1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 86 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 87 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 88 : UnableToLegalize; 89 auto Step = LI.getAction(MI, MRI); 90 switch (Step.Action) { 91 case Legal: 92 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 93 return AlreadyLegal; 94 case Libcall: 95 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 96 return libcall(MI); 97 case NarrowScalar: 98 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 99 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 100 case WidenScalar: 101 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 102 return widenScalar(MI, Step.TypeIdx, Step.NewType); 103 case Lower: 104 LLVM_DEBUG(dbgs() << ".. Lower\n"); 105 return lower(MI, Step.TypeIdx, Step.NewType); 106 case FewerElements: 107 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 108 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 109 case MoreElements: 110 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 111 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 112 case Custom: 113 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 114 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 115 : UnableToLegalize; 116 default: 117 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 118 return UnableToLegalize; 119 } 120 } 121 122 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 123 SmallVectorImpl<Register> &VRegs) { 124 for (int i = 0; i < NumParts; ++i) 125 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 126 MIRBuilder.buildUnmerge(VRegs, Reg); 127 } 128 129 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 130 LLT MainTy, LLT &LeftoverTy, 131 SmallVectorImpl<Register> &VRegs, 132 SmallVectorImpl<Register> &LeftoverRegs) { 133 assert(!LeftoverTy.isValid() && "this is an out argument"); 134 135 unsigned RegSize = RegTy.getSizeInBits(); 136 unsigned MainSize = MainTy.getSizeInBits(); 137 unsigned NumParts = RegSize / MainSize; 138 unsigned LeftoverSize = RegSize - NumParts * MainSize; 139 140 // Use an unmerge when possible. 141 if (LeftoverSize == 0) { 142 for (unsigned I = 0; I < NumParts; ++I) 143 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 144 MIRBuilder.buildUnmerge(VRegs, Reg); 145 return true; 146 } 147 148 if (MainTy.isVector()) { 149 unsigned EltSize = MainTy.getScalarSizeInBits(); 150 if (LeftoverSize % EltSize != 0) 151 return false; 152 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 153 } else { 154 LeftoverTy = LLT::scalar(LeftoverSize); 155 } 156 157 // For irregular sizes, extract the individual parts. 158 for (unsigned I = 0; I != NumParts; ++I) { 159 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 160 VRegs.push_back(NewReg); 161 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 162 } 163 164 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 165 Offset += LeftoverSize) { 166 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 167 LeftoverRegs.push_back(NewReg); 168 MIRBuilder.buildExtract(NewReg, Reg, Offset); 169 } 170 171 return true; 172 } 173 174 void LegalizerHelper::insertParts(Register DstReg, 175 LLT ResultTy, LLT PartTy, 176 ArrayRef<Register> PartRegs, 177 LLT LeftoverTy, 178 ArrayRef<Register> LeftoverRegs) { 179 if (!LeftoverTy.isValid()) { 180 assert(LeftoverRegs.empty()); 181 182 if (!ResultTy.isVector()) { 183 MIRBuilder.buildMerge(DstReg, PartRegs); 184 return; 185 } 186 187 if (PartTy.isVector()) 188 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 189 else 190 MIRBuilder.buildBuildVector(DstReg, PartRegs); 191 return; 192 } 193 194 unsigned PartSize = PartTy.getSizeInBits(); 195 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 196 197 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 198 MIRBuilder.buildUndef(CurResultReg); 199 200 unsigned Offset = 0; 201 for (Register PartReg : PartRegs) { 202 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 203 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 204 CurResultReg = NewResultReg; 205 Offset += PartSize; 206 } 207 208 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 209 // Use the original output register for the final insert to avoid a copy. 210 Register NewResultReg = (I + 1 == E) ? 211 DstReg : MRI.createGenericVirtualRegister(ResultTy); 212 213 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 214 CurResultReg = NewResultReg; 215 Offset += LeftoverPartSize; 216 } 217 } 218 219 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 220 switch (Opcode) { 221 case TargetOpcode::G_SDIV: 222 assert((Size == 32 || Size == 64) && "Unsupported size"); 223 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 224 case TargetOpcode::G_UDIV: 225 assert((Size == 32 || Size == 64) && "Unsupported size"); 226 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 227 case TargetOpcode::G_SREM: 228 assert((Size == 32 || Size == 64) && "Unsupported size"); 229 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 230 case TargetOpcode::G_UREM: 231 assert((Size == 32 || Size == 64) && "Unsupported size"); 232 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 233 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 234 assert(Size == 32 && "Unsupported size"); 235 return RTLIB::CTLZ_I32; 236 case TargetOpcode::G_FADD: 237 assert((Size == 32 || Size == 64) && "Unsupported size"); 238 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 239 case TargetOpcode::G_FSUB: 240 assert((Size == 32 || Size == 64) && "Unsupported size"); 241 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 242 case TargetOpcode::G_FMUL: 243 assert((Size == 32 || Size == 64) && "Unsupported size"); 244 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 245 case TargetOpcode::G_FDIV: 246 assert((Size == 32 || Size == 64) && "Unsupported size"); 247 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 248 case TargetOpcode::G_FEXP: 249 assert((Size == 32 || Size == 64) && "Unsupported size"); 250 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 251 case TargetOpcode::G_FEXP2: 252 assert((Size == 32 || Size == 64) && "Unsupported size"); 253 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 254 case TargetOpcode::G_FREM: 255 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 256 case TargetOpcode::G_FPOW: 257 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 258 case TargetOpcode::G_FMA: 259 assert((Size == 32 || Size == 64) && "Unsupported size"); 260 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 261 case TargetOpcode::G_FSIN: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::SIN_F128 264 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 265 case TargetOpcode::G_FCOS: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::COS_F128 268 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 269 case TargetOpcode::G_FLOG10: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG10_F128 272 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 273 case TargetOpcode::G_FLOG: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG_F128 276 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 277 case TargetOpcode::G_FLOG2: 278 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 279 return Size == 128 ? RTLIB::LOG2_F128 280 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 281 case TargetOpcode::G_FCEIL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 284 case TargetOpcode::G_FFLOOR: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 287 } 288 llvm_unreachable("Unknown libcall function"); 289 } 290 291 LegalizerHelper::LegalizeResult 292 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 293 const CallLowering::ArgInfo &Result, 294 ArrayRef<CallLowering::ArgInfo> Args) { 295 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 296 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 297 const char *Name = TLI.getLibcallName(Libcall); 298 299 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 300 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 301 MachineOperand::CreateES(Name), Result, Args)) 302 return LegalizerHelper::UnableToLegalize; 303 304 return LegalizerHelper::Legalized; 305 } 306 307 // Useful for libcalls where all operands have the same type. 308 static LegalizerHelper::LegalizeResult 309 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 310 Type *OpType) { 311 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 312 313 SmallVector<CallLowering::ArgInfo, 3> Args; 314 for (unsigned i = 1; i < MI.getNumOperands(); i++) 315 Args.push_back({MI.getOperand(i).getReg(), OpType}); 316 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 317 Args); 318 } 319 320 LegalizerHelper::LegalizeResult 321 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 322 MachineInstr &MI) { 323 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 324 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 325 326 SmallVector<CallLowering::ArgInfo, 3> Args; 327 for (unsigned i = 1; i < MI.getNumOperands(); i++) { 328 Register Reg = MI.getOperand(i).getReg(); 329 330 // Need derive an IR type for call lowering. 331 LLT OpLLT = MRI.getType(Reg); 332 Type *OpTy = nullptr; 333 if (OpLLT.isPointer()) 334 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 335 else 336 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 337 Args.push_back({Reg, OpTy}); 338 } 339 340 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 341 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 342 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 343 RTLIB::Libcall RTLibcall; 344 switch (ID) { 345 case Intrinsic::memcpy: 346 RTLibcall = RTLIB::MEMCPY; 347 break; 348 case Intrinsic::memset: 349 RTLibcall = RTLIB::MEMSET; 350 break; 351 case Intrinsic::memmove: 352 RTLibcall = RTLIB::MEMMOVE; 353 break; 354 default: 355 return LegalizerHelper::UnableToLegalize; 356 } 357 const char *Name = TLI.getLibcallName(RTLibcall); 358 359 MIRBuilder.setInstr(MI); 360 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 361 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(RTLibcall), 362 MachineOperand::CreateES(Name), 363 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)), Args)) 364 return LegalizerHelper::UnableToLegalize; 365 366 return LegalizerHelper::Legalized; 367 } 368 369 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 370 Type *FromType) { 371 auto ToMVT = MVT::getVT(ToType); 372 auto FromMVT = MVT::getVT(FromType); 373 374 switch (Opcode) { 375 case TargetOpcode::G_FPEXT: 376 return RTLIB::getFPEXT(FromMVT, ToMVT); 377 case TargetOpcode::G_FPTRUNC: 378 return RTLIB::getFPROUND(FromMVT, ToMVT); 379 case TargetOpcode::G_FPTOSI: 380 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 381 case TargetOpcode::G_FPTOUI: 382 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 383 case TargetOpcode::G_SITOFP: 384 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 385 case TargetOpcode::G_UITOFP: 386 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 387 } 388 llvm_unreachable("Unsupported libcall function"); 389 } 390 391 static LegalizerHelper::LegalizeResult 392 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 393 Type *FromType) { 394 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 395 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 396 {{MI.getOperand(1).getReg(), FromType}}); 397 } 398 399 LegalizerHelper::LegalizeResult 400 LegalizerHelper::libcall(MachineInstr &MI) { 401 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 402 unsigned Size = LLTy.getSizeInBits(); 403 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 404 405 MIRBuilder.setInstr(MI); 406 407 switch (MI.getOpcode()) { 408 default: 409 return UnableToLegalize; 410 case TargetOpcode::G_SDIV: 411 case TargetOpcode::G_UDIV: 412 case TargetOpcode::G_SREM: 413 case TargetOpcode::G_UREM: 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 415 Type *HLTy = IntegerType::get(Ctx, Size); 416 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 417 if (Status != Legalized) 418 return Status; 419 break; 420 } 421 case TargetOpcode::G_FADD: 422 case TargetOpcode::G_FSUB: 423 case TargetOpcode::G_FMUL: 424 case TargetOpcode::G_FDIV: 425 case TargetOpcode::G_FMA: 426 case TargetOpcode::G_FPOW: 427 case TargetOpcode::G_FREM: 428 case TargetOpcode::G_FCOS: 429 case TargetOpcode::G_FSIN: 430 case TargetOpcode::G_FLOG10: 431 case TargetOpcode::G_FLOG: 432 case TargetOpcode::G_FLOG2: 433 case TargetOpcode::G_FEXP: 434 case TargetOpcode::G_FEXP2: 435 case TargetOpcode::G_FCEIL: 436 case TargetOpcode::G_FFLOOR: { 437 if (Size > 64) { 438 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 439 return UnableToLegalize; 440 } 441 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 442 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 443 if (Status != Legalized) 444 return Status; 445 break; 446 } 447 case TargetOpcode::G_FPEXT: { 448 // FIXME: Support other floating point types (half, fp128 etc) 449 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 450 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 451 if (ToSize != 64 || FromSize != 32) 452 return UnableToLegalize; 453 LegalizeResult Status = conversionLibcall( 454 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 455 if (Status != Legalized) 456 return Status; 457 break; 458 } 459 case TargetOpcode::G_FPTRUNC: { 460 // FIXME: Support other floating point types (half, fp128 etc) 461 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 462 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 463 if (ToSize != 32 || FromSize != 64) 464 return UnableToLegalize; 465 LegalizeResult Status = conversionLibcall( 466 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 467 if (Status != Legalized) 468 return Status; 469 break; 470 } 471 case TargetOpcode::G_FPTOSI: 472 case TargetOpcode::G_FPTOUI: { 473 // FIXME: Support other types 474 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 475 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 476 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 477 return UnableToLegalize; 478 LegalizeResult Status = conversionLibcall( 479 MI, MIRBuilder, 480 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 481 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 482 if (Status != Legalized) 483 return Status; 484 break; 485 } 486 case TargetOpcode::G_SITOFP: 487 case TargetOpcode::G_UITOFP: { 488 // FIXME: Support other types 489 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 490 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 491 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 492 return UnableToLegalize; 493 LegalizeResult Status = conversionLibcall( 494 MI, MIRBuilder, 495 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 496 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 497 if (Status != Legalized) 498 return Status; 499 break; 500 } 501 } 502 503 MI.eraseFromParent(); 504 return Legalized; 505 } 506 507 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 508 unsigned TypeIdx, 509 LLT NarrowTy) { 510 MIRBuilder.setInstr(MI); 511 512 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 513 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 514 515 switch (MI.getOpcode()) { 516 default: 517 return UnableToLegalize; 518 case TargetOpcode::G_IMPLICIT_DEF: { 519 // FIXME: add support for when SizeOp0 isn't an exact multiple of 520 // NarrowSize. 