1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 if (!Ty0.isVector() && !Ty1.isVector()) { 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 if (Ty0.isVector() && !Ty1.isVector()) { 96 assert(Ty0.getElementType() == Ty1 && "not yet handled"); 97 return Ty0; 98 } 99 100 if (Ty1.isVector() && !Ty0.isVector()) { 101 assert(Ty1.getElementType() == Ty0 && "not yet handled"); 102 return Ty1; 103 } 104 105 if (Ty0.isVector() && Ty1.isVector()) { 106 assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled"); 107 108 int GCDElts = greatestCommonDivisor(Ty0.getNumElements(), 109 Ty1.getNumElements()); 110 111 int Mul = Ty0.getNumElements() * Ty1.getNumElements(); 112 return LLT::vector(Mul / GCDElts, Ty0.getElementType()); 113 } 114 115 llvm_unreachable("not yet handled"); 116 } 117 118 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 119 120 if (!Ty.isScalar()) 121 return nullptr; 122 123 switch (Ty.getSizeInBits()) { 124 case 16: 125 return Type::getHalfTy(Ctx); 126 case 32: 127 return Type::getFloatTy(Ctx); 128 case 64: 129 return Type::getDoubleTy(Ctx); 130 case 128: 131 return Type::getFP128Ty(Ctx); 132 default: 133 return nullptr; 134 } 135 } 136 137 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 138 GISelChangeObserver &Observer, 139 MachineIRBuilder &Builder) 140 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 141 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 142 MIRBuilder.setMF(MF); 143 MIRBuilder.setChangeObserver(Observer); 144 } 145 146 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 147 GISelChangeObserver &Observer, 148 MachineIRBuilder &B) 149 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 150 MIRBuilder.setMF(MF); 151 MIRBuilder.setChangeObserver(Observer); 152 } 153 LegalizerHelper::LegalizeResult 154 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 155 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 156 157 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 158 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 159 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 160 : UnableToLegalize; 161 auto Step = LI.getAction(MI, MRI); 162 switch (Step.Action) { 163 case Legal: 164 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 165 return AlreadyLegal; 166 case Libcall: 167 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 168 return libcall(MI); 169 case NarrowScalar: 170 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 171 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 172 case WidenScalar: 173 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 174 return widenScalar(MI, Step.TypeIdx, Step.NewType); 175 case Lower: 176 LLVM_DEBUG(dbgs() << ".. Lower\n"); 177 return lower(MI, Step.TypeIdx, Step.NewType); 178 case FewerElements: 179 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 180 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 181 case MoreElements: 182 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 183 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 184 case Custom: 185 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 186 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 187 : UnableToLegalize; 188 default: 189 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 190 return UnableToLegalize; 191 } 192 } 193 194 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 195 SmallVectorImpl<Register> &VRegs) { 196 for (int i = 0; i < NumParts; ++i) 197 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 198 MIRBuilder.buildUnmerge(VRegs, Reg); 199 } 200 201 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 202 LLT MainTy, LLT &LeftoverTy, 203 SmallVectorImpl<Register> &VRegs, 204 SmallVectorImpl<Register> &LeftoverRegs) { 205 assert(!LeftoverTy.isValid() && "this is an out argument"); 206 207 unsigned RegSize = RegTy.getSizeInBits(); 208 unsigned MainSize = MainTy.getSizeInBits(); 209 unsigned NumParts = RegSize / MainSize; 210 unsigned LeftoverSize = RegSize - NumParts * MainSize; 211 212 // Use an unmerge when possible. 213 if (LeftoverSize == 0) { 214 for (unsigned I = 0; I < NumParts; ++I) 215 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 216 MIRBuilder.buildUnmerge(VRegs, Reg); 217 return true; 218 } 219 220 if (MainTy.isVector()) { 221 unsigned EltSize = MainTy.getScalarSizeInBits(); 222 if (LeftoverSize % EltSize != 0) 223 return false; 224 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 225 } else { 226 LeftoverTy = LLT::scalar(LeftoverSize); 227 } 228 229 // For irregular sizes, extract the individual parts. 230 for (unsigned I = 0; I != NumParts; ++I) { 231 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 232 VRegs.push_back(NewReg); 233 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 234 } 235 236 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 237 Offset += LeftoverSize) { 238 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 239 LeftoverRegs.push_back(NewReg); 240 MIRBuilder.buildExtract(NewReg, Reg, Offset); 241 } 242 243 return true; 244 } 245 246 void LegalizerHelper::insertParts(Register DstReg, 247 LLT ResultTy, LLT PartTy, 248 ArrayRef<Register> PartRegs, 249 LLT LeftoverTy, 250 ArrayRef<Register> LeftoverRegs) { 251 if (!LeftoverTy.isValid()) { 252 assert(LeftoverRegs.empty()); 253 254 if (!ResultTy.isVector()) { 255 MIRBuilder.buildMerge(DstReg, PartRegs); 256 return; 257 } 258 259 if (PartTy.isVector()) 260 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 261 else 262 MIRBuilder.buildBuildVector(DstReg, PartRegs); 263 return; 264 } 265 266 unsigned PartSize = PartTy.getSizeInBits(); 267 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 268 269 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 270 MIRBuilder.buildUndef(CurResultReg); 271 272 unsigned Offset = 0; 273 for (Register PartReg : PartRegs) { 274 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 275 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 276 CurResultReg = NewResultReg; 277 Offset += PartSize; 278 } 279 280 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 281 // Use the original output register for the final insert to avoid a copy. 282 Register NewResultReg = (I + 1 == E) ? 283 DstReg : MRI.createGenericVirtualRegister(ResultTy); 284 285 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 286 CurResultReg = NewResultReg; 287 Offset += LeftoverPartSize; 288 } 289 } 290 291 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 292 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 293 const MachineInstr &MI) { 294 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 295 296 const int NumResults = MI.getNumOperands() - 1; 297 Regs.resize(NumResults); 298 for (int I = 0; I != NumResults; ++I) 299 Regs[I] = MI.getOperand(I).getReg(); 300 } 301 302 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 303 LLT NarrowTy, Register SrcReg) { 304 LLT SrcTy = MRI.getType(SrcReg); 305 306 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 307 if (SrcTy == GCDTy) { 308 // If the source already evenly divides the result type, we don't need to do 309 // anything. 310 Parts.push_back(SrcReg); 311 } else { 312 // Need to split into common type sized pieces. 313 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 314 getUnmergeResults(Parts, *Unmerge); 315 } 316 317 return GCDTy; 318 } 319 320 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 321 SmallVectorImpl<Register> &VRegs, 322 unsigned PadStrategy) { 323 LLT LCMTy = getLCMType(DstTy, NarrowTy); 324 325 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 326 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 327 int NumOrigSrc = VRegs.size(); 328 329 Register PadReg; 330 331 // Get a value we can use to pad the source value if the sources won't evenly 332 // cover the result type. 333 if (NumOrigSrc < NumParts * NumSubParts) { 334 if (PadStrategy == TargetOpcode::G_ZEXT) 335 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ANYEXT) 337 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 338 else { 339 assert(PadStrategy == TargetOpcode::G_SEXT); 340 341 // Shift the sign bit of the low register through the high register. 342 auto ShiftAmt = 343 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 344 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 345 } 346 } 347 348 // Registers for the final merge to be produced. 349 SmallVector<Register, 4> Remerge(NumParts); 350 351 // Registers needed for intermediate merges, which will be merged into a 352 // source for Remerge. 353 SmallVector<Register, 4> SubMerge(NumSubParts); 354 355 // Once we've fully read off the end of the original source bits, we can reuse 356 // the same high bits for remaining padding elements. 357 Register AllPadReg; 358 359 // Build merges to the LCM type to cover the original result type. 360 for (int I = 0; I != NumParts; ++I) { 361 bool AllMergePartsArePadding = true; 362 363 // Build the requested merges to the requested type. 364 for (int J = 0; J != NumSubParts; ++J) { 365 int Idx = I * NumSubParts + J; 366 if (Idx >= NumOrigSrc) { 367 SubMerge[J] = PadReg; 368 continue; 369 } 370 371 SubMerge[J] = VRegs[Idx]; 372 373 // There are meaningful bits here we can't reuse later. 374 AllMergePartsArePadding = false; 375 } 376 377 // If we've filled up a complete piece with padding bits, we can directly 378 // emit the natural sized constant if applicable, rather than a merge of 379 // smaller constants. 380 if (AllMergePartsArePadding && !AllPadReg) { 381 if (PadStrategy == TargetOpcode::G_ANYEXT) 382 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 383 else if (PadStrategy == TargetOpcode::G_ZEXT) 384 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 385 386 // If this is a sign extension, we can't materialize a trivial constant 387 // with the right type and have to produce a merge. 388 } 389 390 if (AllPadReg) { 391 // Avoid creating additional instructions if we're just adding additional 392 // copies of padding bits. 393 Remerge[I] = AllPadReg; 394 continue; 395 } 396 397 if (NumSubParts == 1) 398 Remerge[I] = SubMerge[0]; 399 else 400 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 401 402 // In the sign extend padding case, re-use the first all-signbit merge. 403 if (AllMergePartsArePadding && !AllPadReg) 404 AllPadReg = Remerge[I]; 405 } 406 407 VRegs = std::move(Remerge); 408 return LCMTy; 409 } 410 411 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 412 ArrayRef<Register> RemergeRegs) { 413 LLT DstTy = MRI.getType(DstReg); 414 415 // Create the merge to the widened source, and extract the relevant bits into 416 // the result. 417 418 if (DstTy == LCMTy) { 419 MIRBuilder.buildMerge(DstReg, RemergeRegs); 420 return; 421 } 422 423 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 424 if (DstTy.isScalar() && LCMTy.isScalar()) { 425 MIRBuilder.buildTrunc(DstReg, Remerge); 426 return; 427 } 428 429 if (LCMTy.isVector()) { 430 MIRBuilder.buildExtract(DstReg, Remerge, 0); 431 return; 432 } 433 434 llvm_unreachable("unhandled case"); 435 } 436 437 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 438 switch (Opcode) { 439 case TargetOpcode::G_SDIV: 440 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 441 switch (Size) { 442 case 32: 443 return RTLIB::SDIV_I32; 444 case 64: 445 return RTLIB::SDIV_I64; 446 case 128: 447 return RTLIB::SDIV_I128; 448 default: 449 llvm_unreachable("unexpected size"); 450 } 451 case TargetOpcode::G_UDIV: 452 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 453 switch (Size) { 454 case 32: 455 return RTLIB::UDIV_I32; 456 case 64: 457 return RTLIB::UDIV_I64; 458 case 128: 459 return RTLIB::UDIV_I128; 460 default: 461 llvm_unreachable("unexpected size"); 462 } 463 case TargetOpcode::G_SREM: 464 assert((Size == 32 || Size == 64) && "Unsupported size"); 465 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 466 case TargetOpcode::G_UREM: 467 assert((Size == 32 || Size == 64) && "Unsupported size"); 468 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 469 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 470 assert(Size == 32 && "Unsupported size"); 471 return RTLIB::CTLZ_I32; 472 case TargetOpcode::G_FADD: 473 assert((Size == 32 || Size == 64) && "Unsupported size"); 474 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 475 case TargetOpcode::G_FSUB: 476 assert((Size == 32 || Size == 64) && "Unsupported size"); 477 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 478 case TargetOpcode::G_FMUL: 479 assert((Size == 32 || Size == 64) && "Unsupported size"); 480 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 481 case TargetOpcode::G_FDIV: 482 assert((Size == 32 || Size == 64) && "Unsupported size"); 483 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 484 case TargetOpcode::G_FEXP: 485 assert((Size == 32 || Size == 64) && "Unsupported size"); 486 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 487 case TargetOpcode::G_FEXP2: 488 assert((Size == 32 || Size == 64) && "Unsupported size"); 489 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 490 case TargetOpcode::G_FREM: 491 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 492 case TargetOpcode::G_FPOW: 493 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 494 case TargetOpcode::G_FMA: 495 assert((Size == 32 || Size == 64) && "Unsupported size"); 496 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 497 case TargetOpcode::G_FSIN: 498 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 499 return Size == 128 ? RTLIB::SIN_F128 500 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 501 case TargetOpcode::G_FCOS: 502 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 503 return Size == 128 ? RTLIB::COS_F128 504 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 505 case TargetOpcode::G_FLOG10: 506 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 507 return Size == 128 ? RTLIB::LOG10_F128 508 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 509 case TargetOpcode::G_FLOG: 510 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 511 return Size == 128 ? RTLIB::LOG_F128 512 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 513 case TargetOpcode::G_FLOG2: 514 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 515 return Size == 128 ? RTLIB::LOG2_F128 516 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 517 case TargetOpcode::G_FCEIL: 518 assert((Size == 32 || Size == 64) && "Unsupported size"); 519 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 520 case TargetOpcode::G_FFLOOR: 521 assert((Size == 32 || Size == 64) && "Unsupported size"); 522 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 523 } 524 llvm_unreachable("Unknown libcall function"); 525 } 526 527 /// True if an instruction is in tail position in its caller. Intended for 528 /// legalizing libcalls as tail calls when possible. 529 static bool isLibCallInTailPosition(MachineInstr &MI) { 530 const Function &F = MI.getParent()->getParent()->getFunction(); 531 532 // Conservatively require the attributes of the call to match those of 533 // the return. Ignore NoAlias and NonNull because they don't affect the 534 // call sequence. 535 AttributeList CallerAttrs = F.getAttributes(); 536 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 537 .removeAttribute(Attribute::NoAlias) 538 .removeAttribute(Attribute::NonNull) 539 .hasAttributes()) 540 return false; 541 542 // It's not safe to eliminate the sign / zero extension of the return value. 543 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 544 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 545 return false; 546 547 // Only tail call if the following instruction is a standard return. 548 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 549 MachineInstr *Next = MI.getNextNode(); 550 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 551 return false; 552 553 return true; 554 } 555 556 LegalizerHelper::LegalizeResult 557 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 558 const CallLowering::ArgInfo &Result, 559 ArrayRef<CallLowering::ArgInfo> Args) { 560 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 561 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 562 const char *Name = TLI.getLibcallName(Libcall); 563 564 CallLowering::CallLoweringInfo Info; 565 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 566 Info.Callee = MachineOperand::CreateES(Name); 567 Info.OrigRet = Result; 568 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 569 if (!CLI.lowerCall(MIRBuilder, Info)) 570 return LegalizerHelper::UnableToLegalize; 571 572 return LegalizerHelper::Legalized; 573 } 574 575 // Useful for libcalls where all operands have the same type. 576 static LegalizerHelper::LegalizeResult 577 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 578 Type *OpType) { 579 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 580 581 SmallVector<CallLowering::ArgInfo, 3> Args; 582 for (unsigned i = 1; i < MI.getNumOperands(); i++) 583 Args.push_back({MI.getOperand(i).getReg(), OpType}); 584 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 585 Args); 586 } 587 588 LegalizerHelper::LegalizeResult 589 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 590 MachineInstr &MI) { 591 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 592 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 593 594 SmallVector<CallLowering::ArgInfo, 3> Args; 595 // Add all the args, except for the last which is an imm denoting 'tail'. 596 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 597 Register Reg = MI.getOperand(i).getReg(); 598 599 // Need derive an IR type for call lowering. 600 LLT OpLLT = MRI.getType(Reg); 601 Type *OpTy = nullptr; 602 if (OpLLT.isPointer()) 603 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 604 else 605 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 606 Args.push_back({Reg, OpTy}); 607 } 608 609 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 610 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 611 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 612 RTLIB::Libcall RTLibcall; 613 switch (ID) { 614 case Intrinsic::memcpy: 615 RTLibcall = RTLIB::MEMCPY; 616 break; 617 case Intrinsic::memset: 618 RTLibcall = RTLIB::MEMSET; 619 break; 620 case Intrinsic::memmove: 621 RTLibcall = RTLIB::MEMMOVE; 622 break; 623 default: 624 return LegalizerHelper::UnableToLegalize; 625 } 626 const char *Name = TLI.getLibcallName(RTLibcall); 627 628 MIRBuilder.setInstr(MI); 629 630 CallLowering::CallLoweringInfo Info; 631 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 632 Info.Callee = MachineOperand::CreateES(Name); 633 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 634 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 635 isLibCallInTailPosition(MI); 636 637 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 638 if (!CLI.lowerCall(MIRBuilder, Info)) 639 return LegalizerHelper::UnableToLegalize; 640 641 if (Info.LoweredTailCall) { 642 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 643 // We must have a return following the call to get past 644 // isLibCallInTailPosition. 645 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 646 "Expected instr following MI to be a return?"); 647 648 // We lowered a tail call, so the call is now the return from the block. 649 // Delete the old return. 