1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy; 227 for (Register PartReg : PartRegs) 228 GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg); 229 230 for (Register PartReg : LeftoverRegs) 231 extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg); 232 233 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 234 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 235 } 236 237 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 238 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 239 const MachineInstr &MI) { 240 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 241 242 const int StartIdx = Regs.size(); 243 const int NumResults = MI.getNumOperands() - 1; 244 Regs.resize(Regs.size() + NumResults); 245 for (int I = 0; I != NumResults; ++I) 246 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 247 } 248 249 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 250 LLT GCDTy, Register SrcReg) { 251 LLT SrcTy = MRI.getType(SrcReg); 252 if (SrcTy == GCDTy) { 253 // If the source already evenly divides the result type, we don't need to do 254 // anything. 255 Parts.push_back(SrcReg); 256 } else { 257 // Need to split into common type sized pieces. 258 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 259 getUnmergeResults(Parts, *Unmerge); 260 } 261 } 262 263 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 264 LLT NarrowTy, Register SrcReg) { 265 LLT SrcTy = MRI.getType(SrcReg); 266 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 267 extractGCDType(Parts, GCDTy, SrcReg); 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 382 SmallVector<Register, 8> UnmergeDefs(NumDefs); 383 UnmergeDefs[0] = DstReg; 384 for (unsigned I = 1; I != NumDefs; ++I) 385 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 386 387 MIRBuilder.buildUnmerge(UnmergeDefs, 388 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 389 return; 390 } 391 392 llvm_unreachable("unhandled case"); 393 } 394 395 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 396 #define RTLIBCASE_INT(LibcallPrefix) \ 397 do { \ 398 switch (Size) { \ 399 case 32: \ 400 return RTLIB::LibcallPrefix##32; \ 401 case 64: \ 402 return RTLIB::LibcallPrefix##64; \ 403 case 128: \ 404 return RTLIB::LibcallPrefix##128; \ 405 default: \ 406 llvm_unreachable("unexpected size"); \ 407 } \ 408 } while (0) 409 410 #define RTLIBCASE(LibcallPrefix) \ 411 do { \ 412 switch (Size) { \ 413 case 32: \ 414 return RTLIB::LibcallPrefix##32; \ 415 case 64: \ 416 return RTLIB::LibcallPrefix##64; \ 417 case 80: \ 418 return RTLIB::LibcallPrefix##80; \ 419 case 128: \ 420 return RTLIB::LibcallPrefix##128; \ 421 default: \ 422 llvm_unreachable("unexpected size"); \ 423 } \ 424 } while (0) 425 426 switch (Opcode) { 427 case TargetOpcode::G_SDIV: 428 RTLIBCASE_INT(SDIV_I); 429 case TargetOpcode::G_UDIV: 430 RTLIBCASE_INT(UDIV_I); 431 case TargetOpcode::G_SREM: 432 RTLIBCASE_INT(SREM_I); 433 case TargetOpcode::G_UREM: 434 RTLIBCASE_INT(UREM_I); 435 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 436 RTLIBCASE_INT(CTLZ_I); 437 case TargetOpcode::G_FADD: 438 RTLIBCASE(ADD_F); 439 case TargetOpcode::G_FSUB: 440 RTLIBCASE(SUB_F); 441 case TargetOpcode::G_FMUL: 442 RTLIBCASE(MUL_F); 443 case TargetOpcode::G_FDIV: 444 RTLIBCASE(DIV_F); 445 case TargetOpcode::G_FEXP: 446 RTLIBCASE(EXP_F); 447 case TargetOpcode::G_FEXP2: 448 RTLIBCASE(EXP2_F); 449 case TargetOpcode::G_FREM: 450 RTLIBCASE(REM_F); 451 case TargetOpcode::G_FPOW: 452 RTLIBCASE(POW_F); 453 case TargetOpcode::G_FMA: 454 RTLIBCASE(FMA_F); 455 case TargetOpcode::G_FSIN: 456 RTLIBCASE(SIN_F); 457 case TargetOpcode::G_FCOS: 458 RTLIBCASE(COS_F); 459 case TargetOpcode::G_FLOG10: 460 RTLIBCASE(LOG10_F); 461 case TargetOpcode::G_FLOG: 462 RTLIBCASE(LOG_F); 463 case TargetOpcode::G_FLOG2: 464 RTLIBCASE(LOG2_F); 465 case TargetOpcode::G_FCEIL: 466 RTLIBCASE(CEIL_F); 467 case TargetOpcode::G_FFLOOR: 468 RTLIBCASE(FLOOR_F); 469 case TargetOpcode::G_FMINNUM: 470 RTLIBCASE(FMIN_F); 471 case TargetOpcode::G_FMAXNUM: 472 RTLIBCASE(FMAX_F); 473 case TargetOpcode::G_FSQRT: 474 RTLIBCASE(SQRT_F); 475 case TargetOpcode::G_FRINT: 476 RTLIBCASE(RINT_F); 477 case TargetOpcode::G_FNEARBYINT: 478 RTLIBCASE(NEARBYINT_F); 479 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 480 RTLIBCASE(ROUNDEVEN_F); 481 } 482 llvm_unreachable("Unknown libcall function"); 483 } 484 485 /// True if an instruction is in tail position in its caller. Intended for 486 /// legalizing libcalls as tail calls when possible. 487 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 488 MachineInstr &MI) { 489 MachineBasicBlock &MBB = *MI.getParent(); 490 const Function &F = MBB.getParent()->getFunction(); 491 492 // Conservatively require the attributes of the call to match those of 493 // the return. Ignore NoAlias and NonNull because they don't affect the 494 // call sequence. 495 AttributeList CallerAttrs = F.getAttributes(); 496 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 497 .removeAttribute(Attribute::NoAlias) 498 .removeAttribute(Attribute::NonNull) 499 .hasAttributes()) 500 return false; 501 502 // It's not safe to eliminate the sign / zero extension of the return value. 503 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 504 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 505 return false; 506 507 // Only tail call if the following instruction is a standard return. 508 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 509 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 510 return false; 511 512 return true; 513 } 514 515 LegalizerHelper::LegalizeResult 516 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 517 const CallLowering::ArgInfo &Result, 518 ArrayRef<CallLowering::ArgInfo> Args, 519 const CallingConv::ID CC) { 520 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 521 522 CallLowering::CallLoweringInfo Info; 523 Info.CallConv = CC; 524 Info.Callee = MachineOperand::CreateES(Name); 525 Info.OrigRet = Result; 526 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 527 if (!CLI.lowerCall(MIRBuilder, Info)) 528 return LegalizerHelper::UnableToLegalize; 529 530 return LegalizerHelper::Legalized; 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 535 const CallLowering::ArgInfo &Result, 536 ArrayRef<CallLowering::ArgInfo> Args) { 537 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 538 const char *Name = TLI.getLibcallName(Libcall); 539 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 540 return createLibcall(MIRBuilder, Name, Result, Args, CC); 541 } 542 543 // Useful for libcalls where all operands have the same type. 544 static LegalizerHelper::LegalizeResult 545 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 546 Type *OpType) { 547 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 548 549 SmallVector<CallLowering::ArgInfo, 3> Args; 550 for (unsigned i = 1; i < MI.getNumOperands(); i++) 551 Args.push_back({MI.getOperand(i).getReg(), OpType}); 552 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 553 Args); 554 } 555 556 LegalizerHelper::LegalizeResult 557 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 558 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 559 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 560 561 SmallVector<CallLowering::ArgInfo, 3> Args; 562 // Add all the args, except for the last which is an imm denoting 'tail'. 563 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 564 Register Reg = MI.getOperand(i).getReg(); 565 566 // Need derive an IR type for call lowering. 567 LLT OpLLT = MRI.getType(Reg); 568 Type *OpTy = nullptr; 569 if (OpLLT.isPointer()) 570 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 571 else 572 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 573 Args.push_back({Reg, OpTy}); 574 } 575 576 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 577 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 578 RTLIB::Libcall RTLibcall; 579 unsigned Opc = MI.getOpcode(); 580 switch (Opc) { 581 case TargetOpcode::G_BZERO: 582 RTLibcall = RTLIB::BZERO; 583 break; 584 case TargetOpcode::G_MEMCPY: 585 RTLibcall = RTLIB::MEMCPY; 586 break; 587 case TargetOpcode::G_MEMMOVE: 588 RTLibcall = RTLIB::MEMMOVE; 589 break; 590 case TargetOpcode::G_MEMSET: 591 RTLibcall = RTLIB::MEMSET; 592 break; 593 default: 594 return LegalizerHelper::UnableToLegalize; 595 } 596 const char *Name = TLI.getLibcallName(RTLibcall); 597 598 // Unsupported libcall on the target. 599 if (!Name) { 600 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 601 << MIRBuilder.getTII().getName(Opc) << "\n"); 602 return LegalizerHelper::UnableToLegalize; 603 } 604 605 CallLowering::CallLoweringInfo Info; 606 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 607 Info.Callee = MachineOperand::CreateES(Name); 608 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 609 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 610 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 611 612 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 613 if (!CLI.lowerCall(MIRBuilder, Info)) 614 return LegalizerHelper::UnableToLegalize; 615 616 617 if (Info.LoweredTailCall) { 618 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 619 620 // Check debug locations before removing the return. 621 LocObserver.checkpoint(true); 622 623 // We must have a return following the call (or debug insts) to get past 624 // isLibCallInTailPosition. 625 do { 626 MachineInstr *Next = MI.getNextNode(); 627 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 628 "Expected instr following MI to be return or debug inst?"); 629 // We lowered a tail call, so the call is now the return from the block. 630 // Delete the old return. 631 Next->eraseFromParent(); 632 } while (MI.getNextNode()); 633 634 // We expect to lose the debug location from the return. 635 LocObserver.checkpoint(false); 636 } 637 638 return LegalizerHelper::Legalized; 639 } 640 641 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 642 Type *FromType) { 643 auto ToMVT = MVT::getVT(ToType); 644 auto FromMVT = MVT::getVT(FromType); 645 646 switch (Opcode) { 647 case TargetOpcode::G_FPEXT: 648 return RTLIB::getFPEXT(FromMVT, ToMVT); 649 case TargetOpcode::G_FPTRUNC: 650 return RTLIB::getFPROUND(FromMVT, ToMVT); 651 case TargetOpcode::G_FPTOSI: 652 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 653 case TargetOpcode::G_FPTOUI: 654 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 655 case TargetOpcode::G_SITOFP: 656 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 657 case TargetOpcode::G_UITOFP: 658 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 659 } 660 llvm_unreachable("Unsupported libcall function"); 661 } 662 663 static LegalizerHelper::LegalizeResult 664 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 665 Type *FromType) { 666 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 667 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 668 {{MI.getOperand(1).getReg(), FromType}}); 669 } 670 671 LegalizerHelper::LegalizeResult 672 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 674 unsigned Size = LLTy.getSizeInBits(); 675 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 676 677 switch (MI.getOpcode()) { 678 default: 679 return UnableToLegalize; 680 case TargetOpcode::G_SDIV: 681 case TargetOpcode::G_UDIV: 682 case TargetOpcode::G_SREM: 683 case TargetOpcode::G_UREM: 684 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 685 Type *HLTy = IntegerType::get(Ctx, Size); 686 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 687 if (Status != Legalized) 688 return Status; 689 break; 690 } 691 case TargetOpcode::G_FADD: 692 case TargetOpcode::G_FSUB: 693 case TargetOpcode::G_FMUL: 694 case TargetOpcode::G_FDIV: 695 case TargetOpcode::G_FMA: 696 case TargetOpcode::G_FPOW: 697 case TargetOpcode::G_FREM: 698 case TargetOpcode::G_FCOS: 699 case TargetOpcode::G_FSIN: 700 case TargetOpcode::G_FLOG10: 701 case TargetOpcode::G_FLOG: 702 case TargetOpcode::G_FLOG2: 703 case TargetOpcode::G_FEXP: 704 case TargetOpcode::G_FEXP2: 705 case TargetOpcode::G_FCEIL: 706 case TargetOpcode::G_FFLOOR: 707 case TargetOpcode::G_FMINNUM: 708 case TargetOpcode::G_FMAXNUM: 709 case TargetOpcode::G_FSQRT: 710 case TargetOpcode::G_FRINT: 711 case TargetOpcode::G_FNEARBYINT: 712 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 713 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 714 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 715 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 716 return UnableToLegalize; 717 } 718 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 case TargetOpcode::G_FPEXT: 724 case TargetOpcode::G_FPTRUNC: { 725 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 726 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 727 if (!FromTy || !ToTy) 728 return UnableToLegalize; 729 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPTOSI: 735 case TargetOpcode::G_FPTOUI: { 736 // FIXME: Support other types 737 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 738 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 740 return UnableToLegalize; 741 LegalizeResult Status = conversionLibcall( 742 MI, MIRBuilder, 743 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 744 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 745 if (Status != Legalized) 746 return Status; 747 break; 748 } 749 case TargetOpcode::G_SITOFP: 750 case TargetOpcode::G_UITOFP: { 751 // FIXME: Support other types 752 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 753 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 754 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 755 return UnableToLegalize; 756 LegalizeResult Status = conversionLibcall( 757 MI, MIRBuilder, 758 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 759 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 760 if (Status != Legalized) 761 return Status; 762 break; 763 } 764 case TargetOpcode::G_BZERO: 765 case TargetOpcode::G_MEMCPY: 766 case TargetOpcode::G_MEMMOVE: 767 case TargetOpcode::G_MEMSET: { 768 LegalizeResult Result = 769 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 770 if (Result != Legalized) 771 return Result; 772 MI.eraseFromParent(); 773 return Result; 774 } 775 } 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 782 unsigned TypeIdx, 783 LLT NarrowTy) { 784 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 785 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 786 787 switch (MI.getOpcode()) { 788 default: 789 return UnableToLegalize; 790 case TargetOpcode::G_IMPLICIT_DEF: { 791 Register DstReg = MI.getOperand(0).getReg(); 792 LLT DstTy = MRI.getType(DstReg); 793 794 // If SizeOp0 is not an exact multiple of NarrowSize, emit 795 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 796 // FIXME: Although this would also be legal for the general case, it causes 797 // a lot of regressions in the emitted code (superfluous COPYs, artifact 798 // combines not being hit). This seems to be a problem related to the 799 // artifact combiner. 800 if (SizeOp0 % NarrowSize != 0) { 801 LLT ImplicitTy = NarrowTy; 802 if (DstTy.isVector()) 803 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 804 805 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 806 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 812 int NumParts = SizeOp0 / NarrowSize; 813 814 SmallVector<Register, 2> DstRegs; 815 for (int i = 0; i < NumParts; ++i) 816 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 817 818 if (DstTy.isVector()) 819 MIRBuilder.buildBuildVector(DstReg, DstRegs); 820 else 821 MIRBuilder.buildMerge(DstReg, DstRegs); 822 MI.eraseFromParent(); 823 return Legalized; 824 } 825 case TargetOpcode::G_CONSTANT: { 826 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 827 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 828 unsigned TotalSize = Ty.getSizeInBits(); 829 unsigned NarrowSize = NarrowTy.getSizeInBits(); 830 int NumParts = TotalSize / NarrowSize; 831 832 SmallVector<Register, 4> PartRegs; 833 for (int I = 0; I != NumParts; ++I) { 834 unsigned Offset = I * NarrowSize; 835 auto K = MIRBuilder.buildConstant(NarrowTy, 836 Val.lshr(Offset).trunc(NarrowSize)); 837 PartRegs.push_back(K.getReg(0)); 838 } 839 840 LLT LeftoverTy; 841 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 842 SmallVector<Register, 1> LeftoverRegs; 843 if (LeftoverBits != 0) { 844 LeftoverTy = LLT::scalar(LeftoverBits); 845 auto K = MIRBuilder.buildConstant( 846 LeftoverTy, 847 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 848 LeftoverRegs.push_back(K.getReg(0)); 849 } 850 851 insertParts(MI.getOperand(0).getReg(), 852 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 853 854 MI.eraseFromParent(); 855 return Legalized; 856 } 857 case TargetOpcode::G_SEXT: 858 case TargetOpcode::G_ZEXT: 859 case TargetOpcode::G_ANYEXT: 860 return narrowScalarExt(MI, TypeIdx, NarrowTy); 861 case TargetOpcode::G_TRUNC: { 862 if (TypeIdx != 1) 863 return UnableToLegalize; 864 865 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 866 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 867 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 868 return UnableToLegalize; 869 } 870 871 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 872 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 873 MI.eraseFromParent(); 874 return Legalized; 875 } 876 877 case TargetOpcode::G_FREEZE: 878 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 879 case TargetOpcode::G_ADD: 880 case TargetOpcode::G_SUB: 881 case TargetOpcode::G_SADDO: 882 case TargetOpcode::G_SSUBO: 883 case TargetOpcode::G_SADDE: 884 case TargetOpcode::G_SSUBE: 885 case TargetOpcode::G_UADDO: 886 case TargetOpcode::G_USUBO: 887 case TargetOpcode::G_UADDE: 888 case TargetOpcode::G_USUBE: 889 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_MUL: 891 case TargetOpcode::G_UMULH: 892 return narrowScalarMul(MI, NarrowTy); 893 case TargetOpcode::G_EXTRACT: 894 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 895 case TargetOpcode::G_INSERT: 896 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 897 case TargetOpcode::G_LOAD: { 898 auto &MMO = **MI.memoperands_begin(); 899 Register DstReg = MI.getOperand(0).getReg(); 900 LLT DstTy = MRI.getType(DstReg); 901 if (DstTy.isVector()) 902 return UnableToLegalize; 903 904 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 905 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 906 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 907 MIRBuilder.buildAnyExt(DstReg, TmpReg); 908 MI.eraseFromParent(); 909 return Legalized; 910 } 911 912 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 913 } 914 case TargetOpcode::G_ZEXTLOAD: 915 case TargetOpcode::G_SEXTLOAD: { 916 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 917 Register DstReg = MI.getOperand(0).getReg(); 918 Register PtrReg = MI.getOperand(1).getReg(); 919 920 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 921 auto &MMO = **MI.memoperands_begin(); 922 unsigned MemSize = MMO.getSizeInBits(); 923 924 if (MemSize == NarrowSize) { 925 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 926 } else if (MemSize < NarrowSize) { 927 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 928 } else if (MemSize > NarrowSize) { 929 // FIXME: Need to split the load. 930 return UnableToLegalize; 931 } 932 933 if (ZExt) 934 MIRBuilder.buildZExt(DstReg, TmpReg); 935 else 936 MIRBuilder.buildSExt(DstReg, TmpReg); 937 938 MI.eraseFromParent(); 939 return Legalized; 940 } 941 case TargetOpcode::G_STORE: { 942 const auto &MMO = **MI.memoperands_begin(); 943 944 Register SrcReg = MI.getOperand(0).getReg(); 945 LLT SrcTy = MRI.getType(SrcReg); 946 if (SrcTy.isVector()) 947 return UnableToLegalize; 948 949 int NumParts = SizeOp0 / NarrowSize; 950 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 951 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 952 if (SrcTy.isVector() && LeftoverBits != 0) 953 return UnableToLegalize; 954 955 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 956 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 957 auto &MMO = **MI.memoperands_begin(); 958 MIRBuilder.buildTrunc(TmpReg, SrcReg); 959 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 960 MI.eraseFromParent(); 961 return Legalized; 962 } 963 964 return reduceLoadStoreWidth(MI, 0, NarrowTy); 965 } 966 case TargetOpcode::G_SELECT: 967 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 968 case TargetOpcode::G_AND: 969 case TargetOpcode::G_OR: 970 case TargetOpcode::G_XOR: { 971 // Legalize bitwise operation: 972 // A = BinOp<Ty> B, C 973 // into: 974 // B1, ..., BN = G_UNMERGE_VALUES B 975 // C1, ..., CN = G_UNMERGE_VALUES C 976 // A1 = BinOp<Ty/N> B1, C2 977 // ... 978 // AN = BinOp<Ty/N> BN, CN 979 // A = G_MERGE_VALUES A1, ..., AN 980 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 981 } 982 case TargetOpcode::G_SHL: 983 case TargetOpcode::G_LSHR: 984 case TargetOpcode::G_ASHR: 985 return narrowScalarShift(MI, TypeIdx, NarrowTy); 986 case TargetOpcode::G_CTLZ: 987 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 988 case TargetOpcode::G_CTTZ: 989 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 990 case TargetOpcode::G_CTPOP: 991 if (TypeIdx == 1) 992 switch (MI.getOpcode()) { 993 case TargetOpcode::G_CTLZ: 994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 995 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 996 case TargetOpcode::G_CTTZ: 997 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 998 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTPOP: 1000 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1001 default: 1002 return UnableToLegalize; 1003 } 1004 1005 Observer.changingInstr(MI); 1006 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1007 Observer.changedInstr(MI); 1008 return Legalized; 1009 case TargetOpcode::G_INTTOPTR: 1010 if (TypeIdx != 1) 1011 return UnableToLegalize; 1012 1013 Observer.changingInstr(MI); 1014 narrowScalarSrc(MI, NarrowTy, 1); 1015 Observer.changedInstr(MI); 1016 return Legalized; 1017 case TargetOpcode::G_PTRTOINT: 1018 if (TypeIdx != 0) 1019 return UnableToLegalize; 1020 1021 Observer.changingInstr(MI); 1022 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1023 Observer.changedInstr(MI); 1024 return Legalized; 1025 case TargetOpcode::G_PHI: { 1026 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1027 // NarrowSize. 1028 if (SizeOp0 % NarrowSize != 0) 1029 return UnableToLegalize; 1030 1031 unsigned NumParts = SizeOp0 / NarrowSize; 1032 SmallVector<Register, 2> DstRegs(NumParts); 1033 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1034 Observer.changingInstr(MI); 1035 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1036 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1037 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1038 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1039 SrcRegs[i / 2]); 1040 } 1041 MachineBasicBlock &MBB = *MI.getParent(); 1042 MIRBuilder.setInsertPt(MBB, MI); 1043 for (unsigned i = 0; i < NumParts; ++i) { 1044 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1045 MachineInstrBuilder MIB = 1046 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1047 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1048 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1049 } 1050 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1051 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1052 Observer.changedInstr(MI); 1053 MI.eraseFromParent(); 1054 return Legalized; 1055 } 1056 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1057 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1058 if (TypeIdx != 2) 1059 return UnableToLegalize; 1060 1061 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1062 Observer.changingInstr(MI); 1063 narrowScalarSrc(MI, NarrowTy, OpIdx); 1064 Observer.changedInstr(MI); 1065 return Legalized; 1066 } 1067 case TargetOpcode::G_ICMP: { 1068 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1069 if (NarrowSize * 2 != SrcSize) 1070 return UnableToLegalize; 1071 1072 Observer.changingInstr(MI); 1073 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1076 1077 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1078 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1079 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1080 1081 CmpInst::Predicate Pred = 1082 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1083 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1084 1085 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1086 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1087 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1088 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1089 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1090 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1091 } else { 1092 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpHEQ = 1094 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1095 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1096 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1097 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1098 } 1099 Observer.changedInstr(MI); 1100 MI.eraseFromParent(); 1101 return Legalized; 1102 } 1103 case TargetOpcode::G_SEXT_INREG: { 1104 if (TypeIdx != 0) 1105 return UnableToLegalize; 1106 1107 int64_t SizeInBits = MI.getOperand(2).getImm(); 1108 1109 // So long as the new type has more bits than the bits we're extending we 1110 // don't need to break it apart. 1111 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1112 Observer.changingInstr(MI); 1113 // We don't lose any non-extension bits by truncating the src and 1114 // sign-extending the dst. 1115 MachineOperand &MO1 = MI.getOperand(1); 1116 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1117 MO1.setReg(TruncMIB.getReg(0)); 1118 1119 MachineOperand &MO2 = MI.getOperand(0); 1120 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1121 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1122 MIRBuilder.buildSExt(MO2, DstExt); 1123 MO2.setReg(DstExt); 1124 Observer.changedInstr(MI); 1125 return Legalized; 1126 } 1127 1128 // Break it apart. Components below the extension point are unmodified. The 1129 // component containing the extension point becomes a narrower SEXT_INREG. 1130 // Components above it are ashr'd from the component containing the 1131 // extension point. 1132 if (SizeOp0 % NarrowSize != 0) 1133 return UnableToLegalize; 1134 int NumParts = SizeOp0 / NarrowSize; 1135 1136 // List the registers where the destination will be scattered. 1137 SmallVector<Register, 2> DstRegs; 1138 // List the registers where the source will be split. 1139 SmallVector<Register, 2> SrcRegs; 1140 1141 // Create all the temporary registers. 1142 for (int i = 0; i < NumParts; ++i) { 1143 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1144 1145 SrcRegs.push_back(SrcReg); 1146 } 1147 1148 // Explode the big arguments into smaller chunks. 1149 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1150 1151 Register AshrCstReg = 1152 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1153 .getReg(0); 1154 Register FullExtensionReg = 0; 1155 Register PartialExtensionReg = 0; 1156 1157 // Do the operation on each small part. 1158 for (int i = 0; i < NumParts; ++i) { 1159 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1160 DstRegs.push_back(SrcRegs[i]); 1161 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1162 assert(PartialExtensionReg && 1163 "Expected to visit partial extension before full"); 1164 if (FullExtensionReg) { 1165 DstRegs.push_back(FullExtensionReg); 1166 continue; 1167 } 1168 DstRegs.push_back( 1169 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1170 .getReg(0)); 1171 FullExtensionReg = DstRegs.back(); 1172 } else { 1173 DstRegs.push_back( 1174 MIRBuilder 1175 .buildInstr( 1176 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1177 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1178 .getReg(0)); 1179 PartialExtensionReg = DstRegs.back(); 1180 } 1181 } 1182 1183 // Gather the destination registers into the final destination. 