1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy;
227   for (Register PartReg : PartRegs)
228     GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
229 
230   for (Register PartReg : LeftoverRegs)
231     extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
232 
233   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
234   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
235 }
236 
237 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
238 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
239                               const MachineInstr &MI) {
240   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
241 
242   const int StartIdx = Regs.size();
243   const int NumResults = MI.getNumOperands() - 1;
244   Regs.resize(Regs.size() + NumResults);
245   for (int I = 0; I != NumResults; ++I)
246     Regs[StartIdx + I] = MI.getOperand(I).getReg();
247 }
248 
249 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
250                                      LLT GCDTy, Register SrcReg) {
251   LLT SrcTy = MRI.getType(SrcReg);
252   if (SrcTy == GCDTy) {
253     // If the source already evenly divides the result type, we don't need to do
254     // anything.
255     Parts.push_back(SrcReg);
256   } else {
257     // Need to split into common type sized pieces.
258     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
259     getUnmergeResults(Parts, *Unmerge);
260   }
261 }
262 
263 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
264                                     LLT NarrowTy, Register SrcReg) {
265   LLT SrcTy = MRI.getType(SrcReg);
266   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
267   extractGCDType(Parts, GCDTy, SrcReg);
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
382     SmallVector<Register, 8> UnmergeDefs(NumDefs);
383     UnmergeDefs[0] = DstReg;
384     for (unsigned I = 1; I != NumDefs; ++I)
385       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
386 
387     MIRBuilder.buildUnmerge(UnmergeDefs,
388                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
389     return;
390   }
391 
392   llvm_unreachable("unhandled case");
393 }
394 
395 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
396 #define RTLIBCASE_INT(LibcallPrefix)                                           \
397   do {                                                                         \
398     switch (Size) {                                                            \
399     case 32:                                                                   \
400       return RTLIB::LibcallPrefix##32;                                         \
401     case 64:                                                                   \
402       return RTLIB::LibcallPrefix##64;                                         \
403     case 128:                                                                  \
404       return RTLIB::LibcallPrefix##128;                                        \
405     default:                                                                   \
406       llvm_unreachable("unexpected size");                                     \
407     }                                                                          \
408   } while (0)
409 
410 #define RTLIBCASE(LibcallPrefix)                                               \
411   do {                                                                         \
412     switch (Size) {                                                            \
413     case 32:                                                                   \
414       return RTLIB::LibcallPrefix##32;                                         \
415     case 64:                                                                   \
416       return RTLIB::LibcallPrefix##64;                                         \
417     case 80:                                                                   \
418       return RTLIB::LibcallPrefix##80;                                         \
419     case 128:                                                                  \
420       return RTLIB::LibcallPrefix##128;                                        \
421     default:                                                                   \
422       llvm_unreachable("unexpected size");                                     \
423     }                                                                          \
424   } while (0)
425 
426   switch (Opcode) {
427   case TargetOpcode::G_SDIV:
428     RTLIBCASE_INT(SDIV_I);
429   case TargetOpcode::G_UDIV:
430     RTLIBCASE_INT(UDIV_I);
431   case TargetOpcode::G_SREM:
432     RTLIBCASE_INT(SREM_I);
433   case TargetOpcode::G_UREM:
434     RTLIBCASE_INT(UREM_I);
435   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
436     RTLIBCASE_INT(CTLZ_I);
437   case TargetOpcode::G_FADD:
438     RTLIBCASE(ADD_F);
439   case TargetOpcode::G_FSUB:
440     RTLIBCASE(SUB_F);
441   case TargetOpcode::G_FMUL:
442     RTLIBCASE(MUL_F);
443   case TargetOpcode::G_FDIV:
444     RTLIBCASE(DIV_F);
445   case TargetOpcode::G_FEXP:
446     RTLIBCASE(EXP_F);
447   case TargetOpcode::G_FEXP2:
448     RTLIBCASE(EXP2_F);
449   case TargetOpcode::G_FREM:
450     RTLIBCASE(REM_F);
451   case TargetOpcode::G_FPOW:
452     RTLIBCASE(POW_F);
453   case TargetOpcode::G_FMA:
454     RTLIBCASE(FMA_F);
455   case TargetOpcode::G_FSIN:
456     RTLIBCASE(SIN_F);
457   case TargetOpcode::G_FCOS:
458     RTLIBCASE(COS_F);
459   case TargetOpcode::G_FLOG10:
460     RTLIBCASE(LOG10_F);
461   case TargetOpcode::G_FLOG:
462     RTLIBCASE(LOG_F);
463   case TargetOpcode::G_FLOG2:
464     RTLIBCASE(LOG2_F);
465   case TargetOpcode::G_FCEIL:
466     RTLIBCASE(CEIL_F);
467   case TargetOpcode::G_FFLOOR:
468     RTLIBCASE(FLOOR_F);
469   case TargetOpcode::G_FMINNUM:
470     RTLIBCASE(FMIN_F);
471   case TargetOpcode::G_FMAXNUM:
472     RTLIBCASE(FMAX_F);
473   case TargetOpcode::G_FSQRT:
474     RTLIBCASE(SQRT_F);
475   case TargetOpcode::G_FRINT:
476     RTLIBCASE(RINT_F);
477   case TargetOpcode::G_FNEARBYINT:
478     RTLIBCASE(NEARBYINT_F);
479   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
480     RTLIBCASE(ROUNDEVEN_F);
481   }
482   llvm_unreachable("Unknown libcall function");
483 }
484 
485 /// True if an instruction is in tail position in its caller. Intended for
486 /// legalizing libcalls as tail calls when possible.
487 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
488                                     MachineInstr &MI) {
489   MachineBasicBlock &MBB = *MI.getParent();
490   const Function &F = MBB.getParent()->getFunction();
491 
492   // Conservatively require the attributes of the call to match those of
493   // the return. Ignore NoAlias and NonNull because they don't affect the
494   // call sequence.
495   AttributeList CallerAttrs = F.getAttributes();
496   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
497           .removeAttribute(Attribute::NoAlias)
498           .removeAttribute(Attribute::NonNull)
499           .hasAttributes())
500     return false;
501 
502   // It's not safe to eliminate the sign / zero extension of the return value.
503   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
504       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
505     return false;
506 
507   // Only tail call if the following instruction is a standard return.
508   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
509   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
510     return false;
511 
512   return true;
513 }
514 
515 LegalizerHelper::LegalizeResult
516 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
517                     const CallLowering::ArgInfo &Result,
518                     ArrayRef<CallLowering::ArgInfo> Args,
519                     const CallingConv::ID CC) {
520   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
521 
522   CallLowering::CallLoweringInfo Info;
523   Info.CallConv = CC;
524   Info.Callee = MachineOperand::CreateES(Name);
525   Info.OrigRet = Result;
526   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
527   if (!CLI.lowerCall(MIRBuilder, Info))
528     return LegalizerHelper::UnableToLegalize;
529 
530   return LegalizerHelper::Legalized;
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
535                     const CallLowering::ArgInfo &Result,
536                     ArrayRef<CallLowering::ArgInfo> Args) {
537   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
538   const char *Name = TLI.getLibcallName(Libcall);
539   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
540   return createLibcall(MIRBuilder, Name, Result, Args, CC);
541 }
542 
543 // Useful for libcalls where all operands have the same type.
544 static LegalizerHelper::LegalizeResult
545 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
546               Type *OpType) {
547   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
548 
549   SmallVector<CallLowering::ArgInfo, 3> Args;
550   for (unsigned i = 1; i < MI.getNumOperands(); i++)
551     Args.push_back({MI.getOperand(i).getReg(), OpType});
552   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
553                        Args);
554 }
555 
556 LegalizerHelper::LegalizeResult
557 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
558                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
559   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
560 
561   SmallVector<CallLowering::ArgInfo, 3> Args;
562   // Add all the args, except for the last which is an imm denoting 'tail'.
563   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
564     Register Reg = MI.getOperand(i).getReg();
565 
566     // Need derive an IR type for call lowering.
567     LLT OpLLT = MRI.getType(Reg);
568     Type *OpTy = nullptr;
569     if (OpLLT.isPointer())
570       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
571     else
572       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
573     Args.push_back({Reg, OpTy});
574   }
575 
576   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
577   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
578   RTLIB::Libcall RTLibcall;
579   unsigned Opc = MI.getOpcode();
580   switch (Opc) {
581   case TargetOpcode::G_BZERO:
582     RTLibcall = RTLIB::BZERO;
583     break;
584   case TargetOpcode::G_MEMCPY:
585     RTLibcall = RTLIB::MEMCPY;
586     break;
587   case TargetOpcode::G_MEMMOVE:
588     RTLibcall = RTLIB::MEMMOVE;
589     break;
590   case TargetOpcode::G_MEMSET:
591     RTLibcall = RTLIB::MEMSET;
592     break;
593   default:
594     return LegalizerHelper::UnableToLegalize;
595   }
596   const char *Name = TLI.getLibcallName(RTLibcall);
597 
598   // Unsupported libcall on the target.
599   if (!Name) {
600     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
601                       << MIRBuilder.getTII().getName(Opc) << "\n");
602     return LegalizerHelper::UnableToLegalize;
603   }
604 
605   CallLowering::CallLoweringInfo Info;
606   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
607   Info.Callee = MachineOperand::CreateES(Name);
608   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
609   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
610                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
611 
612   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
613   if (!CLI.lowerCall(MIRBuilder, Info))
614     return LegalizerHelper::UnableToLegalize;
615 
616 
617   if (Info.LoweredTailCall) {
618     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
619 
620     // Check debug locations before removing the return.
621     LocObserver.checkpoint(true);
622 
623     // We must have a return following the call (or debug insts) to get past
624     // isLibCallInTailPosition.
625     do {
626       MachineInstr *Next = MI.getNextNode();
627       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
628              "Expected instr following MI to be return or debug inst?");
629       // We lowered a tail call, so the call is now the return from the block.
630       // Delete the old return.
631       Next->eraseFromParent();
632     } while (MI.getNextNode());
633 
634     // We expect to lose the debug location from the return.
635     LocObserver.checkpoint(false);
636   }
637 
638   return LegalizerHelper::Legalized;
639 }
640 
641 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
642                                        Type *FromType) {
643   auto ToMVT = MVT::getVT(ToType);
644   auto FromMVT = MVT::getVT(FromType);
645 
646   switch (Opcode) {
647   case TargetOpcode::G_FPEXT:
648     return RTLIB::getFPEXT(FromMVT, ToMVT);
649   case TargetOpcode::G_FPTRUNC:
650     return RTLIB::getFPROUND(FromMVT, ToMVT);
651   case TargetOpcode::G_FPTOSI:
652     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
653   case TargetOpcode::G_FPTOUI:
654     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
655   case TargetOpcode::G_SITOFP:
656     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
657   case TargetOpcode::G_UITOFP:
658     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
659   }
660   llvm_unreachable("Unsupported libcall function");
661 }
662 
663 static LegalizerHelper::LegalizeResult
664 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
665                   Type *FromType) {
666   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
667   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
668                        {{MI.getOperand(1).getReg(), FromType}});
669 }
670 
671 LegalizerHelper::LegalizeResult
672 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
674   unsigned Size = LLTy.getSizeInBits();
675   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
676 
677   switch (MI.getOpcode()) {
678   default:
679     return UnableToLegalize;
680   case TargetOpcode::G_SDIV:
681   case TargetOpcode::G_UDIV:
682   case TargetOpcode::G_SREM:
683   case TargetOpcode::G_UREM:
684   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
685     Type *HLTy = IntegerType::get(Ctx, Size);
686     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
687     if (Status != Legalized)
688       return Status;
689     break;
690   }
691   case TargetOpcode::G_FADD:
692   case TargetOpcode::G_FSUB:
693   case TargetOpcode::G_FMUL:
694   case TargetOpcode::G_FDIV:
695   case TargetOpcode::G_FMA:
696   case TargetOpcode::G_FPOW:
697   case TargetOpcode::G_FREM:
698   case TargetOpcode::G_FCOS:
699   case TargetOpcode::G_FSIN:
700   case TargetOpcode::G_FLOG10:
701   case TargetOpcode::G_FLOG:
702   case TargetOpcode::G_FLOG2:
703   case TargetOpcode::G_FEXP:
704   case TargetOpcode::G_FEXP2:
705   case TargetOpcode::G_FCEIL:
706   case TargetOpcode::G_FFLOOR:
707   case TargetOpcode::G_FMINNUM:
708   case TargetOpcode::G_FMAXNUM:
709   case TargetOpcode::G_FSQRT:
710   case TargetOpcode::G_FRINT:
711   case TargetOpcode::G_FNEARBYINT:
712   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
713     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
714     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
715       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
716       return UnableToLegalize;
717     }
718     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   case TargetOpcode::G_FPEXT:
724   case TargetOpcode::G_FPTRUNC: {
725     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
726     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
727     if (!FromTy || !ToTy)
728       return UnableToLegalize;
729     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
730     if (Status != Legalized)
731       return Status;
732     break;
733   }
734   case TargetOpcode::G_FPTOSI:
735   case TargetOpcode::G_FPTOUI: {
736     // FIXME: Support other types
737     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
738     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
739     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
740       return UnableToLegalize;
741     LegalizeResult Status = conversionLibcall(
742         MI, MIRBuilder,
743         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
744         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
745     if (Status != Legalized)
746       return Status;
747     break;
748   }
749   case TargetOpcode::G_SITOFP:
750   case TargetOpcode::G_UITOFP: {
751     // FIXME: Support other types
752     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
753     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
755       return UnableToLegalize;
756     LegalizeResult Status = conversionLibcall(
757         MI, MIRBuilder,
758         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
759         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_BZERO:
765   case TargetOpcode::G_MEMCPY:
766   case TargetOpcode::G_MEMMOVE:
767   case TargetOpcode::G_MEMSET: {
768     LegalizeResult Result =
769         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
770     if (Result != Legalized)
771       return Result;
772     MI.eraseFromParent();
773     return Result;
774   }
775   }
776 
777   MI.eraseFromParent();
778   return Legalized;
779 }
780 
781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
782                                                               unsigned TypeIdx,
783                                                               LLT NarrowTy) {
784   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
785   uint64_t NarrowSize = NarrowTy.getSizeInBits();
786 
787   switch (MI.getOpcode()) {
788   default:
789     return UnableToLegalize;
790   case TargetOpcode::G_IMPLICIT_DEF: {
791     Register DstReg = MI.getOperand(0).getReg();
792     LLT DstTy = MRI.getType(DstReg);
793 
794     // If SizeOp0 is not an exact multiple of NarrowSize, emit
795     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
796     // FIXME: Although this would also be legal for the general case, it causes
797     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
798     //  combines not being hit). This seems to be a problem related to the
799     //  artifact combiner.
800     if (SizeOp0 % NarrowSize != 0) {
801       LLT ImplicitTy = NarrowTy;
802       if (DstTy.isVector())
803         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
804 
805       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
806       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
807 
808       MI.eraseFromParent();
809       return Legalized;
810     }
811 
812     int NumParts = SizeOp0 / NarrowSize;
813 
814     SmallVector<Register, 2> DstRegs;
815     for (int i = 0; i < NumParts; ++i)
816       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
817 
818     if (DstTy.isVector())
819       MIRBuilder.buildBuildVector(DstReg, DstRegs);
820     else
821       MIRBuilder.buildMerge(DstReg, DstRegs);
822     MI.eraseFromParent();
823     return Legalized;
824   }
825   case TargetOpcode::G_CONSTANT: {
826     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
827     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
828     unsigned TotalSize = Ty.getSizeInBits();
829     unsigned NarrowSize = NarrowTy.getSizeInBits();
830     int NumParts = TotalSize / NarrowSize;
831 
832     SmallVector<Register, 4> PartRegs;
833     for (int I = 0; I != NumParts; ++I) {
834       unsigned Offset = I * NarrowSize;
835       auto K = MIRBuilder.buildConstant(NarrowTy,
836                                         Val.lshr(Offset).trunc(NarrowSize));
837       PartRegs.push_back(K.getReg(0));
838     }
839 
840     LLT LeftoverTy;
841     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
842     SmallVector<Register, 1> LeftoverRegs;
843     if (LeftoverBits != 0) {
844       LeftoverTy = LLT::scalar(LeftoverBits);
845       auto K = MIRBuilder.buildConstant(
846         LeftoverTy,
847         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
848       LeftoverRegs.push_back(K.getReg(0));
849     }
850 
851     insertParts(MI.getOperand(0).getReg(),
852                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
853 
854     MI.eraseFromParent();
855     return Legalized;
856   }
857   case TargetOpcode::G_SEXT:
858   case TargetOpcode::G_ZEXT:
859   case TargetOpcode::G_ANYEXT:
860     return narrowScalarExt(MI, TypeIdx, NarrowTy);
861   case TargetOpcode::G_TRUNC: {
862     if (TypeIdx != 1)
863       return UnableToLegalize;
864 
865     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
866     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
867       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
868       return UnableToLegalize;
869     }
870 
871     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
872     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
873     MI.eraseFromParent();
874     return Legalized;
875   }
876 
877   case TargetOpcode::G_FREEZE:
878     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
879   case TargetOpcode::G_ADD:
880   case TargetOpcode::G_SUB:
881   case TargetOpcode::G_SADDO:
882   case TargetOpcode::G_SSUBO:
883   case TargetOpcode::G_SADDE:
884   case TargetOpcode::G_SSUBE:
885   case TargetOpcode::G_UADDO:
886   case TargetOpcode::G_USUBO:
887   case TargetOpcode::G_UADDE:
888   case TargetOpcode::G_USUBE:
889     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_MUL:
891   case TargetOpcode::G_UMULH:
892     return narrowScalarMul(MI, NarrowTy);
893   case TargetOpcode::G_EXTRACT:
894     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_INSERT:
896     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
897   case TargetOpcode::G_LOAD: {
898     auto &MMO = **MI.memoperands_begin();
899     Register DstReg = MI.getOperand(0).getReg();
900     LLT DstTy = MRI.getType(DstReg);
901     if (DstTy.isVector())
902       return UnableToLegalize;
903 
904     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
905       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
906       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
907       MIRBuilder.buildAnyExt(DstReg, TmpReg);
908       MI.eraseFromParent();
909       return Legalized;
910     }
911 
912     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
913   }
914   case TargetOpcode::G_ZEXTLOAD:
915   case TargetOpcode::G_SEXTLOAD: {
916     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
917     Register DstReg = MI.getOperand(0).getReg();
918     Register PtrReg = MI.getOperand(1).getReg();
919 
920     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
921     auto &MMO = **MI.memoperands_begin();
922     unsigned MemSize = MMO.getSizeInBits();
923 
924     if (MemSize == NarrowSize) {
925       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
926     } else if (MemSize < NarrowSize) {
927       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
928     } else if (MemSize > NarrowSize) {
929       // FIXME: Need to split the load.
930       return UnableToLegalize;
931     }
932 
933     if (ZExt)
934       MIRBuilder.buildZExt(DstReg, TmpReg);
935     else
936       MIRBuilder.buildSExt(DstReg, TmpReg);
937 
938     MI.eraseFromParent();
939     return Legalized;
940   }
941   case TargetOpcode::G_STORE: {
942     const auto &MMO = **MI.memoperands_begin();
943 
944     Register SrcReg = MI.getOperand(0).getReg();
945     LLT SrcTy = MRI.getType(SrcReg);
946     if (SrcTy.isVector())
947       return UnableToLegalize;
948 
949     int NumParts = SizeOp0 / NarrowSize;
950     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
951     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
952     if (SrcTy.isVector() && LeftoverBits != 0)
953       return UnableToLegalize;
954 
955     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
956       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
957       auto &MMO = **MI.memoperands_begin();
958       MIRBuilder.buildTrunc(TmpReg, SrcReg);
959       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
960       MI.eraseFromParent();
961       return Legalized;
962     }
963 
964     return reduceLoadStoreWidth(MI, 0, NarrowTy);
965   }
966   case TargetOpcode::G_SELECT:
967     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
968   case TargetOpcode::G_AND:
969   case TargetOpcode::G_OR:
970   case TargetOpcode::G_XOR: {
971     // Legalize bitwise operation:
972     // A = BinOp<Ty> B, C
973     // into:
974     // B1, ..., BN = G_UNMERGE_VALUES B
975     // C1, ..., CN = G_UNMERGE_VALUES C
976     // A1 = BinOp<Ty/N> B1, C2
977     // ...
978     // AN = BinOp<Ty/N> BN, CN
979     // A = G_MERGE_VALUES A1, ..., AN
980     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
981   }
982   case TargetOpcode::G_SHL:
983   case TargetOpcode::G_LSHR:
984   case TargetOpcode::G_ASHR:
985     return narrowScalarShift(MI, TypeIdx, NarrowTy);
986   case TargetOpcode::G_CTLZ:
987   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTTZ:
989   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
990   case TargetOpcode::G_CTPOP:
991     if (TypeIdx == 1)
992       switch (MI.getOpcode()) {
993       case TargetOpcode::G_CTLZ:
994       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
995         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
996       case TargetOpcode::G_CTTZ:
997       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
998         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
999       case TargetOpcode::G_CTPOP:
1000         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1001       default:
1002         return UnableToLegalize;
1003       }
1004 
1005     Observer.changingInstr(MI);
1006     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1007     Observer.changedInstr(MI);
1008     return Legalized;
1009   case TargetOpcode::G_INTTOPTR:
1010     if (TypeIdx != 1)
1011       return UnableToLegalize;
1012 
1013     Observer.changingInstr(MI);
1014     narrowScalarSrc(MI, NarrowTy, 1);
1015     Observer.changedInstr(MI);
1016     return Legalized;
1017   case TargetOpcode::G_PTRTOINT:
1018     if (TypeIdx != 0)
1019       return UnableToLegalize;
1020 
1021     Observer.changingInstr(MI);
1022     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1023     Observer.changedInstr(MI);
1024     return Legalized;
1025   case TargetOpcode::G_PHI: {
1026     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1027     // NarrowSize.
1028     if (SizeOp0 % NarrowSize != 0)
1029       return UnableToLegalize;
1030 
1031     unsigned NumParts = SizeOp0 / NarrowSize;
1032     SmallVector<Register, 2> DstRegs(NumParts);
1033     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1034     Observer.changingInstr(MI);
1035     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1036       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1037       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1038       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1039                    SrcRegs[i / 2]);
1040     }
1041     MachineBasicBlock &MBB = *MI.getParent();
1042     MIRBuilder.setInsertPt(MBB, MI);
1043     for (unsigned i = 0; i < NumParts; ++i) {
1044       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1045       MachineInstrBuilder MIB =
1046           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1047       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1048         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1049     }
1050     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1051     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1052     Observer.changedInstr(MI);
1053     MI.eraseFromParent();
1054     return Legalized;
1055   }
1056   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1057   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1058     if (TypeIdx != 2)
1059       return UnableToLegalize;
1060 
1061     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1062     Observer.changingInstr(MI);
1063     narrowScalarSrc(MI, NarrowTy, OpIdx);
1064     Observer.changedInstr(MI);
1065     return Legalized;
1066   }
1067   case TargetOpcode::G_ICMP: {
1068     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1069     if (NarrowSize * 2 != SrcSize)
1070       return UnableToLegalize;
1071 
1072     Observer.changingInstr(MI);
1073     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1076 
1077     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1078     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1079     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1080 
1081     CmpInst::Predicate Pred =
1082         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1083     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1084 
1085     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1086       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1087       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1088       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1089       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1090       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1091     } else {
1092       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpHEQ =
1094           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1095       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1096           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1097       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1098     }
1099     Observer.changedInstr(MI);
1100     MI.eraseFromParent();
1101     return Legalized;
1102   }
1103   case TargetOpcode::G_SEXT_INREG: {
1104     if (TypeIdx != 0)
1105       return UnableToLegalize;
1106 
1107     int64_t SizeInBits = MI.getOperand(2).getImm();
1108 
1109     // So long as the new type has more bits than the bits we're extending we
1110     // don't need to break it apart.
1111     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1112       Observer.changingInstr(MI);
1113       // We don't lose any non-extension bits by truncating the src and
1114       // sign-extending the dst.
1115       MachineOperand &MO1 = MI.getOperand(1);
1116       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1117       MO1.setReg(TruncMIB.getReg(0));
1118 
1119       MachineOperand &MO2 = MI.getOperand(0);
1120       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1121       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1122       MIRBuilder.buildSExt(MO2, DstExt);
1123       MO2.setReg(DstExt);
1124       Observer.changedInstr(MI);
1125       return Legalized;
1126     }
1127 
1128     // Break it apart. Components below the extension point are unmodified. The
1129     // component containing the extension point becomes a narrower SEXT_INREG.
1130     // Components above it are ashr'd from the component containing the
1131     // extension point.
1132     if (SizeOp0 % NarrowSize != 0)
1133       return UnableToLegalize;
1134     int NumParts = SizeOp0 / NarrowSize;
1135 
1136     // List the registers where the destination will be scattered.
1137     SmallVector<Register, 2> DstRegs;
1138     // List the registers where the source will be split.
1139     SmallVector<Register, 2> SrcRegs;
1140 
1141     // Create all the temporary registers.
1142     for (int i = 0; i < NumParts; ++i) {
1143       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1144 
1145       SrcRegs.push_back(SrcReg);
1146     }
1147 
1148     // Explode the big arguments into smaller chunks.
