     if (TypeIdx != 0)
2016       return UnableToLegalize;
2017 
2018     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2019     if (!isPowerOf2_32(Ty.getSizeInBits()))
2020       return UnableToLegalize;
2021 
2022     Observer.changingInstr(MI);
2023 
2024     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2025       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2026     widenScalarSrc(MI, WideTy, 0, ExtType);
2027 
2028     Observer.changedInstr(MI);
2029     return Legalized;
2030   }
2031   case TargetOpcode::G_CONSTANT: {
2032     MachineOperand &SrcMO = MI.getOperand(1);
2033     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2034     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2035         MRI.getType(MI.getOperand(0).getReg()));
2036     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2037             ExtOpc == TargetOpcode::G_ANYEXT) &&
2038            "Illegal Extend");
2039     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2040     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2041                            ? SrcVal.sext(WideTy.getSizeInBits())
2042                            : SrcVal.zext(WideTy.getSizeInBits());
2043     Observer.changingInstr(MI);
2044     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2045 
2046     widenScalarDst(MI, WideTy);
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049   }
2050   case TargetOpcode::G_FCONSTANT: {
2051     MachineOperand &SrcMO = MI.getOperand(1);
2052     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2053     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2054     bool LosesInfo;
2055     switch (WideTy.getSizeInBits()) {
2056     case 32:
2057       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2058                   &LosesInfo);
2059       break;
2060     case 64:
2061       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2062                   &LosesInfo);
2063       break;
2064     default:
2065       return UnableToLegalize;
2066     }
2067 
2068     assert(!LosesInfo && "extend should always be lossless");
2069 
2070     Observer.changingInstr(MI);
2071     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2072 
2073     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2074     Observer.changedInstr(MI);
2075     return Legalized;
2076   }
2077   case TargetOpcode::G_IMPLICIT_DEF: {
2078     Observer.changingInstr(MI);
2079     widenScalarDst(MI, WideTy);
2080     Observer.changedInstr(MI);
2081     return Legalized;
2082   }
2083   case TargetOpcode::G_BRCOND:
2084     Observer.changingInstr(MI);
2085     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2086     Observer.changedInstr(MI);
2087     return Legalized;
2088 
2089   case TargetOpcode::G_FCMP:
2090     Observer.changingInstr(MI);
2091     if (TypeIdx == 0)
2092       widenScalarDst(MI, WideTy);
2093     else {
2094       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2095       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2096     }
2097     Observer.changedInstr(MI);
2098     return Legalized;
2099 
2100   case TargetOpcode::G_ICMP:
2101     Observer.changingInstr(MI);
2102     if (TypeIdx == 0)
2103       widenScalarDst(MI, WideTy);
2104     else {
2105       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2106                                MI.getOperand(1).getPredicate()))
2107                                ? TargetOpcode::G_SEXT
2108                                : TargetOpcode::G_ZEXT;
2109       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2110       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2111     }
2112     Observer.changedInstr(MI);
2113     return Legalized;
2114 
2115   case TargetOpcode::G_PTR_ADD:
2116     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2117     Observer.changingInstr(MI);
2118     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121 
2122   case TargetOpcode::G_PHI: {
2123     assert(TypeIdx == 0 && "Expecting only Idx 0");
2124 
2125     Observer.changingInstr(MI);
2126     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2127       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2128       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2129       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2130     }
2131 
2132     MachineBasicBlock &MBB = *MI.getParent();
2133     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2134     widenScalarDst(MI, WideTy);
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137   }
2138   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2139     if (TypeIdx == 0) {
2140       Register VecReg = MI.getOperand(1).getReg();
2141       LLT VecTy = MRI.getType(VecReg);
2142       Observer.changingInstr(MI);
2143 
2144       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2145                                      WideTy.getSizeInBits()),
2146                      1, TargetOpcode::G_SEXT);
2147 
2148       widenScalarDst(MI, WideTy, 0);
2149       Observer.changedInstr(MI);
2150       return Legalized;
2151     }
2152 
2153     if (TypeIdx != 2)
2154       return UnableToLegalize;
2155     Observer.changingInstr(MI);
2156     // TODO: Probably should be zext
2157     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2158     Observer.changedInstr(MI);
2159     return Legalized;
2160   }
2161   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2162     if (TypeIdx == 1) {
2163       Observer.changingInstr(MI);
2164 
2165       Register VecReg = MI.getOperand(1).getReg();
2166       LLT VecTy = MRI.getType(VecReg);
2167       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2168 
2169       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2170       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2171       widenScalarDst(MI, WideVecTy, 0);
2172       Observer.changedInstr(MI);
2173       return Legalized;
2174     }
2175 
2176     if (TypeIdx == 2) {
2177       Observer.changingInstr(MI);
2178       // TODO: Probably should be zext
2179       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2180       Observer.changedInstr(MI);
2181       return Legalized;
2182     }
2183 
2184     return UnableToLegalize;
2185   }
2186   case TargetOpcode::G_FADD:
2187   case TargetOpcode::G_FMUL:
2188   case TargetOpcode::G_FSUB:
2189   case TargetOpcode::G_FMA:
2190   case TargetOpcode::G_FMAD:
2191   case TargetOpcode::G_FNEG:
2192   case TargetOpcode::G_FABS:
2193   case TargetOpcode::G_FCANONICALIZE:
2194   case TargetOpcode::G_FMINNUM:
2195   case TargetOpcode::G_FMAXNUM:
2196   case TargetOpcode::G_FMINNUM_IEEE:
2197   case TargetOpcode::G_FMAXNUM_IEEE:
2198   case TargetOpcode::G_FMINIMUM:
2199   case TargetOpcode::G_FMAXIMUM:
2200   case TargetOpcode::G_FDIV:
2201   case TargetOpcode::G_FREM:
2202   case TargetOpcode::G_FCEIL:
2203   case TargetOpcode::G_FFLOOR:
2204   case TargetOpcode::G_FCOS:
2205   case TargetOpcode::G_FSIN:
2206   case TargetOpcode::G_FLOG10:
2207   case TargetOpcode::G_FLOG:
2208   case TargetOpcode::G_FLOG2:
2209   case TargetOpcode::G_FRINT:
2210   case TargetOpcode::G_FNEARBYINT:
2211   case TargetOpcode::G_FSQRT:
2212   case TargetOpcode::G_FEXP:
2213   case TargetOpcode::G_FEXP2:
2214   case TargetOpcode::G_FPOW:
2215   case TargetOpcode::G_INTRINSIC_TRUNC:
2216   case TargetOpcode::G_INTRINSIC_ROUND:
2217   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2218     assert(TypeIdx == 0);
2219     Observer.changingInstr(MI);
2220 
2221     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2222       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2223 
2224     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227   case TargetOpcode::G_FPOWI: {
2228     if (TypeIdx != 0)
2229       return UnableToLegalize;
2230     Observer.changingInstr(MI);
2231     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2232     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2233     Observer.changedInstr(MI);
2234     return Legalized;
2235   }
2236   case TargetOpcode::G_INTTOPTR:
2237     if (TypeIdx != 1)
2238       return UnableToLegalize;
2239 
2240     Observer.changingInstr(MI);
2241     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   case TargetOpcode::G_PTRTOINT:
2245     if (TypeIdx != 0)
2246       return UnableToLegalize;
2247 
2248     Observer.changingInstr(MI);
2249     widenScalarDst(MI, WideTy, 0);
2250     Observer.changedInstr(MI);
2251     return Legalized;
2252   case TargetOpcode::G_BUILD_VECTOR: {
2253     Observer.changingInstr(MI);
2254 
2255     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2256     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2257       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2258 
2259     // Avoid changing the result vector type if the source element type was
2260     // requested.
2261     if (TypeIdx == 1) {
2262       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2263     } else {
2264       widenScalarDst(MI, WideTy, 0);
2265     }
2266 
2267     Observer.changedInstr(MI);
2268     return Legalized;
2269   }
2270   case TargetOpcode::G_SEXT_INREG:
2271     if (TypeIdx != 0)
2272       return UnableToLegalize;
2273 
2274     Observer.changingInstr(MI);
2275     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2276     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2277     Observer.changedInstr(MI);
2278     return Legalized;
2279   case TargetOpcode::G_PTRMASK: {
2280     if (TypeIdx != 1)
2281       return UnableToLegalize;
2282     Observer.changingInstr(MI);
2283     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   }
2287   }
2288 }
2289 
2290 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2291                              MachineIRBuilder &B, Register Src, LLT Ty) {
2292   auto Unmerge = B.buildUnmerge(Ty, Src);
2293   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2294     Pieces.push_back(Unmerge.getReg(I));
2295 }
2296 
2297 LegalizerHelper::LegalizeResult
2298 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2299   Register Dst = MI.getOperand(0).getReg();
2300   Register Src = MI.getOperand(1).getReg();
2301   LLT DstTy = MRI.getType(Dst);
2302   LLT SrcTy = MRI.getType(Src);
2303 
2304   if (SrcTy.isVector()) {
2305     LLT SrcEltTy = SrcTy.getElementType();
2306     SmallVector<Register, 8> SrcRegs;
2307 
2308     if (DstTy.isVector()) {
2309       int NumDstElt = DstTy.getNumElements();
2310       int NumSrcElt = SrcTy.getNumElements();
2311 
2312       LLT DstEltTy = DstTy.getElementType();
2313       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2314       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2315 
2316       // If there's an element size mismatch, insert intermediate casts to match
2317       // the result element type.
2318       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2319         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2320         //
2321         // =>
2322         //
2323         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2324         // %3:_(<2 x s8>) = G_BITCAST %2
2325         // %4:_(<2 x s8>) = G_BITCAST %3
2326         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2327         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2328         SrcPartTy = SrcEltTy;
2329       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2330         //
2331         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2332         //
2333         // =>
2334         //
2335         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2336         // %3:_(s16) = G_BITCAST %2
2337         // %4:_(s16) = G_BITCAST %3
2338         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2339         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2340         DstCastTy = DstEltTy;
2341       }
2342 
2343       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2344       for (Register &SrcReg : SrcRegs)
2345         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2346     } else
2347       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2348 
2349     MIRBuilder.buildMerge(Dst, SrcRegs);
2350     MI.eraseFromParent();
2351     return Legalized;
2352   }
2353 
2354   if (DstTy.isVector()) {
2355     SmallVector<Register, 8> SrcRegs;
2356     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2357     MIRBuilder.buildMerge(Dst, SrcRegs);
2358     MI.eraseFromParent();
2359     return Legalized;
2360   }
2361 
2362   return UnableToLegalize;
2363 }
2364 
2365 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2366 /// is casting to a vector with a smaller element size, perform multiple element
2367 /// extracts and merge the results. If this is coercing to a vector with larger
2368 /// elements, index the bitcasted vector and extract the target element with bit
2369 /// operations. This is intended to force the indexing in the native register
2370 /// size for architectures that can dynamically index the register file.
2371 LegalizerHelper::LegalizeResult
2372 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2373                                          LLT CastTy) {
2374   if (TypeIdx != 1)
2375     return UnableToLegalize;
2376 
2377   Register Dst = MI.getOperand(0).getReg();
2378   Register SrcVec = MI.getOperand(1).getReg();
2379   Register Idx = MI.getOperand(2).getReg();
2380   LLT SrcVecTy = MRI.getType(SrcVec);
2381   LLT IdxTy = MRI.getType(Idx);
2382 
2383   LLT SrcEltTy = SrcVecTy.getElementType();
2384   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2385   unsigned OldNumElts = SrcVecTy.getNumElements();
2386 
2387   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2388   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2389 
2390   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2391   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2392   if (NewNumElts > OldNumElts) {
2393     // Decreasing the vector element size
2394     //
2395     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2396     //  =>
2397     //  v4i32:castx = bitcast x:v2i64
2398     //
2399     // i64 = bitcast
2400     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2401     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2402     //
2403     if (NewNumElts % OldNumElts != 0)
2404       return UnableToLegalize;
2405 
2406     // Type of the intermediate result vector.
2407     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2408     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2409 
2410     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2411 
2412     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2413     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2414 
2415     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2416       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2417       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2418       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2419       NewOps[I] = Elt.getReg(0);
2420     }
2421 
2422     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2423     MIRBuilder.buildBitcast(Dst, NewVec);
2424     MI.eraseFromParent();
2425     return Legalized;
2426   }
2427 
2428   if (NewNumElts < OldNumElts) {
2429     if (NewEltSize % OldEltSize != 0)
2430       return UnableToLegalize;
2431 
2432     // This only depends on powers of 2 because we use bit tricks to figure out
2433     // the bit offset we need to shift to get the target element. A general
2434     // expansion could emit division/multiply.
2435     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2436       return UnableToLegalize;
2437 
2438     // Increasing the vector element size.
2439     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2440     //
2441     //   =>
2442     //
2443     // %cast = G_BITCAST %vec
2444     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2445     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2446     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2447     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2448     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2449     // %elt = G_TRUNC %elt_bits
2450 
2451     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2452     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2453 
2454     // Divide to get the index in the wider element type.
2455     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2456 
2457     Register WideElt = CastVec;
2458     if (CastTy.isVector()) {
2459       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2460                                                      ScaledIdx).getReg(0);
2461     }
2462 
2463     // Now figure out the amount we need to shift to get the target bits.
2464     auto OffsetMask = MIRBuilder.buildConstant(
2465       IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2466     auto OffsetIdx = MIRBuilder.buildAnd(IdxTy, Idx, OffsetMask);
2467     auto OffsetBits = MIRBuilder.buildShl(
2468       IdxTy, OffsetIdx,
2469       MIRBuilder.buildConstant(IdxTy, Log2_32(OldEltSize)));
2470 
2471     // Shift the wide element to get the target element.
