1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()) { 94 MIRBuilder.setChangeObserver(Observer); 95 } 96 97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 98 GISelChangeObserver &Observer, 99 MachineIRBuilder &B) 100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 101 MIRBuilder.setChangeObserver(Observer); 102 } 103 LegalizerHelper::LegalizeResult 104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 106 107 MIRBuilder.setInstrAndDebugLoc(MI); 108 109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 112 auto Step = LI.getAction(MI, MRI); 113 switch (Step.Action) { 114 case Legal: 115 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 116 return AlreadyLegal; 117 case Libcall: 118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 119 return libcall(MI); 120 case NarrowScalar: 121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 122 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 123 case WidenScalar: 124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 125 return widenScalar(MI, Step.TypeIdx, Step.NewType); 126 case Bitcast: 127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 128 return bitcast(MI, Step.TypeIdx, Step.NewType); 129 case Lower: 130 LLVM_DEBUG(dbgs() << ".. Lower\n"); 131 return lower(MI, Step.TypeIdx, Step.NewType); 132 case FewerElements: 133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case MoreElements: 136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 138 case Custom: 139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 141 default: 142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 143 return UnableToLegalize; 144 } 145 } 146 147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 148 SmallVectorImpl<Register> &VRegs) { 149 for (int i = 0; i < NumParts; ++i) 150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 151 MIRBuilder.buildUnmerge(VRegs, Reg); 152 } 153 154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 155 LLT MainTy, LLT &LeftoverTy, 156 SmallVectorImpl<Register> &VRegs, 157 SmallVectorImpl<Register> &LeftoverRegs) { 158 assert(!LeftoverTy.isValid() && "this is an out argument"); 159 160 unsigned RegSize = RegTy.getSizeInBits(); 161 unsigned MainSize = MainTy.getSizeInBits(); 162 unsigned NumParts = RegSize / MainSize; 163 unsigned LeftoverSize = RegSize - NumParts * MainSize; 164 165 // Use an unmerge when possible. 166 if (LeftoverSize == 0) { 167 for (unsigned I = 0; I < NumParts; ++I) 168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 169 MIRBuilder.buildUnmerge(VRegs, Reg); 170 return true; 171 } 172 173 if (MainTy.isVector()) { 174 unsigned EltSize = MainTy.getScalarSizeInBits(); 175 if (LeftoverSize % EltSize != 0) 176 return false; 177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 178 } else { 179 LeftoverTy = LLT::scalar(LeftoverSize); 180 } 181 182 // For irregular sizes, extract the individual parts. 183 for (unsigned I = 0; I != NumParts; ++I) { 184 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 185 VRegs.push_back(NewReg); 186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 187 } 188 189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 190 Offset += LeftoverSize) { 191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 192 LeftoverRegs.push_back(NewReg); 193 MIRBuilder.buildExtract(NewReg, Reg, Offset); 194 } 195 196 return true; 197 } 198 199 void LegalizerHelper::insertParts(Register DstReg, 200 LLT ResultTy, LLT PartTy, 201 ArrayRef<Register> PartRegs, 202 LLT LeftoverTy, 203 ArrayRef<Register> LeftoverRegs) { 204 if (!LeftoverTy.isValid()) { 205 assert(LeftoverRegs.empty()); 206 207 if (!ResultTy.isVector()) { 208 MIRBuilder.buildMerge(DstReg, PartRegs); 209 return; 210 } 211 212 if (PartTy.isVector()) 213 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 214 else 215 MIRBuilder.buildBuildVector(DstReg, PartRegs); 216 return; 217 } 218 219 unsigned PartSize = PartTy.getSizeInBits(); 220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 221 222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildUndef(CurResultReg); 224 225 unsigned Offset = 0; 226 for (Register PartReg : PartRegs) { 227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 229 CurResultReg = NewResultReg; 230 Offset += PartSize; 231 } 232 233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 234 // Use the original output register for the final insert to avoid a copy. 235 Register NewResultReg = (I + 1 == E) ? 236 DstReg : MRI.createGenericVirtualRegister(ResultTy); 237 238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 239 CurResultReg = NewResultReg; 240 Offset += LeftoverPartSize; 241 } 242 } 243 244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 246 const MachineInstr &MI) { 247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 248 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[I] = MI.getOperand(I).getReg(); 253 } 254 255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 256 LLT NarrowTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 259 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 260 if (SrcTy == GCDTy) { 261 // If the source already evenly divides the result type, we don't need to do 262 // anything. 263 Parts.push_back(SrcReg); 264 } else { 265 // Need to split into common type sized pieces. 266 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 267 getUnmergeResults(Parts, *Unmerge); 268 } 269 270 return GCDTy; 271 } 272 273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 274 SmallVectorImpl<Register> &VRegs, 275 unsigned PadStrategy) { 276 LLT LCMTy = getLCMType(DstTy, NarrowTy); 277 278 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 279 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 280 int NumOrigSrc = VRegs.size(); 281 282 Register PadReg; 283 284 // Get a value we can use to pad the source value if the sources won't evenly 285 // cover the result type. 286 if (NumOrigSrc < NumParts * NumSubParts) { 287 if (PadStrategy == TargetOpcode::G_ZEXT) 288 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 289 else if (PadStrategy == TargetOpcode::G_ANYEXT) 290 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 291 else { 292 assert(PadStrategy == TargetOpcode::G_SEXT); 293 294 // Shift the sign bit of the low register through the high register. 295 auto ShiftAmt = 296 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 297 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 298 } 299 } 300 301 // Registers for the final merge to be produced. 302 SmallVector<Register, 4> Remerge(NumParts); 303 304 // Registers needed for intermediate merges, which will be merged into a 305 // source for Remerge. 306 SmallVector<Register, 4> SubMerge(NumSubParts); 307 308 // Once we've fully read off the end of the original source bits, we can reuse 309 // the same high bits for remaining padding elements. 310 Register AllPadReg; 311 312 // Build merges to the LCM type to cover the original result type. 313 for (int I = 0; I != NumParts; ++I) { 314 bool AllMergePartsArePadding = true; 315 316 // Build the requested merges to the requested type. 317 for (int J = 0; J != NumSubParts; ++J) { 318 int Idx = I * NumSubParts + J; 319 if (Idx >= NumOrigSrc) { 320 SubMerge[J] = PadReg; 321 continue; 322 } 323 324 SubMerge[J] = VRegs[Idx]; 325 326 // There are meaningful bits here we can't reuse later. 327 AllMergePartsArePadding = false; 328 } 329 330 // If we've filled up a complete piece with padding bits, we can directly 331 // emit the natural sized constant if applicable, rather than a merge of 332 // smaller constants. 333 if (AllMergePartsArePadding && !AllPadReg) { 334 if (PadStrategy == TargetOpcode::G_ANYEXT) 335 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ZEXT) 337 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 338 339 // If this is a sign extension, we can't materialize a trivial constant 340 // with the right type and have to produce a merge. 341 } 342 343 if (AllPadReg) { 344 // Avoid creating additional instructions if we're just adding additional 345 // copies of padding bits. 346 Remerge[I] = AllPadReg; 347 continue; 348 } 349 350 if (NumSubParts == 1) 351 Remerge[I] = SubMerge[0]; 352 else 353 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 354 355 // In the sign extend padding case, re-use the first all-signbit merge. 356 if (AllMergePartsArePadding && !AllPadReg) 357 AllPadReg = Remerge[I]; 358 } 359 360 VRegs = std::move(Remerge); 361 return LCMTy; 362 } 363 364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 365 ArrayRef<Register> RemergeRegs) { 366 LLT DstTy = MRI.getType(DstReg); 367 368 // Create the merge to the widened source, and extract the relevant bits into 369 // the result. 370 371 if (DstTy == LCMTy) { 372 MIRBuilder.buildMerge(DstReg, RemergeRegs); 373 return; 374 } 375 376 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 377 if (DstTy.isScalar() && LCMTy.isScalar()) { 378 MIRBuilder.buildTrunc(DstReg, Remerge); 379 return; 380 } 381 382 if (LCMTy.isVector()) { 383 MIRBuilder.buildExtract(DstReg, Remerge, 0); 384 return; 385 } 386 387 llvm_unreachable("unhandled case"); 388 } 389 390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 391 #define RTLIBCASE_INT(LibcallPrefix) \ 392 do { \ 393 switch (Size) { \ 394 case 32: \ 395 return RTLIB::LibcallPrefix##32; \ 396 case 64: \ 397 return RTLIB::LibcallPrefix##64; \ 398 case 128: \ 399 return RTLIB::LibcallPrefix##128; \ 400 default: \ 401 llvm_unreachable("unexpected size"); \ 402 } \ 403 } while (0) 404 405 #define RTLIBCASE(LibcallPrefix) \ 406 do { \ 407 switch (Size) { \ 408 case 32: \ 409 return RTLIB::LibcallPrefix##32; \ 410 case 64: \ 411 return RTLIB::LibcallPrefix##64; \ 412 case 80: \ 413 return RTLIB::LibcallPrefix##80; \ 414 case 128: \ 415 return RTLIB::LibcallPrefix##128; \ 416 default: \ 417 llvm_unreachable("unexpected size"); \ 418 } \ 419 } while (0) 420 421 switch (Opcode) { 422 case TargetOpcode::G_SDIV: 423 RTLIBCASE_INT(SDIV_I); 424 case TargetOpcode::G_UDIV: 425 RTLIBCASE_INT(UDIV_I); 426 case TargetOpcode::G_SREM: 427 RTLIBCASE_INT(SREM_I); 428 case TargetOpcode::G_UREM: 429 RTLIBCASE_INT(UREM_I); 430 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 431 RTLIBCASE_INT(CTLZ_I); 432 case TargetOpcode::G_FADD: 433 RTLIBCASE(ADD_F); 434 case TargetOpcode::G_FSUB: 435 RTLIBCASE(SUB_F); 436 case TargetOpcode::G_FMUL: 437 RTLIBCASE(MUL_F); 438 case TargetOpcode::G_FDIV: 439 RTLIBCASE(DIV_F); 440 case TargetOpcode::G_FEXP: 441 RTLIBCASE(EXP_F); 442 case TargetOpcode::G_FEXP2: 443 RTLIBCASE(EXP2_F); 444 case TargetOpcode::G_FREM: 445 RTLIBCASE(REM_F); 446 case TargetOpcode::G_FPOW: 447 RTLIBCASE(POW_F); 448 case TargetOpcode::G_FMA: 449 RTLIBCASE(FMA_F); 450 case TargetOpcode::G_FSIN: 451 RTLIBCASE(SIN_F); 452 case TargetOpcode::G_FCOS: 453 RTLIBCASE(COS_F); 454 case TargetOpcode::G_FLOG10: 455 RTLIBCASE(LOG10_F); 456 case TargetOpcode::G_FLOG: 457 RTLIBCASE(LOG_F); 458 case TargetOpcode::G_FLOG2: 459 RTLIBCASE(LOG2_F); 460 case TargetOpcode::G_FCEIL: 461 RTLIBCASE(CEIL_F); 462 case TargetOpcode::G_FFLOOR: 463 RTLIBCASE(FLOOR_F); 464 case TargetOpcode::G_FMINNUM: 465 RTLIBCASE(FMIN_F); 466 case TargetOpcode::G_FMAXNUM: 467 RTLIBCASE(FMAX_F); 468 case TargetOpcode::G_FSQRT: 469 RTLIBCASE(SQRT_F); 470 case TargetOpcode::G_FRINT: 471 RTLIBCASE(RINT_F); 472 case TargetOpcode::G_FNEARBYINT: 473 RTLIBCASE(NEARBYINT_F); 474 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 475 RTLIBCASE(ROUNDEVEN_F); 476 } 477 llvm_unreachable("Unknown libcall function"); 478 } 479 480 /// True if an instruction is in tail position in its caller. Intended for 481 /// legalizing libcalls as tail calls when possible. 482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 483 MachineInstr &MI) { 484 MachineBasicBlock &MBB = *MI.getParent(); 485 const Function &F = MBB.getParent()->getFunction(); 486 487 // Conservatively require the attributes of the call to match those of 488 // the return. Ignore NoAlias and NonNull because they don't affect the 489 // call sequence. 490 AttributeList CallerAttrs = F.getAttributes(); 491 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 492 .removeAttribute(Attribute::NoAlias) 493 .removeAttribute(Attribute::NonNull) 494 .hasAttributes()) 495 return false; 496 497 // It's not safe to eliminate the sign / zero extension of the return value. 498 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 499 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 500 return false; 501 502 // Only tail call if the following instruction is a standard return. 503 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 504 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 505 return false; 506 507 return true; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args, 514 const CallingConv::ID CC) { 515 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 516 517 CallLowering::CallLoweringInfo Info; 518 Info.CallConv = CC; 519 Info.Callee = MachineOperand::CreateES(Name); 520 Info.OrigRet = Result; 521 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 522 if (!CLI.lowerCall(MIRBuilder, Info)) 523 return LegalizerHelper::UnableToLegalize; 524 525 return LegalizerHelper::Legalized; 526 } 527 528 LegalizerHelper::LegalizeResult 529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 530 const CallLowering::ArgInfo &Result, 531 ArrayRef<CallLowering::ArgInfo> Args) { 532 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 533 const char *Name = TLI.getLibcallName(Libcall); 534 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 535 return createLibcall(MIRBuilder, Name, Result, Args, CC); 536 } 537 538 // Useful for libcalls where all operands have the same type. 539 static LegalizerHelper::LegalizeResult 540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 541 Type *OpType) { 542 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 543 544 SmallVector<CallLowering::ArgInfo, 3> Args; 545 for (unsigned i = 1; i < MI.getNumOperands(); i++) 546 Args.push_back({MI.getOperand(i).getReg(), OpType}); 547 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 548 Args); 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 553 MachineInstr &MI) { 554 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 555 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 556 557 SmallVector<CallLowering::ArgInfo, 3> Args; 558 // Add all the args, except for the last which is an imm denoting 'tail'. 559 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 560 Register Reg = MI.getOperand(i).getReg(); 561 562 // Need derive an IR type for call lowering. 563 LLT OpLLT = MRI.getType(Reg); 564 Type *OpTy = nullptr; 565 if (OpLLT.isPointer()) 566 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 567 else 568 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 569 Args.push_back({Reg, OpTy}); 570 } 571 572 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 575 RTLIB::Libcall RTLibcall; 576 switch (ID) { 577 case Intrinsic::memcpy: 578 RTLibcall = RTLIB::MEMCPY; 579 break; 580 case Intrinsic::memset: 581 RTLibcall = RTLIB::MEMSET; 582 break; 583 case Intrinsic::memmove: 584 RTLibcall = RTLIB::MEMMOVE; 585 break; 586 default: 587 return LegalizerHelper::UnableToLegalize; 588 } 589 const char *Name = TLI.getLibcallName(RTLibcall); 590 591 MIRBuilder.setInstrAndDebugLoc(MI); 592 593 CallLowering::CallLoweringInfo Info; 594 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 595 Info.Callee = MachineOperand::CreateES(Name); 596 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 597 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 598 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 599 600 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 601 if (!CLI.lowerCall(MIRBuilder, Info)) 602 return LegalizerHelper::UnableToLegalize; 603 604 if (Info.LoweredTailCall) { 605 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 606 // We must have a return following the call (or debug insts) to get past 607 // isLibCallInTailPosition. 608 do { 609 MachineInstr *Next = MI.getNextNode(); 610 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 611 "Expected instr following MI to be return or debug inst?"); 612 // We lowered a tail call, so the call is now the return from the block. 613 // Delete the old return. 614 Next->eraseFromParent(); 615 } while (MI.getNextNode()); 616 } 617 618 return LegalizerHelper::Legalized; 619 } 620 621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 622 Type *FromType) { 623 auto ToMVT = MVT::getVT(ToType); 624 auto FromMVT = MVT::getVT(FromType); 625 626 switch (Opcode) { 627 case TargetOpcode::G_FPEXT: 628 return RTLIB::getFPEXT(FromMVT, ToMVT); 629 case TargetOpcode::G_FPTRUNC: 630 return RTLIB::getFPROUND(FromMVT, ToMVT); 631 case TargetOpcode::G_FPTOSI: 632 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 633 case TargetOpcode::G_FPTOUI: 634 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 635 case TargetOpcode::G_SITOFP: 636 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 637 case TargetOpcode::G_UITOFP: 638 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 639 } 640 llvm_unreachable("Unsupported libcall function"); 641 } 642 643 static LegalizerHelper::LegalizeResult 644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 645 Type *FromType) { 646 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 647 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 648 {{MI.getOperand(1).getReg(), FromType}}); 649 } 650 651 LegalizerHelper::LegalizeResult 652 LegalizerHelper::libcall(MachineInstr &MI) { 653 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 654 unsigned Size = LLTy.getSizeInBits(); 655 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 656 657 switch (MI.getOpcode()) { 658 default: 659 return UnableToLegalize; 660 case TargetOpcode::G_SDIV: 661 case TargetOpcode::G_UDIV: 662 case TargetOpcode::G_SREM: 663 case TargetOpcode::G_UREM: 664 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 665 Type *HLTy = IntegerType::get(Ctx, Size); 666 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 667 if (Status != Legalized) 668 return Status; 669 break; 670 } 671 case TargetOpcode::G_FADD: 672 case TargetOpcode::G_FSUB: 673 case TargetOpcode::G_FMUL: 674 case TargetOpcode::G_FDIV: 675 case TargetOpcode::G_FMA: 676 case TargetOpcode::G_FPOW: 677 case TargetOpcode::G_FREM: 678 case TargetOpcode::G_FCOS: 679 case TargetOpcode::G_FSIN: 680 case TargetOpcode::G_FLOG10: 681 case TargetOpcode::G_FLOG: 682 case TargetOpcode::G_FLOG2: 683 case TargetOpcode::G_FEXP: 684 case TargetOpcode::G_FEXP2: 685 case TargetOpcode::G_FCEIL: 686 case TargetOpcode::G_FFLOOR: 687 case TargetOpcode::G_FMINNUM: 688 case TargetOpcode::G_FMAXNUM: 689 case TargetOpcode::G_FSQRT: 690 case TargetOpcode::G_FRINT: 691 case TargetOpcode::G_FNEARBYINT: 692 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 693 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 694 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 695 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 696 return UnableToLegalize; 697 } 698 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 699 if (Status != Legalized) 700 return Status; 701 break; 702 } 703 case TargetOpcode::G_FPEXT: 704 case TargetOpcode::G_FPTRUNC: { 705 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 706 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 707 if (!FromTy || !ToTy) 708 return UnableToLegalize; 709 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 710 if (Status != Legalized) 711 return Status; 712 break; 713 } 714 case TargetOpcode::G_FPTOSI: 715 case TargetOpcode::G_FPTOUI: { 716 // FIXME: Support other types 717 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 718 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 719 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 720 return UnableToLegalize; 721 LegalizeResult Status = conversionLibcall( 722 MI, MIRBuilder, 723 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 724 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 725 if (Status != Legalized) 726 return Status; 727 break; 728 } 729 case TargetOpcode::G_SITOFP: 730 case TargetOpcode::G_UITOFP: { 731 // FIXME: Support other types 732 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 733 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 734 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 735 return UnableToLegalize; 736 LegalizeResult Status = conversionLibcall( 737 MI, MIRBuilder, 738 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 739 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 740 if (Status != Legalized) 741 return Status; 742 break; 743 } 744 } 745 746 MI.eraseFromParent(); 747 return Legalized; 748 } 749 750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 751 unsigned TypeIdx, 752 LLT NarrowTy) { 753 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 754 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 755 756 switch (MI.getOpcode()) { 757 default: 758 return UnableToLegalize; 759 case TargetOpcode::G_IMPLICIT_DEF: { 760 Register DstReg = MI.getOperand(0).getReg(); 761 LLT DstTy = MRI.getType(DstReg); 762 763 // If SizeOp0 is not an exact multiple of NarrowSize, emit 764 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 765 // FIXME: Although this would also be legal for the general case, it causes 766 // a lot of regressions in the emitted code (superfluous COPYs, artifact 767 // combines not being hit). This seems to be a problem related to the 768 // artifact combiner. 769 if (SizeOp0 % NarrowSize != 0) { 770 LLT ImplicitTy = NarrowTy; 771 if (DstTy.isVector()) 772 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 773 774 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 775 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 int NumParts = SizeOp0 / NarrowSize; 782 783 SmallVector<Register, 2> DstRegs; 784 for (int i = 0; i < NumParts; ++i) 785 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 786 787 if (DstTy.isVector()) 788 MIRBuilder.buildBuildVector(DstReg, DstRegs); 789 else 790 MIRBuilder.buildMerge(DstReg, DstRegs); 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 case TargetOpcode::G_CONSTANT: { 795 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 796 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 797 unsigned TotalSize = Ty.getSizeInBits(); 798 unsigned NarrowSize = NarrowTy.getSizeInBits(); 799 int NumParts = TotalSize / NarrowSize; 800 801 SmallVector<Register, 4> PartRegs; 802 for (int I = 0; I != NumParts; ++I) { 803 unsigned Offset = I * NarrowSize; 804 auto K = MIRBuilder.buildConstant(NarrowTy, 805 Val.lshr(Offset).trunc(NarrowSize)); 806 PartRegs.push_back(K.getReg(0)); 807 } 808 809 LLT LeftoverTy; 810 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 811 SmallVector<Register, 1> LeftoverRegs; 812 if (LeftoverBits != 0) { 813 LeftoverTy = LLT::scalar(LeftoverBits); 814 auto K = MIRBuilder.buildConstant( 815 LeftoverTy, 816 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 817 LeftoverRegs.push_back(K.getReg(0)); 818 } 819 820 insertParts(MI.getOperand(0).getReg(), 821 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 822 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 case TargetOpcode::G_SEXT: 827 case TargetOpcode::G_ZEXT: 828 case TargetOpcode::G_ANYEXT: 829 return narrowScalarExt(MI, TypeIdx, NarrowTy); 830 case TargetOpcode::G_TRUNC: { 831 if (TypeIdx != 1) 832 return UnableToLegalize; 833 834 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 835 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 836 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 837 return UnableToLegalize; 838 } 839 840 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 841 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 842 MI.eraseFromParent(); 843 return Legalized; 844 } 845 846 case TargetOpcode::G_FREEZE: 847 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 848 849 case TargetOpcode::G_ADD: { 850 // FIXME: add support for when SizeOp0 isn't an exact multiple of 851 // NarrowSize. 852 if (SizeOp0 % NarrowSize != 0) 853 return UnableToLegalize; 854 // Expand in terms of carry-setting/consuming G_ADDE instructions. 855 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 856 857 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 858 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 859 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 860 861 Register CarryIn; 862 for (int i = 0; i < NumParts; ++i) { 863 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 864 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 865 866 if (i == 0) 867 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 868 else { 869 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 870 Src2Regs[i], CarryIn); 871 } 872 873 DstRegs.push_back(DstReg); 874 CarryIn = CarryOut; 875 } 876 Register DstReg = MI.getOperand(0).getReg(); 877 if(MRI.getType(DstReg).isVector()) 878 MIRBuilder.buildBuildVector(DstReg, DstRegs); 879 else 880 MIRBuilder.buildMerge(DstReg, DstRegs); 881 MI.eraseFromParent(); 882 return Legalized; 883 } 884 case TargetOpcode::G_SUB: { 885 // FIXME: add support for when SizeOp0 isn't an exact multiple of 886 // NarrowSize. 