650 MI.getNextNode()->eraseFromParent(); 651 } 652 653 return LegalizerHelper::Legalized; 654 } 655 656 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 657 Type *FromType) { 658 auto ToMVT = MVT::getVT(ToType); 659 auto FromMVT = MVT::getVT(FromType); 660 661 switch (Opcode) { 662 case TargetOpcode::G_FPEXT: 663 return RTLIB::getFPEXT(FromMVT, ToMVT); 664 case TargetOpcode::G_FPTRUNC: 665 return RTLIB::getFPROUND(FromMVT, ToMVT); 666 case TargetOpcode::G_FPTOSI: 667 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 668 case TargetOpcode::G_FPTOUI: 669 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 670 case TargetOpcode::G_SITOFP: 671 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 672 case TargetOpcode::G_UITOFP: 673 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 674 } 675 llvm_unreachable("Unsupported libcall function"); 676 } 677 678 static LegalizerHelper::LegalizeResult 679 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 680 Type *FromType) { 681 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 682 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 683 {{MI.getOperand(1).getReg(), FromType}}); 684 } 685 686 LegalizerHelper::LegalizeResult 687 LegalizerHelper::libcall(MachineInstr &MI) { 688 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 689 unsigned Size = LLTy.getSizeInBits(); 690 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 691 692 MIRBuilder.setInstr(MI); 693 694 switch (MI.getOpcode()) { 695 default: 696 return UnableToLegalize; 697 case TargetOpcode::G_SDIV: 698 case TargetOpcode::G_UDIV: 699 case TargetOpcode::G_SREM: 700 case TargetOpcode::G_UREM: 701 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 702 Type *HLTy = IntegerType::get(Ctx, Size); 703 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_FADD: 709 case TargetOpcode::G_FSUB: 710 case TargetOpcode::G_FMUL: 711 case TargetOpcode::G_FDIV: 712 case TargetOpcode::G_FMA: 713 case TargetOpcode::G_FPOW: 714 case TargetOpcode::G_FREM: 715 case TargetOpcode::G_FCOS: 716 case TargetOpcode::G_FSIN: 717 case TargetOpcode::G_FLOG10: 718 case TargetOpcode::G_FLOG: 719 case TargetOpcode::G_FLOG2: 720 case TargetOpcode::G_FEXP: 721 case TargetOpcode::G_FEXP2: 722 case TargetOpcode::G_FCEIL: 723 case TargetOpcode::G_FFLOOR: { 724 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 725 if (!HLTy || (Size != 32 && Size != 64)) { 726 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 727 return UnableToLegalize; 728 } 729 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPEXT: 735 case TargetOpcode::G_FPTRUNC: { 736 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 737 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 738 if (!FromTy || !ToTy) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 741 if (Status != Legalized) 742 return Status; 743 break; 744 } 745 case TargetOpcode::G_FPTOSI: 746 case TargetOpcode::G_FPTOUI: { 747 // FIXME: Support other types 748 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 749 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 750 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 751 return UnableToLegalize; 752 LegalizeResult Status = conversionLibcall( 753 MI, MIRBuilder, 754 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 755 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 756 if (Status != Legalized) 757 return Status; 758 break; 759 } 760 case TargetOpcode::G_SITOFP: 761 case TargetOpcode::G_UITOFP: { 762 // FIXME: Support other types 763 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 764 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 765 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 766 return UnableToLegalize; 767 LegalizeResult Status = conversionLibcall( 768 MI, MIRBuilder, 769 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 770 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 } 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 782 unsigned TypeIdx, 783 LLT NarrowTy) { 784 MIRBuilder.setInstr(MI); 785 786 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 787 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 788 789 switch (MI.getOpcode()) { 790 default: 791 return UnableToLegalize; 792 case TargetOpcode::G_IMPLICIT_DEF: { 793 // FIXME: add support for when SizeOp0 isn't an exact multiple of 794 // NarrowSize. 795 if (SizeOp0 % NarrowSize != 0) 796 return UnableToLegalize; 797 int NumParts = SizeOp0 / NarrowSize; 798 799 SmallVector<Register, 2> DstRegs; 800 for (int i = 0; i < NumParts; ++i) 801 DstRegs.push_back( 802 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 803 804 Register DstReg = MI.getOperand(0).getReg(); 805 if(MRI.getType(DstReg).isVector()) 806 MIRBuilder.buildBuildVector(DstReg, DstRegs); 807 else 808 MIRBuilder.buildMerge(DstReg, DstRegs); 809 MI.eraseFromParent(); 810 return Legalized; 811 } 812 case TargetOpcode::G_CONSTANT: { 813 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 814 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 815 unsigned TotalSize = Ty.getSizeInBits(); 816 unsigned NarrowSize = NarrowTy.getSizeInBits(); 817 int NumParts = TotalSize / NarrowSize; 818 819 SmallVector<Register, 4> PartRegs; 820 for (int I = 0; I != NumParts; ++I) { 821 unsigned Offset = I * NarrowSize; 822 auto K = MIRBuilder.buildConstant(NarrowTy, 823 Val.lshr(Offset).trunc(NarrowSize)); 824 PartRegs.push_back(K.getReg(0)); 825 } 826 827 LLT LeftoverTy; 828 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 829 SmallVector<Register, 1> LeftoverRegs; 830 if (LeftoverBits != 0) { 831 LeftoverTy = LLT::scalar(LeftoverBits); 832 auto K = MIRBuilder.buildConstant( 833 LeftoverTy, 834 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 835 LeftoverRegs.push_back(K.getReg(0)); 836 } 837 838 insertParts(MI.getOperand(0).getReg(), 839 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 840 841 MI.eraseFromParent(); 842 return Legalized; 843 } 844 case TargetOpcode::G_SEXT: 845 case TargetOpcode::G_ZEXT: 846 case TargetOpcode::G_ANYEXT: 847 return narrowScalarExt(MI, TypeIdx, NarrowTy); 848 case TargetOpcode::G_TRUNC: { 849 if (TypeIdx != 1) 850 return UnableToLegalize; 851 852 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 853 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 854 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 855 return UnableToLegalize; 856 } 857 858 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 859 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 864 case TargetOpcode::G_ADD: { 865 // FIXME: add support for when SizeOp0 isn't an exact multiple of 866 // NarrowSize. 867 if (SizeOp0 % NarrowSize != 0) 868 return UnableToLegalize; 869 // Expand in terms of carry-setting/consuming G_ADDE instructions. 870 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 871 872 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 873 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 874 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 875 876 Register CarryIn; 877 for (int i = 0; i < NumParts; ++i) { 878 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 879 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 880 881 if (i == 0) 882 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 883 else { 884 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 885 Src2Regs[i], CarryIn); 886 } 887 888 DstRegs.push_back(DstReg); 889 CarryIn = CarryOut; 890 } 891 Register DstReg = MI.getOperand(0).getReg(); 892 if(MRI.getType(DstReg).isVector()) 893 MIRBuilder.buildBuildVector(DstReg, DstRegs); 894 else 895 MIRBuilder.buildMerge(DstReg, DstRegs); 896 MI.eraseFromParent(); 897 return Legalized; 898 } 899 case TargetOpcode::G_SUB: { 900 // FIXME: add support for when SizeOp0 isn't an exact multiple of 901 // NarrowSize. 902 if (SizeOp0 % NarrowSize != 0) 903 return UnableToLegalize; 904 905 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 906 907 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 908 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 909 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 910 911 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 912 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 913 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 914 {Src1Regs[0], Src2Regs[0]}); 915 DstRegs.push_back(DstReg); 916 Register BorrowIn = BorrowOut; 917 for (int i = 1; i < NumParts; ++i) { 918 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 919 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 920 921 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 922 {Src1Regs[i], Src2Regs[i], BorrowIn}); 923 924 DstRegs.push_back(DstReg); 925 BorrowIn = BorrowOut; 926 } 927 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 928 MI.eraseFromParent(); 929 return Legalized; 930 } 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 const auto &MMO = **MI.memoperands_begin(); 940 Register DstReg = MI.getOperand(0).getReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 auto &MMO = **MI.memoperands_begin(); 948 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 949 MIRBuilder.buildAnyExt(DstReg, TmpReg); 950 MI.eraseFromParent(); 951 return Legalized; 952 } 953 954 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 955 } 956 case TargetOpcode::G_ZEXTLOAD: 957 case TargetOpcode::G_SEXTLOAD: { 958 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 959 Register DstReg = MI.getOperand(0).getReg(); 960 Register PtrReg = MI.getOperand(1).getReg(); 961 962 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 963 auto &MMO = **MI.memoperands_begin(); 964 if (MMO.getSizeInBits() == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } 969 970 if (ZExt) 971 MIRBuilder.buildZExt(DstReg, TmpReg); 972 else 973 MIRBuilder.buildSExt(DstReg, TmpReg); 974 975 MI.eraseFromParent(); 976 return Legalized; 977 } 978 case TargetOpcode::G_STORE: { 979 const auto &MMO = **MI.memoperands_begin(); 980 981 Register SrcReg = MI.getOperand(0).getReg(); 982 LLT SrcTy = MRI.getType(SrcReg); 983 if (SrcTy.isVector()) 984 return UnableToLegalize; 985 986 int NumParts = SizeOp0 / NarrowSize; 987 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 988 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 989 if (SrcTy.isVector() && LeftoverBits != 0) 990 return UnableToLegalize; 991 992 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 993 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 994 auto &MMO = **MI.memoperands_begin(); 995 MIRBuilder.buildTrunc(TmpReg, SrcReg); 996 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 997 MI.eraseFromParent(); 998 return Legalized; 999 } 1000 1001 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1002 } 1003 case TargetOpcode::G_SELECT: 1004 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1005 case TargetOpcode::G_AND: 1006 case TargetOpcode::G_OR: 1007 case TargetOpcode::G_XOR: { 1008 // Legalize bitwise operation: 1009 // A = BinOp<Ty> B, C 1010 // into: 1011 // B1, ..., BN = G_UNMERGE_VALUES B 1012 // C1, ..., CN = G_UNMERGE_VALUES C 1013 // A1 = BinOp<Ty/N> B1, C2 1014 // ... 1015 // AN = BinOp<Ty/N> BN, CN 1016 // A = G_MERGE_VALUES A1, ..., AN 1017 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1018 } 1019 case TargetOpcode::G_SHL: 1020 case TargetOpcode::G_LSHR: 1021 case TargetOpcode::G_ASHR: 1022 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1023 case TargetOpcode::G_CTLZ: 1024 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1025 case TargetOpcode::G_CTTZ: 1026 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1027 case TargetOpcode::G_CTPOP: 1028 if (TypeIdx == 1) 1029 switch (MI.getOpcode()) { 1030 case TargetOpcode::G_CTLZ: 1031 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1032 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_CTTZ: 1034 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1035 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTPOP: 1037 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1038 default: 1039 return UnableToLegalize; 1040 } 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_INTTOPTR: 1047 if (TypeIdx != 1) 1048 return UnableToLegalize; 1049 1050 Observer.changingInstr(MI); 1051 narrowScalarSrc(MI, NarrowTy, 1); 1052 Observer.changedInstr(MI); 1053 return Legalized; 1054 case TargetOpcode::G_PTRTOINT: 1055 if (TypeIdx != 0) 1056 return UnableToLegalize; 1057 1058 Observer.changingInstr(MI); 1059 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 case TargetOpcode::G_PHI: { 1063 unsigned NumParts = SizeOp0 / NarrowSize; 1064 SmallVector<Register, 2> DstRegs(NumParts); 1065 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1066 Observer.changingInstr(MI); 1067 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1068 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1069 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1070 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1071 SrcRegs[i / 2]); 1072 } 1073 MachineBasicBlock &MBB = *MI.getParent(); 1074 MIRBuilder.setInsertPt(MBB, MI); 1075 for (unsigned i = 0; i < NumParts; ++i) { 1076 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1077 MachineInstrBuilder MIB = 1078 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1079 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1080 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1081 } 1082 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1083 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1084 Observer.changedInstr(MI); 1085 MI.eraseFromParent(); 1086 return Legalized; 1087 } 1088 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1089 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1090 if (TypeIdx != 2) 1091 return UnableToLegalize; 1092 1093 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1094 Observer.changingInstr(MI); 1095 narrowScalarSrc(MI, NarrowTy, OpIdx); 1096 Observer.changedInstr(MI); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_ICMP: { 1100 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1101 if (NarrowSize * 2 != SrcSize) 1102 return UnableToLegalize; 1103 1104 Observer.changingInstr(MI); 1105 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1106 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1107 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1108 1109 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1110 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1111 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1112 1113 CmpInst::Predicate Pred = 1114 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1115 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1116 1117 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1118 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1119 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1120 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1121 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1122 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1123 } else { 1124 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1125 MachineInstrBuilder CmpHEQ = 1126 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1127 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1128 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1129 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1130 } 1131 Observer.changedInstr(MI); 1132 MI.eraseFromParent(); 1133 return Legalized; 1134 } 1135 case TargetOpcode::G_SEXT_INREG: { 1136 if (TypeIdx != 0) 1137 return UnableToLegalize; 1138 1139 int64_t SizeInBits = MI.getOperand(2).getImm(); 1140 1141 // So long as the new type has more bits than the bits we're extending we 1142 // don't need to break it apart. 1143 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1144 Observer.changingInstr(MI); 1145 // We don't lose any non-extension bits by truncating the src and 1146 // sign-extending the dst. 1147 MachineOperand &MO1 = MI.getOperand(1); 1148 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1149 MO1.setReg(TruncMIB.getReg(0)); 1150 1151 MachineOperand &MO2 = MI.getOperand(0); 1152 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1153 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1154 MIRBuilder.buildSExt(MO2, DstExt); 1155 MO2.setReg(DstExt); 1156 Observer.changedInstr(MI); 1157 return Legalized; 1158 } 1159 1160 // Break it apart. Components below the extension point are unmodified. The 1161 // component containing the extension point becomes a narrower SEXT_INREG. 1162 // Components above it are ashr'd from the component containing the 1163 // extension point. 1164 if (SizeOp0 % NarrowSize != 0) 1165 return UnableToLegalize; 1166 int NumParts = SizeOp0 / NarrowSize; 1167 1168 // List the registers where the destination will be scattered. 1169 SmallVector<Register, 2> DstRegs; 1170 // List the registers where the source will be split. 1171 SmallVector<Register, 2> SrcRegs; 1172 1173 // Create all the temporary registers. 1174 for (int i = 0; i < NumParts; ++i) { 1175 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1176 1177 SrcRegs.push_back(SrcReg); 1178 } 1179 1180 // Explode the big arguments into smaller chunks. 1181 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1182 1183 Register AshrCstReg = 1184 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1185 .getReg(0); 1186 Register FullExtensionReg = 0; 1187 Register PartialExtensionReg = 0; 1188 1189 // Do the operation on each small part. 1190 for (int i = 0; i < NumParts; ++i) { 1191 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1192 DstRegs.push_back(SrcRegs[i]); 1193 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1194 assert(PartialExtensionReg && 1195 "Expected to visit partial extension before full"); 1196 if (FullExtensionReg) { 1197 DstRegs.push_back(FullExtensionReg); 1198 continue; 1199 } 1200 DstRegs.push_back( 1201 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1202 .getReg(0)); 1203 FullExtensionReg = DstRegs.back(); 1204 } else { 1205 DstRegs.push_back( 1206 MIRBuilder 1207 .buildInstr( 1208 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1209 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1210 .getReg(0)); 1211 PartialExtensionReg = DstRegs.back(); 1212 } 1213 } 1214 1215 // Gather the destination registers into the final destination. 1216 Register DstReg = MI.getOperand(0).getReg(); 1217 MIRBuilder.buildMerge(DstReg, DstRegs); 1218 MI.eraseFromParent(); 1219 return Legalized; 1220 } 1221 case TargetOpcode::G_BSWAP: 1222 case TargetOpcode::G_BITREVERSE: { 1223 if (SizeOp0 % NarrowSize != 0) 1224 return UnableToLegalize; 1225 1226 Observer.changingInstr(MI); 1227 SmallVector<Register, 2> SrcRegs, DstRegs; 1228 unsigned NumParts = SizeOp0 / NarrowSize; 1229 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1230 1231 for (unsigned i = 0; i < NumParts; ++i) { 1232 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1233 {SrcRegs[NumParts - 1 - i]}); 1234 DstRegs.push_back(DstPart.getReg(0)); 1235 } 1236 1237 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1238 1239 Observer.changedInstr(MI); 1240 MI.eraseFromParent(); 1241 return Legalized; 1242 } 1243 } 1244 } 1245 1246 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1247 unsigned OpIdx, unsigned ExtOpcode) { 1248 MachineOperand &MO = MI.getOperand(OpIdx); 1249 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1250 MO.setReg(ExtB.getReg(0)); 1251 } 1252 1253 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1254 unsigned OpIdx) { 1255 MachineOperand &MO = MI.getOperand(OpIdx); 1256 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1257 MO.setReg(ExtB.getReg(0)); 1258 } 1259 1260 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1261 unsigned OpIdx, unsigned TruncOpcode) { 1262 MachineOperand &MO = MI.getOperand(OpIdx); 1263 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1264 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1265 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1266 MO.setReg(DstExt); 1267 } 1268 1269 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1270 unsigned OpIdx, unsigned ExtOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1275 MO.setReg(DstTrunc); 1276 } 1277 1278 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1279 unsigned OpIdx) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildExtract(MO, DstExt, 0); 1284 MO.setReg(DstExt); 1285 } 1286 1287 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1288 unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 1291 LLT OldTy = MRI.getType(MO.getReg()); 1292 unsigned OldElts = OldTy.getNumElements(); 1293 unsigned NewElts = MoreTy.getNumElements(); 1294 1295 unsigned NumParts = NewElts / OldElts; 1296 1297 // Use concat_vectors if the result is a multiple of the number of elements. 