521 if (SizeOp0 % NarrowSize != 0) 522 return UnableToLegalize; 523 int NumParts = SizeOp0 / NarrowSize; 524 525 SmallVector<Register, 2> DstRegs; 526 for (int i = 0; i < NumParts; ++i) 527 DstRegs.push_back( 528 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 529 530 Register DstReg = MI.getOperand(0).getReg(); 531 if(MRI.getType(DstReg).isVector()) 532 MIRBuilder.buildBuildVector(DstReg, DstRegs); 533 else 534 MIRBuilder.buildMerge(DstReg, DstRegs); 535 MI.eraseFromParent(); 536 return Legalized; 537 } 538 case TargetOpcode::G_CONSTANT: { 539 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 540 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 541 unsigned TotalSize = Ty.getSizeInBits(); 542 unsigned NarrowSize = NarrowTy.getSizeInBits(); 543 int NumParts = TotalSize / NarrowSize; 544 545 SmallVector<Register, 4> PartRegs; 546 for (int I = 0; I != NumParts; ++I) { 547 unsigned Offset = I * NarrowSize; 548 auto K = MIRBuilder.buildConstant(NarrowTy, 549 Val.lshr(Offset).trunc(NarrowSize)); 550 PartRegs.push_back(K.getReg(0)); 551 } 552 553 LLT LeftoverTy; 554 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 555 SmallVector<Register, 1> LeftoverRegs; 556 if (LeftoverBits != 0) { 557 LeftoverTy = LLT::scalar(LeftoverBits); 558 auto K = MIRBuilder.buildConstant( 559 LeftoverTy, 560 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 561 LeftoverRegs.push_back(K.getReg(0)); 562 } 563 564 insertParts(MI.getOperand(0).getReg(), 565 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 566 567 MI.eraseFromParent(); 568 return Legalized; 569 } 570 case TargetOpcode::G_SEXT: { 571 if (TypeIdx != 0) 572 return UnableToLegalize; 573 574 if (NarrowTy.getSizeInBits() != SizeOp0 / 2) { 575 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 576 return UnableToLegalize; 577 } 578 579 Register SrcReg = MI.getOperand(1).getReg(); 580 581 // Shift the sign bit of the low register through the high register. 582 auto ShiftAmt = 583 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 584 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 585 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 586 MI.eraseFromParent(); 587 return Legalized; 588 } 589 590 case TargetOpcode::G_ADD: { 591 // FIXME: add support for when SizeOp0 isn't an exact multiple of 592 // NarrowSize. 593 if (SizeOp0 % NarrowSize != 0) 594 return UnableToLegalize; 595 // Expand in terms of carry-setting/consuming G_ADDE instructions. 596 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 597 598 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 599 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 600 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 601 602 Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 603 MIRBuilder.buildConstant(CarryIn, 0); 604 605 for (int i = 0; i < NumParts; ++i) { 606 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 607 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 608 609 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 610 Src2Regs[i], CarryIn); 611 612 DstRegs.push_back(DstReg); 613 CarryIn = CarryOut; 614 } 615 Register DstReg = MI.getOperand(0).getReg(); 616 if(MRI.getType(DstReg).isVector()) 617 MIRBuilder.buildBuildVector(DstReg, DstRegs); 618 else 619 MIRBuilder.buildMerge(DstReg, DstRegs); 620 MI.eraseFromParent(); 621 return Legalized; 622 } 623 case TargetOpcode::G_SUB: { 624 // FIXME: add support for when SizeOp0 isn't an exact multiple of 625 // NarrowSize. 626 if (SizeOp0 % NarrowSize != 0) 627 return UnableToLegalize; 628 629 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 630 631 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 632 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 633 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 634 635 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 636 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 637 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 638 {Src1Regs[0], Src2Regs[0]}); 639 DstRegs.push_back(DstReg); 640 Register BorrowIn = BorrowOut; 641 for (int i = 1; i < NumParts; ++i) { 642 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 643 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 644 645 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 646 {Src1Regs[i], Src2Regs[i], BorrowIn}); 647 648 DstRegs.push_back(DstReg); 649 BorrowIn = BorrowOut; 650 } 651 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 652 MI.eraseFromParent(); 653 return Legalized; 654 } 655 case TargetOpcode::G_MUL: 656 case TargetOpcode::G_UMULH: 657 return narrowScalarMul(MI, NarrowTy); 658 case TargetOpcode::G_EXTRACT: 659 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 660 case TargetOpcode::G_INSERT: 661 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 662 case TargetOpcode::G_LOAD: { 663 const auto &MMO = **MI.memoperands_begin(); 664 Register DstReg = MI.getOperand(0).getReg(); 665 LLT DstTy = MRI.getType(DstReg); 666 if (DstTy.isVector()) 667 return UnableToLegalize; 668 669 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 670 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 671 auto &MMO = **MI.memoperands_begin(); 672 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 673 MIRBuilder.buildAnyExt(DstReg, TmpReg); 674 MI.eraseFromParent(); 675 return Legalized; 676 } 677 678 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 679 } 680 case TargetOpcode::G_ZEXTLOAD: 681 case TargetOpcode::G_SEXTLOAD: { 682 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 683 Register DstReg = MI.getOperand(0).getReg(); 684 Register PtrReg = MI.getOperand(1).getReg(); 685 686 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 687 auto &MMO = **MI.memoperands_begin(); 688 if (MMO.getSizeInBits() == NarrowSize) { 689 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 690 } else { 691 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 692 : TargetOpcode::G_SEXTLOAD; 693 MIRBuilder.buildInstr(ExtLoad) 694 .addDef(TmpReg) 695 .addUse(PtrReg) 696 .addMemOperand(&MMO); 697 } 698 699 if (ZExt) 700 MIRBuilder.buildZExt(DstReg, TmpReg); 701 else 702 MIRBuilder.buildSExt(DstReg, TmpReg); 703 704 MI.eraseFromParent(); 705 return Legalized; 706 } 707 case TargetOpcode::G_STORE: { 708 const auto &MMO = **MI.memoperands_begin(); 709 710 Register SrcReg = MI.getOperand(0).getReg(); 711 LLT SrcTy = MRI.getType(SrcReg); 712 if (SrcTy.isVector()) 713 return UnableToLegalize; 714 715 int NumParts = SizeOp0 / NarrowSize; 716 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 717 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 718 if (SrcTy.isVector() && LeftoverBits != 0) 719 return UnableToLegalize; 720 721 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 722 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 723 auto &MMO = **MI.memoperands_begin(); 724 MIRBuilder.buildTrunc(TmpReg, SrcReg); 725 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 726 MI.eraseFromParent(); 727 return Legalized; 728 } 729 730 return reduceLoadStoreWidth(MI, 0, NarrowTy); 731 } 732 case TargetOpcode::G_SELECT: 733 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 734 case TargetOpcode::G_AND: 735 case TargetOpcode::G_OR: 736 case TargetOpcode::G_XOR: { 737 // Legalize bitwise operation: 738 // A = BinOp<Ty> B, C 739 // into: 740 // B1, ..., BN = G_UNMERGE_VALUES B 741 // C1, ..., CN = G_UNMERGE_VALUES C 742 // A1 = BinOp<Ty/N> B1, C2 743 // ... 744 // AN = BinOp<Ty/N> BN, CN 745 // A = G_MERGE_VALUES A1, ..., AN 746 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 747 } 748 case TargetOpcode::G_SHL: 749 case TargetOpcode::G_LSHR: 750 case TargetOpcode::G_ASHR: 751 return narrowScalarShift(MI, TypeIdx, NarrowTy); 752 case TargetOpcode::G_CTLZ: 753 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 754 case TargetOpcode::G_CTTZ: 755 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 756 case TargetOpcode::G_CTPOP: 757 if (TypeIdx != 0) 758 return UnableToLegalize; // TODO 759 760 Observer.changingInstr(MI); 761 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 762 Observer.changedInstr(MI); 763 return Legalized; 764 case TargetOpcode::G_INTTOPTR: 765 if (TypeIdx != 1) 766 return UnableToLegalize; 767 768 Observer.changingInstr(MI); 769 narrowScalarSrc(MI, NarrowTy, 1); 770 Observer.changedInstr(MI); 771 return Legalized; 772 case TargetOpcode::G_PTRTOINT: 773 if (TypeIdx != 0) 774 return UnableToLegalize; 775 776 Observer.changingInstr(MI); 777 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 778 Observer.changedInstr(MI); 779 return Legalized; 780 case TargetOpcode::G_PHI: { 781 unsigned NumParts = SizeOp0 / NarrowSize; 782 SmallVector<Register, 2> DstRegs; 783 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 784 DstRegs.resize(NumParts); 785 SrcRegs.resize(MI.getNumOperands() / 2); 786 Observer.changingInstr(MI); 787 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 788 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 789 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 790 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 791 SrcRegs[i / 2]); 792 } 793 MachineBasicBlock &MBB = *MI.getParent(); 794 MIRBuilder.setInsertPt(MBB, MI); 795 for (unsigned i = 0; i < NumParts; ++i) { 796 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 797 MachineInstrBuilder MIB = 798 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 799 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 800 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 801 } 802 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 803 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 804 Observer.changedInstr(MI); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 809 case TargetOpcode::G_INSERT_VECTOR_ELT: { 810 if (TypeIdx != 2) 811 return UnableToLegalize; 812 813 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 814 Observer.changingInstr(MI); 815 narrowScalarSrc(MI, NarrowTy, OpIdx); 816 Observer.changedInstr(MI); 817 return Legalized; 818 } 819 case TargetOpcode::G_ICMP: { 820 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 821 if (NarrowSize * 2 != SrcSize) 822 return UnableToLegalize; 823 824 Observer.changingInstr(MI); 825 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 826 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 827 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 828 829 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 830 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 831 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 832 833 CmpInst::Predicate Pred = 834 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 835 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 836 837 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 838 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 839 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 840 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 841 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 842 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 843 } else { 844 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 845 MachineInstrBuilder CmpHEQ = 846 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 847 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 848 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 849 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 850 } 851 Observer.changedInstr(MI); 852 MI.eraseFromParent(); 853 return Legalized; 854 } 855 } 856 } 857 858 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 859 unsigned OpIdx, unsigned ExtOpcode) { 860 MachineOperand &MO = MI.getOperand(OpIdx); 861 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 862 MO.setReg(ExtB->getOperand(0).getReg()); 863 } 864 865 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 866 unsigned OpIdx) { 867 MachineOperand &MO = MI.getOperand(OpIdx); 868 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 869 {MO.getReg()}); 870 MO.setReg(ExtB->getOperand(0).getReg()); 871 } 872 873 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 874 unsigned OpIdx, unsigned TruncOpcode) { 875 MachineOperand &MO = MI.getOperand(OpIdx); 876 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 877 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 878 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 879 MO.setReg(DstExt); 880 } 881 882 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 883 unsigned OpIdx, unsigned ExtOpcode) { 884 MachineOperand &MO = MI.getOperand(OpIdx); 885 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 886 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 887 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 888 MO.setReg(DstTrunc); 889 } 890 891 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 892 unsigned OpIdx) { 893 MachineOperand &MO = MI.getOperand(OpIdx); 894 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 895 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 896 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 897 MO.setReg(DstExt); 898 } 899 900 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 901 unsigned OpIdx) { 902 MachineOperand &MO = MI.getOperand(OpIdx); 903 904 LLT OldTy = MRI.getType(MO.getReg()); 905 unsigned OldElts = OldTy.getNumElements(); 906 unsigned NewElts = MoreTy.getNumElements(); 907 908 unsigned NumParts = NewElts / OldElts; 909 910 // Use concat_vectors if the result is a multiple of the number of elements. 