1149     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1150 
1151     Register AshrCstReg =
1152         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1153             .getReg(0);
1154     Register FullExtensionReg = 0;
1155     Register PartialExtensionReg = 0;
1156 
1157     // Do the operation on each small part.
1158     for (int i = 0; i < NumParts; ++i) {
1159       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1160         DstRegs.push_back(SrcRegs[i]);
1161       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1162         assert(PartialExtensionReg &&
1163                "Expected to visit partial extension before full");
1164         if (FullExtensionReg) {
1165           DstRegs.push_back(FullExtensionReg);
1166           continue;
1167         }
1168         DstRegs.push_back(
1169             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1170                 .getReg(0));
1171         FullExtensionReg = DstRegs.back();
1172       } else {
1173         DstRegs.push_back(
1174             MIRBuilder
1175                 .buildInstr(
1176                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1177                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1178                 .getReg(0));
1179         PartialExtensionReg = DstRegs.back();
1180       }
1181     }
1182 
1183     // Gather the destination registers into the final destination.
1184     Register DstReg = MI.getOperand(0).getReg();
1185     MIRBuilder.buildMerge(DstReg, DstRegs);
1186     MI.eraseFromParent();
1187     return Legalized;
1188   }
1189   case TargetOpcode::G_BSWAP:
1190   case TargetOpcode::G_BITREVERSE: {
1191     if (SizeOp0 % NarrowSize != 0)
1192       return UnableToLegalize;
1193 
1194     Observer.changingInstr(MI);
1195     SmallVector<Register, 2> SrcRegs, DstRegs;
1196     unsigned NumParts = SizeOp0 / NarrowSize;
1197     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1198 
1199     for (unsigned i = 0; i < NumParts; ++i) {
1200       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1201                                            {SrcRegs[NumParts - 1 - i]});
1202       DstRegs.push_back(DstPart.getReg(0));
1203     }
1204 
1205     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1206 
1207     Observer.changedInstr(MI);
1208     MI.eraseFromParent();
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_PTR_ADD:
1212   case TargetOpcode::G_PTRMASK: {
1213     if (TypeIdx != 1)
1214       return UnableToLegalize;
1215     Observer.changingInstr(MI);
1216     narrowScalarSrc(MI, NarrowTy, 2);
1217     Observer.changedInstr(MI);
1218     return Legalized;
1219   }
1220   case TargetOpcode::G_FPTOUI:
1221   case TargetOpcode::G_FPTOSI:
1222     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1223   case TargetOpcode::G_FPEXT:
1224     if (TypeIdx != 0)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231 }
1232 
1233 Register LegalizerHelper::coerceToScalar(Register Val) {
1234   LLT Ty = MRI.getType(Val);
1235   if (Ty.isScalar())
1236     return Val;
1237 
1238   const DataLayout &DL = MIRBuilder.getDataLayout();
1239   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1240   if (Ty.isPointer()) {
1241     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1242       return Register();
1243     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1244   }
1245 
1246   Register NewVal = Val;
1247 
1248   assert(Ty.isVector());
1249   LLT EltTy = Ty.getElementType();
1250   if (EltTy.isPointer())
1251     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1252   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1253 }
1254 
1255 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1256                                      unsigned OpIdx, unsigned ExtOpcode) {
1257   MachineOperand &MO = MI.getOperand(OpIdx);
1258   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1259   MO.setReg(ExtB.getReg(0));
1260 }
1261 
1262 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1263                                       unsigned OpIdx) {
1264   MachineOperand &MO = MI.getOperand(OpIdx);
1265   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1266   MO.setReg(ExtB.getReg(0));
1267 }
1268 
1269 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1270                                      unsigned OpIdx, unsigned TruncOpcode) {
1271   MachineOperand &MO = MI.getOperand(OpIdx);
1272   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1273   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1274   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1275   MO.setReg(DstExt);
1276 }
1277 
1278 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1279                                       unsigned OpIdx, unsigned ExtOpcode) {
1280   MachineOperand &MO = MI.getOperand(OpIdx);
1281   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1282   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1283   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1284   MO.setReg(DstTrunc);
1285 }
1286 
1287 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1288                                             unsigned OpIdx) {
1289   MachineOperand &MO = MI.getOperand(OpIdx);
1290   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1291   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1292 }
1293 
1294 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1295                                             unsigned OpIdx) {
1296   MachineOperand &MO = MI.getOperand(OpIdx);
1297 
1298   LLT OldTy = MRI.getType(MO.getReg());
1299   unsigned OldElts = OldTy.getNumElements();
1300   unsigned NewElts = MoreTy.getNumElements();
1301 
1302   unsigned NumParts = NewElts / OldElts;
1303 
1304   // Use concat_vectors if the result is a multiple of the number of elements.
1305   if (NumParts * OldElts == NewElts) {
1306     SmallVector<Register, 8> Parts;
1307     Parts.push_back(MO.getReg());
1308 
1309     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1310     for (unsigned I = 1; I != NumParts; ++I)
1311       Parts.push_back(ImpDef);
1312 
1313     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1314     MO.setReg(Concat.getReg(0));
1315     return;
1316   }
1317 
1318   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1319   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1320   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1321   MO.setReg(MoreReg);
1322 }
1323 
1324 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1325   MachineOperand &Op = MI.getOperand(OpIdx);
1326   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1327 }
1328 
1329 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1330   MachineOperand &MO = MI.getOperand(OpIdx);
1331   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1332   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1333   MIRBuilder.buildBitcast(MO, CastDst);
1334   MO.setReg(CastDst);
1335 }
1336 
1337 LegalizerHelper::LegalizeResult
1338 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1339                                         LLT WideTy) {
1340   if (TypeIdx != 1)
1341     return UnableToLegalize;
1342 
1343   Register DstReg = MI.getOperand(0).getReg();
1344   LLT DstTy = MRI.getType(DstReg);
1345   if (DstTy.isVector())
1346     return UnableToLegalize;
1347 
1348   Register Src1 = MI.getOperand(1).getReg();
1349   LLT SrcTy = MRI.getType(Src1);
1350   const int DstSize = DstTy.getSizeInBits();
1351   const int SrcSize = SrcTy.getSizeInBits();
1352   const int WideSize = WideTy.getSizeInBits();
1353   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1354 
1355   unsigned NumOps = MI.getNumOperands();
1356   unsigned NumSrc = MI.getNumOperands() - 1;
1357   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1358 
1359   if (WideSize >= DstSize) {
1360     // Directly pack the bits in the target type.
1361     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1362 
1363     for (unsigned I = 2; I != NumOps; ++I) {
1364       const unsigned Offset = (I - 1) * PartSize;
1365 
1366       Register SrcReg = MI.getOperand(I).getReg();
1367       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1368 
1369       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1370 
1371       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1372         MRI.createGenericVirtualRegister(WideTy);
1373 
1374       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1375       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1376       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1377       ResultReg = NextResult;
1378     }
1379 
1380     if (WideSize > DstSize)
1381       MIRBuilder.buildTrunc(DstReg, ResultReg);
1382     else if (DstTy.isPointer())
1383       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1384 
1385     MI.eraseFromParent();
1386     return Legalized;
1387   }
1388 
1389   // Unmerge the original values to the GCD type, and recombine to the next
1390   // multiple greater than the original type.
1391   //
1392   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1393   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1394   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1395   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1396   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1397   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1398   // %12:_(s12) = G_MERGE_VALUES %10, %11
1399   //
1400   // Padding with undef if necessary:
1401   //
1402   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1403   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1404   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1405   // %7:_(s2) = G_IMPLICIT_DEF
1406   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1407   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1408   // %10:_(s12) = G_MERGE_VALUES %8, %9
1409 
1410   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1411   LLT GCDTy = LLT::scalar(GCD);
1412 
1413   SmallVector<Register, 8> Parts;
1414   SmallVector<Register, 8> NewMergeRegs;
1415   SmallVector<Register, 8> Unmerges;
1416   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1417 
1418   // Decompose the original operands if they don't evenly divide.
1419   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1420     Register SrcReg = MI.getOperand(I).getReg();
1421     if (GCD == SrcSize) {
1422       Unmerges.push_back(SrcReg);
1423     } else {
1424       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1425       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1426         Unmerges.push_back(Unmerge.getReg(J));
1427     }
1428   }
1429 
1430   // Pad with undef to the next size that is a multiple of the requested size.
1431   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1432     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1433     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1434       Unmerges.push_back(UndefReg);
1435   }
1436 
1437   const int PartsPerGCD = WideSize / GCD;
1438 
1439   // Build merges of each piece.
1440   ArrayRef<Register> Slicer(Unmerges);
1441   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1442     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1443     NewMergeRegs.push_back(Merge.getReg(0));
1444   }
1445 
1446   // A truncate may be necessary if the requested type doesn't evenly divide the
1447   // original result type.
1448   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1449     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1450   } else {
1451     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1452     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1453   }
1454 
1455   MI.eraseFromParent();
1456   return Legalized;
1457 }
1458 
1459 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1460   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1461   LLT OrigTy = MRI.getType(OrigReg);
1462   LLT LCMTy = getLCMType(WideTy, OrigTy);
1463 
1464   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1465   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1466 
1467   Register UnmergeSrc = WideReg;
1468 
1469   // Create a merge to the LCM type, padding with undef
1470   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1471   // =>
1472   // %1:_(<4 x s32>) = G_FOO
1473   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1474   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1475   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1476   if (NumMergeParts > 1) {
1477     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1478     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1479     MergeParts[0] = WideReg;
1480     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1481   }
1482 
1483   // Unmerge to the original register and pad with dead defs.
1484   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1485   UnmergeResults[0] = OrigReg;
1486   for (int I = 1; I != NumUnmergeParts; ++I)
1487     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1488 
1489   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1490   return WideReg;
1491 }
1492 
1493 LegalizerHelper::LegalizeResult
1494 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1495                                           LLT WideTy) {
1496   if (TypeIdx != 0)
1497     return UnableToLegalize;
1498 
1499   int NumDst = MI.getNumOperands() - 1;
1500   Register SrcReg = MI.getOperand(NumDst).getReg();
1501   LLT SrcTy = MRI.getType(SrcReg);
1502   if (SrcTy.isVector())
1503     return UnableToLegalize;
1504 
1505   Register Dst0Reg = MI.getOperand(0).getReg();
1506   LLT DstTy = MRI.getType(Dst0Reg);
1507   if (!DstTy.isScalar())
1508     return UnableToLegalize;
1509 
1510   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1511     if (SrcTy.isPointer()) {
1512       const DataLayout &DL = MIRBuilder.getDataLayout();
1513       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1514         LLVM_DEBUG(
1515             dbgs() << "Not casting non-integral address space integer\n");
1516         return UnableToLegalize;
1517       }
1518 
1519       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1520       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1521     }
1522 
1523     // Widen SrcTy to WideTy. This does not affect the result, but since the
1524     // user requested this size, it is probably better handled than SrcTy and
1525     // should reduce the total number of legalization artifacts
1526     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1527       SrcTy = WideTy;
1528       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1529     }
1530 
1531     // Theres no unmerge type to target. Directly extract the bits from the
1532     // source type
1533     unsigned DstSize = DstTy.getSizeInBits();
1534 
1535     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1536     for (int I = 1; I != NumDst; ++I) {
1537       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1538       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1539       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1540     }
1541 
1542     MI.eraseFromParent();
1543     return Legalized;
1544   }
1545 
1546   // Extend the source to a wider type.
1547   LLT LCMTy = getLCMType(SrcTy, WideTy);
1548 
1549   Register WideSrc = SrcReg;
1550   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1551     // TODO: If this is an integral address space, cast to integer and anyext.
1552     if (SrcTy.isPointer()) {
1553       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1554       return UnableToLegalize;
1555     }
1556 
1557     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1558   }
1559 
1560   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1561 
1562   // Create a sequence of unmerges and merges to the original results. Since we
1563   // may have widened the source, we will need to pad the results with dead defs
1564   // to cover the source register.
1565   // e.g. widen s48 to s64:
1566   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1567   //
1568   // =>
1569   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1570   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1571   //  ; unpack to GCD type, with extra dead defs
1572   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1573   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1574   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1575   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1576   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1577   const LLT GCDTy = getGCDType(WideTy, DstTy);
1578   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1579   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1580 
1581   // Directly unmerge to the destination without going through a GCD type
1582   // if possible
1583   if (PartsPerRemerge == 1) {
1584     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1585 
1586     for (int I = 0; I != NumUnmerge; ++I) {
1587       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1588 
1589       for (int J = 0; J != PartsPerUnmerge; ++J) {
1590         int Idx = I * PartsPerUnmerge + J;
1591         if (Idx < NumDst)
1592           MIB.addDef(MI.getOperand(Idx).getReg());
1593         else {
1594           // Create dead def for excess components.
1595           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1596         }
1597       }
1598 
1599       MIB.addUse(Unmerge.getReg(I));
1600     }
1601   } else {
1602     SmallVector<Register, 16> Parts;
1603     for (int J = 0; J != NumUnmerge; ++J)
1604       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1605 
1606     SmallVector<Register, 8> RemergeParts;
1607     for (int I = 0; I != NumDst; ++I) {
1608       for (int J = 0; J < PartsPerRemerge; ++J) {
1609         const int Idx = I * PartsPerRemerge + J;
1610         RemergeParts.emplace_back(Parts[Idx]);
1611       }
1612 
1613       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1614       RemergeParts.clear();
1615     }
1616   }
1617 
1618   MI.eraseFromParent();
1619   return Legalized;
1620 }
1621 
1622 LegalizerHelper::LegalizeResult
1623 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1624                                     LLT WideTy) {
1625   Register DstReg = MI.getOperand(0).getReg();
1626   Register SrcReg = MI.getOperand(1).getReg();
1627   LLT SrcTy = MRI.getType(SrcReg);
1628 
1629   LLT DstTy = MRI.getType(DstReg);
1630   unsigned Offset = MI.getOperand(2).getImm();
1631 
1632   if (TypeIdx == 0) {
1633     if (SrcTy.isVector() || DstTy.isVector())
1634       return UnableToLegalize;
1635 
1636     SrcOp Src(SrcReg);
1637     if (SrcTy.isPointer()) {
1638       // Extracts from pointers can be handled only if they are really just
1639       // simple integers.
1640       const DataLayout &DL = MIRBuilder.getDataLayout();
1641       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1642         return UnableToLegalize;
1643 
1644       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1645       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1646       SrcTy = SrcAsIntTy;
1647     }
1648 
1649     if (DstTy.isPointer())
1650       return UnableToLegalize;
1651 
1652     if (Offset == 0) {
1653       // Avoid a shift in the degenerate case.
1654       MIRBuilder.buildTrunc(DstReg,
1655                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1656       MI.eraseFromParent();
1657       return Legalized;
1658     }
1659 
1660     // Do a shift in the source type.
1661     LLT ShiftTy = SrcTy;
1662     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1663       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1664       ShiftTy = WideTy;
1665     }
1666 
1667     auto LShr = MIRBuilder.buildLShr(
1668       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1669     MIRBuilder.buildTrunc(DstReg, LShr);
1670     MI.eraseFromParent();
1671     return Legalized;
1672   }
1673 
1674   if (SrcTy.isScalar()) {
1675     Observer.changingInstr(MI);
1676     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1677     Observer.changedInstr(MI);
1678     return Legalized;
1679   }
1680 
1681   if (!SrcTy.isVector())
1682     return UnableToLegalize;
1683 
1684   if (DstTy != SrcTy.getElementType())
1685     return UnableToLegalize;
1686 
1687   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1688     return UnableToLegalize;
1689 
1690   Observer.changingInstr(MI);
1691   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1692 
1693   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1694                           Offset);
1695   widenScalarDst(MI, WideTy.getScalarType(), 0);
1696   Observer.changedInstr(MI);
1697   return Legalized;
1698 }
1699 
1700 LegalizerHelper::LegalizeResult
1701 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1702                                    LLT WideTy) {
1703   if (TypeIdx != 0 || WideTy.isVector())
1704     return UnableToLegalize;
1705   Observer.changingInstr(MI);
1706   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1707   widenScalarDst(MI, WideTy);
1708   Observer.changedInstr(MI);
1709   return Legalized;
1710 }
1711 
1712 LegalizerHelper::LegalizeResult
1713 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1714                                            LLT WideTy) {
1715   if (TypeIdx == 1)
1716     return UnableToLegalize; // TODO
1717 
1718   unsigned Opcode;
1719   unsigned ExtOpcode;
1720   Optional<Register> CarryIn = None;
1721   switch (MI.getOpcode()) {
1722   default:
1723     llvm_unreachable("Unexpected opcode!");
1724   case TargetOpcode::G_SADDO:
1725     Opcode = TargetOpcode::G_ADD;
1726     ExtOpcode = TargetOpcode::G_SEXT;
1727     break;
1728   case TargetOpcode::G_SSUBO:
1729     Opcode = TargetOpcode::G_SUB;
1730     ExtOpcode = TargetOpcode::G_SEXT;
1731     break;
1732   case TargetOpcode::G_UADDO:
1733     Opcode = TargetOpcode::G_ADD;
1734     ExtOpcode = TargetOpcode::G_ZEXT;
1735     break;
1736   case TargetOpcode::G_USUBO:
1737     Opcode = TargetOpcode::G_SUB;
1738     ExtOpcode = TargetOpcode::G_ZEXT;
1739     break;
1740   case TargetOpcode::G_SADDE:
1741     Opcode = TargetOpcode::G_UADDE;
1742     ExtOpcode = TargetOpcode::G_SEXT;
1743     CarryIn = MI.getOperand(4).getReg();
1744     break;
1745   case TargetOpcode::G_SSUBE:
1746     Opcode = TargetOpcode::G_USUBE;
1747     ExtOpcode = TargetOpcode::G_SEXT;
1748     CarryIn = MI.getOperand(4).getReg();
1749     break;
1750   case TargetOpcode::G_UADDE:
1751     Opcode = TargetOpcode::G_UADDE;
1752     ExtOpcode = TargetOpcode::G_ZEXT;
1753     CarryIn = MI.getOperand(4).getReg();
1754     break;
1755   case TargetOpcode::G_USUBE:
1756     Opcode = TargetOpcode::G_USUBE;
1757     ExtOpcode = TargetOpcode::G_ZEXT;
1758     CarryIn = MI.getOperand(4).getReg();
1759     break;
1760   }
1761 
1762   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1763   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1764   // Do the arithmetic in the larger type.
1765   Register NewOp;
1766   if (CarryIn) {
1767     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1768     NewOp = MIRBuilder
1769                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1770                             {LHSExt, RHSExt, *CarryIn})
1771                 .getReg(0);
1772   } else {
1773     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1774   }
1775   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1776   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1777   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1778   // There is no overflow if the ExtOp is the same as NewOp.
1779   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1780   // Now trunc the NewOp to the original result.
1781   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1782   MI.eraseFromParent();
1783   return Legalized;
1784 }
1785 
1786 LegalizerHelper::LegalizeResult
1787 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1788                                          LLT WideTy) {
1789   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1790                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1791                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1792   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1793                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1794   // We can convert this to:
1795   //   1. Any extend iN to iM
1796   //   2. SHL by M-N
1797   //   3. [US][ADD|SUB|SHL]SAT
1798   //   4. L/ASHR by M-N
1799   //
1800   // It may be more efficient to lower this to a min and a max operation in
1801   // the higher precision arithmetic if the promoted operation isn't legal,
1802   // but this decision is up to the target's lowering request.
1803   Register DstReg = MI.getOperand(0).getReg();
1804 
1805   unsigned NewBits = WideTy.getScalarSizeInBits();
1806   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1807 
1808   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1809   // must not left shift the RHS to preserve the shift amount.
1810   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1811   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1812                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1813   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1814   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1815   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1816 
1817   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1818                                         {ShiftL, ShiftR}, MI.getFlags());
1819 
1820   // Use a shift that will preserve the number of sign bits when the trunc is
1821   // folded away.
1822   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1823                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1824 
1825   MIRBuilder.buildTrunc(DstReg, Result);
1826   MI.eraseFromParent();
1827   return Legalized;
1828 }
1829 
1830 LegalizerHelper::LegalizeResult
1831 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1832                                  LLT WideTy) {
1833   if (TypeIdx == 1)
1834     return UnableToLegalize;
1835 
1836   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1837   Register Result = MI.getOperand(0).getReg();
1838   Register OriginalOverflow = MI.getOperand(1).getReg();
1839   Register LHS = MI.getOperand(2).getReg();
1840   Register RHS = MI.getOperand(3).getReg();
1841   LLT SrcTy = MRI.getType(LHS);
1842   LLT OverflowTy = MRI.getType(OriginalOverflow);
1843   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1844 
1845   // To determine if the result overflowed in the larger type, we extend the
1846   // input to the larger type, do the multiply (checking if it overflows),
1847   // then also check the high bits of the result to see if overflow happened
1848   // there.
1849   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1850   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1851   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1852 
1853   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1854                                     {LeftOperand, RightOperand});
1855   auto Mul = Mulo->getOperand(0);
1856   MIRBuilder.buildTrunc(Result, Mul);
1857 
1858   MachineInstrBuilder ExtResult;
1859   // Overflow occurred if it occurred in the larger type, or if the high part
1860   // of the result does not zero/sign-extend the low part.  Check this second
1861   // possibility first.
1862   if (IsSigned) {
1863     // For signed, overflow occurred when the high part does not sign-extend
1864     // the low part.
1865     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1866   } else {
1867     // Unsigned overflow occurred when the high part does not zero-extend the
1868     // low part.
1869     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1870   }
1871 
1872   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1873   // so we don't need to check the overflow result of larger type Mulo.
1874   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1875     auto Overflow =
1876         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1877     // Finally check if the multiplication in the larger type itself overflowed.
1878     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1879   } else {
1880     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1881   }
1882   MI.eraseFromParent();
1883   return Legalized;
1884 }
1885 
1886 LegalizerHelper::LegalizeResult
1887 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1888   switch (MI.getOpcode()) {
1889   default:
1890     return UnableToLegalize;
1891   case TargetOpcode::G_EXTRACT:
1892     return widenScalarExtract(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_INSERT:
1894     return widenScalarInsert(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_MERGE_VALUES:
1896     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_UNMERGE_VALUES:
1898     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1899   case TargetOpcode::G_SADDO:
1900   case TargetOpcode::G_SSUBO:
1901   case TargetOpcode::G_UADDO:
1902   case TargetOpcode::G_USUBO:
1903   case TargetOpcode::G_SADDE:
1904   case TargetOpcode::G_SSUBE:
1905   case TargetOpcode::G_UADDE:
1906   case TargetOpcode::G_USUBE:
1907     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UMULO:
1909   case TargetOpcode::G_SMULO:
1910     return widenScalarMulo(MI, TypeIdx, WideTy);
1911   case TargetOpcode::G_SADDSAT:
1912   case TargetOpcode::G_SSUBSAT:
1913   case TargetOpcode::G_SSHLSAT:
1914   case TargetOpcode::G_UADDSAT:
1915   case TargetOpcode::G_USUBSAT:
1916   case TargetOpcode::G_USHLSAT:
1917     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1918   case TargetOpcode::G_CTTZ:
1919   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1920   case TargetOpcode::G_CTLZ:
1921   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1922   case TargetOpcode::G_CTPOP: {
1923     if (TypeIdx == 0) {
1924       Observer.changingInstr(MI);
1925       widenScalarDst(MI, WideTy, 0);
1926       Observer.changedInstr(MI);
1927       return Legalized;
1928     }
1929 
1930     Register SrcReg = MI.getOperand(1).getReg();
1931 
1932     // First ZEXT the input.
1933     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1934     LLT CurTy = MRI.getType(SrcReg);
1935     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1936       // The count is the same in the larger type except if the original
1937       // value was zero.  This can be handled by setting the bit just off
1938       // the top of the original type.
1939       auto TopBit =
1940           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1941       MIBSrc = MIRBuilder.buildOr(
1942         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1943     }
1944 
1945     // Perform the operation at the larger size.
1946     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1947     // This is already the correct result for CTPOP and CTTZs
1948     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1949         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1950       // The correct result is NewOp - (Difference in widety and current ty).
1951       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1952       MIBNewOp = MIRBuilder.buildSub(
1953           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1954     }
1955 
1956     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1957     MI.eraseFromParent();
1958     return Legalized;
1959   }
1960   case TargetOpcode::G_BSWAP: {
1961     Observer.changingInstr(MI);
1962     Register DstReg = MI.getOperand(0).getReg();
1963 
1964     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1965     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1966     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1967     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1968 
1969     MI.getOperand(0).setReg(DstExt);
1970 
1971     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1972 
1973     LLT Ty = MRI.getType(DstReg);
1974     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1975     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1976     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1977 
1978     MIRBuilder.buildTrunc(DstReg, ShrReg);
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981   }
1982   case TargetOpcode::G_BITREVERSE: {
1983     Observer.changingInstr(MI);
1984 
1985     Register DstReg = MI.getOperand(0).getReg();
1986     LLT Ty = MRI.getType(DstReg);
1987     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1988 
1989     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1990     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1991     MI.getOperand(0).setReg(DstExt);
1992     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1993 
1994     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1995     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1996     MIRBuilder.buildTrunc(DstReg, Shift);
1997     Observer.changedInstr(MI);
1998     return Legalized;
1999   }
2000   case TargetOpcode::G_FREEZE:
2001     Observer.changingInstr(MI);
2002     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2003     widenScalarDst(MI, WideTy);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006 
2007   case TargetOpcode::G_ABS:
2008     Observer.changingInstr(MI);
2009     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2010     widenScalarDst(MI, WideTy);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013 
2014   case TargetOpcode::G_ADD:
2015   case TargetOpcode::G_AND:
2016   case TargetOpcode::G_MUL:
2017   case TargetOpcode::G_OR:
2018   case TargetOpcode::G_XOR:
2019   case TargetOpcode::G_SUB:
2020     // Perform operation at larger width (any extension is fines here, high bits
2021     // don't affect the result) and then truncate the result back to the
2022     // original type.