1298 if (NumParts * OldElts == NewElts) { 1299 SmallVector<Register, 8> Parts; 1300 Parts.push_back(MO.getReg()); 1301 1302 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1303 for (unsigned I = 1; I != NumParts; ++I) 1304 Parts.push_back(ImpDef); 1305 1306 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1307 MO.setReg(Concat.getReg(0)); 1308 return; 1309 } 1310 1311 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1312 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1313 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1314 MO.setReg(MoreReg); 1315 } 1316 1317 LegalizerHelper::LegalizeResult 1318 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1319 LLT WideTy) { 1320 if (TypeIdx != 1) 1321 return UnableToLegalize; 1322 1323 Register DstReg = MI.getOperand(0).getReg(); 1324 LLT DstTy = MRI.getType(DstReg); 1325 if (DstTy.isVector()) 1326 return UnableToLegalize; 1327 1328 Register Src1 = MI.getOperand(1).getReg(); 1329 LLT SrcTy = MRI.getType(Src1); 1330 const int DstSize = DstTy.getSizeInBits(); 1331 const int SrcSize = SrcTy.getSizeInBits(); 1332 const int WideSize = WideTy.getSizeInBits(); 1333 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1334 1335 unsigned NumOps = MI.getNumOperands(); 1336 unsigned NumSrc = MI.getNumOperands() - 1; 1337 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1338 1339 if (WideSize >= DstSize) { 1340 // Directly pack the bits in the target type. 1341 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1342 1343 for (unsigned I = 2; I != NumOps; ++I) { 1344 const unsigned Offset = (I - 1) * PartSize; 1345 1346 Register SrcReg = MI.getOperand(I).getReg(); 1347 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1348 1349 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1350 1351 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1352 MRI.createGenericVirtualRegister(WideTy); 1353 1354 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1355 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1356 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1357 ResultReg = NextResult; 1358 } 1359 1360 if (WideSize > DstSize) 1361 MIRBuilder.buildTrunc(DstReg, ResultReg); 1362 else if (DstTy.isPointer()) 1363 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1364 1365 MI.eraseFromParent(); 1366 return Legalized; 1367 } 1368 1369 // Unmerge the original values to the GCD type, and recombine to the next 1370 // multiple greater than the original type. 1371 // 1372 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1373 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1374 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1375 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1376 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1377 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1378 // %12:_(s12) = G_MERGE_VALUES %10, %11 1379 // 1380 // Padding with undef if necessary: 1381 // 1382 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1383 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1384 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1385 // %7:_(s2) = G_IMPLICIT_DEF 1386 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1387 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1388 // %10:_(s12) = G_MERGE_VALUES %8, %9 1389 1390 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1391 LLT GCDTy = LLT::scalar(GCD); 1392 1393 SmallVector<Register, 8> Parts; 1394 SmallVector<Register, 8> NewMergeRegs; 1395 SmallVector<Register, 8> Unmerges; 1396 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1397 1398 // Decompose the original operands if they don't evenly divide. 1399 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1400 Register SrcReg = MI.getOperand(I).getReg(); 1401 if (GCD == SrcSize) { 1402 Unmerges.push_back(SrcReg); 1403 } else { 1404 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1405 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1406 Unmerges.push_back(Unmerge.getReg(J)); 1407 } 1408 } 1409 1410 // Pad with undef to the next size that is a multiple of the requested size. 1411 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1412 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1413 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1414 Unmerges.push_back(UndefReg); 1415 } 1416 1417 const int PartsPerGCD = WideSize / GCD; 1418 1419 // Build merges of each piece. 1420 ArrayRef<Register> Slicer(Unmerges); 1421 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1422 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1423 NewMergeRegs.push_back(Merge.getReg(0)); 1424 } 1425 1426 // A truncate may be necessary if the requested type doesn't evenly divide the 1427 // original result type. 1428 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1429 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1430 } else { 1431 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1432 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1433 } 1434 1435 MI.eraseFromParent(); 1436 return Legalized; 1437 } 1438 1439 LegalizerHelper::LegalizeResult 1440 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1441 LLT WideTy) { 1442 if (TypeIdx != 0) 1443 return UnableToLegalize; 1444 1445 int NumDst = MI.getNumOperands() - 1; 1446 Register SrcReg = MI.getOperand(NumDst).getReg(); 1447 LLT SrcTy = MRI.getType(SrcReg); 1448 if (SrcTy.isVector()) 1449 return UnableToLegalize; 1450 1451 Register Dst0Reg = MI.getOperand(0).getReg(); 1452 LLT DstTy = MRI.getType(Dst0Reg); 1453 if (!DstTy.isScalar()) 1454 return UnableToLegalize; 1455 1456 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1457 if (SrcTy.isPointer()) { 1458 const DataLayout &DL = MIRBuilder.getDataLayout(); 1459 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1460 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1461 return UnableToLegalize; 1462 } 1463 1464 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1465 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1466 } 1467 1468 // Theres no unmerge type to target. Directly extract the bits from the 1469 // source type 1470 unsigned DstSize = DstTy.getSizeInBits(); 1471 1472 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1473 for (int I = 1; I != NumDst; ++I) { 1474 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1475 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1476 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1477 } 1478 1479 MI.eraseFromParent(); 1480 return Legalized; 1481 } 1482 1483 // TODO 1484 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1485 return UnableToLegalize; 1486 1487 // Extend the source to a wider type. 1488 LLT LCMTy = getLCMType(SrcTy, WideTy); 1489 1490 Register WideSrc = SrcReg; 1491 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1492 // TODO: If this is an integral address space, cast to integer and anyext. 1493 if (SrcTy.isPointer()) { 1494 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1495 return UnableToLegalize; 1496 } 1497 1498 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1499 } 1500 1501 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1502 1503 // Create a sequence of unmerges to the original results. since we may have 1504 // widened the source, we will need to pad the results with dead defs to cover 1505 // the source register. 1506 // e.g. widen s16 to s32: 1507 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1508 // 1509 // => 1510 // %4:_(s64) = G_ANYEXT %0:_(s48) 1511 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1512 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1513 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1514 1515 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1516 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1517 1518 for (int I = 0; I != NumUnmerge; ++I) { 1519 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1520 1521 for (int J = 0; J != PartsPerUnmerge; ++J) { 1522 int Idx = I * PartsPerUnmerge + J; 1523 if (Idx < NumDst) 1524 MIB.addDef(MI.getOperand(Idx).getReg()); 1525 else { 1526 // Create dead def for excess components. 1527 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1528 } 1529 } 1530 1531 MIB.addUse(Unmerge.getReg(I)); 1532 } 1533 1534 MI.eraseFromParent(); 1535 return Legalized; 1536 } 1537 1538 LegalizerHelper::LegalizeResult 1539 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1540 LLT WideTy) { 1541 Register DstReg = MI.getOperand(0).getReg(); 1542 Register SrcReg = MI.getOperand(1).getReg(); 1543 LLT SrcTy = MRI.getType(SrcReg); 1544 1545 LLT DstTy = MRI.getType(DstReg); 1546 unsigned Offset = MI.getOperand(2).getImm(); 1547 1548 if (TypeIdx == 0) { 1549 if (SrcTy.isVector() || DstTy.isVector()) 1550 return UnableToLegalize; 1551 1552 SrcOp Src(SrcReg); 1553 if (SrcTy.isPointer()) { 1554 // Extracts from pointers can be handled only if they are really just 1555 // simple integers. 1556 const DataLayout &DL = MIRBuilder.getDataLayout(); 1557 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1558 return UnableToLegalize; 1559 1560 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1561 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1562 SrcTy = SrcAsIntTy; 1563 } 1564 1565 if (DstTy.isPointer()) 1566 return UnableToLegalize; 1567 1568 if (Offset == 0) { 1569 // Avoid a shift in the degenerate case. 1570 MIRBuilder.buildTrunc(DstReg, 1571 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1572 MI.eraseFromParent(); 1573 return Legalized; 1574 } 1575 1576 // Do a shift in the source type. 1577 LLT ShiftTy = SrcTy; 1578 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1579 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1580 ShiftTy = WideTy; 1581 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1582 return UnableToLegalize; 1583 1584 auto LShr = MIRBuilder.buildLShr( 1585 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1586 MIRBuilder.buildTrunc(DstReg, LShr); 1587 MI.eraseFromParent(); 1588 return Legalized; 1589 } 1590 1591 if (SrcTy.isScalar()) { 1592 Observer.changingInstr(MI); 1593 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1594 Observer.changedInstr(MI); 1595 return Legalized; 1596 } 1597 1598 if (!SrcTy.isVector()) 1599 return UnableToLegalize; 1600 1601 if (DstTy != SrcTy.getElementType()) 1602 return UnableToLegalize; 1603 1604 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1605 return UnableToLegalize; 1606 1607 Observer.changingInstr(MI); 1608 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1609 1610 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1611 Offset); 1612 widenScalarDst(MI, WideTy.getScalarType(), 0); 1613 Observer.changedInstr(MI); 1614 return Legalized; 1615 } 1616 1617 LegalizerHelper::LegalizeResult 1618 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1619 LLT WideTy) { 1620 if (TypeIdx != 0) 1621 return UnableToLegalize; 1622 Observer.changingInstr(MI); 1623 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1624 widenScalarDst(MI, WideTy); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1631 MIRBuilder.setInstr(MI); 1632 1633 switch (MI.getOpcode()) { 1634 default: 1635 return UnableToLegalize; 1636 case TargetOpcode::G_EXTRACT: 1637 return widenScalarExtract(MI, TypeIdx, WideTy); 1638 case TargetOpcode::G_INSERT: 1639 return widenScalarInsert(MI, TypeIdx, WideTy); 1640 case TargetOpcode::G_MERGE_VALUES: 1641 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1642 case TargetOpcode::G_UNMERGE_VALUES: 1643 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1644 case TargetOpcode::G_UADDO: 1645 case TargetOpcode::G_USUBO: { 1646 if (TypeIdx == 1) 1647 return UnableToLegalize; // TODO 1648 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1649 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1650 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1651 ? TargetOpcode::G_ADD 1652 : TargetOpcode::G_SUB; 1653 // Do the arithmetic in the larger type. 1654 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1655 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1656 APInt Mask = 1657 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1658 auto AndOp = MIRBuilder.buildAnd( 1659 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1660 // There is no overflow if the AndOp is the same as NewOp. 1661 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1662 // Now trunc the NewOp to the original result. 1663 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1664 MI.eraseFromParent(); 1665 return Legalized; 1666 } 1667 case TargetOpcode::G_CTTZ: 1668 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1669 case TargetOpcode::G_CTLZ: 1670 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1671 case TargetOpcode::G_CTPOP: { 1672 if (TypeIdx == 0) { 1673 Observer.changingInstr(MI); 1674 widenScalarDst(MI, WideTy, 0); 1675 Observer.changedInstr(MI); 1676 return Legalized; 1677 } 1678 1679 Register SrcReg = MI.getOperand(1).getReg(); 1680 1681 // First ZEXT the input. 1682 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1683 LLT CurTy = MRI.getType(SrcReg); 1684 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1685 // The count is the same in the larger type except if the original 1686 // value was zero. This can be handled by setting the bit just off 1687 // the top of the original type. 1688 auto TopBit = 1689 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1690 MIBSrc = MIRBuilder.buildOr( 1691 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1692 } 1693 1694 // Perform the operation at the larger size. 1695 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1696 // This is already the correct result for CTPOP and CTTZs 1697 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1698 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1699 // The correct result is NewOp - (Difference in widety and current ty). 1700 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1701 MIBNewOp = MIRBuilder.buildSub( 1702 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1703 } 1704 1705 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1706 MI.eraseFromParent(); 1707 return Legalized; 1708 } 1709 case TargetOpcode::G_BSWAP: { 1710 Observer.changingInstr(MI); 1711 Register DstReg = MI.getOperand(0).getReg(); 1712 1713 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1714 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1715 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1716 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1717 1718 MI.getOperand(0).setReg(DstExt); 1719 1720 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1721 1722 LLT Ty = MRI.getType(DstReg); 1723 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1724 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1725 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1726 1727 MIRBuilder.buildTrunc(DstReg, ShrReg); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 case TargetOpcode::G_BITREVERSE: { 1732 Observer.changingInstr(MI); 1733 1734 Register DstReg = MI.getOperand(0).getReg(); 1735 LLT Ty = MRI.getType(DstReg); 1736 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1737 1738 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 MI.getOperand(0).setReg(DstExt); 1741 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1742 1743 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1744 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1745 MIRBuilder.buildTrunc(DstReg, Shift); 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 } 1749 case TargetOpcode::G_ADD: 1750 case TargetOpcode::G_AND: 1751 case TargetOpcode::G_MUL: 1752 case TargetOpcode::G_OR: 1753 case TargetOpcode::G_XOR: 1754 case TargetOpcode::G_SUB: 1755 // Perform operation at larger width (any extension is fines here, high bits 1756 // don't affect the result) and then truncate the result back to the 1757 // original type. 1758 Observer.changingInstr(MI); 1759 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1760 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1761 widenScalarDst(MI, WideTy); 1762 Observer.changedInstr(MI); 1763 return Legalized; 1764 1765 case TargetOpcode::G_SHL: 1766 Observer.changingInstr(MI); 1767 1768 if (TypeIdx == 0) { 1769 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1770 widenScalarDst(MI, WideTy); 1771 } else { 1772 assert(TypeIdx == 1); 1773 // The "number of bits to shift" operand must preserve its value as an 1774 // unsigned integer: 1775 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1776 } 1777 1778 Observer.changedInstr(MI); 1779 return Legalized; 1780 1781 case TargetOpcode::G_SDIV: 1782 case TargetOpcode::G_SREM: 1783 case TargetOpcode::G_SMIN: 1784 case TargetOpcode::G_SMAX: 1785 Observer.changingInstr(MI); 1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1787 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1788 widenScalarDst(MI, WideTy); 1789 Observer.changedInstr(MI); 1790 return Legalized; 1791 1792 case TargetOpcode::G_ASHR: 1793 case TargetOpcode::G_LSHR: 1794 Observer.changingInstr(MI); 1795 1796 if (TypeIdx == 0) { 1797 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1798 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1799 1800 widenScalarSrc(MI, WideTy, 1, CvtOp); 1801 widenScalarDst(MI, WideTy); 1802 } else { 1803 assert(TypeIdx == 1); 1804 // The "number of bits to shift" operand must preserve its value as an 1805 // unsigned integer: 1806 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1807 } 1808 1809 Observer.changedInstr(MI); 1810 return Legalized; 1811 case TargetOpcode::G_UDIV: 1812 case TargetOpcode::G_UREM: 1813 case TargetOpcode::G_UMIN: 1814 case TargetOpcode::G_UMAX: 1815 Observer.changingInstr(MI); 1816 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1817 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1818 widenScalarDst(MI, WideTy); 1819 Observer.changedInstr(MI); 1820 return Legalized; 1821 1822 case TargetOpcode::G_SELECT: 1823 Observer.changingInstr(MI); 1824 if (TypeIdx == 0) { 1825 // Perform operation at larger width (any extension is fine here, high 1826 // bits don't affect the result) and then truncate the result back to the 1827 // original type. 1828 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1829 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1830 widenScalarDst(MI, WideTy); 1831 } else { 1832 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1833 // Explicit extension is required here since high bits affect the result. 1834 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1835 } 1836 Observer.changedInstr(MI); 1837 return Legalized; 1838 1839 case TargetOpcode::G_FPTOSI: 1840 case TargetOpcode::G_FPTOUI: 1841 Observer.changingInstr(MI); 1842 1843 if (TypeIdx == 0) 1844 widenScalarDst(MI, WideTy); 1845 else 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1847 1848 Observer.changedInstr(MI); 1849 return Legalized; 1850 case TargetOpcode::G_SITOFP: 1851 if (TypeIdx != 1) 1852 return UnableToLegalize; 1853 Observer.changingInstr(MI); 1854 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_UITOFP: 1859 if (TypeIdx != 1) 1860 return UnableToLegalize; 1861 Observer.changingInstr(MI); 1862 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 1866 case TargetOpcode::G_LOAD: 1867 case TargetOpcode::G_SEXTLOAD: 1868 case TargetOpcode::G_ZEXTLOAD: 1869 Observer.changingInstr(MI); 1870 widenScalarDst(MI, WideTy); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 1874 case TargetOpcode::G_STORE: { 1875 if (TypeIdx != 0) 1876 return UnableToLegalize; 1877 1878 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1879 if (!isPowerOf2_32(Ty.getSizeInBits())) 1880 return UnableToLegalize; 1881 1882 Observer.changingInstr(MI); 1883 1884 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1885 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1886 widenScalarSrc(MI, WideTy, 0, ExtType); 1887 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 } 1891 case TargetOpcode::G_CONSTANT: { 1892 MachineOperand &SrcMO = MI.getOperand(1); 1893 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1894 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1895 MRI.getType(MI.getOperand(0).getReg())); 1896 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1897 ExtOpc == TargetOpcode::G_ANYEXT) && 1898 "Illegal Extend"); 1899 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1900 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1901 ? SrcVal.sext(WideTy.getSizeInBits()) 1902 : SrcVal.zext(WideTy.getSizeInBits()); 1903 Observer.changingInstr(MI); 1904 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1905 1906 widenScalarDst(MI, WideTy); 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_FCONSTANT: { 1911 MachineOperand &SrcMO = MI.getOperand(1); 1912 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1913 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1914 bool LosesInfo; 1915 switch (WideTy.getSizeInBits()) { 1916 case 32: 1917 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1918 &LosesInfo); 1919 break; 1920 case 64: 1921 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1922 &LosesInfo); 1923 break; 1924 default: 1925 return UnableToLegalize; 1926 } 1927 1928 assert(!LosesInfo && "extend should always be lossless"); 1929 1930 Observer.changingInstr(MI); 1931 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1932 1933 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1934 Observer.changedInstr(MI); 1935 return Legalized; 1936 } 1937 case TargetOpcode::G_IMPLICIT_DEF: { 1938 Observer.changingInstr(MI); 1939 widenScalarDst(MI, WideTy); 1940 Observer.changedInstr(MI); 1941 return Legalized; 1942 } 1943 case TargetOpcode::G_BRCOND: 1944 Observer.changingInstr(MI); 1945 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 1949 case TargetOpcode::G_FCMP: 1950 Observer.changingInstr(MI); 1951 if (TypeIdx == 0) 1952 widenScalarDst(MI, WideTy); 1953 else { 1954 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1955 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1956 } 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 1960 case TargetOpcode::G_ICMP: 1961 Observer.changingInstr(MI); 1962 if (TypeIdx == 0) 1963 widenScalarDst(MI, WideTy); 1964 else { 1965 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1966 MI.getOperand(1).getPredicate())) 1967 ? TargetOpcode::G_SEXT 1968 : TargetOpcode::G_ZEXT; 1969 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1970 