911 if (NumParts * OldElts == NewElts) { 912 SmallVector<Register, 8> Parts; 913 Parts.push_back(MO.getReg()); 914 915 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 916 for (unsigned I = 1; I != NumParts; ++I) 917 Parts.push_back(ImpDef); 918 919 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 920 MO.setReg(Concat.getReg(0)); 921 return; 922 } 923 924 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 925 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 926 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 927 MO.setReg(MoreReg); 928 } 929 930 LegalizerHelper::LegalizeResult 931 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 932 LLT WideTy) { 933 if (TypeIdx != 1) 934 return UnableToLegalize; 935 936 Register DstReg = MI.getOperand(0).getReg(); 937 LLT DstTy = MRI.getType(DstReg); 938 if (DstTy.isVector()) 939 return UnableToLegalize; 940 941 Register Src1 = MI.getOperand(1).getReg(); 942 LLT SrcTy = MRI.getType(Src1); 943 const int DstSize = DstTy.getSizeInBits(); 944 const int SrcSize = SrcTy.getSizeInBits(); 945 const int WideSize = WideTy.getSizeInBits(); 946 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 947 948 unsigned NumOps = MI.getNumOperands(); 949 unsigned NumSrc = MI.getNumOperands() - 1; 950 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 951 952 if (WideSize >= DstSize) { 953 // Directly pack the bits in the target type. 954 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 955 956 for (unsigned I = 2; I != NumOps; ++I) { 957 const unsigned Offset = (I - 1) * PartSize; 958 959 Register SrcReg = MI.getOperand(I).getReg(); 960 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 961 962 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 963 964 Register NextResult = I + 1 == NumOps && WideSize == DstSize ? DstReg : 965 MRI.createGenericVirtualRegister(WideTy); 966 967 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 968 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 969 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 970 ResultReg = NextResult; 971 } 972 973 if (WideSize > DstSize) 974 MIRBuilder.buildTrunc(DstReg, ResultReg); 975 976 MI.eraseFromParent(); 977 return Legalized; 978 } 979 980 // Unmerge the original values to the GCD type, and recombine to the next 981 // multiple greater than the original type. 982 // 983 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 984 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 985 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 986 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 987 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 988 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 989 // %12:_(s12) = G_MERGE_VALUES %10, %11 990 // 991 // Padding with undef if necessary: 992 // 993 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 994 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 995 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 996 // %7:_(s2) = G_IMPLICIT_DEF 997 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 998 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 999 // %10:_(s12) = G_MERGE_VALUES %8, %9 1000 1001 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1002 LLT GCDTy = LLT::scalar(GCD); 1003 1004 SmallVector<Register, 8> Parts; 1005 SmallVector<Register, 8> NewMergeRegs; 1006 SmallVector<Register, 8> Unmerges; 1007 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1008 1009 // Decompose the original operands if they don't evenly divide. 1010 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1011 Register SrcReg = MI.getOperand(I).getReg(); 1012 if (GCD == SrcSize) { 1013 Unmerges.push_back(SrcReg); 1014 } else { 1015 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1016 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1017 Unmerges.push_back(Unmerge.getReg(J)); 1018 } 1019 } 1020 1021 // Pad with undef to the next size that is a multiple of the requested size. 1022 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1023 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1024 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1025 Unmerges.push_back(UndefReg); 1026 } 1027 1028 const int PartsPerGCD = WideSize / GCD; 1029 1030 // Build merges of each piece. 1031 ArrayRef<Register> Slicer(Unmerges); 1032 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1033 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1034 NewMergeRegs.push_back(Merge.getReg(0)); 1035 } 1036 1037 // A truncate may be necessary if the requested type doesn't evenly divide the 1038 // original result type. 1039 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1040 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1041 } else { 1042 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1043 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1044 } 1045 1046 MI.eraseFromParent(); 1047 return Legalized; 1048 } 1049 1050 LegalizerHelper::LegalizeResult 1051 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1052 LLT WideTy) { 1053 if (TypeIdx != 0) 1054 return UnableToLegalize; 1055 1056 unsigned NumDst = MI.getNumOperands() - 1; 1057 Register SrcReg = MI.getOperand(NumDst).getReg(); 1058 LLT SrcTy = MRI.getType(SrcReg); 1059 if (!SrcTy.isScalar()) 1060 return UnableToLegalize; 1061 1062 Register Dst0Reg = MI.getOperand(0).getReg(); 1063 LLT DstTy = MRI.getType(Dst0Reg); 1064 if (!DstTy.isScalar()) 1065 return UnableToLegalize; 1066 1067 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1068 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1069 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1070 1071 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1072 1073 for (unsigned I = 1; I != NumDst; ++I) { 1074 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1075 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1076 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1077 } 1078 1079 Observer.changingInstr(MI); 1080 1081 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1082 for (unsigned I = 0; I != NumDst; ++I) 1083 widenScalarDst(MI, WideTy, I); 1084 1085 Observer.changedInstr(MI); 1086 1087 return Legalized; 1088 } 1089 1090 LegalizerHelper::LegalizeResult 1091 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1092 LLT WideTy) { 1093 Register DstReg = MI.getOperand(0).getReg(); 1094 Register SrcReg = MI.getOperand(1).getReg(); 1095 LLT SrcTy = MRI.getType(SrcReg); 1096 1097 LLT DstTy = MRI.getType(DstReg); 1098 unsigned Offset = MI.getOperand(2).getImm(); 1099 1100 if (TypeIdx == 0) { 1101 if (SrcTy.isVector() || DstTy.isVector()) 1102 return UnableToLegalize; 1103 1104 SrcOp Src(SrcReg); 1105 if (SrcTy.isPointer()) { 1106 // Extracts from pointers can be handled only if they are really just 1107 // simple integers. 1108 const DataLayout &DL = MIRBuilder.getDataLayout(); 1109 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1110 return UnableToLegalize; 1111 1112 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1113 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1114 SrcTy = SrcAsIntTy; 1115 } 1116 1117 if (DstTy.isPointer()) 1118 return UnableToLegalize; 1119 1120 if (Offset == 0) { 1121 // Avoid a shift in the degenerate case. 1122 MIRBuilder.buildTrunc(DstReg, 1123 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1124 MI.eraseFromParent(); 1125 return Legalized; 1126 } 1127 1128 // Do a shift in the source type. 1129 LLT ShiftTy = SrcTy; 1130 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1131 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1132 ShiftTy = WideTy; 1133 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1134 return UnableToLegalize; 1135 1136 auto LShr = MIRBuilder.buildLShr( 1137 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1138 MIRBuilder.buildTrunc(DstReg, LShr); 1139 MI.eraseFromParent(); 1140 return Legalized; 1141 } 1142 1143 if (SrcTy.isScalar()) { 1144 Observer.changingInstr(MI); 1145 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1146 Observer.changedInstr(MI); 1147 return Legalized; 1148 } 1149 1150 if (!SrcTy.isVector()) 1151 return UnableToLegalize; 1152 1153 if (DstTy != SrcTy.getElementType()) 1154 return UnableToLegalize; 1155 1156 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1157 return UnableToLegalize; 1158 1159 Observer.changingInstr(MI); 1160 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1161 1162 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1163 Offset); 1164 widenScalarDst(MI, WideTy.getScalarType(), 0); 1165 Observer.changedInstr(MI); 1166 return Legalized; 1167 } 1168 1169 LegalizerHelper::LegalizeResult 1170 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1171 LLT WideTy) { 1172 if (TypeIdx != 0) 1173 return UnableToLegalize; 1174 Observer.changingInstr(MI); 1175 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1176 widenScalarDst(MI, WideTy); 1177 Observer.changedInstr(MI); 1178 return Legalized; 1179 } 1180 1181 LegalizerHelper::LegalizeResult 1182 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1183 MIRBuilder.setInstr(MI); 1184 1185 switch (MI.getOpcode()) { 1186 default: 1187 return UnableToLegalize; 1188 case TargetOpcode::G_EXTRACT: 1189 return widenScalarExtract(MI, TypeIdx, WideTy); 1190 case TargetOpcode::G_INSERT: 1191 return widenScalarInsert(MI, TypeIdx, WideTy); 1192 case TargetOpcode::G_MERGE_VALUES: 1193 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1194 case TargetOpcode::G_UNMERGE_VALUES: 1195 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1196 case TargetOpcode::G_UADDO: 1197 case TargetOpcode::G_USUBO: { 1198 if (TypeIdx == 1) 1199 return UnableToLegalize; // TODO 1200 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1201 {MI.getOperand(2).getReg()}); 1202 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1203 {MI.getOperand(3).getReg()}); 1204 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1205 ? TargetOpcode::G_ADD 1206 : TargetOpcode::G_SUB; 1207 // Do the arithmetic in the larger type. 1208 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1209 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1210 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1211 auto AndOp = MIRBuilder.buildInstr( 1212 TargetOpcode::G_AND, {WideTy}, 1213 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1214 // There is no overflow if the AndOp is the same as NewOp. 1215 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1216 AndOp); 1217 // Now trunc the NewOp to the original result. 1218 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1219 MI.eraseFromParent(); 1220 return Legalized; 1221 } 1222 case TargetOpcode::G_CTTZ: 1223 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1224 case TargetOpcode::G_CTLZ: 1225 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1226 case TargetOpcode::G_CTPOP: { 1227 if (TypeIdx == 0) { 1228 Observer.changingInstr(MI); 1229 widenScalarDst(MI, WideTy, 0); 1230 Observer.changedInstr(MI); 1231 return Legalized; 1232 } 1233 1234 Register SrcReg = MI.getOperand(1).getReg(); 1235 1236 // First ZEXT the input. 1237 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1238 LLT CurTy = MRI.getType(SrcReg); 1239 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1240 // The count is the same in the larger type except if the original 1241 // value was zero. This can be handled by setting the bit just off 1242 // the top of the original type. 1243 auto TopBit = 1244 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1245 MIBSrc = MIRBuilder.buildOr( 1246 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1247 } 1248 1249 // Perform the operation at the larger size. 1250 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1251 // This is already the correct result for CTPOP and CTTZs 1252 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1253 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1254 // The correct result is NewOp - (Difference in widety and current ty). 1255 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1256 MIBNewOp = MIRBuilder.buildInstr( 1257 TargetOpcode::G_SUB, {WideTy}, 1258 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1259 } 1260 1261 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1262 MI.eraseFromParent(); 1263 return Legalized; 1264 } 1265 case TargetOpcode::G_BSWAP: { 1266 Observer.changingInstr(MI); 1267 Register DstReg = MI.getOperand(0).getReg(); 1268 1269 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1270 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1271 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1272 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1273 1274 MI.getOperand(0).setReg(DstExt); 1275 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 1278 LLT Ty = MRI.getType(DstReg); 1279 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1280 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1281 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1282 .addDef(ShrReg) 1283 .addUse(DstExt) 1284 .addUse(ShiftAmtReg); 1285 1286 MIRBuilder.buildTrunc(DstReg, ShrReg); 1287 Observer.changedInstr(MI); 1288 return Legalized; 1289 } 1290 case TargetOpcode::G_ADD: 1291 case TargetOpcode::G_AND: 1292 case TargetOpcode::G_MUL: 1293 case TargetOpcode::G_OR: 1294 case TargetOpcode::G_XOR: 1295 case TargetOpcode::G_SUB: 1296 // Perform operation at larger width (any extension is fines here, high bits 1297 // don't affect the result) and then truncate the result back to the 1298 // original type. 1299 Observer.changingInstr(MI); 1300 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1301 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1302 widenScalarDst(MI, WideTy); 1303 Observer.changedInstr(MI); 1304 return Legalized; 1305 1306 case TargetOpcode::G_SHL: 1307 Observer.changingInstr(MI); 1308 1309 if (TypeIdx == 0) { 1310 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1311 widenScalarDst(MI, WideTy); 1312 } else { 1313 assert(TypeIdx == 1); 1314 // The "number of bits to shift" operand must preserve its value as an 1315 // unsigned integer: 1316 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1317 } 1318 1319 Observer.changedInstr(MI); 1320 return Legalized; 1321 1322 case TargetOpcode::G_SDIV: 1323 case TargetOpcode::G_SREM: 1324 case TargetOpcode::G_SMIN: 1325 case TargetOpcode::G_SMAX: 1326 Observer.changingInstr(MI); 1327 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1328 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1329 widenScalarDst(MI, WideTy); 1330 Observer.changedInstr(MI); 1331 return Legalized; 1332 1333 case TargetOpcode::G_ASHR: 1334 case TargetOpcode::G_LSHR: 1335 Observer.changingInstr(MI); 1336 1337 if (TypeIdx == 0) { 1338 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1339 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1340 1341 widenScalarSrc(MI, WideTy, 1, CvtOp); 1342 widenScalarDst(MI, WideTy); 1343 } else { 1344 assert(TypeIdx == 1); 1345 // The "number of bits to shift" operand must preserve its value as an 1346 // unsigned integer: 1347 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1348 } 1349 1350 Observer.changedInstr(MI); 1351 return Legalized; 1352 case TargetOpcode::G_UDIV: 1353 case TargetOpcode::G_UREM: 1354 case TargetOpcode::G_UMIN: 1355 case TargetOpcode::G_UMAX: 1356 Observer.changingInstr(MI); 1357 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1358 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1359 widenScalarDst(MI, WideTy); 1360 Observer.changedInstr(MI); 1361 return Legalized; 1362 1363 case TargetOpcode::G_SELECT: 1364 Observer.changingInstr(MI); 1365 if (TypeIdx == 0) { 1366 // Perform operation at larger width (any extension is fine here, high 1367 // bits don't affect the result) and then truncate the result back to the 1368 // original type. 1369 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1370 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1371 widenScalarDst(MI, WideTy); 1372 } else { 1373 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1374 // Explicit extension is required here since high bits affect the result. 