887 if (SizeOp0 % NarrowSize != 0) 888 return UnableToLegalize; 889 890 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 891 892 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 893 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 894 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 895 896 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 897 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 898 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 899 {Src1Regs[0], Src2Regs[0]}); 900 DstRegs.push_back(DstReg); 901 Register BorrowIn = BorrowOut; 902 for (int i = 1; i < NumParts; ++i) { 903 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 904 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 905 906 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 907 {Src1Regs[i], Src2Regs[i], BorrowIn}); 908 909 DstRegs.push_back(DstReg); 910 BorrowIn = BorrowOut; 911 } 912 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 913 MI.eraseFromParent(); 914 return Legalized; 915 } 916 case TargetOpcode::G_MUL: 917 case TargetOpcode::G_UMULH: 918 return narrowScalarMul(MI, NarrowTy); 919 case TargetOpcode::G_EXTRACT: 920 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 921 case TargetOpcode::G_INSERT: 922 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 923 case TargetOpcode::G_LOAD: { 924 const auto &MMO = **MI.memoperands_begin(); 925 Register DstReg = MI.getOperand(0).getReg(); 926 LLT DstTy = MRI.getType(DstReg); 927 if (DstTy.isVector()) 928 return UnableToLegalize; 929 930 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 auto &MMO = **MI.memoperands_begin(); 933 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 934 MIRBuilder.buildAnyExt(DstReg, TmpReg); 935 MI.eraseFromParent(); 936 return Legalized; 937 } 938 939 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 940 } 941 case TargetOpcode::G_ZEXTLOAD: 942 case TargetOpcode::G_SEXTLOAD: { 943 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 944 Register DstReg = MI.getOperand(0).getReg(); 945 Register PtrReg = MI.getOperand(1).getReg(); 946 947 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 948 auto &MMO = **MI.memoperands_begin(); 949 if (MMO.getSizeInBits() == NarrowSize) { 950 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 951 } else { 952 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 953 } 954 955 if (ZExt) 956 MIRBuilder.buildZExt(DstReg, TmpReg); 957 else 958 MIRBuilder.buildSExt(DstReg, TmpReg); 959 960 MI.eraseFromParent(); 961 return Legalized; 962 } 963 case TargetOpcode::G_STORE: { 964 const auto &MMO = **MI.memoperands_begin(); 965 966 Register SrcReg = MI.getOperand(0).getReg(); 967 LLT SrcTy = MRI.getType(SrcReg); 968 if (SrcTy.isVector()) 969 return UnableToLegalize; 970 971 int NumParts = SizeOp0 / NarrowSize; 972 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 973 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 974 if (SrcTy.isVector() && LeftoverBits != 0) 975 return UnableToLegalize; 976 977 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 978 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 979 auto &MMO = **MI.memoperands_begin(); 980 MIRBuilder.buildTrunc(TmpReg, SrcReg); 981 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 982 MI.eraseFromParent(); 983 return Legalized; 984 } 985 986 return reduceLoadStoreWidth(MI, 0, NarrowTy); 987 } 988 case TargetOpcode::G_SELECT: 989 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 990 case TargetOpcode::G_AND: 991 case TargetOpcode::G_OR: 992 case TargetOpcode::G_XOR: { 993 // Legalize bitwise operation: 994 // A = BinOp<Ty> B, C 995 // into: 996 // B1, ..., BN = G_UNMERGE_VALUES B 997 // C1, ..., CN = G_UNMERGE_VALUES C 998 // A1 = BinOp<Ty/N> B1, C2 999 // ... 1000 // AN = BinOp<Ty/N> BN, CN 1001 // A = G_MERGE_VALUES A1, ..., AN 1002 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1003 } 1004 case TargetOpcode::G_SHL: 1005 case TargetOpcode::G_LSHR: 1006 case TargetOpcode::G_ASHR: 1007 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_CTLZ: 1009 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1010 case TargetOpcode::G_CTTZ: 1011 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1012 case TargetOpcode::G_CTPOP: 1013 if (TypeIdx == 1) 1014 switch (MI.getOpcode()) { 1015 case TargetOpcode::G_CTLZ: 1016 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1017 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1018 case TargetOpcode::G_CTTZ: 1019 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1020 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1021 case TargetOpcode::G_CTPOP: 1022 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1023 default: 1024 return UnableToLegalize; 1025 } 1026 1027 Observer.changingInstr(MI); 1028 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1029 Observer.changedInstr(MI); 1030 return Legalized; 1031 case TargetOpcode::G_INTTOPTR: 1032 if (TypeIdx != 1) 1033 return UnableToLegalize; 1034 1035 Observer.changingInstr(MI); 1036 narrowScalarSrc(MI, NarrowTy, 1); 1037 Observer.changedInstr(MI); 1038 return Legalized; 1039 case TargetOpcode::G_PTRTOINT: 1040 if (TypeIdx != 0) 1041 return UnableToLegalize; 1042 1043 Observer.changingInstr(MI); 1044 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1045 Observer.changedInstr(MI); 1046 return Legalized; 1047 case TargetOpcode::G_PHI: { 1048 unsigned NumParts = SizeOp0 / NarrowSize; 1049 SmallVector<Register, 2> DstRegs(NumParts); 1050 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1051 Observer.changingInstr(MI); 1052 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1053 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1054 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1055 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1056 SrcRegs[i / 2]); 1057 } 1058 MachineBasicBlock &MBB = *MI.getParent(); 1059 MIRBuilder.setInsertPt(MBB, MI); 1060 for (unsigned i = 0; i < NumParts; ++i) { 1061 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1062 MachineInstrBuilder MIB = 1063 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1064 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1065 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1066 } 1067 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1068 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1069 Observer.changedInstr(MI); 1070 MI.eraseFromParent(); 1071 return Legalized; 1072 } 1073 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1074 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1075 if (TypeIdx != 2) 1076 return UnableToLegalize; 1077 1078 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1079 Observer.changingInstr(MI); 1080 narrowScalarSrc(MI, NarrowTy, OpIdx); 1081 Observer.changedInstr(MI); 1082 return Legalized; 1083 } 1084 case TargetOpcode::G_ICMP: { 1085 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1086 if (NarrowSize * 2 != SrcSize) 1087 return UnableToLegalize; 1088 1089 Observer.changingInstr(MI); 1090 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1091 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1092 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1093 1094 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1095 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1096 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1097 1098 CmpInst::Predicate Pred = 1099 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1100 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1101 1102 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1103 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1104 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1105 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1106 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1107 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1108 } else { 1109 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1110 MachineInstrBuilder CmpHEQ = 1111 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1112 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1113 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1114 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1115 } 1116 Observer.changedInstr(MI); 1117 MI.eraseFromParent(); 1118 return Legalized; 1119 } 1120 case TargetOpcode::G_SEXT_INREG: { 1121 if (TypeIdx != 0) 1122 return UnableToLegalize; 1123 1124 int64_t SizeInBits = MI.getOperand(2).getImm(); 1125 1126 // So long as the new type has more bits than the bits we're extending we 1127 // don't need to break it apart. 1128 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1129 Observer.changingInstr(MI); 1130 // We don't lose any non-extension bits by truncating the src and 1131 // sign-extending the dst. 1132 MachineOperand &MO1 = MI.getOperand(1); 1133 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1134 MO1.setReg(TruncMIB.getReg(0)); 1135 1136 MachineOperand &MO2 = MI.getOperand(0); 1137 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1138 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1139 MIRBuilder.buildSExt(MO2, DstExt); 1140 MO2.setReg(DstExt); 1141 Observer.changedInstr(MI); 1142 return Legalized; 1143 } 1144 1145 // Break it apart. Components below the extension point are unmodified. The 1146 // component containing the extension point becomes a narrower SEXT_INREG. 1147 // Components above it are ashr'd from the component containing the 1148 // extension point. 1149 if (SizeOp0 % NarrowSize != 0) 1150 return UnableToLegalize; 1151 int NumParts = SizeOp0 / NarrowSize; 1152 1153 // List the registers where the destination will be scattered. 1154 SmallVector<Register, 2> DstRegs; 1155 // List the registers where the source will be split. 1156 SmallVector<Register, 2> SrcRegs; 1157 1158 // Create all the temporary registers. 1159 for (int i = 0; i < NumParts; ++i) { 1160 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1161 1162 SrcRegs.push_back(SrcReg); 1163 } 1164 1165 // Explode the big arguments into smaller chunks. 1166 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1167 1168 Register AshrCstReg = 1169 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1170 .getReg(0); 1171 Register FullExtensionReg = 0; 1172 Register PartialExtensionReg = 0; 1173 1174 // Do the operation on each small part. 1175 for (int i = 0; i < NumParts; ++i) { 1176 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1177 DstRegs.push_back(SrcRegs[i]); 1178 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1179 assert(PartialExtensionReg && 1180 "Expected to visit partial extension before full"); 1181 if (FullExtensionReg) { 1182 DstRegs.push_back(FullExtensionReg); 1183 continue; 1184 } 1185 DstRegs.push_back( 1186 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1187 .getReg(0)); 1188 FullExtensionReg = DstRegs.back(); 1189 } else { 1190 DstRegs.push_back( 1191 MIRBuilder 1192 .buildInstr( 1193 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1194 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1195 .getReg(0)); 1196 PartialExtensionReg = DstRegs.back(); 1197 } 1198 } 1199 1200 // Gather the destination registers into the final destination. 1201 Register DstReg = MI.getOperand(0).getReg(); 1202 MIRBuilder.buildMerge(DstReg, DstRegs); 1203 MI.eraseFromParent(); 1204 return Legalized; 1205 } 1206 case TargetOpcode::G_BSWAP: 1207 case TargetOpcode::G_BITREVERSE: { 1208 if (SizeOp0 % NarrowSize != 0) 1209 return UnableToLegalize; 1210 1211 Observer.changingInstr(MI); 1212 SmallVector<Register, 2> SrcRegs, DstRegs; 1213 unsigned NumParts = SizeOp0 / NarrowSize; 1214 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1215 1216 for (unsigned i = 0; i < NumParts; ++i) { 1217 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1218 {SrcRegs[NumParts - 1 - i]}); 1219 DstRegs.push_back(DstPart.getReg(0)); 1220 } 1221 1222 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1223 1224 Observer.changedInstr(MI); 1225 MI.eraseFromParent(); 1226 return Legalized; 1227 } 1228 case TargetOpcode::G_PTR_ADD: 1229 case TargetOpcode::G_PTRMASK: { 1230 if (TypeIdx != 1) 1231 return UnableToLegalize; 1232 Observer.changingInstr(MI); 1233 narrowScalarSrc(MI, NarrowTy, 2); 1234 Observer.changedInstr(MI); 1235 return Legalized; 1236 } 1237 case TargetOpcode::G_FPTOUI: { 1238 if (TypeIdx != 0) 1239 return UnableToLegalize; 1240 Observer.changingInstr(MI); 1241 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1242 Observer.changedInstr(MI); 1243 return Legalized; 1244 } 1245 case TargetOpcode::G_FPTOSI: { 1246 if (TypeIdx != 0) 1247 return UnableToLegalize; 1248 Observer.changingInstr(MI); 1249 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1250 Observer.changedInstr(MI); 1251 return Legalized; 1252 } 1253 case TargetOpcode::G_FPEXT: 1254 if (TypeIdx != 0) 1255 return UnableToLegalize; 1256 Observer.changingInstr(MI); 1257 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1258 Observer.changedInstr(MI); 1259 return Legalized; 1260 } 1261 } 1262 1263 Register LegalizerHelper::coerceToScalar(Register Val) { 1264 LLT Ty = MRI.getType(Val); 1265 if (Ty.isScalar()) 1266 return Val; 1267 1268 const DataLayout &DL = MIRBuilder.getDataLayout(); 1269 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1270 if (Ty.isPointer()) { 1271 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1272 return Register(); 1273 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1274 } 1275 1276 Register NewVal = Val; 1277 1278 assert(Ty.isVector()); 1279 LLT EltTy = Ty.getElementType(); 1280 if (EltTy.isPointer()) 1281 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1282 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1283 } 1284 1285 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1286 unsigned OpIdx, unsigned ExtOpcode) { 1287 MachineOperand &MO = MI.getOperand(OpIdx); 1288 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1289 MO.setReg(ExtB.getReg(0)); 1290 } 1291 1292 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1293 unsigned OpIdx) { 1294 MachineOperand &MO = MI.getOperand(OpIdx); 1295 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1296 MO.setReg(ExtB.getReg(0)); 1297 } 1298 1299 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1300 unsigned OpIdx, unsigned TruncOpcode) { 1301 MachineOperand &MO = MI.getOperand(OpIdx); 1302 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1303 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1304 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1305 MO.setReg(DstExt); 1306 } 1307 1308 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1309 unsigned OpIdx, unsigned ExtOpcode) { 1310 MachineOperand &MO = MI.getOperand(OpIdx); 1311 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1312 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1313 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1314 MO.setReg(DstTrunc); 1315 } 1316 1317 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1318 unsigned OpIdx) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1321 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1322 } 1323 1324 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1325 unsigned OpIdx) { 1326 MachineOperand &MO = MI.getOperand(OpIdx); 1327 1328 LLT OldTy = MRI.getType(MO.getReg()); 1329 unsigned OldElts = OldTy.getNumElements(); 1330 unsigned NewElts = MoreTy.getNumElements(); 1331 1332 unsigned NumParts = NewElts / OldElts; 1333 1334 // Use concat_vectors if the result is a multiple of the number of elements. 1335 if (NumParts * OldElts == NewElts) { 1336 SmallVector<Register, 8> Parts; 1337 Parts.push_back(MO.getReg()); 1338 1339 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1340 for (unsigned I = 1; I != NumParts; ++I) 1341 Parts.push_back(ImpDef); 1342 1343 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1344 MO.setReg(Concat.getReg(0)); 1345 return; 1346 } 1347 1348 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1349 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1350 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1351 MO.setReg(MoreReg); 1352 } 1353 1354 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1355 MachineOperand &Op = MI.getOperand(OpIdx); 1356 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1357 } 1358 1359 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1360 MachineOperand &MO = MI.getOperand(OpIdx); 1361 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1362 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1363 MIRBuilder.buildBitcast(MO, CastDst); 1364 MO.setReg(CastDst); 1365 } 1366 1367 LegalizerHelper::LegalizeResult 1368 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1369 LLT WideTy) { 1370 if (TypeIdx != 1) 1371 return UnableToLegalize; 1372 1373 Register DstReg = MI.getOperand(0).getReg(); 1374 LLT DstTy = MRI.getType(DstReg); 1375 if (DstTy.isVector()) 1376 return UnableToLegalize; 1377 1378 Register Src1 = MI.getOperand(1).getReg(); 1379 LLT SrcTy = MRI.getType(Src1); 1380 const int DstSize = DstTy.getSizeInBits(); 1381 const int SrcSize = SrcTy.getSizeInBits(); 1382 const int WideSize = WideTy.getSizeInBits(); 1383 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1384 1385 unsigned NumOps = MI.getNumOperands(); 1386 unsigned NumSrc = MI.getNumOperands() - 1; 1387 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1388 1389 if (WideSize >= DstSize) { 1390 // Directly pack the bits in the target type. 1391 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1392 1393 for (unsigned I = 2; I != NumOps; ++I) { 1394 const unsigned Offset = (I - 1) * PartSize; 1395 1396 Register SrcReg = MI.getOperand(I).getReg(); 1397 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1398 1399 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1400 1401 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1402 MRI.createGenericVirtualRegister(WideTy); 1403 1404 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1405 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1406 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1407 ResultReg = NextResult; 1408 } 1409 1410 if (WideSize > DstSize) 1411 MIRBuilder.buildTrunc(DstReg, ResultReg); 1412 else if (DstTy.isPointer()) 1413 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1414 1415 MI.eraseFromParent(); 1416 return Legalized; 1417 } 1418 1419 // Unmerge the original values to the GCD type, and recombine to the next 1420 // multiple greater than the original type. 1421 // 1422 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1423 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1424 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1425 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1426 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1427 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1428 // %12:_(s12) = G_MERGE_VALUES %10, %11 1429 // 1430 // Padding with undef if necessary: 1431 // 1432 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1433 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1434 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1435 // %7:_(s2) = G_IMPLICIT_DEF 1436 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1437 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1438 // %10:_(s12) = G_MERGE_VALUES %8, %9 1439 1440 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1441 LLT GCDTy = LLT::scalar(GCD); 1442 1443 SmallVector<Register, 8> Parts; 1444 SmallVector<Register, 8> NewMergeRegs; 1445 SmallVector<Register, 8> Unmerges; 1446 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1447 1448 // Decompose the original operands if they don't evenly divide. 1449 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1450 Register SrcReg = MI.getOperand(I).getReg(); 1451 if (GCD == SrcSize) { 1452 Unmerges.push_back(SrcReg); 1453 } else { 1454 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1455 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1456 Unmerges.push_back(Unmerge.getReg(J)); 1457 } 1458 } 1459 1460 // Pad with undef to the next size that is a multiple of the requested size. 1461 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1462 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1463 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1464 Unmerges.push_back(UndefReg); 1465 } 1466 1467 const int PartsPerGCD = WideSize / GCD; 1468 1469 // Build merges of each piece. 1470 ArrayRef<Register> Slicer(Unmerges); 1471 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1472 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1473 NewMergeRegs.push_back(Merge.getReg(0)); 1474 } 1475 1476 // A truncate may be necessary if the requested type doesn't evenly divide the 1477 // original result type. 1478 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1479 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1480 } else { 1481 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1482 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1483 } 1484 1485 MI.eraseFromParent(); 1486 return Legalized; 1487 } 1488 1489 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1490 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1491 LLT OrigTy = MRI.getType(OrigReg); 1492 LLT LCMTy = getLCMType(WideTy, OrigTy); 1493 1494 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1495 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1496 1497 Register UnmergeSrc = WideReg; 1498 1499 // Create a merge to the LCM type, padding with undef 1500 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1501 // => 1502 // %1:_(<4 x s32>) = G_FOO 1503 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1504 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1505 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1506 if (NumMergeParts > 1) { 1507 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1508 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1509 MergeParts[0] = WideReg; 1510 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1511 } 1512 1513 // Unmerge to the original register and pad with dead defs. 1514 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1515 UnmergeResults[0] = OrigReg; 1516 for (int I = 1; I != NumUnmergeParts; ++I) 1517 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1518 1519 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1520 return WideReg; 1521 } 1522 1523 LegalizerHelper::LegalizeResult 1524 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1525 LLT WideTy) { 1526 if (TypeIdx != 0) 1527 return UnableToLegalize; 1528 1529 int NumDst = MI.getNumOperands() - 1; 1530 Register SrcReg = MI.getOperand(NumDst).getReg(); 1531 LLT SrcTy = MRI.getType(SrcReg); 1532 if (SrcTy.isVector()) 1533 return UnableToLegalize; 1534 1535 Register Dst0Reg = MI.getOperand(0).getReg(); 1536 LLT DstTy = MRI.getType(Dst0Reg); 1537 if (!DstTy.isScalar()) 1538 return UnableToLegalize; 1539 1540 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1541 if (SrcTy.isPointer()) { 1542 const DataLayout &DL = MIRBuilder.getDataLayout(); 1543 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1544 LLVM_DEBUG( 1545 dbgs() << "Not casting non-integral address space integer\n"); 1546 return UnableToLegalize; 1547 } 1548 1549 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1550 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1551 } 1552 1553 // Widen SrcTy to WideTy. This does not affect the result, but since the 1554 // user requested this size, it is probably better handled than SrcTy and 1555 // should reduce the total number of legalization artifacts 1556 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1557 SrcTy = WideTy; 1558 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1559 } 1560 1561 // Theres no unmerge type to target. Directly extract the bits from the 1562 // source type 1563 unsigned DstSize = DstTy.getSizeInBits(); 1564 1565 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1566 for (int I = 1; I != NumDst; ++I) { 1567 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1568 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1569 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1570 } 1571 1572 MI.eraseFromParent(); 1573 return Legalized; 1574 } 1575 1576 // Extend the source to a wider type. 1577 LLT LCMTy = getLCMType(SrcTy, WideTy); 1578 1579 Register WideSrc = SrcReg; 1580 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1581 // TODO: If this is an integral address space, cast to integer and anyext. 