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1971 } 1972 Observer.changedInstr(MI); 1973 return Legalized; 1974 1975 case TargetOpcode::G_PTR_ADD: 1976 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1977 Observer.changingInstr(MI); 1978 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_PHI: { 1983 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1984 1985 Observer.changingInstr(MI); 1986 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1987 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1988 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1989 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1990 } 1991 1992 MachineBasicBlock &MBB = *MI.getParent(); 1993 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1994 widenScalarDst(MI, WideTy); 1995 Observer.changedInstr(MI); 1996 return Legalized; 1997 } 1998 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1999 if (TypeIdx == 0) { 2000 Register VecReg = MI.getOperand(1).getReg(); 2001 LLT VecTy = MRI.getType(VecReg); 2002 Observer.changingInstr(MI); 2003 2004 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2005 WideTy.getSizeInBits()), 2006 1, TargetOpcode::G_SEXT); 2007 2008 widenScalarDst(MI, WideTy, 0); 2009 Observer.changedInstr(MI); 2010 return Legalized; 2011 } 2012 2013 if (TypeIdx != 2) 2014 return UnableToLegalize; 2015 Observer.changingInstr(MI); 2016 // TODO: Probably should be zext 2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 } 2021 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2022 if (TypeIdx == 1) { 2023 Observer.changingInstr(MI); 2024 2025 Register VecReg = MI.getOperand(1).getReg(); 2026 LLT VecTy = MRI.getType(VecReg); 2027 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2028 2029 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2030 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2031 widenScalarDst(MI, WideVecTy, 0); 2032 Observer.changedInstr(MI); 2033 return Legalized; 2034 } 2035 2036 if (TypeIdx == 2) { 2037 Observer.changingInstr(MI); 2038 // TODO: Probably should be zext 2039 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2040 Observer.changedInstr(MI); 2041 } 2042 2043 return Legalized; 2044 } 2045 case TargetOpcode::G_FADD: 2046 case TargetOpcode::G_FMUL: 2047 case TargetOpcode::G_FSUB: 2048 case TargetOpcode::G_FMA: 2049 case TargetOpcode::G_FMAD: 2050 case TargetOpcode::G_FNEG: 2051 case TargetOpcode::G_FABS: 2052 case TargetOpcode::G_FCANONICALIZE: 2053 case TargetOpcode::G_FMINNUM: 2054 case TargetOpcode::G_FMAXNUM: 2055 case TargetOpcode::G_FMINNUM_IEEE: 2056 case TargetOpcode::G_FMAXNUM_IEEE: 2057 case TargetOpcode::G_FMINIMUM: 2058 case TargetOpcode::G_FMAXIMUM: 2059 case TargetOpcode::G_FDIV: 2060 case TargetOpcode::G_FREM: 2061 case TargetOpcode::G_FCEIL: 2062 case TargetOpcode::G_FFLOOR: 2063 case TargetOpcode::G_FCOS: 2064 case TargetOpcode::G_FSIN: 2065 case TargetOpcode::G_FLOG10: 2066 case TargetOpcode::G_FLOG: 2067 case TargetOpcode::G_FLOG2: 2068 case TargetOpcode::G_FRINT: 2069 case TargetOpcode::G_FNEARBYINT: 2070 case TargetOpcode::G_FSQRT: 2071 case TargetOpcode::G_FEXP: 2072 case TargetOpcode::G_FEXP2: 2073 case TargetOpcode::G_FPOW: 2074 case TargetOpcode::G_INTRINSIC_TRUNC: 2075 case TargetOpcode::G_INTRINSIC_ROUND: 2076 assert(TypeIdx == 0); 2077 Observer.changingInstr(MI); 2078 2079 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2080 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2081 2082 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_INTTOPTR: 2086 if (TypeIdx != 1) 2087 return UnableToLegalize; 2088 2089 Observer.changingInstr(MI); 2090 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2091 Observer.changedInstr(MI); 2092 return Legalized; 2093 case TargetOpcode::G_PTRTOINT: 2094 if (TypeIdx != 0) 2095 return UnableToLegalize; 2096 2097 Observer.changingInstr(MI); 2098 widenScalarDst(MI, WideTy, 0); 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 case TargetOpcode::G_BUILD_VECTOR: { 2102 Observer.changingInstr(MI); 2103 2104 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2105 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2106 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2107 2108 // Avoid changing the result vector type if the source element type was 2109 // requested. 2110 if (TypeIdx == 1) { 2111 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2112 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2113 } else { 2114 widenScalarDst(MI, WideTy, 0); 2115 } 2116 2117 Observer.changedInstr(MI); 2118 return Legalized; 2119 } 2120 case TargetOpcode::G_SEXT_INREG: 2121 if (TypeIdx != 0) 2122 return UnableToLegalize; 2123 2124 Observer.changingInstr(MI); 2125 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2126 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2127 Observer.changedInstr(MI); 2128 return Legalized; 2129 } 2130 } 2131 2132 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2133 MachineIRBuilder &B, Register Src, LLT Ty) { 2134 auto Unmerge = B.buildUnmerge(Ty, Src); 2135 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2136 Pieces.push_back(Unmerge.getReg(I)); 2137 } 2138 2139 LegalizerHelper::LegalizeResult 2140 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2141 Register Dst = MI.getOperand(0).getReg(); 2142 Register Src = MI.getOperand(1).getReg(); 2143 LLT DstTy = MRI.getType(Dst); 2144 LLT SrcTy = MRI.getType(Src); 2145 2146 if (SrcTy.isVector() && !DstTy.isVector()) { 2147 SmallVector<Register, 8> SrcRegs; 2148 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2149 MIRBuilder.buildMerge(Dst, SrcRegs); 2150 MI.eraseFromParent(); 2151 return Legalized; 2152 } 2153 2154 if (DstTy.isVector() && !SrcTy.isVector()) { 2155 SmallVector<Register, 8> SrcRegs; 2156 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2157 MIRBuilder.buildMerge(Dst, SrcRegs); 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 2162 return UnableToLegalize; 2163 } 2164 2165 LegalizerHelper::LegalizeResult 2166 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2167 using namespace TargetOpcode; 2168 MIRBuilder.setInstr(MI); 2169 2170 switch(MI.getOpcode()) { 2171 default: 2172 return UnableToLegalize; 2173 case TargetOpcode::G_BITCAST: 2174 return lowerBitcast(MI); 2175 case TargetOpcode::G_SREM: 2176 case TargetOpcode::G_UREM: { 2177 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2178 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2179 {MI.getOperand(1), MI.getOperand(2)}); 2180 2181 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2182 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2183 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2184 MI.eraseFromParent(); 2185 return Legalized; 2186 } 2187 case TargetOpcode::G_SADDO: 2188 case TargetOpcode::G_SSUBO: 2189 return lowerSADDO_SSUBO(MI); 2190 case TargetOpcode::G_SMULO: 2191 case TargetOpcode::G_UMULO: { 2192 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2193 // result. 2194 Register Res = MI.getOperand(0).getReg(); 2195 Register Overflow = MI.getOperand(1).getReg(); 2196 Register LHS = MI.getOperand(2).getReg(); 2197 Register RHS = MI.getOperand(3).getReg(); 2198 2199 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2200 ? TargetOpcode::G_SMULH 2201 : TargetOpcode::G_UMULH; 2202 2203 Observer.changingInstr(MI); 2204 const auto &TII = MIRBuilder.getTII(); 2205 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2206 MI.RemoveOperand(1); 2207 Observer.changedInstr(MI); 2208 2209 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2210 2211 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2212 2213 Register Zero = MRI.createGenericVirtualRegister(Ty); 2214 MIRBuilder.buildConstant(Zero, 0); 2215 2216 // For *signed* multiply, overflow is detected by checking: 2217 // (hi != (lo >> bitwidth-1)) 2218 if (Opcode == TargetOpcode::G_SMULH) { 2219 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2220 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2221 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2222 } else { 2223 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2224 } 2225 return Legalized; 2226 } 2227 case TargetOpcode::G_FNEG: { 2228 // TODO: Handle vector types once we are able to 2229 // represent them. 2230 if (Ty.isVector()) 2231 return UnableToLegalize; 2232 Register Res = MI.getOperand(0).getReg(); 2233 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2234 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2235 if (!ZeroTy) 2236 return UnableToLegalize; 2237 ConstantFP &ZeroForNegation = 2238 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2239 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2240 Register SubByReg = MI.getOperand(1).getReg(); 2241 Register ZeroReg = Zero.getReg(0); 2242 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2243 MI.eraseFromParent(); 2244 return Legalized; 2245 } 2246 case TargetOpcode::G_FSUB: { 2247 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2248 // First, check if G_FNEG is marked as Lower. If so, we may 2249 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2250 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2251 return UnableToLegalize; 2252 Register Res = MI.getOperand(0).getReg(); 2253 Register LHS = MI.getOperand(1).getReg(); 2254 Register RHS = MI.getOperand(2).getReg(); 2255 Register Neg = MRI.createGenericVirtualRegister(Ty); 2256 MIRBuilder.buildFNeg(Neg, RHS); 2257 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2258 MI.eraseFromParent(); 2259 return Legalized; 2260 } 2261 case TargetOpcode::G_FMAD: 2262 return lowerFMad(MI); 2263 case TargetOpcode::G_INTRINSIC_ROUND: 2264 return lowerIntrinsicRound(MI); 2265 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2266 Register OldValRes = MI.getOperand(0).getReg(); 2267 Register SuccessRes = MI.getOperand(1).getReg(); 2268 Register Addr = MI.getOperand(2).getReg(); 2269 Register CmpVal = MI.getOperand(3).getReg(); 2270 Register NewVal = MI.getOperand(4).getReg(); 2271 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2272 **MI.memoperands_begin()); 2273 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2274 MI.eraseFromParent(); 2275 return Legalized; 2276 } 2277 case TargetOpcode::G_LOAD: 2278 case TargetOpcode::G_SEXTLOAD: 2279 case TargetOpcode::G_ZEXTLOAD: { 2280 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2281 Register DstReg = MI.getOperand(0).getReg(); 2282 Register PtrReg = MI.getOperand(1).getReg(); 2283 LLT DstTy = MRI.getType(DstReg); 2284 auto &MMO = **MI.memoperands_begin(); 2285 2286 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2287 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2288 // This load needs splitting into power of 2 sized loads. 2289 if (DstTy.isVector()) 2290 return UnableToLegalize; 2291 if (isPowerOf2_32(DstTy.getSizeInBits())) 2292 return UnableToLegalize; // Don't know what we're being asked to do. 2293 2294 // Our strategy here is to generate anyextending loads for the smaller 2295 // types up to next power-2 result type, and then combine the two larger 2296 // result values together, before truncating back down to the non-pow-2 2297 // type. 2298 // E.g. v1 = i24 load => 2299 // v2 = i32 zextload (2 byte) 2300 // v3 = i32 load (1 byte) 2301 // v4 = i32 shl v3, 16 2302 // v5 = i32 or v4, v2 2303 // v1 = i24 trunc v5 2304 // By doing this we generate the correct truncate which should get 2305 // combined away as an artifact with a matching extend. 2306 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2307 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2308 2309 MachineFunction &MF = MIRBuilder.getMF(); 2310 MachineMemOperand *LargeMMO = 2311 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2312 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2313 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2314 2315 LLT PtrTy = MRI.getType(PtrReg); 2316 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2317 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2318 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2319 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2320 auto LargeLoad = MIRBuilder.buildLoadInstr( 2321 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2322 2323 auto OffsetCst = MIRBuilder.buildConstant( 2324 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2325 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2326 auto SmallPtr = 2327 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2328 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2329 *SmallMMO); 2330 2331 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2332 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2333 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2334 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2335 MI.eraseFromParent(); 2336 return Legalized; 2337 } 2338 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2339 MI.eraseFromParent(); 2340 return Legalized; 2341 } 2342 2343 if (DstTy.isScalar()) { 2344 Register TmpReg = 2345 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2346 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2347 switch (MI.getOpcode()) { 2348 default: 2349 llvm_unreachable("Unexpected opcode"); 2350 case TargetOpcode::G_LOAD: 2351 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2352 break; 2353 case TargetOpcode::G_SEXTLOAD: 2354 MIRBuilder.buildSExt(DstReg, TmpReg); 2355 break; 2356 case TargetOpcode::G_ZEXTLOAD: 2357 MIRBuilder.buildZExt(DstReg, TmpReg); 2358 break; 2359 } 2360 MI.eraseFromParent(); 2361 return Legalized; 2362 } 2363 2364 return UnableToLegalize; 2365 } 2366 case TargetOpcode::G_STORE: { 2367 // Lower a non-power of 2 store into multiple pow-2 stores. 2368 // E.g. split an i24 store into an i16 store + i8 store. 2369 // We do this by first extending the stored value to the next largest power 2370 // of 2 type, and then using truncating stores to store the components. 2371 // By doing this, likewise with G_LOAD, generate an extend that can be 2372 // artifact-combined away instead of leaving behind extracts. 2373 Register SrcReg = MI.getOperand(0).getReg(); 2374 Register PtrReg = MI.getOperand(1).getReg(); 2375 LLT SrcTy = MRI.getType(SrcReg); 2376 MachineMemOperand &MMO = **MI.memoperands_begin(); 2377 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2378 return UnableToLegalize; 2379 if (SrcTy.isVector()) 2380 return UnableToLegalize; 2381 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2382 return UnableToLegalize; // Don't know what we're being asked to do. 2383 2384 // Extend to the next pow-2. 2385 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2386 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2387 2388 // Obtain the smaller value by shifting away the larger value. 2389 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2390 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2391 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2392 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2393 2394 // Generate the PtrAdd and truncating stores. 2395 LLT PtrTy = MRI.getType(PtrReg); 2396 auto OffsetCst = MIRBuilder.buildConstant( 2397 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2398 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2399 auto SmallPtr = 2400 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2401 2402 MachineFunction &MF = MIRBuilder.getMF(); 2403 MachineMemOperand *LargeMMO = 2404 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2405 MachineMemOperand *SmallMMO = 2406 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2407 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2408 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2413 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2414 case TargetOpcode::G_CTLZ: 2415 case TargetOpcode::G_CTTZ: 2416 case TargetOpcode::G_CTPOP: 2417 return lowerBitCount(MI, TypeIdx, Ty); 2418 case G_UADDO: { 2419 Register Res = MI.getOperand(0).getReg(); 2420 Register CarryOut = MI.getOperand(1).getReg(); 2421 Register LHS = MI.getOperand(2).getReg(); 2422 Register RHS = MI.getOperand(3).getReg(); 2423 2424 MIRBuilder.buildAdd(Res, LHS, RHS); 2425 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2426 2427 MI.eraseFromParent(); 2428 return Legalized; 2429 } 2430 case G_UADDE: { 2431 Register Res = MI.getOperand(0).getReg(); 2432 Register CarryOut = MI.getOperand(1).getReg(); 2433 Register LHS = MI.getOperand(2).getReg(); 2434 Register RHS = MI.getOperand(3).getReg(); 2435 Register CarryIn = MI.getOperand(4).getReg(); 2436 2437 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2438 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2439 2440 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2441 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2442 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2443 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2444 2445 MI.eraseFromParent(); 2446 return Legalized; 2447 } 2448 case G_USUBO: { 2449 Register Res = MI.getOperand(0).getReg(); 2450 Register BorrowOut = MI.getOperand(1).getReg(); 2451 Register LHS = MI.getOperand(2).getReg(); 2452 Register RHS = MI.getOperand(3).getReg(); 2453 2454 MIRBuilder.buildSub(Res, LHS, RHS); 2455 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2456 2457 MI.eraseFromParent(); 2458 return Legalized; 2459 } 2460 case G_USUBE: { 2461 Register Res = MI.getOperand(0).getReg(); 2462 Register BorrowOut = MI.getOperand(1).getReg(); 2463 Register LHS = MI.getOperand(2).getReg(); 2464 Register RHS = MI.getOperand(3).getReg(); 2465 Register BorrowIn = MI.getOperand(4).getReg(); 2466 2467 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2468 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2469 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2470 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2471 2472 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2473 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2474 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2475 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2476 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2477 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2478 2479 MI.eraseFromParent(); 2480 return Legalized; 2481 } 2482 case G_UITOFP: 2483 return lowerUITOFP(MI, TypeIdx, Ty); 2484 case G_SITOFP: 2485 return lowerSITOFP(MI, TypeIdx, Ty); 2486 case G_FPTOUI: 2487 return lowerFPTOUI(MI, TypeIdx, Ty); 2488 case G_FPTOSI: 2489 return lowerFPTOSI(MI); 2490 case G_SMIN: 2491 case G_SMAX: 2492 case G_UMIN: 2493 case G_UMAX: 2494 return lowerMinMax(MI, TypeIdx, Ty); 2495 case G_FCOPYSIGN: 2496 return lowerFCopySign(MI, TypeIdx, Ty); 2497 case G_FMINNUM: 2498 case G_FMAXNUM: 2499 return lowerFMinNumMaxNum(MI); 2500 case G_UNMERGE_VALUES: 2501 return lowerUnmergeValues(MI); 2502 case TargetOpcode::G_SEXT_INREG: { 2503 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2504 int64_t SizeInBits = MI.getOperand(2).getImm(); 2505 2506 Register DstReg = MI.getOperand(0).getReg(); 2507 Register SrcReg = MI.getOperand(1).getReg(); 2508 LLT DstTy = MRI.getType(DstReg); 2509 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2510 2511 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2512 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2513 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2514 MI.eraseFromParent(); 2515 return Legalized; 2516 } 2517 case G_SHUFFLE_VECTOR: 2518 return lowerShuffleVector(MI); 2519 case G_DYN_STACKALLOC: 2520 return lowerDynStackAlloc(MI); 2521 case G_EXTRACT: 2522 return lowerExtract(MI); 2523 case G_INSERT: 2524 return lowerInsert(MI); 2525 case G_BSWAP: 2526 return lowerBswap(MI); 2527 case G_BITREVERSE: 2528 return lowerBitreverse(MI); 2529 case G_READ_REGISTER: 2530 case G_WRITE_REGISTER: 2531 return lowerReadWriteRegister(MI); 2532 } 2533 } 2534 2535 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2536 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2537 SmallVector<Register, 2> DstRegs; 2538 2539 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2540 Register DstReg = MI.getOperand(0).getReg(); 2541 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2542 int NumParts = Size / NarrowSize; 2543 // FIXME: Don't know how to handle the situation where the small vectors 2544 // aren't all the same size yet. 2545 if (Size % NarrowSize != 0) 2546 return UnableToLegalize; 2547 2548 for (int i = 0; i < NumParts; ++i) { 2549 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2550 MIRBuilder.buildUndef(TmpReg); 2551 DstRegs.push_back(TmpReg); 2552 } 2553 2554 if (NarrowTy.isVector()) 2555 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2556 else 2557 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2558 2559 MI.eraseFromParent(); 2560 return Legalized; 2561 } 2562 2563 LegalizerHelper::LegalizeResult 2564 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2565 LLT NarrowTy) { 2566 const unsigned Opc = MI.getOpcode(); 2567 const unsigned NumOps = MI.getNumOperands() - 1; 2568 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2569 const Register DstReg = MI.getOperand(0).getReg(); 2570 const unsigned Flags = MI.getFlags(); 2571 const LLT DstTy = MRI.getType(DstReg); 2572 const unsigned Size = DstTy.getSizeInBits(); 2573 const int NumParts = Size / NarrowSize; 2574 const LLT EltTy = DstTy.getElementType(); 2575 const unsigned EltSize = EltTy.getSizeInBits(); 2576 const unsigned BitsForNumParts = NarrowSize * NumParts; 2577 2578 // Check if we have any leftovers. If we do, then only handle the case where 2579 // the leftover is one element. 