2472     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2473     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2474     MI.eraseFromParent();
2475     return Legalized;
2476   }
2477 
2478   return UnableToLegalize;
2479 }
2480 
2481 LegalizerHelper::LegalizeResult
2482 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2483   switch (MI.getOpcode()) {
2484   case TargetOpcode::G_LOAD: {
2485     if (TypeIdx != 0)
2486       return UnableToLegalize;
2487 
2488     Observer.changingInstr(MI);
2489     bitcastDst(MI, CastTy, 0);
2490     Observer.changedInstr(MI);
2491     return Legalized;
2492   }
2493   case TargetOpcode::G_STORE: {
2494     if (TypeIdx != 0)
2495       return UnableToLegalize;
2496 
2497     Observer.changingInstr(MI);
2498     bitcastSrc(MI, CastTy, 0);
2499     Observer.changedInstr(MI);
2500     return Legalized;
2501   }
2502   case TargetOpcode::G_SELECT: {
2503     if (TypeIdx != 0)
2504       return UnableToLegalize;
2505 
2506     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2507       LLVM_DEBUG(
2508           dbgs() << "bitcast action not implemented for vector select\n");
2509       return UnableToLegalize;
2510     }
2511 
2512     Observer.changingInstr(MI);
2513     bitcastSrc(MI, CastTy, 2);
2514     bitcastSrc(MI, CastTy, 3);
2515     bitcastDst(MI, CastTy, 0);
2516     Observer.changedInstr(MI);
2517     return Legalized;
2518   }
2519   case TargetOpcode::G_AND:
2520   case TargetOpcode::G_OR:
2521   case TargetOpcode::G_XOR: {
2522     Observer.changingInstr(MI);
2523     bitcastSrc(MI, CastTy, 1);
2524     bitcastSrc(MI, CastTy, 2);
2525     bitcastDst(MI, CastTy, 0);
2526     Observer.changedInstr(MI);
2527     return Legalized;
2528   }
2529   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2530     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2531   default:
2532     return UnableToLegalize;
2533   }
2534 }
2535 
2536 // Legalize an instruction by changing the opcode in place.
2537 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2538     Observer.changingInstr(MI);
2539     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2540     Observer.changedInstr(MI);
2541 }
2542 
2543 LegalizerHelper::LegalizeResult
2544 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2545   using namespace TargetOpcode;
2546 
2547   switch(MI.getOpcode()) {
2548   default:
2549     return UnableToLegalize;
2550   case TargetOpcode::G_BITCAST:
2551     return lowerBitcast(MI);
2552   case TargetOpcode::G_SREM:
2553   case TargetOpcode::G_UREM: {
2554     auto Quot =
2555         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2556                               {MI.getOperand(1), MI.getOperand(2)});
2557 
2558     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2559     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2560     MI.eraseFromParent();
2561     return Legalized;
2562   }
2563   case TargetOpcode::G_SADDO:
2564   case TargetOpcode::G_SSUBO:
2565     return lowerSADDO_SSUBO(MI);
2566   case TargetOpcode::G_SMULO:
2567   case TargetOpcode::G_UMULO: {
2568     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2569     // result.
2570     Register Res = MI.getOperand(0).getReg();
2571     Register Overflow = MI.getOperand(1).getReg();
2572     Register LHS = MI.getOperand(2).getReg();
2573     Register RHS = MI.getOperand(3).getReg();
2574 
2575     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2576                           ? TargetOpcode::G_SMULH
2577                           : TargetOpcode::G_UMULH;
2578 
2579     Observer.changingInstr(MI);
2580     const auto &TII = MIRBuilder.getTII();
2581     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2582     MI.RemoveOperand(1);
2583     Observer.changedInstr(MI);
2584 
2585     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2586 
2587     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2588     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2589 
2590     // For *signed* multiply, overflow is detected by checking:
2591     // (hi != (lo >> bitwidth-1))
2592     if (Opcode == TargetOpcode::G_SMULH) {
2593       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2594       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2595       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2596     } else {
2597       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2598     }
2599     return Legalized;
2600   }
2601   case TargetOpcode::G_FNEG: {
2602     // TODO: Handle vector types once we are able to
2603     // represent them.
2604     if (Ty.isVector())
2605       return UnableToLegalize;
2606     Register Res = MI.getOperand(0).getReg();
2607     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2608     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2609     if (!ZeroTy)
2610       return UnableToLegalize;
2611     ConstantFP &ZeroForNegation =
2612         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2613     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2614     Register SubByReg = MI.getOperand(1).getReg();
2615     Register ZeroReg = Zero.getReg(0);
2616     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2617     MI.eraseFromParent();
2618     return Legalized;
2619   }
2620   case TargetOpcode::G_FSUB: {
2621     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2622     // First, check if G_FNEG is marked as Lower. If so, we may
2623     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2624     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2625       return UnableToLegalize;
2626     Register Res = MI.getOperand(0).getReg();
2627     Register LHS = MI.getOperand(1).getReg();
2628     Register RHS = MI.getOperand(2).getReg();
2629     Register Neg = MRI.createGenericVirtualRegister(Ty);
2630     MIRBuilder.buildFNeg(Neg, RHS);
2631     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2632     MI.eraseFromParent();
2633     return Legalized;
2634   }
2635   case TargetOpcode::G_FMAD:
2636     return lowerFMad(MI);
2637   case TargetOpcode::G_FFLOOR:
2638     return lowerFFloor(MI);
2639   case TargetOpcode::G_INTRINSIC_ROUND:
2640     return lowerIntrinsicRound(MI);
2641   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2642     // Since round even is the assumed rounding mode for unconstrained FP
2643     // operations, rint and roundeven are the same operation.
2644     changeOpcode(MI, TargetOpcode::G_FRINT);
2645     return Legalized;
2646   }
2647   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2648     Register OldValRes = MI.getOperand(0).getReg();
2649     Register SuccessRes = MI.getOperand(1).getReg();
2650     Register Addr = MI.getOperand(2).getReg();
2651     Register CmpVal = MI.getOperand(3).getReg();
2652     Register NewVal = MI.getOperand(4).getReg();
2653     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2654                                   **MI.memoperands_begin());
2655     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2656     MI.eraseFromParent();
2657     return Legalized;
2658   }
2659   case TargetOpcode::G_LOAD:
2660   case TargetOpcode::G_SEXTLOAD:
2661   case TargetOpcode::G_ZEXTLOAD: {
2662     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2663     Register DstReg = MI.getOperand(0).getReg();
2664     Register PtrReg = MI.getOperand(1).getReg();
2665     LLT DstTy = MRI.getType(DstReg);
2666     auto &MMO = **MI.memoperands_begin();
2667 
2668     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2669       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2670         // This load needs splitting into power of 2 sized loads.
2671         if (DstTy.isVector())
2672           return UnableToLegalize;
2673         if (isPowerOf2_32(DstTy.getSizeInBits()))
2674           return UnableToLegalize; // Don't know what we're being asked to do.
2675 
2676         // Our strategy here is to generate anyextending loads for the smaller
2677         // types up to next power-2 result type, and then combine the two larger
2678         // result values together, before truncating back down to the non-pow-2
2679         // type.
2680         // E.g. v1 = i24 load =>
2681         // v2 = i32 zextload (2 byte)
2682         // v3 = i32 load (1 byte)
2683         // v4 = i32 shl v3, 16
2684         // v5 = i32 or v4, v2
2685         // v1 = i24 trunc v5
2686         // By doing this we generate the correct truncate which should get
2687         // combined away as an artifact with a matching extend.
2688         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2689         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2690 
2691         MachineFunction &MF = MIRBuilder.getMF();
2692         MachineMemOperand *LargeMMO =
2693             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2694         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2695             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2696 
2697         LLT PtrTy = MRI.getType(PtrReg);
2698         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2699         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2700         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2701         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2702         auto LargeLoad = MIRBuilder.buildLoadInstr(
2703             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2704 
2705         auto OffsetCst = MIRBuilder.buildConstant(
2706             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2707         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2708         auto SmallPtr =
2709             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2710         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2711                                               *SmallMMO);
2712 
2713         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2714         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2715         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2716         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2717         MI.eraseFromParent();
2718         return Legalized;
2719       }
2720       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2721       MI.eraseFromParent();
2722       return Legalized;
2723     }
2724 
2725     if (DstTy.isScalar()) {
2726       Register TmpReg =
2727           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2728       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2729       switch (MI.getOpcode()) {
2730       default:
2731         llvm_unreachable("Unexpected opcode");
2732       case TargetOpcode::G_LOAD:
2733         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2734         break;
2735       case TargetOpcode::G_SEXTLOAD:
2736         MIRBuilder.buildSExt(DstReg, TmpReg);
2737         break;
2738       case TargetOpcode::G_ZEXTLOAD:
2739         MIRBuilder.buildZExt(DstReg, TmpReg);
2740         break;
2741       }
2742       MI.eraseFromParent();
2743       return Legalized;
2744     }
2745 
2746     return UnableToLegalize;
2747   }
2748   case TargetOpcode::G_STORE: {
2749     // Lower a non-power of 2 store into multiple pow-2 stores.
2750     // E.g. split an i24 store into an i16 store + i8 store.
2751     // We do this by first extending the stored value to the next largest power
2752     // of 2 type, and then using truncating stores to store the components.
2753     // By doing this, likewise with G_LOAD, generate an extend that can be
2754     // artifact-combined away instead of leaving behind extracts.
2755     Register SrcReg = MI.getOperand(0).getReg();
2756     Register PtrReg = MI.getOperand(1).getReg();
2757     LLT SrcTy = MRI.getType(SrcReg);
2758     MachineMemOperand &MMO = **MI.memoperands_begin();
2759     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2760       return UnableToLegalize;
2761     if (SrcTy.isVector())
2762       return UnableToLegalize;
2763     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2764       return UnableToLegalize; // Don't know what we're being asked to do.
2765 
2766     // Extend to the next pow-2.
2767     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2768     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2769 
2770     // Obtain the smaller value by shifting away the larger value.
2771     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2772     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2773     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2774     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2775 
2776     // Generate the PtrAdd and truncating stores.
2777     LLT PtrTy = MRI.getType(PtrReg);
2778     auto OffsetCst = MIRBuilder.buildConstant(
2779             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2780     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2781     auto SmallPtr =
2782         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2783 
2784     MachineFunction &MF = MIRBuilder.getMF();
2785     MachineMemOperand *LargeMMO =
2786         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2787     MachineMemOperand *SmallMMO =
2788         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2789     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2790     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2791     MI.eraseFromParent();
2792     return Legalized;
2793   }
2794   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2795   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2796   case TargetOpcode::G_CTLZ:
2797   case TargetOpcode::G_CTTZ:
2798   case TargetOpcode::G_CTPOP:
2799     return lowerBitCount(MI, TypeIdx, Ty);
2800   case G_UADDO: {
2801     Register Res = MI.getOperand(0).getReg();
2802     Register CarryOut = MI.getOperand(1).getReg();
2803     Register LHS = MI.getOperand(2).getReg();
2804     Register RHS = MI.getOperand(3).getReg();
2805 
2806     MIRBuilder.buildAdd(Res, LHS, RHS);
2807     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2808 
2809     MI.eraseFromParent();
2810     return Legalized;
2811   }
2812   case G_UADDE: {
2813     Register Res = MI.getOperand(0).getReg();
2814     Register CarryOut = MI.getOperand(1).getReg();
2815     Register LHS = MI.getOperand(2).getReg();
2816     Register RHS = MI.getOperand(3).getReg();
2817     Register CarryIn = MI.getOperand(4).getReg();
2818     LLT Ty = MRI.getType(Res);
2819 
2820     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2821     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2822     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2823     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2824 
2825     MI.eraseFromParent();
2826     return Legalized;
2827   }
2828   case G_USUBO: {
2829     Register Res = MI.getOperand(0).getReg();
2830     Register BorrowOut = MI.getOperand(1).getReg();
2831     Register LHS = MI.getOperand(2).getReg();
2832     Register RHS = MI.getOperand(3).getReg();
2833 
2834     MIRBuilder.buildSub(Res, LHS, RHS);
2835     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2836 
2837     MI.eraseFromParent();
2838     return Legalized;
2839   }
2840   case G_USUBE: {
2841     Register Res = MI.getOperand(0).getReg();
2842     Register BorrowOut = MI.getOperand(1).getReg();
2843     Register LHS = MI.getOperand(2).getReg();
2844     Register RHS = MI.getOperand(3).getReg();
2845     Register BorrowIn = MI.getOperand(4).getReg();
2846     const LLT CondTy = MRI.getType(BorrowOut);
2847     const LLT Ty = MRI.getType(Res);
2848 
2849     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2850     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2851     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2852 
2853     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2854     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2855     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2856 
2857     MI.eraseFromParent();
2858     return Legalized;
2859   }
2860   case G_UITOFP:
2861     return lowerUITOFP(MI, TypeIdx, Ty);
2862   case G_SITOFP:
2863     return lowerSITOFP(MI, TypeIdx, Ty);
2864   case G_FPTOUI:
2865     return lowerFPTOUI(MI, TypeIdx, Ty);
2866   case G_FPTOSI:
2867     return lowerFPTOSI(MI);
2868   case G_FPTRUNC:
2869     return lowerFPTRUNC(MI, TypeIdx, Ty);
2870   case G_FPOWI:
2871     return lowerFPOWI(MI);
2872   case G_SMIN:
2873   case G_SMAX:
2874   case G_UMIN:
2875   case G_UMAX:
2876     return lowerMinMax(MI, TypeIdx, Ty);
2877   case G_FCOPYSIGN:
2878     return lowerFCopySign(MI, TypeIdx, Ty);
2879   case G_FMINNUM:
2880   case G_FMAXNUM:
2881     return lowerFMinNumMaxNum(MI);
2882   case G_MERGE_VALUES:
2883     return lowerMergeValues(MI);
2884   case G_UNMERGE_VALUES:
2885     return lowerUnmergeValues(MI);
2886   case TargetOpcode::G_SEXT_INREG: {
2887     assert(MI.getOperand(2).isImm() && "Expected immediate");
2888     int64_t SizeInBits = MI.getOperand(2).getImm();
2889 
2890     Register DstReg = MI.getOperand(0).getReg();
2891     Register SrcReg = MI.getOperand(1).getReg();
2892     LLT DstTy = MRI.getType(DstReg);
2893     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2894 
2895     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2896     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2897     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2898     MI.eraseFromParent();
2899     return Legalized;
2900   }
2901   case G_EXTRACT_VECTOR_ELT:
2902     return lowerExtractVectorElt(MI);
2903   case G_SHUFFLE_VECTOR:
2904     return lowerShuffleVector(MI);
2905   case G_DYN_STACKALLOC:
2906     return lowerDynStackAlloc(MI);
2907   case G_EXTRACT:
2908     return lowerExtract(MI);
2909   case G_INSERT:
2910     return lowerInsert(MI);
2911   case G_BSWAP:
2912     return lowerBswap(MI);
2913   case G_BITREVERSE:
2914     return lowerBitreverse(MI);
2915   case G_READ_REGISTER:
2916   case G_WRITE_REGISTER:
2917     return lowerReadWriteRegister(MI);
2918   case G_UADDSAT:
2919   case G_USUBSAT: {
2920     // Try to make a reasonable guess about which lowering strategy to use. The
2921     // target can override this with custom lowering and calling the
2922     // implementation functions.