1582 if (SrcTy.isPointer()) { 1583 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1584 return UnableToLegalize; 1585 } 1586 1587 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1588 } 1589 1590 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1591 1592 // Create a sequence of unmerges to the original results. since we may have 1593 // widened the source, we will need to pad the results with dead defs to cover 1594 // the source register. 1595 // e.g. widen s16 to s32: 1596 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1597 // 1598 // => 1599 // %4:_(s64) = G_ANYEXT %0:_(s48) 1600 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1601 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1602 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1603 1604 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1605 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1606 1607 for (int I = 0; I != NumUnmerge; ++I) { 1608 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1609 1610 for (int J = 0; J != PartsPerUnmerge; ++J) { 1611 int Idx = I * PartsPerUnmerge + J; 1612 if (Idx < NumDst) 1613 MIB.addDef(MI.getOperand(Idx).getReg()); 1614 else { 1615 // Create dead def for excess components. 1616 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1617 } 1618 } 1619 1620 MIB.addUse(Unmerge.getReg(I)); 1621 } 1622 1623 MI.eraseFromParent(); 1624 return Legalized; 1625 } 1626 1627 LegalizerHelper::LegalizeResult 1628 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1629 LLT WideTy) { 1630 Register DstReg = MI.getOperand(0).getReg(); 1631 Register SrcReg = MI.getOperand(1).getReg(); 1632 LLT SrcTy = MRI.getType(SrcReg); 1633 1634 LLT DstTy = MRI.getType(DstReg); 1635 unsigned Offset = MI.getOperand(2).getImm(); 1636 1637 if (TypeIdx == 0) { 1638 if (SrcTy.isVector() || DstTy.isVector()) 1639 return UnableToLegalize; 1640 1641 SrcOp Src(SrcReg); 1642 if (SrcTy.isPointer()) { 1643 // Extracts from pointers can be handled only if they are really just 1644 // simple integers. 1645 const DataLayout &DL = MIRBuilder.getDataLayout(); 1646 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1647 return UnableToLegalize; 1648 1649 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1650 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1651 SrcTy = SrcAsIntTy; 1652 } 1653 1654 if (DstTy.isPointer()) 1655 return UnableToLegalize; 1656 1657 if (Offset == 0) { 1658 // Avoid a shift in the degenerate case. 1659 MIRBuilder.buildTrunc(DstReg, 1660 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1661 MI.eraseFromParent(); 1662 return Legalized; 1663 } 1664 1665 // Do a shift in the source type. 1666 LLT ShiftTy = SrcTy; 1667 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1668 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1669 ShiftTy = WideTy; 1670 } 1671 1672 auto LShr = MIRBuilder.buildLShr( 1673 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1674 MIRBuilder.buildTrunc(DstReg, LShr); 1675 MI.eraseFromParent(); 1676 return Legalized; 1677 } 1678 1679 if (SrcTy.isScalar()) { 1680 Observer.changingInstr(MI); 1681 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1682 Observer.changedInstr(MI); 1683 return Legalized; 1684 } 1685 1686 if (!SrcTy.isVector()) 1687 return UnableToLegalize; 1688 1689 if (DstTy != SrcTy.getElementType()) 1690 return UnableToLegalize; 1691 1692 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1693 return UnableToLegalize; 1694 1695 Observer.changingInstr(MI); 1696 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1697 1698 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1699 Offset); 1700 widenScalarDst(MI, WideTy.getScalarType(), 0); 1701 Observer.changedInstr(MI); 1702 return Legalized; 1703 } 1704 1705 LegalizerHelper::LegalizeResult 1706 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1707 LLT WideTy) { 1708 if (TypeIdx != 0 || WideTy.isVector()) 1709 return UnableToLegalize; 1710 Observer.changingInstr(MI); 1711 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1712 widenScalarDst(MI, WideTy); 1713 Observer.changedInstr(MI); 1714 return Legalized; 1715 } 1716 1717 LegalizerHelper::LegalizeResult 1718 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1719 LLT WideTy) { 1720 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1721 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1722 // We can convert this to: 1723 // 1. Any extend iN to iM 1724 // 2. SHL by M-N 1725 // 3. [US][ADD|SUB]SAT 1726 // 4. L/ASHR by M-N 1727 // 1728 // It may be more efficient to lower this to a min and a max operation in 1729 // the higher precision arithmetic if the promoted operation isn't legal, 1730 // but this decision is up to the target's lowering request. 1731 Register DstReg = MI.getOperand(0).getReg(); 1732 1733 unsigned NewBits = WideTy.getScalarSizeInBits(); 1734 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1735 1736 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1737 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1738 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1739 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1740 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1741 1742 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1743 {ShiftL, ShiftR}, MI.getFlags()); 1744 1745 // Use a shift that will preserve the number of sign bits when the trunc is 1746 // folded away. 1747 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1748 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1749 1750 MIRBuilder.buildTrunc(DstReg, Result); 1751 MI.eraseFromParent(); 1752 return Legalized; 1753 } 1754 1755 LegalizerHelper::LegalizeResult 1756 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1757 switch (MI.getOpcode()) { 1758 default: 1759 return UnableToLegalize; 1760 case TargetOpcode::G_EXTRACT: 1761 return widenScalarExtract(MI, TypeIdx, WideTy); 1762 case TargetOpcode::G_INSERT: 1763 return widenScalarInsert(MI, TypeIdx, WideTy); 1764 case TargetOpcode::G_MERGE_VALUES: 1765 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1766 case TargetOpcode::G_UNMERGE_VALUES: 1767 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1768 case TargetOpcode::G_UADDO: 1769 case TargetOpcode::G_USUBO: { 1770 if (TypeIdx == 1) 1771 return UnableToLegalize; // TODO 1772 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1773 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1774 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1775 ? TargetOpcode::G_ADD 1776 : TargetOpcode::G_SUB; 1777 // Do the arithmetic in the larger type. 1778 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1779 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1780 APInt Mask = 1781 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1782 auto AndOp = MIRBuilder.buildAnd( 1783 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1784 // There is no overflow if the AndOp is the same as NewOp. 1785 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1786 // Now trunc the NewOp to the original result. 1787 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1788 MI.eraseFromParent(); 1789 return Legalized; 1790 } 1791 case TargetOpcode::G_SADDSAT: 1792 case TargetOpcode::G_SSUBSAT: 1793 case TargetOpcode::G_UADDSAT: 1794 case TargetOpcode::G_USUBSAT: 1795 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1796 case TargetOpcode::G_CTTZ: 1797 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1798 case TargetOpcode::G_CTLZ: 1799 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1800 case TargetOpcode::G_CTPOP: { 1801 if (TypeIdx == 0) { 1802 Observer.changingInstr(MI); 1803 widenScalarDst(MI, WideTy, 0); 1804 Observer.changedInstr(MI); 1805 return Legalized; 1806 } 1807 1808 Register SrcReg = MI.getOperand(1).getReg(); 1809 1810 // First ZEXT the input. 1811 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1812 LLT CurTy = MRI.getType(SrcReg); 1813 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1814 // The count is the same in the larger type except if the original 1815 // value was zero. This can be handled by setting the bit just off 1816 // the top of the original type. 1817 auto TopBit = 1818 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1819 MIBSrc = MIRBuilder.buildOr( 1820 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1821 } 1822 1823 // Perform the operation at the larger size. 1824 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1825 // This is already the correct result for CTPOP and CTTZs 1826 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1827 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1828 // The correct result is NewOp - (Difference in widety and current ty). 1829 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1830 MIBNewOp = MIRBuilder.buildSub( 1831 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1832 } 1833 1834 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1835 MI.eraseFromParent(); 1836 return Legalized; 1837 } 1838 case TargetOpcode::G_BSWAP: { 1839 Observer.changingInstr(MI); 1840 Register DstReg = MI.getOperand(0).getReg(); 1841 1842 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1843 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1844 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1845 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1846 1847 MI.getOperand(0).setReg(DstExt); 1848 1849 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1850 1851 LLT Ty = MRI.getType(DstReg); 1852 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1853 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1854 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1855 1856 MIRBuilder.buildTrunc(DstReg, ShrReg); 1857 Observer.changedInstr(MI); 1858 return Legalized; 1859 } 1860 case TargetOpcode::G_BITREVERSE: { 1861 Observer.changingInstr(MI); 1862 1863 Register DstReg = MI.getOperand(0).getReg(); 1864 LLT Ty = MRI.getType(DstReg); 1865 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1866 1867 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1868 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1869 MI.getOperand(0).setReg(DstExt); 1870 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1871 1872 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1873 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1874 MIRBuilder.buildTrunc(DstReg, Shift); 1875 Observer.changedInstr(MI); 1876 return Legalized; 1877 } 1878 case TargetOpcode::G_FREEZE: 1879 Observer.changingInstr(MI); 1880 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1881 widenScalarDst(MI, WideTy); 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 1885 case TargetOpcode::G_ADD: 1886 case TargetOpcode::G_AND: 1887 case TargetOpcode::G_MUL: 1888 case TargetOpcode::G_OR: 1889 case TargetOpcode::G_XOR: 1890 case TargetOpcode::G_SUB: 1891 // Perform operation at larger width (any extension is fines here, high bits 1892 // don't affect the result) and then truncate the result back to the 1893 // original type. 1894 Observer.changingInstr(MI); 1895 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1896 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1897 widenScalarDst(MI, WideTy); 1898 Observer.changedInstr(MI); 1899 return Legalized; 1900 1901 case TargetOpcode::G_SHL: 1902 Observer.changingInstr(MI); 1903 1904 if (TypeIdx == 0) { 1905 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1906 widenScalarDst(MI, WideTy); 1907 } else { 1908 assert(TypeIdx == 1); 1909 // The "number of bits to shift" operand must preserve its value as an 1910 // unsigned integer: 1911 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1912 } 1913 1914 Observer.changedInstr(MI); 1915 return Legalized; 1916 1917 case TargetOpcode::G_SDIV: 1918 case TargetOpcode::G_SREM: 1919 case TargetOpcode::G_SMIN: 1920 case TargetOpcode::G_SMAX: 1921 Observer.changingInstr(MI); 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1923 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1924 widenScalarDst(MI, WideTy); 1925 Observer.changedInstr(MI); 1926 return Legalized; 1927 1928 case TargetOpcode::G_ASHR: 1929 case TargetOpcode::G_LSHR: 1930 Observer.changingInstr(MI); 1931 1932 if (TypeIdx == 0) { 1933 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1934 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1935 1936 widenScalarSrc(MI, WideTy, 1, CvtOp); 1937 widenScalarDst(MI, WideTy); 1938 } else { 1939 assert(TypeIdx == 1); 1940 // The "number of bits to shift" operand must preserve its value as an 1941 // unsigned integer: 1942 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1943 } 1944 1945 Observer.changedInstr(MI); 1946 return Legalized; 1947 case TargetOpcode::G_UDIV: 1948 case TargetOpcode::G_UREM: 1949 case TargetOpcode::G_UMIN: 1950 case TargetOpcode::G_UMAX: 1951 Observer.changingInstr(MI); 1952 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1953 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1954 widenScalarDst(MI, WideTy); 1955 Observer.changedInstr(MI); 1956 return Legalized; 1957 1958 case TargetOpcode::G_SELECT: 1959 Observer.changingInstr(MI); 1960 if (TypeIdx == 0) { 1961 // Perform operation at larger width (any extension is fine here, high 1962 // bits don't affect the result) and then truncate the result back to the 1963 // original type. 1964 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1965 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1966 widenScalarDst(MI, WideTy); 1967 } else { 1968 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1969 // Explicit extension is required here since high bits affect the result. 1970 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1971 } 1972 Observer.changedInstr(MI); 1973 return Legalized; 1974 1975 case TargetOpcode::G_FPTOSI: 1976 case TargetOpcode::G_FPTOUI: 1977 Observer.changingInstr(MI); 1978 1979 if (TypeIdx == 0) 1980 widenScalarDst(MI, WideTy); 1981 else 1982 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1983 1984 Observer.changedInstr(MI); 1985 return Legalized; 1986 case TargetOpcode::G_SITOFP: 1987 Observer.changingInstr(MI); 1988 1989 if (TypeIdx == 0) 1990 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1991 else 1992 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1993 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 case TargetOpcode::G_UITOFP: 1997 Observer.changingInstr(MI); 1998 1999 if (TypeIdx == 0) 2000 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2001 else 2002 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2003 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 case TargetOpcode::G_LOAD: 2007 case TargetOpcode::G_SEXTLOAD: 2008 case TargetOpcode::G_ZEXTLOAD: 2009 Observer.changingInstr(MI); 2010 widenScalarDst(MI, WideTy); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 2014 case TargetOpcode::G_STORE: { 2015 if (TypeIdx != 0) 2016 return UnableToLegalize; 2017 2018 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2019 if (!isPowerOf2_32(Ty.getSizeInBits())) 2020 return UnableToLegalize; 2021 2022 Observer.changingInstr(MI); 2023 2024 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2025 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2026 widenScalarSrc(MI, WideTy, 0, ExtType); 2027 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 } 2031 case TargetOpcode::G_CONSTANT: { 2032 MachineOperand &SrcMO = MI.getOperand(1); 2033 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2034 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2035 MRI.getType(MI.getOperand(0).getReg())); 2036 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2037 ExtOpc == TargetOpcode::G_ANYEXT) && 2038 "Illegal Extend"); 2039 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2040 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2041 ? SrcVal.sext(WideTy.getSizeInBits()) 2042 : SrcVal.zext(WideTy.getSizeInBits()); 2043 Observer.changingInstr(MI); 2044 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2045 2046 widenScalarDst(MI, WideTy); 2047 Observer.changedInstr(MI); 2048 return Legalized; 2049 } 2050 case TargetOpcode::G_FCONSTANT: { 2051 MachineOperand &SrcMO = MI.getOperand(1); 2052 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2053 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2054 bool LosesInfo; 2055 switch (WideTy.getSizeInBits()) { 2056 case 32: 2057 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2058 &LosesInfo); 2059 break; 2060 case 64: 2061 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2062 &LosesInfo); 2063 break; 2064 default: 2065 return UnableToLegalize; 2066 } 2067 2068 assert(!LosesInfo && "extend should always be lossless"); 2069 2070 Observer.changingInstr(MI); 2071 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2072 2073 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2074 Observer.changedInstr(MI); 2075 return Legalized; 2076 } 2077 case TargetOpcode::G_IMPLICIT_DEF: { 2078 Observer.changingInstr(MI); 2079 widenScalarDst(MI, WideTy); 2080 Observer.changedInstr(MI); 2081 return Legalized; 2082 } 2083 case TargetOpcode::G_BRCOND: 2084 Observer.changingInstr(MI); 2085 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2086 Observer.changedInstr(MI); 2087 return Legalized; 2088 2089 case TargetOpcode::G_FCMP: 2090 Observer.changingInstr(MI); 2091 if (TypeIdx == 0) 2092 widenScalarDst(MI, WideTy); 2093 else { 2094 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2095 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2096 } 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 2100 case TargetOpcode::G_ICMP: 2101 Observer.changingInstr(MI); 2102 if (TypeIdx == 0) 2103 widenScalarDst(MI, WideTy); 2104 else { 2105 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2106 MI.getOperand(1).getPredicate())) 2107 ? TargetOpcode::G_SEXT 2108 : TargetOpcode::G_ZEXT; 2109 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2110 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2111 } 2112 Observer.changedInstr(MI); 2113 return Legalized; 2114 2115 case TargetOpcode::G_PTR_ADD: 2116 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2117 Observer.changingInstr(MI); 2118 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 2122 case TargetOpcode::G_PHI: { 2123 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2124 2125 Observer.changingInstr(MI); 2126 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2127 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2128 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2129 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2130 } 2131 2132 MachineBasicBlock &MBB = *MI.getParent(); 2133 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2134 widenScalarDst(MI, WideTy); 2135 Observer.changedInstr(MI); 2136 return Legalized; 2137 } 2138 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2139 if (TypeIdx == 0) { 2140 Register VecReg = MI.getOperand(1).getReg(); 2141 LLT VecTy = MRI.getType(VecReg); 2142 Observer.changingInstr(MI); 2143 2144 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2145 WideTy.getSizeInBits()), 2146 1, TargetOpcode::G_SEXT); 2147 2148 widenScalarDst(MI, WideTy, 0); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 } 2152 2153 if (TypeIdx != 2) 2154 return UnableToLegalize; 2155 Observer.changingInstr(MI); 2156 // TODO: Probably should be zext 2157 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2158 Observer.changedInstr(MI); 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2162 if (TypeIdx == 1) { 2163 Observer.changingInstr(MI); 2164 2165 Register VecReg = MI.getOperand(1).getReg(); 2166 LLT VecTy = MRI.getType(VecReg); 2167 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2168 2169 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2170 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2171 widenScalarDst(MI, WideVecTy, 0); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 } 2175 2176 if (TypeIdx == 2) { 2177 Observer.changingInstr(MI); 2178 // TODO: Probably should be zext 2179 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 2184 return UnableToLegalize; 2185 } 2186 case TargetOpcode::G_FADD: 2187 case TargetOpcode::G_FMUL: 2188 case TargetOpcode::G_FSUB: 2189 case TargetOpcode::G_FMA: 2190 case TargetOpcode::G_FMAD: 2191 case TargetOpcode::G_FNEG: 2192 case TargetOpcode::G_FABS: 2193 case TargetOpcode::G_FCANONICALIZE: 2194 case TargetOpcode::G_FMINNUM: 2195 case TargetOpcode::G_FMAXNUM: 2196 case TargetOpcode::G_FMINNUM_IEEE: 2197 case TargetOpcode::G_FMAXNUM_IEEE: 2198 case TargetOpcode::G_FMINIMUM: 2199 case TargetOpcode::G_FMAXIMUM: 2200 case TargetOpcode::G_FDIV: 2201 case TargetOpcode::G_FREM: 2202 case TargetOpcode::G_FCEIL: 2203 case TargetOpcode::G_FFLOOR: 2204 case TargetOpcode::G_FCOS: 2205 case TargetOpcode::G_FSIN: 2206 case TargetOpcode::G_FLOG10: 2207 case TargetOpcode::G_FLOG: 2208 case TargetOpcode::G_FLOG2: 2209 case TargetOpcode::G_FRINT: 2210 case TargetOpcode::G_FNEARBYINT: 2211 case TargetOpcode::G_FSQRT: 2212 case TargetOpcode::G_FEXP: 2213 case TargetOpcode::G_FEXP2: 2214 case TargetOpcode::G_FPOW: 2215 case TargetOpcode::G_INTRINSIC_TRUNC: 2216 case TargetOpcode::G_INTRINSIC_ROUND: 2217 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2218 assert(TypeIdx == 0); 2219 Observer.changingInstr(MI); 2220 2221 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2222 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2223 2224 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 case TargetOpcode::G_FPOWI: { 2228 if (TypeIdx != 0) 2229 return UnableToLegalize; 2230 Observer.changingInstr(MI); 2231 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2232 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2233 Observer.changedInstr(MI); 2234 return Legalized; 2235 } 2236 case TargetOpcode::G_INTTOPTR: 2237 if (TypeIdx != 1) 2238 return UnableToLegalize; 2239 2240 Observer.changingInstr(MI); 2241 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2242 Observer.changedInstr(MI); 2243 return Legalized; 2244 case TargetOpcode::G_PTRTOINT: 2245 if (TypeIdx != 0) 2246 return UnableToLegalize; 2247 2248 Observer.changingInstr(MI); 2249 widenScalarDst(MI, WideTy, 0); 2250 Observer.changedInstr(MI); 2251 return Legalized; 2252 case TargetOpcode::G_BUILD_VECTOR: { 2253 Observer.changingInstr(MI); 2254 2255 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2256 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2257 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2258 2259 // Avoid changing the result vector type if the source element type was 2260 // requested. 