2580 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2581 return UnableToLegalize; 2582 2583 if (BitsForNumParts != Size) { 2584 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2585 MIRBuilder.buildUndef(AccumDstReg); 2586 2587 // Handle the pieces which evenly divide into the requested type with 2588 // extract/op/insert sequence. 2589 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2590 SmallVector<SrcOp, 4> SrcOps; 2591 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2592 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2593 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2594 SrcOps.push_back(PartOpReg); 2595 } 2596 2597 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2598 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2599 2600 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2601 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2602 AccumDstReg = PartInsertReg; 2603 } 2604 2605 // Handle the remaining element sized leftover piece. 2606 SmallVector<SrcOp, 4> SrcOps; 2607 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2608 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2609 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2610 SrcOps.push_back(PartOpReg); 2611 } 2612 2613 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2614 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2615 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2616 MI.eraseFromParent(); 2617 2618 return Legalized; 2619 } 2620 2621 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2622 2623 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2624 2625 if (NumOps >= 2) 2626 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2627 2628 if (NumOps >= 3) 2629 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2630 2631 for (int i = 0; i < NumParts; ++i) { 2632 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2633 2634 if (NumOps == 1) 2635 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2636 else if (NumOps == 2) { 2637 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2638 } else if (NumOps == 3) { 2639 MIRBuilder.buildInstr(Opc, {DstReg}, 2640 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2641 } 2642 2643 DstRegs.push_back(DstReg); 2644 } 2645 2646 if (NarrowTy.isVector()) 2647 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2648 else 2649 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2650 2651 MI.eraseFromParent(); 2652 return Legalized; 2653 } 2654 2655 // Handle splitting vector operations which need to have the same number of 2656 // elements in each type index, but each type index may have a different element 2657 // type. 2658 // 2659 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2660 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2661 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2662 // 2663 // Also handles some irregular breakdown cases, e.g. 2664 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2665 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2666 // s64 = G_SHL s64, s32 2667 LegalizerHelper::LegalizeResult 2668 LegalizerHelper::fewerElementsVectorMultiEltType( 2669 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2670 if (TypeIdx != 0) 2671 return UnableToLegalize; 2672 2673 const LLT NarrowTy0 = NarrowTyArg; 2674 const unsigned NewNumElts = 2675 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2676 2677 const Register DstReg = MI.getOperand(0).getReg(); 2678 LLT DstTy = MRI.getType(DstReg); 2679 LLT LeftoverTy0; 2680 2681 // All of the operands need to have the same number of elements, so if we can 2682 // determine a type breakdown for the result type, we can for all of the 2683 // source types. 2684 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2685 if (NumParts < 0) 2686 return UnableToLegalize; 2687 2688 SmallVector<MachineInstrBuilder, 4> NewInsts; 2689 2690 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2691 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2692 2693 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2694 LLT LeftoverTy; 2695 Register SrcReg = MI.getOperand(I).getReg(); 2696 LLT SrcTyI = MRI.getType(SrcReg); 2697 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2698 LLT LeftoverTyI; 2699 2700 // Split this operand into the requested typed registers, and any leftover 2701 // required to reproduce the original type. 2702 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2703 LeftoverRegs)) 2704 return UnableToLegalize; 2705 2706 if (I == 1) { 2707 // For the first operand, create an instruction for each part and setup 2708 // the result. 2709 for (Register PartReg : PartRegs) { 2710 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2711 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2712 .addDef(PartDstReg) 2713 .addUse(PartReg)); 2714 DstRegs.push_back(PartDstReg); 2715 } 2716 2717 for (Register LeftoverReg : LeftoverRegs) { 2718 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2719 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2720 .addDef(PartDstReg) 2721 .addUse(LeftoverReg)); 2722 LeftoverDstRegs.push_back(PartDstReg); 2723 } 2724 } else { 2725 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2726 2727 // Add the newly created operand splits to the existing instructions. The 2728 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2729 // pieces. 2730 unsigned InstCount = 0; 2731 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2732 NewInsts[InstCount++].addUse(PartRegs[J]); 2733 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2734 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2735 } 2736 2737 PartRegs.clear(); 2738 LeftoverRegs.clear(); 2739 } 2740 2741 // Insert the newly built operations and rebuild the result register. 2742 for (auto &MIB : NewInsts) 2743 MIRBuilder.insertInstr(MIB); 2744 2745 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2746 2747 MI.eraseFromParent(); 2748 return Legalized; 2749 } 2750 2751 LegalizerHelper::LegalizeResult 2752 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2753 LLT NarrowTy) { 2754 if (TypeIdx != 0) 2755 return UnableToLegalize; 2756 2757 Register DstReg = MI.getOperand(0).getReg(); 2758 Register SrcReg = MI.getOperand(1).getReg(); 2759 LLT DstTy = MRI.getType(DstReg); 2760 LLT SrcTy = MRI.getType(SrcReg); 2761 2762 LLT NarrowTy0 = NarrowTy; 2763 LLT NarrowTy1; 2764 unsigned NumParts; 2765 2766 if (NarrowTy.isVector()) { 2767 // Uneven breakdown not handled. 2768 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2769 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2770 return UnableToLegalize; 2771 2772 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2773 } else { 2774 NumParts = DstTy.getNumElements(); 2775 NarrowTy1 = SrcTy.getElementType(); 2776 } 2777 2778 SmallVector<Register, 4> SrcRegs, DstRegs; 2779 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2780 2781 for (unsigned I = 0; I < NumParts; ++I) { 2782 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2783 MachineInstr *NewInst = 2784 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2785 2786 NewInst->setFlags(MI.getFlags()); 2787 DstRegs.push_back(DstReg); 2788 } 2789 2790 if (NarrowTy.isVector()) 2791 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2792 else 2793 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2794 2795 MI.eraseFromParent(); 2796 return Legalized; 2797 } 2798 2799 LegalizerHelper::LegalizeResult 2800 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2801 LLT NarrowTy) { 2802 Register DstReg = MI.getOperand(0).getReg(); 2803 Register Src0Reg = MI.getOperand(2).getReg(); 2804 LLT DstTy = MRI.getType(DstReg); 2805 LLT SrcTy = MRI.getType(Src0Reg); 2806 2807 unsigned NumParts; 2808 LLT NarrowTy0, NarrowTy1; 2809 2810 if (TypeIdx == 0) { 2811 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2812 unsigned OldElts = DstTy.getNumElements(); 2813 2814 NarrowTy0 = NarrowTy; 2815 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2816 NarrowTy1 = NarrowTy.isVector() ? 2817 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2818 SrcTy.getElementType(); 2819 2820 } else { 2821 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2822 unsigned OldElts = SrcTy.getNumElements(); 2823 2824 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2825 NarrowTy.getNumElements(); 2826 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2827 DstTy.getScalarSizeInBits()); 2828 NarrowTy1 = NarrowTy; 2829 } 2830 2831 // FIXME: Don't know how to handle the situation where the small vectors 2832 // aren't all the same size yet. 2833 if (NarrowTy1.isVector() && 2834 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2835 return UnableToLegalize; 2836 2837 CmpInst::Predicate Pred 2838 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2839 2840 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2841 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2842 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2843 2844 for (unsigned I = 0; I < NumParts; ++I) { 2845 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2846 DstRegs.push_back(DstReg); 2847 2848 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2849 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2850 else { 2851 MachineInstr *NewCmp 2852 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2853 NewCmp->setFlags(MI.getFlags()); 2854 } 2855 } 2856 2857 if (NarrowTy1.isVector()) 2858 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2859 else 2860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2861 2862 MI.eraseFromParent(); 2863 return Legalized; 2864 } 2865 2866 LegalizerHelper::LegalizeResult 2867 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2868 LLT NarrowTy) { 2869 Register DstReg = MI.getOperand(0).getReg(); 2870 Register CondReg = MI.getOperand(1).getReg(); 2871 2872 unsigned NumParts = 0; 2873 LLT NarrowTy0, NarrowTy1; 2874 2875 LLT DstTy = MRI.getType(DstReg); 2876 LLT CondTy = MRI.getType(CondReg); 2877 unsigned Size = DstTy.getSizeInBits(); 2878 2879 assert(TypeIdx == 0 || CondTy.isVector()); 2880 2881 if (TypeIdx == 0) { 2882 NarrowTy0 = NarrowTy; 2883 NarrowTy1 = CondTy; 2884 2885 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2886 // FIXME: Don't know how to handle the situation where the small vectors 2887 // aren't all the same size yet. 2888 if (Size % NarrowSize != 0) 2889 return UnableToLegalize; 2890 2891 NumParts = Size / NarrowSize; 2892 2893 // Need to break down the condition type 2894 if (CondTy.isVector()) { 2895 if (CondTy.getNumElements() == NumParts) 2896 NarrowTy1 = CondTy.getElementType(); 2897 else 2898 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2899 CondTy.getScalarSizeInBits()); 2900 } 2901 } else { 2902 NumParts = CondTy.getNumElements(); 2903 if (NarrowTy.isVector()) { 2904 // TODO: Handle uneven breakdown. 2905 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2906 return UnableToLegalize; 2907 2908 return UnableToLegalize; 2909 } else { 2910 NarrowTy0 = DstTy.getElementType(); 2911 NarrowTy1 = NarrowTy; 2912 } 2913 } 2914 2915 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2916 if (CondTy.isVector()) 2917 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2918 2919 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2920 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2921 2922 for (unsigned i = 0; i < NumParts; ++i) { 2923 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2924 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2925 Src1Regs[i], Src2Regs[i]); 2926 DstRegs.push_back(DstReg); 2927 } 2928 2929 if (NarrowTy0.isVector()) 2930 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2931 else 2932 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2933 2934 MI.eraseFromParent(); 2935 return Legalized; 2936 } 2937 2938 LegalizerHelper::LegalizeResult 2939 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2940 LLT NarrowTy) { 2941 const Register DstReg = MI.getOperand(0).getReg(); 2942 LLT PhiTy = MRI.getType(DstReg); 2943 LLT LeftoverTy; 2944 2945 // All of the operands need to have the same number of elements, so if we can 2946 // determine a type breakdown for the result type, we can for all of the 2947 // source types. 2948 int NumParts, NumLeftover; 2949 std::tie(NumParts, NumLeftover) 2950 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2951 if (NumParts < 0) 2952 return UnableToLegalize; 2953 2954 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2955 SmallVector<MachineInstrBuilder, 4> NewInsts; 2956 2957 const int TotalNumParts = NumParts + NumLeftover; 2958 2959 // Insert the new phis in the result block first. 2960 for (int I = 0; I != TotalNumParts; ++I) { 2961 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2962 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2963 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2964 .addDef(PartDstReg)); 2965 if (I < NumParts) 2966 DstRegs.push_back(PartDstReg); 2967 else 2968 LeftoverDstRegs.push_back(PartDstReg); 2969 } 2970 2971 MachineBasicBlock *MBB = MI.getParent(); 2972 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2973 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2974 2975 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2976 2977 // Insert code to extract the incoming values in each predecessor block. 2978 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2979 PartRegs.clear(); 2980 LeftoverRegs.clear(); 2981 2982 Register SrcReg = MI.getOperand(I).getReg(); 2983 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2984 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2985 2986 LLT Unused; 2987 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2988 LeftoverRegs)) 2989 return UnableToLegalize; 2990 2991 // Add the newly created operand splits to the existing instructions. The 2992 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2993 // pieces. 2994 for (int J = 0; J != TotalNumParts; ++J) { 2995 MachineInstrBuilder MIB = NewInsts[J]; 2996 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2997 MIB.addMBB(&OpMBB); 2998 } 2999 } 3000 3001 MI.eraseFromParent(); 3002 return Legalized; 3003 } 3004 3005 LegalizerHelper::LegalizeResult 3006 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3007 unsigned TypeIdx, 3008 LLT NarrowTy) { 3009 if (TypeIdx != 1) 3010 return UnableToLegalize; 3011 3012 const int NumDst = MI.getNumOperands() - 1; 3013 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3014 LLT SrcTy = MRI.getType(SrcReg); 3015 3016 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3017 3018 // TODO: Create sequence of extracts. 3019 if (DstTy == NarrowTy) 3020 return UnableToLegalize; 3021 3022 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3023 if (DstTy == GCDTy) { 3024 // This would just be a copy of the same unmerge. 3025 // TODO: Create extracts, pad with undef and create intermediate merges. 3026 return UnableToLegalize; 3027 } 3028 3029 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3030 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3031 const int PartsPerUnmerge = NumDst / NumUnmerge; 3032 3033 for (int I = 0; I != NumUnmerge; ++I) { 3034 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3035 3036 for (int J = 0; J != PartsPerUnmerge; ++J) 3037 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3038 MIB.addUse(Unmerge.getReg(I)); 3039 } 3040 3041 MI.eraseFromParent(); 3042 return Legalized; 3043 } 3044 3045 LegalizerHelper::LegalizeResult 3046 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3047 unsigned TypeIdx, 3048 LLT NarrowTy) { 3049 assert(TypeIdx == 0 && "not a vector type index"); 3050 Register DstReg = MI.getOperand(0).getReg(); 3051 LLT DstTy = MRI.getType(DstReg); 3052 LLT SrcTy = DstTy.getElementType(); 3053 3054 int DstNumElts = DstTy.getNumElements(); 3055 int NarrowNumElts = NarrowTy.getNumElements(); 3056 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3057 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3058 3059 SmallVector<Register, 8> ConcatOps; 3060 SmallVector<Register, 8> SubBuildVector; 3061 3062 Register UndefReg; 3063 if (WidenedDstTy != DstTy) 3064 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3065 3066 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3067 // necessary. 3068 // 3069 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3070 // -> <2 x s16> 3071 // 3072 // %4:_(s16) = G_IMPLICIT_DEF 3073 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3074 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3075 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3076 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3077 for (int I = 0; I != NumConcat; ++I) { 3078 for (int J = 0; J != NarrowNumElts; ++J) { 3079 int SrcIdx = NarrowNumElts * I + J; 3080 3081 if (SrcIdx < DstNumElts) { 3082 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3083 SubBuildVector.push_back(SrcReg); 3084 } else 3085 SubBuildVector.push_back(UndefReg); 3086 } 3087 3088 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3089 ConcatOps.push_back(BuildVec.getReg(0)); 3090 SubBuildVector.clear(); 3091 } 3092 3093 if (DstTy == WidenedDstTy) 3094 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3095 else { 3096 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3097 MIRBuilder.buildExtract(DstReg, Concat, 0); 3098 } 3099 3100 MI.eraseFromParent(); 3101 return Legalized; 3102 } 3103 3104 LegalizerHelper::LegalizeResult 3105 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3106 LLT NarrowTy) { 3107 // FIXME: Don't know how to handle secondary types yet. 3108 if (TypeIdx != 0) 3109 return UnableToLegalize; 3110 3111 MachineMemOperand *MMO = *MI.memoperands_begin(); 3112 3113 // This implementation doesn't work for atomics. Give up instead of doing 3114 // something invalid. 3115 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3116 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3117 return UnableToLegalize; 3118 3119 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3120 Register ValReg = MI.getOperand(0).getReg(); 3121 Register AddrReg = MI.getOperand(1).getReg(); 3122 LLT ValTy = MRI.getType(ValReg); 3123 3124 int NumParts = -1; 3125 int NumLeftover = -1; 3126 LLT LeftoverTy; 3127 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3128 if (IsLoad) { 3129 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3130 } else { 3131 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3132 NarrowLeftoverRegs)) { 3133 NumParts = NarrowRegs.size(); 3134 NumLeftover = NarrowLeftoverRegs.size(); 3135 } 3136 } 3137 3138 if (NumParts == -1) 3139 return UnableToLegalize; 3140 3141 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3142 3143 unsigned TotalSize = ValTy.getSizeInBits(); 3144 3145 // Split the load/store into PartTy sized pieces starting at Offset. If this 3146 // is a load, return the new registers in ValRegs. For a store, each elements 3147 // of ValRegs should be PartTy. Returns the next offset that needs to be 3148 // handled. 3149 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3150 unsigned Offset) -> unsigned { 3151 MachineFunction &MF = MIRBuilder.getMF(); 3152 unsigned PartSize = PartTy.getSizeInBits(); 3153 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3154 Offset += PartSize, ++Idx) { 3155 unsigned ByteSize = PartSize / 8; 3156 unsigned ByteOffset = Offset / 8; 3157 Register NewAddrReg; 3158 3159 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3160 3161 MachineMemOperand *NewMMO = 3162 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3163 3164 if (IsLoad) { 3165 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3166 ValRegs.push_back(Dst); 3167 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3168 } else { 3169 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3170 } 3171 } 3172 3173 return Offset; 3174 }; 3175 3176 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3177 3178 // Handle the rest of the register if this isn't an even type breakdown. 