1375 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1376 } 1377 Observer.changedInstr(MI); 1378 return Legalized; 1379 1380 case TargetOpcode::G_FPTOSI: 1381 case TargetOpcode::G_FPTOUI: 1382 if (TypeIdx != 0) 1383 return UnableToLegalize; 1384 Observer.changingInstr(MI); 1385 widenScalarDst(MI, WideTy); 1386 Observer.changedInstr(MI); 1387 return Legalized; 1388 1389 case TargetOpcode::G_SITOFP: 1390 if (TypeIdx != 1) 1391 return UnableToLegalize; 1392 Observer.changingInstr(MI); 1393 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1394 Observer.changedInstr(MI); 1395 return Legalized; 1396 1397 case TargetOpcode::G_UITOFP: 1398 if (TypeIdx != 1) 1399 return UnableToLegalize; 1400 Observer.changingInstr(MI); 1401 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1402 Observer.changedInstr(MI); 1403 return Legalized; 1404 1405 case TargetOpcode::G_LOAD: 1406 case TargetOpcode::G_SEXTLOAD: 1407 case TargetOpcode::G_ZEXTLOAD: 1408 Observer.changingInstr(MI); 1409 widenScalarDst(MI, WideTy); 1410 Observer.changedInstr(MI); 1411 return Legalized; 1412 1413 case TargetOpcode::G_STORE: { 1414 if (TypeIdx != 0) 1415 return UnableToLegalize; 1416 1417 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1418 if (!isPowerOf2_32(Ty.getSizeInBits())) 1419 return UnableToLegalize; 1420 1421 Observer.changingInstr(MI); 1422 1423 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1424 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1425 widenScalarSrc(MI, WideTy, 0, ExtType); 1426 1427 Observer.changedInstr(MI); 1428 return Legalized; 1429 } 1430 case TargetOpcode::G_CONSTANT: { 1431 MachineOperand &SrcMO = MI.getOperand(1); 1432 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1433 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1434 Observer.changingInstr(MI); 1435 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1436 1437 widenScalarDst(MI, WideTy); 1438 Observer.changedInstr(MI); 1439 return Legalized; 1440 } 1441 case TargetOpcode::G_FCONSTANT: { 1442 MachineOperand &SrcMO = MI.getOperand(1); 1443 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1444 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1445 bool LosesInfo; 1446 switch (WideTy.getSizeInBits()) { 1447 case 32: 1448 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1449 &LosesInfo); 1450 break; 1451 case 64: 1452 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1453 &LosesInfo); 1454 break; 1455 default: 1456 return UnableToLegalize; 1457 } 1458 1459 assert(!LosesInfo && "extend should always be lossless"); 1460 1461 Observer.changingInstr(MI); 1462 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1463 1464 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1465 Observer.changedInstr(MI); 1466 return Legalized; 1467 } 1468 case TargetOpcode::G_IMPLICIT_DEF: { 1469 Observer.changingInstr(MI); 1470 widenScalarDst(MI, WideTy); 1471 Observer.changedInstr(MI); 1472 return Legalized; 1473 } 1474 case TargetOpcode::G_BRCOND: 1475 Observer.changingInstr(MI); 1476 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1477 Observer.changedInstr(MI); 1478 return Legalized; 1479 1480 case TargetOpcode::G_FCMP: 1481 Observer.changingInstr(MI); 1482 if (TypeIdx == 0) 1483 widenScalarDst(MI, WideTy); 1484 else { 1485 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1486 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1487 } 1488 Observer.changedInstr(MI); 1489 return Legalized; 1490 1491 case TargetOpcode::G_ICMP: 1492 Observer.changingInstr(MI); 1493 if (TypeIdx == 0) 1494 widenScalarDst(MI, WideTy); 1495 else { 1496 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1497 MI.getOperand(1).getPredicate())) 1498 ? TargetOpcode::G_SEXT 1499 : TargetOpcode::G_ZEXT; 1500 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1501 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1502 } 1503 Observer.changedInstr(MI); 1504 return Legalized; 1505 1506 case TargetOpcode::G_GEP: 1507 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1508 Observer.changingInstr(MI); 1509 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1510 Observer.changedInstr(MI); 1511 return Legalized; 1512 1513 case TargetOpcode::G_PHI: { 1514 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1515 1516 Observer.changingInstr(MI); 1517 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1518 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1519 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1520 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1521 } 1522 1523 MachineBasicBlock &MBB = *MI.getParent(); 1524 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1525 widenScalarDst(MI, WideTy); 1526 Observer.changedInstr(MI); 1527 return Legalized; 1528 } 1529 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1530 if (TypeIdx == 0) { 1531 Register VecReg = MI.getOperand(1).getReg(); 1532 LLT VecTy = MRI.getType(VecReg); 1533 Observer.changingInstr(MI); 1534 1535 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1536 WideTy.getSizeInBits()), 1537 1, TargetOpcode::G_SEXT); 1538 1539 widenScalarDst(MI, WideTy, 0); 1540 Observer.changedInstr(MI); 1541 return Legalized; 1542 } 1543 1544 if (TypeIdx != 2) 1545 return UnableToLegalize; 1546 Observer.changingInstr(MI); 1547 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1548 Observer.changedInstr(MI); 1549 return Legalized; 1550 } 1551 case TargetOpcode::G_FADD: 1552 case TargetOpcode::G_FMUL: 1553 case TargetOpcode::G_FSUB: 1554 case TargetOpcode::G_FMA: 1555 case TargetOpcode::G_FNEG: 1556 case TargetOpcode::G_FABS: 1557 case TargetOpcode::G_FCANONICALIZE: 1558 case TargetOpcode::G_FMINNUM: 1559 case TargetOpcode::G_FMAXNUM: 1560 case TargetOpcode::G_FMINNUM_IEEE: 1561 case TargetOpcode::G_FMAXNUM_IEEE: 1562 case TargetOpcode::G_FMINIMUM: 1563 case TargetOpcode::G_FMAXIMUM: 1564 case TargetOpcode::G_FDIV: 1565 case TargetOpcode::G_FREM: 1566 case TargetOpcode::G_FCEIL: 1567 case TargetOpcode::G_FFLOOR: 1568 case TargetOpcode::G_FCOS: 1569 case TargetOpcode::G_FSIN: 1570 case TargetOpcode::G_FLOG10: 1571 case TargetOpcode::G_FLOG: 1572 case TargetOpcode::G_FLOG2: 1573 case TargetOpcode::G_FRINT: 1574 case TargetOpcode::G_FNEARBYINT: 1575 case TargetOpcode::G_FSQRT: 1576 case TargetOpcode::G_FEXP: 1577 case TargetOpcode::G_FEXP2: 1578 case TargetOpcode::G_FPOW: 1579 case TargetOpcode::G_INTRINSIC_TRUNC: 1580 case TargetOpcode::G_INTRINSIC_ROUND: 1581 assert(TypeIdx == 0); 1582 Observer.changingInstr(MI); 1583 1584 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1585 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1586 1587 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1588 Observer.changedInstr(MI); 1589 return Legalized; 1590 case TargetOpcode::G_INTTOPTR: 1591 if (TypeIdx != 1) 1592 return UnableToLegalize; 1593 1594 Observer.changingInstr(MI); 1595 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1596 Observer.changedInstr(MI); 1597 return Legalized; 1598 case TargetOpcode::G_PTRTOINT: 1599 if (TypeIdx != 0) 1600 return UnableToLegalize; 1601 1602 Observer.changingInstr(MI); 1603 widenScalarDst(MI, WideTy, 0); 1604 Observer.changedInstr(MI); 1605 return Legalized; 1606 case TargetOpcode::G_BUILD_VECTOR: { 1607 Observer.changingInstr(MI); 1608 1609 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1610 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1611 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1612 1613 // Avoid changing the result vector type if the source element type was 1614 // requested. 1615 if (TypeIdx == 1) { 1616 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1617 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1618 } else { 1619 widenScalarDst(MI, WideTy, 0); 1620 } 1621 1622 Observer.changedInstr(MI); 1623 return Legalized; 1624 } 1625 } 1626 } 1627 1628 LegalizerHelper::LegalizeResult 1629 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1630 using namespace TargetOpcode; 1631 MIRBuilder.setInstr(MI); 1632 1633 switch(MI.getOpcode()) { 1634 default: 1635 return UnableToLegalize; 1636 case TargetOpcode::G_SREM: 1637 case TargetOpcode::G_UREM: { 1638 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1639 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1640 .addDef(QuotReg) 1641 .addUse(MI.getOperand(1).getReg()) 1642 .addUse(MI.getOperand(2).getReg()); 1643 1644 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1645 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1646 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1647 ProdReg); 1648 MI.eraseFromParent(); 1649 return Legalized; 1650 } 1651 case TargetOpcode::G_SMULO: 1652 case TargetOpcode::G_UMULO: { 1653 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1654 // result. 1655 Register Res = MI.getOperand(0).getReg(); 1656 Register Overflow = MI.getOperand(1).getReg(); 1657 Register LHS = MI.getOperand(2).getReg(); 1658 Register RHS = MI.getOperand(3).getReg(); 1659 1660 MIRBuilder.buildMul(Res, LHS, RHS); 1661 1662 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1663 ? TargetOpcode::G_SMULH 1664 : TargetOpcode::G_UMULH; 1665 1666 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1667 MIRBuilder.buildInstr(Opcode) 1668 .addDef(HiPart) 1669 .addUse(LHS) 1670 .addUse(RHS); 1671 1672 Register Zero = MRI.createGenericVirtualRegister(Ty); 1673 MIRBuilder.buildConstant(Zero, 0); 1674 1675 // For *signed* multiply, overflow is detected by checking: 1676 // (hi != (lo >> bitwidth-1)) 1677 if (Opcode == TargetOpcode::G_SMULH) { 1678 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1679 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1680 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1681 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1682 .addDef(Shifted) 1683 .addUse(Res) 1684 .addUse(ShiftAmt); 1685 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1686 } else { 1687 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1688 } 1689 MI.eraseFromParent(); 1690 return Legalized; 1691 } 1692 case TargetOpcode::G_FNEG: { 1693 // TODO: Handle vector types once we are able to 1694 // represent them. 1695 if (Ty.isVector()) 1696 return UnableToLegalize; 1697 Register Res = MI.getOperand(0).getReg(); 1698 Type *ZeroTy; 1699 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1700 switch (Ty.getSizeInBits()) { 1701 case 16: 1702 ZeroTy = Type::getHalfTy(Ctx); 1703 break; 1704 case 32: 1705 ZeroTy = Type::getFloatTy(Ctx); 1706 break; 1707 case 64: 1708 ZeroTy = Type::getDoubleTy(Ctx); 1709 break; 1710 case 128: 1711 ZeroTy = Type::getFP128Ty(Ctx); 1712 break; 1713 default: 1714 llvm_unreachable("unexpected floating-point type"); 1715 } 1716 ConstantFP &ZeroForNegation = 1717 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1718 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1719 Register SubByReg = MI.getOperand(1).getReg(); 1720 Register ZeroReg = Zero->getOperand(0).getReg(); 1721 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1722 MI.getFlags()); 1723 MI.eraseFromParent(); 1724 return Legalized; 1725 } 1726 case TargetOpcode::G_FSUB: { 1727 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1728 // First, check if G_FNEG is marked as Lower. If so, we may 1729 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1730 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1731 return UnableToLegalize; 1732 Register Res = MI.getOperand(0).getReg(); 1733 Register LHS = MI.getOperand(1).getReg(); 1734 Register RHS = MI.getOperand(2).getReg(); 1735 Register Neg = MRI.createGenericVirtualRegister(Ty); 1736 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1737 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1738 MI.eraseFromParent(); 1739 return Legalized; 1740 } 1741 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1742 Register OldValRes = MI.getOperand(0).getReg(); 1743 Register SuccessRes = MI.getOperand(1).getReg(); 1744 Register Addr = MI.getOperand(2).getReg(); 1745 Register CmpVal = MI.getOperand(3).getReg(); 1746 Register NewVal = MI.getOperand(4).getReg(); 1747 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1748 **MI.memoperands_begin()); 1749 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1750 MI.eraseFromParent(); 1751 return Legalized; 1752 } 1753 case TargetOpcode::G_LOAD: 1754 case TargetOpcode::G_SEXTLOAD: 1755 case TargetOpcode::G_ZEXTLOAD: { 1756 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1757 Register DstReg = MI.getOperand(0).getReg(); 1758 Register PtrReg = MI.getOperand(1).getReg(); 1759 LLT DstTy = MRI.getType(DstReg); 1760 auto &MMO = **MI.memoperands_begin(); 1761 1762 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1763 // In the case of G_LOAD, this was a non-extending load already and we're 1764 // about to lower to the same instruction. 