2261 if (TypeIdx == 1) { 2262 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2263 } else { 2264 widenScalarDst(MI, WideTy, 0); 2265 } 2266 2267 Observer.changedInstr(MI); 2268 return Legalized; 2269 } 2270 case TargetOpcode::G_SEXT_INREG: 2271 if (TypeIdx != 0) 2272 return UnableToLegalize; 2273 2274 Observer.changingInstr(MI); 2275 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2276 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2277 Observer.changedInstr(MI); 2278 return Legalized; 2279 case TargetOpcode::G_PTRMASK: { 2280 if (TypeIdx != 1) 2281 return UnableToLegalize; 2282 Observer.changingInstr(MI); 2283 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 } 2287 } 2288 } 2289 2290 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2291 MachineIRBuilder &B, Register Src, LLT Ty) { 2292 auto Unmerge = B.buildUnmerge(Ty, Src); 2293 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2294 Pieces.push_back(Unmerge.getReg(I)); 2295 } 2296 2297 LegalizerHelper::LegalizeResult 2298 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2299 Register Dst = MI.getOperand(0).getReg(); 2300 Register Src = MI.getOperand(1).getReg(); 2301 LLT DstTy = MRI.getType(Dst); 2302 LLT SrcTy = MRI.getType(Src); 2303 2304 if (SrcTy.isVector()) { 2305 LLT SrcEltTy = SrcTy.getElementType(); 2306 SmallVector<Register, 8> SrcRegs; 2307 2308 if (DstTy.isVector()) { 2309 int NumDstElt = DstTy.getNumElements(); 2310 int NumSrcElt = SrcTy.getNumElements(); 2311 2312 LLT DstEltTy = DstTy.getElementType(); 2313 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2314 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2315 2316 // If there's an element size mismatch, insert intermediate casts to match 2317 // the result element type. 2318 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2319 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2320 // 2321 // => 2322 // 2323 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2324 // %3:_(<2 x s8>) = G_BITCAST %2 2325 // %4:_(<2 x s8>) = G_BITCAST %3 2326 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2327 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2328 SrcPartTy = SrcEltTy; 2329 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2330 // 2331 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2332 // 2333 // => 2334 // 2335 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2336 // %3:_(s16) = G_BITCAST %2 2337 // %4:_(s16) = G_BITCAST %3 2338 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2339 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2340 DstCastTy = DstEltTy; 2341 } 2342 2343 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2344 for (Register &SrcReg : SrcRegs) 2345 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2346 } else 2347 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2348 2349 MIRBuilder.buildMerge(Dst, SrcRegs); 2350 MI.eraseFromParent(); 2351 return Legalized; 2352 } 2353 2354 if (DstTy.isVector()) { 2355 SmallVector<Register, 8> SrcRegs; 2356 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2357 MIRBuilder.buildMerge(Dst, SrcRegs); 2358 MI.eraseFromParent(); 2359 return Legalized; 2360 } 2361 2362 return UnableToLegalize; 2363 } 2364 2365 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2366 /// is casting to a vector with a smaller element size, perform multiple element 2367 /// extracts and merge the results. If this is coercing to a vector with larger 2368 /// elements, index the bitcasted vector and extract the target element with bit 2369 /// operations. This is intended to force the indexing in the native register 2370 /// size for architectures that can dynamically index the register file. 2371 LegalizerHelper::LegalizeResult 2372 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2373 LLT CastTy) { 2374 if (TypeIdx != 1) 2375 return UnableToLegalize; 2376 2377 Register Dst = MI.getOperand(0).getReg(); 2378 Register SrcVec = MI.getOperand(1).getReg(); 2379 Register Idx = MI.getOperand(2).getReg(); 2380 LLT SrcVecTy = MRI.getType(SrcVec); 2381 LLT IdxTy = MRI.getType(Idx); 2382 2383 LLT SrcEltTy = SrcVecTy.getElementType(); 2384 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2385 unsigned OldNumElts = SrcVecTy.getNumElements(); 2386 2387 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2388 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2389 2390 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2391 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2392 if (NewNumElts > OldNumElts) { 2393 // Decreasing the vector element size 2394 // 2395 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2396 // => 2397 // v4i32:castx = bitcast x:v2i64 2398 // 2399 // i64 = bitcast 2400 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2401 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2402 // 2403 if (NewNumElts % OldNumElts != 0) 2404 return UnableToLegalize; 2405 2406 // Type of the intermediate result vector. 2407 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2408 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2409 2410 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2411 2412 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2413 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2414 2415 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2416 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2417 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2418 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2419 NewOps[I] = Elt.getReg(0); 2420 } 2421 2422 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2423 MIRBuilder.buildBitcast(Dst, NewVec); 2424 MI.eraseFromParent(); 2425 return Legalized; 2426 } 2427 2428 if (NewNumElts < OldNumElts) { 2429 if (NewEltSize % OldEltSize != 0) 2430 return UnableToLegalize; 2431 2432 // This only depends on powers of 2 because we use bit tricks to figure out 2433 // the bit offset we need to shift to get the target element. A general 2434 // expansion could emit division/multiply. 2435 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2436 return UnableToLegalize; 2437 2438 // Increasing the vector element size. 2439 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2440 // 2441 // => 2442 // 2443 // %cast = G_BITCAST %vec 2444 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2445 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2446 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2447 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2448 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2449 // %elt = G_TRUNC %elt_bits 2450 2451 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2452 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2453 2454 // Divide to get the index in the wider element type. 2455 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2456 2457 Register WideElt = CastVec; 2458 if (CastTy.isVector()) { 2459 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2460 ScaledIdx).getReg(0); 2461 } 2462 2463 // Now figure out the amount we need to shift to get the target bits. 2464 auto OffsetMask = MIRBuilder.buildConstant( 2465 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2466 auto OffsetIdx = MIRBuilder.buildAnd(IdxTy, Idx, OffsetMask); 2467 auto OffsetBits = MIRBuilder.buildShl( 2468 IdxTy, OffsetIdx, 2469 MIRBuilder.buildConstant(IdxTy, Log2_32(OldEltSize))); 2470 2471 // Shift the wide element to get the target element. 2472 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2473 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2474 MI.eraseFromParent(); 2475 return Legalized; 2476 } 2477 2478 return UnableToLegalize; 2479 } 2480 2481 LegalizerHelper::LegalizeResult 2482 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2483 switch (MI.getOpcode()) { 2484 case TargetOpcode::G_LOAD: { 2485 if (TypeIdx != 0) 2486 return UnableToLegalize; 2487 2488 Observer.changingInstr(MI); 2489 bitcastDst(MI, CastTy, 0); 2490 Observer.changedInstr(MI); 2491 return Legalized; 2492 } 2493 case TargetOpcode::G_STORE: { 2494 if (TypeIdx != 0) 2495 return UnableToLegalize; 2496 2497 Observer.changingInstr(MI); 2498 bitcastSrc(MI, CastTy, 0); 2499 Observer.changedInstr(MI); 2500 return Legalized; 2501 } 2502 case TargetOpcode::G_SELECT: { 2503 if (TypeIdx != 0) 2504 return UnableToLegalize; 2505 2506 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2507 LLVM_DEBUG( 2508 dbgs() << "bitcast action not implemented for vector select\n"); 2509 return UnableToLegalize; 2510 } 2511 2512 Observer.changingInstr(MI); 2513 bitcastSrc(MI, CastTy, 2); 2514 bitcastSrc(MI, CastTy, 3); 2515 bitcastDst(MI, CastTy, 0); 2516 Observer.changedInstr(MI); 2517 return Legalized; 2518 } 2519 case TargetOpcode::G_AND: 2520 case TargetOpcode::G_OR: 2521 case TargetOpcode::G_XOR: { 2522 Observer.changingInstr(MI); 2523 bitcastSrc(MI, CastTy, 1); 2524 bitcastSrc(MI, CastTy, 2); 2525 bitcastDst(MI, CastTy, 0); 2526 Observer.changedInstr(MI); 2527 return Legalized; 2528 } 2529 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2530 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2531 default: 2532 return UnableToLegalize; 2533 } 2534 } 2535 2536 // Legalize an instruction by changing the opcode in place. 2537 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2538 Observer.changingInstr(MI); 2539 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2540 Observer.changedInstr(MI); 2541 } 2542 2543 LegalizerHelper::LegalizeResult 2544 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2545 using namespace TargetOpcode; 2546 2547 switch(MI.getOpcode()) { 2548 default: 2549 return UnableToLegalize; 2550 case TargetOpcode::G_BITCAST: 2551 return lowerBitcast(MI); 2552 case TargetOpcode::G_SREM: 2553 case TargetOpcode::G_UREM: { 2554 auto Quot = 2555 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2556 {MI.getOperand(1), MI.getOperand(2)}); 2557 2558 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2559 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2560 MI.eraseFromParent(); 2561 return Legalized; 2562 } 2563 case TargetOpcode::G_SADDO: 2564 case TargetOpcode::G_SSUBO: 2565 return lowerSADDO_SSUBO(MI); 2566 case TargetOpcode::G_SMULO: 2567 case TargetOpcode::G_UMULO: { 2568 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2569 // result. 2570 Register Res = MI.getOperand(0).getReg(); 2571 Register Overflow = MI.getOperand(1).getReg(); 2572 Register LHS = MI.getOperand(2).getReg(); 2573 Register RHS = MI.getOperand(3).getReg(); 2574 2575 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2576 ? TargetOpcode::G_SMULH 2577 : TargetOpcode::G_UMULH; 2578 2579 Observer.changingInstr(MI); 2580 const auto &TII = MIRBuilder.getTII(); 2581 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2582 MI.RemoveOperand(1); 2583 Observer.changedInstr(MI); 2584 2585 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2586 2587 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2588 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2589 2590 // For *signed* multiply, overflow is detected by checking: 2591 // (hi != (lo >> bitwidth-1)) 2592 if (Opcode == TargetOpcode::G_SMULH) { 2593 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2594 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2595 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2596 } else { 2597 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2598 } 2599 return Legalized; 2600 } 2601 case TargetOpcode::G_FNEG: { 2602 // TODO: Handle vector types once we are able to 2603 // represent them. 2604 if (Ty.isVector()) 2605 return UnableToLegalize; 2606 Register Res = MI.getOperand(0).getReg(); 2607 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2608 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2609 if (!ZeroTy) 2610 return UnableToLegalize; 2611 ConstantFP &ZeroForNegation = 2612 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2613 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2614 Register SubByReg = MI.getOperand(1).getReg(); 2615 Register ZeroReg = Zero.getReg(0); 2616 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2617 MI.eraseFromParent(); 2618 return Legalized; 2619 } 2620 case TargetOpcode::G_FSUB: { 2621 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2622 // First, check if G_FNEG is marked as Lower. If so, we may 2623 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2624 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2625 return UnableToLegalize; 2626 Register Res = MI.getOperand(0).getReg(); 2627 Register LHS = MI.getOperand(1).getReg(); 2628 Register RHS = MI.getOperand(2).getReg(); 2629 Register Neg = MRI.createGenericVirtualRegister(Ty); 2630 MIRBuilder.buildFNeg(Neg, RHS); 2631 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2632 MI.eraseFromParent(); 2633 return Legalized; 2634 } 2635 case TargetOpcode::G_FMAD: 2636 return lowerFMad(MI); 2637 case TargetOpcode::G_FFLOOR: 2638 return lowerFFloor(MI); 2639 case TargetOpcode::G_INTRINSIC_ROUND: 2640 return lowerIntrinsicRound(MI); 2641 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2642 // Since round even is the assumed rounding mode for unconstrained FP 2643 // operations, rint and roundeven are the same operation. 2644 changeOpcode(MI, TargetOpcode::G_FRINT); 2645 return Legalized; 2646 } 2647 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2648 Register OldValRes = MI.getOperand(0).getReg(); 2649 Register SuccessRes = MI.getOperand(1).getReg(); 2650 Register Addr = MI.getOperand(2).getReg(); 2651 Register CmpVal = MI.getOperand(3).getReg(); 2652 Register NewVal = MI.getOperand(4).getReg(); 2653 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2654 **MI.memoperands_begin()); 2655 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2656 MI.eraseFromParent(); 2657 return Legalized; 2658 } 2659 case TargetOpcode::G_LOAD: 2660 case TargetOpcode::G_SEXTLOAD: 2661 case TargetOpcode::G_ZEXTLOAD: { 2662 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2663 Register DstReg = MI.getOperand(0).getReg(); 2664 Register PtrReg = MI.getOperand(1).getReg(); 2665 LLT DstTy = MRI.getType(DstReg); 2666 auto &MMO = **MI.memoperands_begin(); 2667 2668 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2669 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2670 // This load needs splitting into power of 2 sized loads. 2671 if (DstTy.isVector()) 2672 return UnableToLegalize; 2673 if (isPowerOf2_32(DstTy.getSizeInBits())) 2674 return UnableToLegalize; // Don't know what we're being asked to do. 2675 2676 // Our strategy here is to generate anyextending loads for the smaller 2677 // types up to next power-2 result type, and then combine the two larger 2678 // result values together, before truncating back down to the non-pow-2 2679 // type. 2680 // E.g. v1 = i24 load => 2681 // v2 = i32 zextload (2 byte) 2682 // v3 = i32 load (1 byte) 2683 // v4 = i32 shl v3, 16 2684 // v5 = i32 or v4, v2 2685 // v1 = i24 trunc v5 2686 // By doing this we generate the correct truncate which should get 2687 // combined away as an artifact with a matching extend. 2688 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2689 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2690 2691 MachineFunction &MF = MIRBuilder.getMF(); 2692 MachineMemOperand *LargeMMO = 2693 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2694 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2695 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2696 2697 LLT PtrTy = MRI.getType(PtrReg); 2698 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2699 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2700 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2701 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2702 auto LargeLoad = MIRBuilder.buildLoadInstr( 2703 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2704 2705 auto OffsetCst = MIRBuilder.buildConstant( 2706 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2707 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2708 auto SmallPtr = 2709 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2710 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2711 *SmallMMO); 2712 2713 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2714 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2715 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2716 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2717 MI.eraseFromParent(); 2718 return Legalized; 2719 } 2720 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2721 MI.eraseFromParent(); 2722 return Legalized; 2723 } 2724 2725 if (DstTy.isScalar()) { 2726 Register TmpReg = 2727 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2728 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2729 switch (MI.getOpcode()) { 2730 default: 2731 llvm_unreachable("Unexpected opcode"); 2732 case TargetOpcode::G_LOAD: 2733 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2734 break; 2735 case TargetOpcode::G_SEXTLOAD: 2736 MIRBuilder.buildSExt(DstReg, TmpReg); 2737 break; 2738 case TargetOpcode::G_ZEXTLOAD: 2739 MIRBuilder.buildZExt(DstReg, TmpReg); 2740 break; 2741 } 2742 MI.eraseFromParent(); 2743 return Legalized; 2744 } 2745 2746 return UnableToLegalize; 2747 } 2748 case TargetOpcode::G_STORE: { 2749 // Lower a non-power of 2 store into multiple pow-2 stores. 2750 // E.g. split an i24 store into an i16 store + i8 store. 2751 // We do this by first extending the stored value to the next largest power 2752 // of 2 type, and then using truncating stores to store the components. 2753 // By doing this, likewise with G_LOAD, generate an extend that can be 2754 // artifact-combined away instead of leaving behind extracts. 2755 Register SrcReg = MI.getOperand(0).getReg(); 2756 Register PtrReg = MI.getOperand(1).getReg(); 2757 LLT SrcTy = MRI.getType(SrcReg); 2758 MachineMemOperand &MMO = **MI.memoperands_begin(); 2759 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2760 return UnableToLegalize; 2761 if (SrcTy.isVector()) 2762 return UnableToLegalize; 2763 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2764 return UnableToLegalize; // Don't know what we're being asked to do. 2765 2766 // Extend to the next pow-2. 2767 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2768 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2769 2770 // Obtain the smaller value by shifting away the larger value. 2771 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2772 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2773 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2774 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2775 2776 // Generate the PtrAdd and truncating stores. 2777 LLT PtrTy = MRI.getType(PtrReg); 2778 auto OffsetCst = MIRBuilder.buildConstant( 2779 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2780 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2781 auto SmallPtr = 2782 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2783 2784 MachineFunction &MF = MIRBuilder.getMF(); 2785 MachineMemOperand *LargeMMO = 2786 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2787 MachineMemOperand *SmallMMO = 2788 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2789 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2790 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2791 MI.eraseFromParent(); 2792 return Legalized; 2793 } 2794 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2795 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2796 case TargetOpcode::G_CTLZ: 2797 case TargetOpcode::G_CTTZ: 2798 case TargetOpcode::G_CTPOP: 2799 return lowerBitCount(MI, TypeIdx, Ty); 2800 case G_UADDO: { 2801 Register Res = MI.getOperand(0).getReg(); 2802 Register CarryOut = MI.getOperand(1).getReg(); 2803 Register LHS = MI.getOperand(2).getReg(); 2804 Register RHS = MI.getOperand(3).getReg(); 2805 2806 MIRBuilder.buildAdd(Res, LHS, RHS); 2807 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2808 2809 MI.eraseFromParent(); 2810 return Legalized; 2811 } 2812 case G_UADDE: { 2813 Register Res = MI.getOperand(0).getReg(); 2814 Register CarryOut = MI.getOperand(1).getReg(); 2815 Register LHS = MI.getOperand(2).getReg(); 2816 Register RHS = MI.getOperand(3).getReg(); 2817 Register CarryIn = MI.getOperand(4).getReg(); 2818 LLT Ty = MRI.getType(Res); 2819 2820 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2821 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2822 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2823 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2824 2825 MI.eraseFromParent(); 2826 return Legalized; 2827 } 2828 case G_USUBO: { 2829 Register Res = MI.getOperand(0).getReg(); 2830 Register BorrowOut = MI.getOperand(1).getReg(); 2831 Register LHS = MI.getOperand(2).getReg(); 2832 Register RHS = MI.getOperand(3).getReg(); 2833 2834 MIRBuilder.buildSub(Res, LHS, RHS); 2835 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2836 2837 MI.eraseFromParent(); 2838 return Legalized; 2839 } 2840 case G_USUBE: { 2841 Register Res = MI.getOperand(0).getReg(); 2842 Register BorrowOut = MI.getOperand(1).getReg(); 2843 Register LHS = MI.getOperand(2).getReg(); 2844 Register RHS = MI.getOperand(3).getReg(); 2845 Register BorrowIn = MI.getOperand(4).getReg(); 2846 const LLT CondTy = MRI.getType(BorrowOut); 2847 const LLT Ty = MRI.getType(Res); 2848 2849 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2850 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2851 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2852 2853 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2854 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2855 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2856 2857 MI.eraseFromParent(); 2858 return Legalized; 2859 } 2860 case G_UITOFP: 2861 return lowerUITOFP(MI, TypeIdx, Ty); 2862 case G_SITOFP: 2863 return lowerSITOFP(MI, TypeIdx, Ty); 2864 case G_FPTOUI: 2865 return lowerFPTOUI(MI, TypeIdx, Ty); 2866 case G_FPTOSI: 2867 return lowerFPTOSI(MI); 2868 case G_FPTRUNC: 2869 return lowerFPTRUNC(MI, TypeIdx, Ty); 2870 case G_FPOWI: 2871 return lowerFPOWI(MI); 2872 case G_SMIN: 2873 case G_SMAX: 2874 case G_UMIN: 2875 case G_UMAX: 2876 return lowerMinMax(MI, TypeIdx, Ty); 2877 case G_FCOPYSIGN: 2878 return lowerFCopySign(MI, TypeIdx, Ty); 2879 case G_FMINNUM: 2880 case G_FMAXNUM: 2881 return lowerFMinNumMaxNum(MI); 2882 case G_MERGE_VALUES: 2883 return lowerMergeValues(MI); 2884 case G_UNMERGE_VALUES: 2885 return lowerUnmergeValues(MI); 2886 case TargetOpcode::G_SEXT_INREG: { 2887 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2888 int64_t SizeInBits = MI.getOperand(2).getImm(); 2889 2890 Register DstReg = MI.getOperand(0).getReg(); 2891 Register SrcReg = MI.getOperand(1).getReg(); 2892 LLT DstTy = MRI.getType(DstReg); 2893 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2894 2895 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2896 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2897 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2898 MI.eraseFromParent(); 2899 return Legalized; 2900 } 2901 case G_EXTRACT_VECTOR_ELT: 2902 return lowerExtractVectorElt(MI); 2903 case G_SHUFFLE_VECTOR: 2904 return lowerShuffleVector(MI); 2905 case G_DYN_STACKALLOC: 2906 return lowerDynStackAlloc(MI); 2907 case G_EXTRACT: 2908 return lowerExtract(MI); 2909 case G_INSERT: 2910 return lowerInsert(MI); 2911 case G_BSWAP: 2912 return lowerBswap(MI); 2913 case G_BITREVERSE: 2914 return lowerBitreverse(MI); 2915 case G_READ_REGISTER: 2916 case G_WRITE_REGISTER: 2917 return lowerReadWriteRegister(MI); 2918 case G_UADDSAT: 2919 case G_USUBSAT: { 2920 // Try to make a reasonable guess about which lowering strategy to use. The 2921 // target can override this with custom lowering and calling the 2922 // implementation functions. 2923 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2924 if (LI.isLegalOrCustom({G_UMIN, Ty})) 2925 return lowerAddSubSatToMinMax(MI); 2926 return lowerAddSubSatToAddoSubo(MI); 2927 } 2928 case G_SADDSAT: 2929 case G_SSUBSAT: { 2930 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2931 2932 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 2933 // since it's a shorter expansion. However, we would need to figure out the 2934 // preferred boolean type for the carry out for the query. 2935 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 2936 return lowerAddSubSatToMinMax(MI); 2937 return lowerAddSubSatToAddoSubo(MI); 2938 } 2939 } 2940 } 2941 2942 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 2943 Align MinAlign) const { 2944 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 2945 // datalayout for the preferred alignment. Also there should be a target hook 2946 // for this to allow targets to reduce the alignment and ignore the 2947 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 2948 // the type. 2949 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 2950 } 2951 2952 MachineInstrBuilder 2953 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 2954 MachinePointerInfo &PtrInfo) { 2955 MachineFunction &MF = MIRBuilder.getMF(); 2956 const DataLayout &DL = MIRBuilder.getDataLayout(); 2957 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 2958 2959 unsigned AddrSpace = DL.getAllocaAddrSpace(); 2960 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 2961 2962 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 2963 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 2964 } 2965 2966 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 2967 LLT VecTy) { 2968 int64_t IdxVal; 2969 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 2970 return IdxReg; 2971 2972 LLT IdxTy = B.getMRI()->getType(IdxReg); 2973 unsigned NElts = VecTy.getNumElements(); 2974 if (isPowerOf2_32(NElts)) { 2975 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 2976 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 2977 } 2978 2979 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 2980 .getReg(0); 2981 } 2982 2983 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 2984 Register Index) { 2985 LLT EltTy = VecTy.getElementType(); 2986 2987 // Calculate the element offset and add it to the pointer. 