2023     Observer.changingInstr(MI);
2024     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2025     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2026     widenScalarDst(MI, WideTy);
2027     Observer.changedInstr(MI);
2028     return Legalized;
2029 
2030   case TargetOpcode::G_SBFX:
2031   case TargetOpcode::G_UBFX:
2032     Observer.changingInstr(MI);
2033 
2034     if (TypeIdx == 0) {
2035       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2036       widenScalarDst(MI, WideTy);
2037     } else {
2038       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2039       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2040     }
2041 
2042     Observer.changedInstr(MI);
2043     return Legalized;
2044 
2045   case TargetOpcode::G_SHL:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0) {
2049       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2050       widenScalarDst(MI, WideTy);
2051     } else {
2052       assert(TypeIdx == 1);
2053       // The "number of bits to shift" operand must preserve its value as an
2054       // unsigned integer:
2055       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2056     }
2057 
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060 
2061   case TargetOpcode::G_SDIV:
2062   case TargetOpcode::G_SREM:
2063   case TargetOpcode::G_SMIN:
2064   case TargetOpcode::G_SMAX:
2065     Observer.changingInstr(MI);
2066     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2067     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2068     widenScalarDst(MI, WideTy);
2069     Observer.changedInstr(MI);
2070     return Legalized;
2071 
2072   case TargetOpcode::G_SDIVREM:
2073     Observer.changingInstr(MI);
2074     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2075     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2076     widenScalarDst(MI, WideTy);
2077     widenScalarDst(MI, WideTy, 1);
2078     Observer.changedInstr(MI);
2079     return Legalized;
2080 
2081   case TargetOpcode::G_ASHR:
2082   case TargetOpcode::G_LSHR:
2083     Observer.changingInstr(MI);
2084 
2085     if (TypeIdx == 0) {
2086       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2087         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2088 
2089       widenScalarSrc(MI, WideTy, 1, CvtOp);
2090       widenScalarDst(MI, WideTy);
2091     } else {
2092       assert(TypeIdx == 1);
2093       // The "number of bits to shift" operand must preserve its value as an
2094       // unsigned integer:
2095       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2096     }
2097 
2098     Observer.changedInstr(MI);
2099     return Legalized;
2100   case TargetOpcode::G_UDIV:
2101   case TargetOpcode::G_UREM:
2102   case TargetOpcode::G_UMIN:
2103   case TargetOpcode::G_UMAX:
2104     Observer.changingInstr(MI);
2105     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2106     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2107     widenScalarDst(MI, WideTy);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110 
2111   case TargetOpcode::G_UDIVREM:
2112     Observer.changingInstr(MI);
2113     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2114     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2115     widenScalarDst(MI, WideTy);
2116     widenScalarDst(MI, WideTy, 1);
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119 
2120   case TargetOpcode::G_SELECT:
2121     Observer.changingInstr(MI);
2122     if (TypeIdx == 0) {
2123       // Perform operation at larger width (any extension is fine here, high
2124       // bits don't affect the result) and then truncate the result back to the
2125       // original type.
2126       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2127       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2128       widenScalarDst(MI, WideTy);
2129     } else {
2130       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2131       // Explicit extension is required here since high bits affect the result.
2132       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2133     }
2134     Observer.changedInstr(MI);
2135     return Legalized;
2136 
2137   case TargetOpcode::G_FPTOSI:
2138   case TargetOpcode::G_FPTOUI:
2139     Observer.changingInstr(MI);
2140 
2141     if (TypeIdx == 0)
2142       widenScalarDst(MI, WideTy);
2143     else
2144       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2145 
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   case TargetOpcode::G_SITOFP:
2149     Observer.changingInstr(MI);
2150 
2151     if (TypeIdx == 0)
2152       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2153     else
2154       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2155 
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158   case TargetOpcode::G_UITOFP:
2159     Observer.changingInstr(MI);
2160 
2161     if (TypeIdx == 0)
2162       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2163     else
2164       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2165 
2166     Observer.changedInstr(MI);
2167     return Legalized;
2168   case TargetOpcode::G_LOAD:
2169   case TargetOpcode::G_SEXTLOAD:
2170   case TargetOpcode::G_ZEXTLOAD:
2171     Observer.changingInstr(MI);
2172     widenScalarDst(MI, WideTy);
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175 
2176   case TargetOpcode::G_STORE: {
2177     if (TypeIdx != 0)
2178       return UnableToLegalize;
2179 
2180     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2181     if (!Ty.isScalar())
2182       return UnableToLegalize;
2183 
2184     Observer.changingInstr(MI);
2185 
2186     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2187       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2188     widenScalarSrc(MI, WideTy, 0, ExtType);
2189 
2190     Observer.changedInstr(MI);
2191     return Legalized;
2192   }
2193   case TargetOpcode::G_CONSTANT: {
2194     MachineOperand &SrcMO = MI.getOperand(1);
2195     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2196     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2197         MRI.getType(MI.getOperand(0).getReg()));
2198     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2199             ExtOpc == TargetOpcode::G_ANYEXT) &&
2200            "Illegal Extend");
2201     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2202     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2203                            ? SrcVal.sext(WideTy.getSizeInBits())
2204                            : SrcVal.zext(WideTy.getSizeInBits());
2205     Observer.changingInstr(MI);
2206     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2207 
2208     widenScalarDst(MI, WideTy);
2209     Observer.changedInstr(MI);
2210     return Legalized;
2211   }
2212   case TargetOpcode::G_FCONSTANT: {
2213     MachineOperand &SrcMO = MI.getOperand(1);
2214     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2215     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2216     bool LosesInfo;
2217     switch (WideTy.getSizeInBits()) {
2218     case 32:
2219       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2220                   &LosesInfo);
2221       break;
2222     case 64:
2223       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2224                   &LosesInfo);
2225       break;
2226     default:
2227       return UnableToLegalize;
2228     }
2229 
2230     assert(!LosesInfo && "extend should always be lossless");
2231 
2232     Observer.changingInstr(MI);
2233     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2234 
2235     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2236     Observer.changedInstr(MI);
2237     return Legalized;
2238   }
2239   case TargetOpcode::G_IMPLICIT_DEF: {
2240     Observer.changingInstr(MI);
2241     widenScalarDst(MI, WideTy);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   }
2245   case TargetOpcode::G_BRCOND:
2246     Observer.changingInstr(MI);
2247     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2248     Observer.changedInstr(MI);
2249     return Legalized;
2250 
2251   case TargetOpcode::G_FCMP:
2252     Observer.changingInstr(MI);
2253     if (TypeIdx == 0)
2254       widenScalarDst(MI, WideTy);
2255     else {
2256       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2257       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2258     }
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261 
2262   case TargetOpcode::G_ICMP:
2263     Observer.changingInstr(MI);
2264     if (TypeIdx == 0)
2265       widenScalarDst(MI, WideTy);
2266     else {
2267       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2268                                MI.getOperand(1).getPredicate()))
2269                                ? TargetOpcode::G_SEXT
2270                                : TargetOpcode::G_ZEXT;
2271       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2272       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2273     }
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276 
2277   case TargetOpcode::G_PTR_ADD:
2278     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2279     Observer.changingInstr(MI);
2280     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2281     Observer.changedInstr(MI);
2282     return Legalized;
2283 
2284   case TargetOpcode::G_PHI: {
2285     assert(TypeIdx == 0 && "Expecting only Idx 0");
2286 
2287     Observer.changingInstr(MI);
2288     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2289       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2290       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2291       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2292     }
2293 
2294     MachineBasicBlock &MBB = *MI.getParent();
2295     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2296     widenScalarDst(MI, WideTy);
2297     Observer.changedInstr(MI);
2298     return Legalized;
2299   }
2300   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2301     if (TypeIdx == 0) {
2302       Register VecReg = MI.getOperand(1).getReg();
2303       LLT VecTy = MRI.getType(VecReg);
2304       Observer.changingInstr(MI);
2305 
2306       widenScalarSrc(
2307           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2308           TargetOpcode::G_SEXT);
2309 
2310       widenScalarDst(MI, WideTy, 0);
2311       Observer.changedInstr(MI);
2312       return Legalized;
2313     }
2314 
2315     if (TypeIdx != 2)
2316       return UnableToLegalize;
2317     Observer.changingInstr(MI);
2318     // TODO: Probably should be zext
2319     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2320     Observer.changedInstr(MI);
2321     return Legalized;
2322   }
2323   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2324     if (TypeIdx == 1) {
2325       Observer.changingInstr(MI);
2326 
2327       Register VecReg = MI.getOperand(1).getReg();
2328       LLT VecTy = MRI.getType(VecReg);
2329       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2330 
2331       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2332       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2333       widenScalarDst(MI, WideVecTy, 0);
2334       Observer.changedInstr(MI);
2335       return Legalized;
2336     }
2337 
2338     if (TypeIdx == 2) {
2339       Observer.changingInstr(MI);
2340       // TODO: Probably should be zext
2341       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2342       Observer.changedInstr(MI);
2343       return Legalized;
2344     }
2345 
2346     return UnableToLegalize;
2347   }
2348   case TargetOpcode::G_FADD:
2349   case TargetOpcode::G_FMUL:
2350   case TargetOpcode::G_FSUB:
2351   case TargetOpcode::G_FMA:
2352   case TargetOpcode::G_FMAD:
2353   case TargetOpcode::G_FNEG:
2354   case TargetOpcode::G_FABS:
2355   case TargetOpcode::G_FCANONICALIZE:
2356   case TargetOpcode::G_FMINNUM:
2357   case TargetOpcode::G_FMAXNUM:
2358   case TargetOpcode::G_FMINNUM_IEEE:
2359   case TargetOpcode::G_FMAXNUM_IEEE:
2360   case TargetOpcode::G_FMINIMUM:
2361   case TargetOpcode::G_FMAXIMUM:
2362   case TargetOpcode::G_FDIV:
2363   case TargetOpcode::G_FREM:
2364   case TargetOpcode::G_FCEIL:
2365   case TargetOpcode::G_FFLOOR:
2366   case TargetOpcode::G_FCOS:
2367   case TargetOpcode::G_FSIN:
2368   case TargetOpcode::G_FLOG10:
2369   case TargetOpcode::G_FLOG:
2370   case TargetOpcode::G_FLOG2:
2371   case TargetOpcode::G_FRINT:
2372   case TargetOpcode::G_FNEARBYINT:
2373   case TargetOpcode::G_FSQRT:
2374   case TargetOpcode::G_FEXP:
2375   case TargetOpcode::G_FEXP2:
2376   case TargetOpcode::G_FPOW:
2377   case TargetOpcode::G_INTRINSIC_TRUNC:
2378   case TargetOpcode::G_INTRINSIC_ROUND:
2379   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2380     assert(TypeIdx == 0);
2381     Observer.changingInstr(MI);
2382 
2383     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2384       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2385 
2386     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2387     Observer.changedInstr(MI);
2388     return Legalized;
2389   case TargetOpcode::G_FPOWI: {
2390     if (TypeIdx != 0)
2391       return UnableToLegalize;
2392     Observer.changingInstr(MI);
2393     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2394     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   }
2398   case TargetOpcode::G_INTTOPTR:
2399     if (TypeIdx != 1)
2400       return UnableToLegalize;
2401 
2402     Observer.changingInstr(MI);
2403     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2404     Observer.changedInstr(MI);
2405     return Legalized;
2406   case TargetOpcode::G_PTRTOINT:
2407     if (TypeIdx != 0)
2408       return UnableToLegalize;
2409 
2410     Observer.changingInstr(MI);
2411     widenScalarDst(MI, WideTy, 0);
2412     Observer.changedInstr(MI);
2413     return Legalized;
2414   case TargetOpcode::G_BUILD_VECTOR: {
2415     Observer.changingInstr(MI);
2416 
2417     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2418     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2419       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2420 
2421     // Avoid changing the result vector type if the source element type was
2422     // requested.
2423     if (TypeIdx == 1) {
2424       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2425     } else {
2426       widenScalarDst(MI, WideTy, 0);
2427     }
2428 
2429     Observer.changedInstr(MI);
2430     return Legalized;
2431   }
2432   case TargetOpcode::G_SEXT_INREG:
2433     if (TypeIdx != 0)
2434       return UnableToLegalize;
2435 
2436     Observer.changingInstr(MI);
2437     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2438     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2439     Observer.changedInstr(MI);
2440     return Legalized;
2441   case TargetOpcode::G_PTRMASK: {
2442     if (TypeIdx != 1)
2443       return UnableToLegalize;
2444     Observer.changingInstr(MI);
2445     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2446     Observer.changedInstr(MI);
2447     return Legalized;
2448   }
2449   }
2450 }
2451 
2452 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2453                              MachineIRBuilder &B, Register Src, LLT Ty) {
2454   auto Unmerge = B.buildUnmerge(Ty, Src);
2455   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2456     Pieces.push_back(Unmerge.getReg(I));
2457 }
2458 
2459 LegalizerHelper::LegalizeResult
2460 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2461   Register Dst = MI.getOperand(0).getReg();
2462   Register Src = MI.getOperand(1).getReg();
2463   LLT DstTy = MRI.getType(Dst);
2464   LLT SrcTy = MRI.getType(Src);
2465 
2466   if (SrcTy.isVector()) {
2467     LLT SrcEltTy = SrcTy.getElementType();
2468     SmallVector<Register, 8> SrcRegs;
2469 
2470     if (DstTy.isVector()) {
2471       int NumDstElt = DstTy.getNumElements();
2472       int NumSrcElt = SrcTy.getNumElements();
2473 
2474       LLT DstEltTy = DstTy.getElementType();
2475       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2476       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2477 
2478       // If there's an element size mismatch, insert intermediate casts to match
2479       // the result element type.
2480       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2481         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2482         //
2483         // =>
2484         //
2485         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2486         // %3:_(<2 x s8>) = G_BITCAST %2
2487         // %4:_(<2 x s8>) = G_BITCAST %3
2488         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2489         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2490         SrcPartTy = SrcEltTy;
2491       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2492         //
2493         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2494         //
2495         // =>
2496         //
2497         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2498         // %3:_(s16) = G_BITCAST %2
2499         // %4:_(s16) = G_BITCAST %3
2500         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2501         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2502         DstCastTy = DstEltTy;
2503       }
2504 
2505       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2506       for (Register &SrcReg : SrcRegs)
2507         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2508     } else
2509       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2510 
2511     MIRBuilder.buildMerge(Dst, SrcRegs);
2512     MI.eraseFromParent();
2513     return Legalized;
2514   }
2515 
2516   if (DstTy.isVector()) {
2517     SmallVector<Register, 8> SrcRegs;
2518     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2519     MIRBuilder.buildMerge(Dst, SrcRegs);
2520     MI.eraseFromParent();
2521     return Legalized;
2522   }
2523 
2524   return UnableToLegalize;
2525 }
2526 
2527 /// Figure out the bit offset into a register when coercing a vector index for
2528 /// the wide element type. This is only for the case when promoting vector to
2529 /// one with larger elements.
2530 //
2531 ///
2532 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2533 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2534 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2535                                                    Register Idx,
2536                                                    unsigned NewEltSize,
2537                                                    unsigned OldEltSize) {
2538   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2539   LLT IdxTy = B.getMRI()->getType(Idx);
2540 
2541   // Now figure out the amount we need to shift to get the target bits.
2542   auto OffsetMask = B.buildConstant(
2543     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2544   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2545   return B.buildShl(IdxTy, OffsetIdx,
2546                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2547 }
2548 
2549 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2550 /// is casting to a vector with a smaller element size, perform multiple element
2551 /// extracts and merge the results. If this is coercing to a vector with larger
2552 /// elements, index the bitcasted vector and extract the target element with bit
2553 /// operations. This is intended to force the indexing in the native register
2554 /// size for architectures that can dynamically index the register file.
2555 LegalizerHelper::LegalizeResult
2556 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2557                                          LLT CastTy) {
2558   if (TypeIdx != 1)
2559     return UnableToLegalize;
2560 
2561   Register Dst = MI.getOperand(0).getReg();
2562   Register SrcVec = MI.getOperand(1).getReg();
2563   Register Idx = MI.getOperand(2).getReg();
2564   LLT SrcVecTy = MRI.getType(SrcVec);
2565   LLT IdxTy = MRI.getType(Idx);
2566 
2567   LLT SrcEltTy = SrcVecTy.getElementType();
2568   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2569   unsigned OldNumElts = SrcVecTy.getNumElements();
2570 
2571   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2572   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2573 
2574   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2575   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2576   if (NewNumElts > OldNumElts) {
2577     // Decreasing the vector element size
2578     //
2579     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2580     //  =>
2581     //  v4i32:castx = bitcast x:v2i64
2582     //
2583     // i64 = bitcast
2584     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2585     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2586     //
2587     if (NewNumElts % OldNumElts != 0)
2588       return UnableToLegalize;
2589 
2590     // Type of the intermediate result vector.
2591     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2592     LLT MidTy =
2593         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2594 
2595     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2596 
2597     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2598     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2599 
2600     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2601       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2602       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2603       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2604       NewOps[I] = Elt.getReg(0);
2605     }
2606 
2607     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2608     MIRBuilder.buildBitcast(Dst, NewVec);
2609     MI.eraseFromParent();
2610     return Legalized;
2611   }
2612 
2613   if (NewNumElts < OldNumElts) {
2614     if (NewEltSize % OldEltSize != 0)
2615       return UnableToLegalize;
2616 
2617     // This only depends on powers of 2 because we use bit tricks to figure out
2618     // the bit offset we need to shift to get the target element. A general
2619     // expansion could emit division/multiply.
2620     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2621       return UnableToLegalize;
2622 
2623     // Increasing the vector element size.
2624     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2625     //
2626     //   =>
2627     //
2628     // %cast = G_BITCAST %vec
2629     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2630     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2631     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2632     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2633     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2634     // %elt = G_TRUNC %elt_bits
2635 
2636     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2637     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2638 
2639     // Divide to get the index in the wider element type.
2640     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2641 
2642     Register WideElt = CastVec;
2643     if (CastTy.isVector()) {
2644       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2645                                                      ScaledIdx).getReg(0);
2646     }
2647 
2648     // Compute the bit offset into the register of the target element.
2649     Register OffsetBits = getBitcastWiderVectorElementOffset(
2650       MIRBuilder, Idx, NewEltSize, OldEltSize);
2651 
2652     // Shift the wide element to get the target element.
2653     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2654     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2655     MI.eraseFromParent();
2656     return Legalized;
2657   }
2658 
2659   return UnableToLegalize;
2660 }
2661 
2662 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2663 /// TargetReg, while preserving other bits in \p TargetReg.
2664 ///
2665 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2666 static Register buildBitFieldInsert(MachineIRBuilder &B,
2667                                     Register TargetReg, Register InsertReg,
2668                                     Register OffsetBits) {
2669   LLT TargetTy = B.getMRI()->getType(TargetReg);
2670   LLT InsertTy = B.getMRI()->getType(InsertReg);
2671   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2672   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2673 
2674   // Produce a bitmask of the value to insert
2675   auto EltMask = B.buildConstant(
2676     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2677                                    InsertTy.getSizeInBits()));
2678   // Shift it into position
2679   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2680   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2681 
2682   // Clear out the bits in the wide element
2683   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2684 
2685   // The value to insert has all zeros already, so stick it into the masked
2686   // wide element.
2687   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2688 }
2689 
2690 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2691 /// is increasing the element size, perform the indexing in the target element
2692 /// type, and use bit operations to insert at the element position. This is
2693 /// intended for architectures that can dynamically index the register file and
2694 /// want to force indexing in the native register size.
2695 LegalizerHelper::LegalizeResult
2696 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2697                                         LLT CastTy) {
2698   if (TypeIdx != 0)
2699     return UnableToLegalize;
2700 
2701   Register Dst = MI.getOperand(0).getReg();
2702   Register SrcVec = MI.getOperand(1).getReg();
2703   Register Val = MI.getOperand(2).getReg();
2704   Register Idx = MI.getOperand(3).getReg();
2705 
2706   LLT VecTy = MRI.getType(Dst);
2707   LLT IdxTy = MRI.getType(Idx);
2708 
2709   LLT VecEltTy = VecTy.getElementType();
2710   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2711   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2712   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2713 
2714   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2715   unsigned OldNumElts = VecTy.getNumElements();
2716 
2717   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2718   if (NewNumElts < OldNumElts) {
2719     if (NewEltSize % OldEltSize != 0)
2720       return UnableToLegalize;
2721 
2722     // This only depends on powers of 2 because we use bit tricks to figure out
2723     // the bit offset we need to shift to get the target element. A general
2724     // expansion could emit division/multiply.
2725     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2726       return UnableToLegalize;
2727 
2728     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2729     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2730 
2731     // Divide to get the index in the wider element type.
2732     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2733 
2734     Register ExtractedElt = CastVec;
2735     if (CastTy.isVector()) {
2736       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2737                                                           ScaledIdx).getReg(0);
2738     }
2739 
2740     // Compute the bit offset into the register of the target element.
2741     Register OffsetBits = getBitcastWiderVectorElementOffset(
2742       MIRBuilder, Idx, NewEltSize, OldEltSize);
2743 
2744     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2745                                                Val, OffsetBits);
2746     if (CastTy.isVector()) {
2747       InsertedElt = MIRBuilder.buildInsertVectorElement(
2748         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2749     }
2750 
2751     MIRBuilder.buildBitcast(Dst, InsertedElt);
2752     MI.eraseFromParent();
2753     return Legalized;
2754   }
2755 
2756   return UnableToLegalize;
2757 }
2758 
2759 LegalizerHelper::LegalizeResult
2760 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2761   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2762   Register DstReg = MI.getOperand(0).getReg();
2763   Register PtrReg = MI.getOperand(1).getReg();
2764   LLT DstTy = MRI.getType(DstReg);
2765   MachineMemOperand &MMO = **MI.memoperands_begin();
2766   LLT MemTy = MMO.getMemoryType();
2767   MachineFunction &MF = MIRBuilder.getMF();
2768   if (MemTy.isVector())
2769     return UnableToLegalize;
2770 
2771   unsigned MemSizeInBits = MemTy.getSizeInBits();
2772   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2773 
2774   if (MemSizeInBits != MemStoreSizeInBits) {
2775     // Promote to a byte-sized load if not loading an integral number of
2776     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2777     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2778     MachineMemOperand *NewMMO =
2779         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2780 
2781     Register LoadReg = DstReg;
2782     LLT LoadTy = DstTy;
2783 
2784     // If this wasn't already an extending load, we need to widen the result
2785     // register to avoid creating a load with a narrower result than the source.
2786     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2787       LoadTy = WideMemTy;
2788       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2789     }
2790 
2791     if (MI.getOpcode() == TargetOpcode::G_SEXTLOAD) {
2792       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2793       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2794     } else if (MI.getOpcode() == TargetOpcode::G_ZEXTLOAD ||
2795                WideMemTy == DstTy) {
2796       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2797       // The extra bits are guaranteed to be zero, since we stored them that
2798       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2799       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2800     } else {
2801       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2802     }
2803 
2804     if (DstTy != LoadTy)
2805       MIRBuilder.buildTrunc(DstReg, LoadReg);
2806 
2807     MI.eraseFromParent();
2808     return Legalized;
2809   }
2810 
2811   if (DstTy.getSizeInBits() != MMO.getSizeInBits())
2812     return UnableToLegalize;
2813 
2814   if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2815     // This load needs splitting into power of 2 sized loads.
2816     if (DstTy.isVector())
2817       return UnableToLegalize;
2818     if (isPowerOf2_32(DstTy.getSizeInBits()))
2819       return UnableToLegalize; // Don't know what we're being asked to do.
2820 
2821     // Our strategy here is to generate anyextending loads for the smaller
2822     // types up to next power-2 result type, and then combine the two larger
2823     // result values together, before truncating back down to the non-pow-2
2824     // type.
2825     // E.g. v1 = i24 load =>
2826     // v2 = i32 zextload (2 byte)
2827     // v3 = i32 load (1 byte)
2828     // v4 = i32 shl v3, 16
2829     // v5 = i32 or v4, v2
2830     // v1 = i24 trunc v5
2831     // By doing this we generate the correct truncate which should get
2832     // combined away as an artifact with a matching extend.
2833     uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2834     uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2835 
2836     MachineFunction &MF = MIRBuilder.getMF();
2837     MachineMemOperand *LargeMMO =
2838       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2839     MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2840       &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2841 
2842     LLT PtrTy = MRI.getType(PtrReg);
2843     unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2844     LLT AnyExtTy = LLT::scalar(AnyExtSize);
2845     auto LargeLoad = MIRBuilder.buildLoadInstr(
2846       TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2847 
2848     auto OffsetCst = MIRBuilder.buildConstant(
2849       LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2850     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2851     auto SmallPtr =
2852       MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2853     auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2854                                           *SmallMMO);
2855 
2856     auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2857     auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2858     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2859     MIRBuilder.buildTrunc(DstReg, {Or});
2860     MI.eraseFromParent();
2861     return Legalized;
2862   }
2863 
2864   return UnableToLegalize;
2865 }
2866 
2867 LegalizerHelper::LegalizeResult
2868 LegalizerHelper::lowerStore(MachineInstr &MI) {
2869   // Lower a non-power of 2 store into multiple pow-2 stores.