2923     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2924     if (LI.isLegalOrCustom({G_UMIN, Ty}))
2925       return lowerAddSubSatToMinMax(MI);
2926     return lowerAddSubSatToAddoSubo(MI);
2927   }
2928   case G_SADDSAT:
2929   case G_SSUBSAT: {
2930     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2931 
2932     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
2933     // since it's a shorter expansion. However, we would need to figure out the
2934     // preferred boolean type for the carry out for the query.
2935     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
2936       return lowerAddSubSatToMinMax(MI);
2937     return lowerAddSubSatToAddoSubo(MI);
2938   }
2939   }
2940 }
2941 
2942 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
2943                                                   Align MinAlign) const {
2944   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
2945   // datalayout for the preferred alignment. Also there should be a target hook
2946   // for this to allow targets to reduce the alignment and ignore the
2947   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
2948   // the type.
2949   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
2950 }
2951 
2952 MachineInstrBuilder
2953 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
2954                                       MachinePointerInfo &PtrInfo) {
2955   MachineFunction &MF = MIRBuilder.getMF();
2956   const DataLayout &DL = MIRBuilder.getDataLayout();
2957   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
2958 
2959   unsigned AddrSpace = DL.getAllocaAddrSpace();
2960   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
2961 
2962   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
2963   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
2964 }
2965 
2966 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
2967                                         LLT VecTy) {
2968   int64_t IdxVal;
2969   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
2970     return IdxReg;
2971 
2972   LLT IdxTy = B.getMRI()->getType(IdxReg);
2973   unsigned NElts = VecTy.getNumElements();
2974   if (isPowerOf2_32(NElts)) {
2975     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
2976     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
2977   }
2978 
2979   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
2980       .getReg(0);
2981 }
2982 
2983 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
2984                                                   Register Index) {
2985   LLT EltTy = VecTy.getElementType();
2986 
2987   // Calculate the element offset and add it to the pointer.
2988   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
2989   assert(EltSize * 8 == EltTy.getSizeInBits() &&
2990          "Converting bits to bytes lost precision");
2991 
2992   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
2993 
2994   LLT IdxTy = MRI.getType(Index);
2995   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
2996                                  MIRBuilder.buildConstant(IdxTy, EltSize));
2997 
2998   LLT PtrTy = MRI.getType(VecPtr);
2999   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3000 }
3001 
3002 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3003     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3004   Register DstReg = MI.getOperand(0).getReg();
3005   LLT DstTy = MRI.getType(DstReg);
3006   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3007 
3008   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3009 
3010   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3011   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3012 
3013   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3014   MI.eraseFromParent();
3015   return Legalized;
3016 }
3017 
3018 // Handle splitting vector operations which need to have the same number of
3019 // elements in each type index, but each type index may have a different element
3020 // type.
3021 //
3022 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3023 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3024 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3025 //
3026 // Also handles some irregular breakdown cases, e.g.
3027 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3028 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3029 //             s64 = G_SHL s64, s32
3030 LegalizerHelper::LegalizeResult
3031 LegalizerHelper::fewerElementsVectorMultiEltType(
3032   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3033   if (TypeIdx != 0)
3034     return UnableToLegalize;
3035 
3036   const LLT NarrowTy0 = NarrowTyArg;
3037   const unsigned NewNumElts =
3038       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3039 
3040   const Register DstReg = MI.getOperand(0).getReg();
3041   LLT DstTy = MRI.getType(DstReg);
3042   LLT LeftoverTy0;
3043 
3044   // All of the operands need to have the same number of elements, so if we can
3045   // determine a type breakdown for the result type, we can for all of the
3046   // source types.
3047   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3048   if (NumParts < 0)
3049     return UnableToLegalize;
3050 
3051   SmallVector<MachineInstrBuilder, 4> NewInsts;
3052 
3053   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3054   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3055 
3056   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3057     Register SrcReg = MI.getOperand(I).getReg();
3058     LLT SrcTyI = MRI.getType(SrcReg);
3059     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3060     LLT LeftoverTyI;
3061 
3062     // Split this operand into the requested typed registers, and any leftover
3063     // required to reproduce the original type.
3064     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3065                       LeftoverRegs))
3066       return UnableToLegalize;
3067 
3068     if (I == 1) {
3069       // For the first operand, create an instruction for each part and setup
3070       // the result.
3071       for (Register PartReg : PartRegs) {
3072         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3073         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3074                                .addDef(PartDstReg)
3075                                .addUse(PartReg));
3076         DstRegs.push_back(PartDstReg);
3077       }
3078 
3079       for (Register LeftoverReg : LeftoverRegs) {
3080         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3081         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3082                                .addDef(PartDstReg)
3083                                .addUse(LeftoverReg));
3084         LeftoverDstRegs.push_back(PartDstReg);
3085       }
3086     } else {
3087       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3088 
3089       // Add the newly created operand splits to the existing instructions. The
3090       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3091       // pieces.
3092       unsigned InstCount = 0;
3093       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3094         NewInsts[InstCount++].addUse(PartRegs[J]);
3095       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3096         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3097     }
3098 
3099     PartRegs.clear();
3100     LeftoverRegs.clear();
3101   }
3102 
3103   // Insert the newly built operations and rebuild the result register.
3104   for (auto &MIB : NewInsts)
3105     MIRBuilder.insertInstr(MIB);
3106 
3107   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3108 
3109   MI.eraseFromParent();
3110   return Legalized;
3111 }
3112 
3113 LegalizerHelper::LegalizeResult
3114 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3115                                           LLT NarrowTy) {
3116   if (TypeIdx != 0)
3117     return UnableToLegalize;
3118 
3119   Register DstReg = MI.getOperand(0).getReg();
3120   Register SrcReg = MI.getOperand(1).getReg();
3121   LLT DstTy = MRI.getType(DstReg);
3122   LLT SrcTy = MRI.getType(SrcReg);
3123 
3124   LLT NarrowTy0 = NarrowTy;
3125   LLT NarrowTy1;
3126   unsigned NumParts;
3127 
3128   if (NarrowTy.isVector()) {
3129     // Uneven breakdown not handled.
3130     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3131     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3132       return UnableToLegalize;
3133 
3134     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3135   } else {
3136     NumParts = DstTy.getNumElements();
3137     NarrowTy1 = SrcTy.getElementType();
3138   }
3139 
3140   SmallVector<Register, 4> SrcRegs, DstRegs;
3141   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3142 
3143   for (unsigned I = 0; I < NumParts; ++I) {
3144     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3145     MachineInstr *NewInst =
3146         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3147 
3148     NewInst->setFlags(MI.getFlags());
3149     DstRegs.push_back(DstReg);
3150   }
3151 
3152   if (NarrowTy.isVector())
3153     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3154   else
3155     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3156 
3157   MI.eraseFromParent();
3158   return Legalized;
3159 }
3160 
3161 LegalizerHelper::LegalizeResult
3162 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3163                                         LLT NarrowTy) {
3164   Register DstReg = MI.getOperand(0).getReg();
3165   Register Src0Reg = MI.getOperand(2).getReg();
3166   LLT DstTy = MRI.getType(DstReg);
3167   LLT SrcTy = MRI.getType(Src0Reg);
3168 
3169   unsigned NumParts;
3170   LLT NarrowTy0, NarrowTy1;
3171 
3172   if (TypeIdx == 0) {
3173     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3174     unsigned OldElts = DstTy.getNumElements();
3175 
3176     NarrowTy0 = NarrowTy;
3177     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3178     NarrowTy1 = NarrowTy.isVector() ?
3179       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3180       SrcTy.getElementType();
3181 
3182   } else {
3183     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3184     unsigned OldElts = SrcTy.getNumElements();
3185 
3186     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3187       NarrowTy.getNumElements();
3188     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3189                             DstTy.getScalarSizeInBits());
3190     NarrowTy1 = NarrowTy;
3191   }
3192 
3193   // FIXME: Don't know how to handle the situation where the small vectors
3194   // aren't all the same size yet.
3195   if (NarrowTy1.isVector() &&
3196       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3197     return UnableToLegalize;
3198 
3199   CmpInst::Predicate Pred
3200     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3201 
3202   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3203   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3204   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3205 
3206   for (unsigned I = 0; I < NumParts; ++I) {
3207     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3208     DstRegs.push_back(DstReg);
3209 
3210     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3211       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3212     else {
3213       MachineInstr *NewCmp
3214         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3215       NewCmp->setFlags(MI.getFlags());
3216     }
3217   }
3218 
3219   if (NarrowTy1.isVector())
3220     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3221   else
3222     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3223 
3224   MI.eraseFromParent();
3225   return Legalized;
3226 }
3227 
3228 LegalizerHelper::LegalizeResult
3229 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3230                                            LLT NarrowTy) {
3231   Register DstReg = MI.getOperand(0).getReg();
3232   Register CondReg = MI.getOperand(1).getReg();
3233 
3234   unsigned NumParts = 0;
3235   LLT NarrowTy0, NarrowTy1;
3236 
3237   LLT DstTy = MRI.getType(DstReg);
3238   LLT CondTy = MRI.getType(CondReg);
3239   unsigned Size = DstTy.getSizeInBits();
3240 
3241   assert(TypeIdx == 0 || CondTy.isVector());
3242 
3243   if (TypeIdx == 0) {
3244     NarrowTy0 = NarrowTy;
3245     NarrowTy1 = CondTy;
3246 
3247     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3248     // FIXME: Don't know how to handle the situation where the small vectors
3249     // aren't all the same size yet.
3250     if (Size % NarrowSize != 0)
3251       return UnableToLegalize;
3252 
3253     NumParts = Size / NarrowSize;
3254 
3255     // Need to break down the condition type
3256     if (CondTy.isVector()) {
3257       if (CondTy.getNumElements() == NumParts)
3258         NarrowTy1 = CondTy.getElementType();
3259       else
3260         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3261                                 CondTy.getScalarSizeInBits());
3262     }
3263   } else {
3264     NumParts = CondTy.getNumElements();
3265     if (NarrowTy.isVector()) {
3266       // TODO: Handle uneven breakdown.
3267       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3268         return UnableToLegalize;
3269 
3270       return UnableToLegalize;
3271     } else {
3272       NarrowTy0 = DstTy.getElementType();
3273       NarrowTy1 = NarrowTy;
3274     }
3275   }
3276 
3277   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3278   if (CondTy.isVector())
3279     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3280 
3281   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3282   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3283 
3284   for (unsigned i = 0; i < NumParts; ++i) {
3285     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3286     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3287                            Src1Regs[i], Src2Regs[i]);
3288     DstRegs.push_back(DstReg);
3289   }
3290 
3291   if (NarrowTy0.isVector())
3292     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3293   else
3294     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3295 
3296   MI.eraseFromParent();
3297   return Legalized;
3298 }
3299 
3300 LegalizerHelper::LegalizeResult
3301 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3302                                         LLT NarrowTy) {
3303   const Register DstReg = MI.getOperand(0).getReg();
3304   LLT PhiTy = MRI.getType(DstReg);
3305   LLT LeftoverTy;
3306 
3307   // All of the operands need to have the same number of elements, so if we can
3308   // determine a type breakdown for the result type, we can for all of the
3309   // source types.
3310   int NumParts, NumLeftover;
3311   std::tie(NumParts, NumLeftover)
3312     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3313   if (NumParts < 0)
3314     return UnableToLegalize;
3315 
3316   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3317   SmallVector<MachineInstrBuilder, 4> NewInsts;
3318 
3319   const int TotalNumParts = NumParts + NumLeftover;
3320 
3321   // Insert the new phis in the result block first.
3322   for (int I = 0; I != TotalNumParts; ++I) {
3323     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3324     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3325     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3326                        .addDef(PartDstReg));
3327     if (I < NumParts)
3328       DstRegs.push_back(PartDstReg);
3329     else
3330       LeftoverDstRegs.push_back(PartDstReg);
3331   }
3332 
3333   MachineBasicBlock *MBB = MI.getParent();
3334   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3335   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3336 
3337   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3338 
3339   // Insert code to extract the incoming values in each predecessor block.
3340   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3341     PartRegs.clear();
3342     LeftoverRegs.clear();
3343 
3344     Register SrcReg = MI.getOperand(I).getReg();
3345     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3346     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3347 
3348     LLT Unused;
3349     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3350                       LeftoverRegs))
3351       return UnableToLegalize;
3352 
3353     // Add the newly created operand splits to the existing instructions. The
3354     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3355     // pieces.
3356     for (int J = 0; J != TotalNumParts; ++J) {
3357       MachineInstrBuilder MIB = NewInsts[J];
3358       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3359       MIB.addMBB(&OpMBB);
3360     }
3361   }
3362 
3363   MI.eraseFromParent();
3364   return Legalized;
3365 }
3366 
3367 LegalizerHelper::LegalizeResult
3368 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3369                                                   unsigned TypeIdx,
3370                                                   LLT NarrowTy) {
3371   if (TypeIdx != 1)
3372     return UnableToLegalize;
3373 
3374   const int NumDst = MI.getNumOperands() - 1;
3375   const Register SrcReg = MI.getOperand(NumDst).getReg();
3376   LLT SrcTy = MRI.getType(SrcReg);
3377 
3378   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3379 
3380   // TODO: Create sequence of extracts.
3381   if (DstTy == NarrowTy)
3382     return UnableToLegalize;
3383 
3384   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3385   if (DstTy == GCDTy) {
3386     // This would just be a copy of the same unmerge.
3387     // TODO: Create extracts, pad with undef and create intermediate merges.
3388     return UnableToLegalize;
3389   }
3390 
3391   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3392   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3393   const int PartsPerUnmerge = NumDst / NumUnmerge;
3394 
3395   for (int I = 0; I != NumUnmerge; ++I) {
3396     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3397 
3398     for (int J = 0; J != PartsPerUnmerge; ++J)
3399       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3400     MIB.addUse(Unmerge.getReg(I));
3401   }
3402 
3403   MI.eraseFromParent();
3404   return Legalized;
3405 }
3406 
3407 LegalizerHelper::LegalizeResult
3408 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3409                                                 unsigned TypeIdx,
3410                                                 LLT NarrowTy) {
3411   assert(TypeIdx == 0 && "not a vector type index");
3412   Register DstReg = MI.getOperand(0).getReg();
3413   LLT DstTy = MRI.getType(DstReg);
3414   LLT SrcTy = DstTy.getElementType();
3415 
3416   int DstNumElts = DstTy.getNumElements();
3417   int NarrowNumElts = NarrowTy.getNumElements();
3418   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3419   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3420 
3421   SmallVector<Register, 8> ConcatOps;
3422   SmallVector<Register, 8> SubBuildVector;
3423 
3424   Register UndefReg;
3425   if (WidenedDstTy != DstTy)
3426     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3427 
3428   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3429   // necessary.