2988 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 2989 assert(EltSize * 8 == EltTy.getSizeInBits() && 2990 "Converting bits to bytes lost precision"); 2991 2992 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 2993 2994 LLT IdxTy = MRI.getType(Index); 2995 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 2996 MIRBuilder.buildConstant(IdxTy, EltSize)); 2997 2998 LLT PtrTy = MRI.getType(VecPtr); 2999 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3000 } 3001 3002 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3003 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3004 Register DstReg = MI.getOperand(0).getReg(); 3005 LLT DstTy = MRI.getType(DstReg); 3006 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3007 3008 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3009 3010 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3011 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3012 3013 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3014 MI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 3018 // Handle splitting vector operations which need to have the same number of 3019 // elements in each type index, but each type index may have a different element 3020 // type. 3021 // 3022 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3023 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3024 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3025 // 3026 // Also handles some irregular breakdown cases, e.g. 3027 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3028 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3029 // s64 = G_SHL s64, s32 3030 LegalizerHelper::LegalizeResult 3031 LegalizerHelper::fewerElementsVectorMultiEltType( 3032 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3033 if (TypeIdx != 0) 3034 return UnableToLegalize; 3035 3036 const LLT NarrowTy0 = NarrowTyArg; 3037 const unsigned NewNumElts = 3038 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3039 3040 const Register DstReg = MI.getOperand(0).getReg(); 3041 LLT DstTy = MRI.getType(DstReg); 3042 LLT LeftoverTy0; 3043 3044 // All of the operands need to have the same number of elements, so if we can 3045 // determine a type breakdown for the result type, we can for all of the 3046 // source types. 3047 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3048 if (NumParts < 0) 3049 return UnableToLegalize; 3050 3051 SmallVector<MachineInstrBuilder, 4> NewInsts; 3052 3053 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3054 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3055 3056 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3057 Register SrcReg = MI.getOperand(I).getReg(); 3058 LLT SrcTyI = MRI.getType(SrcReg); 3059 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3060 LLT LeftoverTyI; 3061 3062 // Split this operand into the requested typed registers, and any leftover 3063 // required to reproduce the original type. 3064 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3065 LeftoverRegs)) 3066 return UnableToLegalize; 3067 3068 if (I == 1) { 3069 // For the first operand, create an instruction for each part and setup 3070 // the result. 3071 for (Register PartReg : PartRegs) { 3072 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3073 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3074 .addDef(PartDstReg) 3075 .addUse(PartReg)); 3076 DstRegs.push_back(PartDstReg); 3077 } 3078 3079 for (Register LeftoverReg : LeftoverRegs) { 3080 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3081 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3082 .addDef(PartDstReg) 3083 .addUse(LeftoverReg)); 3084 LeftoverDstRegs.push_back(PartDstReg); 3085 } 3086 } else { 3087 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3088 3089 // Add the newly created operand splits to the existing instructions. The 3090 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3091 // pieces. 3092 unsigned InstCount = 0; 3093 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3094 NewInsts[InstCount++].addUse(PartRegs[J]); 3095 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3096 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3097 } 3098 3099 PartRegs.clear(); 3100 LeftoverRegs.clear(); 3101 } 3102 3103 // Insert the newly built operations and rebuild the result register. 3104 for (auto &MIB : NewInsts) 3105 MIRBuilder.insertInstr(MIB); 3106 3107 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3108 3109 MI.eraseFromParent(); 3110 return Legalized; 3111 } 3112 3113 LegalizerHelper::LegalizeResult 3114 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3115 LLT NarrowTy) { 3116 if (TypeIdx != 0) 3117 return UnableToLegalize; 3118 3119 Register DstReg = MI.getOperand(0).getReg(); 3120 Register SrcReg = MI.getOperand(1).getReg(); 3121 LLT DstTy = MRI.getType(DstReg); 3122 LLT SrcTy = MRI.getType(SrcReg); 3123 3124 LLT NarrowTy0 = NarrowTy; 3125 LLT NarrowTy1; 3126 unsigned NumParts; 3127 3128 if (NarrowTy.isVector()) { 3129 // Uneven breakdown not handled. 3130 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3131 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3132 return UnableToLegalize; 3133 3134 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 3135 } else { 3136 NumParts = DstTy.getNumElements(); 3137 NarrowTy1 = SrcTy.getElementType(); 3138 } 3139 3140 SmallVector<Register, 4> SrcRegs, DstRegs; 3141 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3142 3143 for (unsigned I = 0; I < NumParts; ++I) { 3144 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3145 MachineInstr *NewInst = 3146 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3147 3148 NewInst->setFlags(MI.getFlags()); 3149 DstRegs.push_back(DstReg); 3150 } 3151 3152 if (NarrowTy.isVector()) 3153 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3154 else 3155 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3156 3157 MI.eraseFromParent(); 3158 return Legalized; 3159 } 3160 3161 LegalizerHelper::LegalizeResult 3162 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3163 LLT NarrowTy) { 3164 Register DstReg = MI.getOperand(0).getReg(); 3165 Register Src0Reg = MI.getOperand(2).getReg(); 3166 LLT DstTy = MRI.getType(DstReg); 3167 LLT SrcTy = MRI.getType(Src0Reg); 3168 3169 unsigned NumParts; 3170 LLT NarrowTy0, NarrowTy1; 3171 3172 if (TypeIdx == 0) { 3173 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3174 unsigned OldElts = DstTy.getNumElements(); 3175 3176 NarrowTy0 = NarrowTy; 3177 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3178 NarrowTy1 = NarrowTy.isVector() ? 3179 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3180 SrcTy.getElementType(); 3181 3182 } else { 3183 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3184 unsigned OldElts = SrcTy.getNumElements(); 3185 3186 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3187 NarrowTy.getNumElements(); 3188 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3189 DstTy.getScalarSizeInBits()); 3190 NarrowTy1 = NarrowTy; 3191 } 3192 3193 // FIXME: Don't know how to handle the situation where the small vectors 3194 // aren't all the same size yet. 3195 if (NarrowTy1.isVector() && 3196 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3197 return UnableToLegalize; 3198 3199 CmpInst::Predicate Pred 3200 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3201 3202 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3203 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3204 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3205 3206 for (unsigned I = 0; I < NumParts; ++I) { 3207 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3208 DstRegs.push_back(DstReg); 3209 3210 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3211 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3212 else { 3213 MachineInstr *NewCmp 3214 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3215 NewCmp->setFlags(MI.getFlags()); 3216 } 3217 } 3218 3219 if (NarrowTy1.isVector()) 3220 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3221 else 3222 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3223 3224 MI.eraseFromParent(); 3225 return Legalized; 3226 } 3227 3228 LegalizerHelper::LegalizeResult 3229 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3230 LLT NarrowTy) { 3231 Register DstReg = MI.getOperand(0).getReg(); 3232 Register CondReg = MI.getOperand(1).getReg(); 3233 3234 unsigned NumParts = 0; 3235 LLT NarrowTy0, NarrowTy1; 3236 3237 LLT DstTy = MRI.getType(DstReg); 3238 LLT CondTy = MRI.getType(CondReg); 3239 unsigned Size = DstTy.getSizeInBits(); 3240 3241 assert(TypeIdx == 0 || CondTy.isVector()); 3242 3243 if (TypeIdx == 0) { 3244 NarrowTy0 = NarrowTy; 3245 NarrowTy1 = CondTy; 3246 3247 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3248 // FIXME: Don't know how to handle the situation where the small vectors 3249 // aren't all the same size yet. 3250 if (Size % NarrowSize != 0) 3251 return UnableToLegalize; 3252 3253 NumParts = Size / NarrowSize; 3254 3255 // Need to break down the condition type 3256 if (CondTy.isVector()) { 3257 if (CondTy.getNumElements() == NumParts) 3258 NarrowTy1 = CondTy.getElementType(); 3259 else 3260 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3261 CondTy.getScalarSizeInBits()); 3262 } 3263 } else { 3264 NumParts = CondTy.getNumElements(); 3265 if (NarrowTy.isVector()) { 3266 // TODO: Handle uneven breakdown. 3267 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3268 return UnableToLegalize; 3269 3270 return UnableToLegalize; 3271 } else { 3272 NarrowTy0 = DstTy.getElementType(); 3273 NarrowTy1 = NarrowTy; 3274 } 3275 } 3276 3277 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3278 if (CondTy.isVector()) 3279 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3280 3281 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3282 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3283 3284 for (unsigned i = 0; i < NumParts; ++i) { 3285 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3286 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3287 Src1Regs[i], Src2Regs[i]); 3288 DstRegs.push_back(DstReg); 3289 } 3290 3291 if (NarrowTy0.isVector()) 3292 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3293 else 3294 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3295 3296 MI.eraseFromParent(); 3297 return Legalized; 3298 } 3299 3300 LegalizerHelper::LegalizeResult 3301 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3302 LLT NarrowTy) { 3303 const Register DstReg = MI.getOperand(0).getReg(); 3304 LLT PhiTy = MRI.getType(DstReg); 3305 LLT LeftoverTy; 3306 3307 // All of the operands need to have the same number of elements, so if we can 3308 // determine a type breakdown for the result type, we can for all of the 3309 // source types. 3310 int NumParts, NumLeftover; 3311 std::tie(NumParts, NumLeftover) 3312 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3313 if (NumParts < 0) 3314 return UnableToLegalize; 3315 3316 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3317 SmallVector<MachineInstrBuilder, 4> NewInsts; 3318 3319 const int TotalNumParts = NumParts + NumLeftover; 3320 3321 // Insert the new phis in the result block first. 3322 for (int I = 0; I != TotalNumParts; ++I) { 3323 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3324 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3325 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3326 .addDef(PartDstReg)); 3327 if (I < NumParts) 3328 DstRegs.push_back(PartDstReg); 3329 else 3330 LeftoverDstRegs.push_back(PartDstReg); 3331 } 3332 3333 MachineBasicBlock *MBB = MI.getParent(); 3334 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3335 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3336 3337 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3338 3339 // Insert code to extract the incoming values in each predecessor block. 3340 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3341 PartRegs.clear(); 3342 LeftoverRegs.clear(); 3343 3344 Register SrcReg = MI.getOperand(I).getReg(); 3345 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3346 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3347 3348 LLT Unused; 3349 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3350 LeftoverRegs)) 3351 return UnableToLegalize; 3352 3353 // Add the newly created operand splits to the existing instructions. The 3354 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3355 // pieces. 3356 for (int J = 0; J != TotalNumParts; ++J) { 3357 MachineInstrBuilder MIB = NewInsts[J]; 3358 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3359 MIB.addMBB(&OpMBB); 3360 } 3361 } 3362 3363 MI.eraseFromParent(); 3364 return Legalized; 3365 } 3366 3367 LegalizerHelper::LegalizeResult 3368 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3369 unsigned TypeIdx, 3370 LLT NarrowTy) { 3371 if (TypeIdx != 1) 3372 return UnableToLegalize; 3373 3374 const int NumDst = MI.getNumOperands() - 1; 3375 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3376 LLT SrcTy = MRI.getType(SrcReg); 3377 3378 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3379 3380 // TODO: Create sequence of extracts. 3381 if (DstTy == NarrowTy) 3382 return UnableToLegalize; 3383 3384 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3385 if (DstTy == GCDTy) { 3386 // This would just be a copy of the same unmerge. 3387 // TODO: Create extracts, pad with undef and create intermediate merges. 3388 return UnableToLegalize; 3389 } 3390 3391 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3392 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3393 const int PartsPerUnmerge = NumDst / NumUnmerge; 3394 3395 for (int I = 0; I != NumUnmerge; ++I) { 3396 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3397 3398 for (int J = 0; J != PartsPerUnmerge; ++J) 3399 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3400 MIB.addUse(Unmerge.getReg(I)); 3401 } 3402 3403 MI.eraseFromParent(); 3404 return Legalized; 3405 } 3406 3407 LegalizerHelper::LegalizeResult 3408 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3409 unsigned TypeIdx, 3410 LLT NarrowTy) { 3411 assert(TypeIdx == 0 && "not a vector type index"); 3412 Register DstReg = MI.getOperand(0).getReg(); 3413 LLT DstTy = MRI.getType(DstReg); 3414 LLT SrcTy = DstTy.getElementType(); 3415 3416 int DstNumElts = DstTy.getNumElements(); 3417 int NarrowNumElts = NarrowTy.getNumElements(); 3418 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3419 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3420 3421 SmallVector<Register, 8> ConcatOps; 3422 SmallVector<Register, 8> SubBuildVector; 3423 3424 Register UndefReg; 3425 if (WidenedDstTy != DstTy) 3426 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3427 3428 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3429 // necessary. 3430 // 3431 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3432 // -> <2 x s16> 3433 // 3434 // %4:_(s16) = G_IMPLICIT_DEF 3435 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3436 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3437 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3438 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3439 for (int I = 0; I != NumConcat; ++I) { 3440 for (int J = 0; J != NarrowNumElts; ++J) { 3441 int SrcIdx = NarrowNumElts * I + J; 3442 3443 if (SrcIdx < DstNumElts) { 3444 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3445 SubBuildVector.push_back(SrcReg); 3446 } else 3447 SubBuildVector.push_back(UndefReg); 3448 } 3449 3450 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3451 ConcatOps.push_back(BuildVec.getReg(0)); 3452 SubBuildVector.clear(); 3453 } 3454 3455 if (DstTy == WidenedDstTy) 3456 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3457 else { 3458 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3459 MIRBuilder.buildExtract(DstReg, Concat, 0); 3460 } 3461 3462 MI.eraseFromParent(); 3463 return Legalized; 3464 } 3465 3466 LegalizerHelper::LegalizeResult 3467 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3468 LLT NarrowTy) { 3469 // FIXME: Don't know how to handle secondary types yet. 3470 if (TypeIdx != 0) 3471 return UnableToLegalize; 3472 3473 MachineMemOperand *MMO = *MI.memoperands_begin(); 3474 3475 // This implementation doesn't work for atomics. Give up instead of doing 3476 // something invalid. 3477 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3478 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3479 return UnableToLegalize; 3480 3481 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3482 Register ValReg = MI.getOperand(0).getReg(); 3483 Register AddrReg = MI.getOperand(1).getReg(); 3484 LLT ValTy = MRI.getType(ValReg); 3485 3486 // FIXME: Do we need a distinct NarrowMemory legalize action? 3487 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3488 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3489 return UnableToLegalize; 3490 } 3491 3492 int NumParts = -1; 3493 int NumLeftover = -1; 3494 LLT LeftoverTy; 3495 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3496 if (IsLoad) { 3497 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3498 } else { 3499 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3500 NarrowLeftoverRegs)) { 3501 NumParts = NarrowRegs.size(); 3502 NumLeftover = NarrowLeftoverRegs.size(); 3503 } 3504 } 3505 3506 if (NumParts == -1) 3507 return UnableToLegalize; 3508 3509 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3510 3511 unsigned TotalSize = ValTy.getSizeInBits(); 3512 3513 // Split the load/store into PartTy sized pieces starting at Offset. If this 3514 // is a load, return the new registers in ValRegs. For a store, each elements 3515 // of ValRegs should be PartTy. Returns the next offset that needs to be 3516 // handled. 3517 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3518 unsigned Offset) -> unsigned { 3519 MachineFunction &MF = MIRBuilder.getMF(); 3520 unsigned PartSize = PartTy.getSizeInBits(); 3521 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3522 Offset += PartSize, ++Idx) { 3523 unsigned ByteSize = PartSize / 8; 3524 unsigned ByteOffset = Offset / 8; 3525 Register NewAddrReg; 3526 3527 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3528 3529 MachineMemOperand *NewMMO = 3530 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3531 3532 if (IsLoad) { 3533 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3534 ValRegs.push_back(Dst); 3535 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3536 } else { 3537 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3538 } 3539 } 3540 3541 return Offset; 3542 }; 3543 3544 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3545 3546 // Handle the rest of the register if this isn't an even type breakdown. 3547 if (LeftoverTy.isValid()) 3548 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3549 3550 if (IsLoad) { 3551 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3552 LeftoverTy, NarrowLeftoverRegs); 3553 } 3554 3555 MI.eraseFromParent(); 3556 return Legalized; 3557 } 3558 3559 LegalizerHelper::LegalizeResult 3560 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3561 LLT NarrowTy) { 3562 assert(TypeIdx == 0 && "only one type index expected"); 3563 3564 const unsigned Opc = MI.getOpcode(); 3565 const int NumOps = MI.getNumOperands() - 1; 3566 const Register DstReg = MI.getOperand(0).getReg(); 3567 const unsigned Flags = MI.getFlags(); 3568 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3569 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3570 3571 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3572 3573 // First of all check whether we are narrowing (changing the element type) 3574 // or reducing the vector elements 3575 const LLT DstTy = MRI.getType(DstReg); 3576 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3577 3578 SmallVector<Register, 8> ExtractedRegs[3]; 3579 SmallVector<Register, 8> Parts; 3580 3581 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3582 3583 // Break down all the sources into NarrowTy pieces we can operate on. This may 3584 // involve creating merges to a wider type, padded with undef. 3585 for (int I = 0; I != NumOps; ++I) { 3586 Register SrcReg = MI.getOperand(I + 1).getReg(); 3587 LLT SrcTy = MRI.getType(SrcReg); 3588 3589 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3590 // For fewerElements, this is a smaller vector with the same element type. 3591 LLT OpNarrowTy; 3592 if (IsNarrow) { 3593 OpNarrowTy = NarrowScalarTy; 3594 3595 // In case of narrowing, we need to cast vectors to scalars for this to 3596 // work properly 3597 // FIXME: Can we do without the bitcast here if we're narrowing? 3598 if (SrcTy.isVector()) { 3599 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3600 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3601 } 3602 } else { 3603 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3604 } 3605 3606 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3607 3608 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3609 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3610 TargetOpcode::G_ANYEXT); 3611 } 3612 3613 SmallVector<Register, 8> ResultRegs; 3614 3615 // Input operands for each sub-instruction. 3616 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3617 3618 int NumParts = ExtractedRegs[0].size(); 3619 const unsigned DstSize = DstTy.getSizeInBits(); 3620 const LLT DstScalarTy = LLT::scalar(DstSize); 3621 3622 // Narrowing needs to use scalar types 3623 LLT DstLCMTy, NarrowDstTy; 3624 if (IsNarrow) { 3625 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3626 NarrowDstTy = NarrowScalarTy; 3627 } else { 3628 DstLCMTy = getLCMType(DstTy, NarrowTy); 3629 NarrowDstTy = NarrowTy; 3630 } 3631 3632 // We widened the source registers to satisfy merge/unmerge size 3633 // constraints. We'll have some extra fully undef parts. 3634 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3635 3636 for (int I = 0; I != NumRealParts; ++I) { 3637 // Emit this instruction on each of the split pieces. 3638 for (int J = 0; J != NumOps; ++J) 3639 InputRegs[J] = ExtractedRegs[J][I]; 3640 3641 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3642 ResultRegs.push_back(Inst.getReg(0)); 3643 } 3644 3645 // Fill out the widened result with undef instead of creating instructions 3646 // with undef inputs. 3647 int NumUndefParts = NumParts - NumRealParts; 3648 if (NumUndefParts != 0) 3649 ResultRegs.append(NumUndefParts, 3650 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3651 3652 // Extract the possibly padded result. Use a scratch register if we need to do 3653 // a final bitcast, otherwise use the original result register. 