1765 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1766 return UnableToLegalize; 1767 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1768 MI.eraseFromParent(); 1769 return Legalized; 1770 } 1771 1772 if (DstTy.isScalar()) { 1773 Register TmpReg = 1774 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1775 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1776 switch (MI.getOpcode()) { 1777 default: 1778 llvm_unreachable("Unexpected opcode"); 1779 case TargetOpcode::G_LOAD: 1780 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1781 break; 1782 case TargetOpcode::G_SEXTLOAD: 1783 MIRBuilder.buildSExt(DstReg, TmpReg); 1784 break; 1785 case TargetOpcode::G_ZEXTLOAD: 1786 MIRBuilder.buildZExt(DstReg, TmpReg); 1787 break; 1788 } 1789 MI.eraseFromParent(); 1790 return Legalized; 1791 } 1792 1793 return UnableToLegalize; 1794 } 1795 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1796 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1797 case TargetOpcode::G_CTLZ: 1798 case TargetOpcode::G_CTTZ: 1799 case TargetOpcode::G_CTPOP: 1800 return lowerBitCount(MI, TypeIdx, Ty); 1801 case G_UADDO: { 1802 Register Res = MI.getOperand(0).getReg(); 1803 Register CarryOut = MI.getOperand(1).getReg(); 1804 Register LHS = MI.getOperand(2).getReg(); 1805 Register RHS = MI.getOperand(3).getReg(); 1806 1807 MIRBuilder.buildAdd(Res, LHS, RHS); 1808 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1809 1810 MI.eraseFromParent(); 1811 return Legalized; 1812 } 1813 case G_UADDE: { 1814 Register Res = MI.getOperand(0).getReg(); 1815 Register CarryOut = MI.getOperand(1).getReg(); 1816 Register LHS = MI.getOperand(2).getReg(); 1817 Register RHS = MI.getOperand(3).getReg(); 1818 Register CarryIn = MI.getOperand(4).getReg(); 1819 1820 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1821 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1822 1823 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1824 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1825 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1826 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1827 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 case G_USUBO: { 1832 Register Res = MI.getOperand(0).getReg(); 1833 Register BorrowOut = MI.getOperand(1).getReg(); 1834 Register LHS = MI.getOperand(2).getReg(); 1835 Register RHS = MI.getOperand(3).getReg(); 1836 1837 MIRBuilder.buildSub(Res, LHS, RHS); 1838 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1839 1840 MI.eraseFromParent(); 1841 return Legalized; 1842 } 1843 case G_USUBE: { 1844 Register Res = MI.getOperand(0).getReg(); 1845 Register BorrowOut = MI.getOperand(1).getReg(); 1846 Register LHS = MI.getOperand(2).getReg(); 1847 Register RHS = MI.getOperand(3).getReg(); 1848 Register BorrowIn = MI.getOperand(4).getReg(); 1849 1850 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1851 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1852 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1853 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1854 1855 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1856 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1857 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1858 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1859 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1860 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1861 1862 MI.eraseFromParent(); 1863 return Legalized; 1864 } 1865 case G_UITOFP: 1866 return lowerUITOFP(MI, TypeIdx, Ty); 1867 case G_SITOFP: 1868 return lowerSITOFP(MI, TypeIdx, Ty); 1869 case G_SMIN: 1870 case G_SMAX: 1871 case G_UMIN: 1872 case G_UMAX: 1873 return lowerMinMax(MI, TypeIdx, Ty); 1874 case G_FCOPYSIGN: 1875 return lowerFCopySign(MI, TypeIdx, Ty); 1876 case G_FMINNUM: 1877 case G_FMAXNUM: 1878 return lowerFMinNumMaxNum(MI); 1879 } 1880 } 1881 1882 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1883 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1884 SmallVector<Register, 2> DstRegs; 1885 1886 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1887 Register DstReg = MI.getOperand(0).getReg(); 1888 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1889 int NumParts = Size / NarrowSize; 1890 // FIXME: Don't know how to handle the situation where the small vectors 1891 // aren't all the same size yet. 1892 if (Size % NarrowSize != 0) 1893 return UnableToLegalize; 1894 1895 for (int i = 0; i < NumParts; ++i) { 1896 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1897 MIRBuilder.buildUndef(TmpReg); 1898 DstRegs.push_back(TmpReg); 1899 } 1900 1901 if (NarrowTy.isVector()) 1902 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1903 else 1904 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1905 1906 MI.eraseFromParent(); 1907 return Legalized; 1908 } 1909 1910 LegalizerHelper::LegalizeResult 1911 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1912 LLT NarrowTy) { 1913 const unsigned Opc = MI.getOpcode(); 1914 const unsigned NumOps = MI.getNumOperands() - 1; 1915 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1916 const Register DstReg = MI.getOperand(0).getReg(); 1917 const unsigned Flags = MI.getFlags(); 1918 const LLT DstTy = MRI.getType(DstReg); 1919 const unsigned Size = DstTy.getSizeInBits(); 1920 const int NumParts = Size / NarrowSize; 1921 const LLT EltTy = DstTy.getElementType(); 1922 const unsigned EltSize = EltTy.getSizeInBits(); 1923 const unsigned BitsForNumParts = NarrowSize * NumParts; 1924 1925 // Check if we have any leftovers. If we do, then only handle the case where 1926 // the leftover is one element. 1927 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1928 return UnableToLegalize; 1929 1930 if (BitsForNumParts != Size) { 1931 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1932 MIRBuilder.buildUndef(AccumDstReg); 1933 1934 // Handle the pieces which evenly divide into the requested type with 1935 // extract/op/insert sequence. 1936 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1937 SmallVector<SrcOp, 4> SrcOps; 1938 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1939 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1940 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1941 SrcOps.push_back(PartOpReg); 1942 } 1943 1944 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1945 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1946 1947 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1948 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1949 AccumDstReg = PartInsertReg; 1950 } 1951 1952 // Handle the remaining element sized leftover piece. 1953 SmallVector<SrcOp, 4> SrcOps; 1954 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1955 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1956 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1957 BitsForNumParts); 1958 SrcOps.push_back(PartOpReg); 1959 } 1960 1961 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1962 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1963 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1964 MI.eraseFromParent(); 1965 1966 return Legalized; 1967 } 1968 1969 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1970 1971 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1972 1973 if (NumOps >= 2) 1974 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1975 1976 if (NumOps >= 3) 1977 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1978 1979 for (int i = 0; i < NumParts; ++i) { 1980 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1981 1982 if (NumOps == 1) 1983 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1984 else if (NumOps == 2) { 1985 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1986 } else if (NumOps == 3) { 1987 MIRBuilder.buildInstr(Opc, {DstReg}, 1988 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1989 } 1990 1991 DstRegs.push_back(DstReg); 1992 } 1993 1994 if (NarrowTy.isVector()) 1995 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1996 else 1997 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1998 1999 MI.eraseFromParent(); 2000 return Legalized; 2001 } 2002 2003 // Handle splitting vector operations which need to have the same number of 2004 // elements in each type index, but each type index may have a different element 2005 // type. 2006 // 2007 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2008 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2009 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2010 // 2011 // Also handles some irregular breakdown cases, e.g. 2012 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2013 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2014 // s64 = G_SHL s64, s32 2015 LegalizerHelper::LegalizeResult 2016 LegalizerHelper::fewerElementsVectorMultiEltType( 2017 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2018 if (TypeIdx != 0) 2019 return UnableToLegalize; 2020 2021 const LLT NarrowTy0 = NarrowTyArg; 2022 const unsigned NewNumElts = 2023 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2024 2025 const Register DstReg = MI.getOperand(0).getReg(); 2026 LLT DstTy = MRI.getType(DstReg); 2027 LLT LeftoverTy0; 2028 2029 // All of the operands need to have the same number of elements, so if we can 2030 // determine a type breakdown for the result type, we can for all of the 2031 // source types. 2032 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2033 if (NumParts < 0) 2034 return UnableToLegalize; 2035 2036 SmallVector<MachineInstrBuilder, 4> NewInsts; 2037 2038 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2039 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2040 2041 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2042 LLT LeftoverTy; 2043 Register SrcReg = MI.getOperand(I).getReg(); 2044 LLT SrcTyI = MRI.getType(SrcReg); 2045 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2046 LLT LeftoverTyI; 2047 2048 // Split this operand into the requested typed registers, and any leftover 2049 // required to reproduce the original type. 2050 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2051 LeftoverRegs)) 2052 return UnableToLegalize; 2053 2054 if (I == 1) { 2055 // For the first operand, create an instruction for each part and setup 2056 // the result. 2057 for (Register PartReg : PartRegs) { 2058 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2059 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2060 .addDef(PartDstReg) 2061 .addUse(PartReg)); 2062 DstRegs.push_back(PartDstReg); 2063 } 2064 2065 for (Register LeftoverReg : LeftoverRegs) { 2066 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2067 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2068 .addDef(PartDstReg) 2069 .addUse(LeftoverReg)); 2070 LeftoverDstRegs.push_back(PartDstReg); 2071 } 2072 } else { 2073 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2074 2075 // Add the newly created operand splits to the existing instructions. The 2076 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2077 // pieces. 2078 unsigned InstCount = 0; 2079 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2080 NewInsts[InstCount++].addUse(PartRegs[J]); 2081 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2082 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2083 } 2084 2085 PartRegs.clear(); 2086 LeftoverRegs.clear(); 2087 } 2088 2089 // Insert the newly built operations and rebuild the result register. 2090 for (auto &MIB : NewInsts) 2091 MIRBuilder.insertInstr(MIB); 2092 2093 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2094 2095 MI.eraseFromParent(); 2096 return Legalized; 2097 } 2098 2099 LegalizerHelper::LegalizeResult 2100 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2101 LLT NarrowTy) { 2102 if (TypeIdx != 0) 2103 return UnableToLegalize; 2104 2105 Register DstReg = MI.getOperand(0).getReg(); 2106 Register SrcReg = MI.getOperand(1).getReg(); 2107 LLT DstTy = MRI.getType(DstReg); 2108 LLT SrcTy = MRI.getType(SrcReg); 2109 2110 LLT NarrowTy0 = NarrowTy; 2111 LLT NarrowTy1; 2112 unsigned NumParts; 2113 2114 if (NarrowTy.isVector()) { 2115 // Uneven breakdown not handled. 2116 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2117 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2118 return UnableToLegalize; 2119 2120 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2121 } else { 2122 NumParts = DstTy.getNumElements(); 2123 NarrowTy1 = SrcTy.getElementType(); 2124 } 2125 2126 SmallVector<Register, 4> SrcRegs, DstRegs; 2127 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2128 2129 for (unsigned I = 0; I < NumParts; ++I) { 2130 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2131 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2132 .addDef(DstReg) 2133 .addUse(SrcRegs[I]); 2134 2135 NewInst->setFlags(MI.getFlags()); 2136 DstRegs.push_back(DstReg); 2137 } 2138 2139 if (NarrowTy.isVector()) 2140 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2141 else 2142 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2143 2144 MI.eraseFromParent(); 2145 return Legalized; 2146 } 2147 2148 LegalizerHelper::LegalizeResult 2149 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2150 LLT NarrowTy) { 2151 Register DstReg = MI.getOperand(0).getReg(); 2152 Register Src0Reg = MI.getOperand(2).getReg(); 2153 LLT DstTy = MRI.getType(DstReg); 2154 LLT SrcTy = MRI.getType(Src0Reg); 2155 2156 unsigned NumParts; 2157 LLT NarrowTy0, NarrowTy1; 2158 2159 if (TypeIdx == 0) { 2160 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2161 unsigned OldElts = DstTy.getNumElements(); 2162 2163 NarrowTy0 = NarrowTy; 2164 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2165 NarrowTy1 = NarrowTy.isVector() ? 