3430   //
3431   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3432   //   -> <2 x s16>
3433   //
3434   // %4:_(s16) = G_IMPLICIT_DEF
3435   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3436   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3437   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3438   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3439   for (int I = 0; I != NumConcat; ++I) {
3440     for (int J = 0; J != NarrowNumElts; ++J) {
3441       int SrcIdx = NarrowNumElts * I + J;
3442 
3443       if (SrcIdx < DstNumElts) {
3444         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3445         SubBuildVector.push_back(SrcReg);
3446       } else
3447         SubBuildVector.push_back(UndefReg);
3448     }
3449 
3450     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3451     ConcatOps.push_back(BuildVec.getReg(0));
3452     SubBuildVector.clear();
3453   }
3454 
3455   if (DstTy == WidenedDstTy)
3456     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3457   else {
3458     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3459     MIRBuilder.buildExtract(DstReg, Concat, 0);
3460   }
3461 
3462   MI.eraseFromParent();
3463   return Legalized;
3464 }
3465 
3466 LegalizerHelper::LegalizeResult
3467 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3468                                       LLT NarrowTy) {
3469   // FIXME: Don't know how to handle secondary types yet.
3470   if (TypeIdx != 0)
3471     return UnableToLegalize;
3472 
3473   MachineMemOperand *MMO = *MI.memoperands_begin();
3474 
3475   // This implementation doesn't work for atomics. Give up instead of doing
3476   // something invalid.
3477   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3478       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3479     return UnableToLegalize;
3480 
3481   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3482   Register ValReg = MI.getOperand(0).getReg();
3483   Register AddrReg = MI.getOperand(1).getReg();
3484   LLT ValTy = MRI.getType(ValReg);
3485 
3486   // FIXME: Do we need a distinct NarrowMemory legalize action?
3487   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3488     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3489     return UnableToLegalize;
3490   }
3491 
3492   int NumParts = -1;
3493   int NumLeftover = -1;
3494   LLT LeftoverTy;
3495   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3496   if (IsLoad) {
3497     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3498   } else {
3499     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3500                      NarrowLeftoverRegs)) {
3501       NumParts = NarrowRegs.size();
3502       NumLeftover = NarrowLeftoverRegs.size();
3503     }
3504   }
3505 
3506   if (NumParts == -1)
3507     return UnableToLegalize;
3508 
3509   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3510 
3511   unsigned TotalSize = ValTy.getSizeInBits();
3512 
3513   // Split the load/store into PartTy sized pieces starting at Offset. If this
3514   // is a load, return the new registers in ValRegs. For a store, each elements
3515   // of ValRegs should be PartTy. Returns the next offset that needs to be
3516   // handled.
3517   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3518                              unsigned Offset) -> unsigned {
3519     MachineFunction &MF = MIRBuilder.getMF();
3520     unsigned PartSize = PartTy.getSizeInBits();
3521     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3522          Offset += PartSize, ++Idx) {
3523       unsigned ByteSize = PartSize / 8;
3524       unsigned ByteOffset = Offset / 8;
3525       Register NewAddrReg;
3526 
3527       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3528 
3529       MachineMemOperand *NewMMO =
3530         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3531 
3532       if (IsLoad) {
3533         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3534         ValRegs.push_back(Dst);
3535         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3536       } else {
3537         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3538       }
3539     }
3540 
3541     return Offset;
3542   };
3543 
3544   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3545 
3546   // Handle the rest of the register if this isn't an even type breakdown.
3547   if (LeftoverTy.isValid())
3548     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3549 
3550   if (IsLoad) {
3551     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3552                 LeftoverTy, NarrowLeftoverRegs);
3553   }
3554 
3555   MI.eraseFromParent();
3556   return Legalized;
3557 }
3558 
3559 LegalizerHelper::LegalizeResult
3560 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3561                                       LLT NarrowTy) {
3562   assert(TypeIdx == 0 && "only one type index expected");
3563 
3564   const unsigned Opc = MI.getOpcode();
3565   const int NumOps = MI.getNumOperands() - 1;
3566   const Register DstReg = MI.getOperand(0).getReg();
3567   const unsigned Flags = MI.getFlags();
3568   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3569   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3570 
3571   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3572 
3573   // First of all check whether we are narrowing (changing the element type)
3574   // or reducing the vector elements
3575   const LLT DstTy = MRI.getType(DstReg);
3576   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3577 
3578   SmallVector<Register, 8> ExtractedRegs[3];
3579   SmallVector<Register, 8> Parts;
3580 
3581   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3582 
3583   // Break down all the sources into NarrowTy pieces we can operate on. This may
3584   // involve creating merges to a wider type, padded with undef.
3585   for (int I = 0; I != NumOps; ++I) {
3586     Register SrcReg = MI.getOperand(I + 1).getReg();
3587     LLT SrcTy = MRI.getType(SrcReg);
3588 
3589     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3590     // For fewerElements, this is a smaller vector with the same element type.
3591     LLT OpNarrowTy;
3592     if (IsNarrow) {
3593       OpNarrowTy = NarrowScalarTy;
3594 
3595       // In case of narrowing, we need to cast vectors to scalars for this to
3596       // work properly
3597       // FIXME: Can we do without the bitcast here if we're narrowing?
3598       if (SrcTy.isVector()) {
3599         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3600         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3601       }
3602     } else {
3603       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3604     }
3605 
3606     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3607 
3608     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3609     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3610                         TargetOpcode::G_ANYEXT);
3611   }
3612 
3613   SmallVector<Register, 8> ResultRegs;
3614 
3615   // Input operands for each sub-instruction.
3616   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3617 
3618   int NumParts = ExtractedRegs[0].size();
3619   const unsigned DstSize = DstTy.getSizeInBits();
3620   const LLT DstScalarTy = LLT::scalar(DstSize);
3621 
3622   // Narrowing needs to use scalar types
3623   LLT DstLCMTy, NarrowDstTy;
3624   if (IsNarrow) {
3625     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3626     NarrowDstTy = NarrowScalarTy;
3627   } else {
3628     DstLCMTy = getLCMType(DstTy, NarrowTy);
3629     NarrowDstTy = NarrowTy;
3630   }
3631 
3632   // We widened the source registers to satisfy merge/unmerge size
3633   // constraints. We'll have some extra fully undef parts.
3634   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3635 
3636   for (int I = 0; I != NumRealParts; ++I) {
3637     // Emit this instruction on each of the split pieces.
3638     for (int J = 0; J != NumOps; ++J)
3639       InputRegs[J] = ExtractedRegs[J][I];
3640 
3641     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3642     ResultRegs.push_back(Inst.getReg(0));
3643   }
3644 
3645   // Fill out the widened result with undef instead of creating instructions
3646   // with undef inputs.
3647   int NumUndefParts = NumParts - NumRealParts;
3648   if (NumUndefParts != 0)
3649     ResultRegs.append(NumUndefParts,
3650                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3651 
3652   // Extract the possibly padded result. Use a scratch register if we need to do
3653   // a final bitcast, otherwise use the original result register.
3654   Register MergeDstReg;
3655   if (IsNarrow && DstTy.isVector())
3656     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3657   else
3658     MergeDstReg = DstReg;
3659 
3660   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3661 
3662   // Recast to vector if we narrowed a vector
3663   if (IsNarrow && DstTy.isVector())
3664     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3665 
3666   MI.eraseFromParent();
3667   return Legalized;
3668 }
3669 
3670 LegalizerHelper::LegalizeResult
3671 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3672                                               LLT NarrowTy) {
3673   Register DstReg = MI.getOperand(0).getReg();
3674   Register SrcReg = MI.getOperand(1).getReg();
3675   int64_t Imm = MI.getOperand(2).getImm();
3676 
3677   LLT DstTy = MRI.getType(DstReg);
3678 
3679   SmallVector<Register, 8> Parts;
3680   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3681   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3682 
3683   for (Register &R : Parts)
3684     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3685 
3686   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3687 
3688   MI.eraseFromParent();
3689   return Legalized;
3690 }
3691 
3692 LegalizerHelper::LegalizeResult
3693 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3694                                      LLT NarrowTy) {
3695   using namespace TargetOpcode;
3696 
3697   switch (MI.getOpcode()) {
3698   case G_IMPLICIT_DEF:
3699     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3700   case G_TRUNC:
3701   case G_AND:
3702   case G_OR:
3703   case G_XOR:
3704   case G_ADD:
3705   case G_SUB:
3706   case G_MUL:
3707   case G_PTR_ADD:
3708   case G_SMULH:
3709   case G_UMULH:
3710   case G_FADD:
3711   case G_FMUL:
3712   case G_FSUB:
3713   case G_FNEG:
3714   case G_FABS:
3715   case G_FCANONICALIZE:
3716   case G_FDIV:
3717   case G_FREM:
3718   case G_FMA:
3719   case G_FMAD:
3720   case G_FPOW:
3721   case G_FEXP:
3722   case G_FEXP2:
3723   case G_FLOG:
3724   case G_FLOG2:
3725   case G_FLOG10:
3726   case G_FNEARBYINT:
3727   case G_FCEIL:
3728   case G_FFLOOR:
3729   case G_FRINT:
3730   case G_INTRINSIC_ROUND:
3731   case G_INTRINSIC_ROUNDEVEN:
3732   case G_INTRINSIC_TRUNC:
3733   case G_FCOS:
3734   case G_FSIN:
3735   case G_FSQRT:
3736   case G_BSWAP:
3737   case G_BITREVERSE:
3738   case G_SDIV:
3739   case G_UDIV:
3740   case G_SREM:
3741   case G_UREM:
3742   case G_SMIN:
3743   case G_SMAX:
3744   case G_UMIN:
3745   case G_UMAX:
3746   case G_FMINNUM:
3747   case G_FMAXNUM:
3748   case G_FMINNUM_IEEE:
3749   case G_FMAXNUM_IEEE:
3750   case G_FMINIMUM:
3751   case G_FMAXIMUM:
3752   case G_FSHL:
3753   case G_FSHR:
3754   case G_FREEZE:
3755   case G_SADDSAT:
3756   case G_SSUBSAT:
3757   case G_UADDSAT:
3758   case G_USUBSAT:
3759     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3760   case G_SHL:
3761   case G_LSHR:
3762   case G_ASHR:
3763   case G_CTLZ:
3764   case G_CTLZ_ZERO_UNDEF:
3765   case G_CTTZ:
3766   case G_CTTZ_ZERO_UNDEF:
3767   case G_CTPOP:
3768   case G_FCOPYSIGN:
3769     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3770   case G_ZEXT:
3771   case G_SEXT:
3772   case G_ANYEXT:
3773   case G_FPEXT:
3774   case G_FPTRUNC:
3775   case G_SITOFP:
3776   case G_UITOFP:
3777   case G_FPTOSI:
3778   case G_FPTOUI:
3779   case G_INTTOPTR:
3780   case G_PTRTOINT:
3781   case G_ADDRSPACE_CAST:
3782     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3783   case G_ICMP:
3784   case G_FCMP:
3785     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3786   case G_SELECT:
3787     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3788   case G_PHI:
3789     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3790   case G_UNMERGE_VALUES:
3791     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3792   case G_BUILD_VECTOR:
3793     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3794   case G_LOAD:
3795   case G_STORE:
3796     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3797   case G_SEXT_INREG:
3798     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3799   default:
3800     return UnableToLegalize;
3801   }
3802 }
3803 
3804 LegalizerHelper::LegalizeResult
3805 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3806                                              const LLT HalfTy, const LLT AmtTy) {
3807 
3808   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3809   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3810   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3811 
3812   if (Amt.isNullValue()) {
3813     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3814     MI.eraseFromParent();
3815     return Legalized;
3816   }
3817 
3818   LLT NVT = HalfTy;
3819   unsigned NVTBits = HalfTy.getSizeInBits();
3820   unsigned VTBits = 2 * NVTBits;
3821 
3822   SrcOp Lo(Register(0)), Hi(Register(0));
3823   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3824     if (Amt.ugt(VTBits)) {
3825       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3826     } else if (Amt.ugt(NVTBits)) {
3827       Lo = MIRBuilder.buildConstant(NVT, 0);
3828       Hi = MIRBuilder.buildShl(NVT, InL,
3829                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3830     } else if (Amt == NVTBits) {
3831       Lo = MIRBuilder.buildConstant(NVT, 0);
3832       Hi = InL;
3833     } else {
3834       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3835       auto OrLHS =
3836           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3837       auto OrRHS = MIRBuilder.buildLShr(
3838           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3839       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3840     }
3841   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3842     if (Amt.ugt(VTBits)) {
3843       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3844     } else if (Amt.ugt(NVTBits)) {
3845       Lo = MIRBuilder.buildLShr(NVT, InH,
3846                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3847       Hi = MIRBuilder.buildConstant(NVT, 0);
3848     } else if (Amt == NVTBits) {
3849       Lo = InH;
3850       Hi = MIRBuilder.buildConstant(NVT, 0);
3851     } else {
3852       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3853 
3854       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3855       auto OrRHS = MIRBuilder.buildShl(
3856           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3857 
3858       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3859       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3860     }
3861   } else {
3862     if (Amt.ugt(VTBits)) {
3863       Hi = Lo = MIRBuilder.buildAShr(
3864           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3865     } else if (Amt.ugt(NVTBits)) {
3866       Lo = MIRBuilder.buildAShr(NVT, InH,
3867                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3868       Hi = MIRBuilder.buildAShr(NVT, InH,
3869                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3870     } else if (Amt == NVTBits) {
3871       Lo = InH;
3872       Hi = MIRBuilder.buildAShr(NVT, InH,
3873                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3874     } else {
3875       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3876 
3877       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3878       auto OrRHS = MIRBuilder.buildShl(
3879           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3880 
3881       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3882       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3883     }
3884   }
3885 
3886   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3887   MI.eraseFromParent();
3888 
3889   return Legalized;
3890 }
3891 
3892 // TODO: Optimize if constant shift amount.