3654 Register MergeDstReg; 3655 if (IsNarrow && DstTy.isVector()) 3656 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3657 else 3658 MergeDstReg = DstReg; 3659 3660 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3661 3662 // Recast to vector if we narrowed a vector 3663 if (IsNarrow && DstTy.isVector()) 3664 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3665 3666 MI.eraseFromParent(); 3667 return Legalized; 3668 } 3669 3670 LegalizerHelper::LegalizeResult 3671 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3672 LLT NarrowTy) { 3673 Register DstReg = MI.getOperand(0).getReg(); 3674 Register SrcReg = MI.getOperand(1).getReg(); 3675 int64_t Imm = MI.getOperand(2).getImm(); 3676 3677 LLT DstTy = MRI.getType(DstReg); 3678 3679 SmallVector<Register, 8> Parts; 3680 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3681 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3682 3683 for (Register &R : Parts) 3684 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3685 3686 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3687 3688 MI.eraseFromParent(); 3689 return Legalized; 3690 } 3691 3692 LegalizerHelper::LegalizeResult 3693 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3694 LLT NarrowTy) { 3695 using namespace TargetOpcode; 3696 3697 switch (MI.getOpcode()) { 3698 case G_IMPLICIT_DEF: 3699 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3700 case G_TRUNC: 3701 case G_AND: 3702 case G_OR: 3703 case G_XOR: 3704 case G_ADD: 3705 case G_SUB: 3706 case G_MUL: 3707 case G_PTR_ADD: 3708 case G_SMULH: 3709 case G_UMULH: 3710 case G_FADD: 3711 case G_FMUL: 3712 case G_FSUB: 3713 case G_FNEG: 3714 case G_FABS: 3715 case G_FCANONICALIZE: 3716 case G_FDIV: 3717 case G_FREM: 3718 case G_FMA: 3719 case G_FMAD: 3720 case G_FPOW: 3721 case G_FEXP: 3722 case G_FEXP2: 3723 case G_FLOG: 3724 case G_FLOG2: 3725 case G_FLOG10: 3726 case G_FNEARBYINT: 3727 case G_FCEIL: 3728 case G_FFLOOR: 3729 case G_FRINT: 3730 case G_INTRINSIC_ROUND: 3731 case G_INTRINSIC_ROUNDEVEN: 3732 case G_INTRINSIC_TRUNC: 3733 case G_FCOS: 3734 case G_FSIN: 3735 case G_FSQRT: 3736 case G_BSWAP: 3737 case G_BITREVERSE: 3738 case G_SDIV: 3739 case G_UDIV: 3740 case G_SREM: 3741 case G_UREM: 3742 case G_SMIN: 3743 case G_SMAX: 3744 case G_UMIN: 3745 case G_UMAX: 3746 case G_FMINNUM: 3747 case G_FMAXNUM: 3748 case G_FMINNUM_IEEE: 3749 case G_FMAXNUM_IEEE: 3750 case G_FMINIMUM: 3751 case G_FMAXIMUM: 3752 case G_FSHL: 3753 case G_FSHR: 3754 case G_FREEZE: 3755 case G_SADDSAT: 3756 case G_SSUBSAT: 3757 case G_UADDSAT: 3758 case G_USUBSAT: 3759 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3760 case G_SHL: 3761 case G_LSHR: 3762 case G_ASHR: 3763 case G_CTLZ: 3764 case G_CTLZ_ZERO_UNDEF: 3765 case G_CTTZ: 3766 case G_CTTZ_ZERO_UNDEF: 3767 case G_CTPOP: 3768 case G_FCOPYSIGN: 3769 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3770 case G_ZEXT: 3771 case G_SEXT: 3772 case G_ANYEXT: 3773 case G_FPEXT: 3774 case G_FPTRUNC: 3775 case G_SITOFP: 3776 case G_UITOFP: 3777 case G_FPTOSI: 3778 case G_FPTOUI: 3779 case G_INTTOPTR: 3780 case G_PTRTOINT: 3781 case G_ADDRSPACE_CAST: 3782 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3783 case G_ICMP: 3784 case G_FCMP: 3785 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3786 case G_SELECT: 3787 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3788 case G_PHI: 3789 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3790 case G_UNMERGE_VALUES: 3791 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3792 case G_BUILD_VECTOR: 3793 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3794 case G_LOAD: 3795 case G_STORE: 3796 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3797 case G_SEXT_INREG: 3798 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3799 default: 3800 return UnableToLegalize; 3801 } 3802 } 3803 3804 LegalizerHelper::LegalizeResult 3805 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3806 const LLT HalfTy, const LLT AmtTy) { 3807 3808 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3809 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3810 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3811 3812 if (Amt.isNullValue()) { 3813 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3814 MI.eraseFromParent(); 3815 return Legalized; 3816 } 3817 3818 LLT NVT = HalfTy; 3819 unsigned NVTBits = HalfTy.getSizeInBits(); 3820 unsigned VTBits = 2 * NVTBits; 3821 3822 SrcOp Lo(Register(0)), Hi(Register(0)); 3823 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3824 if (Amt.ugt(VTBits)) { 3825 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3826 } else if (Amt.ugt(NVTBits)) { 3827 Lo = MIRBuilder.buildConstant(NVT, 0); 3828 Hi = MIRBuilder.buildShl(NVT, InL, 3829 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3830 } else if (Amt == NVTBits) { 3831 Lo = MIRBuilder.buildConstant(NVT, 0); 3832 Hi = InL; 3833 } else { 3834 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3835 auto OrLHS = 3836 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3837 auto OrRHS = MIRBuilder.buildLShr( 3838 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3839 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3840 } 3841 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3842 if (Amt.ugt(VTBits)) { 3843 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3844 } else if (Amt.ugt(NVTBits)) { 3845 Lo = MIRBuilder.buildLShr(NVT, InH, 3846 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3847 Hi = MIRBuilder.buildConstant(NVT, 0); 3848 } else if (Amt == NVTBits) { 3849 Lo = InH; 3850 Hi = MIRBuilder.buildConstant(NVT, 0); 3851 } else { 3852 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3853 3854 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3855 auto OrRHS = MIRBuilder.buildShl( 3856 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3857 3858 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3859 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3860 } 3861 } else { 3862 if (Amt.ugt(VTBits)) { 3863 Hi = Lo = MIRBuilder.buildAShr( 3864 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3865 } else if (Amt.ugt(NVTBits)) { 3866 Lo = MIRBuilder.buildAShr(NVT, InH, 3867 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3868 Hi = MIRBuilder.buildAShr(NVT, InH, 3869 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3870 } else if (Amt == NVTBits) { 3871 Lo = InH; 3872 Hi = MIRBuilder.buildAShr(NVT, InH, 3873 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3874 } else { 3875 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3876 3877 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3878 auto OrRHS = MIRBuilder.buildShl( 3879 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3880 3881 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3882 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3883 } 3884 } 3885 3886 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3887 MI.eraseFromParent(); 3888 3889 return Legalized; 3890 } 3891 3892 // TODO: Optimize if constant shift amount. 3893 LegalizerHelper::LegalizeResult 3894 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3895 LLT RequestedTy) { 3896 if (TypeIdx == 1) { 3897 Observer.changingInstr(MI); 3898 narrowScalarSrc(MI, RequestedTy, 2); 3899 Observer.changedInstr(MI); 3900 return Legalized; 3901 } 3902 3903 Register DstReg = MI.getOperand(0).getReg(); 3904 LLT DstTy = MRI.getType(DstReg); 3905 if (DstTy.isVector()) 3906 return UnableToLegalize; 3907 3908 Register Amt = MI.getOperand(2).getReg(); 3909 LLT ShiftAmtTy = MRI.getType(Amt); 3910 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3911 if (DstEltSize % 2 != 0) 3912 return UnableToLegalize; 3913 3914 // Ignore the input type. We can only go to exactly half the size of the 3915 // input. If that isn't small enough, the resulting pieces will be further 3916 // legalized. 3917 const unsigned NewBitSize = DstEltSize / 2; 3918 const LLT HalfTy = LLT::scalar(NewBitSize); 3919 const LLT CondTy = LLT::scalar(1); 3920 3921 if (const MachineInstr *KShiftAmt = 3922 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3923 return narrowScalarShiftByConstant( 3924 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3925 } 3926 3927 // TODO: Expand with known bits. 3928 3929 // Handle the fully general expansion by an unknown amount. 3930 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3931 3932 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3933 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3934 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3935 3936 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3937 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3938 3939 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3940 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3941 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3942 3943 Register ResultRegs[2]; 3944 switch (MI.getOpcode()) { 3945 case TargetOpcode::G_SHL: { 3946 // Short: ShAmt < NewBitSize 3947 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3948 3949 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3950 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3951 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3952 3953 // Long: ShAmt >= NewBitSize 3954 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3955 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3956 3957 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3958 auto Hi = MIRBuilder.buildSelect( 3959 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3960 3961 ResultRegs[0] = Lo.getReg(0); 3962 ResultRegs[1] = Hi.getReg(0); 3963 break; 3964 } 3965 case TargetOpcode::G_LSHR: 3966 case TargetOpcode::G_ASHR: { 3967 // Short: ShAmt < NewBitSize 3968 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3969 3970 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3971 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3972 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3973 3974 // Long: ShAmt >= NewBitSize 3975 MachineInstrBuilder HiL; 3976 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3977 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3978 } else { 3979 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3980 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3981 } 3982 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3983 {InH, AmtExcess}); // Lo from Hi part. 3984 3985 auto Lo = MIRBuilder.buildSelect( 3986 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3987 3988 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3989 3990 ResultRegs[0] = Lo.getReg(0); 3991 ResultRegs[1] = Hi.getReg(0); 3992 break; 3993 } 3994 default: 3995 llvm_unreachable("not a shift"); 3996 } 3997 3998 MIRBuilder.buildMerge(DstReg, ResultRegs); 3999 MI.eraseFromParent(); 4000 return Legalized; 4001 } 4002 4003 LegalizerHelper::LegalizeResult 4004 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4005 LLT MoreTy) { 4006 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4007 4008 Observer.changingInstr(MI); 4009 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4010 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4011 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4012 moreElementsVectorSrc(MI, MoreTy, I); 4013 } 4014 4015 MachineBasicBlock &MBB = *MI.getParent(); 4016 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4017 moreElementsVectorDst(MI, MoreTy, 0); 4018 Observer.changedInstr(MI); 4019 return Legalized; 4020 } 4021 4022 LegalizerHelper::LegalizeResult 4023 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4024 LLT MoreTy) { 4025 unsigned Opc = MI.getOpcode(); 4026 switch (Opc) { 4027 case TargetOpcode::G_IMPLICIT_DEF: 4028 case TargetOpcode::G_LOAD: { 4029 if (TypeIdx != 0) 4030 return UnableToLegalize; 4031 Observer.changingInstr(MI); 4032 moreElementsVectorDst(MI, MoreTy, 0); 4033 Observer.changedInstr(MI); 4034 return Legalized; 4035 } 4036 case TargetOpcode::G_STORE: 4037 if (TypeIdx != 0) 4038 return UnableToLegalize; 4039 Observer.changingInstr(MI); 4040 moreElementsVectorSrc(MI, MoreTy, 0); 4041 Observer.changedInstr(MI); 4042 return Legalized; 4043 case TargetOpcode::G_AND: 4044 case TargetOpcode::G_OR: 4045 case TargetOpcode::G_XOR: 4046 case TargetOpcode::G_SMIN: 4047 case TargetOpcode::G_SMAX: 4048 case TargetOpcode::G_UMIN: 4049 case TargetOpcode::G_UMAX: 4050 case TargetOpcode::G_FMINNUM: 4051 case TargetOpcode::G_FMAXNUM: 4052 case TargetOpcode::G_FMINNUM_IEEE: 4053 case TargetOpcode::G_FMAXNUM_IEEE: 4054 case TargetOpcode::G_FMINIMUM: 4055 case TargetOpcode::G_FMAXIMUM: { 4056 Observer.changingInstr(MI); 4057 moreElementsVectorSrc(MI, MoreTy, 1); 4058 moreElementsVectorSrc(MI, MoreTy, 2); 4059 moreElementsVectorDst(MI, MoreTy, 0); 4060 Observer.changedInstr(MI); 4061 return Legalized; 4062 } 4063 case TargetOpcode::G_EXTRACT: 4064 if (TypeIdx != 1) 4065 return UnableToLegalize; 4066 Observer.changingInstr(MI); 4067 moreElementsVectorSrc(MI, MoreTy, 1); 4068 Observer.changedInstr(MI); 4069 return Legalized; 4070 case TargetOpcode::G_INSERT: 4071 case TargetOpcode::G_FREEZE: 4072 if (TypeIdx != 0) 4073 return UnableToLegalize; 4074 Observer.changingInstr(MI); 4075 moreElementsVectorSrc(MI, MoreTy, 1); 4076 moreElementsVectorDst(MI, MoreTy, 0); 4077 Observer.changedInstr(MI); 4078 return Legalized; 4079 case TargetOpcode::G_SELECT: 4080 if (TypeIdx != 0) 4081 return UnableToLegalize; 4082 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4083 return UnableToLegalize; 4084 4085 Observer.changingInstr(MI); 4086 moreElementsVectorSrc(MI, MoreTy, 2); 4087 moreElementsVectorSrc(MI, MoreTy, 3); 4088 moreElementsVectorDst(MI, MoreTy, 0); 4089 Observer.changedInstr(MI); 4090 return Legalized; 4091 case TargetOpcode::G_UNMERGE_VALUES: { 4092 if (TypeIdx != 1) 4093 return UnableToLegalize; 4094 4095 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4096 int NumDst = MI.getNumOperands() - 1; 4097 moreElementsVectorSrc(MI, MoreTy, NumDst); 4098 4099 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4100 for (int I = 0; I != NumDst; ++I) 4101 MIB.addDef(MI.getOperand(I).getReg()); 4102 4103 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4104 for (int I = NumDst; I != NewNumDst; ++I) 4105 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4106 4107 MIB.addUse(MI.getOperand(NumDst).getReg()); 4108 MI.eraseFromParent(); 4109 return Legalized; 4110 } 4111 case TargetOpcode::G_PHI: 4112 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4113 default: 4114 return UnableToLegalize; 4115 } 4116 } 4117 4118 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4119 ArrayRef<Register> Src1Regs, 4120 ArrayRef<Register> Src2Regs, 4121 LLT NarrowTy) { 4122 MachineIRBuilder &B = MIRBuilder; 4123 unsigned SrcParts = Src1Regs.size(); 4124 unsigned DstParts = DstRegs.size(); 4125 4126 unsigned DstIdx = 0; // Low bits of the result. 4127 Register FactorSum = 4128 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4129 DstRegs[DstIdx] = FactorSum; 4130 4131 unsigned CarrySumPrevDstIdx; 4132 SmallVector<Register, 4> Factors; 4133 4134 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4135 // Collect low parts of muls for DstIdx. 4136 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4137 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4138 MachineInstrBuilder Mul = 4139 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4140 Factors.push_back(Mul.getReg(0)); 4141 } 4142 // Collect high parts of muls from previous DstIdx. 4143 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4144 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4145 MachineInstrBuilder Umulh = 4146 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4147 Factors.push_back(Umulh.getReg(0)); 4148 } 4149 // Add CarrySum from additions calculated for previous DstIdx. 4150 if (DstIdx != 1) { 4151 Factors.push_back(CarrySumPrevDstIdx); 4152 } 4153 4154 Register CarrySum; 4155 // Add all factors and accumulate all carries into CarrySum. 4156 if (DstIdx != DstParts - 1) { 4157 MachineInstrBuilder Uaddo = 4158 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4159 FactorSum = Uaddo.getReg(0); 4160 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4161 for (unsigned i = 2; i < Factors.size(); ++i) { 4162 MachineInstrBuilder Uaddo = 4163 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4164 FactorSum = Uaddo.getReg(0); 4165 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4166 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4167 } 4168 } else { 4169 // Since value for the next index is not calculated, neither is CarrySum. 4170 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4171 for (unsigned i = 2; i < Factors.size(); ++i) 4172 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4173 } 4174 4175 CarrySumPrevDstIdx = CarrySum; 4176 DstRegs[DstIdx] = FactorSum; 4177 Factors.clear(); 4178 } 4179 } 4180 4181 LegalizerHelper::LegalizeResult 4182 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4183 Register DstReg = MI.getOperand(0).getReg(); 4184 Register Src1 = MI.getOperand(1).getReg(); 4185 Register Src2 = MI.getOperand(2).getReg(); 4186 4187 LLT Ty = MRI.getType(DstReg); 4188 if (Ty.isVector()) 4189 return UnableToLegalize; 4190 4191 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4192 unsigned DstSize = Ty.getSizeInBits(); 4193 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4194 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4195 return UnableToLegalize; 4196 4197 unsigned NumDstParts = DstSize / NarrowSize; 4198 unsigned NumSrcParts = SrcSize / NarrowSize; 4199 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4200 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4201 4202 SmallVector<Register, 2> Src1Parts, Src2Parts; 4203 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4204 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4205 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4206 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4207 4208 // Take only high half of registers if this is high mul. 4209 ArrayRef<Register> DstRegs( 4210 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4211 MIRBuilder.buildMerge(DstReg, DstRegs); 4212 MI.eraseFromParent(); 4213 return Legalized; 4214 } 4215 4216 LegalizerHelper::LegalizeResult 4217 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4218 LLT NarrowTy) { 4219 if (TypeIdx != 1) 4220 return UnableToLegalize; 4221 4222 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4223 4224 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4225 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4226 // NarrowSize. 4227 if (SizeOp1 % NarrowSize != 0) 4228 return UnableToLegalize; 4229 int NumParts = SizeOp1 / NarrowSize; 4230 4231 SmallVector<Register, 2> SrcRegs, DstRegs; 4232 SmallVector<uint64_t, 2> Indexes; 4233 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4234 4235 Register OpReg = MI.getOperand(0).getReg(); 4236 uint64_t OpStart = MI.getOperand(2).getImm(); 4237 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4238 for (int i = 0; i < NumParts; ++i) { 4239 unsigned SrcStart = i * NarrowSize; 4240 4241 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4242 // No part of the extract uses this subregister, ignore it. 4243 continue; 4244 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4245 // The entire subregister is extracted, forward the value. 4246 DstRegs.push_back(SrcRegs[i]); 4247 continue; 4248 } 4249 4250 // OpSegStart is where this destination segment would start in OpReg if it 4251 // extended infinitely in both directions. 4252 int64_t ExtractOffset; 4253 uint64_t SegSize; 4254 if (OpStart < SrcStart) { 4255 ExtractOffset = 0; 4256 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4257 } else { 4258 ExtractOffset = OpStart - SrcStart; 4259 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4260 } 4261 4262 Register SegReg = SrcRegs[i]; 4263 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4264 // A genuine extract is needed. 4265 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4266 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4267 } 4268 4269 DstRegs.push_back(SegReg); 4270 } 4271 4272 Register DstReg = MI.getOperand(0).getReg(); 4273 if (MRI.getType(DstReg).isVector()) 4274 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4275 else if (DstRegs.size() > 1) 4276 MIRBuilder.buildMerge(DstReg, DstRegs); 4277 else 4278 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4279 MI.eraseFromParent(); 4280 return Legalized; 4281 } 4282 4283 LegalizerHelper::LegalizeResult 4284 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4285 LLT NarrowTy) { 4286 // FIXME: Don't know how to handle secondary types yet. 4287 if (TypeIdx != 0) 4288 return UnableToLegalize; 4289 4290 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4291 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4292 4293 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4294 // NarrowSize. 4295 if (SizeOp0 % NarrowSize != 0) 4296 return UnableToLegalize; 4297 4298 int NumParts = SizeOp0 / NarrowSize; 4299 4300 SmallVector<Register, 2> SrcRegs, DstRegs; 4301 SmallVector<uint64_t, 2> Indexes; 4302 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4303 4304 Register OpReg = MI.getOperand(2).getReg(); 4305 uint64_t OpStart = MI.getOperand(3).getImm(); 4306 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4307 for (int i = 0; i < NumParts; ++i) { 4308 unsigned DstStart = i * NarrowSize; 4309 4310 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4311 // No part of the insert affects this subregister, forward the original. 4312 DstRegs.push_back(SrcRegs[i]); 4313 continue; 4314 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4315 // The entire subregister is defined by this insert, forward the new 4316 // value. 4317 DstRegs.push_back(OpReg); 4318 continue; 4319 } 4320 4321 // OpSegStart is where this destination segment would start in OpReg if it 4322 // extended infinitely in both directions. 4323 int64_t ExtractOffset, InsertOffset; 4324 uint64_t SegSize; 4325 if (OpStart < DstStart) { 4326 InsertOffset = 0; 4327 ExtractOffset = DstStart - OpStart; 4328 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4329 } else { 4330 InsertOffset = OpStart - DstStart; 4331 ExtractOffset = 0; 4332 SegSize = 4333 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4334 } 4335 4336 Register SegReg = OpReg; 4337 if (ExtractOffset != 0 || SegSize != OpSize) { 4338 // A genuine extract is needed. 4339 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4340 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4341 } 4342 4343 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4344 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4345 DstRegs.push_back(DstReg); 4346 } 4347 4348 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4349 Register DstReg = MI.getOperand(0).getReg(); 4350 if(MRI.getType(DstReg).isVector()) 4351 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4352 else 4353 MIRBuilder.buildMerge(DstReg, DstRegs); 4354 MI.eraseFromParent(); 4355 return Legalized; 4356 } 4357 4358 LegalizerHelper::LegalizeResult 4359 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4360 LLT NarrowTy) { 4361 Register DstReg = MI.getOperand(0).getReg(); 4362 LLT DstTy = MRI.getType(DstReg); 4363 4364 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4365 4366 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4367 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4368 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4369 LLT LeftoverTy; 4370 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4371 Src0Regs, Src0LeftoverRegs)) 4372 return UnableToLegalize; 4373 4374 LLT Unused; 4375 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4376 Src1Regs, Src1LeftoverRegs)) 4377 llvm_unreachable("inconsistent extractParts result"); 4378 4379 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4380 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4381 {Src0Regs[I], Src1Regs[I]}); 4382 DstRegs.push_back(Inst.getReg(0)); 4383 } 4384 4385 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4386 auto Inst = MIRBuilder.buildInstr( 4387 MI.getOpcode(), 4388 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4389 DstLeftoverRegs.push_back(Inst.getReg(0)); 4390 } 4391 4392 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4393 LeftoverTy, DstLeftoverRegs); 4394 4395 MI.eraseFromParent(); 4396 return Legalized; 4397 } 4398 4399 LegalizerHelper::LegalizeResult 4400 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4401 LLT NarrowTy) { 4402 if (TypeIdx != 0) 4403 return UnableToLegalize; 4404 4405 Register DstReg = MI.getOperand(0).getReg(); 4406 Register SrcReg = MI.getOperand(1).getReg(); 4407 4408 LLT DstTy = MRI.getType(DstReg); 4409 if (DstTy.isVector()) 4410 return UnableToLegalize; 4411 4412 SmallVector<Register, 8> Parts; 4413 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4414 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4415 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4416 4417 MI.eraseFromParent(); 4418 return Legalized; 4419 } 4420 4421 LegalizerHelper::LegalizeResult 4422 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4423 LLT NarrowTy) { 4424 if (TypeIdx != 0) 4425 return UnableToLegalize; 4426 4427 Register CondReg = MI.getOperand(1).getReg(); 4428 LLT CondTy = MRI.getType(CondReg); 4429 if (CondTy.isVector()) // TODO: Handle vselect 4430 return UnableToLegalize; 4431 4432 Register DstReg = MI.getOperand(0).getReg(); 4433 LLT DstTy = MRI.getType(DstReg); 4434 4435 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4436 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4437 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4438 LLT LeftoverTy; 4439 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4440 Src1Regs, Src1LeftoverRegs)) 4441 return UnableToLegalize; 4442 4443 LLT Unused; 4444 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4445 Src2Regs, Src2LeftoverRegs)) 4446 llvm_unreachable("inconsistent extractParts result"); 4447 4448 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4449 auto Select = MIRBuilder.buildSelect(NarrowTy, 4450 CondReg, Src1Regs[I], Src2Regs[I]); 4451 DstRegs.push_back(Select.getReg(0)); 4452 } 4453 4454 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4455 auto Select = MIRBuilder.buildSelect( 4456 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4457 DstLeftoverRegs.push_back(Select.getReg(0)); 4458 } 4459 4460 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4461 LeftoverTy, DstLeftoverRegs); 4462 4463 MI.eraseFromParent(); 4464 return Legalized; 4465 } 4466 4467 LegalizerHelper::LegalizeResult 4468 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4469 LLT NarrowTy) { 4470 if (TypeIdx != 1) 4471 return UnableToLegalize; 4472 4473 Register DstReg = MI.getOperand(0).getReg(); 4474 Register SrcReg = MI.getOperand(1).getReg(); 4475 LLT DstTy = MRI.getType(DstReg); 4476 LLT SrcTy = MRI.getType(SrcReg); 4477 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4478 4479 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4480 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4481 4482 MachineIRBuilder &B = MIRBuilder; 4483 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4484 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4485 auto C_0 = B.buildConstant(NarrowTy, 0); 4486 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4487 UnmergeSrc.getReg(1), C_0); 4488 auto LoCTLZ = IsUndef ? 