2166 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2167 SrcTy.getElementType(); 2168 2169 } else { 2170 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2171 unsigned OldElts = SrcTy.getNumElements(); 2172 2173 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2174 NarrowTy.getNumElements(); 2175 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2176 DstTy.getScalarSizeInBits()); 2177 NarrowTy1 = NarrowTy; 2178 } 2179 2180 // FIXME: Don't know how to handle the situation where the small vectors 2181 // aren't all the same size yet. 2182 if (NarrowTy1.isVector() && 2183 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2184 return UnableToLegalize; 2185 2186 CmpInst::Predicate Pred 2187 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2188 2189 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2190 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2191 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2192 2193 for (unsigned I = 0; I < NumParts; ++I) { 2194 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2195 DstRegs.push_back(DstReg); 2196 2197 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2198 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2199 else { 2200 MachineInstr *NewCmp 2201 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2202 NewCmp->setFlags(MI.getFlags()); 2203 } 2204 } 2205 2206 if (NarrowTy1.isVector()) 2207 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2208 else 2209 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2210 2211 MI.eraseFromParent(); 2212 return Legalized; 2213 } 2214 2215 LegalizerHelper::LegalizeResult 2216 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2217 LLT NarrowTy) { 2218 Register DstReg = MI.getOperand(0).getReg(); 2219 Register CondReg = MI.getOperand(1).getReg(); 2220 2221 unsigned NumParts = 0; 2222 LLT NarrowTy0, NarrowTy1; 2223 2224 LLT DstTy = MRI.getType(DstReg); 2225 LLT CondTy = MRI.getType(CondReg); 2226 unsigned Size = DstTy.getSizeInBits(); 2227 2228 assert(TypeIdx == 0 || CondTy.isVector()); 2229 2230 if (TypeIdx == 0) { 2231 NarrowTy0 = NarrowTy; 2232 NarrowTy1 = CondTy; 2233 2234 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2235 // FIXME: Don't know how to handle the situation where the small vectors 2236 // aren't all the same size yet. 2237 if (Size % NarrowSize != 0) 2238 return UnableToLegalize; 2239 2240 NumParts = Size / NarrowSize; 2241 2242 // Need to break down the condition type 2243 if (CondTy.isVector()) { 2244 if (CondTy.getNumElements() == NumParts) 2245 NarrowTy1 = CondTy.getElementType(); 2246 else 2247 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2248 CondTy.getScalarSizeInBits()); 2249 } 2250 } else { 2251 NumParts = CondTy.getNumElements(); 2252 if (NarrowTy.isVector()) { 2253 // TODO: Handle uneven breakdown. 2254 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2255 return UnableToLegalize; 2256 2257 return UnableToLegalize; 2258 } else { 2259 NarrowTy0 = DstTy.getElementType(); 2260 NarrowTy1 = NarrowTy; 2261 } 2262 } 2263 2264 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2265 if (CondTy.isVector()) 2266 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2267 2268 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2269 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2270 2271 for (unsigned i = 0; i < NumParts; ++i) { 2272 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2273 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2274 Src1Regs[i], Src2Regs[i]); 2275 DstRegs.push_back(DstReg); 2276 } 2277 2278 if (NarrowTy0.isVector()) 2279 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2280 else 2281 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2282 2283 MI.eraseFromParent(); 2284 return Legalized; 2285 } 2286 2287 LegalizerHelper::LegalizeResult 2288 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2289 LLT NarrowTy) { 2290 const Register DstReg = MI.getOperand(0).getReg(); 2291 LLT PhiTy = MRI.getType(DstReg); 2292 LLT LeftoverTy; 2293 2294 // All of the operands need to have the same number of elements, so if we can 2295 // determine a type breakdown for the result type, we can for all of the 2296 // source types. 2297 int NumParts, NumLeftover; 2298 std::tie(NumParts, NumLeftover) 2299 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2300 if (NumParts < 0) 2301 return UnableToLegalize; 2302 2303 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2304 SmallVector<MachineInstrBuilder, 4> NewInsts; 2305 2306 const int TotalNumParts = NumParts + NumLeftover; 2307 2308 // Insert the new phis in the result block first. 2309 for (int I = 0; I != TotalNumParts; ++I) { 2310 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2311 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2312 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2313 .addDef(PartDstReg)); 2314 if (I < NumParts) 2315 DstRegs.push_back(PartDstReg); 2316 else 2317 LeftoverDstRegs.push_back(PartDstReg); 2318 } 2319 2320 MachineBasicBlock *MBB = MI.getParent(); 2321 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2322 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2323 2324 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2325 2326 // Insert code to extract the incoming values in each predecessor block. 2327 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2328 PartRegs.clear(); 2329 LeftoverRegs.clear(); 2330 2331 Register SrcReg = MI.getOperand(I).getReg(); 2332 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2333 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2334 2335 LLT Unused; 2336 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2337 LeftoverRegs)) 2338 return UnableToLegalize; 2339 2340 // Add the newly created operand splits to the existing instructions. The 2341 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2342 // pieces. 2343 for (int J = 0; J != TotalNumParts; ++J) { 2344 MachineInstrBuilder MIB = NewInsts[J]; 2345 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2346 MIB.addMBB(&OpMBB); 2347 } 2348 } 2349 2350 MI.eraseFromParent(); 2351 return Legalized; 2352 } 2353 2354 LegalizerHelper::LegalizeResult 2355 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2356 LLT NarrowTy) { 2357 // FIXME: Don't know how to handle secondary types yet. 2358 if (TypeIdx != 0) 2359 return UnableToLegalize; 2360 2361 MachineMemOperand *MMO = *MI.memoperands_begin(); 2362 2363 // This implementation doesn't work for atomics. Give up instead of doing 2364 // something invalid. 2365 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2366 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2367 return UnableToLegalize; 2368 2369 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2370 Register ValReg = MI.getOperand(0).getReg(); 2371 Register AddrReg = MI.getOperand(1).getReg(); 2372 LLT ValTy = MRI.getType(ValReg); 2373 2374 int NumParts = -1; 2375 int NumLeftover = -1; 2376 LLT LeftoverTy; 2377 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2378 if (IsLoad) { 2379 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2380 } else { 2381 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2382 NarrowLeftoverRegs)) { 2383 NumParts = NarrowRegs.size(); 2384 NumLeftover = NarrowLeftoverRegs.size(); 2385 } 2386 } 2387 2388 if (NumParts == -1) 2389 return UnableToLegalize; 2390 2391 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2392 2393 unsigned TotalSize = ValTy.getSizeInBits(); 2394 2395 // Split the load/store into PartTy sized pieces starting at Offset. If this 2396 // is a load, return the new registers in ValRegs. For a store, each elements 2397 // of ValRegs should be PartTy. Returns the next offset that needs to be 2398 // handled. 2399 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2400 unsigned Offset) -> unsigned { 2401 MachineFunction &MF = MIRBuilder.getMF(); 2402 unsigned PartSize = PartTy.getSizeInBits(); 2403 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2404 Offset += PartSize, ++Idx) { 2405 unsigned ByteSize = PartSize / 8; 2406 unsigned ByteOffset = Offset / 8; 2407 Register NewAddrReg; 2408 2409 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2410 2411 MachineMemOperand *NewMMO = 2412 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2413 2414 if (IsLoad) { 2415 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2416 ValRegs.push_back(Dst); 2417 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2418 } else { 2419 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2420 } 2421 } 2422 2423 return Offset; 2424 }; 2425 2426 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2427 2428 // Handle the rest of the register if this isn't an even type breakdown. 2429 if (LeftoverTy.isValid()) 2430 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2431 2432 if (IsLoad) { 2433 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2434 LeftoverTy, NarrowLeftoverRegs); 2435 } 2436 2437 MI.eraseFromParent(); 2438 return Legalized; 2439 } 2440 2441 LegalizerHelper::LegalizeResult 2442 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2443 LLT NarrowTy) { 2444 using namespace TargetOpcode; 2445 2446 MIRBuilder.setInstr(MI); 2447 switch (MI.getOpcode()) { 2448 case G_IMPLICIT_DEF: 2449 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2450 case G_AND: 2451 case G_OR: 2452 case G_XOR: 2453 case G_ADD: 2454 case G_SUB: 2455 case G_MUL: 2456 case G_SMULH: 2457 case G_UMULH: 2458 case G_FADD: 2459 case G_FMUL: 2460 case G_FSUB: 2461 case G_FNEG: 2462 case G_FABS: 2463 case G_FCANONICALIZE: 2464 case G_FDIV: 2465 case G_FREM: 2466 case G_FMA: 2467 case G_FPOW: 2468 case G_FEXP: 2469 case G_FEXP2: 2470 case G_FLOG: 2471 case G_FLOG2: 2472 case G_FLOG10: 2473 case G_FNEARBYINT: 2474 case G_FCEIL: 2475 case G_FFLOOR: 2476 case G_FRINT: 2477 case G_INTRINSIC_ROUND: 2478 case G_INTRINSIC_TRUNC: 2479 case G_FCOS: 2480 case G_FSIN: 2481 case G_FSQRT: 2482 case G_BSWAP: 2483 case G_SDIV: 2484 case G_SMIN: 2485 case G_SMAX: 2486 case G_UMIN: 2487 case G_UMAX: 2488 case G_FMINNUM: 2489 case G_FMAXNUM: 2490 case G_FMINNUM_IEEE: 2491 case G_FMAXNUM_IEEE: 2492 case G_FMINIMUM: 2493 case G_FMAXIMUM: 2494 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2495 case G_SHL: 2496 case G_LSHR: 2497 case G_ASHR: 2498 case G_CTLZ: 2499 case G_CTLZ_ZERO_UNDEF: 2500 case G_CTTZ: 2501 case G_CTTZ_ZERO_UNDEF: 2502 case G_CTPOP: 2503 case G_FCOPYSIGN: 2504 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2505 case G_ZEXT: 2506 case G_SEXT: 2507 case G_ANYEXT: 2508 case G_FPEXT: 2509 case G_FPTRUNC: 2510 case G_SITOFP: 2511 case G_UITOFP: 2512 case G_FPTOSI: 2513 case G_FPTOUI: 2514 case G_INTTOPTR: 2515 case G_PTRTOINT: 2516 case G_ADDRSPACE_CAST: 2517 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2518 case G_ICMP: 2519 case G_FCMP: 2520 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2521 case G_SELECT: 2522 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2523 case G_PHI: 2524 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2525 case G_LOAD: 2526 case G_STORE: 2527 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2528 default: 2529 return UnableToLegalize; 2530 } 2531 } 2532 2533 LegalizerHelper::LegalizeResult 2534 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2535 const LLT HalfTy, const LLT AmtTy) { 2536 2537 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2538 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2539 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2540 2541 if (Amt.isNullValue()) { 2542 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2543 MI.eraseFromParent(); 2544 return Legalized; 2545 } 2546 2547 LLT NVT = HalfTy; 2548 unsigned NVTBits = HalfTy.getSizeInBits(); 2549 unsigned VTBits = 2 * NVTBits; 2550 2551 SrcOp Lo(Register(0)), Hi(Register(0)); 2552 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2553 if (Amt.ugt(VTBits)) { 2554 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2555 } else if (Amt.ugt(NVTBits)) { 2556 Lo = MIRBuilder.buildConstant(NVT, 0); 2557 Hi = MIRBuilder.buildShl(NVT, InL, 2558 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2559 } else if (Amt == NVTBits) { 2560 Lo = MIRBuilder.buildConstant(NVT, 0); 2561 Hi = InL; 2562 } else { 2563 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2564 auto OrLHS = 2565 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2566 auto OrRHS = MIRBuilder.buildLShr( 2567 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2568 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2569 } 2570 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2571 if (Amt.ugt(VTBits)) { 2572 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2573 } else if (Amt.ugt(NVTBits)) { 2574 Lo = MIRBuilder.buildLShr(NVT, InH, 2575 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2576 Hi = MIRBuilder.buildConstant(NVT, 0); 2577 } else if (Amt == NVTBits) { 2578 Lo = InH; 2579 Hi = MIRBuilder.buildConstant(NVT, 0); 2580 } else { 2581 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2582 2583 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2584 auto OrRHS = MIRBuilder.buildShl( 2585 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2586 2587 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2588 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2589 } 2590 } else { 2591 if (Amt.ugt(VTBits)) { 2592 Hi = Lo = MIRBuilder.buildAShr( 2593 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2594 } else if (Amt.ugt(NVTBits)) { 2595 Lo = MIRBuilder.buildAShr(NVT, InH, 2596 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2597 Hi = MIRBuilder.buildAShr(NVT, InH, 2598 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2599 } else if (Amt == NVTBits) { 2600 Lo = InH; 2601 Hi = MIRBuilder.buildAShr(NVT, InH, 2602 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2603 } else { 2604 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2605 2606 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2607 auto OrRHS = MIRBuilder.buildShl( 2608 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2609 2610 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2611 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2612 } 2613 } 2614 2615 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2616 MI.eraseFromParent(); 2617 2618 return Legalized; 2619 } 2620 2621 // TODO: Optimize if constant shift amount. 2622 LegalizerHelper::LegalizeResult 2623 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2624 LLT RequestedTy) { 2625 if (TypeIdx == 1) { 2626 Observer.changingInstr(MI); 2627 narrowScalarSrc(MI, RequestedTy, 2); 2628 Observer.changedInstr(MI); 2629 return Legalized; 2630 } 2631 2632 Register DstReg = MI.getOperand(0).getReg(); 2633 LLT DstTy = MRI.getType(DstReg); 2634 if (DstTy.isVector()) 2635 return UnableToLegalize; 2636 2637 Register Amt = MI.getOperand(2).getReg(); 2638 LLT ShiftAmtTy = MRI.getType(Amt); 2639 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2640 if (DstEltSize % 2 != 0) 2641 return UnableToLegalize; 2642 2643 // Ignore the input type. We can only go to exactly half the size of the 2644 // input. If that isn't small enough, the resulting pieces will be further 2645 // legalized. 2646 const unsigned NewBitSize = DstEltSize / 2; 2647 const LLT HalfTy = LLT::scalar(NewBitSize); 2648 const LLT CondTy = LLT::scalar(1); 2649 2650 if (const MachineInstr *KShiftAmt = 2651 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2652 return narrowScalarShiftByConstant( 2653 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2654 } 2655 2656 // TODO: Expand with known bits. 2657 2658 // Handle the fully general expansion by an unknown amount. 