3893 LegalizerHelper::LegalizeResult
3894 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3895                                    LLT RequestedTy) {
3896   if (TypeIdx == 1) {
3897     Observer.changingInstr(MI);
3898     narrowScalarSrc(MI, RequestedTy, 2);
3899     Observer.changedInstr(MI);
3900     return Legalized;
3901   }
3902 
3903   Register DstReg = MI.getOperand(0).getReg();
3904   LLT DstTy = MRI.getType(DstReg);
3905   if (DstTy.isVector())
3906     return UnableToLegalize;
3907 
3908   Register Amt = MI.getOperand(2).getReg();
3909   LLT ShiftAmtTy = MRI.getType(Amt);
3910   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3911   if (DstEltSize % 2 != 0)
3912     return UnableToLegalize;
3913 
3914   // Ignore the input type. We can only go to exactly half the size of the
3915   // input. If that isn't small enough, the resulting pieces will be further
3916   // legalized.
3917   const unsigned NewBitSize = DstEltSize / 2;
3918   const LLT HalfTy = LLT::scalar(NewBitSize);
3919   const LLT CondTy = LLT::scalar(1);
3920 
3921   if (const MachineInstr *KShiftAmt =
3922           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3923     return narrowScalarShiftByConstant(
3924         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3925   }
3926 
3927   // TODO: Expand with known bits.
3928 
3929   // Handle the fully general expansion by an unknown amount.
3930   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3931 
3932   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3933   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3934   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3935 
3936   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3937   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3938 
3939   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3940   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3941   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3942 
3943   Register ResultRegs[2];
3944   switch (MI.getOpcode()) {
3945   case TargetOpcode::G_SHL: {
3946     // Short: ShAmt < NewBitSize
3947     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3948 
3949     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3950     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3951     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3952 
3953     // Long: ShAmt >= NewBitSize
3954     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3955     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3956 
3957     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3958     auto Hi = MIRBuilder.buildSelect(
3959         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3960 
3961     ResultRegs[0] = Lo.getReg(0);
3962     ResultRegs[1] = Hi.getReg(0);
3963     break;
3964   }
3965   case TargetOpcode::G_LSHR:
3966   case TargetOpcode::G_ASHR: {
3967     // Short: ShAmt < NewBitSize
3968     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3969 
3970     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3971     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3972     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3973 
3974     // Long: ShAmt >= NewBitSize
3975     MachineInstrBuilder HiL;
3976     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3977       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3978     } else {
3979       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3980       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3981     }
3982     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3983                                      {InH, AmtExcess});     // Lo from Hi part.
3984 
3985     auto Lo = MIRBuilder.buildSelect(
3986         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3987 
3988     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3989 
3990     ResultRegs[0] = Lo.getReg(0);
3991     ResultRegs[1] = Hi.getReg(0);
3992     break;
3993   }
3994   default:
3995     llvm_unreachable("not a shift");
3996   }
3997 
3998   MIRBuilder.buildMerge(DstReg, ResultRegs);
3999   MI.eraseFromParent();
4000   return Legalized;
4001 }
4002 
4003 LegalizerHelper::LegalizeResult
4004 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4005                                        LLT MoreTy) {
4006   assert(TypeIdx == 0 && "Expecting only Idx 0");
4007 
4008   Observer.changingInstr(MI);
4009   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4010     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4011     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4012     moreElementsVectorSrc(MI, MoreTy, I);
4013   }
4014 
4015   MachineBasicBlock &MBB = *MI.getParent();
4016   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4017   moreElementsVectorDst(MI, MoreTy, 0);
4018   Observer.changedInstr(MI);
4019   return Legalized;
4020 }
4021 
4022 LegalizerHelper::LegalizeResult
4023 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4024                                     LLT MoreTy) {
4025   unsigned Opc = MI.getOpcode();
4026   switch (Opc) {
4027   case TargetOpcode::G_IMPLICIT_DEF:
4028   case TargetOpcode::G_LOAD: {
4029     if (TypeIdx != 0)
4030       return UnableToLegalize;
4031     Observer.changingInstr(MI);
4032     moreElementsVectorDst(MI, MoreTy, 0);
4033     Observer.changedInstr(MI);
4034     return Legalized;
4035   }
4036   case TargetOpcode::G_STORE:
4037     if (TypeIdx != 0)
4038       return UnableToLegalize;
4039     Observer.changingInstr(MI);
4040     moreElementsVectorSrc(MI, MoreTy, 0);
4041     Observer.changedInstr(MI);
4042     return Legalized;
4043   case TargetOpcode::G_AND:
4044   case TargetOpcode::G_OR:
4045   case TargetOpcode::G_XOR:
4046   case TargetOpcode::G_SMIN:
4047   case TargetOpcode::G_SMAX:
4048   case TargetOpcode::G_UMIN:
4049   case TargetOpcode::G_UMAX:
4050   case TargetOpcode::G_FMINNUM:
4051   case TargetOpcode::G_FMAXNUM:
4052   case TargetOpcode::G_FMINNUM_IEEE:
4053   case TargetOpcode::G_FMAXNUM_IEEE:
4054   case TargetOpcode::G_FMINIMUM:
4055   case TargetOpcode::G_FMAXIMUM: {
4056     Observer.changingInstr(MI);
4057     moreElementsVectorSrc(MI, MoreTy, 1);
4058     moreElementsVectorSrc(MI, MoreTy, 2);
4059     moreElementsVectorDst(MI, MoreTy, 0);
4060     Observer.changedInstr(MI);
4061     return Legalized;
4062   }
4063   case TargetOpcode::G_EXTRACT:
4064     if (TypeIdx != 1)
4065       return UnableToLegalize;
4066     Observer.changingInstr(MI);
4067     moreElementsVectorSrc(MI, MoreTy, 1);
4068     Observer.changedInstr(MI);
4069     return Legalized;
4070   case TargetOpcode::G_INSERT:
4071   case TargetOpcode::G_FREEZE:
4072     if (TypeIdx != 0)
4073       return UnableToLegalize;
4074     Observer.changingInstr(MI);
4075     moreElementsVectorSrc(MI, MoreTy, 1);
4076     moreElementsVectorDst(MI, MoreTy, 0);
4077     Observer.changedInstr(MI);
4078     return Legalized;
4079   case TargetOpcode::G_SELECT:
4080     if (TypeIdx != 0)
4081       return UnableToLegalize;
4082     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4083       return UnableToLegalize;
4084 
4085     Observer.changingInstr(MI);
4086     moreElementsVectorSrc(MI, MoreTy, 2);
4087     moreElementsVectorSrc(MI, MoreTy, 3);
4088     moreElementsVectorDst(MI, MoreTy, 0);
4089     Observer.changedInstr(MI);
4090     return Legalized;
4091   case TargetOpcode::G_UNMERGE_VALUES: {
4092     if (TypeIdx != 1)
4093       return UnableToLegalize;
4094 
4095     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4096     int NumDst = MI.getNumOperands() - 1;
4097     moreElementsVectorSrc(MI, MoreTy, NumDst);
4098 
4099     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4100     for (int I = 0; I != NumDst; ++I)
4101       MIB.addDef(MI.getOperand(I).getReg());
4102 
4103     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4104     for (int I = NumDst; I != NewNumDst; ++I)
4105       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4106 
4107     MIB.addUse(MI.getOperand(NumDst).getReg());
4108     MI.eraseFromParent();
4109     return Legalized;
4110   }
4111   case TargetOpcode::G_PHI:
4112     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4113   default:
4114     return UnableToLegalize;
4115   }
4116 }
4117 
4118 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4119                                         ArrayRef<Register> Src1Regs,
4120                                         ArrayRef<Register> Src2Regs,
4121                                         LLT NarrowTy) {
4122   MachineIRBuilder &B = MIRBuilder;
4123   unsigned SrcParts = Src1Regs.size();
4124   unsigned DstParts = DstRegs.size();
4125 
4126   unsigned DstIdx = 0; // Low bits of the result.
4127   Register FactorSum =
4128       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4129   DstRegs[DstIdx] = FactorSum;
4130 
4131   unsigned CarrySumPrevDstIdx;
4132   SmallVector<Register, 4> Factors;
4133 
4134   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4135     // Collect low parts of muls for DstIdx.
4136     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4137          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4138       MachineInstrBuilder Mul =
4139           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4140       Factors.push_back(Mul.getReg(0));
4141     }
4142     // Collect high parts of muls from previous DstIdx.
4143     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4144          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4145       MachineInstrBuilder Umulh =
4146           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4147       Factors.push_back(Umulh.getReg(0));
4148     }
4149     // Add CarrySum from additions calculated for previous DstIdx.
4150     if (DstIdx != 1) {
4151       Factors.push_back(CarrySumPrevDstIdx);
4152     }
4153 
4154     Register CarrySum;
4155     // Add all factors and accumulate all carries into CarrySum.
4156     if (DstIdx != DstParts - 1) {
4157       MachineInstrBuilder Uaddo =
4158           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4159       FactorSum = Uaddo.getReg(0);
4160       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4161       for (unsigned i = 2; i < Factors.size(); ++i) {
4162         MachineInstrBuilder Uaddo =
4163             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4164         FactorSum = Uaddo.getReg(0);
4165         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4166         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4167       }
4168     } else {
4169       // Since value for the next index is not calculated, neither is CarrySum.
4170       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4171       for (unsigned i = 2; i < Factors.size(); ++i)
4172         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4173     }
4174 
4175     CarrySumPrevDstIdx = CarrySum;
4176     DstRegs[DstIdx] = FactorSum;
4177     Factors.clear();
4178   }
4179 }
4180 
4181 LegalizerHelper::LegalizeResult
4182 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4183   Register DstReg = MI.getOperand(0).getReg();
4184   Register Src1 = MI.getOperand(1).getReg();
4185   Register Src2 = MI.getOperand(2).getReg();
4186 
4187   LLT Ty = MRI.getType(DstReg);
4188   if (Ty.isVector())
4189     return UnableToLegalize;
4190 
4191   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4192   unsigned DstSize = Ty.getSizeInBits();
4193   unsigned NarrowSize = NarrowTy.getSizeInBits();
4194   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4195     return UnableToLegalize;
4196 
4197   unsigned NumDstParts = DstSize / NarrowSize;
4198   unsigned NumSrcParts = SrcSize / NarrowSize;
4199   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4200   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4201 
4202   SmallVector<Register, 2> Src1Parts, Src2Parts;
4203   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4204   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4205   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4206   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4207 
4208   // Take only high half of registers if this is high mul.
4209   ArrayRef<Register> DstRegs(
4210       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4211   MIRBuilder.buildMerge(DstReg, DstRegs);
4212   MI.eraseFromParent();
4213   return Legalized;
4214 }
4215 
4216 LegalizerHelper::LegalizeResult
4217 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4218                                      LLT NarrowTy) {
4219   if (TypeIdx != 1)
4220     return UnableToLegalize;
4221 
4222   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4223 
4224   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4225   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4226   // NarrowSize.
4227   if (SizeOp1 % NarrowSize != 0)
4228     return UnableToLegalize;
4229   int NumParts = SizeOp1 / NarrowSize;
4230 
4231   SmallVector<Register, 2> SrcRegs, DstRegs;
4232   SmallVector<uint64_t, 2> Indexes;
4233   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4234 
4235   Register OpReg = MI.getOperand(0).getReg();
4236   uint64_t OpStart = MI.getOperand(2).getImm();
4237   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4238   for (int i = 0; i < NumParts; ++i) {
4239     unsigned SrcStart = i * NarrowSize;
4240 
4241     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4242       // No part of the extract uses this subregister, ignore it.
4243       continue;
4244     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4245       // The entire subregister is extracted, forward the value.
4246       DstRegs.push_back(SrcRegs[i]);
4247       continue;
4248     }
4249 
4250     // OpSegStart is where this destination segment would start in OpReg if it
4251     // extended infinitely in both directions.
4252     int64_t ExtractOffset;
4253     uint64_t SegSize;
4254     if (OpStart < SrcStart) {
4255       ExtractOffset = 0;
4256       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4257     } else {
4258       ExtractOffset = OpStart - SrcStart;
4259       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4260     }
4261 
4262     Register SegReg = SrcRegs[i];
4263     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4264       // A genuine extract is needed.
4265       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4266       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4267     }
4268 
4269     DstRegs.push_back(SegReg);
4270   }
4271 
4272   Register DstReg = MI.getOperand(0).getReg();
4273   if (MRI.getType(DstReg).isVector())
4274     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4275   else if (DstRegs.size() > 1)
4276     MIRBuilder.buildMerge(DstReg, DstRegs);
4277   else
4278     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4279   MI.eraseFromParent();
4280   return Legalized;
4281 }
4282 
4283 LegalizerHelper::LegalizeResult
4284 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4285                                     LLT NarrowTy) {
4286   // FIXME: Don't know how to handle secondary types yet.
4287   if (TypeIdx != 0)
4288     return UnableToLegalize;
4289 
4290   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4291   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4292 
4293   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4294   // NarrowSize.
4295   if (SizeOp0 % NarrowSize != 0)
4296     return UnableToLegalize;
4297 
4298   int NumParts = SizeOp0 / NarrowSize;
4299 
4300   SmallVector<Register, 2> SrcRegs, DstRegs;
4301   SmallVector<uint64_t, 2> Indexes;
4302   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4303 
4304   Register OpReg = MI.getOperand(2).getReg();
4305   uint64_t OpStart = MI.getOperand(3).getImm();
4306   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4307   for (int i = 0; i < NumParts; ++i) {
4308     unsigned DstStart = i * NarrowSize;
4309 
4310     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4311       // No part of the insert affects this subregister, forward the original.
4312       DstRegs.push_back(SrcRegs[i]);
4313       continue;
4314     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4315       // The entire subregister is defined by this insert, forward the new
4316       // value.
4317       DstRegs.push_back(OpReg);
4318       continue;
4319     }
4320 
4321     // OpSegStart is where this destination segment would start in OpReg if it
4322     // extended infinitely in both directions.
4323     int64_t ExtractOffset, InsertOffset;
4324     uint64_t SegSize;
4325     if (OpStart < DstStart) {
4326       InsertOffset = 0;
4327       ExtractOffset = DstStart - OpStart;
4328       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4329     } else {
4330       InsertOffset = OpStart - DstStart;
4331       ExtractOffset = 0;
4332       SegSize =
4333         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4334     }
4335 
4336     Register SegReg = OpReg;
4337     if (ExtractOffset != 0 || SegSize != OpSize) {
4338       // A genuine extract is needed.