4489 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4490 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4491 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4492 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4493 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4494 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4495 4496 MI.eraseFromParent(); 4497 return Legalized; 4498 } 4499 4500 return UnableToLegalize; 4501 } 4502 4503 LegalizerHelper::LegalizeResult 4504 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4505 LLT NarrowTy) { 4506 if (TypeIdx != 1) 4507 return UnableToLegalize; 4508 4509 Register DstReg = MI.getOperand(0).getReg(); 4510 Register SrcReg = MI.getOperand(1).getReg(); 4511 LLT DstTy = MRI.getType(DstReg); 4512 LLT SrcTy = MRI.getType(SrcReg); 4513 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4514 4515 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4516 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4517 4518 MachineIRBuilder &B = MIRBuilder; 4519 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4520 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4521 auto C_0 = B.buildConstant(NarrowTy, 0); 4522 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4523 UnmergeSrc.getReg(0), C_0); 4524 auto HiCTTZ = IsUndef ? 4525 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4526 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4527 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4528 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4529 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4530 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4531 4532 MI.eraseFromParent(); 4533 return Legalized; 4534 } 4535 4536 return UnableToLegalize; 4537 } 4538 4539 LegalizerHelper::LegalizeResult 4540 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4541 LLT NarrowTy) { 4542 if (TypeIdx != 1) 4543 return UnableToLegalize; 4544 4545 Register DstReg = MI.getOperand(0).getReg(); 4546 LLT DstTy = MRI.getType(DstReg); 4547 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4548 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4549 4550 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4551 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4552 4553 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4554 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4555 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4556 4557 MI.eraseFromParent(); 4558 return Legalized; 4559 } 4560 4561 return UnableToLegalize; 4562 } 4563 4564 LegalizerHelper::LegalizeResult 4565 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4566 unsigned Opc = MI.getOpcode(); 4567 const auto &TII = MIRBuilder.getTII(); 4568 auto isSupported = [this](const LegalityQuery &Q) { 4569 auto QAction = LI.getAction(Q).Action; 4570 return QAction == Legal || QAction == Libcall || QAction == Custom; 4571 }; 4572 switch (Opc) { 4573 default: 4574 return UnableToLegalize; 4575 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4576 // This trivially expands to CTLZ. 4577 Observer.changingInstr(MI); 4578 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4579 Observer.changedInstr(MI); 4580 return Legalized; 4581 } 4582 case TargetOpcode::G_CTLZ: { 4583 Register DstReg = MI.getOperand(0).getReg(); 4584 Register SrcReg = MI.getOperand(1).getReg(); 4585 LLT DstTy = MRI.getType(DstReg); 4586 LLT SrcTy = MRI.getType(SrcReg); 4587 unsigned Len = SrcTy.getSizeInBits(); 4588 4589 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4590 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4591 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4592 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4593 auto ICmp = MIRBuilder.buildICmp( 4594 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4595 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4596 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4597 MI.eraseFromParent(); 4598 return Legalized; 4599 } 4600 // for now, we do this: 4601 // NewLen = NextPowerOf2(Len); 4602 // x = x | (x >> 1); 4603 // x = x | (x >> 2); 4604 // ... 4605 // x = x | (x >>16); 4606 // x = x | (x >>32); // for 64-bit input 4607 // Upto NewLen/2 4608 // return Len - popcount(x); 4609 // 4610 // Ref: "Hacker's Delight" by Henry Warren 4611 Register Op = SrcReg; 4612 unsigned NewLen = PowerOf2Ceil(Len); 4613 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4614 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4615 auto MIBOp = MIRBuilder.buildOr( 4616 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4617 Op = MIBOp.getReg(0); 4618 } 4619 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4620 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4621 MIBPop); 4622 MI.eraseFromParent(); 4623 return Legalized; 4624 } 4625 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4626 // This trivially expands to CTTZ. 4627 Observer.changingInstr(MI); 4628 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4629 Observer.changedInstr(MI); 4630 return Legalized; 4631 } 4632 case TargetOpcode::G_CTTZ: { 4633 Register DstReg = MI.getOperand(0).getReg(); 4634 Register SrcReg = MI.getOperand(1).getReg(); 4635 LLT DstTy = MRI.getType(DstReg); 4636 LLT SrcTy = MRI.getType(SrcReg); 4637 4638 unsigned Len = SrcTy.getSizeInBits(); 4639 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4640 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4641 // zero. 4642 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4643 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4644 auto ICmp = MIRBuilder.buildICmp( 4645 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4646 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4647 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4648 MI.eraseFromParent(); 4649 return Legalized; 4650 } 4651 // for now, we use: { return popcount(~x & (x - 1)); } 4652 // unless the target has ctlz but not ctpop, in which case we use: 4653 // { return 32 - nlz(~x & (x-1)); } 4654 // Ref: "Hacker's Delight" by Henry Warren 4655 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4656 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4657 auto MIBTmp = MIRBuilder.buildAnd( 4658 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4659 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4660 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4661 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4662 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4663 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4664 MI.eraseFromParent(); 4665 return Legalized; 4666 } 4667 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4668 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4669 return Legalized; 4670 } 4671 case TargetOpcode::G_CTPOP: { 4672 unsigned Size = Ty.getSizeInBits(); 4673 MachineIRBuilder &B = MIRBuilder; 4674 4675 // Count set bits in blocks of 2 bits. Default approach would be 4676 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4677 // We use following formula instead: 4678 // B2Count = val - { (val >> 1) & 0x55555555 } 4679 // since it gives same result in blocks of 2 with one instruction less. 4680 auto C_1 = B.buildConstant(Ty, 1); 4681 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4682 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4683 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4684 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4685 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4686 4687 // In order to get count in blocks of 4 add values from adjacent block of 2. 4688 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4689 auto C_2 = B.buildConstant(Ty, 2); 4690 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4691 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4692 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4693 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4694 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4695 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4696 4697 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4698 // addition since count value sits in range {0,...,8} and 4 bits are enough 4699 // to hold such binary values. After addition high 4 bits still hold count 4700 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4701 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4702 auto C_4 = B.buildConstant(Ty, 4); 4703 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4704 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4705 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4706 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4707 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4708 4709 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4710 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4711 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4712 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4713 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4714 4715 // Shift count result from 8 high bits to low bits. 4716 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4717 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4718 4719 MI.eraseFromParent(); 4720 return Legalized; 4721 } 4722 } 4723 } 4724 4725 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4726 // representation. 4727 LegalizerHelper::LegalizeResult 4728 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4729 Register Dst = MI.getOperand(0).getReg(); 4730 Register Src = MI.getOperand(1).getReg(); 4731 const LLT S64 = LLT::scalar(64); 4732 const LLT S32 = LLT::scalar(32); 4733 const LLT S1 = LLT::scalar(1); 4734 4735 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4736 4737 // unsigned cul2f(ulong u) { 4738 // uint lz = clz(u); 4739 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4740 // u = (u << lz) & 0x7fffffffffffffffUL; 4741 // ulong t = u & 0xffffffffffUL; 4742 // uint v = (e << 23) | (uint)(u >> 40); 4743 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4744 // return as_float(v + r); 4745 // } 4746 4747 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4748 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4749 4750 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4751 4752 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4753 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4754 4755 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4756 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4757 4758 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4759 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4760 4761 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4762 4763 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4764 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4765 4766 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4767 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4768 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4769 4770 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4771 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4772 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4773 auto One = MIRBuilder.buildConstant(S32, 1); 4774 4775 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4776 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4777 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4778 MIRBuilder.buildAdd(Dst, V, R); 4779 4780 MI.eraseFromParent(); 4781 return Legalized; 4782 } 4783 4784 LegalizerHelper::LegalizeResult 4785 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4786 Register Dst = MI.getOperand(0).getReg(); 4787 Register Src = MI.getOperand(1).getReg(); 4788 LLT DstTy = MRI.getType(Dst); 4789 LLT SrcTy = MRI.getType(Src); 4790 4791 if (SrcTy == LLT::scalar(1)) { 4792 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4793 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4794 MIRBuilder.buildSelect(Dst, Src, True, False); 4795 MI.eraseFromParent(); 4796 return Legalized; 4797 } 4798 4799 if (SrcTy != LLT::scalar(64)) 4800 return UnableToLegalize; 4801 4802 if (DstTy == LLT::scalar(32)) { 4803 // TODO: SelectionDAG has several alternative expansions to port which may 4804 // be more reasonble depending on the available instructions. If a target 4805 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4806 // intermediate type, this is probably worse. 4807 return lowerU64ToF32BitOps(MI); 4808 } 4809 4810 return UnableToLegalize; 4811 } 4812 4813 LegalizerHelper::LegalizeResult 4814 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4815 Register Dst = MI.getOperand(0).getReg(); 4816 Register Src = MI.getOperand(1).getReg(); 4817 LLT DstTy = MRI.getType(Dst); 4818 LLT SrcTy = MRI.getType(Src); 4819 4820 const LLT S64 = LLT::scalar(64); 4821 const LLT S32 = LLT::scalar(32); 4822 const LLT S1 = LLT::scalar(1); 4823 4824 if (SrcTy == S1) { 4825 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4826 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4827 MIRBuilder.buildSelect(Dst, Src, True, False); 4828 MI.eraseFromParent(); 4829 return Legalized; 4830 } 4831 4832 if (SrcTy != S64) 4833 return UnableToLegalize; 4834 4835 if (DstTy == S32) { 4836 // signed cl2f(long l) { 4837 // long s = l >> 63; 4838 // float r = cul2f((l + s) ^ s); 4839 // return s ? -r : r; 4840 // } 4841 Register L = Src; 4842 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4843 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4844 4845 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4846 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4847 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4848 4849 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4850 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4851 MIRBuilder.buildConstant(S64, 0)); 4852 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4853 MI.eraseFromParent(); 4854 return Legalized; 4855 } 4856 4857 return UnableToLegalize; 4858 } 4859 4860 LegalizerHelper::LegalizeResult 4861 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4862 Register Dst = MI.getOperand(0).getReg(); 4863 Register Src = MI.getOperand(1).getReg(); 4864 LLT DstTy = MRI.getType(Dst); 4865 LLT SrcTy = MRI.getType(Src); 4866 const LLT S64 = LLT::scalar(64); 4867 const LLT S32 = LLT::scalar(32); 4868 4869 if (SrcTy != S64 && SrcTy != S32) 4870 return UnableToLegalize; 4871 if (DstTy != S32 && DstTy != S64) 4872 return UnableToLegalize; 4873 4874 // FPTOSI gives same result as FPTOUI for positive signed integers. 4875 // FPTOUI needs to deal with fp values that convert to unsigned integers 4876 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4877 4878 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4879 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4880 : APFloat::IEEEdouble(), 4881 APInt::getNullValue(SrcTy.getSizeInBits())); 4882 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4883 4884 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4885 4886 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4887 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4888 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4889 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4890 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4891 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4892 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4893 4894 const LLT S1 = LLT::scalar(1); 4895 4896 MachineInstrBuilder FCMP = 4897 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4898 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4899 4900 MI.eraseFromParent(); 4901 return Legalized; 4902 } 4903 4904 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4905 Register Dst = MI.getOperand(0).getReg(); 4906 Register Src = MI.getOperand(1).getReg(); 4907 LLT DstTy = MRI.getType(Dst); 4908 LLT SrcTy = MRI.getType(Src); 4909 const LLT S64 = LLT::scalar(64); 4910 const LLT S32 = LLT::scalar(32); 4911 4912 // FIXME: Only f32 to i64 conversions are supported. 4913 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4914 return UnableToLegalize; 4915 4916 // Expand f32 -> i64 conversion 4917 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4918 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4919 4920 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4921 4922 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4923 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4924 4925 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4926 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4927 4928 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4929 APInt::getSignMask(SrcEltBits)); 4930 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4931 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4932 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4933 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4934 4935 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4936 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4937 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4938 4939 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4940 R = MIRBuilder.buildZExt(DstTy, R); 4941 4942 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4943 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4944 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4945 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4946 4947 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4948 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4949 4950 const LLT S1 = LLT::scalar(1); 4951 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4952 S1, Exponent, ExponentLoBit); 4953 4954 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4955 4956 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4957 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4958 4959 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4960 4961 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4962 S1, Exponent, ZeroSrcTy); 4963 4964 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4965 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4966 4967 MI.eraseFromParent(); 4968 return Legalized; 4969 } 4970 4971 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4972 LegalizerHelper::LegalizeResult 4973 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4974 Register Dst = MI.getOperand(0).getReg(); 4975 Register Src = MI.getOperand(1).getReg(); 4976 4977 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4978 return UnableToLegalize; 4979 4980 const unsigned ExpMask = 0x7ff; 4981 const unsigned ExpBiasf64 = 1023; 4982 const unsigned ExpBiasf16 = 15; 4983 const LLT S32 = LLT::scalar(32); 4984 const LLT S1 = LLT::scalar(1); 4985 4986 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4987 Register U = Unmerge.getReg(0); 4988 Register UH = Unmerge.getReg(1); 4989 4990 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4991 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4992 4993 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4994 // add the f16 bias (15) to get the biased exponent for the f16 format. 4995 E = MIRBuilder.buildAdd( 4996 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4997 4998 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4999 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5000 5001 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5002 MIRBuilder.buildConstant(S32, 0x1ff)); 5003 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5004 5005 auto Zero = MIRBuilder.buildConstant(S32, 0); 5006 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5007 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5008 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5009 5010 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5011 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5012 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5013 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5014 5015 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5016 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5017 5018 // N = M | (E << 12); 5019 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5020 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5021 5022 // B = clamp(1-E, 0, 13); 5023 auto One = MIRBuilder.buildConstant(S32, 1); 5024 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5025 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5026 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5027 5028 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5029 MIRBuilder.buildConstant(S32, 0x1000)); 5030 5031 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5032 auto D0 = MIRBuilder.buildShl(S32, D, B); 5033 5034 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5035 D0, SigSetHigh); 5036 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5037 D = MIRBuilder.buildOr(S32, D, D1); 5038 5039 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5040 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5041 5042 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5043 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5044 5045 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5046 MIRBuilder.buildConstant(S32, 3)); 5047 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5048 5049 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5050 MIRBuilder.buildConstant(S32, 5)); 5051 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5052 5053 V1 = MIRBuilder.buildOr(S32, V0, V1); 5054 V = MIRBuilder.buildAdd(S32, V, V1); 5055 5056 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5057 E, MIRBuilder.buildConstant(S32, 30)); 5058 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5059 MIRBuilder.buildConstant(S32, 0x7c00), V); 5060 5061 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5062 E, MIRBuilder.buildConstant(S32, 1039)); 5063 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5064 5065 // Extract the sign bit. 5066 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5067 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5068 5069 // Insert the sign bit 5070 V = MIRBuilder.buildOr(S32, Sign, V); 5071 5072 MIRBuilder.buildTrunc(Dst, V); 5073 MI.eraseFromParent(); 5074 return Legalized; 5075 } 5076 5077 LegalizerHelper::LegalizeResult 5078 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5079 Register Dst = MI.getOperand(0).getReg(); 5080 Register Src = MI.getOperand(1).getReg(); 5081 5082 LLT DstTy = MRI.getType(Dst); 5083 LLT SrcTy = MRI.getType(Src); 5084 const LLT S64 = LLT::scalar(64); 5085 const LLT S16 = LLT::scalar(16); 5086 5087 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5088 return lowerFPTRUNC_F64_TO_F16(MI); 5089 5090 return UnableToLegalize; 5091 } 5092 5093 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5094 // multiplication tree. 5095 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5096 Register Dst = MI.getOperand(0).getReg(); 5097 Register Src0 = MI.getOperand(1).getReg(); 5098 Register Src1 = MI.getOperand(2).getReg(); 5099 LLT Ty = MRI.getType(Dst); 5100 5101 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5102 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5103 MI.eraseFromParent(); 5104 return Legalized; 5105 } 5106 5107 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5108 switch (Opc) { 5109 case TargetOpcode::G_SMIN: 5110 return CmpInst::ICMP_SLT; 5111 case TargetOpcode::G_SMAX: 5112 return CmpInst::ICMP_SGT; 5113 case TargetOpcode::G_UMIN: 5114 return CmpInst::ICMP_ULT; 5115 case TargetOpcode::G_UMAX: 5116 return CmpInst::ICMP_UGT; 5117 default: 5118 llvm_unreachable("not in integer min/max"); 5119 } 5120 } 5121 5122 LegalizerHelper::LegalizeResult 5123 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5124 Register Dst = MI.getOperand(0).getReg(); 5125 Register Src0 = MI.getOperand(1).getReg(); 5126 Register Src1 = MI.getOperand(2).getReg(); 5127 5128 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5129 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5130 5131 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5132 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5133 5134 MI.eraseFromParent(); 5135 return Legalized; 5136 } 5137 5138 LegalizerHelper::LegalizeResult 5139 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5140 Register Dst = MI.getOperand(0).getReg(); 5141 Register Src0 = MI.getOperand(1).getReg(); 5142 Register Src1 = MI.getOperand(2).getReg(); 5143 5144 const LLT Src0Ty = MRI.getType(Src0); 5145 const LLT Src1Ty = MRI.getType(Src1); 5146 5147 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5148 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5149 5150 auto SignBitMask = MIRBuilder.buildConstant( 5151 Src0Ty, APInt::getSignMask(Src0Size)); 5152 5153 auto NotSignBitMask = MIRBuilder.buildConstant( 5154 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5155 5156 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5157 MachineInstr *Or; 5158 5159 if (Src0Ty == Src1Ty) { 5160 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5161 Or = MIRBuilder.buildOr(Dst, And0, And1); 5162 } else if (Src0Size > Src1Size) { 5163 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5164 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5165 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5166 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5167 Or = MIRBuilder.buildOr(Dst, And0, And1); 5168 } else { 5169 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5170 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5171 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5172 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5173 Or = MIRBuilder.buildOr(Dst, And0, And1); 5174 } 5175 5176 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5177 // constants are a nan and -0.0, but the final result should preserve 5178 // everything. 