3179 if (LeftoverTy.isValid()) 3180 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3181 3182 if (IsLoad) { 3183 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3184 LeftoverTy, NarrowLeftoverRegs); 3185 } 3186 3187 MI.eraseFromParent(); 3188 return Legalized; 3189 } 3190 3191 LegalizerHelper::LegalizeResult 3192 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3193 LLT NarrowTy) { 3194 Register DstReg = MI.getOperand(0).getReg(); 3195 Register SrcReg = MI.getOperand(1).getReg(); 3196 int64_t Imm = MI.getOperand(2).getImm(); 3197 3198 LLT DstTy = MRI.getType(DstReg); 3199 3200 SmallVector<Register, 8> Parts; 3201 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3202 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3203 3204 for (Register &R : Parts) 3205 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3206 3207 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3208 3209 MI.eraseFromParent(); 3210 return Legalized; 3211 } 3212 3213 LegalizerHelper::LegalizeResult 3214 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3215 LLT NarrowTy) { 3216 using namespace TargetOpcode; 3217 3218 MIRBuilder.setInstr(MI); 3219 switch (MI.getOpcode()) { 3220 case G_IMPLICIT_DEF: 3221 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3222 case G_AND: 3223 case G_OR: 3224 case G_XOR: 3225 case G_ADD: 3226 case G_SUB: 3227 case G_MUL: 3228 case G_SMULH: 3229 case G_UMULH: 3230 case G_FADD: 3231 case G_FMUL: 3232 case G_FSUB: 3233 case G_FNEG: 3234 case G_FABS: 3235 case G_FCANONICALIZE: 3236 case G_FDIV: 3237 case G_FREM: 3238 case G_FMA: 3239 case G_FMAD: 3240 case G_FPOW: 3241 case G_FEXP: 3242 case G_FEXP2: 3243 case G_FLOG: 3244 case G_FLOG2: 3245 case G_FLOG10: 3246 case G_FNEARBYINT: 3247 case G_FCEIL: 3248 case G_FFLOOR: 3249 case G_FRINT: 3250 case G_INTRINSIC_ROUND: 3251 case G_INTRINSIC_TRUNC: 3252 case G_FCOS: 3253 case G_FSIN: 3254 case G_FSQRT: 3255 case G_BSWAP: 3256 case G_BITREVERSE: 3257 case G_SDIV: 3258 case G_UDIV: 3259 case G_SREM: 3260 case G_UREM: 3261 case G_SMIN: 3262 case G_SMAX: 3263 case G_UMIN: 3264 case G_UMAX: 3265 case G_FMINNUM: 3266 case G_FMAXNUM: 3267 case G_FMINNUM_IEEE: 3268 case G_FMAXNUM_IEEE: 3269 case G_FMINIMUM: 3270 case G_FMAXIMUM: 3271 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3272 case G_SHL: 3273 case G_LSHR: 3274 case G_ASHR: 3275 case G_CTLZ: 3276 case G_CTLZ_ZERO_UNDEF: 3277 case G_CTTZ: 3278 case G_CTTZ_ZERO_UNDEF: 3279 case G_CTPOP: 3280 case G_FCOPYSIGN: 3281 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3282 case G_ZEXT: 3283 case G_SEXT: 3284 case G_ANYEXT: 3285 case G_FPEXT: 3286 case G_FPTRUNC: 3287 case G_SITOFP: 3288 case G_UITOFP: 3289 case G_FPTOSI: 3290 case G_FPTOUI: 3291 case G_INTTOPTR: 3292 case G_PTRTOINT: 3293 case G_ADDRSPACE_CAST: 3294 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3295 case G_ICMP: 3296 case G_FCMP: 3297 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3298 case G_SELECT: 3299 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3300 case G_PHI: 3301 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3302 case G_UNMERGE_VALUES: 3303 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3304 case G_BUILD_VECTOR: 3305 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3306 case G_LOAD: 3307 case G_STORE: 3308 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3309 case G_SEXT_INREG: 3310 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3311 default: 3312 return UnableToLegalize; 3313 } 3314 } 3315 3316 LegalizerHelper::LegalizeResult 3317 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3318 const LLT HalfTy, const LLT AmtTy) { 3319 3320 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3321 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3322 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3323 3324 if (Amt.isNullValue()) { 3325 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3326 MI.eraseFromParent(); 3327 return Legalized; 3328 } 3329 3330 LLT NVT = HalfTy; 3331 unsigned NVTBits = HalfTy.getSizeInBits(); 3332 unsigned VTBits = 2 * NVTBits; 3333 3334 SrcOp Lo(Register(0)), Hi(Register(0)); 3335 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3336 if (Amt.ugt(VTBits)) { 3337 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3338 } else if (Amt.ugt(NVTBits)) { 3339 Lo = MIRBuilder.buildConstant(NVT, 0); 3340 Hi = MIRBuilder.buildShl(NVT, InL, 3341 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3342 } else if (Amt == NVTBits) { 3343 Lo = MIRBuilder.buildConstant(NVT, 0); 3344 Hi = InL; 3345 } else { 3346 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3347 auto OrLHS = 3348 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3349 auto OrRHS = MIRBuilder.buildLShr( 3350 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3351 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3352 } 3353 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3354 if (Amt.ugt(VTBits)) { 3355 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3356 } else if (Amt.ugt(NVTBits)) { 3357 Lo = MIRBuilder.buildLShr(NVT, InH, 3358 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3359 Hi = MIRBuilder.buildConstant(NVT, 0); 3360 } else if (Amt == NVTBits) { 3361 Lo = InH; 3362 Hi = MIRBuilder.buildConstant(NVT, 0); 3363 } else { 3364 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3365 3366 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3367 auto OrRHS = MIRBuilder.buildShl( 3368 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3369 3370 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3371 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3372 } 3373 } else { 3374 if (Amt.ugt(VTBits)) { 3375 Hi = Lo = MIRBuilder.buildAShr( 3376 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3377 } else if (Amt.ugt(NVTBits)) { 3378 Lo = MIRBuilder.buildAShr(NVT, InH, 3379 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3380 Hi = MIRBuilder.buildAShr(NVT, InH, 3381 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3382 } else if (Amt == NVTBits) { 3383 Lo = InH; 3384 Hi = MIRBuilder.buildAShr(NVT, InH, 3385 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3386 } else { 3387 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3388 3389 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3390 auto OrRHS = MIRBuilder.buildShl( 3391 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3392 3393 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3394 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3395 } 3396 } 3397 3398 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3399 MI.eraseFromParent(); 3400 3401 return Legalized; 3402 } 3403 3404 // TODO: Optimize if constant shift amount. 3405 LegalizerHelper::LegalizeResult 3406 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3407 LLT RequestedTy) { 3408 if (TypeIdx == 1) { 3409 Observer.changingInstr(MI); 3410 narrowScalarSrc(MI, RequestedTy, 2); 3411 Observer.changedInstr(MI); 3412 return Legalized; 3413 } 3414 3415 Register DstReg = MI.getOperand(0).getReg(); 3416 LLT DstTy = MRI.getType(DstReg); 3417 if (DstTy.isVector()) 3418 return UnableToLegalize; 3419 3420 Register Amt = MI.getOperand(2).getReg(); 3421 LLT ShiftAmtTy = MRI.getType(Amt); 3422 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3423 if (DstEltSize % 2 != 0) 3424 return UnableToLegalize; 3425 3426 // Ignore the input type. We can only go to exactly half the size of the 3427 // input. If that isn't small enough, the resulting pieces will be further 3428 // legalized. 3429 const unsigned NewBitSize = DstEltSize / 2; 3430 const LLT HalfTy = LLT::scalar(NewBitSize); 3431 const LLT CondTy = LLT::scalar(1); 3432 3433 if (const MachineInstr *KShiftAmt = 3434 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3435 return narrowScalarShiftByConstant( 3436 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3437 } 3438 3439 // TODO: Expand with known bits. 3440 3441 // Handle the fully general expansion by an unknown amount. 3442 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3443 3444 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3445 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3446 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3447 3448 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3449 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3450 3451 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3452 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3453 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3454 3455 Register ResultRegs[2]; 3456 switch (MI.getOpcode()) { 3457 case TargetOpcode::G_SHL: { 3458 // Short: ShAmt < NewBitSize 3459 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3460 3461 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3462 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3463 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3464 3465 // Long: ShAmt >= NewBitSize 3466 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3467 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3468 3469 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3470 auto Hi = MIRBuilder.buildSelect( 3471 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3472 3473 ResultRegs[0] = Lo.getReg(0); 3474 ResultRegs[1] = Hi.getReg(0); 3475 break; 3476 } 3477 case TargetOpcode::G_LSHR: 3478 case TargetOpcode::G_ASHR: { 3479 // Short: ShAmt < NewBitSize 3480 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3481 3482 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3483 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3484 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3485 3486 // Long: ShAmt >= NewBitSize 3487 MachineInstrBuilder HiL; 3488 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3489 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3490 } else { 3491 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3492 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3493 } 3494 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3495 {InH, AmtExcess}); // Lo from Hi part. 3496 3497 auto Lo = MIRBuilder.buildSelect( 3498 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3499 3500 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3501 3502 ResultRegs[0] = Lo.getReg(0); 3503 ResultRegs[1] = Hi.getReg(0); 3504 break; 3505 } 3506 default: 3507 llvm_unreachable("not a shift"); 3508 } 3509 3510 MIRBuilder.buildMerge(DstReg, ResultRegs); 3511 MI.eraseFromParent(); 3512 return Legalized; 3513 } 3514 3515 LegalizerHelper::LegalizeResult 3516 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3517 LLT MoreTy) { 3518 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3519 3520 Observer.changingInstr(MI); 3521 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3522 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3523 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3524 moreElementsVectorSrc(MI, MoreTy, I); 3525 } 3526 3527 MachineBasicBlock &MBB = *MI.getParent(); 3528 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3529 moreElementsVectorDst(MI, MoreTy, 0); 3530 Observer.changedInstr(MI); 3531 return Legalized; 3532 } 3533 3534 LegalizerHelper::LegalizeResult 3535 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3536 LLT MoreTy) { 3537 MIRBuilder.setInstr(MI); 3538 unsigned Opc = MI.getOpcode(); 3539 switch (Opc) { 3540 case TargetOpcode::G_IMPLICIT_DEF: 3541 case TargetOpcode::G_LOAD: { 3542 if (TypeIdx != 0) 3543 return UnableToLegalize; 3544 Observer.changingInstr(MI); 3545 moreElementsVectorDst(MI, MoreTy, 0); 3546 Observer.changedInstr(MI); 3547 return Legalized; 3548 } 3549 case TargetOpcode::G_STORE: 3550 if (TypeIdx != 0) 3551 return UnableToLegalize; 3552 Observer.changingInstr(MI); 3553 moreElementsVectorSrc(MI, MoreTy, 0); 3554 Observer.changedInstr(MI); 3555 return Legalized; 3556 case TargetOpcode::G_AND: 3557 case TargetOpcode::G_OR: 3558 case TargetOpcode::G_XOR: 3559 case TargetOpcode::G_SMIN: 3560 case TargetOpcode::G_SMAX: 3561 case TargetOpcode::G_UMIN: 3562 case TargetOpcode::G_UMAX: 3563 case TargetOpcode::G_FMINNUM: 3564 case TargetOpcode::G_FMAXNUM: 3565 case TargetOpcode::G_FMINNUM_IEEE: 3566 case TargetOpcode::G_FMAXNUM_IEEE: 3567 case TargetOpcode::G_FMINIMUM: 3568 case TargetOpcode::G_FMAXIMUM: { 3569 Observer.changingInstr(MI); 3570 moreElementsVectorSrc(MI, MoreTy, 1); 3571 moreElementsVectorSrc(MI, MoreTy, 2); 3572 moreElementsVectorDst(MI, MoreTy, 0); 3573 Observer.changedInstr(MI); 3574 return Legalized; 3575 } 3576 case TargetOpcode::G_EXTRACT: 3577 if (TypeIdx != 1) 3578 return UnableToLegalize; 3579 Observer.changingInstr(MI); 3580 moreElementsVectorSrc(MI, MoreTy, 1); 3581 Observer.changedInstr(MI); 3582 return Legalized; 3583 case TargetOpcode::G_INSERT: 3584 if (TypeIdx != 0) 3585 return UnableToLegalize; 3586 Observer.changingInstr(MI); 3587 moreElementsVectorSrc(MI, MoreTy, 1); 3588 moreElementsVectorDst(MI, MoreTy, 0); 3589 Observer.changedInstr(MI); 3590 return Legalized; 3591 case TargetOpcode::G_SELECT: 3592 if (TypeIdx != 0) 3593 return UnableToLegalize; 3594 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3595 return UnableToLegalize; 3596 3597 Observer.changingInstr(MI); 3598 moreElementsVectorSrc(MI, MoreTy, 2); 3599 moreElementsVectorSrc(MI, MoreTy, 3); 3600 moreElementsVectorDst(MI, MoreTy, 0); 3601 Observer.changedInstr(MI); 3602 return Legalized; 3603 case TargetOpcode::G_UNMERGE_VALUES: { 3604 if (TypeIdx != 1) 3605 return UnableToLegalize; 3606 3607 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3608 int NumDst = MI.getNumOperands() - 1; 3609 moreElementsVectorSrc(MI, MoreTy, NumDst); 3610 3611 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3612 for (int I = 0; I != NumDst; ++I) 3613 MIB.addDef(MI.getOperand(I).getReg()); 3614 3615 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3616 for (int I = NumDst; I != NewNumDst; ++I) 3617 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3618 3619 MIB.addUse(MI.getOperand(NumDst).getReg()); 3620 MI.eraseFromParent(); 3621 return Legalized; 3622 } 3623 case TargetOpcode::G_PHI: 3624 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3625 default: 3626 return UnableToLegalize; 3627 } 3628 } 3629 3630 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3631 ArrayRef<Register> Src1Regs, 3632 ArrayRef<Register> Src2Regs, 3633 LLT NarrowTy) { 3634 MachineIRBuilder &B = MIRBuilder; 3635 unsigned SrcParts = Src1Regs.size(); 3636 unsigned DstParts = DstRegs.size(); 3637 3638 unsigned DstIdx = 0; // Low bits of the result. 3639 Register FactorSum = 3640 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3641 DstRegs[DstIdx] = FactorSum; 3642 3643 unsigned CarrySumPrevDstIdx; 3644 SmallVector<Register, 4> Factors; 3645 3646 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3647 // Collect low parts of muls for DstIdx. 3648 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3649 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3650 MachineInstrBuilder Mul = 3651 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3652 Factors.push_back(Mul.getReg(0)); 3653 } 3654 // Collect high parts of muls from previous DstIdx. 3655 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3656 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3657 MachineInstrBuilder Umulh = 3658 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3659 Factors.push_back(Umulh.getReg(0)); 3660 } 3661 // Add CarrySum from additions calculated for previous DstIdx. 3662 if (DstIdx != 1) { 3663 Factors.push_back(CarrySumPrevDstIdx); 3664 } 3665 3666 Register CarrySum; 3667 // Add all factors and accumulate all carries into CarrySum. 3668 if (DstIdx != DstParts - 1) { 3669 MachineInstrBuilder Uaddo = 3670 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3671 FactorSum = Uaddo.getReg(0); 3672 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3673 for (unsigned i = 2; i < Factors.size(); ++i) { 3674 MachineInstrBuilder Uaddo = 3675 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3676 FactorSum = Uaddo.getReg(0); 3677 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3678 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3679 } 3680 } else { 3681 // Since value for the next index is not calculated, neither is CarrySum. 3682 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3683 for (unsigned i = 2; i < Factors.size(); ++i) 3684 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3685 } 3686 3687 CarrySumPrevDstIdx = CarrySum; 3688 DstRegs[DstIdx] = FactorSum; 3689 Factors.clear(); 3690 } 3691 } 3692 3693 LegalizerHelper::LegalizeResult 3694 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3695 Register DstReg = MI.getOperand(0).getReg(); 3696 Register Src1 = MI.getOperand(1).getReg(); 3697 Register Src2 = MI.getOperand(2).getReg(); 3698 3699 LLT Ty = MRI.getType(DstReg); 3700 if (Ty.isVector()) 3701 return UnableToLegalize; 3702 3703 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3704 unsigned DstSize = Ty.getSizeInBits(); 3705 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3706 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3707 return UnableToLegalize; 3708 3709 unsigned NumDstParts = DstSize / NarrowSize; 3710 unsigned NumSrcParts = SrcSize / NarrowSize; 3711 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3712 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3713 3714 SmallVector<Register, 2> Src1Parts, Src2Parts; 3715 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3716 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3717 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3718 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3719 3720 // Take only high half of registers if this is high mul. 3721 ArrayRef<Register> DstRegs( 3722 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3723 MIRBuilder.buildMerge(DstReg, DstRegs); 3724 MI.eraseFromParent(); 3725 return Legalized; 3726 } 3727 3728 LegalizerHelper::LegalizeResult 3729 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3730 LLT NarrowTy) { 3731 if (TypeIdx != 1) 3732 return UnableToLegalize; 3733 3734 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3735 3736 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3737 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3738 // NarrowSize. 3739 if (SizeOp1 % NarrowSize != 0) 3740 return UnableToLegalize; 3741 int NumParts = SizeOp1 / NarrowSize; 3742 3743 SmallVector<Register, 2> SrcRegs, DstRegs; 3744 SmallVector<uint64_t, 2> Indexes; 3745 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3746 3747 Register OpReg = MI.getOperand(0).getReg(); 3748 uint64_t OpStart = MI.getOperand(2).getImm(); 3749 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3750 for (int i = 0; i < NumParts; ++i) { 3751 unsigned SrcStart = i * NarrowSize; 3752 3753 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3754 // No part of the extract uses this subregister, ignore it. 3755 continue; 3756 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3757 // The entire subregister is extracted, forward the value. 3758 DstRegs.push_back(SrcRegs[i]); 3759 continue; 3760 } 3761 3762 // OpSegStart is where this destination segment would start in OpReg if it 3763 // extended infinitely in both directions. 3764 int64_t ExtractOffset; 3765 uint64_t SegSize; 3766 if (OpStart < SrcStart) { 3767 ExtractOffset = 0; 3768 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3769 } else { 3770 ExtractOffset = OpStart - SrcStart; 3771 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3772 } 3773 3774 Register SegReg = SrcRegs[i]; 3775 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3776 // A genuine extract is needed. 3777 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3778 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3779 } 3780 3781 DstRegs.push_back(SegReg); 3782 } 3783 3784 Register DstReg = MI.getOperand(0).getReg(); 3785 if(MRI.getType(DstReg).isVector()) 3786 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3787 else 3788 MIRBuilder.buildMerge(DstReg, DstRegs); 3789 MI.eraseFromParent(); 3790 return Legalized; 3791 } 3792 3793 LegalizerHelper::LegalizeResult 3794 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3795 LLT NarrowTy) { 3796 // FIXME: Don't know how to handle secondary types yet. 3797 if (TypeIdx != 0) 3798 return UnableToLegalize; 3799 3800 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3801 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3802 3803 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3804 // NarrowSize. 3805 if (SizeOp0 % NarrowSize != 0) 3806 return UnableToLegalize; 3807 3808 int NumParts = SizeOp0 / NarrowSize; 3809 3810 SmallVector<Register, 2> SrcRegs, DstRegs; 3811 SmallVector<uint64_t, 2> Indexes; 3812 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3813 3814 Register OpReg = MI.getOperand(2).getReg(); 3815 uint64_t OpStart = MI.getOperand(3).getImm(); 3816 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3817 for (int i = 0; i < NumParts; ++i) { 3818 unsigned DstStart = i * NarrowSize; 3819 3820 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3821 // No part of the insert affects this subregister, forward the original. 