2870   // E.g. split an i24 store into an i16 store + i8 store.
2871   // We do this by first extending the stored value to the next largest power
2872   // of 2 type, and then using truncating stores to store the components.
2873   // By doing this, likewise with G_LOAD, generate an extend that can be
2874   // artifact-combined away instead of leaving behind extracts.
2875   Register SrcReg = MI.getOperand(0).getReg();
2876   Register PtrReg = MI.getOperand(1).getReg();
2877   LLT SrcTy = MRI.getType(SrcReg);
2878   MachineFunction &MF = MIRBuilder.getMF();
2879   MachineMemOperand &MMO = **MI.memoperands_begin();
2880   LLT MemTy = MMO.getMemoryType();
2881 
2882   if (SrcTy.isVector())
2883     return UnableToLegalize;
2884 
2885   unsigned StoreWidth = MemTy.getSizeInBits();
2886   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
2887 
2888   if (StoreWidth != StoreSizeInBits) {
2889     // Promote to a byte-sized store with upper bits zero if not
2890     // storing an integral number of bytes.  For example, promote
2891     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2892     LLT WideTy = LLT::scalar(StoreSizeInBits);
2893 
2894     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
2895       // Avoid creating a store with a narrower source than result.
2896       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
2897       SrcTy = WideTy;
2898     }
2899 
2900     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
2901 
2902     MachineMemOperand *NewMMO =
2903         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
2904     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
2905     MI.eraseFromParent();
2906     return Legalized;
2907   }
2908 
2909   if (isPowerOf2_32(MemTy.getSizeInBits()))
2910     return UnableToLegalize; // Don't know what we're being asked to do.
2911 
2912   // Extend to the next pow-2.
2913   const LLT ExtendTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits()));
2914   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2915 
2916   // Obtain the smaller value by shifting away the larger value.
2917   uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
2918   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2919   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2920   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2921 
2922   // Generate the PtrAdd and truncating stores.
2923   LLT PtrTy = MRI.getType(PtrReg);
2924   auto OffsetCst = MIRBuilder.buildConstant(
2925     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2926   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2927   auto SmallPtr =
2928     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2929 
2930   MachineMemOperand *LargeMMO =
2931     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2932   MachineMemOperand *SmallMMO =
2933     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2934   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2935   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2936   MI.eraseFromParent();
2937   return Legalized;
2938 }
2939 
2940 LegalizerHelper::LegalizeResult
2941 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2942   switch (MI.getOpcode()) {
2943   case TargetOpcode::G_LOAD: {
2944     if (TypeIdx != 0)
2945       return UnableToLegalize;
2946 
2947     Observer.changingInstr(MI);
2948     bitcastDst(MI, CastTy, 0);
2949     Observer.changedInstr(MI);
2950     return Legalized;
2951   }
2952   case TargetOpcode::G_STORE: {
2953     if (TypeIdx != 0)
2954       return UnableToLegalize;
2955 
2956     Observer.changingInstr(MI);
2957     bitcastSrc(MI, CastTy, 0);
2958     Observer.changedInstr(MI);
2959     return Legalized;
2960   }
2961   case TargetOpcode::G_SELECT: {
2962     if (TypeIdx != 0)
2963       return UnableToLegalize;
2964 
2965     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2966       LLVM_DEBUG(
2967           dbgs() << "bitcast action not implemented for vector select\n");
2968       return UnableToLegalize;
2969     }
2970 
2971     Observer.changingInstr(MI);
2972     bitcastSrc(MI, CastTy, 2);
2973     bitcastSrc(MI, CastTy, 3);
2974     bitcastDst(MI, CastTy, 0);
2975     Observer.changedInstr(MI);
2976     return Legalized;
2977   }
2978   case TargetOpcode::G_AND:
2979   case TargetOpcode::G_OR:
2980   case TargetOpcode::G_XOR: {
2981     Observer.changingInstr(MI);
2982     bitcastSrc(MI, CastTy, 1);
2983     bitcastSrc(MI, CastTy, 2);
2984     bitcastDst(MI, CastTy, 0);
2985     Observer.changedInstr(MI);
2986     return Legalized;
2987   }
2988   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2989     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2990   case TargetOpcode::G_INSERT_VECTOR_ELT:
2991     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2992   default:
2993     return UnableToLegalize;
2994   }
2995 }
2996 
2997 // Legalize an instruction by changing the opcode in place.
2998 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2999     Observer.changingInstr(MI);
3000     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3001     Observer.changedInstr(MI);
3002 }
3003 
3004 LegalizerHelper::LegalizeResult
3005 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3006   using namespace TargetOpcode;
3007 
3008   switch(MI.getOpcode()) {
3009   default:
3010     return UnableToLegalize;
3011   case TargetOpcode::G_BITCAST:
3012     return lowerBitcast(MI);
3013   case TargetOpcode::G_SREM:
3014   case TargetOpcode::G_UREM: {
3015     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3016     auto Quot =
3017         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3018                               {MI.getOperand(1), MI.getOperand(2)});
3019 
3020     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3021     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3022     MI.eraseFromParent();
3023     return Legalized;
3024   }
3025   case TargetOpcode::G_SADDO:
3026   case TargetOpcode::G_SSUBO:
3027     return lowerSADDO_SSUBO(MI);
3028   case TargetOpcode::G_UMULH:
3029   case TargetOpcode::G_SMULH:
3030     return lowerSMULH_UMULH(MI);
3031   case TargetOpcode::G_SMULO:
3032   case TargetOpcode::G_UMULO: {
3033     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3034     // result.
3035     Register Res = MI.getOperand(0).getReg();
3036     Register Overflow = MI.getOperand(1).getReg();
3037     Register LHS = MI.getOperand(2).getReg();
3038     Register RHS = MI.getOperand(3).getReg();
3039     LLT Ty = MRI.getType(Res);
3040 
3041     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3042                           ? TargetOpcode::G_SMULH
3043                           : TargetOpcode::G_UMULH;
3044 
3045     Observer.changingInstr(MI);
3046     const auto &TII = MIRBuilder.getTII();
3047     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3048     MI.RemoveOperand(1);
3049     Observer.changedInstr(MI);
3050 
3051     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3052     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3053 
3054     // Move insert point forward so we can use the Res register if needed.
3055     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3056 
3057     // For *signed* multiply, overflow is detected by checking:
3058     // (hi != (lo >> bitwidth-1))
3059     if (Opcode == TargetOpcode::G_SMULH) {
3060       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3061       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3062       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3063     } else {
3064       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3065     }
3066     return Legalized;
3067   }
3068   case TargetOpcode::G_FNEG: {
3069     Register Res = MI.getOperand(0).getReg();
3070     LLT Ty = MRI.getType(Res);
3071 
3072     // TODO: Handle vector types once we are able to
3073     // represent them.
3074     if (Ty.isVector())
3075       return UnableToLegalize;
3076     auto SignMask =
3077         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3078     Register SubByReg = MI.getOperand(1).getReg();
3079     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3080     MI.eraseFromParent();
3081     return Legalized;
3082   }
3083   case TargetOpcode::G_FSUB: {
3084     Register Res = MI.getOperand(0).getReg();
3085     LLT Ty = MRI.getType(Res);
3086 
3087     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3088     // First, check if G_FNEG is marked as Lower. If so, we may
3089     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3090     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3091       return UnableToLegalize;
3092     Register LHS = MI.getOperand(1).getReg();
3093     Register RHS = MI.getOperand(2).getReg();
3094     Register Neg = MRI.createGenericVirtualRegister(Ty);
3095     MIRBuilder.buildFNeg(Neg, RHS);
3096     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3097     MI.eraseFromParent();
3098     return Legalized;
3099   }
3100   case TargetOpcode::G_FMAD:
3101     return lowerFMad(MI);
3102   case TargetOpcode::G_FFLOOR:
3103     return lowerFFloor(MI);
3104   case TargetOpcode::G_INTRINSIC_ROUND:
3105     return lowerIntrinsicRound(MI);
3106   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3107     // Since round even is the assumed rounding mode for unconstrained FP
3108     // operations, rint and roundeven are the same operation.
3109     changeOpcode(MI, TargetOpcode::G_FRINT);
3110     return Legalized;
3111   }
3112   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3113     Register OldValRes = MI.getOperand(0).getReg();
3114     Register SuccessRes = MI.getOperand(1).getReg();
3115     Register Addr = MI.getOperand(2).getReg();
3116     Register CmpVal = MI.getOperand(3).getReg();
3117     Register NewVal = MI.getOperand(4).getReg();
3118     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3119                                   **MI.memoperands_begin());
3120     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3121     MI.eraseFromParent();
3122     return Legalized;
3123   }
3124   case TargetOpcode::G_LOAD:
3125   case TargetOpcode::G_SEXTLOAD:
3126   case TargetOpcode::G_ZEXTLOAD:
3127     return lowerLoad(MI);
3128   case TargetOpcode::G_STORE:
3129     return lowerStore(MI);
3130   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3131   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3132   case TargetOpcode::G_CTLZ:
3133   case TargetOpcode::G_CTTZ:
3134   case TargetOpcode::G_CTPOP:
3135     return lowerBitCount(MI);
3136   case G_UADDO: {
3137     Register Res = MI.getOperand(0).getReg();
3138     Register CarryOut = MI.getOperand(1).getReg();
3139     Register LHS = MI.getOperand(2).getReg();
3140     Register RHS = MI.getOperand(3).getReg();
3141 
3142     MIRBuilder.buildAdd(Res, LHS, RHS);
3143     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3144 
3145     MI.eraseFromParent();
3146     return Legalized;
3147   }
3148   case G_UADDE: {
3149     Register Res = MI.getOperand(0).getReg();
3150     Register CarryOut = MI.getOperand(1).getReg();
3151     Register LHS = MI.getOperand(2).getReg();
3152     Register RHS = MI.getOperand(3).getReg();
3153     Register CarryIn = MI.getOperand(4).getReg();
3154     LLT Ty = MRI.getType(Res);
3155 
3156     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3157     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3158     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3159     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3160 
3161     MI.eraseFromParent();
3162     return Legalized;
3163   }
3164   case G_USUBO: {
3165     Register Res = MI.getOperand(0).getReg();
3166     Register BorrowOut = MI.getOperand(1).getReg();
3167     Register LHS = MI.getOperand(2).getReg();
3168     Register RHS = MI.getOperand(3).getReg();
3169 
3170     MIRBuilder.buildSub(Res, LHS, RHS);
3171     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3172 
3173     MI.eraseFromParent();
3174     return Legalized;
3175   }
3176   case G_USUBE: {
3177     Register Res = MI.getOperand(0).getReg();
3178     Register BorrowOut = MI.getOperand(1).getReg();
3179     Register LHS = MI.getOperand(2).getReg();
3180     Register RHS = MI.getOperand(3).getReg();
3181     Register BorrowIn = MI.getOperand(4).getReg();
3182     const LLT CondTy = MRI.getType(BorrowOut);
3183     const LLT Ty = MRI.getType(Res);
3184 
3185     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3186     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3187     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3188 
3189     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3190     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3191     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3192 
3193     MI.eraseFromParent();
3194     return Legalized;
3195   }
3196   case G_UITOFP:
3197     return lowerUITOFP(MI);
3198   case G_SITOFP:
3199     return lowerSITOFP(MI);
3200   case G_FPTOUI:
3201     return lowerFPTOUI(MI);
3202   case G_FPTOSI:
3203     return lowerFPTOSI(MI);
3204   case G_FPTRUNC:
3205     return lowerFPTRUNC(MI);
3206   case G_FPOWI:
3207     return lowerFPOWI(MI);
3208   case G_SMIN:
3209   case G_SMAX:
3210   case G_UMIN:
3211   case G_UMAX:
3212     return lowerMinMax(MI);
3213   case G_FCOPYSIGN:
3214     return lowerFCopySign(MI);
3215   case G_FMINNUM:
3216   case G_FMAXNUM:
3217     return lowerFMinNumMaxNum(MI);
3218   case G_MERGE_VALUES:
3219     return lowerMergeValues(MI);
3220   case G_UNMERGE_VALUES:
3221     return lowerUnmergeValues(MI);
3222   case TargetOpcode::G_SEXT_INREG: {
3223     assert(MI.getOperand(2).isImm() && "Expected immediate");
3224     int64_t SizeInBits = MI.getOperand(2).getImm();
3225 
3226     Register DstReg = MI.getOperand(0).getReg();
3227     Register SrcReg = MI.getOperand(1).getReg();
3228     LLT DstTy = MRI.getType(DstReg);
3229     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3230 
3231     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3232     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3233     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3234     MI.eraseFromParent();
3235     return Legalized;
3236   }
3237   case G_EXTRACT_VECTOR_ELT:
3238   case G_INSERT_VECTOR_ELT:
3239     return lowerExtractInsertVectorElt(MI);
3240   case G_SHUFFLE_VECTOR:
3241     return lowerShuffleVector(MI);
3242   case G_DYN_STACKALLOC:
3243     return lowerDynStackAlloc(MI);
3244   case G_EXTRACT:
3245     return lowerExtract(MI);
3246   case G_INSERT:
3247     return lowerInsert(MI);
3248   case G_BSWAP:
3249     return lowerBswap(MI);
3250   case G_BITREVERSE:
3251     return lowerBitreverse(MI);
3252   case G_READ_REGISTER:
3253   case G_WRITE_REGISTER:
3254     return lowerReadWriteRegister(MI);
3255   case G_UADDSAT:
3256   case G_USUBSAT: {
3257     // Try to make a reasonable guess about which lowering strategy to use. The
3258     // target can override this with custom lowering and calling the
3259     // implementation functions.
3260     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3261     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3262       return lowerAddSubSatToMinMax(MI);
3263     return lowerAddSubSatToAddoSubo(MI);
3264   }
3265   case G_SADDSAT:
3266   case G_SSUBSAT: {
3267     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3268 
3269     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3270     // since it's a shorter expansion. However, we would need to figure out the
3271     // preferred boolean type for the carry out for the query.
3272     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3273       return lowerAddSubSatToMinMax(MI);
3274     return lowerAddSubSatToAddoSubo(MI);
3275   }
3276   case G_SSHLSAT:
3277   case G_USHLSAT:
3278     return lowerShlSat(MI);
3279   case G_ABS:
3280     return lowerAbsToAddXor(MI);
3281   case G_SELECT:
3282     return lowerSelect(MI);
3283   case G_SDIVREM:
3284   case G_UDIVREM:
3285     return lowerDIVREM(MI);
3286   case G_FSHL:
3287   case G_FSHR:
3288     return lowerFunnelShift(MI);
3289   case G_ROTL:
3290   case G_ROTR:
3291     return lowerRotate(MI);
3292   }
3293 }
3294 
3295 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3296                                                   Align MinAlign) const {
3297   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3298   // datalayout for the preferred alignment. Also there should be a target hook
3299   // for this to allow targets to reduce the alignment and ignore the
3300   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3301   // the type.
3302   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3303 }
3304 
3305 MachineInstrBuilder
3306 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3307                                       MachinePointerInfo &PtrInfo) {
3308   MachineFunction &MF = MIRBuilder.getMF();
3309   const DataLayout &DL = MIRBuilder.getDataLayout();
3310   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3311 
3312   unsigned AddrSpace = DL.getAllocaAddrSpace();
3313   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3314 
3315   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3316   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3317 }
3318 
3319 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3320                                         LLT VecTy) {
3321   int64_t IdxVal;
3322   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3323     return IdxReg;
3324 
3325   LLT IdxTy = B.getMRI()->getType(IdxReg);
3326   unsigned NElts = VecTy.getNumElements();
3327   if (isPowerOf2_32(NElts)) {
3328     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3329     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3330   }
3331 
3332   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3333       .getReg(0);
3334 }
3335 
3336 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3337                                                   Register Index) {
3338   LLT EltTy = VecTy.getElementType();
3339 
3340   // Calculate the element offset and add it to the pointer.
3341   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3342   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3343          "Converting bits to bytes lost precision");
3344 
3345   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3346 
3347   LLT IdxTy = MRI.getType(Index);
3348   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3349                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3350 
3351   LLT PtrTy = MRI.getType(VecPtr);
3352   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3353 }
3354 
3355 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3356     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3357   Register DstReg = MI.getOperand(0).getReg();
3358   LLT DstTy = MRI.getType(DstReg);
3359   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3360 
3361   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3362 
3363   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3364   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3365 
3366   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3367   MI.eraseFromParent();
3368   return Legalized;
3369 }
3370 
3371 // Handle splitting vector operations which need to have the same number of
3372 // elements in each type index, but each type index may have a different element
3373 // type.
3374 //
3375 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3376 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3377 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3378 //
3379 // Also handles some irregular breakdown cases, e.g.
3380 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3381 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3382 //             s64 = G_SHL s64, s32
3383 LegalizerHelper::LegalizeResult
3384 LegalizerHelper::fewerElementsVectorMultiEltType(
3385   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3386   if (TypeIdx != 0)
3387     return UnableToLegalize;
3388 
3389   const LLT NarrowTy0 = NarrowTyArg;
3390   const Register DstReg = MI.getOperand(0).getReg();
3391   LLT DstTy = MRI.getType(DstReg);
3392   LLT LeftoverTy0;
3393 
3394   // All of the operands need to have the same number of elements, so if we can
3395   // determine a type breakdown for the result type, we can for all of the
3396   // source types.
3397   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3398   if (NumParts < 0)
3399     return UnableToLegalize;
3400 
3401   SmallVector<MachineInstrBuilder, 4> NewInsts;
3402 
3403   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3404   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3405 
3406   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3407     Register SrcReg = MI.getOperand(I).getReg();
3408     LLT SrcTyI = MRI.getType(SrcReg);
3409     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3410                                             : ElementCount::getFixed(1);
3411     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3412     LLT LeftoverTyI;
3413 
3414     // Split this operand into the requested typed registers, and any leftover
3415     // required to reproduce the original type.
3416     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3417                       LeftoverRegs))
3418       return UnableToLegalize;
3419 
3420     if (I == 1) {
3421       // For the first operand, create an instruction for each part and setup
3422       // the result.
3423       for (Register PartReg : PartRegs) {
3424         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3425         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3426                                .addDef(PartDstReg)
3427                                .addUse(PartReg));
3428         DstRegs.push_back(PartDstReg);
3429       }
3430 
3431       for (Register LeftoverReg : LeftoverRegs) {
3432         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3433         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3434                                .addDef(PartDstReg)
3435                                .addUse(LeftoverReg));
3436         LeftoverDstRegs.push_back(PartDstReg);
3437       }
3438     } else {
3439       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3440 
3441       // Add the newly created operand splits to the existing instructions. The
3442       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3443       // pieces.
3444       unsigned InstCount = 0;
3445       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3446         NewInsts[InstCount++].addUse(PartRegs[J]);
3447       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3448         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3449     }
3450 
3451     PartRegs.clear();
3452     LeftoverRegs.clear();
3453   }
3454 
3455   // Insert the newly built operations and rebuild the result register.
3456   for (auto &MIB : NewInsts)
3457     MIRBuilder.insertInstr(MIB);
3458 
3459   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3460 
3461   MI.eraseFromParent();
3462   return Legalized;
3463 }
3464 
3465 LegalizerHelper::LegalizeResult
3466 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3467                                           LLT NarrowTy) {
3468   if (TypeIdx != 0)
3469     return UnableToLegalize;
3470 
3471   Register DstReg = MI.getOperand(0).getReg();
3472   Register SrcReg = MI.getOperand(1).getReg();
3473   LLT DstTy = MRI.getType(DstReg);
3474   LLT SrcTy = MRI.getType(SrcReg);
3475 
3476   LLT NarrowTy0 = NarrowTy;
3477   LLT NarrowTy1;
3478   unsigned NumParts;
3479 
3480   if (NarrowTy.isVector()) {
3481     // Uneven breakdown not handled.
3482     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3483     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3484       return UnableToLegalize;
3485 
3486     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3487   } else {
3488     NumParts = DstTy.getNumElements();
3489     NarrowTy1 = SrcTy.getElementType();
3490   }
3491 
3492   SmallVector<Register, 4> SrcRegs, DstRegs;
3493   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3494 
3495   for (unsigned I = 0; I < NumParts; ++I) {
3496     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3497     MachineInstr *NewInst =
3498         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3499 
3500     NewInst->setFlags(MI.getFlags());
3501     DstRegs.push_back(DstReg);
3502   }
3503 
3504   if (NarrowTy.isVector())
3505     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3506   else
3507     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3508 
3509   MI.eraseFromParent();
3510   return Legalized;
3511 }
3512 
3513 LegalizerHelper::LegalizeResult
3514 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3515                                         LLT NarrowTy) {
3516   Register DstReg = MI.getOperand(0).getReg();
3517   Register Src0Reg = MI.getOperand(2).getReg();
3518   LLT DstTy = MRI.getType(DstReg);
3519   LLT SrcTy = MRI.getType(Src0Reg);
3520 
3521   unsigned NumParts;
3522   LLT NarrowTy0, NarrowTy1;
3523 
3524   if (TypeIdx == 0) {
3525     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3526     unsigned OldElts = DstTy.getNumElements();
3527 
3528     NarrowTy0 = NarrowTy;
3529     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3530     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3531                                                   SrcTy.getScalarSizeInBits())
3532                                     : SrcTy.getElementType();
3533 
3534   } else {
3535     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3536     unsigned OldElts = SrcTy.getNumElements();
3537 
3538     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3539       NarrowTy.getNumElements();
3540     NarrowTy0 =
3541         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3542     NarrowTy1 = NarrowTy;
3543   }
3544 
3545   // FIXME: Don't know how to handle the situation where the small vectors
3546   // aren't all the same size yet.
3547   if (NarrowTy1.isVector() &&
3548       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3549     return UnableToLegalize;
3550 
3551   CmpInst::Predicate Pred
3552     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3553 
3554   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3555   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3556   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3557 
3558   for (unsigned I = 0; I < NumParts; ++I) {
3559     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3560     DstRegs.push_back(DstReg);
3561 
3562     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3563       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3564     else {
3565       MachineInstr *NewCmp
3566         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3567       NewCmp->setFlags(MI.getFlags());
3568     }
3569   }
3570 
3571   if (NarrowTy1.isVector())
3572     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3573   else
3574     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3575 
3576   MI.eraseFromParent();
3577   return Legalized;
3578 }
3579 
3580 LegalizerHelper::LegalizeResult
3581 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3582                                            LLT NarrowTy) {
3583   Register DstReg = MI.getOperand(0).getReg();
3584   Register CondReg = MI.getOperand(1).getReg();
3585 
3586   unsigned NumParts = 0;
3587   LLT NarrowTy0, NarrowTy1;
3588 
3589   LLT DstTy = MRI.getType(DstReg);
3590   LLT CondTy = MRI.getType(CondReg);
3591   unsigned Size = DstTy.getSizeInBits();
3592 
3593   assert(TypeIdx == 0 || CondTy.isVector());
3594 
3595   if (TypeIdx == 0) {
3596     NarrowTy0 = NarrowTy;
3597     NarrowTy1 = CondTy;
3598 
3599     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3600     // FIXME: Don't know how to handle the situation where the small vectors
3601     // aren't all the same size yet.
3602     if (Size % NarrowSize != 0)
3603       return UnableToLegalize;
3604 
3605     NumParts = Size / NarrowSize;
3606 
3607     // Need to break down the condition type
3608     if (CondTy.isVector()) {
3609       if (CondTy.getNumElements() == NumParts)
3610         NarrowTy1 = CondTy.getElementType();
3611       else
3612         NarrowTy1 =
3613             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3614                         CondTy.getScalarSizeInBits());
3615     }
3616   } else {
3617     NumParts = CondTy.getNumElements();
3618     if (NarrowTy.isVector()) {
3619       // TODO: Handle uneven breakdown.
3620       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3621         return UnableToLegalize;
3622 
3623       return UnableToLegalize;
3624     } else {
3625       NarrowTy0 = DstTy.getElementType();
3626       NarrowTy1 = NarrowTy;
3627     }
3628   }
3629 
3630   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3631   if (CondTy.isVector())
3632     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3633 
3634   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3635   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3636 
3637   for (unsigned i = 0; i < NumParts; ++i) {
3638     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3639     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3640                            Src1Regs[i], Src2Regs[i]);
3641     DstRegs.push_back(DstReg);
3642   }
3643 
3644   if (NarrowTy0.isVector())
3645     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3646   else
3647     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3648 
3649   MI.eraseFromParent();
3650   return Legalized;
3651 }
3652 
3653 LegalizerHelper::LegalizeResult
3654 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3655                                         LLT NarrowTy) {
3656   const Register DstReg = MI.getOperand(0).getReg();
3657   LLT PhiTy = MRI.getType(DstReg);
3658   LLT LeftoverTy;
3659 
3660   // All of the operands need to have the same number of elements, so if we can
3661   // determine a type breakdown for the result type, we can for all of the
3662   // source types.