4339       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4340       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4341     }
4342 
4343     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4344     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4345     DstRegs.push_back(DstReg);
4346   }
4347 
4348   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4349   Register DstReg = MI.getOperand(0).getReg();
4350   if(MRI.getType(DstReg).isVector())
4351     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4352   else
4353     MIRBuilder.buildMerge(DstReg, DstRegs);
4354   MI.eraseFromParent();
4355   return Legalized;
4356 }
4357 
4358 LegalizerHelper::LegalizeResult
4359 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4360                                    LLT NarrowTy) {
4361   Register DstReg = MI.getOperand(0).getReg();
4362   LLT DstTy = MRI.getType(DstReg);
4363 
4364   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4365 
4366   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4367   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4368   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4369   LLT LeftoverTy;
4370   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4371                     Src0Regs, Src0LeftoverRegs))
4372     return UnableToLegalize;
4373 
4374   LLT Unused;
4375   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4376                     Src1Regs, Src1LeftoverRegs))
4377     llvm_unreachable("inconsistent extractParts result");
4378 
4379   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4380     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4381                                         {Src0Regs[I], Src1Regs[I]});
4382     DstRegs.push_back(Inst.getReg(0));
4383   }
4384 
4385   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4386     auto Inst = MIRBuilder.buildInstr(
4387       MI.getOpcode(),
4388       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4389     DstLeftoverRegs.push_back(Inst.getReg(0));
4390   }
4391 
4392   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4393               LeftoverTy, DstLeftoverRegs);
4394 
4395   MI.eraseFromParent();
4396   return Legalized;
4397 }
4398 
4399 LegalizerHelper::LegalizeResult
4400 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4401                                  LLT NarrowTy) {
4402   if (TypeIdx != 0)
4403     return UnableToLegalize;
4404 
4405   Register DstReg = MI.getOperand(0).getReg();
4406   Register SrcReg = MI.getOperand(1).getReg();
4407 
4408   LLT DstTy = MRI.getType(DstReg);
4409   if (DstTy.isVector())
4410     return UnableToLegalize;
4411 
4412   SmallVector<Register, 8> Parts;
4413   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4414   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4415   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4416 
4417   MI.eraseFromParent();
4418   return Legalized;
4419 }
4420 
4421 LegalizerHelper::LegalizeResult
4422 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4423                                     LLT NarrowTy) {
4424   if (TypeIdx != 0)
4425     return UnableToLegalize;
4426 
4427   Register CondReg = MI.getOperand(1).getReg();
4428   LLT CondTy = MRI.getType(CondReg);
4429   if (CondTy.isVector()) // TODO: Handle vselect
4430     return UnableToLegalize;
4431 
4432   Register DstReg = MI.getOperand(0).getReg();
4433   LLT DstTy = MRI.getType(DstReg);
4434 
4435   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4436   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4437   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4438   LLT LeftoverTy;
4439   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4440                     Src1Regs, Src1LeftoverRegs))
4441     return UnableToLegalize;
4442 
4443   LLT Unused;
4444   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4445                     Src2Regs, Src2LeftoverRegs))
4446     llvm_unreachable("inconsistent extractParts result");
4447 
4448   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4449     auto Select = MIRBuilder.buildSelect(NarrowTy,
4450                                          CondReg, Src1Regs[I], Src2Regs[I]);
4451     DstRegs.push_back(Select.getReg(0));
4452   }
4453 
4454   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4455     auto Select = MIRBuilder.buildSelect(
4456       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4457     DstLeftoverRegs.push_back(Select.getReg(0));
4458   }
4459 
4460   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4461               LeftoverTy, DstLeftoverRegs);
4462 
4463   MI.eraseFromParent();
4464   return Legalized;
4465 }
4466 
4467 LegalizerHelper::LegalizeResult
4468 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4469                                   LLT NarrowTy) {
4470   if (TypeIdx != 1)
4471     return UnableToLegalize;
4472 
4473   Register DstReg = MI.getOperand(0).getReg();
4474   Register SrcReg = MI.getOperand(1).getReg();
4475   LLT DstTy = MRI.getType(DstReg);
4476   LLT SrcTy = MRI.getType(SrcReg);
4477   unsigned NarrowSize = NarrowTy.getSizeInBits();
4478 
4479   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4480     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4481 
4482     MachineIRBuilder &B = MIRBuilder;
4483     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4484     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4485     auto C_0 = B.buildConstant(NarrowTy, 0);
4486     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4487                                 UnmergeSrc.getReg(1), C_0);
4488     auto LoCTLZ = IsUndef ?
4489       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4490       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4491     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4492     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4493     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4494     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4495 
4496     MI.eraseFromParent();
4497     return Legalized;
4498   }
4499 
4500   return UnableToLegalize;
4501 }
4502 
4503 LegalizerHelper::LegalizeResult
4504 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4505                                   LLT NarrowTy) {
4506   if (TypeIdx != 1)
4507     return UnableToLegalize;
4508 
4509   Register DstReg = MI.getOperand(0).getReg();
4510   Register SrcReg = MI.getOperand(1).getReg();
4511   LLT DstTy = MRI.getType(DstReg);
4512   LLT SrcTy = MRI.getType(SrcReg);
4513   unsigned NarrowSize = NarrowTy.getSizeInBits();
4514 
4515   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4516     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4517 
4518     MachineIRBuilder &B = MIRBuilder;
4519     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4520     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4521     auto C_0 = B.buildConstant(NarrowTy, 0);
4522     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4523                                 UnmergeSrc.getReg(0), C_0);
4524     auto HiCTTZ = IsUndef ?
4525       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4526       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4527     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4528     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4529     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4530     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4531 
4532     MI.eraseFromParent();
4533     return Legalized;
4534   }
4535 
4536   return UnableToLegalize;
4537 }
4538 
4539 LegalizerHelper::LegalizeResult
4540 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4541                                    LLT NarrowTy) {
4542   if (TypeIdx != 1)
4543     return UnableToLegalize;
4544 
4545   Register DstReg = MI.getOperand(0).getReg();
4546   LLT DstTy = MRI.getType(DstReg);
4547   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4548   unsigned NarrowSize = NarrowTy.getSizeInBits();
4549 
4550   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4551     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4552 
4553     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4554     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4555     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4556 
4557     MI.eraseFromParent();
4558     return Legalized;
4559   }
4560 
4561   return UnableToLegalize;
4562 }
4563 
4564 LegalizerHelper::LegalizeResult
4565 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4566   unsigned Opc = MI.getOpcode();
4567   const auto &TII = MIRBuilder.getTII();
4568   auto isSupported = [this](const LegalityQuery &Q) {
4569     auto QAction = LI.getAction(Q).Action;
4570     return QAction == Legal || QAction == Libcall || QAction == Custom;
4571   };
4572   switch (Opc) {
4573   default:
4574     return UnableToLegalize;
4575   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4576     // This trivially expands to CTLZ.
4577     Observer.changingInstr(MI);
4578     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4579     Observer.changedInstr(MI);
4580     return Legalized;
4581   }
4582   case TargetOpcode::G_CTLZ: {
4583     Register DstReg = MI.getOperand(0).getReg();
4584     Register SrcReg = MI.getOperand(1).getReg();
4585     LLT DstTy = MRI.getType(DstReg);
4586     LLT SrcTy = MRI.getType(SrcReg);
4587     unsigned Len = SrcTy.getSizeInBits();
4588 
4589     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4590       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4591       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4592       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4593       auto ICmp = MIRBuilder.buildICmp(
4594           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4595       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4596       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4597       MI.eraseFromParent();
4598       return Legalized;
4599     }
4600     // for now, we do this:
4601     // NewLen = NextPowerOf2(Len);
4602     // x = x | (x >> 1);
4603     // x = x | (x >> 2);
4604     // ...
4605     // x = x | (x >>16);
4606     // x = x | (x >>32); // for 64-bit input
4607     // Upto NewLen/2
4608     // return Len - popcount(x);
4609     //
4610     // Ref: "Hacker's Delight" by Henry Warren
4611     Register Op = SrcReg;
4612     unsigned NewLen = PowerOf2Ceil(Len);
4613     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4614       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4615       auto MIBOp = MIRBuilder.buildOr(
4616           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4617       Op = MIBOp.getReg(0);
4618     }
4619     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4620     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4621                         MIBPop);
4622     MI.eraseFromParent();
4623     return Legalized;
4624   }
4625   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4626     // This trivially expands to CTTZ.
4627     Observer.changingInstr(MI);
4628     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4629     Observer.changedInstr(MI);
4630     return Legalized;
4631   }
4632   case TargetOpcode::G_CTTZ: {
4633     Register DstReg = MI.getOperand(0).getReg();
4634     Register SrcReg = MI.getOperand(1).getReg();
4635     LLT DstTy = MRI.getType(DstReg);
4636     LLT SrcTy = MRI.getType(SrcReg);
4637 
4638     unsigned Len = SrcTy.getSizeInBits();
4639     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4640       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4641       // zero.
4642       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4643       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4644       auto ICmp = MIRBuilder.buildICmp(
4645           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4646       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4647       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4648       MI.eraseFromParent();
4649       return Legalized;
4650     }
4651     // for now, we use: { return popcount(~x & (x - 1)); }
4652     // unless the target has ctlz but not ctpop, in which case we use:
4653     // { return 32 - nlz(~x & (x-1)); }
4654     // Ref: "Hacker's Delight" by Henry Warren
4655     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4656     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4657     auto MIBTmp = MIRBuilder.buildAnd(
4658         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4659     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4660         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4661       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4662       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4663                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4664       MI.eraseFromParent();
4665       return Legalized;
4666     }
4667     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4668     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4669     return Legalized;
4670   }
4671   case TargetOpcode::G_CTPOP: {
4672     unsigned Size = Ty.getSizeInBits();
4673     MachineIRBuilder &B = MIRBuilder;
4674 
4675     // Count set bits in blocks of 2 bits. Default approach would be
4676     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4677     // We use following formula instead:
4678     // B2Count = val - { (val >> 1) & 0x55555555 }
4679     // since it gives same result in blocks of 2 with one instruction less.
4680     auto C_1 = B.buildConstant(Ty, 1);
4681     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4682     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4683     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4684     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4685     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4686 
4687     // In order to get count in blocks of 4 add values from adjacent block of 2.
4688     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4689     auto C_2 = B.buildConstant(Ty, 2);
4690     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4691     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4692     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4693     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4694     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4695     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4696 
4697     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4698     // addition since count value sits in range {0,...,8} and 4 bits are enough
4699     // to hold such binary values. After addition high 4 bits still hold count
4700     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4701     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4702     auto C_4 = B.buildConstant(Ty, 4);
4703     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4704     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4705     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4706     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4707     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4708 
4709     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4710     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4711     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4712     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4713     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4714 
4715     // Shift count result from 8 high bits to low bits.
4716     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4717     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4718 
4719     MI.eraseFromParent();
4720     return Legalized;
4721   }
4722   }
4723 }
4724 
4725 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4726 // representation.
4727 LegalizerHelper::LegalizeResult
4728 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4729   Register Dst = MI.getOperand(0).getReg();
4730   Register Src = MI.getOperand(1).getReg();
4731   const LLT S64 = LLT::scalar(64);
4732   const LLT S32 = LLT::scalar(32);
4733   const LLT S1 = LLT::scalar(1);
4734 
4735   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4736 
4737   // unsigned cul2f(ulong u) {
4738   //   uint lz = clz(u);
4739   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4740   //   u = (u << lz) & 0x7fffffffffffffffUL;
4741   //   ulong t = u & 0xffffffffffUL;
4742   //   uint v = (e << 23) | (uint)(u >> 40);
4743   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4744   //   return as_float(v + r);
4745   // }
4746 
4747   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4748   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4749 
4750   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4751 
4752   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4753   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4754 
4755   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4756   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4757 
4758   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4759   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4760 
4761   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4762 
4763   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4764   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4765 
4766   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4767   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4768   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4769 
4770   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4771   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4772   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4773   auto One = MIRBuilder.buildConstant(S32, 1);
4774 
4775   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4776   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4777   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4778   MIRBuilder.buildAdd(Dst, V, R);
4779 
4780   MI.eraseFromParent();
4781   return Legalized;
4782 }
4783 
4784 LegalizerHelper::LegalizeResult
4785 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4786   Register Dst = MI.getOperand(0).getReg();
4787   Register Src = MI.getOperand(1).getReg();
4788   LLT DstTy = MRI.getType(Dst);
4789   LLT SrcTy = MRI.getType(Src);
4790 
4791   if (SrcTy == LLT::scalar(1)) {
4792     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4793     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4794     MIRBuilder.buildSelect(Dst, Src, True, False);
4795     MI.eraseFromParent();
4796     return Legalized;
4797   }
4798 
4799   if (SrcTy != LLT::scalar(64))
4800     return UnableToLegalize;
4801 
4802   if (DstTy == LLT::scalar(32)) {
4803     // TODO: SelectionDAG has several alternative expansions to port which may
4804     // be more reasonble depending on the available instructions. If a target
4805     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4806     // intermediate type, this is probably worse.
4807     return lowerU64ToF32BitOps(MI);
4808   }
4809 
4810   return UnableToLegalize;
4811 }
4812 
4813 LegalizerHelper::LegalizeResult
4814 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4815   Register Dst = MI.getOperand(0).getReg();
4816   Register Src = MI.getOperand(1).getReg();
4817   LLT DstTy = MRI.getType(Dst);
4818   LLT SrcTy = MRI.getType(Src);
4819 
4820   const LLT S64 = LLT::scalar(64);
4821   const LLT S32 = LLT::scalar(32);
4822   const LLT S1 = LLT::scalar(1);
4823 
4824   if (SrcTy == S1) {
4825     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4826     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4827     MIRBuilder.buildSelect(Dst, Src, True, False);
4828     MI.eraseFromParent();
4829     return Legalized;
4830   }
4831 
4832   if (SrcTy != S64)
4833     return UnableToLegalize;
4834 
4835   if (DstTy == S32) {
4836     // signed cl2f(long l) {
4837     //   long s = l >> 63;
4838     //   float r = cul2f((l + s) ^ s);
4839     //   return s ? -r : r;
4840     // }
4841     Register L = Src;
4842     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4843     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4844 
4845     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4846     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4847     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4848 
4849     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4850     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4851                                             MIRBuilder.buildConstant(S64, 0));
4852     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4853     MI.eraseFromParent();
4854     return Legalized;
4855   }
4856 
4857   return UnableToLegalize;
4858 }
4859 
4860 LegalizerHelper::LegalizeResult
4861 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4862   Register Dst = MI.getOperand(0).getReg();
4863   Register Src = MI.getOperand(1).getReg();
4864   LLT DstTy = MRI.getType(Dst);
4865   LLT SrcTy = MRI.getType(Src);
4866   const LLT S64 = LLT::scalar(64);
4867   const LLT S32 = LLT::scalar(32);
4868 
4869   if (SrcTy != S64 && SrcTy != S32)
4870     return UnableToLegalize;
4871   if (DstTy != S32 && DstTy != S64)
4872     return UnableToLegalize;
4873 
4874   // FPTOSI gives same result as FPTOUI for positive signed integers.