1184 Register DstReg = MI.getOperand(0).getReg(); 1185 MIRBuilder.buildMerge(DstReg, DstRegs); 1186 MI.eraseFromParent(); 1187 return Legalized; 1188 } 1189 case TargetOpcode::G_BSWAP: 1190 case TargetOpcode::G_BITREVERSE: { 1191 if (SizeOp0 % NarrowSize != 0) 1192 return UnableToLegalize; 1193 1194 Observer.changingInstr(MI); 1195 SmallVector<Register, 2> SrcRegs, DstRegs; 1196 unsigned NumParts = SizeOp0 / NarrowSize; 1197 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1198 1199 for (unsigned i = 0; i < NumParts; ++i) { 1200 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1201 {SrcRegs[NumParts - 1 - i]}); 1202 DstRegs.push_back(DstPart.getReg(0)); 1203 } 1204 1205 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1206 1207 Observer.changedInstr(MI); 1208 MI.eraseFromParent(); 1209 return Legalized; 1210 } 1211 case TargetOpcode::G_PTR_ADD: 1212 case TargetOpcode::G_PTRMASK: { 1213 if (TypeIdx != 1) 1214 return UnableToLegalize; 1215 Observer.changingInstr(MI); 1216 narrowScalarSrc(MI, NarrowTy, 2); 1217 Observer.changedInstr(MI); 1218 return Legalized; 1219 } 1220 case TargetOpcode::G_FPTOUI: 1221 case TargetOpcode::G_FPTOSI: 1222 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1223 case TargetOpcode::G_FPEXT: 1224 if (TypeIdx != 0) 1225 return UnableToLegalize; 1226 Observer.changingInstr(MI); 1227 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 } 1232 1233 Register LegalizerHelper::coerceToScalar(Register Val) { 1234 LLT Ty = MRI.getType(Val); 1235 if (Ty.isScalar()) 1236 return Val; 1237 1238 const DataLayout &DL = MIRBuilder.getDataLayout(); 1239 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1240 if (Ty.isPointer()) { 1241 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1242 return Register(); 1243 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1244 } 1245 1246 Register NewVal = Val; 1247 1248 assert(Ty.isVector()); 1249 LLT EltTy = Ty.getElementType(); 1250 if (EltTy.isPointer()) 1251 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1252 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1253 } 1254 1255 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1256 unsigned OpIdx, unsigned ExtOpcode) { 1257 MachineOperand &MO = MI.getOperand(OpIdx); 1258 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1259 MO.setReg(ExtB.getReg(0)); 1260 } 1261 1262 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1263 unsigned OpIdx) { 1264 MachineOperand &MO = MI.getOperand(OpIdx); 1265 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1266 MO.setReg(ExtB.getReg(0)); 1267 } 1268 1269 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1270 unsigned OpIdx, unsigned TruncOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1275 MO.setReg(DstExt); 1276 } 1277 1278 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1279 unsigned OpIdx, unsigned ExtOpcode) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1284 MO.setReg(DstTrunc); 1285 } 1286 1287 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1288 unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1291 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1292 } 1293 1294 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1295 unsigned OpIdx) { 1296 MachineOperand &MO = MI.getOperand(OpIdx); 1297 1298 LLT OldTy = MRI.getType(MO.getReg()); 1299 unsigned OldElts = OldTy.getNumElements(); 1300 unsigned NewElts = MoreTy.getNumElements(); 1301 1302 unsigned NumParts = NewElts / OldElts; 1303 1304 // Use concat_vectors if the result is a multiple of the number of elements. 1305 if (NumParts * OldElts == NewElts) { 1306 SmallVector<Register, 8> Parts; 1307 Parts.push_back(MO.getReg()); 1308 1309 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1310 for (unsigned I = 1; I != NumParts; ++I) 1311 Parts.push_back(ImpDef); 1312 1313 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1314 MO.setReg(Concat.getReg(0)); 1315 return; 1316 } 1317 1318 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1319 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1320 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1321 MO.setReg(MoreReg); 1322 } 1323 1324 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1325 MachineOperand &Op = MI.getOperand(OpIdx); 1326 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1327 } 1328 1329 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1330 MachineOperand &MO = MI.getOperand(OpIdx); 1331 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1332 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1333 MIRBuilder.buildBitcast(MO, CastDst); 1334 MO.setReg(CastDst); 1335 } 1336 1337 LegalizerHelper::LegalizeResult 1338 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1339 LLT WideTy) { 1340 if (TypeIdx != 1) 1341 return UnableToLegalize; 1342 1343 Register DstReg = MI.getOperand(0).getReg(); 1344 LLT DstTy = MRI.getType(DstReg); 1345 if (DstTy.isVector()) 1346 return UnableToLegalize; 1347 1348 Register Src1 = MI.getOperand(1).getReg(); 1349 LLT SrcTy = MRI.getType(Src1); 1350 const int DstSize = DstTy.getSizeInBits(); 1351 const int SrcSize = SrcTy.getSizeInBits(); 1352 const int WideSize = WideTy.getSizeInBits(); 1353 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1354 1355 unsigned NumOps = MI.getNumOperands(); 1356 unsigned NumSrc = MI.getNumOperands() - 1; 1357 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1358 1359 if (WideSize >= DstSize) { 1360 // Directly pack the bits in the target type. 1361 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1362 1363 for (unsigned I = 2; I != NumOps; ++I) { 1364 const unsigned Offset = (I - 1) * PartSize; 1365 1366 Register SrcReg = MI.getOperand(I).getReg(); 1367 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1368 1369 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1370 1371 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1372 MRI.createGenericVirtualRegister(WideTy); 1373 1374 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1375 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1376 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1377 ResultReg = NextResult; 1378 } 1379 1380 if (WideSize > DstSize) 1381 MIRBuilder.buildTrunc(DstReg, ResultReg); 1382 else if (DstTy.isPointer()) 1383 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1384 1385 MI.eraseFromParent(); 1386 return Legalized; 1387 } 1388 1389 // Unmerge the original values to the GCD type, and recombine to the next 1390 // multiple greater than the original type. 1391 // 1392 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1393 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1394 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1395 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1396 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1397 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1398 // %12:_(s12) = G_MERGE_VALUES %10, %11 1399 // 1400 // Padding with undef if necessary: 1401 // 1402 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1403 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1404 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1405 // %7:_(s2) = G_IMPLICIT_DEF 1406 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1407 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1408 // %10:_(s12) = G_MERGE_VALUES %8, %9 1409 1410 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1411 LLT GCDTy = LLT::scalar(GCD); 1412 1413 SmallVector<Register, 8> Parts; 1414 SmallVector<Register, 8> NewMergeRegs; 1415 SmallVector<Register, 8> Unmerges; 1416 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1417 1418 // Decompose the original operands if they don't evenly divide. 1419 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1420 Register SrcReg = MI.getOperand(I).getReg(); 1421 if (GCD == SrcSize) { 1422 Unmerges.push_back(SrcReg); 1423 } else { 1424 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1425 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1426 Unmerges.push_back(Unmerge.getReg(J)); 1427 } 1428 } 1429 1430 // Pad with undef to the next size that is a multiple of the requested size. 1431 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1432 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1433 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1434 Unmerges.push_back(UndefReg); 1435 } 1436 1437 const int PartsPerGCD = WideSize / GCD; 1438 1439 // Build merges of each piece. 1440 ArrayRef<Register> Slicer(Unmerges); 1441 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1442 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1443 NewMergeRegs.push_back(Merge.getReg(0)); 1444 } 1445 1446 // A truncate may be necessary if the requested type doesn't evenly divide the 1447 // original result type. 1448 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1449 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1450 } else { 1451 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1452 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1453 } 1454 1455 MI.eraseFromParent(); 1456 return Legalized; 1457 } 1458 1459 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1460 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1461 LLT OrigTy = MRI.getType(OrigReg); 1462 LLT LCMTy = getLCMType(WideTy, OrigTy); 1463 1464 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1465 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1466 1467 Register UnmergeSrc = WideReg; 1468 1469 // Create a merge to the LCM type, padding with undef 1470 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1471 // => 1472 // %1:_(<4 x s32>) = G_FOO 1473 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1474 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1475 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1476 if (NumMergeParts > 1) { 1477 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1478 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1479 MergeParts[0] = WideReg; 1480 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1481 } 1482 1483 // Unmerge to the original register and pad with dead defs. 1484 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1485 UnmergeResults[0] = OrigReg; 1486 for (int I = 1; I != NumUnmergeParts; ++I) 1487 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1488 1489 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1490 return WideReg; 1491 } 1492 1493 LegalizerHelper::LegalizeResult 1494 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1495 LLT WideTy) { 1496 if (TypeIdx != 0) 1497 return UnableToLegalize; 1498 1499 int NumDst = MI.getNumOperands() - 1; 1500 Register SrcReg = MI.getOperand(NumDst).getReg(); 1501 LLT SrcTy = MRI.getType(SrcReg); 1502 if (SrcTy.isVector()) 1503 return UnableToLegalize; 1504 1505 Register Dst0Reg = MI.getOperand(0).getReg(); 1506 LLT DstTy = MRI.getType(Dst0Reg); 1507 if (!DstTy.isScalar()) 1508 return UnableToLegalize; 1509 1510 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1511 if (SrcTy.isPointer()) { 1512 const DataLayout &DL = MIRBuilder.getDataLayout(); 1513 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1514 LLVM_DEBUG( 1515 dbgs() << "Not casting non-integral address space integer\n"); 1516 return UnableToLegalize; 1517 } 1518 1519 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1520 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1521 } 1522 1523 // Widen SrcTy to WideTy. This does not affect the result, but since the 1524 // user requested this size, it is probably better handled than SrcTy and 1525 // should reduce the total number of legalization artifacts 1526 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1527 SrcTy = WideTy; 1528 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1529 } 1530 1531 // Theres no unmerge type to target. Directly extract the bits from the 1532 // source type 1533 unsigned DstSize = DstTy.getSizeInBits(); 1534 1535 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1536 for (int I = 1; I != NumDst; ++I) { 1537 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1538 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1539 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1540 } 1541 1542 MI.eraseFromParent(); 1543 return Legalized; 1544 } 1545 1546 // Extend the source to a wider type. 1547 LLT LCMTy = getLCMType(SrcTy, WideTy); 1548 1549 Register WideSrc = SrcReg; 1550 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1551 // TODO: If this is an integral address space, cast to integer and anyext. 1552 if (SrcTy.isPointer()) { 1553 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1554 return UnableToLegalize; 1555 } 1556 1557 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1558 } 1559 1560 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1561 1562 // Create a sequence of unmerges and merges to the original results. Since we 1563 // may have widened the source, we will need to pad the results with dead defs 1564 // to cover the source register. 1565 // e.g. widen s48 to s64: 1566 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1567 // 1568 // => 1569 // %4:_(s192) = G_ANYEXT %0:_(s96) 1570 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1571 // ; unpack to GCD type, with extra dead defs 1572 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1573 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1574 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1575 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1576 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1577 const LLT GCDTy = getGCDType(WideTy, DstTy); 1578 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1579 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1580 1581 // Directly unmerge to the destination without going through a GCD type 1582 // if possible 1583 if (PartsPerRemerge == 1) { 1584 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1585 1586 for (int I = 0; I != NumUnmerge; ++I) { 1587 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1588 1589 for (int J = 0; J != PartsPerUnmerge; ++J) { 1590 int Idx = I * PartsPerUnmerge + J; 1591 if (Idx < NumDst) 1592 MIB.addDef(MI.getOperand(Idx).getReg()); 1593 else { 1594 // Create dead def for excess components. 1595 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1596 } 1597 } 1598 1599 MIB.addUse(Unmerge.getReg(I)); 1600 } 1601 } else { 1602 SmallVector<Register, 16> Parts; 1603 for (int J = 0; J != NumUnmerge; ++J) 1604 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1605 1606 SmallVector<Register, 8> RemergeParts; 1607 for (int I = 0; I != NumDst; ++I) { 1608 for (int J = 0; J < PartsPerRemerge; ++J) { 1609 const int Idx = I * PartsPerRemerge + J; 1610 RemergeParts.emplace_back(Parts[Idx]); 1611 } 1612 1613 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1614 RemergeParts.clear(); 1615 } 1616 } 1617 1618 MI.eraseFromParent(); 1619 return Legalized; 1620 } 1621 1622 LegalizerHelper::LegalizeResult 1623 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1624 LLT WideTy) { 1625 Register DstReg = MI.getOperand(0).getReg(); 1626 Register SrcReg = MI.getOperand(1).getReg(); 1627 LLT SrcTy = MRI.getType(SrcReg); 1628 1629 LLT DstTy = MRI.getType(DstReg); 1630 unsigned Offset = MI.getOperand(2).getImm(); 1631 1632 if (TypeIdx == 0) { 1633 if (SrcTy.isVector() || DstTy.isVector()) 1634 return UnableToLegalize; 1635 1636 SrcOp Src(SrcReg); 1637 if (SrcTy.isPointer()) { 1638 // Extracts from pointers can be handled only if they are really just 1639 // simple integers. 1640 const DataLayout &DL = MIRBuilder.getDataLayout(); 1641 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1642 return UnableToLegalize; 1643 1644 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1645 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1646 SrcTy = SrcAsIntTy; 1647 } 1648 1649 if (DstTy.isPointer()) 1650 return UnableToLegalize; 1651 1652 if (Offset == 0) { 1653 // Avoid a shift in the degenerate case. 1654 MIRBuilder.buildTrunc(DstReg, 1655 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1656 MI.eraseFromParent(); 1657 return Legalized; 1658 } 1659 1660 // Do a shift in the source type. 1661 LLT ShiftTy = SrcTy; 1662 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1663 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1664 ShiftTy = WideTy; 1665 } 1666 1667 auto LShr = MIRBuilder.buildLShr( 1668 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1669 MIRBuilder.buildTrunc(DstReg, LShr); 1670 MI.eraseFromParent(); 1671 return Legalized; 1672 } 1673 1674 if (SrcTy.isScalar()) { 1675 Observer.changingInstr(MI); 1676 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1677 Observer.changedInstr(MI); 1678 return Legalized; 1679 } 1680 1681 if (!SrcTy.isVector()) 1682 return UnableToLegalize; 1683 1684 if (DstTy != SrcTy.getElementType()) 1685 return UnableToLegalize; 1686 1687 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1688 return UnableToLegalize; 1689 1690 Observer.changingInstr(MI); 1691 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1692 1693 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1694 Offset); 1695 widenScalarDst(MI, WideTy.getScalarType(), 0); 1696 Observer.changedInstr(MI); 1697 return Legalized; 1698 } 1699 1700 LegalizerHelper::LegalizeResult 1701 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1702 LLT WideTy) { 1703 if (TypeIdx != 0 || WideTy.isVector()) 1704 return UnableToLegalize; 1705 Observer.changingInstr(MI); 1706 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1707 widenScalarDst(MI, WideTy); 1708 Observer.changedInstr(MI); 1709 return Legalized; 1710 } 1711 1712 LegalizerHelper::LegalizeResult 1713 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1714 LLT WideTy) { 1715 if (TypeIdx == 1) 1716 return UnableToLegalize; // TODO 1717 1718 unsigned Opcode; 1719 unsigned ExtOpcode; 1720 Optional<Register> CarryIn = None; 1721 switch (MI.getOpcode()) { 1722 default: 1723 llvm_unreachable("Unexpected opcode!"); 1724 case TargetOpcode::G_SADDO: 1725 Opcode = TargetOpcode::G_ADD; 1726 ExtOpcode = TargetOpcode::G_SEXT; 1727 break; 1728 case TargetOpcode::G_SSUBO: 1729 Opcode = TargetOpcode::G_SUB; 1730 ExtOpcode = TargetOpcode::G_SEXT; 1731 break; 1732 case TargetOpcode::G_UADDO: 1733 Opcode = TargetOpcode::G_ADD; 1734 ExtOpcode = TargetOpcode::G_ZEXT; 1735 break; 1736 case TargetOpcode::G_USUBO: 1737 Opcode = TargetOpcode::G_SUB; 1738 ExtOpcode = TargetOpcode::G_ZEXT; 1739 break; 1740 case TargetOpcode::G_SADDE: 1741 Opcode = TargetOpcode::G_UADDE; 1742 ExtOpcode = TargetOpcode::G_SEXT; 1743 CarryIn = MI.getOperand(4).getReg(); 1744 break; 1745 case TargetOpcode::G_SSUBE: 1746 Opcode = TargetOpcode::G_USUBE; 1747 ExtOpcode = TargetOpcode::G_SEXT; 1748 CarryIn = MI.getOperand(4).getReg(); 1749 break; 1750 case TargetOpcode::G_UADDE: 1751 Opcode = TargetOpcode::G_UADDE; 1752 ExtOpcode = TargetOpcode::G_ZEXT; 1753 CarryIn = MI.getOperand(4).getReg(); 1754 break; 1755 case TargetOpcode::G_USUBE: 1756 Opcode = TargetOpcode::G_USUBE; 1757 ExtOpcode = TargetOpcode::G_ZEXT; 1758 CarryIn = MI.getOperand(4).getReg(); 1759 break; 1760 } 1761 1762 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1763 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1764 // Do the arithmetic in the larger type. 1765 Register NewOp; 1766 if (CarryIn) { 1767 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1768 NewOp = MIRBuilder 1769 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1770 {LHSExt, RHSExt, *CarryIn}) 1771 .getReg(0); 1772 } else { 1773 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1774 } 1775 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1776 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1777 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1778 // There is no overflow if the ExtOp is the same as NewOp. 1779 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1780 // Now trunc the NewOp to the original result. 1781 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1782 MI.eraseFromParent(); 1783 return Legalized; 1784 } 1785 1786 LegalizerHelper::LegalizeResult 1787 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1788 LLT WideTy) { 1789 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1790 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1791 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1792 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1793 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1794 // We can convert this to: 1795 // 1. Any extend iN to iM 1796 // 2. SHL by M-N 1797 // 3. [US][ADD|SUB|SHL]SAT 1798 // 4. L/ASHR by M-N 1799 // 1800 // It may be more efficient to lower this to a min and a max operation in 1801 // the higher precision arithmetic if the promoted operation isn't legal, 1802 // but this decision is up to the target's lowering request. 1803 Register DstReg = MI.getOperand(0).getReg(); 1804 1805 unsigned NewBits = WideTy.getScalarSizeInBits(); 1806 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1807 1808 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1809 // must not left shift the RHS to preserve the shift amount. 1810 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1811 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1812 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1813 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1814 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1815 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1816 1817 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1818 {ShiftL, ShiftR}, MI.getFlags()); 1819 1820 // Use a shift that will preserve the number of sign bits when the trunc is 1821 // folded away. 1822 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1823 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1824 1825 MIRBuilder.buildTrunc(DstReg, Result); 1826 MI.eraseFromParent(); 1827 return Legalized; 1828 } 1829 1830 LegalizerHelper::LegalizeResult 1831 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1832 LLT WideTy) { 1833 if (TypeIdx == 1) 1834 return UnableToLegalize; 1835 1836 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1837 Register Result = MI.getOperand(0).getReg(); 1838 Register OriginalOverflow = MI.getOperand(1).getReg(); 1839 Register LHS = MI.getOperand(2).getReg(); 1840 Register RHS = MI.getOperand(3).getReg(); 1841 LLT SrcTy = MRI.getType(LHS); 1842 LLT OverflowTy = MRI.getType(OriginalOverflow); 1843 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1844 1845 // To determine if the result overflowed in the larger type, we extend the 1846 // input to the larger type, do the multiply (checking if it overflows), 1847 // then also check the high bits of the result to see if overflow happened 1848 // there. 1849 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1850 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1851 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1852 1853 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1854 {LeftOperand, RightOperand}); 1855 auto Mul = Mulo->getOperand(0); 1856 MIRBuilder.buildTrunc(Result, Mul); 1857 1858 MachineInstrBuilder ExtResult; 1859 // Overflow occurred if it occurred in the larger type, or if the high part 1860 // of the result does not zero/sign-extend the low part. Check this second 1861 // possibility first. 1862 if (IsSigned) { 1863 // For signed, overflow occurred when the high part does not sign-extend 1864 // the low part. 1865 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1866 } else { 1867 // Unsigned overflow occurred when the high part does not zero-extend the 1868 // low part. 1869 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1870 } 1871 1872 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1873 // so we don't need to check the overflow result of larger type Mulo. 1874 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1875 auto Overflow = 1876 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1877 // Finally check if the multiplication in the larger type itself overflowed. 1878 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1879 } else { 1880 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1881 } 1882 MI.eraseFromParent(); 1883 return Legalized; 1884 } 1885 1886 LegalizerHelper::LegalizeResult 1887 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1888 switch (MI.getOpcode()) { 1889 default: 1890 return UnableToLegalize; 1891 case TargetOpcode::G_EXTRACT: 1892 return widenScalarExtract(MI, TypeIdx, WideTy); 1893 case TargetOpcode::G_INSERT: 1894 return widenScalarInsert(MI, TypeIdx, WideTy); 1895 case TargetOpcode::G_MERGE_VALUES: 1896 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1897 case TargetOpcode::G_UNMERGE_VALUES: 1898 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1899 case TargetOpcode::G_SADDO: 1900 case TargetOpcode::G_SSUBO: 1901 case TargetOpcode::G_UADDO: 1902 case TargetOpcode::G_USUBO: 1903 case TargetOpcode::G_SADDE: 1904 case TargetOpcode::G_SSUBE: 1905 case TargetOpcode::G_UADDE: 1906 case TargetOpcode::G_USUBE: 1907 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1908 case TargetOpcode::G_UMULO: 1909 case TargetOpcode::G_SMULO: 1910 return widenScalarMulo(MI, TypeIdx, WideTy); 1911 case TargetOpcode::G_SADDSAT: 1912 case TargetOpcode::G_SSUBSAT: 1913 case TargetOpcode::G_SSHLSAT: 1914 case TargetOpcode::G_UADDSAT: 1915 case TargetOpcode::G_USUBSAT: 1916 case TargetOpcode::G_USHLSAT: 1917 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1918 case TargetOpcode::G_CTTZ: 1919 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1920 case TargetOpcode::G_CTLZ: 1921 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1922 case TargetOpcode::G_CTPOP: { 1923 if (TypeIdx == 0) { 1924 Observer.changingInstr(MI); 1925 widenScalarDst(MI, WideTy, 0); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 1930 Register SrcReg = MI.getOperand(1).getReg(); 1931 1932 // First ZEXT the input. 1933 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1934 LLT CurTy = MRI.getType(SrcReg); 1935 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1936 // The count is the same in the larger type except if the original 1937 // value was zero. This can be handled by setting the bit just off 1938 // the top of the original type. 1939 auto TopBit = 1940 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1941 MIBSrc = MIRBuilder.buildOr( 1942 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1943 } 1944 1945 // Perform the operation at the larger size. 1946 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1947 // This is already the correct result for CTPOP and CTTZs 1948 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1949 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1950 // The correct result is NewOp - (Difference in widety and current ty). 1951 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1952 MIBNewOp = MIRBuilder.buildSub( 1953 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1954 } 1955 1956 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1957 MI.eraseFromParent(); 1958 return Legalized; 1959 } 1960 case TargetOpcode::G_BSWAP: { 1961 Observer.changingInstr(MI); 1962 Register DstReg = MI.getOperand(0).getReg(); 1963 1964 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1965 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1966 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1967 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1968 1969 MI.getOperand(0).setReg(DstExt); 1970 1971 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1972 1973 LLT Ty = MRI.getType(DstReg); 1974 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1975 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1976 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1977 1978 MIRBuilder.buildTrunc(DstReg, ShrReg); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 } 1982 case TargetOpcode::G_BITREVERSE: { 1983 Observer.changingInstr(MI); 1984 1985 Register DstReg = MI.getOperand(0).getReg(); 1986 LLT Ty = MRI.getType(DstReg); 1987 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1988 1989 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1990 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1991 MI.getOperand(0).setReg(DstExt); 1992 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1993 1994 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1995 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1996 MIRBuilder.buildTrunc(DstReg, Shift); 1997 Observer.changedInstr(MI); 1998 return Legalized; 1999 } 2000 case TargetOpcode::G_FREEZE: 2001 Observer.changingInstr(MI); 2002 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2003 widenScalarDst(MI, WideTy); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 2007 case TargetOpcode::G_ABS: 2008 Observer.changingInstr(MI); 2009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2010 widenScalarDst(MI, WideTy); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 2014 case TargetOpcode::G_ADD: 2015 case TargetOpcode::G_AND: 2016 case TargetOpcode::G_MUL: 2017 case TargetOpcode::G_OR: 2018 case TargetOpcode::G_XOR: 2019 case TargetOpcode::G_SUB: 2020 // Perform operation at larger width (any extension is fines here, high bits 2021 // don't affect the result) and then truncate the result back to the 2022 // original type. 2023 Observer.changingInstr(MI); 2024 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2025 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2026 widenScalarDst(MI, WideTy); 2027 Observer.changedInstr(MI); 2028 return Legalized; 2029 2030 case TargetOpcode::G_SBFX: 2031 case TargetOpcode::G_UBFX: 2032 Observer.changingInstr(MI); 2033 2034 if (TypeIdx == 0) { 2035 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2036 widenScalarDst(MI, WideTy); 2037 } else { 2038 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2039 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2040 } 2041 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 2045 case TargetOpcode::G_SHL: 2046 Observer.changingInstr(MI); 2047 2048 if (TypeIdx == 0) { 2049 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2050 widenScalarDst(MI, WideTy); 2051 } else { 2052 assert(TypeIdx == 1); 2053 // The "number of bits to shift" operand must preserve its value as an 2054 // unsigned integer: 2055 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2056 } 2057 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 2061 case TargetOpcode::G_SDIV: 2062 case TargetOpcode::G_SREM: 2063 case TargetOpcode::G_SMIN: 2064 case TargetOpcode::G_SMAX: 2065 Observer.changingInstr(MI); 2066 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2067 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2068 widenScalarDst(MI, WideTy); 2069 Observer.changedInstr(MI); 2070 return Legalized; 2071 2072 case TargetOpcode::G_SDIVREM: 2073 Observer.changingInstr(MI); 2074 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2075 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2076 widenScalarDst(MI, WideTy); 2077 widenScalarDst(MI, WideTy, 1); 2078 Observer.changedInstr(MI); 2079 return Legalized; 2080 2081 case TargetOpcode::G_ASHR: 2082 case TargetOpcode::G_LSHR: 2083 Observer.changingInstr(MI); 2084 2085 if (TypeIdx == 0) { 2086 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2087 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2088 2089 widenScalarSrc(MI, WideTy, 1, CvtOp); 2090 widenScalarDst(MI, WideTy); 2091 } else { 2092 assert(TypeIdx == 1); 2093 // The "number of bits to shift" operand must preserve its value as an 2094 // unsigned integer: 2095 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2096 } 2097 2098 Observer.changedInstr(MI); 2099 return Legalized; 2100 case TargetOpcode::G_UDIV: 2101 case TargetOpcode::G_UREM: 2102 case TargetOpcode::G_UMIN: 2103 case TargetOpcode::G_UMAX: 2104 Observer.changingInstr(MI); 2105 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2106 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2107 widenScalarDst(MI, WideTy); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 2111 case TargetOpcode::G_UDIVREM: 2112 Observer.changingInstr(MI); 2113 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2114 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2115 widenScalarDst(MI, WideTy); 2116 widenScalarDst(MI, WideTy, 1); 2117 Observer.changedInstr(MI); 2118 return Legalized; 2119 2120 case TargetOpcode::G_SELECT: 2121 Observer.changingInstr(MI); 2122 if (TypeIdx == 0) { 2123 // Perform operation at larger width (any extension is fine here, high 2124 // bits don't affect the result) and then truncate the result back to the 2125 // original type. 2126 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2127 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2128 widenScalarDst(MI, WideTy); 2129 } else { 2130 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2131 // Explicit extension is required here since high bits affect the result. 