3663   int NumParts, NumLeftover;
3664   std::tie(NumParts, NumLeftover)
3665     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3666   if (NumParts < 0)
3667     return UnableToLegalize;
3668 
3669   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3670   SmallVector<MachineInstrBuilder, 4> NewInsts;
3671 
3672   const int TotalNumParts = NumParts + NumLeftover;
3673 
3674   // Insert the new phis in the result block first.
3675   for (int I = 0; I != TotalNumParts; ++I) {
3676     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3677     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3678     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3679                        .addDef(PartDstReg));
3680     if (I < NumParts)
3681       DstRegs.push_back(PartDstReg);
3682     else
3683       LeftoverDstRegs.push_back(PartDstReg);
3684   }
3685 
3686   MachineBasicBlock *MBB = MI.getParent();
3687   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3688   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3689 
3690   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3691 
3692   // Insert code to extract the incoming values in each predecessor block.
3693   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3694     PartRegs.clear();
3695     LeftoverRegs.clear();
3696 
3697     Register SrcReg = MI.getOperand(I).getReg();
3698     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3699     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3700 
3701     LLT Unused;
3702     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3703                       LeftoverRegs))
3704       return UnableToLegalize;
3705 
3706     // Add the newly created operand splits to the existing instructions. The
3707     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3708     // pieces.
3709     for (int J = 0; J != TotalNumParts; ++J) {
3710       MachineInstrBuilder MIB = NewInsts[J];
3711       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3712       MIB.addMBB(&OpMBB);
3713     }
3714   }
3715 
3716   MI.eraseFromParent();
3717   return Legalized;
3718 }
3719 
3720 LegalizerHelper::LegalizeResult
3721 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3722                                                   unsigned TypeIdx,
3723                                                   LLT NarrowTy) {
3724   if (TypeIdx != 1)
3725     return UnableToLegalize;
3726 
3727   const int NumDst = MI.getNumOperands() - 1;
3728   const Register SrcReg = MI.getOperand(NumDst).getReg();
3729   LLT SrcTy = MRI.getType(SrcReg);
3730 
3731   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3732 
3733   // TODO: Create sequence of extracts.
3734   if (DstTy == NarrowTy)
3735     return UnableToLegalize;
3736 
3737   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3738   if (DstTy == GCDTy) {
3739     // This would just be a copy of the same unmerge.
3740     // TODO: Create extracts, pad with undef and create intermediate merges.
3741     return UnableToLegalize;
3742   }
3743 
3744   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3745   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3746   const int PartsPerUnmerge = NumDst / NumUnmerge;
3747 
3748   for (int I = 0; I != NumUnmerge; ++I) {
3749     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3750 
3751     for (int J = 0; J != PartsPerUnmerge; ++J)
3752       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3753     MIB.addUse(Unmerge.getReg(I));
3754   }
3755 
3756   MI.eraseFromParent();
3757   return Legalized;
3758 }
3759 
3760 LegalizerHelper::LegalizeResult
3761 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3762                                          LLT NarrowTy) {
3763   Register Result = MI.getOperand(0).getReg();
3764   Register Overflow = MI.getOperand(1).getReg();
3765   Register LHS = MI.getOperand(2).getReg();
3766   Register RHS = MI.getOperand(3).getReg();
3767 
3768   LLT SrcTy = MRI.getType(LHS);
3769   if (!SrcTy.isVector())
3770     return UnableToLegalize;
3771 
3772   LLT ElementType = SrcTy.getElementType();
3773   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3774   const ElementCount NumResult = SrcTy.getElementCount();
3775   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3776 
3777   // Unmerge the operands to smaller parts of GCD type.
3778   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3779   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3780 
3781   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3782   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3783   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3784   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3785 
3786   // Perform the operation over unmerged parts.
3787   SmallVector<Register, 8> ResultParts;
3788   SmallVector<Register, 8> OverflowParts;
3789   for (int I = 0; I != NumOps; ++I) {
3790     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3791     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3792     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3793                                          {Operand1, Operand2});
3794     ResultParts.push_back(PartMul->getOperand(0).getReg());
3795     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3796   }
3797 
3798   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3799   LLT OverflowLCMTy =
3800       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3801 
3802   // Recombine the pieces to the original result and overflow registers.
3803   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3804   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3805   MI.eraseFromParent();
3806   return Legalized;
3807 }
3808 
3809 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3810 // a vector
3811 //
3812 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3813 // undef as necessary.
3814 //
3815 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3816 //   -> <2 x s16>
3817 //
3818 // %4:_(s16) = G_IMPLICIT_DEF
3819 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3820 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3821 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3822 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3823 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3824 LegalizerHelper::LegalizeResult
3825 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3826                                           LLT NarrowTy) {
3827   Register DstReg = MI.getOperand(0).getReg();
3828   LLT DstTy = MRI.getType(DstReg);
3829   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3830   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3831 
3832   // Break into a common type
3833   SmallVector<Register, 16> Parts;
3834   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3835     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3836 
3837   // Build the requested new merge, padding with undef.
3838   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3839                                   TargetOpcode::G_ANYEXT);
3840 
3841   // Pack into the original result register.
3842   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3843 
3844   MI.eraseFromParent();
3845   return Legalized;
3846 }
3847 
3848 LegalizerHelper::LegalizeResult
3849 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3850                                                            unsigned TypeIdx,
3851                                                            LLT NarrowVecTy) {
3852   Register DstReg = MI.getOperand(0).getReg();
3853   Register SrcVec = MI.getOperand(1).getReg();
3854   Register InsertVal;
3855   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3856 
3857   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3858   if (IsInsert)
3859     InsertVal = MI.getOperand(2).getReg();
3860 
3861   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3862 
3863   // TODO: Handle total scalarization case.
3864   if (!NarrowVecTy.isVector())
3865     return UnableToLegalize;
3866 
3867   LLT VecTy = MRI.getType(SrcVec);
3868 
3869   // If the index is a constant, we can really break this down as you would
3870   // expect, and index into the target size pieces.
3871   int64_t IdxVal;
3872   auto MaybeCst =
3873       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3874                                         /*HandleFConstants*/ false);
3875   if (MaybeCst) {
3876     IdxVal = MaybeCst->Value.getSExtValue();
3877     // Avoid out of bounds indexing the pieces.
3878     if (IdxVal >= VecTy.getNumElements()) {
3879       MIRBuilder.buildUndef(DstReg);
3880       MI.eraseFromParent();
3881       return Legalized;
3882     }
3883 
3884     SmallVector<Register, 8> VecParts;
3885     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3886 
3887     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3888     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3889                                     TargetOpcode::G_ANYEXT);
3890 
3891     unsigned NewNumElts = NarrowVecTy.getNumElements();
3892 
3893     LLT IdxTy = MRI.getType(Idx);
3894     int64_t PartIdx = IdxVal / NewNumElts;
3895     auto NewIdx =
3896         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3897 
3898     if (IsInsert) {
3899       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3900 
3901       // Use the adjusted index to insert into one of the subvectors.
3902       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3903           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3904       VecParts[PartIdx] = InsertPart.getReg(0);
3905 
3906       // Recombine the inserted subvector with the others to reform the result
3907       // vector.
3908       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3909     } else {
3910       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3911     }
3912 
3913     MI.eraseFromParent();
3914     return Legalized;
3915   }
3916 
3917   // With a variable index, we can't perform the operation in a smaller type, so
3918   // we're forced to expand this.
3919   //
3920   // TODO: We could emit a chain of compare/select to figure out which piece to
3921   // index.
3922   return lowerExtractInsertVectorElt(MI);
3923 }
3924 
3925 LegalizerHelper::LegalizeResult
3926 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3927                                       LLT NarrowTy) {
3928   // FIXME: Don't know how to handle secondary types yet.
3929   if (TypeIdx != 0)
3930     return UnableToLegalize;
3931 
3932   MachineMemOperand *MMO = *MI.memoperands_begin();
3933 
3934   // This implementation doesn't work for atomics. Give up instead of doing
3935   // something invalid.
3936   if (MMO->isAtomic())
3937     return UnableToLegalize;
3938 
3939   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3940   Register ValReg = MI.getOperand(0).getReg();
3941   Register AddrReg = MI.getOperand(1).getReg();
3942   LLT ValTy = MRI.getType(ValReg);
3943 
3944   // FIXME: Do we need a distinct NarrowMemory legalize action?
3945   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3946     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3947     return UnableToLegalize;
3948   }
3949 
3950   int NumParts = -1;
3951   int NumLeftover = -1;
3952   LLT LeftoverTy;
3953   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3954   if (IsLoad) {
3955     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3956   } else {
3957     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3958                      NarrowLeftoverRegs)) {
3959       NumParts = NarrowRegs.size();
3960       NumLeftover = NarrowLeftoverRegs.size();
3961     }
3962   }
3963 
3964   if (NumParts == -1)
3965     return UnableToLegalize;
3966 
3967   LLT PtrTy = MRI.getType(AddrReg);
3968   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3969 
3970   unsigned TotalSize = ValTy.getSizeInBits();
3971 
3972   // Split the load/store into PartTy sized pieces starting at Offset. If this
3973   // is a load, return the new registers in ValRegs. For a store, each elements
3974   // of ValRegs should be PartTy. Returns the next offset that needs to be
3975   // handled.
3976   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3977                              unsigned Offset) -> unsigned {
3978     MachineFunction &MF = MIRBuilder.getMF();
3979     unsigned PartSize = PartTy.getSizeInBits();
3980     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3981          Offset += PartSize, ++Idx) {
3982       unsigned ByteOffset = Offset / 8;
3983       Register NewAddrReg;
3984 
3985       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3986 
3987       MachineMemOperand *NewMMO =
3988         MF.getMachineMemOperand(MMO, ByteOffset, PartTy);
3989 
3990       if (IsLoad) {
3991         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3992         ValRegs.push_back(Dst);
3993         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3994       } else {
3995         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3996       }
3997     }
3998 
3999     return Offset;
4000   };
4001 
4002   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4003 
4004   // Handle the rest of the register if this isn't an even type breakdown.
4005   if (LeftoverTy.isValid())
4006     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4007 
4008   if (IsLoad) {
4009     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4010                 LeftoverTy, NarrowLeftoverRegs);
4011   }
4012 
4013   MI.eraseFromParent();
4014   return Legalized;
4015 }
4016 
4017 LegalizerHelper::LegalizeResult
4018 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4019                                       LLT NarrowTy) {
4020   assert(TypeIdx == 0 && "only one type index expected");
4021 
4022   const unsigned Opc = MI.getOpcode();
4023   const int NumDefOps = MI.getNumExplicitDefs();
4024   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4025   const unsigned Flags = MI.getFlags();
4026   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4027   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4028 
4029   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4030                                      "result and 1-3 sources or 2 results and "
4031                                      "1-2 sources");
4032 
4033   SmallVector<Register, 2> DstRegs;
4034   for (int I = 0; I < NumDefOps; ++I)
4035     DstRegs.push_back(MI.getOperand(I).getReg());
4036 
4037   // First of all check whether we are narrowing (changing the element type)
4038   // or reducing the vector elements
4039   const LLT DstTy = MRI.getType(DstRegs[0]);
4040   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4041 
4042   SmallVector<Register, 8> ExtractedRegs[3];
4043   SmallVector<Register, 8> Parts;
4044 
4045   // Break down all the sources into NarrowTy pieces we can operate on. This may
4046   // involve creating merges to a wider type, padded with undef.
4047   for (int I = 0; I != NumSrcOps; ++I) {
4048     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4049     LLT SrcTy = MRI.getType(SrcReg);
4050 
4051     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4052     // For fewerElements, this is a smaller vector with the same element type.
4053     LLT OpNarrowTy;
4054     if (IsNarrow) {
4055       OpNarrowTy = NarrowScalarTy;
4056 
4057       // In case of narrowing, we need to cast vectors to scalars for this to
4058       // work properly
4059       // FIXME: Can we do without the bitcast here if we're narrowing?
4060       if (SrcTy.isVector()) {
4061         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4062         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4063       }
4064     } else {
4065       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4066                                           : ElementCount::getFixed(1);
4067       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4068     }
4069 
4070     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4071 
4072     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4073     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4074                         TargetOpcode::G_ANYEXT);
4075   }
4076 
4077   SmallVector<Register, 8> ResultRegs[2];
4078 
4079   // Input operands for each sub-instruction.
4080   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4081 
4082   int NumParts = ExtractedRegs[0].size();
4083   const unsigned DstSize = DstTy.getSizeInBits();
4084   const LLT DstScalarTy = LLT::scalar(DstSize);
4085 
4086   // Narrowing needs to use scalar types
4087   LLT DstLCMTy, NarrowDstTy;
4088   if (IsNarrow) {
4089     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4090     NarrowDstTy = NarrowScalarTy;
4091   } else {
4092     DstLCMTy = getLCMType(DstTy, NarrowTy);
4093     NarrowDstTy = NarrowTy;
4094   }
4095 
4096   // We widened the source registers to satisfy merge/unmerge size
4097   // constraints. We'll have some extra fully undef parts.
4098   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4099 
4100   for (int I = 0; I != NumRealParts; ++I) {
4101     // Emit this instruction on each of the split pieces.
4102     for (int J = 0; J != NumSrcOps; ++J)
4103       InputRegs[J] = ExtractedRegs[J][I];
4104 
4105     MachineInstrBuilder Inst;
4106     if (NumDefOps == 1)
4107       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4108     else
4109       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4110                                    Flags);
4111 
4112     for (int J = 0; J != NumDefOps; ++J)
4113       ResultRegs[J].push_back(Inst.getReg(J));
4114   }
4115 
4116   // Fill out the widened result with undef instead of creating instructions
4117   // with undef inputs.
4118   int NumUndefParts = NumParts - NumRealParts;
4119   if (NumUndefParts != 0) {
4120     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4121     for (int I = 0; I != NumDefOps; ++I)
4122       ResultRegs[I].append(NumUndefParts, Undef);
4123   }
4124 
4125   // Extract the possibly padded result. Use a scratch register if we need to do
4126   // a final bitcast, otherwise use the original result register.
4127   Register MergeDstReg;
4128   for (int I = 0; I != NumDefOps; ++I) {
4129     if (IsNarrow && DstTy.isVector())
4130       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4131     else
4132       MergeDstReg = DstRegs[I];
4133 
4134     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4135 
4136     // Recast to vector if we narrowed a vector
4137     if (IsNarrow && DstTy.isVector())
4138       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4139   }
4140 
4141   MI.eraseFromParent();
4142   return Legalized;
4143 }
4144 
4145 LegalizerHelper::LegalizeResult
4146 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4147                                               LLT NarrowTy) {
4148   Register DstReg = MI.getOperand(0).getReg();
4149   Register SrcReg = MI.getOperand(1).getReg();
4150   int64_t Imm = MI.getOperand(2).getImm();
4151 
4152   LLT DstTy = MRI.getType(DstReg);
4153 
4154   SmallVector<Register, 8> Parts;
4155   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4156   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4157 
4158   for (Register &R : Parts)
4159     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4160 
4161   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4162 
4163   MI.eraseFromParent();
4164   return Legalized;
4165 }
4166 
4167 LegalizerHelper::LegalizeResult
4168 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4169                                      LLT NarrowTy) {
4170   using namespace TargetOpcode;
4171 
4172   switch (MI.getOpcode()) {
4173   case G_IMPLICIT_DEF:
4174     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4175   case G_TRUNC:
4176   case G_AND:
4177   case G_OR:
4178   case G_XOR:
4179   case G_ADD:
4180   case G_SUB:
4181   case G_MUL:
4182   case G_PTR_ADD:
4183   case G_SMULH:
4184   case G_UMULH:
4185   case G_FADD:
4186   case G_FMUL:
4187   case G_FSUB:
4188   case G_FNEG:
4189   case G_FABS:
4190   case G_FCANONICALIZE:
4191   case G_FDIV:
4192   case G_FREM:
4193   case G_FMA:
4194   case G_FMAD:
4195   case G_FPOW:
4196   case G_FEXP:
4197   case G_FEXP2:
4198   case G_FLOG:
4199   case G_FLOG2:
4200   case G_FLOG10:
4201   case G_FNEARBYINT:
4202   case G_FCEIL:
4203   case G_FFLOOR:
4204   case G_FRINT:
4205   case G_INTRINSIC_ROUND:
4206   case G_INTRINSIC_ROUNDEVEN:
4207   case G_INTRINSIC_TRUNC:
4208   case G_FCOS:
4209   case G_FSIN:
4210   case G_FSQRT:
4211   case G_BSWAP:
4212   case G_BITREVERSE:
4213   case G_SDIV:
4214   case G_UDIV:
4215   case G_SREM:
4216   case G_UREM:
4217   case G_SDIVREM:
4218   case G_UDIVREM:
4219   case G_SMIN:
4220   case G_SMAX:
4221   case G_UMIN:
4222   case G_UMAX:
4223   case G_ABS:
4224   case G_FMINNUM:
4225   case G_FMAXNUM:
4226   case G_FMINNUM_IEEE:
4227   case G_FMAXNUM_IEEE:
4228   case G_FMINIMUM:
4229   case G_FMAXIMUM:
4230   case G_FSHL:
4231   case G_FSHR:
4232   case G_FREEZE:
4233   case G_SADDSAT:
4234   case G_SSUBSAT:
4235   case G_UADDSAT:
4236   case G_USUBSAT:
4237     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4238   case G_UMULO:
4239   case G_SMULO:
4240     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4241   case G_SHL:
4242   case G_LSHR:
4243   case G_ASHR:
4244   case G_SSHLSAT:
4245   case G_USHLSAT:
4246   case G_CTLZ:
4247   case G_CTLZ_ZERO_UNDEF:
4248   case G_CTTZ:
4249   case G_CTTZ_ZERO_UNDEF:
4250   case G_CTPOP:
4251   case G_FCOPYSIGN:
4252     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4253   case G_ZEXT:
4254   case G_SEXT:
4255   case G_ANYEXT:
4256   case G_FPEXT:
4257   case G_FPTRUNC:
4258   case G_SITOFP:
4259   case G_UITOFP:
4260   case G_FPTOSI:
4261   case G_FPTOUI:
4262   case G_INTTOPTR:
4263   case G_PTRTOINT:
4264   case G_ADDRSPACE_CAST:
4265     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4266   case G_ICMP:
4267   case G_FCMP:
4268     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4269   case G_SELECT:
4270     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4271   case G_PHI:
4272     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4273   case G_UNMERGE_VALUES:
4274     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4275   case G_BUILD_VECTOR:
4276     assert(TypeIdx == 0 && "not a vector type index");
4277     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4278   case G_CONCAT_VECTORS:
4279     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4280       return UnableToLegalize;
4281     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4282   case G_EXTRACT_VECTOR_ELT:
4283   case G_INSERT_VECTOR_ELT:
4284     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4285   case G_LOAD:
4286   case G_STORE:
4287     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4288   case G_SEXT_INREG:
4289     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4290   GISEL_VECREDUCE_CASES_NONSEQ
4291     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4292   case G_SHUFFLE_VECTOR:
4293     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4294   default:
4295     return UnableToLegalize;
4296   }
4297 }
4298 
4299 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4300     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4301   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4302   if (TypeIdx != 0)
4303     return UnableToLegalize;
4304 
4305   Register DstReg = MI.getOperand(0).getReg();
4306   Register Src1Reg = MI.getOperand(1).getReg();
4307   Register Src2Reg = MI.getOperand(2).getReg();
4308   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4309   LLT DstTy = MRI.getType(DstReg);
4310   LLT Src1Ty = MRI.getType(Src1Reg);
4311   LLT Src2Ty = MRI.getType(Src2Reg);
4312   // The shuffle should be canonicalized by now.
4313   if (DstTy != Src1Ty)
4314     return UnableToLegalize;
4315   if (DstTy != Src2Ty)
4316     return UnableToLegalize;
4317 
4318   if (!isPowerOf2_32(DstTy.getNumElements()))
4319     return UnableToLegalize;
4320 
4321   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4322   // Further legalization attempts will be needed to do split further.
4323   NarrowTy =
4324       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4325   unsigned NewElts = NarrowTy.getNumElements();
4326 
4327   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4328   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4329   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4330   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4331                         SplitSrc2Regs[1]};
4332 
4333   Register Hi, Lo;
4334 
4335   // If Lo or Hi uses elements from at most two of the four input vectors, then
4336   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4337   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4338   SmallVector<int, 16> Ops;
4339   for (unsigned High = 0; High < 2; ++High) {
4340     Register &Output = High ? Hi : Lo;
4341 
4342     // Build a shuffle mask for the output, discovering on the fly which
4343     // input vectors to use as shuffle operands (recorded in InputUsed).
4344     // If building a suitable shuffle vector proves too hard, then bail
4345     // out with useBuildVector set.
4346     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4347     unsigned FirstMaskIdx = High * NewElts;
4348     bool UseBuildVector = false;
4349     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4350       // The mask element.  This indexes into the input.
4351       int Idx = Mask[FirstMaskIdx + MaskOffset];
4352 
4353       // The input vector this mask element indexes into.
4354       unsigned Input = (unsigned)Idx / NewElts;
4355 
4356       if (Input >= array_lengthof(Inputs)) {
4357         // The mask element does not index into any input vector.
4358         Ops.push_back(-1);
4359         continue;
4360       }
4361 
4362       // Turn the index into an offset from the start of the input vector.
4363       Idx -= Input * NewElts;
4364 
4365       // Find or create a shuffle vector operand to hold this input.
4366       unsigned OpNo;
4367       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4368         if (InputUsed[OpNo] == Input) {
4369           // This input vector is already an operand.
4370           break;
4371         } else if (InputUsed[OpNo] == -1U) {
4372           // Create a new operand for this input vector.
4373           InputUsed[OpNo] = Input;
4374           break;
4375         }
4376       }
4377 
4378       if (OpNo >= array_lengthof(InputUsed)) {
4379         // More than two input vectors used!  Give up on trying to create a
4380         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4381         UseBuildVector = true;
4382         break;
4383       }
4384 
4385       // Add the mask index for the new shuffle vector.
4386       Ops.push_back(Idx + OpNo * NewElts);
4387     }
4388 
4389     if (UseBuildVector) {
4390       LLT EltTy = NarrowTy.getElementType();
4391       SmallVector<Register, 16> SVOps;
4392 
4393       // Extract the input elements by hand.
4394       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4395         // The mask element.  This indexes into the input.
4396         int Idx = Mask[FirstMaskIdx + MaskOffset];
4397 
4398         // The input vector this mask element indexes into.
4399         unsigned Input = (unsigned)Idx / NewElts;
4400 
4401         if (Input >= array_lengthof(Inputs)) {
4402           // The mask element is "undef" or indexes off the end of the input.
4403           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4404           continue;
4405         }
4406 
4407         // Turn the index into an offset from the start of the input vector.
4408         Idx -= Input * NewElts;
4409 
4410         // Extract the vector element by hand.
4411         SVOps.push_back(MIRBuilder
4412                             .buildExtractVectorElement(
4413                                 EltTy, Inputs[Input],
4414                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4415                             .getReg(0));
4416       }
4417 
4418       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4419       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4420     } else if (InputUsed[0] == -1U) {
4421       // No input vectors were used! The result is undefined.
4422       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4423     } else {
4424       Register Op0 = Inputs[InputUsed[0]];
4425       // If only one input was used, use an undefined vector for the other.
4426       Register Op1 = InputUsed[1] == -1U
4427                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4428                          : Inputs[InputUsed[1]];
4429       // At least one input vector was used. Create a new shuffle vector.
4430       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4431     }
4432 
4433     Ops.clear();
4434   }
4435 
4436   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4437   MI.eraseFromParent();
4438   return Legalized;
4439 }
4440 
4441 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4442     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4443   unsigned Opc = MI.getOpcode();
4444   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4445          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4446          "Sequential reductions not expected");
4447 
4448   if (TypeIdx != 1)
4449     return UnableToLegalize;
4450 
4451   // The semantics of the normal non-sequential reductions allow us to freely
4452   // re-associate the operation.
4453   Register SrcReg = MI.getOperand(1).getReg();
4454   LLT SrcTy = MRI.getType(SrcReg);
4455   Register DstReg = MI.getOperand(0).getReg();
4456   LLT DstTy = MRI.getType(DstReg);
4457 
4458   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4459     return UnableToLegalize;
4460 
4461   SmallVector<Register> SplitSrcs;
4462   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4463   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4464   SmallVector<Register> PartialReductions;
4465   for (unsigned Part = 0; Part < NumParts; ++Part) {
4466     PartialReductions.push_back(
4467         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4468   }
4469 
4470   unsigned ScalarOpc;
4471   switch (Opc) {
4472   case TargetOpcode::G_VECREDUCE_FADD:
4473     ScalarOpc = TargetOpcode::G_FADD;
4474     break;
4475   case TargetOpcode::G_VECREDUCE_FMUL:
4476     ScalarOpc = TargetOpcode::G_FMUL;
4477     break;
4478   case TargetOpcode::G_VECREDUCE_FMAX:
4479     ScalarOpc = TargetOpcode::G_FMAXNUM;
4480     break;
4481   case TargetOpcode::G_VECREDUCE_FMIN:
4482     ScalarOpc = TargetOpcode::G_FMINNUM;
4483     break;
4484   case TargetOpcode::G_VECREDUCE_ADD:
4485     ScalarOpc = TargetOpcode::G_ADD;
4486     break;
4487   case TargetOpcode::G_VECREDUCE_MUL:
4488     ScalarOpc = TargetOpcode::G_MUL;
4489     break;
4490   case TargetOpcode::G_VECREDUCE_AND:
4491     ScalarOpc = TargetOpcode::G_AND;
4492     break;
4493   case TargetOpcode::G_VECREDUCE_OR:
4494     ScalarOpc = TargetOpcode::G_OR;
4495     break;
4496   case TargetOpcode::G_VECREDUCE_XOR:
4497     ScalarOpc = TargetOpcode::G_XOR;
4498     break;
4499   case TargetOpcode::G_VECREDUCE_SMAX:
4500     ScalarOpc = TargetOpcode::G_SMAX;
4501     break;
4502   case TargetOpcode::G_VECREDUCE_SMIN:
4503     ScalarOpc = TargetOpcode::G_SMIN;
4504     break;
4505   case TargetOpcode::G_VECREDUCE_UMAX:
4506     ScalarOpc = TargetOpcode::G_UMAX;
4507     break;
4508   case TargetOpcode::G_VECREDUCE_UMIN:
4509     ScalarOpc = TargetOpcode::G_UMIN;
4510     break;
4511   default:
4512     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4513     return UnableToLegalize;
4514   }
4515 
4516   // If the types involved are powers of 2, we can generate intermediate vector
4517   // ops, before generating a final reduction operation.