4875   // FPTOUI needs to deal with fp values that convert to unsigned integers
4876   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4877 
4878   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4879   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4880                                                 : APFloat::IEEEdouble(),
4881                     APInt::getNullValue(SrcTy.getSizeInBits()));
4882   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4883 
4884   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4885 
4886   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4887   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4888   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4889   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4890   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4891   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4892   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4893 
4894   const LLT S1 = LLT::scalar(1);
4895 
4896   MachineInstrBuilder FCMP =
4897       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4898   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4899 
4900   MI.eraseFromParent();
4901   return Legalized;
4902 }
4903 
4904 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4905   Register Dst = MI.getOperand(0).getReg();
4906   Register Src = MI.getOperand(1).getReg();
4907   LLT DstTy = MRI.getType(Dst);
4908   LLT SrcTy = MRI.getType(Src);
4909   const LLT S64 = LLT::scalar(64);
4910   const LLT S32 = LLT::scalar(32);
4911 
4912   // FIXME: Only f32 to i64 conversions are supported.
4913   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4914     return UnableToLegalize;
4915 
4916   // Expand f32 -> i64 conversion
4917   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4918   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4919 
4920   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4921 
4922   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4923   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4924 
4925   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4926   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4927 
4928   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4929                                            APInt::getSignMask(SrcEltBits));
4930   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4931   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4932   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4933   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4934 
4935   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4936   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4937   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4938 
4939   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4940   R = MIRBuilder.buildZExt(DstTy, R);
4941 
4942   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4943   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4944   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4945   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4946 
4947   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4948   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4949 
4950   const LLT S1 = LLT::scalar(1);
4951   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4952                                     S1, Exponent, ExponentLoBit);
4953 
4954   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4955 
4956   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4957   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4958 
4959   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4960 
4961   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4962                                           S1, Exponent, ZeroSrcTy);
4963 
4964   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4965   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4966 
4967   MI.eraseFromParent();
4968   return Legalized;
4969 }
4970 
4971 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4972 LegalizerHelper::LegalizeResult
4973 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4974   Register Dst = MI.getOperand(0).getReg();
4975   Register Src = MI.getOperand(1).getReg();
4976 
4977   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4978     return UnableToLegalize;
4979 
4980   const unsigned ExpMask = 0x7ff;
4981   const unsigned ExpBiasf64 = 1023;
4982   const unsigned ExpBiasf16 = 15;
4983   const LLT S32 = LLT::scalar(32);
4984   const LLT S1 = LLT::scalar(1);
4985 
4986   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4987   Register U = Unmerge.getReg(0);
4988   Register UH = Unmerge.getReg(1);
4989 
4990   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4991   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4992 
4993   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4994   // add the f16 bias (15) to get the biased exponent for the f16 format.
4995   E = MIRBuilder.buildAdd(
4996     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4997 
4998   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4999   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5000 
5001   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5002                                        MIRBuilder.buildConstant(S32, 0x1ff));
5003   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5004 
5005   auto Zero = MIRBuilder.buildConstant(S32, 0);
5006   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5007   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5008   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5009 
5010   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5011   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5012   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5013   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5014 
5015   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5016   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5017 
5018   // N = M | (E << 12);
5019   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5020   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5021 
5022   // B = clamp(1-E, 0, 13);
5023   auto One = MIRBuilder.buildConstant(S32, 1);
5024   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5025   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5026   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5027 
5028   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5029                                        MIRBuilder.buildConstant(S32, 0x1000));
5030 
5031   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5032   auto D0 = MIRBuilder.buildShl(S32, D, B);
5033 
5034   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5035                                              D0, SigSetHigh);
5036   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5037   D = MIRBuilder.buildOr(S32, D, D1);
5038 
5039   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5040   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5041 
5042   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5043   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5044 
5045   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5046                                        MIRBuilder.buildConstant(S32, 3));
5047   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5048 
5049   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5050                                        MIRBuilder.buildConstant(S32, 5));
5051   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5052 
5053   V1 = MIRBuilder.buildOr(S32, V0, V1);
5054   V = MIRBuilder.buildAdd(S32, V, V1);
5055 
5056   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5057                                        E, MIRBuilder.buildConstant(S32, 30));
5058   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5059                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5060 
5061   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5062                                          E, MIRBuilder.buildConstant(S32, 1039));
5063   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5064 
5065   // Extract the sign bit.
5066   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5067   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5068 
5069   // Insert the sign bit
5070   V = MIRBuilder.buildOr(S32, Sign, V);
5071 
5072   MIRBuilder.buildTrunc(Dst, V);
5073   MI.eraseFromParent();
5074   return Legalized;
5075 }
5076 
5077 LegalizerHelper::LegalizeResult
5078 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5079   Register Dst = MI.getOperand(0).getReg();
5080   Register Src = MI.getOperand(1).getReg();
5081 
5082   LLT DstTy = MRI.getType(Dst);
5083   LLT SrcTy = MRI.getType(Src);
5084   const LLT S64 = LLT::scalar(64);
5085   const LLT S16 = LLT::scalar(16);
5086 
5087   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5088     return lowerFPTRUNC_F64_TO_F16(MI);
5089 
5090   return UnableToLegalize;
5091 }
5092 
5093 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5094 // multiplication tree.
5095 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5096   Register Dst = MI.getOperand(0).getReg();
5097   Register Src0 = MI.getOperand(1).getReg();
5098   Register Src1 = MI.getOperand(2).getReg();
5099   LLT Ty = MRI.getType(Dst);
5100 
5101   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5102   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5103   MI.eraseFromParent();
5104   return Legalized;
5105 }
5106 
5107 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5108   switch (Opc) {
5109   case TargetOpcode::G_SMIN:
5110     return CmpInst::ICMP_SLT;
5111   case TargetOpcode::G_SMAX:
5112     return CmpInst::ICMP_SGT;
5113   case TargetOpcode::G_UMIN:
5114     return CmpInst::ICMP_ULT;
5115   case TargetOpcode::G_UMAX:
5116     return CmpInst::ICMP_UGT;
5117   default:
5118     llvm_unreachable("not in integer min/max");
5119   }
5120 }
5121 
5122 LegalizerHelper::LegalizeResult
5123 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5124   Register Dst = MI.getOperand(0).getReg();
5125   Register Src0 = MI.getOperand(1).getReg();
5126   Register Src1 = MI.getOperand(2).getReg();
5127 
5128   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5129   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5130 
5131   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5132   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5133 
5134   MI.eraseFromParent();
5135   return Legalized;
5136 }
5137 
5138 LegalizerHelper::LegalizeResult
5139 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5140   Register Dst = MI.getOperand(0).getReg();
5141   Register Src0 = MI.getOperand(1).getReg();
5142   Register Src1 = MI.getOperand(2).getReg();
5143 
5144   const LLT Src0Ty = MRI.getType(Src0);
5145   const LLT Src1Ty = MRI.getType(Src1);
5146 
5147   const int Src0Size = Src0Ty.getScalarSizeInBits();
5148   const int Src1Size = Src1Ty.getScalarSizeInBits();
5149 
5150   auto SignBitMask = MIRBuilder.buildConstant(
5151     Src0Ty, APInt::getSignMask(Src0Size));
5152 
5153   auto NotSignBitMask = MIRBuilder.buildConstant(
5154     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5155 
5156   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5157   MachineInstr *Or;
5158 
5159   if (Src0Ty == Src1Ty) {
5160     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5161     Or = MIRBuilder.buildOr(Dst, And0, And1);
5162   } else if (Src0Size > Src1Size) {
5163     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5164     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5165     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5166     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5167     Or = MIRBuilder.buildOr(Dst, And0, And1);
5168   } else {
5169     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5170     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5171     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5172     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5173     Or = MIRBuilder.buildOr(Dst, And0, And1);
5174   }
5175 
5176   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5177   // constants are a nan and -0.0, but the final result should preserve
5178   // everything.
5179   if (unsigned Flags = MI.getFlags())
5180     Or->setFlags(Flags);
5181 
5182   MI.eraseFromParent();
5183   return Legalized;
5184 }
5185 
5186 LegalizerHelper::LegalizeResult
5187 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5188   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5189     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5190 
5191   Register Dst = MI.getOperand(0).getReg();
5192   Register Src0 = MI.getOperand(1).getReg();
5193   Register Src1 = MI.getOperand(2).getReg();
5194   LLT Ty = MRI.getType(Dst);
5195 
5196   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5197     // Insert canonicalizes if it's possible we need to quiet to get correct
5198     // sNaN behavior.
5199 
5200     // Note this must be done here, and not as an optimization combine in the
5201     // absence of a dedicate quiet-snan instruction as we're using an
5202     // omni-purpose G_FCANONICALIZE.
5203     if (!isKnownNeverSNaN(Src0, MRI))
5204       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5205 
5206     if (!isKnownNeverSNaN(Src1, MRI))
5207       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5208   }
5209 
5210   // If there are no nans, it's safe to simply replace this with the non-IEEE
5211   // version.
5212   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5213   MI.eraseFromParent();
5214   return Legalized;
5215 }
5216 
5217 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5218   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5219   Register DstReg = MI.getOperand(0).getReg();
5220   LLT Ty = MRI.getType(DstReg);
5221   unsigned Flags = MI.getFlags();
5222 
5223   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5224                                   Flags);
5225   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5226   MI.eraseFromParent();
5227   return Legalized;
5228 }
5229 
5230 LegalizerHelper::LegalizeResult
5231 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5232   Register DstReg = MI.getOperand(0).getReg();
5233   Register X = MI.getOperand(1).getReg();
5234   const unsigned Flags = MI.getFlags();
5235   const LLT Ty = MRI.getType(DstReg);
5236   const LLT CondTy = Ty.changeElementSize(1);
5237 
5238   // round(x) =>
5239   //  t = trunc(x);
5240   //  d = fabs(x - t);
5241   //  o = copysign(1.0f, x);
5242   //  return t + (d >= 0.5 ? o : 0.0);
5243 
5244   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5245 
5246   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5247   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5248   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5249   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5250   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5251   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5252 
5253   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5254                                   Flags);
5255   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5256 
5257   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5258 
5259   MI.eraseFromParent();
5260   return Legalized;
5261 }
5262 
5263 LegalizerHelper::LegalizeResult
5264 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5265   Register DstReg = MI.getOperand(0).getReg();
5266   Register SrcReg = MI.getOperand(1).getReg();
5267   unsigned Flags = MI.getFlags();
5268   LLT Ty = MRI.getType(DstReg);
5269   const LLT CondTy = Ty.changeElementSize(1);
5270 
5271   // result = trunc(src);
5272   // if (src < 0.0 && src != result)
5273   //   result += -1.0.
5274 
5275   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5276   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5277 
5278   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5279                                   SrcReg, Zero, Flags);
5280   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5281                                       SrcReg, Trunc, Flags);
5282   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5283   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5284 
5285   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5286   MI.eraseFromParent();
5287   return Legalized;
5288 }
5289 
5290 LegalizerHelper::LegalizeResult
5291 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5292   const unsigned NumOps = MI.getNumOperands();
5293   Register DstReg = MI.getOperand(0).getReg();
5294   Register Src0Reg = MI.getOperand(1).getReg();
5295   LLT DstTy = MRI.getType(DstReg);
5296   LLT SrcTy = MRI.getType(Src0Reg);
5297   unsigned PartSize = SrcTy.getSizeInBits();
5298 
5299   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5300   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5301 
5302   for (unsigned I = 2; I != NumOps; ++I) {
5303     const unsigned Offset = (I - 1) * PartSize;
5304 
5305     Register SrcReg = MI.getOperand(I).getReg();
5306     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5307 
5308     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5309       MRI.createGenericVirtualRegister(WideTy);
5310 
5311     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5312     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5313     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5314     ResultReg = NextResult;
5315   }
5316 
5317   if (DstTy.isPointer()) {
5318     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5319           DstTy.getAddressSpace())) {
5320       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5321       return UnableToLegalize;
5322     }
5323 
5324     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5325   }
5326 
5327   MI.eraseFromParent();
5328   return Legalized;
5329 }
5330 
5331 LegalizerHelper::LegalizeResult
5332 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5333   const unsigned NumDst = MI.getNumOperands() - 1;
5334   Register SrcReg = MI.getOperand(NumDst).getReg();
5335   Register Dst0Reg = MI.getOperand(0).getReg();
5336   LLT DstTy = MRI.getType(Dst0Reg);
5337   if (DstTy.isPointer())
5338     return UnableToLegalize; // TODO
5339 
5340   SrcReg = coerceToScalar(SrcReg);
5341   if (!SrcReg)
5342     return UnableToLegalize;
5343 
5344   // Expand scalarizing unmerge as bitcast to integer and shift.
5345   LLT IntTy = MRI.getType(SrcReg);
5346 
5347   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5348 
5349   const unsigned DstSize = DstTy.getSizeInBits();
5350   unsigned Offset = DstSize;
5351   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5352     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5353     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5354     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5355   }
5356 
5357   MI.eraseFromParent();
5358   return Legalized;
5359 }
5360 
5361 /// Lower a vector extract by writing the vector to a stack temporary and
5362 /// reloading the element.
5363 ///
5364 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5365 ///  =>
5366 ///  %stack_temp = G_FRAME_INDEX
5367 ///  G_STORE %vec, %stack_temp
5368 ///  %idx = clamp(%idx, %vec.getNumElements())
5369 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5370 ///  %dst = G_LOAD %element_ptr
5371 LegalizerHelper::LegalizeResult
5372 LegalizerHelper::lowerExtractVectorElt(MachineInstr &MI) {
5373   Register DstReg = MI.getOperand(0).getReg();
5374   Register SrcVec = MI.getOperand(1).getReg();
5375   Register Idx = MI.getOperand(2).getReg();
5376   LLT VecTy = MRI.getType(SrcVec);
5377   LLT EltTy = VecTy.getElementType();
5378   if (!EltTy.isByteSized()) { // Not implemented.
5379     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5380     return UnableToLegalize;
5381   }
5382 
5383   unsigned EltBytes = EltTy.getSizeInBytes();
5384   Align StoreAlign = getStackTemporaryAlignment(VecTy);
5385   Align LoadAlign;
5386 
5387   MachinePointerInfo PtrInfo;
5388   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5389                                         StoreAlign, PtrInfo);
5390   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, StoreAlign);
5391 
5392   // Get the pointer to the element, and be sure not to hit undefined behavior
5393   // if the index is out of bounds.