2132 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2133 } 2134 Observer.changedInstr(MI); 2135 return Legalized; 2136 2137 case TargetOpcode::G_FPTOSI: 2138 case TargetOpcode::G_FPTOUI: 2139 Observer.changingInstr(MI); 2140 2141 if (TypeIdx == 0) 2142 widenScalarDst(MI, WideTy); 2143 else 2144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2145 2146 Observer.changedInstr(MI); 2147 return Legalized; 2148 case TargetOpcode::G_SITOFP: 2149 Observer.changingInstr(MI); 2150 2151 if (TypeIdx == 0) 2152 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2153 else 2154 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2155 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 case TargetOpcode::G_UITOFP: 2159 Observer.changingInstr(MI); 2160 2161 if (TypeIdx == 0) 2162 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2163 else 2164 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2165 2166 Observer.changedInstr(MI); 2167 return Legalized; 2168 case TargetOpcode::G_LOAD: 2169 case TargetOpcode::G_SEXTLOAD: 2170 case TargetOpcode::G_ZEXTLOAD: 2171 Observer.changingInstr(MI); 2172 widenScalarDst(MI, WideTy); 2173 Observer.changedInstr(MI); 2174 return Legalized; 2175 2176 case TargetOpcode::G_STORE: { 2177 if (TypeIdx != 0) 2178 return UnableToLegalize; 2179 2180 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2181 if (!Ty.isScalar()) 2182 return UnableToLegalize; 2183 2184 Observer.changingInstr(MI); 2185 2186 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2187 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2188 widenScalarSrc(MI, WideTy, 0, ExtType); 2189 2190 Observer.changedInstr(MI); 2191 return Legalized; 2192 } 2193 case TargetOpcode::G_CONSTANT: { 2194 MachineOperand &SrcMO = MI.getOperand(1); 2195 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2196 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2197 MRI.getType(MI.getOperand(0).getReg())); 2198 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2199 ExtOpc == TargetOpcode::G_ANYEXT) && 2200 "Illegal Extend"); 2201 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2202 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2203 ? SrcVal.sext(WideTy.getSizeInBits()) 2204 : SrcVal.zext(WideTy.getSizeInBits()); 2205 Observer.changingInstr(MI); 2206 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2207 2208 widenScalarDst(MI, WideTy); 2209 Observer.changedInstr(MI); 2210 return Legalized; 2211 } 2212 case TargetOpcode::G_FCONSTANT: { 2213 MachineOperand &SrcMO = MI.getOperand(1); 2214 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2215 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2216 bool LosesInfo; 2217 switch (WideTy.getSizeInBits()) { 2218 case 32: 2219 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2220 &LosesInfo); 2221 break; 2222 case 64: 2223 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2224 &LosesInfo); 2225 break; 2226 default: 2227 return UnableToLegalize; 2228 } 2229 2230 assert(!LosesInfo && "extend should always be lossless"); 2231 2232 Observer.changingInstr(MI); 2233 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2234 2235 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2236 Observer.changedInstr(MI); 2237 return Legalized; 2238 } 2239 case TargetOpcode::G_IMPLICIT_DEF: { 2240 Observer.changingInstr(MI); 2241 widenScalarDst(MI, WideTy); 2242 Observer.changedInstr(MI); 2243 return Legalized; 2244 } 2245 case TargetOpcode::G_BRCOND: 2246 Observer.changingInstr(MI); 2247 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2248 Observer.changedInstr(MI); 2249 return Legalized; 2250 2251 case TargetOpcode::G_FCMP: 2252 Observer.changingInstr(MI); 2253 if (TypeIdx == 0) 2254 widenScalarDst(MI, WideTy); 2255 else { 2256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2257 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2258 } 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 2262 case TargetOpcode::G_ICMP: 2263 Observer.changingInstr(MI); 2264 if (TypeIdx == 0) 2265 widenScalarDst(MI, WideTy); 2266 else { 2267 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2268 MI.getOperand(1).getPredicate())) 2269 ? TargetOpcode::G_SEXT 2270 : TargetOpcode::G_ZEXT; 2271 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2272 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2273 } 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 2277 case TargetOpcode::G_PTR_ADD: 2278 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2279 Observer.changingInstr(MI); 2280 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 2284 case TargetOpcode::G_PHI: { 2285 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2286 2287 Observer.changingInstr(MI); 2288 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2289 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2290 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2291 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2292 } 2293 2294 MachineBasicBlock &MBB = *MI.getParent(); 2295 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2296 widenScalarDst(MI, WideTy); 2297 Observer.changedInstr(MI); 2298 return Legalized; 2299 } 2300 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2301 if (TypeIdx == 0) { 2302 Register VecReg = MI.getOperand(1).getReg(); 2303 LLT VecTy = MRI.getType(VecReg); 2304 Observer.changingInstr(MI); 2305 2306 widenScalarSrc( 2307 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2308 TargetOpcode::G_SEXT); 2309 2310 widenScalarDst(MI, WideTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 2315 if (TypeIdx != 2) 2316 return UnableToLegalize; 2317 Observer.changingInstr(MI); 2318 // TODO: Probably should be zext 2319 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2320 Observer.changedInstr(MI); 2321 return Legalized; 2322 } 2323 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2324 if (TypeIdx == 1) { 2325 Observer.changingInstr(MI); 2326 2327 Register VecReg = MI.getOperand(1).getReg(); 2328 LLT VecTy = MRI.getType(VecReg); 2329 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2330 2331 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2332 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2333 widenScalarDst(MI, WideVecTy, 0); 2334 Observer.changedInstr(MI); 2335 return Legalized; 2336 } 2337 2338 if (TypeIdx == 2) { 2339 Observer.changingInstr(MI); 2340 // TODO: Probably should be zext 2341 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2342 Observer.changedInstr(MI); 2343 return Legalized; 2344 } 2345 2346 return UnableToLegalize; 2347 } 2348 case TargetOpcode::G_FADD: 2349 case TargetOpcode::G_FMUL: 2350 case TargetOpcode::G_FSUB: 2351 case TargetOpcode::G_FMA: 2352 case TargetOpcode::G_FMAD: 2353 case TargetOpcode::G_FNEG: 2354 case TargetOpcode::G_FABS: 2355 case TargetOpcode::G_FCANONICALIZE: 2356 case TargetOpcode::G_FMINNUM: 2357 case TargetOpcode::G_FMAXNUM: 2358 case TargetOpcode::G_FMINNUM_IEEE: 2359 case TargetOpcode::G_FMAXNUM_IEEE: 2360 case TargetOpcode::G_FMINIMUM: 2361 case TargetOpcode::G_FMAXIMUM: 2362 case TargetOpcode::G_FDIV: 2363 case TargetOpcode::G_FREM: 2364 case TargetOpcode::G_FCEIL: 2365 case TargetOpcode::G_FFLOOR: 2366 case TargetOpcode::G_FCOS: 2367 case TargetOpcode::G_FSIN: 2368 case TargetOpcode::G_FLOG10: 2369 case TargetOpcode::G_FLOG: 2370 case TargetOpcode::G_FLOG2: 2371 case TargetOpcode::G_FRINT: 2372 case TargetOpcode::G_FNEARBYINT: 2373 case TargetOpcode::G_FSQRT: 2374 case TargetOpcode::G_FEXP: 2375 case TargetOpcode::G_FEXP2: 2376 case TargetOpcode::G_FPOW: 2377 case TargetOpcode::G_INTRINSIC_TRUNC: 2378 case TargetOpcode::G_INTRINSIC_ROUND: 2379 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2380 assert(TypeIdx == 0); 2381 Observer.changingInstr(MI); 2382 2383 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2384 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2385 2386 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2387 Observer.changedInstr(MI); 2388 return Legalized; 2389 case TargetOpcode::G_FPOWI: { 2390 if (TypeIdx != 0) 2391 return UnableToLegalize; 2392 Observer.changingInstr(MI); 2393 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2394 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2395 Observer.changedInstr(MI); 2396 return Legalized; 2397 } 2398 case TargetOpcode::G_INTTOPTR: 2399 if (TypeIdx != 1) 2400 return UnableToLegalize; 2401 2402 Observer.changingInstr(MI); 2403 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2404 Observer.changedInstr(MI); 2405 return Legalized; 2406 case TargetOpcode::G_PTRTOINT: 2407 if (TypeIdx != 0) 2408 return UnableToLegalize; 2409 2410 Observer.changingInstr(MI); 2411 widenScalarDst(MI, WideTy, 0); 2412 Observer.changedInstr(MI); 2413 return Legalized; 2414 case TargetOpcode::G_BUILD_VECTOR: { 2415 Observer.changingInstr(MI); 2416 2417 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2418 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2419 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2420 2421 // Avoid changing the result vector type if the source element type was 2422 // requested. 2423 if (TypeIdx == 1) { 2424 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2425 } else { 2426 widenScalarDst(MI, WideTy, 0); 2427 } 2428 2429 Observer.changedInstr(MI); 2430 return Legalized; 2431 } 2432 case TargetOpcode::G_SEXT_INREG: 2433 if (TypeIdx != 0) 2434 return UnableToLegalize; 2435 2436 Observer.changingInstr(MI); 2437 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2438 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2439 Observer.changedInstr(MI); 2440 return Legalized; 2441 case TargetOpcode::G_PTRMASK: { 2442 if (TypeIdx != 1) 2443 return UnableToLegalize; 2444 Observer.changingInstr(MI); 2445 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2446 Observer.changedInstr(MI); 2447 return Legalized; 2448 } 2449 } 2450 } 2451 2452 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2453 MachineIRBuilder &B, Register Src, LLT Ty) { 2454 auto Unmerge = B.buildUnmerge(Ty, Src); 2455 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2456 Pieces.push_back(Unmerge.getReg(I)); 2457 } 2458 2459 LegalizerHelper::LegalizeResult 2460 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2461 Register Dst = MI.getOperand(0).getReg(); 2462 Register Src = MI.getOperand(1).getReg(); 2463 LLT DstTy = MRI.getType(Dst); 2464 LLT SrcTy = MRI.getType(Src); 2465 2466 if (SrcTy.isVector()) { 2467 LLT SrcEltTy = SrcTy.getElementType(); 2468 SmallVector<Register, 8> SrcRegs; 2469 2470 if (DstTy.isVector()) { 2471 int NumDstElt = DstTy.getNumElements(); 2472 int NumSrcElt = SrcTy.getNumElements(); 2473 2474 LLT DstEltTy = DstTy.getElementType(); 2475 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2476 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2477 2478 // If there's an element size mismatch, insert intermediate casts to match 2479 // the result element type. 2480 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2481 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2482 // 2483 // => 2484 // 2485 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2486 // %3:_(<2 x s8>) = G_BITCAST %2 2487 // %4:_(<2 x s8>) = G_BITCAST %3 2488 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2489 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2490 SrcPartTy = SrcEltTy; 2491 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2492 // 2493 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2494 // 2495 // => 2496 // 2497 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2498 // %3:_(s16) = G_BITCAST %2 2499 // %4:_(s16) = G_BITCAST %3 2500 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2501 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2502 DstCastTy = DstEltTy; 2503 } 2504 2505 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2506 for (Register &SrcReg : SrcRegs) 2507 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2508 } else 2509 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2510 2511 MIRBuilder.buildMerge(Dst, SrcRegs); 2512 MI.eraseFromParent(); 2513 return Legalized; 2514 } 2515 2516 if (DstTy.isVector()) { 2517 SmallVector<Register, 8> SrcRegs; 2518 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2519 MIRBuilder.buildMerge(Dst, SrcRegs); 2520 MI.eraseFromParent(); 2521 return Legalized; 2522 } 2523 2524 return UnableToLegalize; 2525 } 2526 2527 /// Figure out the bit offset into a register when coercing a vector index for 2528 /// the wide element type. This is only for the case when promoting vector to 2529 /// one with larger elements. 2530 // 2531 /// 2532 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2533 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2534 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2535 Register Idx, 2536 unsigned NewEltSize, 2537 unsigned OldEltSize) { 2538 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2539 LLT IdxTy = B.getMRI()->getType(Idx); 2540 2541 // Now figure out the amount we need to shift to get the target bits. 2542 auto OffsetMask = B.buildConstant( 2543 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2544 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2545 return B.buildShl(IdxTy, OffsetIdx, 2546 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2547 } 2548 2549 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2550 /// is casting to a vector with a smaller element size, perform multiple element 2551 /// extracts and merge the results. If this is coercing to a vector with larger 2552 /// elements, index the bitcasted vector and extract the target element with bit 2553 /// operations. This is intended to force the indexing in the native register 2554 /// size for architectures that can dynamically index the register file. 2555 LegalizerHelper::LegalizeResult 2556 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2557 LLT CastTy) { 2558 if (TypeIdx != 1) 2559 return UnableToLegalize; 2560 2561 Register Dst = MI.getOperand(0).getReg(); 2562 Register SrcVec = MI.getOperand(1).getReg(); 2563 Register Idx = MI.getOperand(2).getReg(); 2564 LLT SrcVecTy = MRI.getType(SrcVec); 2565 LLT IdxTy = MRI.getType(Idx); 2566 2567 LLT SrcEltTy = SrcVecTy.getElementType(); 2568 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2569 unsigned OldNumElts = SrcVecTy.getNumElements(); 2570 2571 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2572 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2573 2574 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2575 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2576 if (NewNumElts > OldNumElts) { 2577 // Decreasing the vector element size 2578 // 2579 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2580 // => 2581 // v4i32:castx = bitcast x:v2i64 2582 // 2583 // i64 = bitcast 2584 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2585 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2586 // 2587 if (NewNumElts % OldNumElts != 0) 2588 return UnableToLegalize; 2589 2590 // Type of the intermediate result vector. 2591 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2592 LLT MidTy = 2593 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2594 2595 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2596 2597 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2598 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2599 2600 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2601 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2602 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2603 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2604 NewOps[I] = Elt.getReg(0); 2605 } 2606 2607 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2608 MIRBuilder.buildBitcast(Dst, NewVec); 2609 MI.eraseFromParent(); 2610 return Legalized; 2611 } 2612 2613 if (NewNumElts < OldNumElts) { 2614 if (NewEltSize % OldEltSize != 0) 2615 return UnableToLegalize; 2616 2617 // This only depends on powers of 2 because we use bit tricks to figure out 2618 // the bit offset we need to shift to get the target element. A general 2619 // expansion could emit division/multiply. 2620 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2621 return UnableToLegalize; 2622 2623 // Increasing the vector element size. 2624 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2625 // 2626 // => 2627 // 2628 // %cast = G_BITCAST %vec 2629 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2630 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2631 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2632 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2633 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2634 // %elt = G_TRUNC %elt_bits 2635 2636 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2637 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2638 2639 // Divide to get the index in the wider element type. 2640 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2641 2642 Register WideElt = CastVec; 2643 if (CastTy.isVector()) { 2644 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2645 ScaledIdx).getReg(0); 2646 } 2647 2648 // Compute the bit offset into the register of the target element. 2649 Register OffsetBits = getBitcastWiderVectorElementOffset( 2650 MIRBuilder, Idx, NewEltSize, OldEltSize); 2651 2652 // Shift the wide element to get the target element. 2653 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2654 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2655 MI.eraseFromParent(); 2656 return Legalized; 2657 } 2658 2659 return UnableToLegalize; 2660 } 2661 2662 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2663 /// TargetReg, while preserving other bits in \p TargetReg. 2664 /// 2665 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2666 static Register buildBitFieldInsert(MachineIRBuilder &B, 2667 Register TargetReg, Register InsertReg, 2668 Register OffsetBits) { 2669 LLT TargetTy = B.getMRI()->getType(TargetReg); 2670 LLT InsertTy = B.getMRI()->getType(InsertReg); 2671 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2672 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2673 2674 // Produce a bitmask of the value to insert 2675 auto EltMask = B.buildConstant( 2676 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2677 InsertTy.getSizeInBits())); 2678 // Shift it into position 2679 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2680 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2681 2682 // Clear out the bits in the wide element 2683 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2684 2685 // The value to insert has all zeros already, so stick it into the masked 2686 // wide element. 2687 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2688 } 2689 2690 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2691 /// is increasing the element size, perform the indexing in the target element 2692 /// type, and use bit operations to insert at the element position. This is 2693 /// intended for architectures that can dynamically index the register file and 2694 /// want to force indexing in the native register size. 2695 LegalizerHelper::LegalizeResult 2696 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2697 LLT CastTy) { 2698 if (TypeIdx != 0) 2699 return UnableToLegalize; 2700 2701 Register Dst = MI.getOperand(0).getReg(); 2702 Register SrcVec = MI.getOperand(1).getReg(); 2703 Register Val = MI.getOperand(2).getReg(); 2704 Register Idx = MI.getOperand(3).getReg(); 2705 2706 LLT VecTy = MRI.getType(Dst); 2707 LLT IdxTy = MRI.getType(Idx); 2708 2709 LLT VecEltTy = VecTy.getElementType(); 2710 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2711 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2712 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2713 2714 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2715 unsigned OldNumElts = VecTy.getNumElements(); 2716 2717 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2718 if (NewNumElts < OldNumElts) { 2719 if (NewEltSize % OldEltSize != 0) 2720 return UnableToLegalize; 2721 2722 // This only depends on powers of 2 because we use bit tricks to figure out 2723 // the bit offset we need to shift to get the target element. A general 2724 // expansion could emit division/multiply. 2725 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2726 return UnableToLegalize; 2727 2728 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2729 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2730 2731 // Divide to get the index in the wider element type. 2732 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2733 2734 Register ExtractedElt = CastVec; 2735 if (CastTy.isVector()) { 2736 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2737 ScaledIdx).getReg(0); 2738 } 2739 2740 // Compute the bit offset into the register of the target element. 2741 Register OffsetBits = getBitcastWiderVectorElementOffset( 2742 MIRBuilder, Idx, NewEltSize, OldEltSize); 2743 2744 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2745 Val, OffsetBits); 2746 if (CastTy.isVector()) { 2747 InsertedElt = MIRBuilder.buildInsertVectorElement( 2748 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2749 } 2750 2751 MIRBuilder.buildBitcast(Dst, InsertedElt); 2752 MI.eraseFromParent(); 2753 return Legalized; 2754 } 2755 2756 return UnableToLegalize; 2757 } 2758 2759 LegalizerHelper::LegalizeResult 2760 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2761 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2762 Register DstReg = MI.getOperand(0).getReg(); 2763 Register PtrReg = MI.getOperand(1).getReg(); 2764 LLT DstTy = MRI.getType(DstReg); 2765 MachineMemOperand &MMO = **MI.memoperands_begin(); 2766 LLT MemTy = MMO.getMemoryType(); 2767 MachineFunction &MF = MIRBuilder.getMF(); 2768 if (MemTy.isVector()) 2769 return UnableToLegalize; 2770 2771 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2772 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2773 2774 if (MemSizeInBits != MemStoreSizeInBits) { 2775 // Promote to a byte-sized load if not loading an integral number of 2776 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2777 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2778 MachineMemOperand *NewMMO = 2779 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2780 2781 Register LoadReg = DstReg; 2782 LLT LoadTy = DstTy; 2783 2784 // If this wasn't already an extending load, we need to widen the result 2785 // register to avoid creating a load with a narrower result than the source. 2786 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2787 LoadTy = WideMemTy; 2788 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2789 } 2790 2791 if (MI.getOpcode() == TargetOpcode::G_SEXTLOAD) { 2792 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2793 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2794 } else if (MI.getOpcode() == TargetOpcode::G_ZEXTLOAD || 2795 WideMemTy == DstTy) { 2796 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2797 // The extra bits are guaranteed to be zero, since we stored them that 2798 // way. A zext load from Wide thus automatically gives zext from MemVT. 2799 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2800 } else { 2801 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2802 } 2803 2804 if (DstTy != LoadTy) 2805 MIRBuilder.buildTrunc(DstReg, LoadReg); 2806 2807 MI.eraseFromParent(); 2808 return Legalized; 2809 } 2810 2811 if (DstTy.getSizeInBits() != MMO.getSizeInBits()) 2812 return UnableToLegalize; 2813 2814 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2815 // This load needs splitting into power of 2 sized loads. 2816 if (DstTy.isVector()) 2817 return UnableToLegalize; 2818 if (isPowerOf2_32(DstTy.getSizeInBits())) 2819 return UnableToLegalize; // Don't know what we're being asked to do. 2820 2821 // Our strategy here is to generate anyextending loads for the smaller 2822 // types up to next power-2 result type, and then combine the two larger 2823 // result values together, before truncating back down to the non-pow-2 2824 // type. 2825 // E.g. v1 = i24 load => 2826 // v2 = i32 zextload (2 byte) 2827 // v3 = i32 load (1 byte) 2828 // v4 = i32 shl v3, 16 2829 // v5 = i32 or v4, v2 2830 // v1 = i24 trunc v5 2831 // By doing this we generate the correct truncate which should get 2832 // combined away as an artifact with a matching extend. 2833 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2834 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2835 2836 MachineFunction &MF = MIRBuilder.getMF(); 2837 MachineMemOperand *LargeMMO = 2838 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2839 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2840 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2841 2842 LLT PtrTy = MRI.getType(PtrReg); 2843 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2844 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2845 auto LargeLoad = MIRBuilder.buildLoadInstr( 2846 TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO); 2847 2848 auto OffsetCst = MIRBuilder.buildConstant( 2849 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2850 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2851 auto SmallPtr = 2852 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2853 auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr, 2854 *SmallMMO); 2855 2856 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2857 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2858 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2859 MIRBuilder.buildTrunc(DstReg, {Or}); 2860 MI.eraseFromParent(); 2861 return Legalized; 2862 } 2863 2864 return UnableToLegalize; 2865 } 2866 2867 LegalizerHelper::LegalizeResult 2868 LegalizerHelper::lowerStore(MachineInstr &MI) { 2869 // Lower a non-power of 2 store into multiple pow-2 stores. 2870 // E.g. split an i24 store into an i16 store + i8 store. 2871 // We do this by first extending the stored value to the next largest power 2872 // of 2 type, and then using truncating stores to store the components. 2873 // By doing this, likewise with G_LOAD, generate an extend that can be 2874 // artifact-combined away instead of leaving behind extracts. 2875 Register SrcReg = MI.getOperand(0).getReg(); 2876 Register PtrReg = MI.getOperand(1).getReg(); 2877 LLT SrcTy = MRI.getType(SrcReg); 2878 MachineFunction &MF = MIRBuilder.getMF(); 2879 MachineMemOperand &MMO = **MI.memoperands_begin(); 2880 LLT MemTy = MMO.getMemoryType(); 2881 2882 if (SrcTy.isVector()) 2883 return UnableToLegalize; 2884 2885 unsigned StoreWidth = MemTy.getSizeInBits(); 2886 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2887 2888 if (StoreWidth != StoreSizeInBits) { 2889 // Promote to a byte-sized store with upper bits zero if not 2890 // storing an integral number of bytes. For example, promote 2891 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2892 LLT WideTy = LLT::scalar(StoreSizeInBits); 2893 2894 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 2895 // Avoid creating a store with a narrower source than result. 2896 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 2897 SrcTy = WideTy; 2898 } 2899 2900 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 2901 2902 MachineMemOperand *NewMMO = 2903 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 2904 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 2905 MI.eraseFromParent(); 2906 return Legalized; 2907 } 2908 2909 if (isPowerOf2_32(MemTy.getSizeInBits())) 2910 return UnableToLegalize; // Don't know what we're being asked to do. 2911 2912 // Extend to the next pow-2. 