4518   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4519       isPowerOf2_32(NarrowTy.getNumElements())) {
4520     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4521   }
4522 
4523   Register Acc = PartialReductions[0];
4524   for (unsigned Part = 1; Part < NumParts; ++Part) {
4525     if (Part == NumParts - 1) {
4526       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4527                             {Acc, PartialReductions[Part]});
4528     } else {
4529       Acc = MIRBuilder
4530                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4531                 .getReg(0);
4532     }
4533   }
4534   MI.eraseFromParent();
4535   return Legalized;
4536 }
4537 
4538 LegalizerHelper::LegalizeResult
4539 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4540                                         LLT SrcTy, LLT NarrowTy,
4541                                         unsigned ScalarOpc) {
4542   SmallVector<Register> SplitSrcs;
4543   // Split the sources into NarrowTy size pieces.
4544   extractParts(SrcReg, NarrowTy,
4545                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4546   // We're going to do a tree reduction using vector operations until we have
4547   // one NarrowTy size value left.
4548   while (SplitSrcs.size() > 1) {
4549     SmallVector<Register> PartialRdxs;
4550     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4551       Register LHS = SplitSrcs[Idx];
4552       Register RHS = SplitSrcs[Idx + 1];
4553       // Create the intermediate vector op.
4554       Register Res =
4555           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4556       PartialRdxs.push_back(Res);
4557     }
4558     SplitSrcs = std::move(PartialRdxs);
4559   }
4560   // Finally generate the requested NarrowTy based reduction.
4561   Observer.changingInstr(MI);
4562   MI.getOperand(1).setReg(SplitSrcs[0]);
4563   Observer.changedInstr(MI);
4564   return Legalized;
4565 }
4566 
4567 LegalizerHelper::LegalizeResult
4568 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4569                                              const LLT HalfTy, const LLT AmtTy) {
4570 
4571   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4572   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4573   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4574 
4575   if (Amt.isNullValue()) {
4576     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4577     MI.eraseFromParent();
4578     return Legalized;
4579   }
4580 
4581   LLT NVT = HalfTy;
4582   unsigned NVTBits = HalfTy.getSizeInBits();
4583   unsigned VTBits = 2 * NVTBits;
4584 
4585   SrcOp Lo(Register(0)), Hi(Register(0));
4586   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4587     if (Amt.ugt(VTBits)) {
4588       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4589     } else if (Amt.ugt(NVTBits)) {
4590       Lo = MIRBuilder.buildConstant(NVT, 0);
4591       Hi = MIRBuilder.buildShl(NVT, InL,
4592                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4593     } else if (Amt == NVTBits) {
4594       Lo = MIRBuilder.buildConstant(NVT, 0);
4595       Hi = InL;
4596     } else {
4597       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4598       auto OrLHS =
4599           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4600       auto OrRHS = MIRBuilder.buildLShr(
4601           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4602       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4603     }
4604   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4605     if (Amt.ugt(VTBits)) {
4606       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4607     } else if (Amt.ugt(NVTBits)) {
4608       Lo = MIRBuilder.buildLShr(NVT, InH,
4609                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4610       Hi = MIRBuilder.buildConstant(NVT, 0);
4611     } else if (Amt == NVTBits) {
4612       Lo = InH;
4613       Hi = MIRBuilder.buildConstant(NVT, 0);
4614     } else {
4615       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4616 
4617       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4618       auto OrRHS = MIRBuilder.buildShl(
4619           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4620 
4621       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4622       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4623     }
4624   } else {
4625     if (Amt.ugt(VTBits)) {
4626       Hi = Lo = MIRBuilder.buildAShr(
4627           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4628     } else if (Amt.ugt(NVTBits)) {
4629       Lo = MIRBuilder.buildAShr(NVT, InH,
4630                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4631       Hi = MIRBuilder.buildAShr(NVT, InH,
4632                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4633     } else if (Amt == NVTBits) {
4634       Lo = InH;
4635       Hi = MIRBuilder.buildAShr(NVT, InH,
4636                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4637     } else {
4638       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4639 
4640       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4641       auto OrRHS = MIRBuilder.buildShl(
4642           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4643 
4644       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4645       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4646     }
4647   }
4648 
4649   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4650   MI.eraseFromParent();
4651 
4652   return Legalized;
4653 }
4654 
4655 // TODO: Optimize if constant shift amount.
4656 LegalizerHelper::LegalizeResult
4657 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4658                                    LLT RequestedTy) {
4659   if (TypeIdx == 1) {
4660     Observer.changingInstr(MI);
4661     narrowScalarSrc(MI, RequestedTy, 2);
4662     Observer.changedInstr(MI);
4663     return Legalized;
4664   }
4665 
4666   Register DstReg = MI.getOperand(0).getReg();
4667   LLT DstTy = MRI.getType(DstReg);
4668   if (DstTy.isVector())
4669     return UnableToLegalize;
4670 
4671   Register Amt = MI.getOperand(2).getReg();
4672   LLT ShiftAmtTy = MRI.getType(Amt);
4673   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4674   if (DstEltSize % 2 != 0)
4675     return UnableToLegalize;
4676 
4677   // Ignore the input type. We can only go to exactly half the size of the
4678   // input. If that isn't small enough, the resulting pieces will be further
4679   // legalized.
4680   const unsigned NewBitSize = DstEltSize / 2;
4681   const LLT HalfTy = LLT::scalar(NewBitSize);
4682   const LLT CondTy = LLT::scalar(1);
4683 
4684   if (const MachineInstr *KShiftAmt =
4685           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4686     return narrowScalarShiftByConstant(
4687         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4688   }
4689 
4690   // TODO: Expand with known bits.
4691 
4692   // Handle the fully general expansion by an unknown amount.
4693   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4694 
4695   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4696   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4697   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4698 
4699   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4700   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4701 
4702   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4703   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4704   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4705 
4706   Register ResultRegs[2];
4707   switch (MI.getOpcode()) {
4708   case TargetOpcode::G_SHL: {
4709     // Short: ShAmt < NewBitSize
4710     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4711 
4712     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4713     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4714     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4715 
4716     // Long: ShAmt >= NewBitSize
4717     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4718     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4719 
4720     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4721     auto Hi = MIRBuilder.buildSelect(
4722         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4723 
4724     ResultRegs[0] = Lo.getReg(0);
4725     ResultRegs[1] = Hi.getReg(0);
4726     break;
4727   }
4728   case TargetOpcode::G_LSHR:
4729   case TargetOpcode::G_ASHR: {
4730     // Short: ShAmt < NewBitSize
4731     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4732 
4733     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4734     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4735     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4736 
4737     // Long: ShAmt >= NewBitSize
4738     MachineInstrBuilder HiL;
4739     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4740       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4741     } else {
4742       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4743       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4744     }
4745     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4746                                      {InH, AmtExcess});     // Lo from Hi part.
4747 
4748     auto Lo = MIRBuilder.buildSelect(
4749         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4750 
4751     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4752 
4753     ResultRegs[0] = Lo.getReg(0);
4754     ResultRegs[1] = Hi.getReg(0);
4755     break;
4756   }
4757   default:
4758     llvm_unreachable("not a shift");
4759   }
4760 
4761   MIRBuilder.buildMerge(DstReg, ResultRegs);
4762   MI.eraseFromParent();
4763   return Legalized;
4764 }
4765 
4766 LegalizerHelper::LegalizeResult
4767 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4768                                        LLT MoreTy) {
4769   assert(TypeIdx == 0 && "Expecting only Idx 0");
4770 
4771   Observer.changingInstr(MI);
4772   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4773     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4774     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4775     moreElementsVectorSrc(MI, MoreTy, I);
4776   }
4777 
4778   MachineBasicBlock &MBB = *MI.getParent();
4779   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4780   moreElementsVectorDst(MI, MoreTy, 0);
4781   Observer.changedInstr(MI);
4782   return Legalized;
4783 }
4784 
4785 LegalizerHelper::LegalizeResult
4786 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4787                                     LLT MoreTy) {
4788   unsigned Opc = MI.getOpcode();
4789   switch (Opc) {
4790   case TargetOpcode::G_IMPLICIT_DEF:
4791   case TargetOpcode::G_LOAD: {
4792     if (TypeIdx != 0)
4793       return UnableToLegalize;
4794     Observer.changingInstr(MI);
4795     moreElementsVectorDst(MI, MoreTy, 0);
4796     Observer.changedInstr(MI);
4797     return Legalized;
4798   }
4799   case TargetOpcode::G_STORE:
4800     if (TypeIdx != 0)
4801       return UnableToLegalize;
4802     Observer.changingInstr(MI);
4803     moreElementsVectorSrc(MI, MoreTy, 0);
4804     Observer.changedInstr(MI);
4805     return Legalized;
4806   case TargetOpcode::G_AND:
4807   case TargetOpcode::G_OR:
4808   case TargetOpcode::G_XOR:
4809   case TargetOpcode::G_SMIN:
4810   case TargetOpcode::G_SMAX:
4811   case TargetOpcode::G_UMIN:
4812   case TargetOpcode::G_UMAX:
4813   case TargetOpcode::G_FMINNUM:
4814   case TargetOpcode::G_FMAXNUM:
4815   case TargetOpcode::G_FMINNUM_IEEE:
4816   case TargetOpcode::G_FMAXNUM_IEEE:
4817   case TargetOpcode::G_FMINIMUM:
4818   case TargetOpcode::G_FMAXIMUM: {
4819     Observer.changingInstr(MI);
4820     moreElementsVectorSrc(MI, MoreTy, 1);
4821     moreElementsVectorSrc(MI, MoreTy, 2);
4822     moreElementsVectorDst(MI, MoreTy, 0);
4823     Observer.changedInstr(MI);
4824     return Legalized;
4825   }
4826   case TargetOpcode::G_EXTRACT:
4827     if (TypeIdx != 1)
4828       return UnableToLegalize;
4829     Observer.changingInstr(MI);
4830     moreElementsVectorSrc(MI, MoreTy, 1);
4831     Observer.changedInstr(MI);
4832     return Legalized;
4833   case TargetOpcode::G_INSERT:
4834   case TargetOpcode::G_FREEZE:
4835     if (TypeIdx != 0)
4836       return UnableToLegalize;
4837     Observer.changingInstr(MI);
4838     moreElementsVectorSrc(MI, MoreTy, 1);
4839     moreElementsVectorDst(MI, MoreTy, 0);
4840     Observer.changedInstr(MI);
4841     return Legalized;
4842   case TargetOpcode::G_SELECT:
4843     if (TypeIdx != 0)
4844       return UnableToLegalize;
4845     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4846       return UnableToLegalize;
4847 
4848     Observer.changingInstr(MI);
4849     moreElementsVectorSrc(MI, MoreTy, 2);
4850     moreElementsVectorSrc(MI, MoreTy, 3);
4851     moreElementsVectorDst(MI, MoreTy, 0);
4852     Observer.changedInstr(MI);
4853     return Legalized;
4854   case TargetOpcode::G_UNMERGE_VALUES: {
4855     if (TypeIdx != 1)
4856       return UnableToLegalize;
4857 
4858     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4859     int NumDst = MI.getNumOperands() - 1;
4860     moreElementsVectorSrc(MI, MoreTy, NumDst);
4861 
4862     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4863     for (int I = 0; I != NumDst; ++I)
4864       MIB.addDef(MI.getOperand(I).getReg());
4865 
4866     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4867     for (int I = NumDst; I != NewNumDst; ++I)
4868       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4869 
4870     MIB.addUse(MI.getOperand(NumDst).getReg());
4871     MI.eraseFromParent();
4872     return Legalized;
4873   }
4874   case TargetOpcode::G_PHI:
4875     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4876   default:
4877     return UnableToLegalize;
4878   }
4879 }
4880 
4881 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4882                                         ArrayRef<Register> Src1Regs,
4883                                         ArrayRef<Register> Src2Regs,
4884                                         LLT NarrowTy) {
4885   MachineIRBuilder &B = MIRBuilder;
4886   unsigned SrcParts = Src1Regs.size();
4887   unsigned DstParts = DstRegs.size();
4888 
4889   unsigned DstIdx = 0; // Low bits of the result.
4890   Register FactorSum =
4891       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4892   DstRegs[DstIdx] = FactorSum;
4893 
4894   unsigned CarrySumPrevDstIdx;
4895   SmallVector<Register, 4> Factors;
4896 
4897   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4898     // Collect low parts of muls for DstIdx.
4899     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4900          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4901       MachineInstrBuilder Mul =
4902           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4903       Factors.push_back(Mul.getReg(0));
4904     }
4905     // Collect high parts of muls from previous DstIdx.
4906     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4907          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4908       MachineInstrBuilder Umulh =
4909           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4910       Factors.push_back(Umulh.getReg(0));
4911     }
4912     // Add CarrySum from additions calculated for previous DstIdx.
4913     if (DstIdx != 1) {
4914       Factors.push_back(CarrySumPrevDstIdx);
4915     }
4916 
4917     Register CarrySum;
4918     // Add all factors and accumulate all carries into CarrySum.
4919     if (DstIdx != DstParts - 1) {
4920       MachineInstrBuilder Uaddo =
4921           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4922       FactorSum = Uaddo.getReg(0);
4923       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4924       for (unsigned i = 2; i < Factors.size(); ++i) {
4925         MachineInstrBuilder Uaddo =
4926             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4927         FactorSum = Uaddo.getReg(0);
4928         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4929         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4930       }
4931     } else {
4932       // Since value for the next index is not calculated, neither is CarrySum.
4933       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4934       for (unsigned i = 2; i < Factors.size(); ++i)
4935         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4936     }
4937 
4938     CarrySumPrevDstIdx = CarrySum;
4939     DstRegs[DstIdx] = FactorSum;
4940     Factors.clear();
4941   }
4942 }
4943 
4944 LegalizerHelper::LegalizeResult
4945 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4946                                     LLT NarrowTy) {
4947   if (TypeIdx != 0)
4948     return UnableToLegalize;
4949 
4950   Register DstReg = MI.getOperand(0).getReg();
4951   LLT DstType = MRI.getType(DstReg);
4952   // FIXME: add support for vector types
4953   if (DstType.isVector())
4954     return UnableToLegalize;
4955 
4956   unsigned Opcode = MI.getOpcode();
4957   unsigned OpO, OpE, OpF;
4958   switch (Opcode) {
4959   case TargetOpcode::G_SADDO:
4960   case TargetOpcode::G_SADDE:
4961   case TargetOpcode::G_UADDO:
4962   case TargetOpcode::G_UADDE:
4963   case TargetOpcode::G_ADD:
4964     OpO = TargetOpcode::G_UADDO;
4965     OpE = TargetOpcode::G_UADDE;
4966     OpF = TargetOpcode::G_UADDE;
4967     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4968       OpF = TargetOpcode::G_SADDE;
4969     break;
4970   case TargetOpcode::G_SSUBO:
4971   case TargetOpcode::G_SSUBE:
4972   case TargetOpcode::G_USUBO:
4973   case TargetOpcode::G_USUBE:
4974   case TargetOpcode::G_SUB:
4975     OpO = TargetOpcode::G_USUBO;
4976     OpE = TargetOpcode::G_USUBE;
4977     OpF = TargetOpcode::G_USUBE;
4978     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4979       OpF = TargetOpcode::G_SSUBE;
4980     break;
4981   default:
4982     llvm_unreachable("Unexpected add/sub opcode!");
4983   }
4984 
4985   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4986   unsigned NumDefs = MI.getNumExplicitDefs();
4987   Register Src1 = MI.getOperand(NumDefs).getReg();
4988   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4989   Register CarryDst, CarryIn;
4990   if (NumDefs == 2)
4991     CarryDst = MI.getOperand(1).getReg();
4992   if (MI.getNumOperands() == NumDefs + 3)
4993     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4994 
4995   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
4996   LLT LeftoverTy, DummyTy;
4997   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
4998   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
4999   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5000 
5001   int NarrowParts = Src1Regs.size();
5002   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5003     Src1Regs.push_back(Src1Left[I]);
5004     Src2Regs.push_back(Src2Left[I]);
5005   }
5006   DstRegs.reserve(Src1Regs.size());
5007 
5008   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5009     Register DstReg =
5010         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5011     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5012     // Forward the final carry-out to the destination register
5013     if (i == e - 1 && CarryDst)
5014       CarryOut = CarryDst;
5015 
5016     if (!CarryIn) {
5017       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5018                             {Src1Regs[i], Src2Regs[i]});
5019     } else if (i == e - 1) {
5020       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5021                             {Src1Regs[i], Src2Regs[i], CarryIn});
5022     } else {
5023       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5024                             {Src1Regs[i], Src2Regs[i], CarryIn});
5025     }
5026 
5027     DstRegs.push_back(DstReg);
5028     CarryIn = CarryOut;
5029   }
5030   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5031               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5032               makeArrayRef(DstRegs).drop_front(NarrowParts));
5033 
5034   MI.eraseFromParent();
5035   return Legalized;
5036 }
5037 
5038 LegalizerHelper::LegalizeResult
5039 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5040   Register DstReg = MI.getOperand(0).getReg();
5041   Register Src1 = MI.getOperand(1).getReg();
5042   Register Src2 = MI.getOperand(2).getReg();
5043 
5044   LLT Ty = MRI.getType(DstReg);
5045   if (Ty.isVector())
5046     return UnableToLegalize;
5047 
5048   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5049   unsigned DstSize = Ty.getSizeInBits();
5050   unsigned NarrowSize = NarrowTy.getSizeInBits();
5051   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5052     return UnableToLegalize;
5053 
5054   unsigned NumDstParts = DstSize / NarrowSize;
5055   unsigned NumSrcParts = SrcSize / NarrowSize;
5056   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5057   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5058 
5059   SmallVector<Register, 2> Src1Parts, Src2Parts;
5060   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5061   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5062   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5063   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5064 
5065   // Take only high half of registers if this is high mul.
5066   ArrayRef<Register> DstRegs(
5067       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5068   MIRBuilder.buildMerge(DstReg, DstRegs);
5069   MI.eraseFromParent();
5070   return Legalized;
5071 }
5072 
5073 LegalizerHelper::LegalizeResult
5074 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5075                                    LLT NarrowTy) {
5076   if (TypeIdx != 0)
5077     return UnableToLegalize;
5078 
5079   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5080 
5081   Register Src = MI.getOperand(1).getReg();
5082   LLT SrcTy = MRI.getType(Src);
5083 
5084   // If all finite floats fit into the narrowed integer type, we can just swap
5085   // out the result type. This is practically only useful for conversions from
5086   // half to at least 16-bits, so just handle the one case.
5087   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5088       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5089     return UnableToLegalize;
5090 
5091   Observer.changingInstr(MI);
5092   narrowScalarDst(MI, NarrowTy, 0,
5093                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5094   Observer.changedInstr(MI);
5095   return Legalized;
5096 }
5097 
5098 LegalizerHelper::LegalizeResult
5099 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5100                                      LLT NarrowTy) {
5101   if (TypeIdx != 1)
5102     return UnableToLegalize;
5103 
5104   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5105 
5106   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5107   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5108   // NarrowSize.
5109   if (SizeOp1 % NarrowSize != 0)
5110     return UnableToLegalize;
5111   int NumParts = SizeOp1 / NarrowSize;
5112 
5113   SmallVector<Register, 2> SrcRegs, DstRegs;
5114   SmallVector<uint64_t, 2> Indexes;
5115   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5116 
5117   Register OpReg = MI.getOperand(0).getReg();
5118   uint64_t OpStart = MI.getOperand(2).getImm();
5119   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5120   for (int i = 0; i < NumParts; ++i) {
5121     unsigned SrcStart = i * NarrowSize;
5122 
5123     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5124       // No part of the extract uses this subregister, ignore it.
5125       continue;
5126     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5127       // The entire subregister is extracted, forward the value.
5128       DstRegs.push_back(SrcRegs[i]);
5129       continue;
5130     }
5131 
5132     // OpSegStart is where this destination segment would start in OpReg if it
5133     // extended infinitely in both directions.
5134     int64_t ExtractOffset;
5135     uint64_t SegSize;
5136     if (OpStart < SrcStart) {
5137       ExtractOffset = 0;
5138       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5139     } else {
5140       ExtractOffset = OpStart - SrcStart;
5141       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5142     }
5143 
5144     Register SegReg = SrcRegs[i];
5145     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5146       // A genuine extract is needed.
5147       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5148       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5149     }
5150 
5151     DstRegs.push_back(SegReg);
5152   }
5153 
5154   Register DstReg = MI.getOperand(0).getReg();
5155   if (MRI.getType(DstReg).isVector())
5156     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5157   else if (DstRegs.size() > 1)
5158     MIRBuilder.buildMerge(DstReg, DstRegs);
5159   else
5160     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5161   MI.eraseFromParent();
5162   return Legalized;
5163 }
5164 
5165 LegalizerHelper::LegalizeResult
5166 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5167                                     LLT NarrowTy) {
5168   // FIXME: Don't know how to handle secondary types yet.
5169   if (TypeIdx != 0)
5170     return UnableToLegalize;
5171 
5172   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5173   SmallVector<uint64_t, 2> Indexes;
5174   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5175   LLT LeftoverTy;
5176   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5177                LeftoverRegs);
5178 
5179   for (Register Reg : LeftoverRegs)
5180     SrcRegs.push_back(Reg);
5181 
5182   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5183   Register OpReg = MI.getOperand(2).getReg();
5184   uint64_t OpStart = MI.getOperand(3).getImm();
5185   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5186   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5187     unsigned DstStart = I * NarrowSize;
5188 
5189     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5190       // The entire subregister is defined by this insert, forward the new
5191       // value.
5192       DstRegs.push_back(OpReg);
5193       continue;
5194     }
5195 
5196     Register SrcReg = SrcRegs[I];
5197     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5198       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5199       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5200       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5201     }
5202 
5203     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5204       // No part of the insert affects this subregister, forward the original.
5205       DstRegs.push_back(SrcReg);
5206       continue;
5207     }
5208 
5209     // OpSegStart is where this destination segment would start in OpReg if it
5210     // extended infinitely in both directions.
5211     int64_t ExtractOffset, InsertOffset;
5212     uint64_t SegSize;
5213     if (OpStart < DstStart) {
5214       InsertOffset = 0;
5215       ExtractOffset = DstStart - OpStart;
5216       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5217     } else {
5218       InsertOffset = OpStart - DstStart;
5219       ExtractOffset = 0;
5220       SegSize =
5221         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5222     }
5223 
5224     Register SegReg = OpReg;
5225     if (ExtractOffset != 0 || SegSize != OpSize) {
5226       // A genuine extract is needed.