3822 DstRegs.push_back(SrcRegs[i]); 3823 continue; 3824 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3825 // The entire subregister is defined by this insert, forward the new 3826 // value. 3827 DstRegs.push_back(OpReg); 3828 continue; 3829 } 3830 3831 // OpSegStart is where this destination segment would start in OpReg if it 3832 // extended infinitely in both directions. 3833 int64_t ExtractOffset, InsertOffset; 3834 uint64_t SegSize; 3835 if (OpStart < DstStart) { 3836 InsertOffset = 0; 3837 ExtractOffset = DstStart - OpStart; 3838 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3839 } else { 3840 InsertOffset = OpStart - DstStart; 3841 ExtractOffset = 0; 3842 SegSize = 3843 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3844 } 3845 3846 Register SegReg = OpReg; 3847 if (ExtractOffset != 0 || SegSize != OpSize) { 3848 // A genuine extract is needed. 3849 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3850 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3851 } 3852 3853 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3854 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3855 DstRegs.push_back(DstReg); 3856 } 3857 3858 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3859 Register DstReg = MI.getOperand(0).getReg(); 3860 if(MRI.getType(DstReg).isVector()) 3861 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3862 else 3863 MIRBuilder.buildMerge(DstReg, DstRegs); 3864 MI.eraseFromParent(); 3865 return Legalized; 3866 } 3867 3868 LegalizerHelper::LegalizeResult 3869 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3870 LLT NarrowTy) { 3871 Register DstReg = MI.getOperand(0).getReg(); 3872 LLT DstTy = MRI.getType(DstReg); 3873 3874 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3875 3876 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3877 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3878 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3879 LLT LeftoverTy; 3880 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3881 Src0Regs, Src0LeftoverRegs)) 3882 return UnableToLegalize; 3883 3884 LLT Unused; 3885 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3886 Src1Regs, Src1LeftoverRegs)) 3887 llvm_unreachable("inconsistent extractParts result"); 3888 3889 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3890 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3891 {Src0Regs[I], Src1Regs[I]}); 3892 DstRegs.push_back(Inst.getReg(0)); 3893 } 3894 3895 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3896 auto Inst = MIRBuilder.buildInstr( 3897 MI.getOpcode(), 3898 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3899 DstLeftoverRegs.push_back(Inst.getReg(0)); 3900 } 3901 3902 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3903 LeftoverTy, DstLeftoverRegs); 3904 3905 MI.eraseFromParent(); 3906 return Legalized; 3907 } 3908 3909 LegalizerHelper::LegalizeResult 3910 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3911 LLT NarrowTy) { 3912 if (TypeIdx != 0) 3913 return UnableToLegalize; 3914 3915 Register DstReg = MI.getOperand(0).getReg(); 3916 Register SrcReg = MI.getOperand(1).getReg(); 3917 3918 LLT DstTy = MRI.getType(DstReg); 3919 if (DstTy.isVector()) 3920 return UnableToLegalize; 3921 3922 SmallVector<Register, 8> Parts; 3923 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3924 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3925 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3926 3927 MI.eraseFromParent(); 3928 return Legalized; 3929 } 3930 3931 LegalizerHelper::LegalizeResult 3932 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3933 LLT NarrowTy) { 3934 if (TypeIdx != 0) 3935 return UnableToLegalize; 3936 3937 Register CondReg = MI.getOperand(1).getReg(); 3938 LLT CondTy = MRI.getType(CondReg); 3939 if (CondTy.isVector()) // TODO: Handle vselect 3940 return UnableToLegalize; 3941 3942 Register DstReg = MI.getOperand(0).getReg(); 3943 LLT DstTy = MRI.getType(DstReg); 3944 3945 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3946 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3947 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3948 LLT LeftoverTy; 3949 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3950 Src1Regs, Src1LeftoverRegs)) 3951 return UnableToLegalize; 3952 3953 LLT Unused; 3954 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3955 Src2Regs, Src2LeftoverRegs)) 3956 llvm_unreachable("inconsistent extractParts result"); 3957 3958 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3959 auto Select = MIRBuilder.buildSelect(NarrowTy, 3960 CondReg, Src1Regs[I], Src2Regs[I]); 3961 DstRegs.push_back(Select.getReg(0)); 3962 } 3963 3964 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3965 auto Select = MIRBuilder.buildSelect( 3966 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3967 DstLeftoverRegs.push_back(Select.getReg(0)); 3968 } 3969 3970 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3971 LeftoverTy, DstLeftoverRegs); 3972 3973 MI.eraseFromParent(); 3974 return Legalized; 3975 } 3976 3977 LegalizerHelper::LegalizeResult 3978 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3979 LLT NarrowTy) { 3980 if (TypeIdx != 1) 3981 return UnableToLegalize; 3982 3983 Register DstReg = MI.getOperand(0).getReg(); 3984 Register SrcReg = MI.getOperand(1).getReg(); 3985 LLT DstTy = MRI.getType(DstReg); 3986 LLT SrcTy = MRI.getType(SrcReg); 3987 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3988 3989 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3990 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 3991 3992 MachineIRBuilder &B = MIRBuilder; 3993 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3994 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3995 auto C_0 = B.buildConstant(NarrowTy, 0); 3996 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3997 UnmergeSrc.getReg(1), C_0); 3998 auto LoCTLZ = IsUndef ? 3999 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4000 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4001 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4002 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4003 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4004 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4005 4006 MI.eraseFromParent(); 4007 return Legalized; 4008 } 4009 4010 return UnableToLegalize; 4011 } 4012 4013 LegalizerHelper::LegalizeResult 4014 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4015 LLT NarrowTy) { 4016 if (TypeIdx != 1) 4017 return UnableToLegalize; 4018 4019 Register DstReg = MI.getOperand(0).getReg(); 4020 Register SrcReg = MI.getOperand(1).getReg(); 4021 LLT DstTy = MRI.getType(DstReg); 4022 LLT SrcTy = MRI.getType(SrcReg); 4023 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4024 4025 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4026 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4027 4028 MachineIRBuilder &B = MIRBuilder; 4029 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4030 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4031 auto C_0 = B.buildConstant(NarrowTy, 0); 4032 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4033 UnmergeSrc.getReg(0), C_0); 4034 auto HiCTTZ = IsUndef ? 4035 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4036 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4037 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4038 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4039 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4040 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4041 4042 MI.eraseFromParent(); 4043 return Legalized; 4044 } 4045 4046 return UnableToLegalize; 4047 } 4048 4049 LegalizerHelper::LegalizeResult 4050 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4051 LLT NarrowTy) { 4052 if (TypeIdx != 1) 4053 return UnableToLegalize; 4054 4055 Register DstReg = MI.getOperand(0).getReg(); 4056 LLT DstTy = MRI.getType(DstReg); 4057 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4058 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4059 4060 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4061 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4062 4063 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4064 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4065 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4066 4067 MI.eraseFromParent(); 4068 return Legalized; 4069 } 4070 4071 return UnableToLegalize; 4072 } 4073 4074 LegalizerHelper::LegalizeResult 4075 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4076 unsigned Opc = MI.getOpcode(); 4077 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4078 auto isSupported = [this](const LegalityQuery &Q) { 4079 auto QAction = LI.getAction(Q).Action; 4080 return QAction == Legal || QAction == Libcall || QAction == Custom; 4081 }; 4082 switch (Opc) { 4083 default: 4084 return UnableToLegalize; 4085 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4086 // This trivially expands to CTLZ. 4087 Observer.changingInstr(MI); 4088 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4089 Observer.changedInstr(MI); 4090 return Legalized; 4091 } 4092 case TargetOpcode::G_CTLZ: { 4093 Register DstReg = MI.getOperand(0).getReg(); 4094 Register SrcReg = MI.getOperand(1).getReg(); 4095 LLT DstTy = MRI.getType(DstReg); 4096 LLT SrcTy = MRI.getType(SrcReg); 4097 unsigned Len = SrcTy.getSizeInBits(); 4098 4099 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4100 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4101 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4102 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4103 auto ICmp = MIRBuilder.buildICmp( 4104 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4105 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4106 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4107 MI.eraseFromParent(); 4108 return Legalized; 4109 } 4110 // for now, we do this: 4111 // NewLen = NextPowerOf2(Len); 4112 // x = x | (x >> 1); 4113 // x = x | (x >> 2); 4114 // ... 4115 // x = x | (x >>16); 4116 // x = x | (x >>32); // for 64-bit input 4117 // Upto NewLen/2 4118 // return Len - popcount(x); 4119 // 4120 // Ref: "Hacker's Delight" by Henry Warren 4121 Register Op = SrcReg; 4122 unsigned NewLen = PowerOf2Ceil(Len); 4123 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4124 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4125 auto MIBOp = MIRBuilder.buildOr( 4126 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4127 Op = MIBOp.getReg(0); 4128 } 4129 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4130 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4131 MIBPop); 4132 MI.eraseFromParent(); 4133 return Legalized; 4134 } 4135 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4136 // This trivially expands to CTTZ. 4137 Observer.changingInstr(MI); 4138 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4139 Observer.changedInstr(MI); 4140 return Legalized; 4141 } 4142 case TargetOpcode::G_CTTZ: { 4143 Register DstReg = MI.getOperand(0).getReg(); 4144 Register SrcReg = MI.getOperand(1).getReg(); 4145 LLT DstTy = MRI.getType(DstReg); 4146 LLT SrcTy = MRI.getType(SrcReg); 4147 4148 unsigned Len = SrcTy.getSizeInBits(); 4149 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4150 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4151 // zero. 4152 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4153 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4154 auto ICmp = MIRBuilder.buildICmp( 4155 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4156 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4157 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4158 MI.eraseFromParent(); 4159 return Legalized; 4160 } 4161 // for now, we use: { return popcount(~x & (x - 1)); } 4162 // unless the target has ctlz but not ctpop, in which case we use: 4163 // { return 32 - nlz(~x & (x-1)); } 4164 // Ref: "Hacker's Delight" by Henry Warren 4165 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4166 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4167 auto MIBTmp = MIRBuilder.buildAnd( 4168 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4169 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4170 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4171 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4172 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4173 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4174 MI.eraseFromParent(); 4175 return Legalized; 4176 } 4177 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4178 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4179 return Legalized; 4180 } 4181 case TargetOpcode::G_CTPOP: { 4182 unsigned Size = Ty.getSizeInBits(); 4183 MachineIRBuilder &B = MIRBuilder; 4184 4185 // Count set bits in blocks of 2 bits. Default approach would be 4186 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4187 // We use following formula instead: 4188 // B2Count = val - { (val >> 1) & 0x55555555 } 4189 // since it gives same result in blocks of 2 with one instruction less. 4190 auto C_1 = B.buildConstant(Ty, 1); 4191 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4192 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4193 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4194 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4195 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4196 4197 // In order to get count in blocks of 4 add values from adjacent block of 2. 4198 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4199 auto C_2 = B.buildConstant(Ty, 2); 4200 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4201 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4202 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4203 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4204 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4205 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4206 4207 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4208 // addition since count value sits in range {0,...,8} and 4 bits are enough 4209 // to hold such binary values. After addition high 4 bits still hold count 4210 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4211 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4212 auto C_4 = B.buildConstant(Ty, 4); 4213 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4214 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4215 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4216 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4217 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4218 4219 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4220 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4221 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4222 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4223 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4224 4225 // Shift count result from 8 high bits to low bits. 4226 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4227 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4228 4229 MI.eraseFromParent(); 4230 return Legalized; 4231 } 4232 } 4233 } 4234 4235 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4236 // representation. 4237 LegalizerHelper::LegalizeResult 4238 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4239 Register Dst = MI.getOperand(0).getReg(); 4240 Register Src = MI.getOperand(1).getReg(); 4241 const LLT S64 = LLT::scalar(64); 4242 const LLT S32 = LLT::scalar(32); 4243 const LLT S1 = LLT::scalar(1); 4244 4245 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4246 4247 // unsigned cul2f(ulong u) { 4248 // uint lz = clz(u); 4249 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4250 // u = (u << lz) & 0x7fffffffffffffffUL; 4251 // ulong t = u & 0xffffffffffUL; 4252 // uint v = (e << 23) | (uint)(u >> 40); 4253 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4254 // return as_float(v + r); 4255 // } 4256 4257 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4258 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4259 4260 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4261 4262 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4263 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4264 4265 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4266 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4267 4268 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4269 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4270 4271 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4272 4273 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4274 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4275 4276 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4277 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4278 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4279 4280 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4281 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4282 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4283 auto One = MIRBuilder.buildConstant(S32, 1); 4284 4285 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4286 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4287 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4288 MIRBuilder.buildAdd(Dst, V, R); 4289 4290 return Legalized; 4291 } 4292 4293 LegalizerHelper::LegalizeResult 4294 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4295 Register Dst = MI.getOperand(0).getReg(); 4296 Register Src = MI.getOperand(1).getReg(); 4297 LLT DstTy = MRI.getType(Dst); 4298 LLT SrcTy = MRI.getType(Src); 4299 4300 if (SrcTy == LLT::scalar(1)) { 4301 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4302 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4303 MIRBuilder.buildSelect(Dst, Src, True, False); 4304 MI.eraseFromParent(); 4305 return Legalized; 4306 } 4307 4308 if (SrcTy != LLT::scalar(64)) 4309 return UnableToLegalize; 4310 4311 if (DstTy == LLT::scalar(32)) { 4312 // TODO: SelectionDAG has several alternative expansions to port which may 4313 // be more reasonble depending on the available instructions. If a target 4314 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4315 // intermediate type, this is probably worse. 4316 return lowerU64ToF32BitOps(MI); 4317 } 4318 4319 return UnableToLegalize; 4320 } 4321 4322 LegalizerHelper::LegalizeResult 4323 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4324 Register Dst = MI.getOperand(0).getReg(); 4325 Register Src = MI.getOperand(1).getReg(); 4326 LLT DstTy = MRI.getType(Dst); 4327 LLT SrcTy = MRI.getType(Src); 4328 4329 const LLT S64 = LLT::scalar(64); 4330 const LLT S32 = LLT::scalar(32); 4331 const LLT S1 = LLT::scalar(1); 4332 4333 if (SrcTy == S1) { 4334 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4335 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4336 MIRBuilder.buildSelect(Dst, Src, True, False); 4337 MI.eraseFromParent(); 4338 return Legalized; 4339 } 4340 4341 if (SrcTy != S64) 4342 return UnableToLegalize; 4343 4344 if (DstTy == S32) { 4345 // signed cl2f(long l) { 4346 // long s = l >> 63; 4347 // float r = cul2f((l + s) ^ s); 4348 // return s ? -r : r; 4349 // } 4350 Register L = Src; 4351 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4352 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4353 4354 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4355 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4356 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4357 4358 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4359 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4360 MIRBuilder.buildConstant(S64, 0)); 4361 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4362 return Legalized; 4363 } 4364 4365 return UnableToLegalize; 4366 } 4367 4368 LegalizerHelper::LegalizeResult 4369 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4370 Register Dst = MI.getOperand(0).getReg(); 4371 Register Src = MI.getOperand(1).getReg(); 4372 LLT DstTy = MRI.getType(Dst); 4373 LLT SrcTy = MRI.getType(Src); 4374 const LLT S64 = LLT::scalar(64); 4375 const LLT S32 = LLT::scalar(32); 4376 4377 if (SrcTy != S64 && SrcTy != S32) 4378 return UnableToLegalize; 4379 if (DstTy != S32 && DstTy != S64) 4380 return UnableToLegalize; 4381 4382 // FPTOSI gives same result as FPTOUI for positive signed integers. 