2913 const LLT ExtendTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits())); 2914 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2915 2916 // Obtain the smaller value by shifting away the larger value. 2917 uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 2918 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2919 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2920 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2921 2922 // Generate the PtrAdd and truncating stores. 2923 LLT PtrTy = MRI.getType(PtrReg); 2924 auto OffsetCst = MIRBuilder.buildConstant( 2925 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2926 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2927 auto SmallPtr = 2928 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2929 2930 MachineMemOperand *LargeMMO = 2931 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2932 MachineMemOperand *SmallMMO = 2933 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2934 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 2935 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 2936 MI.eraseFromParent(); 2937 return Legalized; 2938 } 2939 2940 LegalizerHelper::LegalizeResult 2941 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2942 switch (MI.getOpcode()) { 2943 case TargetOpcode::G_LOAD: { 2944 if (TypeIdx != 0) 2945 return UnableToLegalize; 2946 2947 Observer.changingInstr(MI); 2948 bitcastDst(MI, CastTy, 0); 2949 Observer.changedInstr(MI); 2950 return Legalized; 2951 } 2952 case TargetOpcode::G_STORE: { 2953 if (TypeIdx != 0) 2954 return UnableToLegalize; 2955 2956 Observer.changingInstr(MI); 2957 bitcastSrc(MI, CastTy, 0); 2958 Observer.changedInstr(MI); 2959 return Legalized; 2960 } 2961 case TargetOpcode::G_SELECT: { 2962 if (TypeIdx != 0) 2963 return UnableToLegalize; 2964 2965 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2966 LLVM_DEBUG( 2967 dbgs() << "bitcast action not implemented for vector select\n"); 2968 return UnableToLegalize; 2969 } 2970 2971 Observer.changingInstr(MI); 2972 bitcastSrc(MI, CastTy, 2); 2973 bitcastSrc(MI, CastTy, 3); 2974 bitcastDst(MI, CastTy, 0); 2975 Observer.changedInstr(MI); 2976 return Legalized; 2977 } 2978 case TargetOpcode::G_AND: 2979 case TargetOpcode::G_OR: 2980 case TargetOpcode::G_XOR: { 2981 Observer.changingInstr(MI); 2982 bitcastSrc(MI, CastTy, 1); 2983 bitcastSrc(MI, CastTy, 2); 2984 bitcastDst(MI, CastTy, 0); 2985 Observer.changedInstr(MI); 2986 return Legalized; 2987 } 2988 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2989 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2990 case TargetOpcode::G_INSERT_VECTOR_ELT: 2991 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2992 default: 2993 return UnableToLegalize; 2994 } 2995 } 2996 2997 // Legalize an instruction by changing the opcode in place. 2998 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2999 Observer.changingInstr(MI); 3000 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3001 Observer.changedInstr(MI); 3002 } 3003 3004 LegalizerHelper::LegalizeResult 3005 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3006 using namespace TargetOpcode; 3007 3008 switch(MI.getOpcode()) { 3009 default: 3010 return UnableToLegalize; 3011 case TargetOpcode::G_BITCAST: 3012 return lowerBitcast(MI); 3013 case TargetOpcode::G_SREM: 3014 case TargetOpcode::G_UREM: { 3015 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3016 auto Quot = 3017 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3018 {MI.getOperand(1), MI.getOperand(2)}); 3019 3020 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3021 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3022 MI.eraseFromParent(); 3023 return Legalized; 3024 } 3025 case TargetOpcode::G_SADDO: 3026 case TargetOpcode::G_SSUBO: 3027 return lowerSADDO_SSUBO(MI); 3028 case TargetOpcode::G_UMULH: 3029 case TargetOpcode::G_SMULH: 3030 return lowerSMULH_UMULH(MI); 3031 case TargetOpcode::G_SMULO: 3032 case TargetOpcode::G_UMULO: { 3033 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3034 // result. 3035 Register Res = MI.getOperand(0).getReg(); 3036 Register Overflow = MI.getOperand(1).getReg(); 3037 Register LHS = MI.getOperand(2).getReg(); 3038 Register RHS = MI.getOperand(3).getReg(); 3039 LLT Ty = MRI.getType(Res); 3040 3041 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3042 ? TargetOpcode::G_SMULH 3043 : TargetOpcode::G_UMULH; 3044 3045 Observer.changingInstr(MI); 3046 const auto &TII = MIRBuilder.getTII(); 3047 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3048 MI.RemoveOperand(1); 3049 Observer.changedInstr(MI); 3050 3051 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3052 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3053 3054 // Move insert point forward so we can use the Res register if needed. 3055 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3056 3057 // For *signed* multiply, overflow is detected by checking: 3058 // (hi != (lo >> bitwidth-1)) 3059 if (Opcode == TargetOpcode::G_SMULH) { 3060 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3061 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3062 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3063 } else { 3064 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3065 } 3066 return Legalized; 3067 } 3068 case TargetOpcode::G_FNEG: { 3069 Register Res = MI.getOperand(0).getReg(); 3070 LLT Ty = MRI.getType(Res); 3071 3072 // TODO: Handle vector types once we are able to 3073 // represent them. 3074 if (Ty.isVector()) 3075 return UnableToLegalize; 3076 auto SignMask = 3077 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3078 Register SubByReg = MI.getOperand(1).getReg(); 3079 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3080 MI.eraseFromParent(); 3081 return Legalized; 3082 } 3083 case TargetOpcode::G_FSUB: { 3084 Register Res = MI.getOperand(0).getReg(); 3085 LLT Ty = MRI.getType(Res); 3086 3087 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3088 // First, check if G_FNEG is marked as Lower. If so, we may 3089 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3090 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3091 return UnableToLegalize; 3092 Register LHS = MI.getOperand(1).getReg(); 3093 Register RHS = MI.getOperand(2).getReg(); 3094 Register Neg = MRI.createGenericVirtualRegister(Ty); 3095 MIRBuilder.buildFNeg(Neg, RHS); 3096 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3097 MI.eraseFromParent(); 3098 return Legalized; 3099 } 3100 case TargetOpcode::G_FMAD: 3101 return lowerFMad(MI); 3102 case TargetOpcode::G_FFLOOR: 3103 return lowerFFloor(MI); 3104 case TargetOpcode::G_INTRINSIC_ROUND: 3105 return lowerIntrinsicRound(MI); 3106 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3107 // Since round even is the assumed rounding mode for unconstrained FP 3108 // operations, rint and roundeven are the same operation. 3109 changeOpcode(MI, TargetOpcode::G_FRINT); 3110 return Legalized; 3111 } 3112 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3113 Register OldValRes = MI.getOperand(0).getReg(); 3114 Register SuccessRes = MI.getOperand(1).getReg(); 3115 Register Addr = MI.getOperand(2).getReg(); 3116 Register CmpVal = MI.getOperand(3).getReg(); 3117 Register NewVal = MI.getOperand(4).getReg(); 3118 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3119 **MI.memoperands_begin()); 3120 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3121 MI.eraseFromParent(); 3122 return Legalized; 3123 } 3124 case TargetOpcode::G_LOAD: 3125 case TargetOpcode::G_SEXTLOAD: 3126 case TargetOpcode::G_ZEXTLOAD: 3127 return lowerLoad(MI); 3128 case TargetOpcode::G_STORE: 3129 return lowerStore(MI); 3130 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3131 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3132 case TargetOpcode::G_CTLZ: 3133 case TargetOpcode::G_CTTZ: 3134 case TargetOpcode::G_CTPOP: 3135 return lowerBitCount(MI); 3136 case G_UADDO: { 3137 Register Res = MI.getOperand(0).getReg(); 3138 Register CarryOut = MI.getOperand(1).getReg(); 3139 Register LHS = MI.getOperand(2).getReg(); 3140 Register RHS = MI.getOperand(3).getReg(); 3141 3142 MIRBuilder.buildAdd(Res, LHS, RHS); 3143 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3144 3145 MI.eraseFromParent(); 3146 return Legalized; 3147 } 3148 case G_UADDE: { 3149 Register Res = MI.getOperand(0).getReg(); 3150 Register CarryOut = MI.getOperand(1).getReg(); 3151 Register LHS = MI.getOperand(2).getReg(); 3152 Register RHS = MI.getOperand(3).getReg(); 3153 Register CarryIn = MI.getOperand(4).getReg(); 3154 LLT Ty = MRI.getType(Res); 3155 3156 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3157 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3158 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3159 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3160 3161 MI.eraseFromParent(); 3162 return Legalized; 3163 } 3164 case G_USUBO: { 3165 Register Res = MI.getOperand(0).getReg(); 3166 Register BorrowOut = MI.getOperand(1).getReg(); 3167 Register LHS = MI.getOperand(2).getReg(); 3168 Register RHS = MI.getOperand(3).getReg(); 3169 3170 MIRBuilder.buildSub(Res, LHS, RHS); 3171 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3172 3173 MI.eraseFromParent(); 3174 return Legalized; 3175 } 3176 case G_USUBE: { 3177 Register Res = MI.getOperand(0).getReg(); 3178 Register BorrowOut = MI.getOperand(1).getReg(); 3179 Register LHS = MI.getOperand(2).getReg(); 3180 Register RHS = MI.getOperand(3).getReg(); 3181 Register BorrowIn = MI.getOperand(4).getReg(); 3182 const LLT CondTy = MRI.getType(BorrowOut); 3183 const LLT Ty = MRI.getType(Res); 3184 3185 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3186 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3187 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3188 3189 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3190 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3191 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3192 3193 MI.eraseFromParent(); 3194 return Legalized; 3195 } 3196 case G_UITOFP: 3197 return lowerUITOFP(MI); 3198 case G_SITOFP: 3199 return lowerSITOFP(MI); 3200 case G_FPTOUI: 3201 return lowerFPTOUI(MI); 3202 case G_FPTOSI: 3203 return lowerFPTOSI(MI); 3204 case G_FPTRUNC: 3205 return lowerFPTRUNC(MI); 3206 case G_FPOWI: 3207 return lowerFPOWI(MI); 3208 case G_SMIN: 3209 case G_SMAX: 3210 case G_UMIN: 3211 case G_UMAX: 3212 return lowerMinMax(MI); 3213 case G_FCOPYSIGN: 3214 return lowerFCopySign(MI); 3215 case G_FMINNUM: 3216 case G_FMAXNUM: 3217 return lowerFMinNumMaxNum(MI); 3218 case G_MERGE_VALUES: 3219 return lowerMergeValues(MI); 3220 case G_UNMERGE_VALUES: 3221 return lowerUnmergeValues(MI); 3222 case TargetOpcode::G_SEXT_INREG: { 3223 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3224 int64_t SizeInBits = MI.getOperand(2).getImm(); 3225 3226 Register DstReg = MI.getOperand(0).getReg(); 3227 Register SrcReg = MI.getOperand(1).getReg(); 3228 LLT DstTy = MRI.getType(DstReg); 3229 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3230 3231 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3232 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3233 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3234 MI.eraseFromParent(); 3235 return Legalized; 3236 } 3237 case G_EXTRACT_VECTOR_ELT: 3238 case G_INSERT_VECTOR_ELT: 3239 return lowerExtractInsertVectorElt(MI); 3240 case G_SHUFFLE_VECTOR: 3241 return lowerShuffleVector(MI); 3242 case G_DYN_STACKALLOC: 3243 return lowerDynStackAlloc(MI); 3244 case G_EXTRACT: 3245 return lowerExtract(MI); 3246 case G_INSERT: 3247 return lowerInsert(MI); 3248 case G_BSWAP: 3249 return lowerBswap(MI); 3250 case G_BITREVERSE: 3251 return lowerBitreverse(MI); 3252 case G_READ_REGISTER: 3253 case G_WRITE_REGISTER: 3254 return lowerReadWriteRegister(MI); 3255 case G_UADDSAT: 3256 case G_USUBSAT: { 3257 // Try to make a reasonable guess about which lowering strategy to use. The 3258 // target can override this with custom lowering and calling the 3259 // implementation functions. 3260 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3261 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3262 return lowerAddSubSatToMinMax(MI); 3263 return lowerAddSubSatToAddoSubo(MI); 3264 } 3265 case G_SADDSAT: 3266 case G_SSUBSAT: { 3267 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3268 3269 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3270 // since it's a shorter expansion. However, we would need to figure out the 3271 // preferred boolean type for the carry out for the query. 3272 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3273 return lowerAddSubSatToMinMax(MI); 3274 return lowerAddSubSatToAddoSubo(MI); 3275 } 3276 case G_SSHLSAT: 3277 case G_USHLSAT: 3278 return lowerShlSat(MI); 3279 case G_ABS: 3280 return lowerAbsToAddXor(MI); 3281 case G_SELECT: 3282 return lowerSelect(MI); 3283 case G_SDIVREM: 3284 case G_UDIVREM: 3285 return lowerDIVREM(MI); 3286 case G_FSHL: 3287 case G_FSHR: 3288 return lowerFunnelShift(MI); 3289 case G_ROTL: 3290 case G_ROTR: 3291 return lowerRotate(MI); 3292 } 3293 } 3294 3295 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3296 Align MinAlign) const { 3297 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3298 // datalayout for the preferred alignment. Also there should be a target hook 3299 // for this to allow targets to reduce the alignment and ignore the 3300 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3301 // the type. 3302 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3303 } 3304 3305 MachineInstrBuilder 3306 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3307 MachinePointerInfo &PtrInfo) { 3308 MachineFunction &MF = MIRBuilder.getMF(); 3309 const DataLayout &DL = MIRBuilder.getDataLayout(); 3310 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3311 3312 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3313 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3314 3315 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3316 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3317 } 3318 3319 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3320 LLT VecTy) { 3321 int64_t IdxVal; 3322 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3323 return IdxReg; 3324 3325 LLT IdxTy = B.getMRI()->getType(IdxReg); 3326 unsigned NElts = VecTy.getNumElements(); 3327 if (isPowerOf2_32(NElts)) { 3328 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3329 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3330 } 3331 3332 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3333 .getReg(0); 3334 } 3335 3336 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3337 Register Index) { 3338 LLT EltTy = VecTy.getElementType(); 3339 3340 // Calculate the element offset and add it to the pointer. 3341 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3342 assert(EltSize * 8 == EltTy.getSizeInBits() && 3343 "Converting bits to bytes lost precision"); 3344 3345 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3346 3347 LLT IdxTy = MRI.getType(Index); 3348 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3349 MIRBuilder.buildConstant(IdxTy, EltSize)); 3350 3351 LLT PtrTy = MRI.getType(VecPtr); 3352 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3353 } 3354 3355 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3356 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3357 Register DstReg = MI.getOperand(0).getReg(); 3358 LLT DstTy = MRI.getType(DstReg); 3359 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3360 3361 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3362 3363 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3364 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3365 3366 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3367 MI.eraseFromParent(); 3368 return Legalized; 3369 } 3370 3371 // Handle splitting vector operations which need to have the same number of 3372 // elements in each type index, but each type index may have a different element 3373 // type. 3374 // 3375 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3376 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3377 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3378 // 3379 // Also handles some irregular breakdown cases, e.g. 3380 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3381 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3382 // s64 = G_SHL s64, s32 3383 LegalizerHelper::LegalizeResult 3384 LegalizerHelper::fewerElementsVectorMultiEltType( 3385 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3386 if (TypeIdx != 0) 3387 return UnableToLegalize; 3388 3389 const LLT NarrowTy0 = NarrowTyArg; 3390 const Register DstReg = MI.getOperand(0).getReg(); 3391 LLT DstTy = MRI.getType(DstReg); 3392 LLT LeftoverTy0; 3393 3394 // All of the operands need to have the same number of elements, so if we can 3395 // determine a type breakdown for the result type, we can for all of the 3396 // source types. 3397 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3398 if (NumParts < 0) 3399 return UnableToLegalize; 3400 3401 SmallVector<MachineInstrBuilder, 4> NewInsts; 3402 3403 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3404 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3405 3406 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3407 Register SrcReg = MI.getOperand(I).getReg(); 3408 LLT SrcTyI = MRI.getType(SrcReg); 3409 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3410 : ElementCount::getFixed(1); 3411 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3412 LLT LeftoverTyI; 3413 3414 // Split this operand into the requested typed registers, and any leftover 3415 // required to reproduce the original type. 3416 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3417 LeftoverRegs)) 3418 return UnableToLegalize; 3419 3420 if (I == 1) { 3421 // For the first operand, create an instruction for each part and setup 3422 // the result. 3423 for (Register PartReg : PartRegs) { 3424 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3425 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3426 .addDef(PartDstReg) 3427 .addUse(PartReg)); 3428 DstRegs.push_back(PartDstReg); 3429 } 3430 3431 for (Register LeftoverReg : LeftoverRegs) { 3432 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3433 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3434 .addDef(PartDstReg) 3435 .addUse(LeftoverReg)); 3436 LeftoverDstRegs.push_back(PartDstReg); 3437 } 3438 } else { 3439 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3440 3441 // Add the newly created operand splits to the existing instructions. The 3442 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3443 // pieces. 3444 unsigned InstCount = 0; 3445 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3446 NewInsts[InstCount++].addUse(PartRegs[J]); 3447 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3448 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3449 } 3450 3451 PartRegs.clear(); 3452 LeftoverRegs.clear(); 3453 } 3454 3455 // Insert the newly built operations and rebuild the result register. 3456 for (auto &MIB : NewInsts) 3457 MIRBuilder.insertInstr(MIB); 3458 3459 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3460 3461 MI.eraseFromParent(); 3462 return Legalized; 3463 } 3464 3465 LegalizerHelper::LegalizeResult 3466 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3467 LLT NarrowTy) { 3468 if (TypeIdx != 0) 3469 return UnableToLegalize; 3470 3471 Register DstReg = MI.getOperand(0).getReg(); 3472 Register SrcReg = MI.getOperand(1).getReg(); 3473 LLT DstTy = MRI.getType(DstReg); 3474 LLT SrcTy = MRI.getType(SrcReg); 3475 3476 LLT NarrowTy0 = NarrowTy; 3477 LLT NarrowTy1; 3478 unsigned NumParts; 3479 3480 if (NarrowTy.isVector()) { 3481 // Uneven breakdown not handled. 3482 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3483 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3484 return UnableToLegalize; 3485 3486 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3487 } else { 3488 NumParts = DstTy.getNumElements(); 3489 NarrowTy1 = SrcTy.getElementType(); 3490 } 3491 3492 SmallVector<Register, 4> SrcRegs, DstRegs; 3493 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3494 3495 for (unsigned I = 0; I < NumParts; ++I) { 3496 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3497 MachineInstr *NewInst = 3498 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3499 3500 NewInst->setFlags(MI.getFlags()); 3501 DstRegs.push_back(DstReg); 3502 } 3503 3504 if (NarrowTy.isVector()) 3505 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3506 else 3507 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3508 3509 MI.eraseFromParent(); 3510 return Legalized; 3511 } 3512 3513 LegalizerHelper::LegalizeResult 3514 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3515 LLT NarrowTy) { 3516 Register DstReg = MI.getOperand(0).getReg(); 3517 Register Src0Reg = MI.getOperand(2).getReg(); 3518 LLT DstTy = MRI.getType(DstReg); 3519 LLT SrcTy = MRI.getType(Src0Reg); 3520 3521 unsigned NumParts; 3522 LLT NarrowTy0, NarrowTy1; 3523 3524 if (TypeIdx == 0) { 3525 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3526 unsigned OldElts = DstTy.getNumElements(); 3527 3528 NarrowTy0 = NarrowTy; 3529 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3530 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3531 SrcTy.getScalarSizeInBits()) 3532 : SrcTy.getElementType(); 3533 3534 } else { 3535 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3536 unsigned OldElts = SrcTy.getNumElements(); 3537 3538 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3539 NarrowTy.getNumElements(); 3540 NarrowTy0 = 3541 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3542 NarrowTy1 = NarrowTy; 3543 } 3544 3545 // FIXME: Don't know how to handle the situation where the small vectors 3546 // aren't all the same size yet. 3547 if (NarrowTy1.isVector() && 3548 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3549 return UnableToLegalize; 3550 3551 CmpInst::Predicate Pred 3552 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3553 3554 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3555 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3556 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3557 3558 for (unsigned I = 0; I < NumParts; ++I) { 3559 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3560 DstRegs.push_back(DstReg); 3561 3562 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3563 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3564 else { 3565 MachineInstr *NewCmp 3566 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3567 NewCmp->setFlags(MI.getFlags()); 3568 } 3569 } 3570 3571 if (NarrowTy1.isVector()) 3572 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3573 else 3574 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3575 3576 MI.eraseFromParent(); 3577 return Legalized; 3578 } 3579 3580 LegalizerHelper::LegalizeResult 3581 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3582 LLT NarrowTy) { 3583 Register DstReg = MI.getOperand(0).getReg(); 3584 Register CondReg = MI.getOperand(1).getReg(); 3585 3586 unsigned NumParts = 0; 3587 LLT NarrowTy0, NarrowTy1; 3588 3589 LLT DstTy = MRI.getType(DstReg); 3590 LLT CondTy = MRI.getType(CondReg); 3591 unsigned Size = DstTy.getSizeInBits(); 3592 3593 assert(TypeIdx == 0 || CondTy.isVector()); 3594 3595 if (TypeIdx == 0) { 3596 NarrowTy0 = NarrowTy; 3597 NarrowTy1 = CondTy; 3598 3599 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3600 // FIXME: Don't know how to handle the situation where the small vectors 3601 // aren't all the same size yet. 3602 if (Size % NarrowSize != 0) 3603 return UnableToLegalize; 3604 3605 NumParts = Size / NarrowSize; 3606 3607 // Need to break down the condition type 3608 if (CondTy.isVector()) { 3609 if (CondTy.getNumElements() == NumParts) 3610 NarrowTy1 = CondTy.getElementType(); 3611 else 3612 NarrowTy1 = 3613 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3614 CondTy.getScalarSizeInBits()); 3615 } 3616 } else { 3617 NumParts = CondTy.getNumElements(); 3618 if (NarrowTy.isVector()) { 3619 // TODO: Handle uneven breakdown. 3620 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3621 return UnableToLegalize; 3622 3623 return UnableToLegalize; 3624 } else { 3625 NarrowTy0 = DstTy.getElementType(); 3626 NarrowTy1 = NarrowTy; 3627 } 3628 } 3629 3630 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3631 if (CondTy.isVector()) 3632 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3633 3634 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3635 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3636 3637 for (unsigned i = 0; i < NumParts; ++i) { 3638 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3639 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3640 Src1Regs[i], Src2Regs[i]); 3641 DstRegs.push_back(DstReg); 3642 } 3643 3644 if (NarrowTy0.isVector()) 3645 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3646 else 3647 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3648 3649 MI.eraseFromParent(); 3650 return Legalized; 3651 } 3652 3653 LegalizerHelper::LegalizeResult 3654 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3655 LLT NarrowTy) { 3656 const Register DstReg = MI.getOperand(0).getReg(); 3657 LLT PhiTy = MRI.getType(DstReg); 3658 LLT LeftoverTy; 3659 3660 // All of the operands need to have the same number of elements, so if we can 3661 // determine a type breakdown for the result type, we can for all of the 3662 // source types. 3663 int NumParts, NumLeftover; 3664 std::tie(NumParts, NumLeftover) 3665 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3666 if (NumParts < 0) 3667 return UnableToLegalize; 3668 3669 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3670 SmallVector<MachineInstrBuilder, 4> NewInsts; 3671 3672 const int TotalNumParts = NumParts + NumLeftover; 3673 3674 // Insert the new phis in the result block first. 3675 for (int I = 0; I != TotalNumParts; ++I) { 3676 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3677 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3678 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3679 .addDef(PartDstReg)); 3680 if (I < NumParts) 3681 DstRegs.push_back(PartDstReg); 3682 else 3683 LeftoverDstRegs.push_back(PartDstReg); 3684 } 3685 3686 MachineBasicBlock *MBB = MI.getParent(); 3687 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3688 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3689 3690 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3691 3692 // Insert code to extract the incoming values in each predecessor block. 3693 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3694 PartRegs.clear(); 3695 LeftoverRegs.clear(); 3696 3697 Register SrcReg = MI.getOperand(I).getReg(); 3698 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3699 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3700 3701 LLT Unused; 3702 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3703 LeftoverRegs)) 3704 return UnableToLegalize; 3705 3706 // Add the newly created operand splits to the existing instructions. The 3707 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3708 // pieces. 3709 for (int J = 0; J != TotalNumParts; ++J) { 3710 MachineInstrBuilder MIB = NewInsts[J]; 3711 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3712 MIB.addMBB(&OpMBB); 3713 } 3714 } 3715 3716 MI.eraseFromParent(); 3717 return Legalized; 3718 } 3719 3720 LegalizerHelper::LegalizeResult 3721 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3722 unsigned TypeIdx, 3723 LLT NarrowTy) { 3724 if (TypeIdx != 1) 3725 return UnableToLegalize; 3726 3727 const int NumDst = MI.getNumOperands() - 1; 3728 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3729 LLT SrcTy = MRI.getType(SrcReg); 3730 3731 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3732 3733 // TODO: Create sequence of extracts. 3734 if (DstTy == NarrowTy) 3735 return UnableToLegalize; 3736 3737 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3738 if (DstTy == GCDTy) { 3739 // This would just be a copy of the same unmerge. 3740 // TODO: Create extracts, pad with undef and create intermediate merges. 3741 return UnableToLegalize; 3742 } 3743 3744 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3745 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3746 const int PartsPerUnmerge = NumDst / NumUnmerge; 3747 3748 for (int I = 0; I != NumUnmerge; ++I) { 3749 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3750 3751 for (int J = 0; J != PartsPerUnmerge; ++J) 3752 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3753 MIB.addUse(Unmerge.getReg(I)); 3754 } 3755 3756 MI.eraseFromParent(); 3757 return Legalized; 3758 } 3759 3760 LegalizerHelper::LegalizeResult 3761 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3762 LLT NarrowTy) { 3763 Register Result = MI.getOperand(0).getReg(); 3764 Register Overflow = MI.getOperand(1).getReg(); 3765 Register LHS = MI.getOperand(2).getReg(); 3766 Register RHS = MI.getOperand(3).getReg(); 3767 3768 LLT SrcTy = MRI.getType(LHS); 3769 if (!SrcTy.isVector()) 3770 return UnableToLegalize; 3771 3772 LLT ElementType = SrcTy.getElementType(); 3773 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3774 const ElementCount NumResult = SrcTy.getElementCount(); 3775 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3776 3777 // Unmerge the operands to smaller parts of GCD type. 3778 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3779 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3780 3781 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3782 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3783 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3784 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3785 3786 // Perform the operation over unmerged parts. 