5179 if (unsigned Flags = MI.getFlags()) 5180 Or->setFlags(Flags); 5181 5182 MI.eraseFromParent(); 5183 return Legalized; 5184 } 5185 5186 LegalizerHelper::LegalizeResult 5187 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5188 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5189 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5190 5191 Register Dst = MI.getOperand(0).getReg(); 5192 Register Src0 = MI.getOperand(1).getReg(); 5193 Register Src1 = MI.getOperand(2).getReg(); 5194 LLT Ty = MRI.getType(Dst); 5195 5196 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5197 // Insert canonicalizes if it's possible we need to quiet to get correct 5198 // sNaN behavior. 5199 5200 // Note this must be done here, and not as an optimization combine in the 5201 // absence of a dedicate quiet-snan instruction as we're using an 5202 // omni-purpose G_FCANONICALIZE. 5203 if (!isKnownNeverSNaN(Src0, MRI)) 5204 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5205 5206 if (!isKnownNeverSNaN(Src1, MRI)) 5207 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5208 } 5209 5210 // If there are no nans, it's safe to simply replace this with the non-IEEE 5211 // version. 5212 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5213 MI.eraseFromParent(); 5214 return Legalized; 5215 } 5216 5217 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5218 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5219 Register DstReg = MI.getOperand(0).getReg(); 5220 LLT Ty = MRI.getType(DstReg); 5221 unsigned Flags = MI.getFlags(); 5222 5223 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5224 Flags); 5225 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5226 MI.eraseFromParent(); 5227 return Legalized; 5228 } 5229 5230 LegalizerHelper::LegalizeResult 5231 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5232 Register DstReg = MI.getOperand(0).getReg(); 5233 Register X = MI.getOperand(1).getReg(); 5234 const unsigned Flags = MI.getFlags(); 5235 const LLT Ty = MRI.getType(DstReg); 5236 const LLT CondTy = Ty.changeElementSize(1); 5237 5238 // round(x) => 5239 // t = trunc(x); 5240 // d = fabs(x - t); 5241 // o = copysign(1.0f, x); 5242 // return t + (d >= 0.5 ? o : 0.0); 5243 5244 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5245 5246 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5247 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5248 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5249 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5250 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5251 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5252 5253 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5254 Flags); 5255 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5256 5257 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5258 5259 MI.eraseFromParent(); 5260 return Legalized; 5261 } 5262 5263 LegalizerHelper::LegalizeResult 5264 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5265 Register DstReg = MI.getOperand(0).getReg(); 5266 Register SrcReg = MI.getOperand(1).getReg(); 5267 unsigned Flags = MI.getFlags(); 5268 LLT Ty = MRI.getType(DstReg); 5269 const LLT CondTy = Ty.changeElementSize(1); 5270 5271 // result = trunc(src); 5272 // if (src < 0.0 && src != result) 5273 // result += -1.0. 5274 5275 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5276 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5277 5278 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5279 SrcReg, Zero, Flags); 5280 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5281 SrcReg, Trunc, Flags); 5282 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5283 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5284 5285 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5286 MI.eraseFromParent(); 5287 return Legalized; 5288 } 5289 5290 LegalizerHelper::LegalizeResult 5291 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5292 const unsigned NumOps = MI.getNumOperands(); 5293 Register DstReg = MI.getOperand(0).getReg(); 5294 Register Src0Reg = MI.getOperand(1).getReg(); 5295 LLT DstTy = MRI.getType(DstReg); 5296 LLT SrcTy = MRI.getType(Src0Reg); 5297 unsigned PartSize = SrcTy.getSizeInBits(); 5298 5299 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5300 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5301 5302 for (unsigned I = 2; I != NumOps; ++I) { 5303 const unsigned Offset = (I - 1) * PartSize; 5304 5305 Register SrcReg = MI.getOperand(I).getReg(); 5306 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5307 5308 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5309 MRI.createGenericVirtualRegister(WideTy); 5310 5311 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5312 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5313 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5314 ResultReg = NextResult; 5315 } 5316 5317 if (DstTy.isPointer()) { 5318 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5319 DstTy.getAddressSpace())) { 5320 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5321 return UnableToLegalize; 5322 } 5323 5324 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5325 } 5326 5327 MI.eraseFromParent(); 5328 return Legalized; 5329 } 5330 5331 LegalizerHelper::LegalizeResult 5332 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5333 const unsigned NumDst = MI.getNumOperands() - 1; 5334 Register SrcReg = MI.getOperand(NumDst).getReg(); 5335 Register Dst0Reg = MI.getOperand(0).getReg(); 5336 LLT DstTy = MRI.getType(Dst0Reg); 5337 if (DstTy.isPointer()) 5338 return UnableToLegalize; // TODO 5339 5340 SrcReg = coerceToScalar(SrcReg); 5341 if (!SrcReg) 5342 return UnableToLegalize; 5343 5344 // Expand scalarizing unmerge as bitcast to integer and shift. 5345 LLT IntTy = MRI.getType(SrcReg); 5346 5347 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5348 5349 const unsigned DstSize = DstTy.getSizeInBits(); 5350 unsigned Offset = DstSize; 5351 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5352 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5353 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5354 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5355 } 5356 5357 MI.eraseFromParent(); 5358 return Legalized; 5359 } 5360 5361 /// Lower a vector extract by writing the vector to a stack temporary and 5362 /// reloading the element. 5363 /// 5364 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5365 /// => 5366 /// %stack_temp = G_FRAME_INDEX 5367 /// G_STORE %vec, %stack_temp 5368 /// %idx = clamp(%idx, %vec.getNumElements()) 5369 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5370 /// %dst = G_LOAD %element_ptr 5371 LegalizerHelper::LegalizeResult 5372 LegalizerHelper::lowerExtractVectorElt(MachineInstr &MI) { 5373 Register DstReg = MI.getOperand(0).getReg(); 5374 Register SrcVec = MI.getOperand(1).getReg(); 5375 Register Idx = MI.getOperand(2).getReg(); 5376 LLT VecTy = MRI.getType(SrcVec); 5377 LLT EltTy = VecTy.getElementType(); 5378 if (!EltTy.isByteSized()) { // Not implemented. 5379 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5380 return UnableToLegalize; 5381 } 5382 5383 unsigned EltBytes = EltTy.getSizeInBytes(); 5384 Align StoreAlign = getStackTemporaryAlignment(VecTy); 5385 Align LoadAlign; 5386 5387 MachinePointerInfo PtrInfo; 5388 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5389 StoreAlign, PtrInfo); 5390 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, StoreAlign); 5391 5392 // Get the pointer to the element, and be sure not to hit undefined behavior 5393 // if the index is out of bounds. 5394 Register LoadPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5395 5396 int64_t IdxVal; 5397 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5398 int64_t Offset = IdxVal * EltBytes; 5399 PtrInfo = PtrInfo.getWithOffset(Offset); 5400 LoadAlign = commonAlignment(StoreAlign, Offset); 5401 } else { 5402 // We lose information with a variable offset. 5403 LoadAlign = getStackTemporaryAlignment(EltTy); 5404 PtrInfo = MachinePointerInfo(MRI.getType(LoadPtr).getAddressSpace()); 5405 } 5406 5407 MIRBuilder.buildLoad(DstReg, LoadPtr, PtrInfo, LoadAlign); 5408 MI.eraseFromParent(); 5409 return Legalized; 5410 } 5411 5412 LegalizerHelper::LegalizeResult 5413 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5414 Register DstReg = MI.getOperand(0).getReg(); 5415 Register Src0Reg = MI.getOperand(1).getReg(); 5416 Register Src1Reg = MI.getOperand(2).getReg(); 5417 LLT Src0Ty = MRI.getType(Src0Reg); 5418 LLT DstTy = MRI.getType(DstReg); 5419 LLT IdxTy = LLT::scalar(32); 5420 5421 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5422 5423 if (DstTy.isScalar()) { 5424 if (Src0Ty.isVector()) 5425 return UnableToLegalize; 5426 5427 // This is just a SELECT. 5428 assert(Mask.size() == 1 && "Expected a single mask element"); 5429 Register Val; 5430 if (Mask[0] < 0 || Mask[0] > 1) 5431 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5432 else 5433 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5434 MIRBuilder.buildCopy(DstReg, Val); 5435 MI.eraseFromParent(); 5436 return Legalized; 5437 } 5438 5439 Register Undef; 5440 SmallVector<Register, 32> BuildVec; 5441 LLT EltTy = DstTy.getElementType(); 5442 5443 for (int Idx : Mask) { 5444 if (Idx < 0) { 5445 if (!Undef.isValid()) 5446 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5447 BuildVec.push_back(Undef); 5448 continue; 5449 } 5450 5451 if (Src0Ty.isScalar()) { 5452 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5453 } else { 5454 int NumElts = Src0Ty.getNumElements(); 5455 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5456 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5457 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5458 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5459 BuildVec.push_back(Extract.getReg(0)); 5460 } 5461 } 5462 5463 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5464 MI.eraseFromParent(); 5465 return Legalized; 5466 } 5467 5468 LegalizerHelper::LegalizeResult 5469 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5470 const auto &MF = *MI.getMF(); 5471 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5472 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5473 return UnableToLegalize; 5474 5475 Register Dst = MI.getOperand(0).getReg(); 5476 Register AllocSize = MI.getOperand(1).getReg(); 5477 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5478 5479 LLT PtrTy = MRI.getType(Dst); 5480 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5481 5482 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5483 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5484 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5485 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5486 5487 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5488 // have to generate an extra instruction to negate the alloc and then use 5489 // G_PTR_ADD to add the negative offset. 5490 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5491 if (Alignment > Align(1)) { 5492 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5493 AlignMask.negate(); 5494 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5495 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5496 } 5497 5498 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5499 MIRBuilder.buildCopy(SPReg, SPTmp); 5500 MIRBuilder.buildCopy(Dst, SPTmp); 5501 5502 MI.eraseFromParent(); 5503 return Legalized; 5504 } 5505 5506 LegalizerHelper::LegalizeResult 5507 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5508 Register Dst = MI.getOperand(0).getReg(); 5509 Register Src = MI.getOperand(1).getReg(); 5510 unsigned Offset = MI.getOperand(2).getImm(); 5511 5512 LLT DstTy = MRI.getType(Dst); 5513 LLT SrcTy = MRI.getType(Src); 5514 5515 if (DstTy.isScalar() && 5516 (SrcTy.isScalar() || 5517 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5518 LLT SrcIntTy = SrcTy; 5519 if (!SrcTy.isScalar()) { 5520 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5521 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5522 } 5523 5524 if (Offset == 0) 5525 MIRBuilder.buildTrunc(Dst, Src); 5526 else { 5527 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5528 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5529 MIRBuilder.buildTrunc(Dst, Shr); 5530 } 5531 5532 MI.eraseFromParent(); 5533 return Legalized; 5534 } 5535 5536 return UnableToLegalize; 5537 } 5538 5539 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5540 Register Dst = MI.getOperand(0).getReg(); 5541 Register Src = MI.getOperand(1).getReg(); 5542 Register InsertSrc = MI.getOperand(2).getReg(); 5543 uint64_t Offset = MI.getOperand(3).getImm(); 5544 5545 LLT DstTy = MRI.getType(Src); 5546 LLT InsertTy = MRI.getType(InsertSrc); 5547 5548 if (InsertTy.isVector() || 5549 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5550 return UnableToLegalize; 5551 5552 const DataLayout &DL = MIRBuilder.getDataLayout(); 5553 if ((DstTy.isPointer() && 5554 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5555 (InsertTy.isPointer() && 5556 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5557 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5558 return UnableToLegalize; 5559 } 5560 5561 LLT IntDstTy = DstTy; 5562 5563 if (!DstTy.isScalar()) { 5564 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5565 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5566 } 5567 5568 if (!InsertTy.isScalar()) { 5569 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5570 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5571 } 5572 5573 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5574 if (Offset != 0) { 5575 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5576 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5577 } 5578 5579 APInt MaskVal = APInt::getBitsSetWithWrap( 5580 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5581 5582 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5583 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5584 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5585 5586 MIRBuilder.buildCast(Dst, Or); 5587 MI.eraseFromParent(); 5588 return Legalized; 5589 } 5590 5591 LegalizerHelper::LegalizeResult 5592 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5593 Register Dst0 = MI.getOperand(0).getReg(); 5594 Register Dst1 = MI.getOperand(1).getReg(); 5595 Register LHS = MI.getOperand(2).getReg(); 5596 Register RHS = MI.getOperand(3).getReg(); 5597 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5598 5599 LLT Ty = MRI.getType(Dst0); 5600 LLT BoolTy = MRI.getType(Dst1); 5601 5602 if (IsAdd) 5603 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5604 else 5605 MIRBuilder.buildSub(Dst0, LHS, RHS); 5606 5607 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5608 5609 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5610 5611 // For an addition, the result should be less than one of the operands (LHS) 5612 // if and only if the other operand (RHS) is negative, otherwise there will 5613 // be overflow. 5614 // For a subtraction, the result should be less than one of the operands 5615 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5616 // otherwise there will be overflow. 5617 auto ResultLowerThanLHS = 5618 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5619 auto ConditionRHS = MIRBuilder.buildICmp( 5620 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5621 5622 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5623 MI.eraseFromParent(); 5624 return Legalized; 5625 } 5626 5627 LegalizerHelper::LegalizeResult 5628 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5629 Register Res = MI.getOperand(0).getReg(); 5630 Register LHS = MI.getOperand(1).getReg(); 5631 Register RHS = MI.getOperand(2).getReg(); 5632 LLT Ty = MRI.getType(Res); 5633 bool IsSigned; 5634 bool IsAdd; 5635 unsigned BaseOp; 5636 switch (MI.getOpcode()) { 5637 default: 5638 llvm_unreachable("unexpected addsat/subsat opcode"); 5639 case TargetOpcode::G_UADDSAT: 5640 IsSigned = false; 5641 IsAdd = true; 5642 BaseOp = TargetOpcode::G_ADD; 5643 break; 5644 case TargetOpcode::G_SADDSAT: 5645 IsSigned = true; 5646 IsAdd = true; 5647 BaseOp = TargetOpcode::G_ADD; 5648 break; 5649 case TargetOpcode::G_USUBSAT: 5650 IsSigned = false; 5651 IsAdd = false; 5652 BaseOp = TargetOpcode::G_SUB; 5653 break; 5654 case TargetOpcode::G_SSUBSAT: 5655 IsSigned = true; 5656 IsAdd = false; 5657 BaseOp = TargetOpcode::G_SUB; 5658 break; 5659 } 5660 5661 if (IsSigned) { 5662 // sadd.sat(a, b) -> 5663 // hi = 0x7fffffff - smax(a, 0) 5664 // lo = 0x80000000 - smin(a, 0) 5665 // a + smin(smax(lo, b), hi) 5666 // ssub.sat(a, b) -> 5667 // lo = smax(a, -1) - 0x7fffffff 5668 // hi = smin(a, -1) - 0x80000000 5669 // a - smin(smax(lo, b), hi) 5670 // TODO: AMDGPU can use a "median of 3" instruction here: 5671 // a +/- med3(lo, b, hi) 5672 uint64_t NumBits = Ty.getScalarSizeInBits(); 5673 auto MaxVal = 5674 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5675 auto MinVal = 5676 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5677 MachineInstrBuilder Hi, Lo; 5678 if (IsAdd) { 5679 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5680 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5681 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5682 } else { 5683 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5684 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5685 MaxVal); 5686 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5687 MinVal); 5688 } 5689 auto RHSClamped = 5690 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5691 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5692 } else { 5693 // uadd.sat(a, b) -> a + umin(~a, b) 5694 // usub.sat(a, b) -> a - umin(a, b) 5695 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5696 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5697 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5698 } 5699 5700 MI.eraseFromParent(); 5701 return Legalized; 5702 } 5703 5704 LegalizerHelper::LegalizeResult 5705 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5706 Register Res = MI.getOperand(0).getReg(); 5707 Register LHS = MI.getOperand(1).getReg(); 5708 Register RHS = MI.getOperand(2).getReg(); 5709 LLT Ty = MRI.getType(Res); 5710 LLT BoolTy = Ty.changeElementSize(1); 5711 bool IsSigned; 5712 bool IsAdd; 5713 unsigned OverflowOp; 5714 switch (MI.getOpcode()) { 5715 default: 5716 llvm_unreachable("unexpected addsat/subsat opcode"); 5717 case TargetOpcode::G_UADDSAT: 5718 IsSigned = false; 5719 IsAdd = true; 5720 OverflowOp = TargetOpcode::G_UADDO; 5721 break; 5722 case TargetOpcode::G_SADDSAT: 5723 IsSigned = true; 5724 IsAdd = true; 5725 OverflowOp = TargetOpcode::G_SADDO; 5726 break; 5727 case TargetOpcode::G_USUBSAT: 5728 IsSigned = false; 5729 IsAdd = false; 5730 OverflowOp = TargetOpcode::G_USUBO; 5731 break; 5732 case TargetOpcode::G_SSUBSAT: 5733 IsSigned = true; 5734 IsAdd = false; 5735 OverflowOp = TargetOpcode::G_SSUBO; 5736 break; 5737 } 5738 5739 auto OverflowRes = 5740 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5741 Register Tmp = OverflowRes.getReg(0); 5742 Register Ov = OverflowRes.getReg(1); 5743 MachineInstrBuilder Clamp; 5744 if (IsSigned) { 5745 // sadd.sat(a, b) -> 5746 // {tmp, ov} = saddo(a, b) 5747 // ov ? (tmp >>s 31) + 0x80000000 : r 5748 // ssub.sat(a, b) -> 5749 // {tmp, ov} = ssubo(a, b) 5750 // ov ? (tmp >>s 31) + 0x80000000 : r 5751 uint64_t NumBits = Ty.getScalarSizeInBits(); 5752 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5753 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5754 auto MinVal = 5755 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5756 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5757 } else { 5758 // uadd.sat(a, b) -> 5759 // {tmp, ov} = uaddo(a, b) 5760 // ov ? 0xffffffff : tmp 5761 // usub.sat(a, b) -> 5762 // {tmp, ov} = usubo(a, b) 5763 // ov ? 0 : tmp 5764 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5765 } 5766 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5767 5768 MI.eraseFromParent(); 5769 return Legalized; 5770 } 5771 5772 LegalizerHelper::LegalizeResult 5773 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5774 Register Dst = MI.getOperand(0).getReg(); 5775 Register Src = MI.getOperand(1).getReg(); 5776 const LLT Ty = MRI.getType(Src); 5777 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5778 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5779 5780 // Swap most and least significant byte, set remaining bytes in Res to zero. 5781 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5782 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5783 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5784 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5785 5786 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5787 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5788 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5789 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5790 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5791 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5792 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5793 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5794 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5795 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5796 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5797 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5798 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5799 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5800 } 5801 Res.getInstr()->getOperand(0).setReg(Dst); 5802 5803 MI.eraseFromParent(); 5804 return Legalized; 5805 } 5806 5807 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5808 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5809 MachineInstrBuilder Src, APInt Mask) { 5810 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5811 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5812 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5813 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5814 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5815 return B.buildOr(Dst, LHS, RHS); 5816 } 5817 5818 LegalizerHelper::LegalizeResult 5819 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5820 Register Dst = MI.getOperand(0).getReg(); 5821 Register Src = MI.getOperand(1).getReg(); 5822 const LLT Ty = MRI.getType(Src); 5823 unsigned Size = Ty.getSizeInBits(); 5824 5825 MachineInstrBuilder BSWAP = 5826 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5827 5828 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5829 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5830 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5831 MachineInstrBuilder Swap4 = 5832 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5833 5834 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5835 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5836 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5837 MachineInstrBuilder Swap2 = 5838 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5839 5840 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5841 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5842 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5843 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5844 5845 MI.eraseFromParent(); 5846 return Legalized; 5847 } 5848 5849 LegalizerHelper::LegalizeResult 5850 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5851 MachineFunction &MF = MIRBuilder.getMF(); 5852 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5853 const TargetLowering *TLI = STI.getTargetLowering(); 5854 5855 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5856 int NameOpIdx = IsRead ? 1 : 0; 5857 int ValRegIndex = IsRead ? 0 : 1; 5858 5859 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5860 const LLT Ty = MRI.getType(ValReg); 5861 const MDString *RegStr = cast<MDString>( 5862 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5863 5864 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5865 if (!PhysReg.isValid()) 5866 return UnableToLegalize; 5867 5868 if (IsRead) 5869 MIRBuilder.buildCopy(ValReg, PhysReg); 5870 else 5871 MIRBuilder.buildCopy(PhysReg, ValReg); 5872 5873 MI.eraseFromParent(); 5874 return Legalized; 5875 } 5876