2659 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2660 2661 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2662 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2663 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2664 2665 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2666 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2667 2668 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2669 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2670 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2671 2672 Register ResultRegs[2]; 2673 switch (MI.getOpcode()) { 2674 case TargetOpcode::G_SHL: { 2675 // Short: ShAmt < NewBitSize 2676 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2677 2678 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2679 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2680 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2681 2682 // Long: ShAmt >= NewBitSize 2683 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2684 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2685 2686 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2687 auto Hi = MIRBuilder.buildSelect( 2688 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2689 2690 ResultRegs[0] = Lo.getReg(0); 2691 ResultRegs[1] = Hi.getReg(0); 2692 break; 2693 } 2694 case TargetOpcode::G_LSHR: { 2695 // Short: ShAmt < NewBitSize 2696 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2697 2698 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2699 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2700 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2701 2702 // Long: ShAmt >= NewBitSize 2703 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2704 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2705 2706 auto Lo = MIRBuilder.buildSelect( 2707 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2708 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2709 2710 ResultRegs[0] = Lo.getReg(0); 2711 ResultRegs[1] = Hi.getReg(0); 2712 break; 2713 } 2714 case TargetOpcode::G_ASHR: { 2715 // Short: ShAmt < NewBitSize 2716 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2717 2718 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2719 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2720 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2721 2722 // Long: ShAmt >= NewBitSize 2723 2724 // Sign of Hi part. 2725 auto HiL = MIRBuilder.buildAShr( 2726 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2727 2728 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2729 2730 auto Lo = MIRBuilder.buildSelect( 2731 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2732 2733 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2734 2735 ResultRegs[0] = Lo.getReg(0); 2736 ResultRegs[1] = Hi.getReg(0); 2737 break; 2738 } 2739 default: 2740 llvm_unreachable("not a shift"); 2741 } 2742 2743 MIRBuilder.buildMerge(DstReg, ResultRegs); 2744 MI.eraseFromParent(); 2745 return Legalized; 2746 } 2747 2748 LegalizerHelper::LegalizeResult 2749 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2750 LLT MoreTy) { 2751 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2752 2753 Observer.changingInstr(MI); 2754 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2755 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2756 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2757 moreElementsVectorSrc(MI, MoreTy, I); 2758 } 2759 2760 MachineBasicBlock &MBB = *MI.getParent(); 2761 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2762 moreElementsVectorDst(MI, MoreTy, 0); 2763 Observer.changedInstr(MI); 2764 return Legalized; 2765 } 2766 2767 LegalizerHelper::LegalizeResult 2768 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2769 LLT MoreTy) { 2770 MIRBuilder.setInstr(MI); 2771 unsigned Opc = MI.getOpcode(); 2772 switch (Opc) { 2773 case TargetOpcode::G_IMPLICIT_DEF: { 2774 Observer.changingInstr(MI); 2775 moreElementsVectorDst(MI, MoreTy, 0); 2776 Observer.changedInstr(MI); 2777 return Legalized; 2778 } 2779 case TargetOpcode::G_AND: 2780 case TargetOpcode::G_OR: 2781 case TargetOpcode::G_XOR: 2782 case TargetOpcode::G_SMIN: 2783 case TargetOpcode::G_SMAX: 2784 case TargetOpcode::G_UMIN: 2785 case TargetOpcode::G_UMAX: { 2786 Observer.changingInstr(MI); 2787 moreElementsVectorSrc(MI, MoreTy, 1); 2788 moreElementsVectorSrc(MI, MoreTy, 2); 2789 moreElementsVectorDst(MI, MoreTy, 0); 2790 Observer.changedInstr(MI); 2791 return Legalized; 2792 } 2793 case TargetOpcode::G_EXTRACT: 2794 if (TypeIdx != 1) 2795 return UnableToLegalize; 2796 Observer.changingInstr(MI); 2797 moreElementsVectorSrc(MI, MoreTy, 1); 2798 Observer.changedInstr(MI); 2799 return Legalized; 2800 case TargetOpcode::G_INSERT: 2801 if (TypeIdx != 0) 2802 return UnableToLegalize; 2803 Observer.changingInstr(MI); 2804 moreElementsVectorSrc(MI, MoreTy, 1); 2805 moreElementsVectorDst(MI, MoreTy, 0); 2806 Observer.changedInstr(MI); 2807 return Legalized; 2808 case TargetOpcode::G_SELECT: 2809 if (TypeIdx != 0) 2810 return UnableToLegalize; 2811 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2812 return UnableToLegalize; 2813 2814 Observer.changingInstr(MI); 2815 moreElementsVectorSrc(MI, MoreTy, 2); 2816 moreElementsVectorSrc(MI, MoreTy, 3); 2817 moreElementsVectorDst(MI, MoreTy, 0); 2818 Observer.changedInstr(MI); 2819 return Legalized; 2820 case TargetOpcode::G_PHI: 2821 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2822 default: 2823 return UnableToLegalize; 2824 } 2825 } 2826 2827 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 2828 ArrayRef<Register> Src1Regs, 2829 ArrayRef<Register> Src2Regs, 2830 LLT NarrowTy) { 2831 MachineIRBuilder &B = MIRBuilder; 2832 unsigned SrcParts = Src1Regs.size(); 2833 unsigned DstParts = DstRegs.size(); 2834 2835 unsigned DstIdx = 0; // Low bits of the result. 2836 Register FactorSum = 2837 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2838 DstRegs[DstIdx] = FactorSum; 2839 2840 unsigned CarrySumPrevDstIdx; 2841 SmallVector<Register, 4> Factors; 2842 2843 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2844 // Collect low parts of muls for DstIdx. 2845 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2846 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2847 MachineInstrBuilder Mul = 2848 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2849 Factors.push_back(Mul.getReg(0)); 2850 } 2851 // Collect high parts of muls from previous DstIdx. 2852 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2853 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2854 MachineInstrBuilder Umulh = 2855 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2856 Factors.push_back(Umulh.getReg(0)); 2857 } 2858 // Add CarrySum from additons calculated for previous DstIdx. 2859 if (DstIdx != 1) { 2860 Factors.push_back(CarrySumPrevDstIdx); 2861 } 2862 2863 Register CarrySum; 2864 // Add all factors and accumulate all carries into CarrySum. 2865 if (DstIdx != DstParts - 1) { 2866 MachineInstrBuilder Uaddo = 2867 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2868 FactorSum = Uaddo.getReg(0); 2869 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2870 for (unsigned i = 2; i < Factors.size(); ++i) { 2871 MachineInstrBuilder Uaddo = 2872 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2873 FactorSum = Uaddo.getReg(0); 2874 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2875 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2876 } 2877 } else { 2878 // Since value for the next index is not calculated, neither is CarrySum. 2879 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2880 for (unsigned i = 2; i < Factors.size(); ++i) 2881 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2882 } 2883 2884 CarrySumPrevDstIdx = CarrySum; 2885 DstRegs[DstIdx] = FactorSum; 2886 Factors.clear(); 2887 } 2888 } 2889 2890 LegalizerHelper::LegalizeResult 2891 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2892 Register DstReg = MI.getOperand(0).getReg(); 2893 Register Src1 = MI.getOperand(1).getReg(); 2894 Register Src2 = MI.getOperand(2).getReg(); 2895 2896 LLT Ty = MRI.getType(DstReg); 2897 if (Ty.isVector()) 2898 return UnableToLegalize; 2899 2900 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2901 unsigned DstSize = Ty.getSizeInBits(); 2902 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2903 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2904 return UnableToLegalize; 2905 2906 unsigned NumDstParts = DstSize / NarrowSize; 2907 unsigned NumSrcParts = SrcSize / NarrowSize; 2908 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2909 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2910 2911 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 2912 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2913 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2914 DstTmpRegs.resize(DstTmpParts); 2915 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2916 2917 // Take only high half of registers if this is high mul. 2918 ArrayRef<Register> DstRegs( 2919 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2920 MIRBuilder.buildMerge(DstReg, DstRegs); 2921 MI.eraseFromParent(); 2922 return Legalized; 2923 } 2924 2925 LegalizerHelper::LegalizeResult 2926 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2927 LLT NarrowTy) { 2928 if (TypeIdx != 1) 2929 return UnableToLegalize; 2930 2931 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2932 2933 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2934 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2935 // NarrowSize. 2936 if (SizeOp1 % NarrowSize != 0) 2937 return UnableToLegalize; 2938 int NumParts = SizeOp1 / NarrowSize; 2939 2940 SmallVector<Register, 2> SrcRegs, DstRegs; 2941 SmallVector<uint64_t, 2> Indexes; 2942 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2943 2944 Register OpReg = MI.getOperand(0).getReg(); 2945 uint64_t OpStart = MI.getOperand(2).getImm(); 2946 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2947 for (int i = 0; i < NumParts; ++i) { 2948 unsigned SrcStart = i * NarrowSize; 2949 2950 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2951 // No part of the extract uses this subregister, ignore it. 2952 continue; 2953 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2954 // The entire subregister is extracted, forward the value. 2955 DstRegs.push_back(SrcRegs[i]); 2956 continue; 2957 } 2958 2959 // OpSegStart is where this destination segment would start in OpReg if it 2960 // extended infinitely in both directions. 2961 int64_t ExtractOffset; 2962 uint64_t SegSize; 2963 if (OpStart < SrcStart) { 2964 ExtractOffset = 0; 2965 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2966 } else { 2967 ExtractOffset = OpStart - SrcStart; 2968 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2969 } 2970 2971 Register SegReg = SrcRegs[i]; 2972 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2973 // A genuine extract is needed. 2974 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2975 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2976 } 2977 2978 DstRegs.push_back(SegReg); 2979 } 2980 2981 Register DstReg = MI.getOperand(0).getReg(); 2982 if(MRI.getType(DstReg).isVector()) 2983 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2984 else 2985 MIRBuilder.buildMerge(DstReg, DstRegs); 2986 MI.eraseFromParent(); 2987 return Legalized; 2988 } 2989 2990 LegalizerHelper::LegalizeResult 2991 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2992 LLT NarrowTy) { 2993 // FIXME: Don't know how to handle secondary types yet. 2994 if (TypeIdx != 0) 2995 return UnableToLegalize; 2996 2997 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2998 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2999 3000 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3001 // NarrowSize. 3002 if (SizeOp0 % NarrowSize != 0) 3003 return UnableToLegalize; 3004 3005 int NumParts = SizeOp0 / NarrowSize; 3006 3007 SmallVector<Register, 2> SrcRegs, DstRegs; 3008 SmallVector<uint64_t, 2> Indexes; 3009 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3010 3011 Register OpReg = MI.getOperand(2).getReg(); 3012 uint64_t OpStart = MI.getOperand(3).getImm(); 3013 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3014 for (int i = 0; i < NumParts; ++i) { 3015 unsigned DstStart = i * NarrowSize; 3016 3017 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3018 // No part of the insert affects this subregister, forward the original. 3019 DstRegs.push_back(SrcRegs[i]); 3020 continue; 3021 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3022 // The entire subregister is defined by this insert, forward the new 3023 // value. 3024 DstRegs.push_back(OpReg); 3025 continue; 3026 } 3027 3028 // OpSegStart is where this destination segment would start in OpReg if it 3029 // extended infinitely in both directions. 3030 int64_t ExtractOffset, InsertOffset; 3031 uint64_t SegSize; 3032 if (OpStart < DstStart) { 3033 InsertOffset = 0; 3034 ExtractOffset = DstStart - OpStart; 3035 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3036 } else { 3037 InsertOffset = OpStart - DstStart; 3038 ExtractOffset = 0; 3039 SegSize = 3040 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3041 } 3042 3043 Register SegReg = OpReg; 3044 if (ExtractOffset != 0 || SegSize != OpSize) { 3045 // A genuine extract is needed. 