3787 SmallVector<Register, 8> ResultParts; 3788 SmallVector<Register, 8> OverflowParts; 3789 for (int I = 0; I != NumOps; ++I) { 3790 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3791 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3792 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3793 {Operand1, Operand2}); 3794 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3795 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3796 } 3797 3798 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3799 LLT OverflowLCMTy = 3800 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 3801 3802 // Recombine the pieces to the original result and overflow registers. 3803 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3804 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3805 MI.eraseFromParent(); 3806 return Legalized; 3807 } 3808 3809 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3810 // a vector 3811 // 3812 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3813 // undef as necessary. 3814 // 3815 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3816 // -> <2 x s16> 3817 // 3818 // %4:_(s16) = G_IMPLICIT_DEF 3819 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3820 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3821 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3822 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3823 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3824 LegalizerHelper::LegalizeResult 3825 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3826 LLT NarrowTy) { 3827 Register DstReg = MI.getOperand(0).getReg(); 3828 LLT DstTy = MRI.getType(DstReg); 3829 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3830 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3831 3832 // Break into a common type 3833 SmallVector<Register, 16> Parts; 3834 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3835 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3836 3837 // Build the requested new merge, padding with undef. 3838 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3839 TargetOpcode::G_ANYEXT); 3840 3841 // Pack into the original result register. 3842 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3843 3844 MI.eraseFromParent(); 3845 return Legalized; 3846 } 3847 3848 LegalizerHelper::LegalizeResult 3849 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3850 unsigned TypeIdx, 3851 LLT NarrowVecTy) { 3852 Register DstReg = MI.getOperand(0).getReg(); 3853 Register SrcVec = MI.getOperand(1).getReg(); 3854 Register InsertVal; 3855 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3856 3857 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3858 if (IsInsert) 3859 InsertVal = MI.getOperand(2).getReg(); 3860 3861 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3862 3863 // TODO: Handle total scalarization case. 3864 if (!NarrowVecTy.isVector()) 3865 return UnableToLegalize; 3866 3867 LLT VecTy = MRI.getType(SrcVec); 3868 3869 // If the index is a constant, we can really break this down as you would 3870 // expect, and index into the target size pieces. 3871 int64_t IdxVal; 3872 auto MaybeCst = 3873 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 3874 /*HandleFConstants*/ false); 3875 if (MaybeCst) { 3876 IdxVal = MaybeCst->Value.getSExtValue(); 3877 // Avoid out of bounds indexing the pieces. 3878 if (IdxVal >= VecTy.getNumElements()) { 3879 MIRBuilder.buildUndef(DstReg); 3880 MI.eraseFromParent(); 3881 return Legalized; 3882 } 3883 3884 SmallVector<Register, 8> VecParts; 3885 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3886 3887 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3888 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3889 TargetOpcode::G_ANYEXT); 3890 3891 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3892 3893 LLT IdxTy = MRI.getType(Idx); 3894 int64_t PartIdx = IdxVal / NewNumElts; 3895 auto NewIdx = 3896 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3897 3898 if (IsInsert) { 3899 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3900 3901 // Use the adjusted index to insert into one of the subvectors. 3902 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3903 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3904 VecParts[PartIdx] = InsertPart.getReg(0); 3905 3906 // Recombine the inserted subvector with the others to reform the result 3907 // vector. 3908 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3909 } else { 3910 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3911 } 3912 3913 MI.eraseFromParent(); 3914 return Legalized; 3915 } 3916 3917 // With a variable index, we can't perform the operation in a smaller type, so 3918 // we're forced to expand this. 3919 // 3920 // TODO: We could emit a chain of compare/select to figure out which piece to 3921 // index. 3922 return lowerExtractInsertVectorElt(MI); 3923 } 3924 3925 LegalizerHelper::LegalizeResult 3926 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3927 LLT NarrowTy) { 3928 // FIXME: Don't know how to handle secondary types yet. 3929 if (TypeIdx != 0) 3930 return UnableToLegalize; 3931 3932 MachineMemOperand *MMO = *MI.memoperands_begin(); 3933 3934 // This implementation doesn't work for atomics. Give up instead of doing 3935 // something invalid. 3936 if (MMO->isAtomic()) 3937 return UnableToLegalize; 3938 3939 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3940 Register ValReg = MI.getOperand(0).getReg(); 3941 Register AddrReg = MI.getOperand(1).getReg(); 3942 LLT ValTy = MRI.getType(ValReg); 3943 3944 // FIXME: Do we need a distinct NarrowMemory legalize action? 3945 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3946 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3947 return UnableToLegalize; 3948 } 3949 3950 int NumParts = -1; 3951 int NumLeftover = -1; 3952 LLT LeftoverTy; 3953 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3954 if (IsLoad) { 3955 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3956 } else { 3957 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3958 NarrowLeftoverRegs)) { 3959 NumParts = NarrowRegs.size(); 3960 NumLeftover = NarrowLeftoverRegs.size(); 3961 } 3962 } 3963 3964 if (NumParts == -1) 3965 return UnableToLegalize; 3966 3967 LLT PtrTy = MRI.getType(AddrReg); 3968 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3969 3970 unsigned TotalSize = ValTy.getSizeInBits(); 3971 3972 // Split the load/store into PartTy sized pieces starting at Offset. If this 3973 // is a load, return the new registers in ValRegs. For a store, each elements 3974 // of ValRegs should be PartTy. Returns the next offset that needs to be 3975 // handled. 3976 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3977 unsigned Offset) -> unsigned { 3978 MachineFunction &MF = MIRBuilder.getMF(); 3979 unsigned PartSize = PartTy.getSizeInBits(); 3980 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3981 Offset += PartSize, ++Idx) { 3982 unsigned ByteOffset = Offset / 8; 3983 Register NewAddrReg; 3984 3985 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3986 3987 MachineMemOperand *NewMMO = 3988 MF.getMachineMemOperand(MMO, ByteOffset, PartTy); 3989 3990 if (IsLoad) { 3991 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3992 ValRegs.push_back(Dst); 3993 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3994 } else { 3995 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3996 } 3997 } 3998 3999 return Offset; 4000 }; 4001 4002 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4003 4004 // Handle the rest of the register if this isn't an even type breakdown. 4005 if (LeftoverTy.isValid()) 4006 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4007 4008 if (IsLoad) { 4009 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4010 LeftoverTy, NarrowLeftoverRegs); 4011 } 4012 4013 MI.eraseFromParent(); 4014 return Legalized; 4015 } 4016 4017 LegalizerHelper::LegalizeResult 4018 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 4019 LLT NarrowTy) { 4020 assert(TypeIdx == 0 && "only one type index expected"); 4021 4022 const unsigned Opc = MI.getOpcode(); 4023 const int NumDefOps = MI.getNumExplicitDefs(); 4024 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 4025 const unsigned Flags = MI.getFlags(); 4026 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 4027 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 4028 4029 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 4030 "result and 1-3 sources or 2 results and " 4031 "1-2 sources"); 4032 4033 SmallVector<Register, 2> DstRegs; 4034 for (int I = 0; I < NumDefOps; ++I) 4035 DstRegs.push_back(MI.getOperand(I).getReg()); 4036 4037 // First of all check whether we are narrowing (changing the element type) 4038 // or reducing the vector elements 4039 const LLT DstTy = MRI.getType(DstRegs[0]); 4040 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 4041 4042 SmallVector<Register, 8> ExtractedRegs[3]; 4043 SmallVector<Register, 8> Parts; 4044 4045 // Break down all the sources into NarrowTy pieces we can operate on. This may 4046 // involve creating merges to a wider type, padded with undef. 4047 for (int I = 0; I != NumSrcOps; ++I) { 4048 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 4049 LLT SrcTy = MRI.getType(SrcReg); 4050 4051 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4052 // For fewerElements, this is a smaller vector with the same element type. 4053 LLT OpNarrowTy; 4054 if (IsNarrow) { 4055 OpNarrowTy = NarrowScalarTy; 4056 4057 // In case of narrowing, we need to cast vectors to scalars for this to 4058 // work properly 4059 // FIXME: Can we do without the bitcast here if we're narrowing? 4060 if (SrcTy.isVector()) { 4061 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4062 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4063 } 4064 } else { 4065 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 4066 : ElementCount::getFixed(1); 4067 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4068 } 4069 4070 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4071 4072 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4073 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4074 TargetOpcode::G_ANYEXT); 4075 } 4076 4077 SmallVector<Register, 8> ResultRegs[2]; 4078 4079 // Input operands for each sub-instruction. 4080 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4081 4082 int NumParts = ExtractedRegs[0].size(); 4083 const unsigned DstSize = DstTy.getSizeInBits(); 4084 const LLT DstScalarTy = LLT::scalar(DstSize); 4085 4086 // Narrowing needs to use scalar types 4087 LLT DstLCMTy, NarrowDstTy; 4088 if (IsNarrow) { 4089 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4090 NarrowDstTy = NarrowScalarTy; 4091 } else { 4092 DstLCMTy = getLCMType(DstTy, NarrowTy); 4093 NarrowDstTy = NarrowTy; 4094 } 4095 4096 // We widened the source registers to satisfy merge/unmerge size 4097 // constraints. We'll have some extra fully undef parts. 4098 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4099 4100 for (int I = 0; I != NumRealParts; ++I) { 4101 // Emit this instruction on each of the split pieces. 4102 for (int J = 0; J != NumSrcOps; ++J) 4103 InputRegs[J] = ExtractedRegs[J][I]; 4104 4105 MachineInstrBuilder Inst; 4106 if (NumDefOps == 1) 4107 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4108 else 4109 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4110 Flags); 4111 4112 for (int J = 0; J != NumDefOps; ++J) 4113 ResultRegs[J].push_back(Inst.getReg(J)); 4114 } 4115 4116 // Fill out the widened result with undef instead of creating instructions 4117 // with undef inputs. 4118 int NumUndefParts = NumParts - NumRealParts; 4119 if (NumUndefParts != 0) { 4120 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4121 for (int I = 0; I != NumDefOps; ++I) 4122 ResultRegs[I].append(NumUndefParts, Undef); 4123 } 4124 4125 // Extract the possibly padded result. Use a scratch register if we need to do 4126 // a final bitcast, otherwise use the original result register. 4127 Register MergeDstReg; 4128 for (int I = 0; I != NumDefOps; ++I) { 4129 if (IsNarrow && DstTy.isVector()) 4130 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4131 else 4132 MergeDstReg = DstRegs[I]; 4133 4134 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4135 4136 // Recast to vector if we narrowed a vector 4137 if (IsNarrow && DstTy.isVector()) 4138 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4139 } 4140 4141 MI.eraseFromParent(); 4142 return Legalized; 4143 } 4144 4145 LegalizerHelper::LegalizeResult 4146 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4147 LLT NarrowTy) { 4148 Register DstReg = MI.getOperand(0).getReg(); 4149 Register SrcReg = MI.getOperand(1).getReg(); 4150 int64_t Imm = MI.getOperand(2).getImm(); 4151 4152 LLT DstTy = MRI.getType(DstReg); 4153 4154 SmallVector<Register, 8> Parts; 4155 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4156 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4157 4158 for (Register &R : Parts) 4159 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4160 4161 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4162 4163 MI.eraseFromParent(); 4164 return Legalized; 4165 } 4166 4167 LegalizerHelper::LegalizeResult 4168 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4169 LLT NarrowTy) { 4170 using namespace TargetOpcode; 4171 4172 switch (MI.getOpcode()) { 4173 case G_IMPLICIT_DEF: 4174 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4175 case G_TRUNC: 4176 case G_AND: 4177 case G_OR: 4178 case G_XOR: 4179 case G_ADD: 4180 case G_SUB: 4181 case G_MUL: 4182 case G_PTR_ADD: 4183 case G_SMULH: 4184 case G_UMULH: 4185 case G_FADD: 4186 case G_FMUL: 4187 case G_FSUB: 4188 case G_FNEG: 4189 case G_FABS: 4190 case G_FCANONICALIZE: 4191 case G_FDIV: 4192 case G_FREM: 4193 case G_FMA: 4194 case G_FMAD: 4195 case G_FPOW: 4196 case G_FEXP: 4197 case G_FEXP2: 4198 case G_FLOG: 4199 case G_FLOG2: 4200 case G_FLOG10: 4201 case G_FNEARBYINT: 4202 case G_FCEIL: 4203 case G_FFLOOR: 4204 case G_FRINT: 4205 case G_INTRINSIC_ROUND: 4206 case G_INTRINSIC_ROUNDEVEN: 4207 case G_INTRINSIC_TRUNC: 4208 case G_FCOS: 4209 case G_FSIN: 4210 case G_FSQRT: 4211 case G_BSWAP: 4212 case G_BITREVERSE: 4213 case G_SDIV: 4214 case G_UDIV: 4215 case G_SREM: 4216 case G_UREM: 4217 case G_SDIVREM: 4218 case G_UDIVREM: 4219 case G_SMIN: 4220 case G_SMAX: 4221 case G_UMIN: 4222 case G_UMAX: 4223 case G_ABS: 4224 case G_FMINNUM: 4225 case G_FMAXNUM: 4226 case G_FMINNUM_IEEE: 4227 case G_FMAXNUM_IEEE: 4228 case G_FMINIMUM: 4229 case G_FMAXIMUM: 4230 case G_FSHL: 4231 case G_FSHR: 4232 case G_FREEZE: 4233 case G_SADDSAT: 4234 case G_SSUBSAT: 4235 case G_UADDSAT: 4236 case G_USUBSAT: 4237 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4238 case G_UMULO: 4239 case G_SMULO: 4240 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4241 case G_SHL: 4242 case G_LSHR: 4243 case G_ASHR: 4244 case G_SSHLSAT: 4245 case G_USHLSAT: 4246 case G_CTLZ: 4247 case G_CTLZ_ZERO_UNDEF: 4248 case G_CTTZ: 4249 case G_CTTZ_ZERO_UNDEF: 4250 case G_CTPOP: 4251 case G_FCOPYSIGN: 4252 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4253 case G_ZEXT: 4254 case G_SEXT: 4255 case G_ANYEXT: 4256 case G_FPEXT: 4257 case G_FPTRUNC: 4258 case G_SITOFP: 4259 case G_UITOFP: 4260 case G_FPTOSI: 4261 case G_FPTOUI: 4262 case G_INTTOPTR: 4263 case G_PTRTOINT: 4264 case G_ADDRSPACE_CAST: 4265 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4266 case G_ICMP: 4267 case G_FCMP: 4268 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4269 case G_SELECT: 4270 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4271 case G_PHI: 4272 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4273 case G_UNMERGE_VALUES: 4274 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4275 case G_BUILD_VECTOR: 4276 assert(TypeIdx == 0 && "not a vector type index"); 4277 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4278 case G_CONCAT_VECTORS: 4279 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4280 return UnableToLegalize; 4281 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4282 case G_EXTRACT_VECTOR_ELT: 4283 case G_INSERT_VECTOR_ELT: 4284 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4285 case G_LOAD: 4286 case G_STORE: 4287 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4288 case G_SEXT_INREG: 4289 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4290 GISEL_VECREDUCE_CASES_NONSEQ 4291 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4292 case G_SHUFFLE_VECTOR: 4293 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4294 default: 4295 return UnableToLegalize; 4296 } 4297 } 4298 4299 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4300 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4301 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4302 if (TypeIdx != 0) 4303 return UnableToLegalize; 4304 4305 Register DstReg = MI.getOperand(0).getReg(); 4306 Register Src1Reg = MI.getOperand(1).getReg(); 4307 Register Src2Reg = MI.getOperand(2).getReg(); 4308 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4309 LLT DstTy = MRI.getType(DstReg); 4310 LLT Src1Ty = MRI.getType(Src1Reg); 4311 LLT Src2Ty = MRI.getType(Src2Reg); 4312 // The shuffle should be canonicalized by now. 4313 if (DstTy != Src1Ty) 4314 return UnableToLegalize; 4315 if (DstTy != Src2Ty) 4316 return UnableToLegalize; 4317 4318 if (!isPowerOf2_32(DstTy.getNumElements())) 4319 return UnableToLegalize; 4320 4321 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4322 // Further legalization attempts will be needed to do split further. 4323 NarrowTy = 4324 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4325 unsigned NewElts = NarrowTy.getNumElements(); 4326 4327 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4328 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4329 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4330 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4331 SplitSrc2Regs[1]}; 4332 4333 Register Hi, Lo; 4334 4335 // If Lo or Hi uses elements from at most two of the four input vectors, then 4336 // express it as a vector shuffle of those two inputs. Otherwise extract the 4337 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4338 SmallVector<int, 16> Ops; 4339 for (unsigned High = 0; High < 2; ++High) { 4340 Register &Output = High ? Hi : Lo; 4341 4342 // Build a shuffle mask for the output, discovering on the fly which 4343 // input vectors to use as shuffle operands (recorded in InputUsed). 4344 // If building a suitable shuffle vector proves too hard, then bail 4345 // out with useBuildVector set. 4346 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4347 unsigned FirstMaskIdx = High * NewElts; 4348 bool UseBuildVector = false; 4349 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4350 // The mask element. This indexes into the input. 4351 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4352 4353 // The input vector this mask element indexes into. 4354 unsigned Input = (unsigned)Idx / NewElts; 4355 4356 if (Input >= array_lengthof(Inputs)) { 4357 // The mask element does not index into any input vector. 4358 Ops.push_back(-1); 4359 continue; 4360 } 4361 4362 // Turn the index into an offset from the start of the input vector. 4363 Idx -= Input * NewElts; 4364 4365 // Find or create a shuffle vector operand to hold this input. 4366 unsigned OpNo; 4367 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4368 if (InputUsed[OpNo] == Input) { 4369 // This input vector is already an operand. 4370 break; 4371 } else if (InputUsed[OpNo] == -1U) { 4372 // Create a new operand for this input vector. 4373 InputUsed[OpNo] = Input; 4374 break; 4375 } 4376 } 4377 4378 if (OpNo >= array_lengthof(InputUsed)) { 4379 // More than two input vectors used! Give up on trying to create a 4380 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4381 UseBuildVector = true; 4382 break; 4383 } 4384 4385 // Add the mask index for the new shuffle vector. 4386 Ops.push_back(Idx + OpNo * NewElts); 4387 } 4388 4389 if (UseBuildVector) { 4390 LLT EltTy = NarrowTy.getElementType(); 4391 SmallVector<Register, 16> SVOps; 4392 4393 // Extract the input elements by hand. 4394 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4395 // The mask element. This indexes into the input. 4396 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4397 4398 // The input vector this mask element indexes into. 4399 unsigned Input = (unsigned)Idx / NewElts; 4400 4401 if (Input >= array_lengthof(Inputs)) { 4402 // The mask element is "undef" or indexes off the end of the input. 4403 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4404 continue; 4405 } 4406 4407 // Turn the index into an offset from the start of the input vector. 4408 Idx -= Input * NewElts; 4409 4410 // Extract the vector element by hand. 4411 SVOps.push_back(MIRBuilder 4412 .buildExtractVectorElement( 4413 EltTy, Inputs[Input], 4414 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4415 .getReg(0)); 4416 } 4417 4418 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4419 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4420 } else if (InputUsed[0] == -1U) { 4421 // No input vectors were used! The result is undefined. 4422 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4423 } else { 4424 Register Op0 = Inputs[InputUsed[0]]; 4425 // If only one input was used, use an undefined vector for the other. 4426 Register Op1 = InputUsed[1] == -1U 4427 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4428 : Inputs[InputUsed[1]]; 4429 // At least one input vector was used. Create a new shuffle vector. 4430 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4431 } 4432 4433 Ops.clear(); 4434 } 4435 4436 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4437 MI.eraseFromParent(); 4438 return Legalized; 4439 } 4440 4441 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4442 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4443 unsigned Opc = MI.getOpcode(); 4444 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4445 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4446 "Sequential reductions not expected"); 4447 4448 if (TypeIdx != 1) 4449 return UnableToLegalize; 4450 4451 // The semantics of the normal non-sequential reductions allow us to freely 4452 // re-associate the operation. 4453 Register SrcReg = MI.getOperand(1).getReg(); 4454 LLT SrcTy = MRI.getType(SrcReg); 4455 Register DstReg = MI.getOperand(0).getReg(); 4456 LLT DstTy = MRI.getType(DstReg); 4457 4458 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4459 return UnableToLegalize; 4460 4461 SmallVector<Register> SplitSrcs; 4462 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4463 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4464 SmallVector<Register> PartialReductions; 4465 for (unsigned Part = 0; Part < NumParts; ++Part) { 4466 PartialReductions.push_back( 4467 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4468 } 4469 4470 unsigned ScalarOpc; 4471 switch (Opc) { 4472 case TargetOpcode::G_VECREDUCE_FADD: 4473 ScalarOpc = TargetOpcode::G_FADD; 4474 break; 4475 case TargetOpcode::G_VECREDUCE_FMUL: 4476 ScalarOpc = TargetOpcode::G_FMUL; 4477 break; 4478 case TargetOpcode::G_VECREDUCE_FMAX: 4479 ScalarOpc = TargetOpcode::G_FMAXNUM; 4480 break; 4481 case TargetOpcode::G_VECREDUCE_FMIN: 4482 ScalarOpc = TargetOpcode::G_FMINNUM; 4483 break; 4484 case TargetOpcode::G_VECREDUCE_ADD: 4485 ScalarOpc = TargetOpcode::G_ADD; 4486 break; 4487 case TargetOpcode::G_VECREDUCE_MUL: 4488 ScalarOpc = TargetOpcode::G_MUL; 4489 break; 4490 case TargetOpcode::G_VECREDUCE_AND: 4491 ScalarOpc = TargetOpcode::G_AND; 4492 break; 4493 case TargetOpcode::G_VECREDUCE_OR: 4494 ScalarOpc = TargetOpcode::G_OR; 4495 break; 4496 case TargetOpcode::G_VECREDUCE_XOR: 4497 ScalarOpc = TargetOpcode::G_XOR; 4498 break; 4499 case TargetOpcode::G_VECREDUCE_SMAX: 4500 ScalarOpc = TargetOpcode::G_SMAX; 4501 break; 4502 case TargetOpcode::G_VECREDUCE_SMIN: 4503 ScalarOpc = TargetOpcode::G_SMIN; 4504 break; 4505 case TargetOpcode::G_VECREDUCE_UMAX: 4506 ScalarOpc = TargetOpcode::G_UMAX; 4507 break; 4508 case TargetOpcode::G_VECREDUCE_UMIN: 4509 ScalarOpc = TargetOpcode::G_UMIN; 4510 break; 4511 default: 4512 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4513 return UnableToLegalize; 4514 } 4515 4516 // If the types involved are powers of 2, we can generate intermediate vector 4517 // ops, before generating a final reduction operation. 4518 if (isPowerOf2_32(SrcTy.getNumElements()) && 4519 isPowerOf2_32(NarrowTy.getNumElements())) { 4520 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4521 } 4522 4523 Register Acc = PartialReductions[0]; 4524 for (unsigned Part = 1; Part < NumParts; ++Part) { 4525 if (Part == NumParts - 1) { 4526 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4527 {Acc, PartialReductions[Part]}); 4528 } else { 4529 Acc = MIRBuilder 4530 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4531 .getReg(0); 4532 } 4533 } 4534 MI.eraseFromParent(); 4535 return Legalized; 4536 } 4537 4538 LegalizerHelper::LegalizeResult 4539 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4540 LLT SrcTy, LLT NarrowTy, 4541 unsigned ScalarOpc) { 4542 SmallVector<Register> SplitSrcs; 4543 // Split the sources into NarrowTy size pieces. 4544 extractParts(SrcReg, NarrowTy, 4545 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4546 // We're going to do a tree reduction using vector operations until we have 4547 // one NarrowTy size value left. 4548 while (SplitSrcs.size() > 1) { 4549 SmallVector<Register> PartialRdxs; 4550 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4551 Register LHS = SplitSrcs[Idx]; 4552 Register RHS = SplitSrcs[Idx + 1]; 4553 // Create the intermediate vector op. 4554 Register Res = 4555 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4556 PartialRdxs.push_back(Res); 4557 } 4558 SplitSrcs = std::move(PartialRdxs); 4559 } 4560 // Finally generate the requested NarrowTy based reduction. 4561 Observer.changingInstr(MI); 4562 MI.getOperand(1).setReg(SplitSrcs[0]); 4563 Observer.changedInstr(MI); 4564 return Legalized; 4565 } 4566 4567 LegalizerHelper::LegalizeResult 4568 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4569 const LLT HalfTy, const LLT AmtTy) { 4570 4571 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4572 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4573 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4574 4575 if (Amt.isNullValue()) { 4576 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4577 MI.eraseFromParent(); 4578 return Legalized; 4579 } 4580 4581 LLT NVT = HalfTy; 4582 unsigned NVTBits = HalfTy.getSizeInBits(); 4583 unsigned VTBits = 2 * NVTBits; 4584 4585 SrcOp Lo(Register(0)), Hi(Register(0)); 4586 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4587 if (Amt.ugt(VTBits)) { 4588 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4589 } else if (Amt.ugt(NVTBits)) { 4590 Lo = MIRBuilder.buildConstant(NVT, 0); 4591 Hi = MIRBuilder.buildShl(NVT, InL, 4592 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4593 } else if (Amt == NVTBits) { 4594 Lo = MIRBuilder.buildConstant(NVT, 0); 4595 Hi = InL; 4596 } else { 4597 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4598 auto OrLHS = 4599 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4600 auto OrRHS = MIRBuilder.buildLShr( 4601 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4602 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4603 } 4604 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4605 if (Amt.ugt(VTBits)) { 4606 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4607 } else if (Amt.ugt(NVTBits)) { 4608 Lo = MIRBuilder.buildLShr(NVT, InH, 4609 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4610 Hi = MIRBuilder.buildConstant(NVT, 0); 4611 } else if (Amt == NVTBits) { 4612 Lo = InH; 4613 Hi = MIRBuilder.buildConstant(NVT, 0); 4614 } else { 4615 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4616 4617 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4618 auto OrRHS = MIRBuilder.buildShl( 4619 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4620 4621 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4622 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4623 } 4624 } else { 4625 if (Amt.ugt(VTBits)) { 4626 Hi = Lo = MIRBuilder.buildAShr( 4627 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4628 } else if (Amt.ugt(NVTBits)) { 4629 Lo = MIRBuilder.buildAShr(NVT, InH, 4630 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4631 Hi = MIRBuilder.buildAShr(NVT, InH, 4632 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4633 } else if (Amt == NVTBits) { 4634 Lo = InH; 4635 Hi = MIRBuilder.buildAShr(NVT, InH, 4636 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4637 } else { 4638 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4639 4640 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4641 auto OrRHS = MIRBuilder.buildShl( 4642 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4643 4644 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4645 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4646 } 4647 } 4648 4649 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4650 MI.eraseFromParent(); 4651 4652 return Legalized; 4653 } 4654 4655 // TODO: Optimize if constant shift amount. 