5227       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5228       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5229     }
5230 
5231     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5232     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5233     DstRegs.push_back(DstReg);
5234   }
5235 
5236   uint64_t WideSize = DstRegs.size() * NarrowSize;
5237   Register DstReg = MI.getOperand(0).getReg();
5238   if (WideSize > RegTy.getSizeInBits()) {
5239     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5240     MIRBuilder.buildMerge(MergeReg, DstRegs);
5241     MIRBuilder.buildTrunc(DstReg, MergeReg);
5242   } else
5243     MIRBuilder.buildMerge(DstReg, DstRegs);
5244 
5245   MI.eraseFromParent();
5246   return Legalized;
5247 }
5248 
5249 LegalizerHelper::LegalizeResult
5250 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5251                                    LLT NarrowTy) {
5252   Register DstReg = MI.getOperand(0).getReg();
5253   LLT DstTy = MRI.getType(DstReg);
5254 
5255   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5256 
5257   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5258   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5259   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5260   LLT LeftoverTy;
5261   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5262                     Src0Regs, Src0LeftoverRegs))
5263     return UnableToLegalize;
5264 
5265   LLT Unused;
5266   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5267                     Src1Regs, Src1LeftoverRegs))
5268     llvm_unreachable("inconsistent extractParts result");
5269 
5270   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5271     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5272                                         {Src0Regs[I], Src1Regs[I]});
5273     DstRegs.push_back(Inst.getReg(0));
5274   }
5275 
5276   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5277     auto Inst = MIRBuilder.buildInstr(
5278       MI.getOpcode(),
5279       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5280     DstLeftoverRegs.push_back(Inst.getReg(0));
5281   }
5282 
5283   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5284               LeftoverTy, DstLeftoverRegs);
5285 
5286   MI.eraseFromParent();
5287   return Legalized;
5288 }
5289 
5290 LegalizerHelper::LegalizeResult
5291 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5292                                  LLT NarrowTy) {
5293   if (TypeIdx != 0)
5294     return UnableToLegalize;
5295 
5296   Register DstReg = MI.getOperand(0).getReg();
5297   Register SrcReg = MI.getOperand(1).getReg();
5298 
5299   LLT DstTy = MRI.getType(DstReg);
5300   if (DstTy.isVector())
5301     return UnableToLegalize;
5302 
5303   SmallVector<Register, 8> Parts;
5304   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5305   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5306   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5307 
5308   MI.eraseFromParent();
5309   return Legalized;
5310 }
5311 
5312 LegalizerHelper::LegalizeResult
5313 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5314                                     LLT NarrowTy) {
5315   if (TypeIdx != 0)
5316     return UnableToLegalize;
5317 
5318   Register CondReg = MI.getOperand(1).getReg();
5319   LLT CondTy = MRI.getType(CondReg);
5320   if (CondTy.isVector()) // TODO: Handle vselect
5321     return UnableToLegalize;
5322 
5323   Register DstReg = MI.getOperand(0).getReg();
5324   LLT DstTy = MRI.getType(DstReg);
5325 
5326   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5327   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5328   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5329   LLT LeftoverTy;
5330   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5331                     Src1Regs, Src1LeftoverRegs))
5332     return UnableToLegalize;
5333 
5334   LLT Unused;
5335   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5336                     Src2Regs, Src2LeftoverRegs))
5337     llvm_unreachable("inconsistent extractParts result");
5338 
5339   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5340     auto Select = MIRBuilder.buildSelect(NarrowTy,
5341                                          CondReg, Src1Regs[I], Src2Regs[I]);
5342     DstRegs.push_back(Select.getReg(0));
5343   }
5344 
5345   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5346     auto Select = MIRBuilder.buildSelect(
5347       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5348     DstLeftoverRegs.push_back(Select.getReg(0));
5349   }
5350 
5351   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5352               LeftoverTy, DstLeftoverRegs);
5353 
5354   MI.eraseFromParent();
5355   return Legalized;
5356 }
5357 
5358 LegalizerHelper::LegalizeResult
5359 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5360                                   LLT NarrowTy) {
5361   if (TypeIdx != 1)
5362     return UnableToLegalize;
5363 
5364   Register DstReg = MI.getOperand(0).getReg();
5365   Register SrcReg = MI.getOperand(1).getReg();
5366   LLT DstTy = MRI.getType(DstReg);
5367   LLT SrcTy = MRI.getType(SrcReg);
5368   unsigned NarrowSize = NarrowTy.getSizeInBits();
5369 
5370   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5371     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5372 
5373     MachineIRBuilder &B = MIRBuilder;
5374     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5375     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5376     auto C_0 = B.buildConstant(NarrowTy, 0);
5377     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5378                                 UnmergeSrc.getReg(1), C_0);
5379     auto LoCTLZ = IsUndef ?
5380       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5381       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5382     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5383     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5384     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5385     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5386 
5387     MI.eraseFromParent();
5388     return Legalized;
5389   }
5390 
5391   return UnableToLegalize;
5392 }
5393 
5394 LegalizerHelper::LegalizeResult
5395 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5396                                   LLT NarrowTy) {
5397   if (TypeIdx != 1)
5398     return UnableToLegalize;
5399 
5400   Register DstReg = MI.getOperand(0).getReg();
5401   Register SrcReg = MI.getOperand(1).getReg();
5402   LLT DstTy = MRI.getType(DstReg);
5403   LLT SrcTy = MRI.getType(SrcReg);
5404   unsigned NarrowSize = NarrowTy.getSizeInBits();
5405 
5406   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5407     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5408 
5409     MachineIRBuilder &B = MIRBuilder;
5410     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5411     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5412     auto C_0 = B.buildConstant(NarrowTy, 0);
5413     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5414                                 UnmergeSrc.getReg(0), C_0);
5415     auto HiCTTZ = IsUndef ?
5416       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5417       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5418     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5419     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5420     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5421     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5422 
5423     MI.eraseFromParent();
5424     return Legalized;
5425   }
5426 
5427   return UnableToLegalize;
5428 }
5429 
5430 LegalizerHelper::LegalizeResult
5431 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5432                                    LLT NarrowTy) {
5433   if (TypeIdx != 1)
5434     return UnableToLegalize;
5435 
5436   Register DstReg = MI.getOperand(0).getReg();
5437   LLT DstTy = MRI.getType(DstReg);
5438   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5439   unsigned NarrowSize = NarrowTy.getSizeInBits();
5440 
5441   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5442     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5443 
5444     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5445     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5446     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5447 
5448     MI.eraseFromParent();
5449     return Legalized;
5450   }
5451 
5452   return UnableToLegalize;
5453 }
5454 
5455 LegalizerHelper::LegalizeResult
5456 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5457   unsigned Opc = MI.getOpcode();
5458   const auto &TII = MIRBuilder.getTII();
5459   auto isSupported = [this](const LegalityQuery &Q) {
5460     auto QAction = LI.getAction(Q).Action;
5461     return QAction == Legal || QAction == Libcall || QAction == Custom;
5462   };
5463   switch (Opc) {
5464   default:
5465     return UnableToLegalize;
5466   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5467     // This trivially expands to CTLZ.
5468     Observer.changingInstr(MI);
5469     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5470     Observer.changedInstr(MI);
5471     return Legalized;
5472   }
5473   case TargetOpcode::G_CTLZ: {
5474     Register DstReg = MI.getOperand(0).getReg();
5475     Register SrcReg = MI.getOperand(1).getReg();
5476     LLT DstTy = MRI.getType(DstReg);
5477     LLT SrcTy = MRI.getType(SrcReg);
5478     unsigned Len = SrcTy.getSizeInBits();
5479 
5480     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5481       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5482       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5483       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5484       auto ICmp = MIRBuilder.buildICmp(
5485           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5486       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5487       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5488       MI.eraseFromParent();
5489       return Legalized;
5490     }
5491     // for now, we do this:
5492     // NewLen = NextPowerOf2(Len);
5493     // x = x | (x >> 1);
5494     // x = x | (x >> 2);
5495     // ...
5496     // x = x | (x >>16);
5497     // x = x | (x >>32); // for 64-bit input
5498     // Upto NewLen/2
5499     // return Len - popcount(x);
5500     //
5501     // Ref: "Hacker's Delight" by Henry Warren
5502     Register Op = SrcReg;
5503     unsigned NewLen = PowerOf2Ceil(Len);
5504     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5505       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5506       auto MIBOp = MIRBuilder.buildOr(
5507           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5508       Op = MIBOp.getReg(0);
5509     }
5510     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5511     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5512                         MIBPop);
5513     MI.eraseFromParent();
5514     return Legalized;
5515   }
5516   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5517     // This trivially expands to CTTZ.
5518     Observer.changingInstr(MI);
5519     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5520     Observer.changedInstr(MI);
5521     return Legalized;
5522   }
5523   case TargetOpcode::G_CTTZ: {
5524     Register DstReg = MI.getOperand(0).getReg();
5525     Register SrcReg = MI.getOperand(1).getReg();
5526     LLT DstTy = MRI.getType(DstReg);
5527     LLT SrcTy = MRI.getType(SrcReg);
5528 
5529     unsigned Len = SrcTy.getSizeInBits();
5530     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5531       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5532       // zero.
5533       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5534       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5535       auto ICmp = MIRBuilder.buildICmp(
5536           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5537       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5538       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5539       MI.eraseFromParent();
5540       return Legalized;
5541     }
5542     // for now, we use: { return popcount(~x & (x - 1)); }
5543     // unless the target has ctlz but not ctpop, in which case we use:
5544     // { return 32 - nlz(~x & (x-1)); }
5545     // Ref: "Hacker's Delight" by Henry Warren
5546     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5547     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5548     auto MIBTmp = MIRBuilder.buildAnd(
5549         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5550     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5551         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5552       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5553       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5554                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5555       MI.eraseFromParent();
5556       return Legalized;
5557     }
5558     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5559     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5560     return Legalized;
5561   }
5562   case TargetOpcode::G_CTPOP: {
5563     Register SrcReg = MI.getOperand(1).getReg();
5564     LLT Ty = MRI.getType(SrcReg);
5565     unsigned Size = Ty.getSizeInBits();
5566     MachineIRBuilder &B = MIRBuilder;
5567 
5568     // Count set bits in blocks of 2 bits. Default approach would be
5569     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5570     // We use following formula instead:
5571     // B2Count = val - { (val >> 1) & 0x55555555 }
5572     // since it gives same result in blocks of 2 with one instruction less.
5573     auto C_1 = B.buildConstant(Ty, 1);
5574     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5575     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5576     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5577     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5578     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5579 
5580     // In order to get count in blocks of 4 add values from adjacent block of 2.
5581     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5582     auto C_2 = B.buildConstant(Ty, 2);
5583     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5584     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5585     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5586     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5587     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5588     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5589 
5590     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5591     // addition since count value sits in range {0,...,8} and 4 bits are enough
5592     // to hold such binary values. After addition high 4 bits still hold count
5593     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5594     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5595     auto C_4 = B.buildConstant(Ty, 4);
5596     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5597     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5598     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5599     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5600     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5601 
5602     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5603     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5604     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5605     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5606     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5607 
5608     // Shift count result from 8 high bits to low bits.
5609     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5610     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5611 
5612     MI.eraseFromParent();
5613     return Legalized;
5614   }
5615   }
5616 }
5617 
5618 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5619 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5620                                         Register Reg, unsigned BW) {
5621   return matchUnaryPredicate(
5622       MRI, Reg,
5623       [=](const Constant *C) {
5624         // Null constant here means an undef.
5625         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5626         return !CI || CI->getValue().urem(BW) != 0;
5627       },
5628       /*AllowUndefs*/ true);
5629 }
5630 
5631 LegalizerHelper::LegalizeResult
5632 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5633   Register Dst = MI.getOperand(0).getReg();
5634   Register X = MI.getOperand(1).getReg();
5635   Register Y = MI.getOperand(2).getReg();
5636   Register Z = MI.getOperand(3).getReg();
5637   LLT Ty = MRI.getType(Dst);
5638   LLT ShTy = MRI.getType(Z);
5639 
5640   unsigned BW = Ty.getScalarSizeInBits();
5641 
5642   if (!isPowerOf2_32(BW))
5643     return UnableToLegalize;
5644 
5645   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5646   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5647 
5648   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5649     // fshl X, Y, Z -> fshr X, Y, -Z
5650     // fshr X, Y, Z -> fshl X, Y, -Z
5651     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5652     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5653   } else {
5654     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5655     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5656     auto One = MIRBuilder.buildConstant(ShTy, 1);
5657     if (IsFSHL) {
5658       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5659       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5660     } else {
5661       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5662       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5663     }
5664 
5665     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5666   }
5667 
5668   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5669   MI.eraseFromParent();
5670   return Legalized;
5671 }
5672 
5673 LegalizerHelper::LegalizeResult
5674 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5675   Register Dst = MI.getOperand(0).getReg();
5676   Register X = MI.getOperand(1).getReg();
5677   Register Y = MI.getOperand(2).getReg();
5678   Register Z = MI.getOperand(3).getReg();
5679   LLT Ty = MRI.getType(Dst);
5680   LLT ShTy = MRI.getType(Z);
5681 
5682   const unsigned BW = Ty.getScalarSizeInBits();
5683   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5684 
5685   Register ShX, ShY;
5686   Register ShAmt, InvShAmt;
5687 
5688   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5689   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5690     // fshl: X << C | Y >> (BW - C)
5691     // fshr: X << (BW - C) | Y >> C
5692     // where C = Z % BW is not zero
5693     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5694     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5695     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5696     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5697     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5698   } else {
5699     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5700     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5701     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5702     if (isPowerOf2_32(BW)) {
5703       // Z % BW -> Z & (BW - 1)
5704       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5705       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5706       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5707       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5708     } else {
5709       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5710       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5711       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5712     }
5713 
5714     auto One = MIRBuilder.buildConstant(ShTy, 1);
5715     if (IsFSHL) {
5716       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5717       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5718       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5719     } else {
5720       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5721       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5722       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5723     }
5724   }
5725 
5726   MIRBuilder.buildOr(Dst, ShX, ShY);
5727   MI.eraseFromParent();
5728   return Legalized;
5729 }
5730 
5731 LegalizerHelper::LegalizeResult
5732 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5733   // These operations approximately do the following (while avoiding undefined
5734   // shifts by BW):
5735   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5736   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5737   Register Dst = MI.getOperand(0).getReg();
5738   LLT Ty = MRI.getType(Dst);
5739   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5740 
5741   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5742   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5743 
5744   // TODO: Use smarter heuristic that accounts for vector legalization.
5745   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5746     return lowerFunnelShiftAsShifts(MI);
5747 
5748   // This only works for powers of 2, fallback to shifts if it fails.
5749   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5750   if (Result == UnableToLegalize)
5751     return lowerFunnelShiftAsShifts(MI);
5752   return Result;
5753 }
5754 
5755 LegalizerHelper::LegalizeResult
5756 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5757   Register Dst = MI.getOperand(0).getReg();
5758   Register Src = MI.getOperand(1).getReg();
5759   Register Amt = MI.getOperand(2).getReg();
5760   LLT AmtTy = MRI.getType(Amt);
5761   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5762   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5763   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5764   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5765   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5766   MI.eraseFromParent();
5767   return Legalized;
5768 }
5769 
5770 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5771   Register Dst = MI.getOperand(0).getReg();
5772   Register Src = MI.getOperand(1).getReg();
5773   Register Amt = MI.getOperand(2).getReg();
5774   LLT DstTy = MRI.getType(Dst);
5775   LLT SrcTy = MRI.getType(Dst);
5776   LLT AmtTy = MRI.getType(Amt);
5777 
5778   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5779   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5780 
5781   MIRBuilder.setInstrAndDebugLoc(MI);
5782 
5783   // If a rotate in the other direction is supported, use it.
5784   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5785   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5786       isPowerOf2_32(EltSizeInBits))
5787     return lowerRotateWithReverseRotate(MI);
5788 
5789   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5790   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5791   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5792   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5793   Register ShVal;
5794   Register RevShiftVal;
5795   if (isPowerOf2_32(EltSizeInBits)) {
5796     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5797     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5798     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5799     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5800     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5801     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5802     RevShiftVal =
5803         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5804   } else {
5805     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5806     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5807     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5808     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5809     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5810     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5811     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5812     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5813     RevShiftVal =
5814         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5815   }
5816   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5817   MI.eraseFromParent();
5818   return Legalized;
5819 }
5820 
5821 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5822 // representation.
5823 LegalizerHelper::LegalizeResult
5824 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5825   Register Dst = MI.getOperand(0).getReg();
5826   Register Src = MI.getOperand(1).getReg();
5827   const LLT S64 = LLT::scalar(64);
5828   const LLT S32 = LLT::scalar(32);
5829   const LLT S1 = LLT::scalar(1);
5830 
5831   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5832 
5833   // unsigned cul2f(ulong u) {
5834   //   uint lz = clz(u);
5835   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5836   //   u = (u << lz) & 0x7fffffffffffffffUL;
5837   //   ulong t = u & 0xffffffffffUL;
5838   //   uint v = (e << 23) | (uint)(u >> 40);
5839   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5840   //   return as_float(v + r);
5841   // }
5842 
5843   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5844   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5845 
5846   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5847 
5848   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5849   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5850 
5851   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5852   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5853 
5854   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5855   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5856 
5857   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5858 
5859   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5860   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5861 
5862   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5863   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5864   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5865 
5866   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5867   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5868   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5869   auto One = MIRBuilder.buildConstant(S32, 1);
5870 
5871   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5872   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5873   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5874   MIRBuilder.buildAdd(Dst, V, R);
5875 
5876   MI.eraseFromParent();
5877   return Legalized;
5878 }
5879 
5880 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5881   Register Dst = MI.getOperand(0).getReg();
5882   Register Src = MI.getOperand(1).getReg();
5883   LLT DstTy = MRI.getType(Dst);
5884   LLT SrcTy = MRI.getType(Src);
5885 
5886   if (SrcTy == LLT::scalar(1)) {
5887     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5888     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5889     MIRBuilder.buildSelect(Dst, Src, True, False);
5890     MI.eraseFromParent();
5891     return Legalized;
5892   }
5893 
5894   if (SrcTy != LLT::scalar(64))
5895     return UnableToLegalize;
5896 
5897   if (DstTy == LLT::scalar(32)) {
5898     // TODO: SelectionDAG has several alternative expansions to port which may
5899     // be more reasonble depending on the available instructions. If a target
5900     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5901     // intermediate type, this is probably worse.
5902     return lowerU64ToF32BitOps(MI);
5903   }
5904 
5905   return UnableToLegalize;
5906 }
5907 
5908 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5909   Register Dst = MI.getOperand(0).getReg();
5910   Register Src = MI.getOperand(1).getReg();
5911   LLT DstTy = MRI.getType(Dst);
5912   LLT SrcTy = MRI.getType(Src);
5913 
5914   const LLT S64 = LLT::scalar(64);
5915   const LLT S32 = LLT::scalar(32);
5916   const LLT S1 = LLT::scalar(1);
5917 
5918   if (SrcTy == S1) {
5919     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5920     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5921     MIRBuilder.buildSelect(Dst, Src, True, False);
5922     MI.eraseFromParent();
5923     return Legalized;
5924   }
5925 
5926   if (SrcTy != S64)
5927     return UnableToLegalize;
5928 
5929   if (DstTy == S32) {
5930     // signed cl2f(long l) {
5931     //   long s = l >> 63;
5932     //   float r = cul2f((l + s) ^ s);
5933     //   return s ? -r : r;
5934     // }
5935     Register L = Src;
5936     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5937     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5938 
5939     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5940     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5941     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5942 
5943     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5944     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5945                                             MIRBuilder.buildConstant(S64, 0));
5946     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5947     MI.eraseFromParent();
5948     return Legalized;
5949   }
5950 
5951   return UnableToLegalize;
5952 }
5953 
5954 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5955   Register Dst = MI.getOperand(0).getReg();
5956   Register Src = MI.getOperand(1).getReg();
5957   LLT DstTy = MRI.getType(Dst);
5958   LLT SrcTy = MRI.getType(Src);
5959   const LLT S64 = LLT::scalar(64);
5960   const LLT S32 = LLT::scalar(32);
5961 
5962   if (SrcTy != S64 && SrcTy != S32)
5963     return UnableToLegalize;
5964   if (DstTy != S32 && DstTy != S64)
5965     return UnableToLegalize;
5966 
5967   // FPTOSI gives same result as FPTOUI for positive signed integers.
5968   // FPTOUI needs to deal with fp values that convert to unsigned integers
5969   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5970 
5971   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5972   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5973                                                 : APFloat::IEEEdouble(),
5974                     APInt::getNullValue(SrcTy.getSizeInBits()));
5975   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5976 
5977   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5978 
5979   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5980   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5981   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5982   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5983   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5984   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5985   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5986 
5987   const LLT S1 = LLT::scalar(1);
5988 
5989   MachineInstrBuilder FCMP =
5990       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5991   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5992 
5993   MI.eraseFromParent();
5994   return Legalized;
5995 }
5996 
5997 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5998   Register Dst = MI.getOperand(0).getReg();
5999   Register Src = MI.getOperand(1).getReg();
6000   LLT DstTy = MRI.getType(Dst);
6001   LLT SrcTy = MRI.getType(Src);
6002   const LLT S64 = LLT::scalar(64);
6003   const LLT S32 = LLT::scalar(32);
6004 
6005   // FIXME: Only f32 to i64 conversions are supported.
6006   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6007     return UnableToLegalize;
6008 
6009   // Expand f32 -> i64 conversion
6010   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6011   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6012 
6013   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6014 
6015   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6016   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6017 
6018   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6019   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6020 
6021   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6022                                            APInt::getSignMask(SrcEltBits));
6023   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6024   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6025   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6026   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6027 
6028   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6029   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6030   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6031 
6032   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6033   R = MIRBuilder.buildZExt(DstTy, R);
6034 
6035   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6036   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6037   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6038   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6039 
6040   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6041   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6042 
6043   const LLT S1 = LLT::scalar(1);
6044   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6045                                     S1, Exponent, ExponentLoBit);
6046 
6047   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6048 
6049   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6050   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6051 
6052   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6053 
6054   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6055                                           S1, Exponent, ZeroSrcTy);
6056 
6057   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6058   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6059 
6060   MI.eraseFromParent();
6061   return Legalized;
6062 }
6063 
6064 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6065 LegalizerHelper::LegalizeResult
6066 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6067   Register Dst = MI.getOperand(0).getReg();
6068   Register Src = MI.getOperand(1).getReg();
6069 
6070   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6071     return UnableToLegalize;
6072 
6073   const unsigned ExpMask = 0x7ff;
6074   const unsigned ExpBiasf64 = 1023;
6075   const unsigned ExpBiasf16 = 15;
6076   const LLT S32 = LLT::scalar(32);
6077   const LLT S1 = LLT::scalar(1);
6078 
6079   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6080   Register U = Unmerge.getReg(0);
6081   Register UH = Unmerge.getReg(1);
6082 
6083   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6084   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6085 
6086   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6087   // add the f16 bias (15) to get the biased exponent for the f16 format.
6088   E = MIRBuilder.buildAdd(
6089     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6090 
6091   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6092   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6093 
6094   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6095                                        MIRBuilder.buildConstant(S32, 0x1ff));
6096   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6097 
6098   auto Zero = MIRBuilder.buildConstant(S32, 0);
6099   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6100   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6101   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6102 
6103   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6104   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6105   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6106   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6107 
6108   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6109   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6110 
6111   // N = M | (E << 12);
6112   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6113   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6114 
6115   // B = clamp(1-E, 0, 13);
6116   auto One = MIRBuilder.buildConstant(S32, 1);
6117   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6118   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6119   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6120 
6121   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6122                                        MIRBuilder.buildConstant(S32, 0x1000));
6123 
6124   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6125   auto D0 = MIRBuilder.buildShl(S32, D, B);
6126 
6127   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6128                                              D0, SigSetHigh);
6129   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6130   D = MIRBuilder.buildOr(S32, D, D1);
6131 
6132   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6133   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6134 
6135   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6136   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6137 
6138   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6139                                        MIRBuilder.buildConstant(S32, 3));
6140   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6141 
6142   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6143                                        MIRBuilder.buildConstant(S32, 5));
6144   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6145 
6146   V1 = MIRBuilder.buildOr(S32, V0, V1);
6147   V = MIRBuilder.buildAdd(S32, V, V1);
6148 
6149   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6150                                        E, MIRBuilder.buildConstant(S32, 30));
6151   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6152                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6153 
6154   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6155                                          E, MIRBuilder.buildConstant(S32, 1039));
6156   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6157 
6158   // Extract the sign bit.
6159   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6160   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6161 
6162   // Insert the sign bit
6163   V = MIRBuilder.buildOr(S32, Sign, V);
6164 
6165   MIRBuilder.buildTrunc(Dst, V);
6166   MI.eraseFromParent();
6167   return Legalized;
6168 }
6169 
6170 LegalizerHelper::LegalizeResult
6171 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6172   Register Dst = MI.getOperand(0).getReg();
6173   Register Src = MI.getOperand(1).getReg();
6174 
6175   LLT DstTy = MRI.getType(Dst);
6176   LLT SrcTy = MRI.getType(Src);
6177   const LLT S64 = LLT::scalar(64);
6178   const LLT S16 = LLT::scalar(16);
6179 
6180   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6181     return lowerFPTRUNC_F64_TO_F16(MI);
6182 
6183   return UnableToLegalize;
6184 }
6185 
6186 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6187 // multiplication tree.
6188 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6189   Register Dst = MI.getOperand(0).getReg();
6190   Register Src0 = MI.getOperand(1).getReg();
6191   Register Src1 = MI.getOperand(2).getReg();
6192   LLT Ty = MRI.getType(Dst);
6193 
6194   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6195   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6196   MI.eraseFromParent();
6197   return Legalized;
6198 }
6199 
6200 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6201   switch (Opc) {
6202   case TargetOpcode::G_SMIN:
6203     return CmpInst::ICMP_SLT;
6204   case TargetOpcode::G_SMAX:
6205     return CmpInst::ICMP_SGT;
6206   case TargetOpcode::G_UMIN:
6207     return CmpInst::ICMP_ULT;
6208   case TargetOpcode::G_UMAX:
6209     return CmpInst::ICMP_UGT;
6210   default:
6211     llvm_unreachable("not in integer min/max");
6212   }
6213 }
6214 
6215 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6216   Register Dst = MI.getOperand(0).getReg();
6217   Register Src0 = MI.getOperand(1).getReg();
6218   Register Src1 = MI.getOperand(2).getReg();
6219 
6220   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6221   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6222 
6223   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6224   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6225 
6226   MI.eraseFromParent();
6227   return Legalized;
6228 }
6229 
6230 LegalizerHelper::LegalizeResult
6231 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6232   Register Dst = MI.getOperand(0).getReg();
6233   Register Src0 = MI.getOperand(1).getReg();
6234   Register Src1 = MI.getOperand(2).getReg();
6235 
6236   const LLT Src0Ty = MRI.getType(Src0);
6237   const LLT Src1Ty = MRI.getType(Src1);
6238 
6239   const int Src0Size = Src0Ty.getScalarSizeInBits();
6240   const int Src1Size = Src1Ty.getScalarSizeInBits();
6241 
6242   auto SignBitMask = MIRBuilder.buildConstant(
6243     Src0Ty, APInt::getSignMask(Src0Size));
6244 
6245   auto NotSignBitMask = MIRBuilder.buildConstant(
6246     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6247 
6248   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6249   Register And1;
6250   if (Src0Ty == Src1Ty) {
6251     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6252   } else if (Src0Size > Src1Size) {
6253     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6254     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6255     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6256     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6257   } else {
6258     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6259     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6260     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6261     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6262   }
6263 
6264   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6265   // constants are a nan and -0.0, but the final result should preserve
6266   // everything.