3046 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3047 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3048 } 3049 3050 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3051 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3052 DstRegs.push_back(DstReg); 3053 } 3054 3055 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3056 Register DstReg = MI.getOperand(0).getReg(); 3057 if(MRI.getType(DstReg).isVector()) 3058 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3059 else 3060 MIRBuilder.buildMerge(DstReg, DstRegs); 3061 MI.eraseFromParent(); 3062 return Legalized; 3063 } 3064 3065 LegalizerHelper::LegalizeResult 3066 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3067 LLT NarrowTy) { 3068 Register DstReg = MI.getOperand(0).getReg(); 3069 LLT DstTy = MRI.getType(DstReg); 3070 3071 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3072 3073 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3074 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3075 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3076 LLT LeftoverTy; 3077 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3078 Src0Regs, Src0LeftoverRegs)) 3079 return UnableToLegalize; 3080 3081 LLT Unused; 3082 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3083 Src1Regs, Src1LeftoverRegs)) 3084 llvm_unreachable("inconsistent extractParts result"); 3085 3086 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3087 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3088 {Src0Regs[I], Src1Regs[I]}); 3089 DstRegs.push_back(Inst->getOperand(0).getReg()); 3090 } 3091 3092 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3093 auto Inst = MIRBuilder.buildInstr( 3094 MI.getOpcode(), 3095 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3096 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3097 } 3098 3099 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3100 LeftoverTy, DstLeftoverRegs); 3101 3102 MI.eraseFromParent(); 3103 return Legalized; 3104 } 3105 3106 LegalizerHelper::LegalizeResult 3107 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3108 LLT NarrowTy) { 3109 if (TypeIdx != 0) 3110 return UnableToLegalize; 3111 3112 Register CondReg = MI.getOperand(1).getReg(); 3113 LLT CondTy = MRI.getType(CondReg); 3114 if (CondTy.isVector()) // TODO: Handle vselect 3115 return UnableToLegalize; 3116 3117 Register DstReg = MI.getOperand(0).getReg(); 3118 LLT DstTy = MRI.getType(DstReg); 3119 3120 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3121 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3122 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3123 LLT LeftoverTy; 3124 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3125 Src1Regs, Src1LeftoverRegs)) 3126 return UnableToLegalize; 3127 3128 LLT Unused; 3129 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3130 Src2Regs, Src2LeftoverRegs)) 3131 llvm_unreachable("inconsistent extractParts result"); 3132 3133 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3134 auto Select = MIRBuilder.buildSelect(NarrowTy, 3135 CondReg, Src1Regs[I], Src2Regs[I]); 3136 DstRegs.push_back(Select->getOperand(0).getReg()); 3137 } 3138 3139 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3140 auto Select = MIRBuilder.buildSelect( 3141 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3142 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3143 } 3144 3145 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3146 LeftoverTy, DstLeftoverRegs); 3147 3148 MI.eraseFromParent(); 3149 return Legalized; 3150 } 3151 3152 LegalizerHelper::LegalizeResult 3153 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3154 unsigned Opc = MI.getOpcode(); 3155 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3156 auto isSupported = [this](const LegalityQuery &Q) { 3157 auto QAction = LI.getAction(Q).Action; 3158 return QAction == Legal || QAction == Libcall || QAction == Custom; 3159 }; 3160 switch (Opc) { 3161 default: 3162 return UnableToLegalize; 3163 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3164 // This trivially expands to CTLZ. 3165 Observer.changingInstr(MI); 3166 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3167 Observer.changedInstr(MI); 3168 return Legalized; 3169 } 3170 case TargetOpcode::G_CTLZ: { 3171 Register SrcReg = MI.getOperand(1).getReg(); 3172 unsigned Len = Ty.getSizeInBits(); 3173 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3174 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3175 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3176 {Ty}, {SrcReg}); 3177 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3178 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3179 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3180 SrcReg, MIBZero); 3181 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3182 MIBCtlzZU); 3183 MI.eraseFromParent(); 3184 return Legalized; 3185 } 3186 // for now, we do this: 3187 // NewLen = NextPowerOf2(Len); 3188 // x = x | (x >> 1); 3189 // x = x | (x >> 2); 3190 // ... 3191 // x = x | (x >>16); 3192 // x = x | (x >>32); // for 64-bit input 3193 // Upto NewLen/2 3194 // return Len - popcount(x); 3195 // 3196 // Ref: "Hacker's Delight" by Henry Warren 3197 Register Op = SrcReg; 3198 unsigned NewLen = PowerOf2Ceil(Len); 3199 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3200 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3201 auto MIBOp = MIRBuilder.buildInstr( 3202 TargetOpcode::G_OR, {Ty}, 3203 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3204 {Op, MIBShiftAmt})}); 3205 Op = MIBOp->getOperand(0).getReg(); 3206 } 3207 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3208 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3209 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3210 MI.eraseFromParent(); 3211 return Legalized; 3212 } 3213 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3214 // This trivially expands to CTTZ. 3215 Observer.changingInstr(MI); 3216 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3217 Observer.changedInstr(MI); 3218 return Legalized; 3219 } 3220 case TargetOpcode::G_CTTZ: { 3221 Register SrcReg = MI.getOperand(1).getReg(); 3222 unsigned Len = Ty.getSizeInBits(); 3223 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3224 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3225 // zero. 3226 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3227 {Ty}, {SrcReg}); 3228 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3229 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3230 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3231 SrcReg, MIBZero); 3232 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3233 MIBCttzZU); 3234 MI.eraseFromParent(); 3235 return Legalized; 3236 } 3237 // for now, we use: { return popcount(~x & (x - 1)); } 3238 // unless the target has ctlz but not ctpop, in which case we use: 3239 // { return 32 - nlz(~x & (x-1)); } 3240 // Ref: "Hacker's Delight" by Henry Warren 3241 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3242 auto MIBNot = 3243 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3244 auto MIBTmp = MIRBuilder.buildInstr( 3245 TargetOpcode::G_AND, {Ty}, 3246 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3247 {SrcReg, MIBCstNeg1})}); 3248 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3249 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3250 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3251 MIRBuilder.buildInstr( 3252 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3253 {MIBCstLen, 3254 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3255 MI.eraseFromParent(); 3256 return Legalized; 3257 } 3258 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3259 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3260 return Legalized; 3261 } 3262 } 3263 } 3264 3265 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3266 // representation. 3267 LegalizerHelper::LegalizeResult 3268 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3269 Register Dst = MI.getOperand(0).getReg(); 3270 Register Src = MI.getOperand(1).getReg(); 3271 const LLT S64 = LLT::scalar(64); 3272 const LLT S32 = LLT::scalar(32); 3273 const LLT S1 = LLT::scalar(1); 3274 3275 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3276 3277 // unsigned cul2f(ulong u) { 3278 // uint lz = clz(u); 3279 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3280 // u = (u << lz) & 0x7fffffffffffffffUL; 3281 // ulong t = u & 0xffffffffffUL; 3282 // uint v = (e << 23) | (uint)(u >> 40); 3283 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3284 // return as_float(v + r); 3285 // } 3286 3287 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3288 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3289 3290 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3291 3292 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3293 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3294 3295 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3296 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3297 3298 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3299 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3300 3301 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3302 3303 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3304 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3305 3306 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3307 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3308 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3309 3310 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3311 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3312 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3313 auto One = MIRBuilder.buildConstant(S32, 1); 3314 3315 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3316 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3317 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3318 MIRBuilder.buildAdd(Dst, V, R); 3319 3320 return Legalized; 3321 } 3322 3323 LegalizerHelper::LegalizeResult 3324 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3325 Register Dst = MI.getOperand(0).getReg(); 3326 Register Src = MI.getOperand(1).getReg(); 3327 LLT DstTy = MRI.getType(Dst); 3328 LLT SrcTy = MRI.getType(Src); 3329 3330 if (SrcTy != LLT::scalar(64)) 3331 return UnableToLegalize; 3332 3333 if (DstTy == LLT::scalar(32)) { 3334 // TODO: SelectionDAG has several alternative expansions to port which may 3335 // be more reasonble depending on the available instructions. If a target 3336 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3337 // intermediate type, this is probably worse. 3338 return lowerU64ToF32BitOps(MI); 3339 } 3340 3341 return UnableToLegalize; 3342 } 3343 3344 LegalizerHelper::LegalizeResult 3345 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3346 Register Dst = MI.getOperand(0).getReg(); 3347 Register Src = MI.getOperand(1).getReg(); 3348 LLT DstTy = MRI.getType(Dst); 3349 LLT SrcTy = MRI.getType(Src); 3350 3351 const LLT S64 = LLT::scalar(64); 3352 const LLT S32 = LLT::scalar(32); 3353 const LLT S1 = LLT::scalar(1); 3354 3355 if (SrcTy != S64) 3356 return UnableToLegalize; 3357 3358 if (DstTy == S32) { 3359 // signed cl2f(long l) { 3360 // long s = l >> 63; 3361 // float r = cul2f((l + s) ^ s); 3362 // return s ? -r : r; 3363 // } 3364 Register L = Src; 3365 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3366 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3367 3368 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3369 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3370 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3371 3372 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3373 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3374 MIRBuilder.buildConstant(S64, 0)); 3375 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3376 return Legalized; 3377 } 3378 3379 return UnableToLegalize; 3380 } 3381 3382 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3383 switch (Opc) { 3384 case TargetOpcode::G_SMIN: 3385 return CmpInst::ICMP_SLT; 3386 case TargetOpcode::G_SMAX: 3387 return CmpInst::ICMP_SGT; 3388 case TargetOpcode::G_UMIN: 3389 return CmpInst::ICMP_ULT; 3390 case TargetOpcode::G_UMAX: 3391 return CmpInst::ICMP_UGT; 3392 default: 3393 llvm_unreachable("not in integer min/max"); 3394 } 3395 } 3396 3397 LegalizerHelper::LegalizeResult 3398 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3399 Register Dst = MI.getOperand(0).getReg(); 3400 Register Src0 = MI.getOperand(1).getReg(); 3401 Register Src1 = MI.getOperand(2).getReg(); 3402 3403 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3404 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3405 3406 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3407 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3408 3409 MI.eraseFromParent(); 3410 return Legalized; 3411 } 3412 3413 LegalizerHelper::LegalizeResult 3414 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3415 Register Dst = MI.getOperand(0).getReg(); 3416 Register Src0 = MI.getOperand(1).getReg(); 3417 Register Src1 = MI.getOperand(2).getReg(); 3418 3419 const LLT Src0Ty = MRI.getType(Src0); 3420 const LLT Src1Ty = MRI.getType(Src1); 3421 3422 const int Src0Size = Src0Ty.getScalarSizeInBits(); 3423 const int Src1Size = Src1Ty.getScalarSizeInBits(); 3424 3425 auto SignBitMask = MIRBuilder.buildConstant( 3426 Src0Ty, APInt::getSignMask(Src0Size)); 3427 3428 auto NotSignBitMask = MIRBuilder.buildConstant( 3429 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 3430 3431 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 3432 MachineInstr *Or; 3433 3434 if (Src0Ty == Src1Ty) { 3435 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 3436 Or = MIRBuilder.buildOr(Dst, And0, And1); 3437 } else if (Src0Size > Src1Size) { 3438 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 3439 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 3440 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 3441 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 3442 Or = MIRBuilder.buildOr(Dst, And0, And1); 3443 } else { 3444 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 3445 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 3446 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 3447 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 3448 Or = MIRBuilder.buildOr(Dst, And0, And1); 3449 } 3450 3451 // Be careful about setting nsz/nnan/ninf on every instruction, since the 3452 // constants are a nan and -0.0, but the final result should preserve 3453 // everything. 3454 if (unsigned Flags = MI.getFlags()) 3455 Or->setFlags(Flags); 3456 3457 MI.eraseFromParent(); 3458 return Legalized; 3459 } 3460 3461 LegalizerHelper::LegalizeResult 3462 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 3463 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 3464 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 3465 3466 Register Dst = MI.getOperand(0).getReg(); 3467 Register Src0 = MI.getOperand(1).getReg(); 3468 Register Src1 = MI.getOperand(2).getReg(); 3469 LLT Ty = MRI.getType(Dst); 3470 3471 if (!MI.getFlag(MachineInstr::FmNoNans)) { 3472 // Insert canonicalizes if it's possible we need to quiet to get correct 3473 // sNaN behavior. 3474 3475 // Note this must be done here, and not as an optimization combine in the 3476 // absence of a dedicate quiet-snan instruction as we're using an 3477 // omni-purpose G_FCANONICALIZE. 3478 if (!isKnownNeverSNaN(Src0, MRI)) 3479 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 3480 3481 if (!isKnownNeverSNaN(Src1, MRI)) 3482 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 3483 } 3484 3485 // If there are no nans, it's safe to simply replace this with the non-IEEE 3486 // version. 3487 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 3488 MI.eraseFromParent(); 3489 return Legalized; 3490 } 3491