4656 LegalizerHelper::LegalizeResult 4657 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4658 LLT RequestedTy) { 4659 if (TypeIdx == 1) { 4660 Observer.changingInstr(MI); 4661 narrowScalarSrc(MI, RequestedTy, 2); 4662 Observer.changedInstr(MI); 4663 return Legalized; 4664 } 4665 4666 Register DstReg = MI.getOperand(0).getReg(); 4667 LLT DstTy = MRI.getType(DstReg); 4668 if (DstTy.isVector()) 4669 return UnableToLegalize; 4670 4671 Register Amt = MI.getOperand(2).getReg(); 4672 LLT ShiftAmtTy = MRI.getType(Amt); 4673 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4674 if (DstEltSize % 2 != 0) 4675 return UnableToLegalize; 4676 4677 // Ignore the input type. We can only go to exactly half the size of the 4678 // input. If that isn't small enough, the resulting pieces will be further 4679 // legalized. 4680 const unsigned NewBitSize = DstEltSize / 2; 4681 const LLT HalfTy = LLT::scalar(NewBitSize); 4682 const LLT CondTy = LLT::scalar(1); 4683 4684 if (const MachineInstr *KShiftAmt = 4685 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4686 return narrowScalarShiftByConstant( 4687 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4688 } 4689 4690 // TODO: Expand with known bits. 4691 4692 // Handle the fully general expansion by an unknown amount. 4693 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4694 4695 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4696 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4697 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4698 4699 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4700 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4701 4702 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4703 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4704 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4705 4706 Register ResultRegs[2]; 4707 switch (MI.getOpcode()) { 4708 case TargetOpcode::G_SHL: { 4709 // Short: ShAmt < NewBitSize 4710 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4711 4712 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4713 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4714 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4715 4716 // Long: ShAmt >= NewBitSize 4717 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4718 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4719 4720 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4721 auto Hi = MIRBuilder.buildSelect( 4722 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4723 4724 ResultRegs[0] = Lo.getReg(0); 4725 ResultRegs[1] = Hi.getReg(0); 4726 break; 4727 } 4728 case TargetOpcode::G_LSHR: 4729 case TargetOpcode::G_ASHR: { 4730 // Short: ShAmt < NewBitSize 4731 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4732 4733 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4734 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4735 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4736 4737 // Long: ShAmt >= NewBitSize 4738 MachineInstrBuilder HiL; 4739 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4740 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4741 } else { 4742 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4743 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4744 } 4745 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4746 {InH, AmtExcess}); // Lo from Hi part. 4747 4748 auto Lo = MIRBuilder.buildSelect( 4749 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4750 4751 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4752 4753 ResultRegs[0] = Lo.getReg(0); 4754 ResultRegs[1] = Hi.getReg(0); 4755 break; 4756 } 4757 default: 4758 llvm_unreachable("not a shift"); 4759 } 4760 4761 MIRBuilder.buildMerge(DstReg, ResultRegs); 4762 MI.eraseFromParent(); 4763 return Legalized; 4764 } 4765 4766 LegalizerHelper::LegalizeResult 4767 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4768 LLT MoreTy) { 4769 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4770 4771 Observer.changingInstr(MI); 4772 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4773 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4774 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4775 moreElementsVectorSrc(MI, MoreTy, I); 4776 } 4777 4778 MachineBasicBlock &MBB = *MI.getParent(); 4779 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4780 moreElementsVectorDst(MI, MoreTy, 0); 4781 Observer.changedInstr(MI); 4782 return Legalized; 4783 } 4784 4785 LegalizerHelper::LegalizeResult 4786 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4787 LLT MoreTy) { 4788 unsigned Opc = MI.getOpcode(); 4789 switch (Opc) { 4790 case TargetOpcode::G_IMPLICIT_DEF: 4791 case TargetOpcode::G_LOAD: { 4792 if (TypeIdx != 0) 4793 return UnableToLegalize; 4794 Observer.changingInstr(MI); 4795 moreElementsVectorDst(MI, MoreTy, 0); 4796 Observer.changedInstr(MI); 4797 return Legalized; 4798 } 4799 case TargetOpcode::G_STORE: 4800 if (TypeIdx != 0) 4801 return UnableToLegalize; 4802 Observer.changingInstr(MI); 4803 moreElementsVectorSrc(MI, MoreTy, 0); 4804 Observer.changedInstr(MI); 4805 return Legalized; 4806 case TargetOpcode::G_AND: 4807 case TargetOpcode::G_OR: 4808 case TargetOpcode::G_XOR: 4809 case TargetOpcode::G_SMIN: 4810 case TargetOpcode::G_SMAX: 4811 case TargetOpcode::G_UMIN: 4812 case TargetOpcode::G_UMAX: 4813 case TargetOpcode::G_FMINNUM: 4814 case TargetOpcode::G_FMAXNUM: 4815 case TargetOpcode::G_FMINNUM_IEEE: 4816 case TargetOpcode::G_FMAXNUM_IEEE: 4817 case TargetOpcode::G_FMINIMUM: 4818 case TargetOpcode::G_FMAXIMUM: { 4819 Observer.changingInstr(MI); 4820 moreElementsVectorSrc(MI, MoreTy, 1); 4821 moreElementsVectorSrc(MI, MoreTy, 2); 4822 moreElementsVectorDst(MI, MoreTy, 0); 4823 Observer.changedInstr(MI); 4824 return Legalized; 4825 } 4826 case TargetOpcode::G_EXTRACT: 4827 if (TypeIdx != 1) 4828 return UnableToLegalize; 4829 Observer.changingInstr(MI); 4830 moreElementsVectorSrc(MI, MoreTy, 1); 4831 Observer.changedInstr(MI); 4832 return Legalized; 4833 case TargetOpcode::G_INSERT: 4834 case TargetOpcode::G_FREEZE: 4835 if (TypeIdx != 0) 4836 return UnableToLegalize; 4837 Observer.changingInstr(MI); 4838 moreElementsVectorSrc(MI, MoreTy, 1); 4839 moreElementsVectorDst(MI, MoreTy, 0); 4840 Observer.changedInstr(MI); 4841 return Legalized; 4842 case TargetOpcode::G_SELECT: 4843 if (TypeIdx != 0) 4844 return UnableToLegalize; 4845 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4846 return UnableToLegalize; 4847 4848 Observer.changingInstr(MI); 4849 moreElementsVectorSrc(MI, MoreTy, 2); 4850 moreElementsVectorSrc(MI, MoreTy, 3); 4851 moreElementsVectorDst(MI, MoreTy, 0); 4852 Observer.changedInstr(MI); 4853 return Legalized; 4854 case TargetOpcode::G_UNMERGE_VALUES: { 4855 if (TypeIdx != 1) 4856 return UnableToLegalize; 4857 4858 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4859 int NumDst = MI.getNumOperands() - 1; 4860 moreElementsVectorSrc(MI, MoreTy, NumDst); 4861 4862 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4863 for (int I = 0; I != NumDst; ++I) 4864 MIB.addDef(MI.getOperand(I).getReg()); 4865 4866 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4867 for (int I = NumDst; I != NewNumDst; ++I) 4868 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4869 4870 MIB.addUse(MI.getOperand(NumDst).getReg()); 4871 MI.eraseFromParent(); 4872 return Legalized; 4873 } 4874 case TargetOpcode::G_PHI: 4875 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4876 default: 4877 return UnableToLegalize; 4878 } 4879 } 4880 4881 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4882 ArrayRef<Register> Src1Regs, 4883 ArrayRef<Register> Src2Regs, 4884 LLT NarrowTy) { 4885 MachineIRBuilder &B = MIRBuilder; 4886 unsigned SrcParts = Src1Regs.size(); 4887 unsigned DstParts = DstRegs.size(); 4888 4889 unsigned DstIdx = 0; // Low bits of the result. 4890 Register FactorSum = 4891 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4892 DstRegs[DstIdx] = FactorSum; 4893 4894 unsigned CarrySumPrevDstIdx; 4895 SmallVector<Register, 4> Factors; 4896 4897 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4898 // Collect low parts of muls for DstIdx. 4899 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4900 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4901 MachineInstrBuilder Mul = 4902 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4903 Factors.push_back(Mul.getReg(0)); 4904 } 4905 // Collect high parts of muls from previous DstIdx. 4906 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4907 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4908 MachineInstrBuilder Umulh = 4909 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4910 Factors.push_back(Umulh.getReg(0)); 4911 } 4912 // Add CarrySum from additions calculated for previous DstIdx. 4913 if (DstIdx != 1) { 4914 Factors.push_back(CarrySumPrevDstIdx); 4915 } 4916 4917 Register CarrySum; 4918 // Add all factors and accumulate all carries into CarrySum. 4919 if (DstIdx != DstParts - 1) { 4920 MachineInstrBuilder Uaddo = 4921 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4922 FactorSum = Uaddo.getReg(0); 4923 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4924 for (unsigned i = 2; i < Factors.size(); ++i) { 4925 MachineInstrBuilder Uaddo = 4926 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4927 FactorSum = Uaddo.getReg(0); 4928 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4929 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4930 } 4931 } else { 4932 // Since value for the next index is not calculated, neither is CarrySum. 4933 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4934 for (unsigned i = 2; i < Factors.size(); ++i) 4935 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4936 } 4937 4938 CarrySumPrevDstIdx = CarrySum; 4939 DstRegs[DstIdx] = FactorSum; 4940 Factors.clear(); 4941 } 4942 } 4943 4944 LegalizerHelper::LegalizeResult 4945 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4946 LLT NarrowTy) { 4947 if (TypeIdx != 0) 4948 return UnableToLegalize; 4949 4950 Register DstReg = MI.getOperand(0).getReg(); 4951 LLT DstType = MRI.getType(DstReg); 4952 // FIXME: add support for vector types 4953 if (DstType.isVector()) 4954 return UnableToLegalize; 4955 4956 unsigned Opcode = MI.getOpcode(); 4957 unsigned OpO, OpE, OpF; 4958 switch (Opcode) { 4959 case TargetOpcode::G_SADDO: 4960 case TargetOpcode::G_SADDE: 4961 case TargetOpcode::G_UADDO: 4962 case TargetOpcode::G_UADDE: 4963 case TargetOpcode::G_ADD: 4964 OpO = TargetOpcode::G_UADDO; 4965 OpE = TargetOpcode::G_UADDE; 4966 OpF = TargetOpcode::G_UADDE; 4967 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4968 OpF = TargetOpcode::G_SADDE; 4969 break; 4970 case TargetOpcode::G_SSUBO: 4971 case TargetOpcode::G_SSUBE: 4972 case TargetOpcode::G_USUBO: 4973 case TargetOpcode::G_USUBE: 4974 case TargetOpcode::G_SUB: 4975 OpO = TargetOpcode::G_USUBO; 4976 OpE = TargetOpcode::G_USUBE; 4977 OpF = TargetOpcode::G_USUBE; 4978 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4979 OpF = TargetOpcode::G_SSUBE; 4980 break; 4981 default: 4982 llvm_unreachable("Unexpected add/sub opcode!"); 4983 } 4984 4985 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4986 unsigned NumDefs = MI.getNumExplicitDefs(); 4987 Register Src1 = MI.getOperand(NumDefs).getReg(); 4988 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4989 Register CarryDst, CarryIn; 4990 if (NumDefs == 2) 4991 CarryDst = MI.getOperand(1).getReg(); 4992 if (MI.getNumOperands() == NumDefs + 3) 4993 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4994 4995 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 4996 LLT LeftoverTy, DummyTy; 4997 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 4998 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 4999 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5000 5001 int NarrowParts = Src1Regs.size(); 5002 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5003 Src1Regs.push_back(Src1Left[I]); 5004 Src2Regs.push_back(Src2Left[I]); 5005 } 5006 DstRegs.reserve(Src1Regs.size()); 5007 5008 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5009 Register DstReg = 5010 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5011 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5012 // Forward the final carry-out to the destination register 5013 if (i == e - 1 && CarryDst) 5014 CarryOut = CarryDst; 5015 5016 if (!CarryIn) { 5017 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5018 {Src1Regs[i], Src2Regs[i]}); 5019 } else if (i == e - 1) { 5020 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5021 {Src1Regs[i], Src2Regs[i], CarryIn}); 5022 } else { 5023 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5024 {Src1Regs[i], Src2Regs[i], CarryIn}); 5025 } 5026 5027 DstRegs.push_back(DstReg); 5028 CarryIn = CarryOut; 5029 } 5030 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5031 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5032 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5033 5034 MI.eraseFromParent(); 5035 return Legalized; 5036 } 5037 5038 LegalizerHelper::LegalizeResult 5039 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5040 Register DstReg = MI.getOperand(0).getReg(); 5041 Register Src1 = MI.getOperand(1).getReg(); 5042 Register Src2 = MI.getOperand(2).getReg(); 5043 5044 LLT Ty = MRI.getType(DstReg); 5045 if (Ty.isVector()) 5046 return UnableToLegalize; 5047 5048 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 5049 unsigned DstSize = Ty.getSizeInBits(); 5050 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5051 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 5052 return UnableToLegalize; 5053 5054 unsigned NumDstParts = DstSize / NarrowSize; 5055 unsigned NumSrcParts = SrcSize / NarrowSize; 5056 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5057 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 5058 5059 SmallVector<Register, 2> Src1Parts, Src2Parts; 5060 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5061 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 5062 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 5063 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5064 5065 // Take only high half of registers if this is high mul. 5066 ArrayRef<Register> DstRegs( 5067 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5068 MIRBuilder.buildMerge(DstReg, DstRegs); 5069 MI.eraseFromParent(); 5070 return Legalized; 5071 } 5072 5073 LegalizerHelper::LegalizeResult 5074 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5075 LLT NarrowTy) { 5076 if (TypeIdx != 0) 5077 return UnableToLegalize; 5078 5079 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5080 5081 Register Src = MI.getOperand(1).getReg(); 5082 LLT SrcTy = MRI.getType(Src); 5083 5084 // If all finite floats fit into the narrowed integer type, we can just swap 5085 // out the result type. This is practically only useful for conversions from 5086 // half to at least 16-bits, so just handle the one case. 5087 if (SrcTy.getScalarType() != LLT::scalar(16) || 5088 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5089 return UnableToLegalize; 5090 5091 Observer.changingInstr(MI); 5092 narrowScalarDst(MI, NarrowTy, 0, 5093 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5094 Observer.changedInstr(MI); 5095 return Legalized; 5096 } 5097 5098 LegalizerHelper::LegalizeResult 5099 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5100 LLT NarrowTy) { 5101 if (TypeIdx != 1) 5102 return UnableToLegalize; 5103 5104 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5105 5106 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5107 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5108 // NarrowSize. 5109 if (SizeOp1 % NarrowSize != 0) 5110 return UnableToLegalize; 5111 int NumParts = SizeOp1 / NarrowSize; 5112 5113 SmallVector<Register, 2> SrcRegs, DstRegs; 5114 SmallVector<uint64_t, 2> Indexes; 5115 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5116 5117 Register OpReg = MI.getOperand(0).getReg(); 5118 uint64_t OpStart = MI.getOperand(2).getImm(); 5119 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5120 for (int i = 0; i < NumParts; ++i) { 5121 unsigned SrcStart = i * NarrowSize; 5122 5123 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5124 // No part of the extract uses this subregister, ignore it. 5125 continue; 5126 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5127 // The entire subregister is extracted, forward the value. 5128 DstRegs.push_back(SrcRegs[i]); 5129 continue; 5130 } 5131 5132 // OpSegStart is where this destination segment would start in OpReg if it 5133 // extended infinitely in both directions. 5134 int64_t ExtractOffset; 5135 uint64_t SegSize; 5136 if (OpStart < SrcStart) { 5137 ExtractOffset = 0; 5138 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5139 } else { 5140 ExtractOffset = OpStart - SrcStart; 5141 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5142 } 5143 5144 Register SegReg = SrcRegs[i]; 5145 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5146 // A genuine extract is needed. 5147 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5148 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5149 } 5150 5151 DstRegs.push_back(SegReg); 5152 } 5153 5154 Register DstReg = MI.getOperand(0).getReg(); 5155 if (MRI.getType(DstReg).isVector()) 5156 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5157 else if (DstRegs.size() > 1) 5158 MIRBuilder.buildMerge(DstReg, DstRegs); 5159 else 5160 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5161 MI.eraseFromParent(); 5162 return Legalized; 5163 } 5164 5165 LegalizerHelper::LegalizeResult 5166 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5167 LLT NarrowTy) { 5168 // FIXME: Don't know how to handle secondary types yet. 5169 if (TypeIdx != 0) 5170 return UnableToLegalize; 5171 5172 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5173 SmallVector<uint64_t, 2> Indexes; 5174 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5175 LLT LeftoverTy; 5176 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5177 LeftoverRegs); 5178 5179 for (Register Reg : LeftoverRegs) 5180 SrcRegs.push_back(Reg); 5181 5182 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5183 Register OpReg = MI.getOperand(2).getReg(); 5184 uint64_t OpStart = MI.getOperand(3).getImm(); 5185 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5186 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5187 unsigned DstStart = I * NarrowSize; 5188 5189 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5190 // The entire subregister is defined by this insert, forward the new 5191 // value. 5192 DstRegs.push_back(OpReg); 5193 continue; 5194 } 5195 5196 Register SrcReg = SrcRegs[I]; 5197 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5198 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5199 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5200 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5201 } 5202 5203 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5204 // No part of the insert affects this subregister, forward the original. 5205 DstRegs.push_back(SrcReg); 5206 continue; 5207 } 5208 5209 // OpSegStart is where this destination segment would start in OpReg if it 5210 // extended infinitely in both directions. 5211 int64_t ExtractOffset, InsertOffset; 5212 uint64_t SegSize; 5213 if (OpStart < DstStart) { 5214 InsertOffset = 0; 5215 ExtractOffset = DstStart - OpStart; 5216 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5217 } else { 5218 InsertOffset = OpStart - DstStart; 5219 ExtractOffset = 0; 5220 SegSize = 5221 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5222 } 5223 5224 Register SegReg = OpReg; 5225 if (ExtractOffset != 0 || SegSize != OpSize) { 5226 // A genuine extract is needed. 5227 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5228 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5229 } 5230 5231 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5232 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5233 DstRegs.push_back(DstReg); 5234 } 5235 5236 uint64_t WideSize = DstRegs.size() * NarrowSize; 5237 Register DstReg = MI.getOperand(0).getReg(); 5238 if (WideSize > RegTy.getSizeInBits()) { 5239 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5240 MIRBuilder.buildMerge(MergeReg, DstRegs); 5241 MIRBuilder.buildTrunc(DstReg, MergeReg); 5242 } else 5243 MIRBuilder.buildMerge(DstReg, DstRegs); 5244 5245 MI.eraseFromParent(); 5246 return Legalized; 5247 } 5248 5249 LegalizerHelper::LegalizeResult 5250 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5251 LLT NarrowTy) { 5252 Register DstReg = MI.getOperand(0).getReg(); 5253 LLT DstTy = MRI.getType(DstReg); 5254 5255 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5256 5257 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5258 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5259 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5260 LLT LeftoverTy; 5261 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5262 Src0Regs, Src0LeftoverRegs)) 5263 return UnableToLegalize; 5264 5265 LLT Unused; 5266 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5267 Src1Regs, Src1LeftoverRegs)) 5268 llvm_unreachable("inconsistent extractParts result"); 5269 5270 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5271 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5272 {Src0Regs[I], Src1Regs[I]}); 5273 DstRegs.push_back(Inst.getReg(0)); 5274 } 5275 5276 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5277 auto Inst = MIRBuilder.buildInstr( 5278 MI.getOpcode(), 5279 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5280 DstLeftoverRegs.push_back(Inst.getReg(0)); 5281 } 5282 5283 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5284 LeftoverTy, DstLeftoverRegs); 5285 5286 MI.eraseFromParent(); 5287 return Legalized; 5288 } 5289 5290 LegalizerHelper::LegalizeResult 5291 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5292 LLT NarrowTy) { 5293 if (TypeIdx != 0) 5294 return UnableToLegalize; 5295 5296 Register DstReg = MI.getOperand(0).getReg(); 5297 Register SrcReg = MI.getOperand(1).getReg(); 5298 5299 LLT DstTy = MRI.getType(DstReg); 5300 if (DstTy.isVector()) 5301 return UnableToLegalize; 5302 5303 SmallVector<Register, 8> Parts; 5304 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5305 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5306 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5307 5308 MI.eraseFromParent(); 5309 return Legalized; 5310 } 5311 5312 LegalizerHelper::LegalizeResult 5313 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5314 LLT NarrowTy) { 5315 if (TypeIdx != 0) 5316 return UnableToLegalize; 5317 5318 Register CondReg = MI.getOperand(1).getReg(); 5319 LLT CondTy = MRI.getType(CondReg); 5320 if (CondTy.isVector()) // TODO: Handle vselect 5321 return UnableToLegalize; 5322 5323 Register DstReg = MI.getOperand(0).getReg(); 5324 LLT DstTy = MRI.getType(DstReg); 5325 5326 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5327 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5328 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5329 LLT LeftoverTy; 5330 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5331 Src1Regs, Src1LeftoverRegs)) 5332 return UnableToLegalize; 5333 5334 LLT Unused; 5335 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5336 Src2Regs, Src2LeftoverRegs)) 5337 llvm_unreachable("inconsistent extractParts result"); 5338 5339 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5340 auto Select = MIRBuilder.buildSelect(NarrowTy, 5341 CondReg, Src1Regs[I], Src2Regs[I]); 5342 DstRegs.push_back(Select.getReg(0)); 5343 } 5344 5345 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5346 auto Select = MIRBuilder.buildSelect( 5347 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5348 DstLeftoverRegs.push_back(Select.getReg(0)); 5349 } 5350 5351 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5352 LeftoverTy, DstLeftoverRegs); 5353 5354 MI.eraseFromParent(); 5355 return Legalized; 5356 } 5357 5358 LegalizerHelper::LegalizeResult 5359 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5360 LLT NarrowTy) { 5361 if (TypeIdx != 1) 5362 return UnableToLegalize; 5363 5364 Register DstReg = MI.getOperand(0).getReg(); 5365 Register SrcReg = MI.getOperand(1).getReg(); 5366 LLT DstTy = MRI.getType(DstReg); 5367 LLT SrcTy = MRI.getType(SrcReg); 5368 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5369 5370 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5371 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5372 5373 MachineIRBuilder &B = MIRBuilder; 5374 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5375 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5376 auto C_0 = B.buildConstant(NarrowTy, 0); 5377 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5378 UnmergeSrc.getReg(1), C_0); 5379 auto LoCTLZ = IsUndef ? 5380 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5381 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5382 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5383 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5384 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5385 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5386 5387 MI.eraseFromParent(); 5388 return Legalized; 5389 } 5390 5391 return UnableToLegalize; 5392 } 5393 5394 LegalizerHelper::LegalizeResult 5395 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5396 LLT NarrowTy) { 5397 if (TypeIdx != 1) 5398 return UnableToLegalize; 5399 5400 Register DstReg = MI.getOperand(0).getReg(); 5401 Register SrcReg = MI.getOperand(1).getReg(); 5402 LLT DstTy = MRI.getType(DstReg); 5403 LLT SrcTy = MRI.getType(SrcReg); 5404 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5405 5406 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5407 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5408 5409 MachineIRBuilder &B = MIRBuilder; 5410 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5411 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5412 auto C_0 = B.buildConstant(NarrowTy, 0); 5413 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5414 UnmergeSrc.getReg(0), C_0); 5415 auto HiCTTZ = IsUndef ? 5416 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5417 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5418 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5419 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5420 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5421 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5422 5423 MI.eraseFromParent(); 5424 return Legalized; 5425 } 5426 5427 return UnableToLegalize; 5428 } 5429 5430 LegalizerHelper::LegalizeResult 5431 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5432 LLT NarrowTy) { 5433 if (TypeIdx != 1) 5434 return UnableToLegalize; 5435 5436 Register DstReg = MI.getOperand(0).getReg(); 5437 LLT DstTy = MRI.getType(DstReg); 5438 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5439 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5440 5441 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5442 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5443 5444 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5445 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5446 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5447 5448 MI.eraseFromParent(); 5449 return Legalized; 5450 } 5451 5452 return UnableToLegalize; 5453 } 5454 5455 LegalizerHelper::LegalizeResult 5456 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5457 unsigned Opc = MI.getOpcode(); 5458 const auto &TII = MIRBuilder.getTII(); 5459 auto isSupported = [this](const LegalityQuery &Q) { 5460 auto QAction = LI.getAction(Q).Action; 5461 return QAction == Legal || QAction == Libcall || QAction == Custom; 5462 }; 5463 switch (Opc) { 5464 default: 5465 return UnableToLegalize; 5466 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5467 // This trivially expands to CTLZ. 5468 Observer.changingInstr(MI); 5469 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5470 Observer.changedInstr(MI); 5471 return Legalized; 5472 } 5473 case TargetOpcode::G_CTLZ: { 5474 Register DstReg = MI.getOperand(0).getReg(); 5475 Register SrcReg = MI.getOperand(1).getReg(); 5476 LLT DstTy = MRI.getType(DstReg); 5477 LLT SrcTy = MRI.getType(SrcReg); 5478 unsigned Len = SrcTy.getSizeInBits(); 5479 5480 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5481 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5482 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5483 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5484 auto ICmp = MIRBuilder.buildICmp( 5485 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5486 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5487 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5488 MI.eraseFromParent(); 5489 return Legalized; 5490 } 5491 // for now, we do this: 5492 // NewLen = NextPowerOf2(Len); 5493 // x = x | (x >> 1); 5494 // x = x | (x >> 2); 5495 // ... 