4383 // FPTOUI needs to deal with fp values that convert to unsigned integers 4384 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4385 4386 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4387 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4388 : APFloat::IEEEdouble(), 4389 APInt::getNullValue(SrcTy.getSizeInBits())); 4390 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4391 4392 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4393 4394 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4395 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4396 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4397 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4398 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4399 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4400 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4401 4402 const LLT S1 = LLT::scalar(1); 4403 4404 MachineInstrBuilder FCMP = 4405 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4406 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4407 4408 MI.eraseFromParent(); 4409 return Legalized; 4410 } 4411 4412 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4413 Register Dst = MI.getOperand(0).getReg(); 4414 Register Src = MI.getOperand(1).getReg(); 4415 LLT DstTy = MRI.getType(Dst); 4416 LLT SrcTy = MRI.getType(Src); 4417 const LLT S64 = LLT::scalar(64); 4418 const LLT S32 = LLT::scalar(32); 4419 4420 // FIXME: Only f32 to i64 conversions are supported. 4421 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4422 return UnableToLegalize; 4423 4424 // Expand f32 -> i64 conversion 4425 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4426 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4427 4428 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4429 4430 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4431 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4432 4433 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4434 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4435 4436 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4437 APInt::getSignMask(SrcEltBits)); 4438 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4439 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4440 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4441 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4442 4443 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4444 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4445 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4446 4447 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4448 R = MIRBuilder.buildZExt(DstTy, R); 4449 4450 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4451 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4452 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4453 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4454 4455 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4456 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4457 4458 const LLT S1 = LLT::scalar(1); 4459 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4460 S1, Exponent, ExponentLoBit); 4461 4462 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4463 4464 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4465 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4466 4467 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4468 4469 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4470 S1, Exponent, ZeroSrcTy); 4471 4472 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4473 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4474 4475 MI.eraseFromParent(); 4476 return Legalized; 4477 } 4478 4479 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4480 switch (Opc) { 4481 case TargetOpcode::G_SMIN: 4482 return CmpInst::ICMP_SLT; 4483 case TargetOpcode::G_SMAX: 4484 return CmpInst::ICMP_SGT; 4485 case TargetOpcode::G_UMIN: 4486 return CmpInst::ICMP_ULT; 4487 case TargetOpcode::G_UMAX: 4488 return CmpInst::ICMP_UGT; 4489 default: 4490 llvm_unreachable("not in integer min/max"); 4491 } 4492 } 4493 4494 LegalizerHelper::LegalizeResult 4495 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4496 Register Dst = MI.getOperand(0).getReg(); 4497 Register Src0 = MI.getOperand(1).getReg(); 4498 Register Src1 = MI.getOperand(2).getReg(); 4499 4500 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4501 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4502 4503 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4504 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4505 4506 MI.eraseFromParent(); 4507 return Legalized; 4508 } 4509 4510 LegalizerHelper::LegalizeResult 4511 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4512 Register Dst = MI.getOperand(0).getReg(); 4513 Register Src0 = MI.getOperand(1).getReg(); 4514 Register Src1 = MI.getOperand(2).getReg(); 4515 4516 const LLT Src0Ty = MRI.getType(Src0); 4517 const LLT Src1Ty = MRI.getType(Src1); 4518 4519 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4520 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4521 4522 auto SignBitMask = MIRBuilder.buildConstant( 4523 Src0Ty, APInt::getSignMask(Src0Size)); 4524 4525 auto NotSignBitMask = MIRBuilder.buildConstant( 4526 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4527 4528 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4529 MachineInstr *Or; 4530 4531 if (Src0Ty == Src1Ty) { 4532 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4533 Or = MIRBuilder.buildOr(Dst, And0, And1); 4534 } else if (Src0Size > Src1Size) { 4535 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4536 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4537 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4538 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4539 Or = MIRBuilder.buildOr(Dst, And0, And1); 4540 } else { 4541 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4542 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4543 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4544 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4545 Or = MIRBuilder.buildOr(Dst, And0, And1); 4546 } 4547 4548 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4549 // constants are a nan and -0.0, but the final result should preserve 4550 // everything. 4551 if (unsigned Flags = MI.getFlags()) 4552 Or->setFlags(Flags); 4553 4554 MI.eraseFromParent(); 4555 return Legalized; 4556 } 4557 4558 LegalizerHelper::LegalizeResult 4559 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4560 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4561 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4562 4563 Register Dst = MI.getOperand(0).getReg(); 4564 Register Src0 = MI.getOperand(1).getReg(); 4565 Register Src1 = MI.getOperand(2).getReg(); 4566 LLT Ty = MRI.getType(Dst); 4567 4568 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4569 // Insert canonicalizes if it's possible we need to quiet to get correct 4570 // sNaN behavior. 4571 4572 // Note this must be done here, and not as an optimization combine in the 4573 // absence of a dedicate quiet-snan instruction as we're using an 4574 // omni-purpose G_FCANONICALIZE. 4575 if (!isKnownNeverSNaN(Src0, MRI)) 4576 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4577 4578 if (!isKnownNeverSNaN(Src1, MRI)) 4579 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4580 } 4581 4582 // If there are no nans, it's safe to simply replace this with the non-IEEE 4583 // version. 4584 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4585 MI.eraseFromParent(); 4586 return Legalized; 4587 } 4588 4589 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4590 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4591 Register DstReg = MI.getOperand(0).getReg(); 4592 LLT Ty = MRI.getType(DstReg); 4593 unsigned Flags = MI.getFlags(); 4594 4595 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4596 Flags); 4597 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4598 MI.eraseFromParent(); 4599 return Legalized; 4600 } 4601 4602 LegalizerHelper::LegalizeResult 4603 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4604 Register DstReg = MI.getOperand(0).getReg(); 4605 Register SrcReg = MI.getOperand(1).getReg(); 4606 unsigned Flags = MI.getFlags(); 4607 LLT Ty = MRI.getType(DstReg); 4608 const LLT CondTy = Ty.changeElementSize(1); 4609 4610 // result = trunc(src); 4611 // if (src < 0.0 && src != result) 4612 // result += -1.0. 4613 4614 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4615 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4616 4617 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4618 SrcReg, Zero, Flags); 4619 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4620 SrcReg, Trunc, Flags); 4621 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4622 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4623 4624 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4625 MI.eraseFromParent(); 4626 return Legalized; 4627 } 4628 4629 LegalizerHelper::LegalizeResult 4630 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4631 const unsigned NumDst = MI.getNumOperands() - 1; 4632 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4633 LLT SrcTy = MRI.getType(SrcReg); 4634 4635 Register Dst0Reg = MI.getOperand(0).getReg(); 4636 LLT DstTy = MRI.getType(Dst0Reg); 4637 4638 4639 // Expand scalarizing unmerge as bitcast to integer and shift. 4640 if (!DstTy.isVector() && SrcTy.isVector() && 4641 SrcTy.getElementType() == DstTy) { 4642 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4643 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4644 4645 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4646 4647 const unsigned DstSize = DstTy.getSizeInBits(); 4648 unsigned Offset = DstSize; 4649 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4650 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4651 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4652 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4653 } 4654 4655 MI.eraseFromParent(); 4656 return Legalized; 4657 } 4658 4659 return UnableToLegalize; 4660 } 4661 4662 LegalizerHelper::LegalizeResult 4663 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4664 Register DstReg = MI.getOperand(0).getReg(); 4665 Register Src0Reg = MI.getOperand(1).getReg(); 4666 Register Src1Reg = MI.getOperand(2).getReg(); 4667 LLT Src0Ty = MRI.getType(Src0Reg); 4668 LLT DstTy = MRI.getType(DstReg); 4669 LLT IdxTy = LLT::scalar(32); 4670 4671 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4672 4673 if (DstTy.isScalar()) { 4674 if (Src0Ty.isVector()) 4675 return UnableToLegalize; 4676 4677 // This is just a SELECT. 4678 assert(Mask.size() == 1 && "Expected a single mask element"); 4679 Register Val; 4680 if (Mask[0] < 0 || Mask[0] > 1) 4681 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4682 else 4683 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4684 MIRBuilder.buildCopy(DstReg, Val); 4685 MI.eraseFromParent(); 4686 return Legalized; 4687 } 4688 4689 Register Undef; 4690 SmallVector<Register, 32> BuildVec; 4691 LLT EltTy = DstTy.getElementType(); 4692 4693 for (int Idx : Mask) { 4694 if (Idx < 0) { 4695 if (!Undef.isValid()) 4696 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4697 BuildVec.push_back(Undef); 4698 continue; 4699 } 4700 4701 if (Src0Ty.isScalar()) { 4702 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4703 } else { 4704 int NumElts = Src0Ty.getNumElements(); 4705 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4706 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4707 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4708 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4709 BuildVec.push_back(Extract.getReg(0)); 4710 } 4711 } 4712 4713 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4714 MI.eraseFromParent(); 4715 return Legalized; 4716 } 4717 4718 LegalizerHelper::LegalizeResult 4719 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4720 Register Dst = MI.getOperand(0).getReg(); 4721 Register AllocSize = MI.getOperand(1).getReg(); 4722 unsigned Align = MI.getOperand(2).getImm(); 4723 4724 const auto &MF = *MI.getMF(); 4725 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4726 4727 LLT PtrTy = MRI.getType(Dst); 4728 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4729 4730 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4731 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4732 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4733 4734 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4735 // have to generate an extra instruction to negate the alloc and then use 4736 // G_PTR_ADD to add the negative offset. 4737 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4738 if (Align) { 4739 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4740 AlignMask.negate(); 4741 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4742 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4743 } 4744 4745 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4746 MIRBuilder.buildCopy(SPReg, SPTmp); 4747 MIRBuilder.buildCopy(Dst, SPTmp); 4748 4749 MI.eraseFromParent(); 4750 return Legalized; 4751 } 4752 4753 LegalizerHelper::LegalizeResult 4754 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4755 Register Dst = MI.getOperand(0).getReg(); 4756 Register Src = MI.getOperand(1).getReg(); 4757 unsigned Offset = MI.getOperand(2).getImm(); 4758 4759 LLT DstTy = MRI.getType(Dst); 4760 LLT SrcTy = MRI.getType(Src); 4761 4762 if (DstTy.isScalar() && 4763 (SrcTy.isScalar() || 4764 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4765 LLT SrcIntTy = SrcTy; 4766 if (!SrcTy.isScalar()) { 4767 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4768 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4769 } 4770 4771 if (Offset == 0) 4772 MIRBuilder.buildTrunc(Dst, Src); 4773 else { 4774 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4775 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4776 MIRBuilder.buildTrunc(Dst, Shr); 4777 } 4778 4779 MI.eraseFromParent(); 4780 return Legalized; 4781 } 4782 4783 return UnableToLegalize; 4784 } 4785 4786 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4787 Register Dst = MI.getOperand(0).getReg(); 4788 Register Src = MI.getOperand(1).getReg(); 4789 Register InsertSrc = MI.getOperand(2).getReg(); 4790 uint64_t Offset = MI.getOperand(3).getImm(); 4791 4792 LLT DstTy = MRI.getType(Src); 4793 LLT InsertTy = MRI.getType(InsertSrc); 4794 4795 if (InsertTy.isScalar() && 4796 (DstTy.isScalar() || 4797 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4798 LLT IntDstTy = DstTy; 4799 if (!DstTy.isScalar()) { 4800 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4801 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4802 } 4803 4804 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4805 if (Offset != 0) { 4806 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4807 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4808 } 4809 4810 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4811 Offset + InsertTy.getSizeInBits(), 4812 Offset); 4813 4814 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4815 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4816 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4817 4818 MIRBuilder.buildBitcast(Dst, Or); 4819 MI.eraseFromParent(); 4820 return Legalized; 4821 } 4822 4823 return UnableToLegalize; 4824 } 4825 4826 LegalizerHelper::LegalizeResult 4827 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4828 Register Dst0 = MI.getOperand(0).getReg(); 4829 Register Dst1 = MI.getOperand(1).getReg(); 4830 Register LHS = MI.getOperand(2).getReg(); 4831 Register RHS = MI.getOperand(3).getReg(); 4832 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4833 4834 LLT Ty = MRI.getType(Dst0); 4835 LLT BoolTy = MRI.getType(Dst1); 4836 4837 if (IsAdd) 4838 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4839 else 4840 MIRBuilder.buildSub(Dst0, LHS, RHS); 4841 4842 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4843 4844 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4845 4846 // For an addition, the result should be less than one of the operands (LHS) 4847 // if and only if the other operand (RHS) is negative, otherwise there will 4848 // be overflow. 4849 // For a subtraction, the result should be less than one of the operands 4850 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4851 // otherwise there will be overflow. 4852 auto ResultLowerThanLHS = 4853 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4854 auto ConditionRHS = MIRBuilder.buildICmp( 4855 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4856 4857 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4858 MI.eraseFromParent(); 4859 return Legalized; 4860 } 4861 4862 LegalizerHelper::LegalizeResult 4863 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4864 Register Dst = MI.getOperand(0).getReg(); 4865 Register Src = MI.getOperand(1).getReg(); 4866 const LLT Ty = MRI.getType(Src); 4867 unsigned SizeInBytes = Ty.getSizeInBytes(); 4868 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4869 4870 // Swap most and least significant byte, set remaining bytes in Res to zero. 4871 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4872 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4873 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4874 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4875 4876 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4877 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4878 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4879 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4880 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4881 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4882 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4883 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4884 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4885 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4886 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4887 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4888 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4889 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4890 } 4891 Res.getInstr()->getOperand(0).setReg(Dst); 4892 4893 MI.eraseFromParent(); 4894 return Legalized; 4895 } 4896 4897 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4898 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4899 MachineInstrBuilder Src, APInt Mask) { 4900 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4901 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4902 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4903 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4904 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4905 return B.buildOr(Dst, LHS, RHS); 4906 } 4907 4908 LegalizerHelper::LegalizeResult 4909 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4910 Register Dst = MI.getOperand(0).getReg(); 4911 Register Src = MI.getOperand(1).getReg(); 4912 const LLT Ty = MRI.getType(Src); 4913 unsigned Size = Ty.getSizeInBits(); 4914 4915 MachineInstrBuilder BSWAP = 4916 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4917 4918 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4919 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4920 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4921 MachineInstrBuilder Swap4 = 4922 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4923 4924 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4925 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4926 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4927 MachineInstrBuilder Swap2 = 4928 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4929 4930 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4931 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4932 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4933 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4934 4935 MI.eraseFromParent(); 4936 return Legalized; 4937 } 4938 4939 LegalizerHelper::LegalizeResult 4940 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4941 MachineFunction &MF = MIRBuilder.getMF(); 4942 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4943 const TargetLowering *TLI = STI.getTargetLowering(); 4944 4945 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4946 int NameOpIdx = IsRead ? 1 : 0; 4947 int ValRegIndex = IsRead ? 0 : 1; 4948 4949 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4950 const LLT Ty = MRI.getType(ValReg); 4951 const MDString *RegStr = cast<MDString>( 4952 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4953 4954 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4955 if (!PhysReg.isValid()) 4956 return UnableToLegalize; 4957 4958 if (IsRead) 4959 MIRBuilder.buildCopy(ValReg, PhysReg); 4960 else 4961 MIRBuilder.buildCopy(PhysReg, ValReg); 4962 4963 MI.eraseFromParent(); 4964 return Legalized; 4965 } 4966