5394   Register LoadPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5395 
5396   int64_t IdxVal;
5397   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5398     int64_t Offset = IdxVal * EltBytes;
5399     PtrInfo = PtrInfo.getWithOffset(Offset);
5400     LoadAlign = commonAlignment(StoreAlign, Offset);
5401   } else {
5402     // We lose information with a variable offset.
5403     LoadAlign = getStackTemporaryAlignment(EltTy);
5404     PtrInfo = MachinePointerInfo(MRI.getType(LoadPtr).getAddressSpace());
5405   }
5406 
5407   MIRBuilder.buildLoad(DstReg, LoadPtr, PtrInfo, LoadAlign);
5408   MI.eraseFromParent();
5409   return Legalized;
5410 }
5411 
5412 LegalizerHelper::LegalizeResult
5413 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5414   Register DstReg = MI.getOperand(0).getReg();
5415   Register Src0Reg = MI.getOperand(1).getReg();
5416   Register Src1Reg = MI.getOperand(2).getReg();
5417   LLT Src0Ty = MRI.getType(Src0Reg);
5418   LLT DstTy = MRI.getType(DstReg);
5419   LLT IdxTy = LLT::scalar(32);
5420 
5421   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5422 
5423   if (DstTy.isScalar()) {
5424     if (Src0Ty.isVector())
5425       return UnableToLegalize;
5426 
5427     // This is just a SELECT.
5428     assert(Mask.size() == 1 && "Expected a single mask element");
5429     Register Val;
5430     if (Mask[0] < 0 || Mask[0] > 1)
5431       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5432     else
5433       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5434     MIRBuilder.buildCopy(DstReg, Val);
5435     MI.eraseFromParent();
5436     return Legalized;
5437   }
5438 
5439   Register Undef;
5440   SmallVector<Register, 32> BuildVec;
5441   LLT EltTy = DstTy.getElementType();
5442 
5443   for (int Idx : Mask) {
5444     if (Idx < 0) {
5445       if (!Undef.isValid())
5446         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5447       BuildVec.push_back(Undef);
5448       continue;
5449     }
5450 
5451     if (Src0Ty.isScalar()) {
5452       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5453     } else {
5454       int NumElts = Src0Ty.getNumElements();
5455       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5456       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5457       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5458       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5459       BuildVec.push_back(Extract.getReg(0));
5460     }
5461   }
5462 
5463   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5464   MI.eraseFromParent();
5465   return Legalized;
5466 }
5467 
5468 LegalizerHelper::LegalizeResult
5469 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5470   const auto &MF = *MI.getMF();
5471   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5472   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5473     return UnableToLegalize;
5474 
5475   Register Dst = MI.getOperand(0).getReg();
5476   Register AllocSize = MI.getOperand(1).getReg();
5477   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5478 
5479   LLT PtrTy = MRI.getType(Dst);
5480   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5481 
5482   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5483   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5484   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5485   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5486 
5487   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5488   // have to generate an extra instruction to negate the alloc and then use
5489   // G_PTR_ADD to add the negative offset.
5490   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5491   if (Alignment > Align(1)) {
5492     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5493     AlignMask.negate();
5494     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5495     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5496   }
5497 
5498   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5499   MIRBuilder.buildCopy(SPReg, SPTmp);
5500   MIRBuilder.buildCopy(Dst, SPTmp);
5501 
5502   MI.eraseFromParent();
5503   return Legalized;
5504 }
5505 
5506 LegalizerHelper::LegalizeResult
5507 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5508   Register Dst = MI.getOperand(0).getReg();
5509   Register Src = MI.getOperand(1).getReg();
5510   unsigned Offset = MI.getOperand(2).getImm();
5511 
5512   LLT DstTy = MRI.getType(Dst);
5513   LLT SrcTy = MRI.getType(Src);
5514 
5515   if (DstTy.isScalar() &&
5516       (SrcTy.isScalar() ||
5517        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5518     LLT SrcIntTy = SrcTy;
5519     if (!SrcTy.isScalar()) {
5520       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5521       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5522     }
5523 
5524     if (Offset == 0)
5525       MIRBuilder.buildTrunc(Dst, Src);
5526     else {
5527       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5528       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5529       MIRBuilder.buildTrunc(Dst, Shr);
5530     }
5531 
5532     MI.eraseFromParent();
5533     return Legalized;
5534   }
5535 
5536   return UnableToLegalize;
5537 }
5538 
5539 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5540   Register Dst = MI.getOperand(0).getReg();
5541   Register Src = MI.getOperand(1).getReg();
5542   Register InsertSrc = MI.getOperand(2).getReg();
5543   uint64_t Offset = MI.getOperand(3).getImm();
5544 
5545   LLT DstTy = MRI.getType(Src);
5546   LLT InsertTy = MRI.getType(InsertSrc);
5547 
5548   if (InsertTy.isVector() ||
5549       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5550     return UnableToLegalize;
5551 
5552   const DataLayout &DL = MIRBuilder.getDataLayout();
5553   if ((DstTy.isPointer() &&
5554        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5555       (InsertTy.isPointer() &&
5556        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5557     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5558     return UnableToLegalize;
5559   }
5560 
5561   LLT IntDstTy = DstTy;
5562 
5563   if (!DstTy.isScalar()) {
5564     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5565     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5566   }
5567 
5568   if (!InsertTy.isScalar()) {
5569     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5570     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5571   }
5572 
5573   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5574   if (Offset != 0) {
5575     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5576     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5577   }
5578 
5579   APInt MaskVal = APInt::getBitsSetWithWrap(
5580       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5581 
5582   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5583   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5584   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5585 
5586   MIRBuilder.buildCast(Dst, Or);
5587   MI.eraseFromParent();
5588   return Legalized;
5589 }
5590 
5591 LegalizerHelper::LegalizeResult
5592 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5593   Register Dst0 = MI.getOperand(0).getReg();
5594   Register Dst1 = MI.getOperand(1).getReg();
5595   Register LHS = MI.getOperand(2).getReg();
5596   Register RHS = MI.getOperand(3).getReg();
5597   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5598 
5599   LLT Ty = MRI.getType(Dst0);
5600   LLT BoolTy = MRI.getType(Dst1);
5601 
5602   if (IsAdd)
5603     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5604   else
5605     MIRBuilder.buildSub(Dst0, LHS, RHS);
5606 
5607   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5608 
5609   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5610 
5611   // For an addition, the result should be less than one of the operands (LHS)
5612   // if and only if the other operand (RHS) is negative, otherwise there will
5613   // be overflow.
5614   // For a subtraction, the result should be less than one of the operands
5615   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5616   // otherwise there will be overflow.
5617   auto ResultLowerThanLHS =
5618       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5619   auto ConditionRHS = MIRBuilder.buildICmp(
5620       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5621 
5622   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5623   MI.eraseFromParent();
5624   return Legalized;
5625 }
5626 
5627 LegalizerHelper::LegalizeResult
5628 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5629   Register Res = MI.getOperand(0).getReg();
5630   Register LHS = MI.getOperand(1).getReg();
5631   Register RHS = MI.getOperand(2).getReg();
5632   LLT Ty = MRI.getType(Res);
5633   bool IsSigned;
5634   bool IsAdd;
5635   unsigned BaseOp;
5636   switch (MI.getOpcode()) {
5637   default:
5638     llvm_unreachable("unexpected addsat/subsat opcode");
5639   case TargetOpcode::G_UADDSAT:
5640     IsSigned = false;
5641     IsAdd = true;
5642     BaseOp = TargetOpcode::G_ADD;
5643     break;
5644   case TargetOpcode::G_SADDSAT:
5645     IsSigned = true;
5646     IsAdd = true;
5647     BaseOp = TargetOpcode::G_ADD;
5648     break;
5649   case TargetOpcode::G_USUBSAT:
5650     IsSigned = false;
5651     IsAdd = false;
5652     BaseOp = TargetOpcode::G_SUB;
5653     break;
5654   case TargetOpcode::G_SSUBSAT:
5655     IsSigned = true;
5656     IsAdd = false;
5657     BaseOp = TargetOpcode::G_SUB;
5658     break;
5659   }
5660 
5661   if (IsSigned) {
5662     // sadd.sat(a, b) ->
5663     //   hi = 0x7fffffff - smax(a, 0)
5664     //   lo = 0x80000000 - smin(a, 0)
5665     //   a + smin(smax(lo, b), hi)
5666     // ssub.sat(a, b) ->
5667     //   lo = smax(a, -1) - 0x7fffffff
5668     //   hi = smin(a, -1) - 0x80000000
5669     //   a - smin(smax(lo, b), hi)
5670     // TODO: AMDGPU can use a "median of 3" instruction here:
5671     //   a +/- med3(lo, b, hi)
5672     uint64_t NumBits = Ty.getScalarSizeInBits();
5673     auto MaxVal =
5674         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5675     auto MinVal =
5676         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5677     MachineInstrBuilder Hi, Lo;
5678     if (IsAdd) {
5679       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5680       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5681       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5682     } else {
5683       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5684       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5685                                MaxVal);
5686       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5687                                MinVal);
5688     }
5689     auto RHSClamped =
5690         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5691     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5692   } else {
5693     // uadd.sat(a, b) -> a + umin(~a, b)
5694     // usub.sat(a, b) -> a - umin(a, b)
5695     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5696     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5697     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5698   }
5699 
5700   MI.eraseFromParent();
5701   return Legalized;
5702 }
5703 
5704 LegalizerHelper::LegalizeResult
5705 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5706   Register Res = MI.getOperand(0).getReg();
5707   Register LHS = MI.getOperand(1).getReg();
5708   Register RHS = MI.getOperand(2).getReg();
5709   LLT Ty = MRI.getType(Res);
5710   LLT BoolTy = Ty.changeElementSize(1);
5711   bool IsSigned;
5712   bool IsAdd;
5713   unsigned OverflowOp;
5714   switch (MI.getOpcode()) {
5715   default:
5716     llvm_unreachable("unexpected addsat/subsat opcode");
5717   case TargetOpcode::G_UADDSAT:
5718     IsSigned = false;
5719     IsAdd = true;
5720     OverflowOp = TargetOpcode::G_UADDO;
5721     break;
5722   case TargetOpcode::G_SADDSAT:
5723     IsSigned = true;
5724     IsAdd = true;
5725     OverflowOp = TargetOpcode::G_SADDO;
5726     break;
5727   case TargetOpcode::G_USUBSAT:
5728     IsSigned = false;
5729     IsAdd = false;
5730     OverflowOp = TargetOpcode::G_USUBO;
5731     break;
5732   case TargetOpcode::G_SSUBSAT:
5733     IsSigned = true;
5734     IsAdd = false;
5735     OverflowOp = TargetOpcode::G_SSUBO;
5736     break;
5737   }
5738 
5739   auto OverflowRes =
5740       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5741   Register Tmp = OverflowRes.getReg(0);
5742   Register Ov = OverflowRes.getReg(1);
5743   MachineInstrBuilder Clamp;
5744   if (IsSigned) {
5745     // sadd.sat(a, b) ->
5746     //   {tmp, ov} = saddo(a, b)
5747     //   ov ? (tmp >>s 31) + 0x80000000 : r
5748     // ssub.sat(a, b) ->
5749     //   {tmp, ov} = ssubo(a, b)
5750     //   ov ? (tmp >>s 31) + 0x80000000 : r
5751     uint64_t NumBits = Ty.getScalarSizeInBits();
5752     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5753     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5754     auto MinVal =
5755         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5756     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5757   } else {
5758     // uadd.sat(a, b) ->
5759     //   {tmp, ov} = uaddo(a, b)
5760     //   ov ? 0xffffffff : tmp
5761     // usub.sat(a, b) ->
5762     //   {tmp, ov} = usubo(a, b)
5763     //   ov ? 0 : tmp
5764     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
5765   }
5766   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
5767 
5768   MI.eraseFromParent();
5769   return Legalized;
5770 }
5771 
5772 LegalizerHelper::LegalizeResult
5773 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5774   Register Dst = MI.getOperand(0).getReg();
5775   Register Src = MI.getOperand(1).getReg();
5776   const LLT Ty = MRI.getType(Src);
5777   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5778   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5779 
5780   // Swap most and least significant byte, set remaining bytes in Res to zero.
5781   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5782   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5783   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5784   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5785 
5786   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5787   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5788     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5789     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5790     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5791     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5792     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5793     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5794     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5795     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5796     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5797     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5798     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5799     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5800   }
5801   Res.getInstr()->getOperand(0).setReg(Dst);
5802 
5803   MI.eraseFromParent();
5804   return Legalized;
5805 }
5806 
5807 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5808 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5809                                  MachineInstrBuilder Src, APInt Mask) {
5810   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5811   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5812   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5813   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5814   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5815   return B.buildOr(Dst, LHS, RHS);
5816 }
5817 
5818 LegalizerHelper::LegalizeResult
5819 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5820   Register Dst = MI.getOperand(0).getReg();
5821   Register Src = MI.getOperand(1).getReg();
5822   const LLT Ty = MRI.getType(Src);
5823   unsigned Size = Ty.getSizeInBits();
5824 
5825   MachineInstrBuilder BSWAP =
5826       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5827 
5828   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5829   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5830   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5831   MachineInstrBuilder Swap4 =
5832       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5833 
5834   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5835   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5836   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5837   MachineInstrBuilder Swap2 =
5838       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5839 
5840   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5841   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5842   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5843   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5844 
5845   MI.eraseFromParent();
5846   return Legalized;
5847 }
5848 
5849 LegalizerHelper::LegalizeResult
5850 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5851   MachineFunction &MF = MIRBuilder.getMF();
5852   const TargetSubtargetInfo &STI = MF.getSubtarget();
5853   const TargetLowering *TLI = STI.getTargetLowering();
5854 
5855   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5856   int NameOpIdx = IsRead ? 1 : 0;
5857   int ValRegIndex = IsRead ? 0 : 1;
5858 
5859   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5860   const LLT Ty = MRI.getType(ValReg);
5861   const MDString *RegStr = cast<MDString>(
5862     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5863 
5864   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5865   if (!PhysReg.isValid())
5866     return UnableToLegalize;
5867 
5868   if (IsRead)
5869     MIRBuilder.buildCopy(ValReg, PhysReg);
5870   else
5871     MIRBuilder.buildCopy(PhysReg, ValReg);
5872 
5873   MI.eraseFromParent();
5874   return Legalized;
5875 }
5876