5496 // x = x | (x >>16); 5497 // x = x | (x >>32); // for 64-bit input 5498 // Upto NewLen/2 5499 // return Len - popcount(x); 5500 // 5501 // Ref: "Hacker's Delight" by Henry Warren 5502 Register Op = SrcReg; 5503 unsigned NewLen = PowerOf2Ceil(Len); 5504 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5505 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5506 auto MIBOp = MIRBuilder.buildOr( 5507 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5508 Op = MIBOp.getReg(0); 5509 } 5510 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5511 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5512 MIBPop); 5513 MI.eraseFromParent(); 5514 return Legalized; 5515 } 5516 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5517 // This trivially expands to CTTZ. 5518 Observer.changingInstr(MI); 5519 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5520 Observer.changedInstr(MI); 5521 return Legalized; 5522 } 5523 case TargetOpcode::G_CTTZ: { 5524 Register DstReg = MI.getOperand(0).getReg(); 5525 Register SrcReg = MI.getOperand(1).getReg(); 5526 LLT DstTy = MRI.getType(DstReg); 5527 LLT SrcTy = MRI.getType(SrcReg); 5528 5529 unsigned Len = SrcTy.getSizeInBits(); 5530 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5531 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5532 // zero. 5533 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5534 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5535 auto ICmp = MIRBuilder.buildICmp( 5536 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5537 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5538 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5539 MI.eraseFromParent(); 5540 return Legalized; 5541 } 5542 // for now, we use: { return popcount(~x & (x - 1)); } 5543 // unless the target has ctlz but not ctpop, in which case we use: 5544 // { return 32 - nlz(~x & (x-1)); } 5545 // Ref: "Hacker's Delight" by Henry Warren 5546 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5547 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5548 auto MIBTmp = MIRBuilder.buildAnd( 5549 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5550 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5551 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5552 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5553 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5554 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5555 MI.eraseFromParent(); 5556 return Legalized; 5557 } 5558 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5559 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5560 return Legalized; 5561 } 5562 case TargetOpcode::G_CTPOP: { 5563 Register SrcReg = MI.getOperand(1).getReg(); 5564 LLT Ty = MRI.getType(SrcReg); 5565 unsigned Size = Ty.getSizeInBits(); 5566 MachineIRBuilder &B = MIRBuilder; 5567 5568 // Count set bits in blocks of 2 bits. Default approach would be 5569 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5570 // We use following formula instead: 5571 // B2Count = val - { (val >> 1) & 0x55555555 } 5572 // since it gives same result in blocks of 2 with one instruction less. 5573 auto C_1 = B.buildConstant(Ty, 1); 5574 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5575 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5576 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5577 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5578 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5579 5580 // In order to get count in blocks of 4 add values from adjacent block of 2. 5581 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5582 auto C_2 = B.buildConstant(Ty, 2); 5583 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5584 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5585 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5586 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5587 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5588 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5589 5590 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5591 // addition since count value sits in range {0,...,8} and 4 bits are enough 5592 // to hold such binary values. After addition high 4 bits still hold count 5593 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5594 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5595 auto C_4 = B.buildConstant(Ty, 4); 5596 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5597 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5598 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5599 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5600 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5601 5602 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5603 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5604 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5605 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5606 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5607 5608 // Shift count result from 8 high bits to low bits. 5609 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5610 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5611 5612 MI.eraseFromParent(); 5613 return Legalized; 5614 } 5615 } 5616 } 5617 5618 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5619 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5620 Register Reg, unsigned BW) { 5621 return matchUnaryPredicate( 5622 MRI, Reg, 5623 [=](const Constant *C) { 5624 // Null constant here means an undef. 5625 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5626 return !CI || CI->getValue().urem(BW) != 0; 5627 }, 5628 /*AllowUndefs*/ true); 5629 } 5630 5631 LegalizerHelper::LegalizeResult 5632 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5633 Register Dst = MI.getOperand(0).getReg(); 5634 Register X = MI.getOperand(1).getReg(); 5635 Register Y = MI.getOperand(2).getReg(); 5636 Register Z = MI.getOperand(3).getReg(); 5637 LLT Ty = MRI.getType(Dst); 5638 LLT ShTy = MRI.getType(Z); 5639 5640 unsigned BW = Ty.getScalarSizeInBits(); 5641 5642 if (!isPowerOf2_32(BW)) 5643 return UnableToLegalize; 5644 5645 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5646 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5647 5648 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5649 // fshl X, Y, Z -> fshr X, Y, -Z 5650 // fshr X, Y, Z -> fshl X, Y, -Z 5651 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5652 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5653 } else { 5654 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5655 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5656 auto One = MIRBuilder.buildConstant(ShTy, 1); 5657 if (IsFSHL) { 5658 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5659 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5660 } else { 5661 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5662 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5663 } 5664 5665 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5666 } 5667 5668 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5669 MI.eraseFromParent(); 5670 return Legalized; 5671 } 5672 5673 LegalizerHelper::LegalizeResult 5674 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5675 Register Dst = MI.getOperand(0).getReg(); 5676 Register X = MI.getOperand(1).getReg(); 5677 Register Y = MI.getOperand(2).getReg(); 5678 Register Z = MI.getOperand(3).getReg(); 5679 LLT Ty = MRI.getType(Dst); 5680 LLT ShTy = MRI.getType(Z); 5681 5682 const unsigned BW = Ty.getScalarSizeInBits(); 5683 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5684 5685 Register ShX, ShY; 5686 Register ShAmt, InvShAmt; 5687 5688 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5689 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5690 // fshl: X << C | Y >> (BW - C) 5691 // fshr: X << (BW - C) | Y >> C 5692 // where C = Z % BW is not zero 5693 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5694 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5695 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5696 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5697 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5698 } else { 5699 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5700 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5701 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5702 if (isPowerOf2_32(BW)) { 5703 // Z % BW -> Z & (BW - 1) 5704 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5705 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5706 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5707 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5708 } else { 5709 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5710 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5711 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5712 } 5713 5714 auto One = MIRBuilder.buildConstant(ShTy, 1); 5715 if (IsFSHL) { 5716 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5717 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5718 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5719 } else { 5720 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5721 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5722 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5723 } 5724 } 5725 5726 MIRBuilder.buildOr(Dst, ShX, ShY); 5727 MI.eraseFromParent(); 5728 return Legalized; 5729 } 5730 5731 LegalizerHelper::LegalizeResult 5732 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5733 // These operations approximately do the following (while avoiding undefined 5734 // shifts by BW): 5735 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5736 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5737 Register Dst = MI.getOperand(0).getReg(); 5738 LLT Ty = MRI.getType(Dst); 5739 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5740 5741 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5742 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5743 5744 // TODO: Use smarter heuristic that accounts for vector legalization. 5745 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5746 return lowerFunnelShiftAsShifts(MI); 5747 5748 // This only works for powers of 2, fallback to shifts if it fails. 5749 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5750 if (Result == UnableToLegalize) 5751 return lowerFunnelShiftAsShifts(MI); 5752 return Result; 5753 } 5754 5755 LegalizerHelper::LegalizeResult 5756 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5757 Register Dst = MI.getOperand(0).getReg(); 5758 Register Src = MI.getOperand(1).getReg(); 5759 Register Amt = MI.getOperand(2).getReg(); 5760 LLT AmtTy = MRI.getType(Amt); 5761 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5762 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5763 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5764 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5765 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5766 MI.eraseFromParent(); 5767 return Legalized; 5768 } 5769 5770 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5771 Register Dst = MI.getOperand(0).getReg(); 5772 Register Src = MI.getOperand(1).getReg(); 5773 Register Amt = MI.getOperand(2).getReg(); 5774 LLT DstTy = MRI.getType(Dst); 5775 LLT SrcTy = MRI.getType(Dst); 5776 LLT AmtTy = MRI.getType(Amt); 5777 5778 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5779 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5780 5781 MIRBuilder.setInstrAndDebugLoc(MI); 5782 5783 // If a rotate in the other direction is supported, use it. 5784 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5785 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5786 isPowerOf2_32(EltSizeInBits)) 5787 return lowerRotateWithReverseRotate(MI); 5788 5789 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5790 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5791 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5792 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5793 Register ShVal; 5794 Register RevShiftVal; 5795 if (isPowerOf2_32(EltSizeInBits)) { 5796 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5797 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5798 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5799 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5800 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5801 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5802 RevShiftVal = 5803 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5804 } else { 5805 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5806 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5807 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5808 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5809 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5810 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5811 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5812 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5813 RevShiftVal = 5814 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5815 } 5816 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5817 MI.eraseFromParent(); 5818 return Legalized; 5819 } 5820 5821 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5822 // representation. 5823 LegalizerHelper::LegalizeResult 5824 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5825 Register Dst = MI.getOperand(0).getReg(); 5826 Register Src = MI.getOperand(1).getReg(); 5827 const LLT S64 = LLT::scalar(64); 5828 const LLT S32 = LLT::scalar(32); 5829 const LLT S1 = LLT::scalar(1); 5830 5831 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5832 5833 // unsigned cul2f(ulong u) { 5834 // uint lz = clz(u); 5835 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5836 // u = (u << lz) & 0x7fffffffffffffffUL; 5837 // ulong t = u & 0xffffffffffUL; 5838 // uint v = (e << 23) | (uint)(u >> 40); 5839 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5840 // return as_float(v + r); 5841 // } 5842 5843 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5844 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5845 5846 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5847 5848 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5849 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5850 5851 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5852 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5853 5854 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5855 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5856 5857 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5858 5859 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5860 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5861 5862 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5863 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5864 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5865 5866 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5867 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5868 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5869 auto One = MIRBuilder.buildConstant(S32, 1); 5870 5871 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5872 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5873 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5874 MIRBuilder.buildAdd(Dst, V, R); 5875 5876 MI.eraseFromParent(); 5877 return Legalized; 5878 } 5879 5880 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5881 Register Dst = MI.getOperand(0).getReg(); 5882 Register Src = MI.getOperand(1).getReg(); 5883 LLT DstTy = MRI.getType(Dst); 5884 LLT SrcTy = MRI.getType(Src); 5885 5886 if (SrcTy == LLT::scalar(1)) { 5887 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5888 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5889 MIRBuilder.buildSelect(Dst, Src, True, False); 5890 MI.eraseFromParent(); 5891 return Legalized; 5892 } 5893 5894 if (SrcTy != LLT::scalar(64)) 5895 return UnableToLegalize; 5896 5897 if (DstTy == LLT::scalar(32)) { 5898 // TODO: SelectionDAG has several alternative expansions to port which may 5899 // be more reasonble depending on the available instructions. If a target 5900 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5901 // intermediate type, this is probably worse. 5902 return lowerU64ToF32BitOps(MI); 5903 } 5904 5905 return UnableToLegalize; 5906 } 5907 5908 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5909 Register Dst = MI.getOperand(0).getReg(); 5910 Register Src = MI.getOperand(1).getReg(); 5911 LLT DstTy = MRI.getType(Dst); 5912 LLT SrcTy = MRI.getType(Src); 5913 5914 const LLT S64 = LLT::scalar(64); 5915 const LLT S32 = LLT::scalar(32); 5916 const LLT S1 = LLT::scalar(1); 5917 5918 if (SrcTy == S1) { 5919 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5920 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5921 MIRBuilder.buildSelect(Dst, Src, True, False); 5922 MI.eraseFromParent(); 5923 return Legalized; 5924 } 5925 5926 if (SrcTy != S64) 5927 return UnableToLegalize; 5928 5929 if (DstTy == S32) { 5930 // signed cl2f(long l) { 5931 // long s = l >> 63; 5932 // float r = cul2f((l + s) ^ s); 5933 // return s ? -r : r; 5934 // } 5935 Register L = Src; 5936 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5937 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5938 5939 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5940 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5941 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5942 5943 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5944 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5945 MIRBuilder.buildConstant(S64, 0)); 5946 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5947 MI.eraseFromParent(); 5948 return Legalized; 5949 } 5950 5951 return UnableToLegalize; 5952 } 5953 5954 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5955 Register Dst = MI.getOperand(0).getReg(); 5956 Register Src = MI.getOperand(1).getReg(); 5957 LLT DstTy = MRI.getType(Dst); 5958 LLT SrcTy = MRI.getType(Src); 5959 const LLT S64 = LLT::scalar(64); 5960 const LLT S32 = LLT::scalar(32); 5961 5962 if (SrcTy != S64 && SrcTy != S32) 5963 return UnableToLegalize; 5964 if (DstTy != S32 && DstTy != S64) 5965 return UnableToLegalize; 5966 5967 // FPTOSI gives same result as FPTOUI for positive signed integers. 5968 // FPTOUI needs to deal with fp values that convert to unsigned integers 5969 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5970 5971 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5972 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5973 : APFloat::IEEEdouble(), 5974 APInt::getNullValue(SrcTy.getSizeInBits())); 5975 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5976 5977 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5978 5979 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5980 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5981 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5982 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5983 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5984 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5985 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5986 5987 const LLT S1 = LLT::scalar(1); 5988 5989 MachineInstrBuilder FCMP = 5990 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5991 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5992 5993 MI.eraseFromParent(); 5994 return Legalized; 5995 } 5996 5997 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5998 Register Dst = MI.getOperand(0).getReg(); 5999 Register Src = MI.getOperand(1).getReg(); 6000 LLT DstTy = MRI.getType(Dst); 6001 LLT SrcTy = MRI.getType(Src); 6002 const LLT S64 = LLT::scalar(64); 6003 const LLT S32 = LLT::scalar(32); 6004 6005 // FIXME: Only f32 to i64 conversions are supported. 6006 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6007 return UnableToLegalize; 6008 6009 // Expand f32 -> i64 conversion 6010 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6011 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6012 6013 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6014 6015 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6016 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6017 6018 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6019 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6020 6021 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6022 APInt::getSignMask(SrcEltBits)); 6023 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6024 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6025 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6026 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6027 6028 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6029 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6030 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6031 6032 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6033 R = MIRBuilder.buildZExt(DstTy, R); 6034 6035 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6036 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6037 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6038 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6039 6040 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6041 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6042 6043 const LLT S1 = LLT::scalar(1); 6044 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6045 S1, Exponent, ExponentLoBit); 6046 6047 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6048 6049 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6050 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6051 6052 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6053 6054 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6055 S1, Exponent, ZeroSrcTy); 6056 6057 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6058 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6059 6060 MI.eraseFromParent(); 6061 return Legalized; 6062 } 6063 6064 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6065 LegalizerHelper::LegalizeResult 6066 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6067 Register Dst = MI.getOperand(0).getReg(); 6068 Register Src = MI.getOperand(1).getReg(); 6069 6070 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6071 return UnableToLegalize; 6072 6073 const unsigned ExpMask = 0x7ff; 6074 const unsigned ExpBiasf64 = 1023; 6075 const unsigned ExpBiasf16 = 15; 6076 const LLT S32 = LLT::scalar(32); 6077 const LLT S1 = LLT::scalar(1); 6078 6079 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6080 Register U = Unmerge.getReg(0); 6081 Register UH = Unmerge.getReg(1); 6082 6083 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6084 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6085 6086 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6087 // add the f16 bias (15) to get the biased exponent for the f16 format. 6088 E = MIRBuilder.buildAdd( 6089 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6090 6091 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6092 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6093 6094 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6095 MIRBuilder.buildConstant(S32, 0x1ff)); 6096 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6097 6098 auto Zero = MIRBuilder.buildConstant(S32, 0); 6099 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6100 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6101 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6102 6103 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6104 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6105 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6106 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6107 6108 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6109 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6110 6111 // N = M | (E << 12); 6112 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6113 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6114 6115 // B = clamp(1-E, 0, 13); 6116 auto One = MIRBuilder.buildConstant(S32, 1); 6117 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6118 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6119 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6120 6121 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6122 MIRBuilder.buildConstant(S32, 0x1000)); 6123 6124 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6125 auto D0 = MIRBuilder.buildShl(S32, D, B); 6126 6127 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6128 D0, SigSetHigh); 6129 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6130 D = MIRBuilder.buildOr(S32, D, D1); 6131 6132 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6133 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6134 6135 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6136 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6137 6138 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6139 MIRBuilder.buildConstant(S32, 3)); 6140 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6141 6142 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6143 MIRBuilder.buildConstant(S32, 5)); 6144 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6145 6146 V1 = MIRBuilder.buildOr(S32, V0, V1); 6147 V = MIRBuilder.buildAdd(S32, V, V1); 6148 6149 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6150 E, MIRBuilder.buildConstant(S32, 30)); 6151 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6152 MIRBuilder.buildConstant(S32, 0x7c00), V); 6153 6154 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6155 E, MIRBuilder.buildConstant(S32, 1039)); 6156 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6157 6158 // Extract the sign bit. 6159 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6160 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6161 6162 // Insert the sign bit 6163 V = MIRBuilder.buildOr(S32, Sign, V); 6164 6165 MIRBuilder.buildTrunc(Dst, V); 6166 MI.eraseFromParent(); 6167 return Legalized; 6168 } 6169 6170 LegalizerHelper::LegalizeResult 6171 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6172 Register Dst = MI.getOperand(0).getReg(); 6173 Register Src = MI.getOperand(1).getReg(); 6174 6175 LLT DstTy = MRI.getType(Dst); 6176 LLT SrcTy = MRI.getType(Src); 6177 const LLT S64 = LLT::scalar(64); 6178 const LLT S16 = LLT::scalar(16); 6179 6180 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6181 return lowerFPTRUNC_F64_TO_F16(MI); 6182 6183 return UnableToLegalize; 6184 } 6185 6186 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6187 // multiplication tree. 6188 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6189 Register Dst = MI.getOperand(0).getReg(); 6190 Register Src0 = MI.getOperand(1).getReg(); 6191 Register Src1 = MI.getOperand(2).getReg(); 6192 LLT Ty = MRI.getType(Dst); 6193 6194 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6195 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6196 MI.eraseFromParent(); 6197 return Legalized; 6198 } 6199 6200 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6201 switch (Opc) { 6202 case TargetOpcode::G_SMIN: 6203 return CmpInst::ICMP_SLT; 6204 case TargetOpcode::G_SMAX: 6205 return CmpInst::ICMP_SGT; 6206 case TargetOpcode::G_UMIN: 6207 return CmpInst::ICMP_ULT; 6208 case TargetOpcode::G_UMAX: 6209 return CmpInst::ICMP_UGT; 6210 default: 6211 llvm_unreachable("not in integer min/max"); 6212 } 6213 } 6214 6215 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6216 Register Dst = MI.getOperand(0).getReg(); 6217 Register Src0 = MI.getOperand(1).getReg(); 6218 Register Src1 = MI.getOperand(2).getReg(); 6219 6220 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6221 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6222 6223 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6224 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6225 6226 MI.eraseFromParent(); 6227 return Legalized; 6228 } 6229 6230 LegalizerHelper::LegalizeResult 6231 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6232 Register Dst = MI.getOperand(0).getReg(); 6233 Register Src0 = MI.getOperand(1).getReg(); 6234 Register Src1 = MI.getOperand(2).getReg(); 6235 6236 const LLT Src0Ty = MRI.getType(Src0); 6237 const LLT Src1Ty = MRI.getType(Src1); 6238 6239 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6240 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6241 6242 auto SignBitMask = MIRBuilder.buildConstant( 6243 Src0Ty, APInt::getSignMask(Src0Size)); 6244 6245 auto NotSignBitMask = MIRBuilder.buildConstant( 6246 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6247 6248 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6249 Register And1; 6250 if (Src0Ty == Src1Ty) { 6251 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6252 } else if (Src0Size > Src1Size) { 6253 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6254 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6255 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6256 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6257 } else { 6258 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6259 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6260 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6261 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6262 } 6263 6264 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6265 // constants are a nan and -0.0, but the final result should preserve 6266 // everything. 6267 unsigned Flags = MI.getFlags(); 6268 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6269 6270 MI.eraseFromParent(); 6271 return Legalized; 6272 } 6273 6274 LegalizerHelper::LegalizeResult 6275 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6276 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6277 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6278 6279 Register Dst = MI.getOperand(0).getReg(); 6280 Register Src0 = MI.getOperand(1).getReg(); 6281 Register Src1 = MI.getOperand(2).getReg(); 6282 LLT Ty = MRI.getType(Dst); 6283 6284 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6285 // Insert canonicalizes if it's possible we need to quiet to get correct 6286 // sNaN behavior. 