6267   unsigned Flags = MI.getFlags();
6268   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6269 
6270   MI.eraseFromParent();
6271   return Legalized;
6272 }
6273 
6274 LegalizerHelper::LegalizeResult
6275 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6276   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6277     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6278 
6279   Register Dst = MI.getOperand(0).getReg();
6280   Register Src0 = MI.getOperand(1).getReg();
6281   Register Src1 = MI.getOperand(2).getReg();
6282   LLT Ty = MRI.getType(Dst);
6283 
6284   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6285     // Insert canonicalizes if it's possible we need to quiet to get correct
6286     // sNaN behavior.
6287 
6288     // Note this must be done here, and not as an optimization combine in the
6289     // absence of a dedicate quiet-snan instruction as we're using an
6290     // omni-purpose G_FCANONICALIZE.
6291     if (!isKnownNeverSNaN(Src0, MRI))
6292       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6293 
6294     if (!isKnownNeverSNaN(Src1, MRI))
6295       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6296   }
6297 
6298   // If there are no nans, it's safe to simply replace this with the non-IEEE
6299   // version.
6300   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6301   MI.eraseFromParent();
6302   return Legalized;
6303 }
6304 
6305 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6306   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6307   Register DstReg = MI.getOperand(0).getReg();
6308   LLT Ty = MRI.getType(DstReg);
6309   unsigned Flags = MI.getFlags();
6310 
6311   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6312                                   Flags);
6313   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6314   MI.eraseFromParent();
6315   return Legalized;
6316 }
6317 
6318 LegalizerHelper::LegalizeResult
6319 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6320   Register DstReg = MI.getOperand(0).getReg();
6321   Register X = MI.getOperand(1).getReg();
6322   const unsigned Flags = MI.getFlags();
6323   const LLT Ty = MRI.getType(DstReg);
6324   const LLT CondTy = Ty.changeElementSize(1);
6325 
6326   // round(x) =>
6327   //  t = trunc(x);
6328   //  d = fabs(x - t);
6329   //  o = copysign(1.0f, x);
6330   //  return t + (d >= 0.5 ? o : 0.0);
6331 
6332   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6333 
6334   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6335   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6336   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6337   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6338   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6339   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6340 
6341   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6342                                   Flags);
6343   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6344 
6345   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6346 
6347   MI.eraseFromParent();
6348   return Legalized;
6349 }
6350 
6351 LegalizerHelper::LegalizeResult
6352 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6353   Register DstReg = MI.getOperand(0).getReg();
6354   Register SrcReg = MI.getOperand(1).getReg();
6355   unsigned Flags = MI.getFlags();
6356   LLT Ty = MRI.getType(DstReg);
6357   const LLT CondTy = Ty.changeElementSize(1);
6358 
6359   // result = trunc(src);
6360   // if (src < 0.0 && src != result)
6361   //   result += -1.0.
6362 
6363   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6364   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6365 
6366   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6367                                   SrcReg, Zero, Flags);
6368   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6369                                       SrcReg, Trunc, Flags);
6370   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6371   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6372 
6373   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6374   MI.eraseFromParent();
6375   return Legalized;
6376 }
6377 
6378 LegalizerHelper::LegalizeResult
6379 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6380   const unsigned NumOps = MI.getNumOperands();
6381   Register DstReg = MI.getOperand(0).getReg();
6382   Register Src0Reg = MI.getOperand(1).getReg();
6383   LLT DstTy = MRI.getType(DstReg);
6384   LLT SrcTy = MRI.getType(Src0Reg);
6385   unsigned PartSize = SrcTy.getSizeInBits();
6386 
6387   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6388   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6389 
6390   for (unsigned I = 2; I != NumOps; ++I) {
6391     const unsigned Offset = (I - 1) * PartSize;
6392 
6393     Register SrcReg = MI.getOperand(I).getReg();
6394     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6395 
6396     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6397       MRI.createGenericVirtualRegister(WideTy);
6398 
6399     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6400     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6401     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6402     ResultReg = NextResult;
6403   }
6404 
6405   if (DstTy.isPointer()) {
6406     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6407           DstTy.getAddressSpace())) {
6408       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6409       return UnableToLegalize;
6410     }
6411 
6412     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6413   }
6414 
6415   MI.eraseFromParent();
6416   return Legalized;
6417 }
6418 
6419 LegalizerHelper::LegalizeResult
6420 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6421   const unsigned NumDst = MI.getNumOperands() - 1;
6422   Register SrcReg = MI.getOperand(NumDst).getReg();
6423   Register Dst0Reg = MI.getOperand(0).getReg();
6424   LLT DstTy = MRI.getType(Dst0Reg);
6425   if (DstTy.isPointer())
6426     return UnableToLegalize; // TODO
6427 
6428   SrcReg = coerceToScalar(SrcReg);
6429   if (!SrcReg)
6430     return UnableToLegalize;
6431 
6432   // Expand scalarizing unmerge as bitcast to integer and shift.
6433   LLT IntTy = MRI.getType(SrcReg);
6434 
6435   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6436 
6437   const unsigned DstSize = DstTy.getSizeInBits();
6438   unsigned Offset = DstSize;
6439   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6440     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6441     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6442     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6443   }
6444 
6445   MI.eraseFromParent();
6446   return Legalized;
6447 }
6448 
6449 /// Lower a vector extract or insert by writing the vector to a stack temporary
6450 /// and reloading the element or vector.
6451 ///
6452 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6453 ///  =>
6454 ///  %stack_temp = G_FRAME_INDEX
6455 ///  G_STORE %vec, %stack_temp
6456 ///  %idx = clamp(%idx, %vec.getNumElements())
6457 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6458 ///  %dst = G_LOAD %element_ptr
6459 LegalizerHelper::LegalizeResult
6460 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6461   Register DstReg = MI.getOperand(0).getReg();
6462   Register SrcVec = MI.getOperand(1).getReg();
6463   Register InsertVal;
6464   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6465     InsertVal = MI.getOperand(2).getReg();
6466 
6467   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6468 
6469   LLT VecTy = MRI.getType(SrcVec);
6470   LLT EltTy = VecTy.getElementType();
6471   if (!EltTy.isByteSized()) { // Not implemented.
6472     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6473     return UnableToLegalize;
6474   }
6475 
6476   unsigned EltBytes = EltTy.getSizeInBytes();
6477   Align VecAlign = getStackTemporaryAlignment(VecTy);
6478   Align EltAlign;
6479 
6480   MachinePointerInfo PtrInfo;
6481   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6482                                         VecAlign, PtrInfo);
6483   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6484 
6485   // Get the pointer to the element, and be sure not to hit undefined behavior
6486   // if the index is out of bounds.
6487   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6488 
6489   int64_t IdxVal;
6490   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6491     int64_t Offset = IdxVal * EltBytes;
6492     PtrInfo = PtrInfo.getWithOffset(Offset);
6493     EltAlign = commonAlignment(VecAlign, Offset);
6494   } else {
6495     // We lose information with a variable offset.
6496     EltAlign = getStackTemporaryAlignment(EltTy);
6497     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6498   }
6499 
6500   if (InsertVal) {
6501     // Write the inserted element
6502     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6503 
6504     // Reload the whole vector.
6505     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6506   } else {
6507     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6508   }
6509 
6510   MI.eraseFromParent();
6511   return Legalized;
6512 }
6513 
6514 LegalizerHelper::LegalizeResult
6515 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6516   Register DstReg = MI.getOperand(0).getReg();
6517   Register Src0Reg = MI.getOperand(1).getReg();
6518   Register Src1Reg = MI.getOperand(2).getReg();
6519   LLT Src0Ty = MRI.getType(Src0Reg);
6520   LLT DstTy = MRI.getType(DstReg);
6521   LLT IdxTy = LLT::scalar(32);
6522 
6523   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6524 
6525   if (DstTy.isScalar()) {
6526     if (Src0Ty.isVector())
6527       return UnableToLegalize;
6528 
6529     // This is just a SELECT.
6530     assert(Mask.size() == 1 && "Expected a single mask element");
6531     Register Val;
6532     if (Mask[0] < 0 || Mask[0] > 1)
6533       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6534     else
6535       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6536     MIRBuilder.buildCopy(DstReg, Val);
6537     MI.eraseFromParent();
6538     return Legalized;
6539   }
6540 
6541   Register Undef;
6542   SmallVector<Register, 32> BuildVec;
6543   LLT EltTy = DstTy.getElementType();
6544 
6545   for (int Idx : Mask) {
6546     if (Idx < 0) {
6547       if (!Undef.isValid())
6548         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6549       BuildVec.push_back(Undef);
6550       continue;
6551     }
6552 
6553     if (Src0Ty.isScalar()) {
6554       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6555     } else {
6556       int NumElts = Src0Ty.getNumElements();
6557       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6558       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6559       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6560       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6561       BuildVec.push_back(Extract.getReg(0));
6562     }
6563   }
6564 
6565   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6566   MI.eraseFromParent();
6567   return Legalized;
6568 }
6569 
6570 LegalizerHelper::LegalizeResult
6571 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6572   const auto &MF = *MI.getMF();
6573   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6574   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6575     return UnableToLegalize;
6576 
6577   Register Dst = MI.getOperand(0).getReg();
6578   Register AllocSize = MI.getOperand(1).getReg();
6579   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6580 
6581   LLT PtrTy = MRI.getType(Dst);
6582   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6583 
6584   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6585   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6586   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6587 
6588   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6589   // have to generate an extra instruction to negate the alloc and then use
6590   // G_PTR_ADD to add the negative offset.
6591   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6592   if (Alignment > Align(1)) {
6593     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6594     AlignMask.negate();
6595     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6596     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6597   }
6598 
6599   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6600   MIRBuilder.buildCopy(SPReg, SPTmp);
6601   MIRBuilder.buildCopy(Dst, SPTmp);
6602 
6603   MI.eraseFromParent();
6604   return Legalized;
6605 }
6606 
6607 LegalizerHelper::LegalizeResult
6608 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6609   Register Dst = MI.getOperand(0).getReg();
6610   Register Src = MI.getOperand(1).getReg();
6611   unsigned Offset = MI.getOperand(2).getImm();
6612 
6613   LLT DstTy = MRI.getType(Dst);
6614   LLT SrcTy = MRI.getType(Src);
6615 
6616   if (DstTy.isScalar() &&
6617       (SrcTy.isScalar() ||
6618        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6619     LLT SrcIntTy = SrcTy;
6620     if (!SrcTy.isScalar()) {
6621       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6622       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6623     }
6624 
6625     if (Offset == 0)
6626       MIRBuilder.buildTrunc(Dst, Src);
6627     else {
6628       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6629       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6630       MIRBuilder.buildTrunc(Dst, Shr);
6631     }
6632 
6633     MI.eraseFromParent();
6634     return Legalized;
6635   }
6636 
6637   return UnableToLegalize;
6638 }
6639 
6640 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6641   Register Dst = MI.getOperand(0).getReg();
6642   Register Src = MI.getOperand(1).getReg();
6643   Register InsertSrc = MI.getOperand(2).getReg();
6644   uint64_t Offset = MI.getOperand(3).getImm();
6645 
6646   LLT DstTy = MRI.getType(Src);
6647   LLT InsertTy = MRI.getType(InsertSrc);
6648 
6649   if (InsertTy.isVector() ||
6650       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6651     return UnableToLegalize;
6652 
6653   const DataLayout &DL = MIRBuilder.getDataLayout();
6654   if ((DstTy.isPointer() &&
6655        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6656       (InsertTy.isPointer() &&
6657        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6658     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6659     return UnableToLegalize;
6660   }
6661 
6662   LLT IntDstTy = DstTy;
6663 
6664   if (!DstTy.isScalar()) {
6665     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6666     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6667   }
6668 
6669   if (!InsertTy.isScalar()) {
6670     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6671     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6672   }
6673 
6674   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6675   if (Offset != 0) {
6676     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6677     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6678   }
6679 
6680   APInt MaskVal = APInt::getBitsSetWithWrap(
6681       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6682 
6683   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6684   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6685   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6686 
6687   MIRBuilder.buildCast(Dst, Or);
6688   MI.eraseFromParent();
6689   return Legalized;
6690 }
6691 
6692 LegalizerHelper::LegalizeResult
6693 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6694   Register Dst0 = MI.getOperand(0).getReg();
6695   Register Dst1 = MI.getOperand(1).getReg();
6696   Register LHS = MI.getOperand(2).getReg();
6697   Register RHS = MI.getOperand(3).getReg();
6698   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6699 
6700   LLT Ty = MRI.getType(Dst0);
6701   LLT BoolTy = MRI.getType(Dst1);
6702 
6703   if (IsAdd)
6704     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6705   else
6706     MIRBuilder.buildSub(Dst0, LHS, RHS);
6707 
6708   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6709 
6710   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6711 
6712   // For an addition, the result should be less than one of the operands (LHS)
6713   // if and only if the other operand (RHS) is negative, otherwise there will
6714   // be overflow.
6715   // For a subtraction, the result should be less than one of the operands
6716   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6717   // otherwise there will be overflow.
6718   auto ResultLowerThanLHS =
6719       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6720   auto ConditionRHS = MIRBuilder.buildICmp(
6721       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6722 
6723   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6724   MI.eraseFromParent();
6725   return Legalized;
6726 }
6727 
6728 LegalizerHelper::LegalizeResult
6729 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6730   Register Res = MI.getOperand(0).getReg();
6731   Register LHS = MI.getOperand(1).getReg();
6732   Register RHS = MI.getOperand(2).getReg();
6733   LLT Ty = MRI.getType(Res);
6734   bool IsSigned;
6735   bool IsAdd;
6736   unsigned BaseOp;
6737   switch (MI.getOpcode()) {
6738   default:
6739     llvm_unreachable("unexpected addsat/subsat opcode");
6740   case TargetOpcode::G_UADDSAT:
6741     IsSigned = false;
6742     IsAdd = true;
6743     BaseOp = TargetOpcode::G_ADD;
6744     break;
6745   case TargetOpcode::G_SADDSAT:
6746     IsSigned = true;
6747     IsAdd = true;
6748     BaseOp = TargetOpcode::G_ADD;
6749     break;
6750   case TargetOpcode::G_USUBSAT:
6751     IsSigned = false;
6752     IsAdd = false;
6753     BaseOp = TargetOpcode::G_SUB;
6754     break;
6755   case TargetOpcode::G_SSUBSAT:
6756     IsSigned = true;
6757     IsAdd = false;
6758     BaseOp = TargetOpcode::G_SUB;
6759     break;
6760   }
6761 
6762   if (IsSigned) {
6763     // sadd.sat(a, b) ->
6764     //   hi = 0x7fffffff - smax(a, 0)
6765     //   lo = 0x80000000 - smin(a, 0)
6766     //   a + smin(smax(lo, b), hi)
6767     // ssub.sat(a, b) ->
6768     //   lo = smax(a, -1) - 0x7fffffff
6769     //   hi = smin(a, -1) - 0x80000000
6770     //   a - smin(smax(lo, b), hi)
6771     // TODO: AMDGPU can use a "median of 3" instruction here:
6772     //   a +/- med3(lo, b, hi)
6773     uint64_t NumBits = Ty.getScalarSizeInBits();
6774     auto MaxVal =
6775         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6776     auto MinVal =
6777         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6778     MachineInstrBuilder Hi, Lo;
6779     if (IsAdd) {
6780       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6781       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6782       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6783     } else {
6784       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6785       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6786                                MaxVal);
6787       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6788                                MinVal);
6789     }
6790     auto RHSClamped =
6791         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6792     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6793   } else {
6794     // uadd.sat(a, b) -> a + umin(~a, b)
6795     // usub.sat(a, b) -> a - umin(a, b)
6796     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6797     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6798     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6799   }
6800 
6801   MI.eraseFromParent();
6802   return Legalized;
6803 }
6804 
6805 LegalizerHelper::LegalizeResult
6806 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6807   Register Res = MI.getOperand(0).getReg();
6808   Register LHS = MI.getOperand(1).getReg();
6809   Register RHS = MI.getOperand(2).getReg();
6810   LLT Ty = MRI.getType(Res);
6811   LLT BoolTy = Ty.changeElementSize(1);
6812   bool IsSigned;
6813   bool IsAdd;
6814   unsigned OverflowOp;
6815   switch (MI.getOpcode()) {
6816   default:
6817     llvm_unreachable("unexpected addsat/subsat opcode");
6818   case TargetOpcode::G_UADDSAT:
6819     IsSigned = false;
6820     IsAdd = true;
6821     OverflowOp = TargetOpcode::G_UADDO;
6822     break;
6823   case TargetOpcode::G_SADDSAT:
6824     IsSigned = true;
6825     IsAdd = true;
6826     OverflowOp = TargetOpcode::G_SADDO;
6827     break;
6828   case TargetOpcode::G_USUBSAT:
6829     IsSigned = false;
6830     IsAdd = false;
6831     OverflowOp = TargetOpcode::G_USUBO;
6832     break;
6833   case TargetOpcode::G_SSUBSAT:
6834     IsSigned = true;
6835     IsAdd = false;
6836     OverflowOp = TargetOpcode::G_SSUBO;
6837     break;
6838   }
6839 
6840   auto OverflowRes =
6841       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6842   Register Tmp = OverflowRes.getReg(0);
6843   Register Ov = OverflowRes.getReg(1);
6844   MachineInstrBuilder Clamp;
6845   if (IsSigned) {
6846     // sadd.sat(a, b) ->
6847     //   {tmp, ov} = saddo(a, b)
6848     //   ov ? (tmp >>s 31) + 0x80000000 : r
6849     // ssub.sat(a, b) ->
6850     //   {tmp, ov} = ssubo(a, b)
6851     //   ov ? (tmp >>s 31) + 0x80000000 : r
6852     uint64_t NumBits = Ty.getScalarSizeInBits();
6853     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6854     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6855     auto MinVal =
6856         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6857     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6858   } else {
6859     // uadd.sat(a, b) ->
6860     //   {tmp, ov} = uaddo(a, b)
6861     //   ov ? 0xffffffff : tmp
6862     // usub.sat(a, b) ->
6863     //   {tmp, ov} = usubo(a, b)
6864     //   ov ? 0 : tmp
6865     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6866   }
6867   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6868 
6869   MI.eraseFromParent();
6870   return Legalized;
6871 }
6872 
6873 LegalizerHelper::LegalizeResult
6874 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6875   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6876           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6877          "Expected shlsat opcode!");
6878   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6879   Register Res = MI.getOperand(0).getReg();
6880   Register LHS = MI.getOperand(1).getReg();
6881   Register RHS = MI.getOperand(2).getReg();
6882   LLT Ty = MRI.getType(Res);
6883   LLT BoolTy = Ty.changeElementSize(1);
6884 
6885   unsigned BW = Ty.getScalarSizeInBits();
6886   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6887   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6888                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6889 
6890   MachineInstrBuilder SatVal;
6891   if (IsSigned) {
6892     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6893     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6894     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6895                                     MIRBuilder.buildConstant(Ty, 0));
6896     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6897   } else {
6898     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6899   }
6900   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6901   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6902 
6903   MI.eraseFromParent();
6904   return Legalized;
6905 }
6906 
6907 LegalizerHelper::LegalizeResult
6908 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6909   Register Dst = MI.getOperand(0).getReg();
6910   Register Src = MI.getOperand(1).getReg();
6911   const LLT Ty = MRI.getType(Src);
6912   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6913   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6914 
6915   // Swap most and least significant byte, set remaining bytes in Res to zero.
6916   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6917   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6918   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6919   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6920 
6921   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6922   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6923     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6924     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6925     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6926     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6927     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6928     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6929     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6930     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6931     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6932     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6933     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6934     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6935   }
6936   Res.getInstr()->getOperand(0).setReg(Dst);
6937 
6938   MI.eraseFromParent();
6939   return Legalized;
6940 }
6941 
6942 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6943 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6944                                  MachineInstrBuilder Src, APInt Mask) {
6945   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6946   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6947   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6948   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6949   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6950   return B.buildOr(Dst, LHS, RHS);
6951 }
6952 
6953 LegalizerHelper::LegalizeResult
6954 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6955   Register Dst = MI.getOperand(0).getReg();
6956   Register Src = MI.getOperand(1).getReg();
6957   const LLT Ty = MRI.getType(Src);
6958   unsigned Size = Ty.getSizeInBits();
6959 
6960   MachineInstrBuilder BSWAP =
6961       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6962 
6963   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6964   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6965   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6966   MachineInstrBuilder Swap4 =
6967       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6968 
6969   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6970   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6971   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6972   MachineInstrBuilder Swap2 =
6973       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6974 
6975   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6976   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6977   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6978   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6979 
6980   MI.eraseFromParent();
6981   return Legalized;
6982 }
6983 
6984 LegalizerHelper::LegalizeResult
6985 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6986   MachineFunction &MF = MIRBuilder.getMF();
6987 
6988   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6989   int NameOpIdx = IsRead ? 1 : 0;
6990   int ValRegIndex = IsRead ? 0 : 1;
6991 
6992   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6993   const LLT Ty = MRI.getType(ValReg);
6994   const MDString *RegStr = cast<MDString>(
6995     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6996 
6997   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6998   if (!PhysReg.isValid())
6999     return UnableToLegalize;
7000 
7001   if (IsRead)
7002     MIRBuilder.buildCopy(ValReg, PhysReg);
7003   else
7004     MIRBuilder.buildCopy(PhysReg, ValReg);
7005 
7006   MI.eraseFromParent();
7007   return Legalized;
7008 }
7009 
7010 LegalizerHelper::LegalizeResult
7011 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7012   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7013   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7014   Register Result = MI.getOperand(0).getReg();
7015   LLT OrigTy = MRI.getType(Result);
7016   auto SizeInBits = OrigTy.getScalarSizeInBits();
7017   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7018 
7019   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7020   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7021   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7022   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7023 
7024   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7025   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7026   MIRBuilder.buildTrunc(Result, Shifted);
7027 
7028   MI.eraseFromParent();
7029   return Legalized;
7030 }
7031 
7032 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7033   // Implement vector G_SELECT in terms of XOR, AND, OR.
7034   Register DstReg = MI.getOperand(0).getReg();
7035   Register MaskReg = MI.getOperand(1).getReg();
7036   Register Op1Reg = MI.getOperand(2).getReg();
7037   Register Op2Reg = MI.getOperand(3).getReg();
7038   LLT DstTy = MRI.getType(DstReg);
7039   LLT MaskTy = MRI.getType(MaskReg);
7040   LLT Op1Ty = MRI.getType(Op1Reg);
7041   if (!DstTy.isVector())
7042     return UnableToLegalize;
7043 
7044   // Vector selects can have a scalar predicate. If so, splat into a vector and
7045   // finish for later legalization attempts to try again.
7046   if (MaskTy.isScalar()) {
7047     Register MaskElt = MaskReg;
7048     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7049       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7050     // Generate a vector splat idiom to be pattern matched later.
7051     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7052     Observer.changingInstr(MI);
7053     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7054     Observer.changedInstr(MI);
7055     return Legalized;
7056   }
7057 
7058   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7059     return UnableToLegalize;
7060   }
7061 
7062   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7063   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7064   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7065   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7066   MI.eraseFromParent();
7067   return Legalized;
7068 }
7069 
7070 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7071   // Split DIVREM into individual instructions.
7072   unsigned Opcode = MI.getOpcode();
7073 
7074   MIRBuilder.buildInstr(
7075       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7076                                         : TargetOpcode::G_UDIV,
7077       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7078   MIRBuilder.buildInstr(
7079       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7080                                         : TargetOpcode::G_UREM,
7081       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7082   MI.eraseFromParent();
7083   return Legalized;
7084 }
7085 
7086 LegalizerHelper::LegalizeResult
7087 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7088   // Expand %res = G_ABS %a into:
7089   // %v1 = G_ASHR %a, scalar_size-1
7090   // %v2 = G_ADD %a, %v1
7091   // %res = G_XOR %v2, %v1
7092   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7093   Register OpReg = MI.getOperand(1).getReg();
7094   auto ShiftAmt =
7095       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7096   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7097   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7098   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7099   MI.eraseFromParent();
7100   return Legalized;
7101 }
7102 
7103 LegalizerHelper::LegalizeResult
7104 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7105   // Expand %res = G_ABS %a into:
7106   // %v1 = G_CONSTANT 0
7107   // %v2 = G_SUB %v1, %a
7108   // %res = G_SMAX %a, %v2
7109   Register SrcReg = MI.getOperand(1).getReg();
7110   LLT Ty = MRI.getType(SrcReg);
7111   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7112   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7113   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7114   MI.eraseFromParent();
7115   return Legalized;
7116 }
7117