6287 6288 // Note this must be done here, and not as an optimization combine in the 6289 // absence of a dedicate quiet-snan instruction as we're using an 6290 // omni-purpose G_FCANONICALIZE. 6291 if (!isKnownNeverSNaN(Src0, MRI)) 6292 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6293 6294 if (!isKnownNeverSNaN(Src1, MRI)) 6295 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6296 } 6297 6298 // If there are no nans, it's safe to simply replace this with the non-IEEE 6299 // version. 6300 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6301 MI.eraseFromParent(); 6302 return Legalized; 6303 } 6304 6305 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6306 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6307 Register DstReg = MI.getOperand(0).getReg(); 6308 LLT Ty = MRI.getType(DstReg); 6309 unsigned Flags = MI.getFlags(); 6310 6311 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6312 Flags); 6313 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6314 MI.eraseFromParent(); 6315 return Legalized; 6316 } 6317 6318 LegalizerHelper::LegalizeResult 6319 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6320 Register DstReg = MI.getOperand(0).getReg(); 6321 Register X = MI.getOperand(1).getReg(); 6322 const unsigned Flags = MI.getFlags(); 6323 const LLT Ty = MRI.getType(DstReg); 6324 const LLT CondTy = Ty.changeElementSize(1); 6325 6326 // round(x) => 6327 // t = trunc(x); 6328 // d = fabs(x - t); 6329 // o = copysign(1.0f, x); 6330 // return t + (d >= 0.5 ? o : 0.0); 6331 6332 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6333 6334 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6335 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6336 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6337 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6338 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6339 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6340 6341 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6342 Flags); 6343 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6344 6345 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6346 6347 MI.eraseFromParent(); 6348 return Legalized; 6349 } 6350 6351 LegalizerHelper::LegalizeResult 6352 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6353 Register DstReg = MI.getOperand(0).getReg(); 6354 Register SrcReg = MI.getOperand(1).getReg(); 6355 unsigned Flags = MI.getFlags(); 6356 LLT Ty = MRI.getType(DstReg); 6357 const LLT CondTy = Ty.changeElementSize(1); 6358 6359 // result = trunc(src); 6360 // if (src < 0.0 && src != result) 6361 // result += -1.0. 6362 6363 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6364 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6365 6366 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6367 SrcReg, Zero, Flags); 6368 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6369 SrcReg, Trunc, Flags); 6370 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6371 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6372 6373 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6374 MI.eraseFromParent(); 6375 return Legalized; 6376 } 6377 6378 LegalizerHelper::LegalizeResult 6379 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6380 const unsigned NumOps = MI.getNumOperands(); 6381 Register DstReg = MI.getOperand(0).getReg(); 6382 Register Src0Reg = MI.getOperand(1).getReg(); 6383 LLT DstTy = MRI.getType(DstReg); 6384 LLT SrcTy = MRI.getType(Src0Reg); 6385 unsigned PartSize = SrcTy.getSizeInBits(); 6386 6387 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6388 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6389 6390 for (unsigned I = 2; I != NumOps; ++I) { 6391 const unsigned Offset = (I - 1) * PartSize; 6392 6393 Register SrcReg = MI.getOperand(I).getReg(); 6394 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6395 6396 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6397 MRI.createGenericVirtualRegister(WideTy); 6398 6399 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6400 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6401 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6402 ResultReg = NextResult; 6403 } 6404 6405 if (DstTy.isPointer()) { 6406 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6407 DstTy.getAddressSpace())) { 6408 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6409 return UnableToLegalize; 6410 } 6411 6412 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6413 } 6414 6415 MI.eraseFromParent(); 6416 return Legalized; 6417 } 6418 6419 LegalizerHelper::LegalizeResult 6420 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6421 const unsigned NumDst = MI.getNumOperands() - 1; 6422 Register SrcReg = MI.getOperand(NumDst).getReg(); 6423 Register Dst0Reg = MI.getOperand(0).getReg(); 6424 LLT DstTy = MRI.getType(Dst0Reg); 6425 if (DstTy.isPointer()) 6426 return UnableToLegalize; // TODO 6427 6428 SrcReg = coerceToScalar(SrcReg); 6429 if (!SrcReg) 6430 return UnableToLegalize; 6431 6432 // Expand scalarizing unmerge as bitcast to integer and shift. 6433 LLT IntTy = MRI.getType(SrcReg); 6434 6435 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6436 6437 const unsigned DstSize = DstTy.getSizeInBits(); 6438 unsigned Offset = DstSize; 6439 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6440 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6441 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6442 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6443 } 6444 6445 MI.eraseFromParent(); 6446 return Legalized; 6447 } 6448 6449 /// Lower a vector extract or insert by writing the vector to a stack temporary 6450 /// and reloading the element or vector. 6451 /// 6452 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6453 /// => 6454 /// %stack_temp = G_FRAME_INDEX 6455 /// G_STORE %vec, %stack_temp 6456 /// %idx = clamp(%idx, %vec.getNumElements()) 6457 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6458 /// %dst = G_LOAD %element_ptr 6459 LegalizerHelper::LegalizeResult 6460 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6461 Register DstReg = MI.getOperand(0).getReg(); 6462 Register SrcVec = MI.getOperand(1).getReg(); 6463 Register InsertVal; 6464 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6465 InsertVal = MI.getOperand(2).getReg(); 6466 6467 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6468 6469 LLT VecTy = MRI.getType(SrcVec); 6470 LLT EltTy = VecTy.getElementType(); 6471 if (!EltTy.isByteSized()) { // Not implemented. 6472 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6473 return UnableToLegalize; 6474 } 6475 6476 unsigned EltBytes = EltTy.getSizeInBytes(); 6477 Align VecAlign = getStackTemporaryAlignment(VecTy); 6478 Align EltAlign; 6479 6480 MachinePointerInfo PtrInfo; 6481 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6482 VecAlign, PtrInfo); 6483 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6484 6485 // Get the pointer to the element, and be sure not to hit undefined behavior 6486 // if the index is out of bounds. 6487 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6488 6489 int64_t IdxVal; 6490 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6491 int64_t Offset = IdxVal * EltBytes; 6492 PtrInfo = PtrInfo.getWithOffset(Offset); 6493 EltAlign = commonAlignment(VecAlign, Offset); 6494 } else { 6495 // We lose information with a variable offset. 6496 EltAlign = getStackTemporaryAlignment(EltTy); 6497 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6498 } 6499 6500 if (InsertVal) { 6501 // Write the inserted element 6502 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6503 6504 // Reload the whole vector. 6505 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6506 } else { 6507 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6508 } 6509 6510 MI.eraseFromParent(); 6511 return Legalized; 6512 } 6513 6514 LegalizerHelper::LegalizeResult 6515 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6516 Register DstReg = MI.getOperand(0).getReg(); 6517 Register Src0Reg = MI.getOperand(1).getReg(); 6518 Register Src1Reg = MI.getOperand(2).getReg(); 6519 LLT Src0Ty = MRI.getType(Src0Reg); 6520 LLT DstTy = MRI.getType(DstReg); 6521 LLT IdxTy = LLT::scalar(32); 6522 6523 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6524 6525 if (DstTy.isScalar()) { 6526 if (Src0Ty.isVector()) 6527 return UnableToLegalize; 6528 6529 // This is just a SELECT. 6530 assert(Mask.size() == 1 && "Expected a single mask element"); 6531 Register Val; 6532 if (Mask[0] < 0 || Mask[0] > 1) 6533 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6534 else 6535 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6536 MIRBuilder.buildCopy(DstReg, Val); 6537 MI.eraseFromParent(); 6538 return Legalized; 6539 } 6540 6541 Register Undef; 6542 SmallVector<Register, 32> BuildVec; 6543 LLT EltTy = DstTy.getElementType(); 6544 6545 for (int Idx : Mask) { 6546 if (Idx < 0) { 6547 if (!Undef.isValid()) 6548 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6549 BuildVec.push_back(Undef); 6550 continue; 6551 } 6552 6553 if (Src0Ty.isScalar()) { 6554 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6555 } else { 6556 int NumElts = Src0Ty.getNumElements(); 6557 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6558 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6559 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6560 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6561 BuildVec.push_back(Extract.getReg(0)); 6562 } 6563 } 6564 6565 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6566 MI.eraseFromParent(); 6567 return Legalized; 6568 } 6569 6570 LegalizerHelper::LegalizeResult 6571 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6572 const auto &MF = *MI.getMF(); 6573 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6574 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6575 return UnableToLegalize; 6576 6577 Register Dst = MI.getOperand(0).getReg(); 6578 Register AllocSize = MI.getOperand(1).getReg(); 6579 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6580 6581 LLT PtrTy = MRI.getType(Dst); 6582 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6583 6584 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6585 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6586 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6587 6588 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6589 // have to generate an extra instruction to negate the alloc and then use 6590 // G_PTR_ADD to add the negative offset. 6591 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6592 if (Alignment > Align(1)) { 6593 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6594 AlignMask.negate(); 6595 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6596 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6597 } 6598 6599 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6600 MIRBuilder.buildCopy(SPReg, SPTmp); 6601 MIRBuilder.buildCopy(Dst, SPTmp); 6602 6603 MI.eraseFromParent(); 6604 return Legalized; 6605 } 6606 6607 LegalizerHelper::LegalizeResult 6608 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6609 Register Dst = MI.getOperand(0).getReg(); 6610 Register Src = MI.getOperand(1).getReg(); 6611 unsigned Offset = MI.getOperand(2).getImm(); 6612 6613 LLT DstTy = MRI.getType(Dst); 6614 LLT SrcTy = MRI.getType(Src); 6615 6616 if (DstTy.isScalar() && 6617 (SrcTy.isScalar() || 6618 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6619 LLT SrcIntTy = SrcTy; 6620 if (!SrcTy.isScalar()) { 6621 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6622 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6623 } 6624 6625 if (Offset == 0) 6626 MIRBuilder.buildTrunc(Dst, Src); 6627 else { 6628 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6629 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6630 MIRBuilder.buildTrunc(Dst, Shr); 6631 } 6632 6633 MI.eraseFromParent(); 6634 return Legalized; 6635 } 6636 6637 return UnableToLegalize; 6638 } 6639 6640 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6641 Register Dst = MI.getOperand(0).getReg(); 6642 Register Src = MI.getOperand(1).getReg(); 6643 Register InsertSrc = MI.getOperand(2).getReg(); 6644 uint64_t Offset = MI.getOperand(3).getImm(); 6645 6646 LLT DstTy = MRI.getType(Src); 6647 LLT InsertTy = MRI.getType(InsertSrc); 6648 6649 if (InsertTy.isVector() || 6650 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6651 return UnableToLegalize; 6652 6653 const DataLayout &DL = MIRBuilder.getDataLayout(); 6654 if ((DstTy.isPointer() && 6655 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6656 (InsertTy.isPointer() && 6657 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6658 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6659 return UnableToLegalize; 6660 } 6661 6662 LLT IntDstTy = DstTy; 6663 6664 if (!DstTy.isScalar()) { 6665 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6666 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6667 } 6668 6669 if (!InsertTy.isScalar()) { 6670 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6671 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6672 } 6673 6674 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6675 if (Offset != 0) { 6676 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6677 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6678 } 6679 6680 APInt MaskVal = APInt::getBitsSetWithWrap( 6681 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6682 6683 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6684 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6685 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6686 6687 MIRBuilder.buildCast(Dst, Or); 6688 MI.eraseFromParent(); 6689 return Legalized; 6690 } 6691 6692 LegalizerHelper::LegalizeResult 6693 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6694 Register Dst0 = MI.getOperand(0).getReg(); 6695 Register Dst1 = MI.getOperand(1).getReg(); 6696 Register LHS = MI.getOperand(2).getReg(); 6697 Register RHS = MI.getOperand(3).getReg(); 6698 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6699 6700 LLT Ty = MRI.getType(Dst0); 6701 LLT BoolTy = MRI.getType(Dst1); 6702 6703 if (IsAdd) 6704 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6705 else 6706 MIRBuilder.buildSub(Dst0, LHS, RHS); 6707 6708 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6709 6710 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6711 6712 // For an addition, the result should be less than one of the operands (LHS) 6713 // if and only if the other operand (RHS) is negative, otherwise there will 6714 // be overflow. 6715 // For a subtraction, the result should be less than one of the operands 6716 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6717 // otherwise there will be overflow. 6718 auto ResultLowerThanLHS = 6719 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6720 auto ConditionRHS = MIRBuilder.buildICmp( 6721 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6722 6723 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6724 MI.eraseFromParent(); 6725 return Legalized; 6726 } 6727 6728 LegalizerHelper::LegalizeResult 6729 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6730 Register Res = MI.getOperand(0).getReg(); 6731 Register LHS = MI.getOperand(1).getReg(); 6732 Register RHS = MI.getOperand(2).getReg(); 6733 LLT Ty = MRI.getType(Res); 6734 bool IsSigned; 6735 bool IsAdd; 6736 unsigned BaseOp; 6737 switch (MI.getOpcode()) { 6738 default: 6739 llvm_unreachable("unexpected addsat/subsat opcode"); 6740 case TargetOpcode::G_UADDSAT: 6741 IsSigned = false; 6742 IsAdd = true; 6743 BaseOp = TargetOpcode::G_ADD; 6744 break; 6745 case TargetOpcode::G_SADDSAT: 6746 IsSigned = true; 6747 IsAdd = true; 6748 BaseOp = TargetOpcode::G_ADD; 6749 break; 6750 case TargetOpcode::G_USUBSAT: 6751 IsSigned = false; 6752 IsAdd = false; 6753 BaseOp = TargetOpcode::G_SUB; 6754 break; 6755 case TargetOpcode::G_SSUBSAT: 6756 IsSigned = true; 6757 IsAdd = false; 6758 BaseOp = TargetOpcode::G_SUB; 6759 break; 6760 } 6761 6762 if (IsSigned) { 6763 // sadd.sat(a, b) -> 6764 // hi = 0x7fffffff - smax(a, 0) 6765 // lo = 0x80000000 - smin(a, 0) 6766 // a + smin(smax(lo, b), hi) 6767 // ssub.sat(a, b) -> 6768 // lo = smax(a, -1) - 0x7fffffff 6769 // hi = smin(a, -1) - 0x80000000 6770 // a - smin(smax(lo, b), hi) 6771 // TODO: AMDGPU can use a "median of 3" instruction here: 6772 // a +/- med3(lo, b, hi) 6773 uint64_t NumBits = Ty.getScalarSizeInBits(); 6774 auto MaxVal = 6775 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6776 auto MinVal = 6777 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6778 MachineInstrBuilder Hi, Lo; 6779 if (IsAdd) { 6780 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6781 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6782 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6783 } else { 6784 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6785 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6786 MaxVal); 6787 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6788 MinVal); 6789 } 6790 auto RHSClamped = 6791 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6792 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6793 } else { 6794 // uadd.sat(a, b) -> a + umin(~a, b) 6795 // usub.sat(a, b) -> a - umin(a, b) 6796 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6797 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6798 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6799 } 6800 6801 MI.eraseFromParent(); 6802 return Legalized; 6803 } 6804 6805 LegalizerHelper::LegalizeResult 6806 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6807 Register Res = MI.getOperand(0).getReg(); 6808 Register LHS = MI.getOperand(1).getReg(); 6809 Register RHS = MI.getOperand(2).getReg(); 6810 LLT Ty = MRI.getType(Res); 6811 LLT BoolTy = Ty.changeElementSize(1); 6812 bool IsSigned; 6813 bool IsAdd; 6814 unsigned OverflowOp; 6815 switch (MI.getOpcode()) { 6816 default: 6817 llvm_unreachable("unexpected addsat/subsat opcode"); 6818 case TargetOpcode::G_UADDSAT: 6819 IsSigned = false; 6820 IsAdd = true; 6821 OverflowOp = TargetOpcode::G_UADDO; 6822 break; 6823 case TargetOpcode::G_SADDSAT: 6824 IsSigned = true; 6825 IsAdd = true; 6826 OverflowOp = TargetOpcode::G_SADDO; 6827 break; 6828 case TargetOpcode::G_USUBSAT: 6829 IsSigned = false; 6830 IsAdd = false; 6831 OverflowOp = TargetOpcode::G_USUBO; 6832 break; 6833 case TargetOpcode::G_SSUBSAT: 6834 IsSigned = true; 6835 IsAdd = false; 6836 OverflowOp = TargetOpcode::G_SSUBO; 6837 break; 6838 } 6839 6840 auto OverflowRes = 6841 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6842 Register Tmp = OverflowRes.getReg(0); 6843 Register Ov = OverflowRes.getReg(1); 6844 MachineInstrBuilder Clamp; 6845 if (IsSigned) { 6846 // sadd.sat(a, b) -> 6847 // {tmp, ov} = saddo(a, b) 6848 // ov ? (tmp >>s 31) + 0x80000000 : r 6849 // ssub.sat(a, b) -> 6850 // {tmp, ov} = ssubo(a, b) 6851 // ov ? (tmp >>s 31) + 0x80000000 : r 6852 uint64_t NumBits = Ty.getScalarSizeInBits(); 6853 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6854 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6855 auto MinVal = 6856 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6857 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6858 } else { 6859 // uadd.sat(a, b) -> 6860 // {tmp, ov} = uaddo(a, b) 6861 // ov ? 0xffffffff : tmp 6862 // usub.sat(a, b) -> 6863 // {tmp, ov} = usubo(a, b) 6864 // ov ? 0 : tmp 6865 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6866 } 6867 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6868 6869 MI.eraseFromParent(); 6870 return Legalized; 6871 } 6872 6873 LegalizerHelper::LegalizeResult 6874 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6875 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6876 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6877 "Expected shlsat opcode!"); 6878 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6879 Register Res = MI.getOperand(0).getReg(); 6880 Register LHS = MI.getOperand(1).getReg(); 6881 Register RHS = MI.getOperand(2).getReg(); 6882 LLT Ty = MRI.getType(Res); 6883 LLT BoolTy = Ty.changeElementSize(1); 6884 6885 unsigned BW = Ty.getScalarSizeInBits(); 6886 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6887 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6888 : MIRBuilder.buildLShr(Ty, Result, RHS); 6889 6890 MachineInstrBuilder SatVal; 6891 if (IsSigned) { 6892 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6893 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6894 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6895 MIRBuilder.buildConstant(Ty, 0)); 6896 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6897 } else { 6898 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6899 } 6900 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6901 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6902 6903 MI.eraseFromParent(); 6904 return Legalized; 6905 } 6906 6907 LegalizerHelper::LegalizeResult 6908 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6909 Register Dst = MI.getOperand(0).getReg(); 6910 Register Src = MI.getOperand(1).getReg(); 6911 const LLT Ty = MRI.getType(Src); 6912 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6913 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6914 6915 // Swap most and least significant byte, set remaining bytes in Res to zero. 6916 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6917 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6918 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6919 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6920 6921 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6922 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6923 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6924 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6925 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6926 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6927 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6928 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6929 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6930 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6931 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6932 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6933 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6934 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6935 } 6936 Res.getInstr()->getOperand(0).setReg(Dst); 6937 6938 MI.eraseFromParent(); 6939 return Legalized; 6940 } 6941 6942 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6943 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6944 MachineInstrBuilder Src, APInt Mask) { 6945 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6946 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6947 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6948 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6949 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6950 return B.buildOr(Dst, LHS, RHS); 6951 } 6952 6953 LegalizerHelper::LegalizeResult 6954 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6955 Register Dst = MI.getOperand(0).getReg(); 6956 Register Src = MI.getOperand(1).getReg(); 6957 const LLT Ty = MRI.getType(Src); 6958 unsigned Size = Ty.getSizeInBits(); 6959 6960 MachineInstrBuilder BSWAP = 6961 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6962 6963 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6964 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6965 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6966 MachineInstrBuilder Swap4 = 6967 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6968 6969 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6970 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6971 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6972 MachineInstrBuilder Swap2 = 6973 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6974 6975 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6976 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6977 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6978 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6979 6980 MI.eraseFromParent(); 6981 return Legalized; 6982 } 6983 6984 LegalizerHelper::LegalizeResult 6985 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6986 MachineFunction &MF = MIRBuilder.getMF(); 6987 6988 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6989 int NameOpIdx = IsRead ? 1 : 0; 6990 int ValRegIndex = IsRead ? 0 : 1; 6991 6992 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6993 const LLT Ty = MRI.getType(ValReg); 6994 const MDString *RegStr = cast<MDString>( 6995 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6996 6997 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6998 if (!PhysReg.isValid()) 6999 return UnableToLegalize; 7000 7001 if (IsRead) 7002 MIRBuilder.buildCopy(ValReg, PhysReg); 7003 else 7004 MIRBuilder.buildCopy(PhysReg, ValReg); 7005 7006 MI.eraseFromParent(); 7007 return Legalized; 7008 } 7009 7010 LegalizerHelper::LegalizeResult 7011 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7012 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7013 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7014 Register Result = MI.getOperand(0).getReg(); 7015 LLT OrigTy = MRI.getType(Result); 7016 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7017 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7018 7019 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7020 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7021 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7022 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7023 7024 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7025 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7026 MIRBuilder.buildTrunc(Result, Shifted); 7027 7028 MI.eraseFromParent(); 7029 return Legalized; 7030 } 7031 7032 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7033 // Implement vector G_SELECT in terms of XOR, AND, OR. 7034 Register DstReg = MI.getOperand(0).getReg(); 7035 Register MaskReg = MI.getOperand(1).getReg(); 7036 Register Op1Reg = MI.getOperand(2).getReg(); 7037 Register Op2Reg = MI.getOperand(3).getReg(); 7038 LLT DstTy = MRI.getType(DstReg); 7039 LLT MaskTy = MRI.getType(MaskReg); 7040 LLT Op1Ty = MRI.getType(Op1Reg); 7041 if (!DstTy.isVector()) 7042 return UnableToLegalize; 7043 7044 // Vector selects can have a scalar predicate. If so, splat into a vector and 7045 // finish for later legalization attempts to try again. 7046 if (MaskTy.isScalar()) { 7047 Register MaskElt = MaskReg; 7048 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7049 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7050 // Generate a vector splat idiom to be pattern matched later. 7051 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7052 Observer.changingInstr(MI); 7053 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7054 Observer.changedInstr(MI); 7055 return Legalized; 7056 } 7057 7058 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7059 return UnableToLegalize; 7060 } 7061 7062 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7063 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7064 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7065 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7066 MI.eraseFromParent(); 7067 return Legalized; 7068 } 7069 7070 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7071 // Split DIVREM into individual instructions. 7072 unsigned Opcode = MI.getOpcode(); 7073 7074 MIRBuilder.buildInstr( 7075 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7076 : TargetOpcode::G_UDIV, 7077 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7078 MIRBuilder.buildInstr( 7079 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7080 : TargetOpcode::G_UREM, 7081 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7082 MI.eraseFromParent(); 7083 return Legalized; 7084 } 7085 7086 LegalizerHelper::LegalizeResult 7087 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7088 // Expand %res = G_ABS %a into: 7089 // %v1 = G_ASHR %a, scalar_size-1 7090 // %v2 = G_ADD %a, %v1 7091 // %res = G_XOR %v2, %v1 7092 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7093 Register OpReg = MI.getOperand(1).getReg(); 7094 auto ShiftAmt = 7095 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7096 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7097 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7098 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7099 MI.eraseFromParent(); 7100 return Legalized; 7101 } 7102 7103 LegalizerHelper::LegalizeResult 7104 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7105 // Expand %res = G_ABS %a into: 7106 // %v1 = G_CONSTANT 0 7107 // %v2 = G_SUB %v1, %a 7108 // %res = G_SMAX %a, %v2 7109 Register SrcReg = MI.getOperand(1).getReg(); 7110 LLT Ty = MRI.getType(SrcReg); 7111 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7112 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7113 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7114 MI.eraseFromParent(); 7115 return Legalized; 7116 } 7117