1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { 95 MIRBuilder.setChangeObserver(Observer); 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &B) 101 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 102 TLI(*MF.getSubtarget().getTargetLowering()) { 103 MIRBuilder.setChangeObserver(Observer); 104 } 105 LegalizerHelper::LegalizeResult 106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 107 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 108 109 MIRBuilder.setInstrAndDebugLoc(MI); 110 111 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 112 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 113 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 114 auto Step = LI.getAction(MI, MRI); 115 switch (Step.Action) { 116 case Legal: 117 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 118 return AlreadyLegal; 119 case Libcall: 120 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 121 return libcall(MI); 122 case NarrowScalar: 123 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 124 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 125 case WidenScalar: 126 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 127 return widenScalar(MI, Step.TypeIdx, Step.NewType); 128 case Bitcast: 129 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 130 return bitcast(MI, Step.TypeIdx, Step.NewType); 131 case Lower: 132 LLVM_DEBUG(dbgs() << ".. Lower\n"); 133 return lower(MI, Step.TypeIdx, Step.NewType); 134 case FewerElements: 135 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 136 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case MoreElements: 138 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 139 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case Custom: 141 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 142 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 143 default: 144 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 145 return UnableToLegalize; 146 } 147 } 148 149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 150 SmallVectorImpl<Register> &VRegs) { 151 for (int i = 0; i < NumParts; ++i) 152 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 153 MIRBuilder.buildUnmerge(VRegs, Reg); 154 } 155 156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 157 LLT MainTy, LLT &LeftoverTy, 158 SmallVectorImpl<Register> &VRegs, 159 SmallVectorImpl<Register> &LeftoverRegs) { 160 assert(!LeftoverTy.isValid() && "this is an out argument"); 161 162 unsigned RegSize = RegTy.getSizeInBits(); 163 unsigned MainSize = MainTy.getSizeInBits(); 164 unsigned NumParts = RegSize / MainSize; 165 unsigned LeftoverSize = RegSize - NumParts * MainSize; 166 167 // Use an unmerge when possible. 168 if (LeftoverSize == 0) { 169 for (unsigned I = 0; I < NumParts; ++I) 170 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 171 MIRBuilder.buildUnmerge(VRegs, Reg); 172 return true; 173 } 174 175 if (MainTy.isVector()) { 176 unsigned EltSize = MainTy.getScalarSizeInBits(); 177 if (LeftoverSize % EltSize != 0) 178 return false; 179 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 180 } else { 181 LeftoverTy = LLT::scalar(LeftoverSize); 182 } 183 184 // For irregular sizes, extract the individual parts. 185 for (unsigned I = 0; I != NumParts; ++I) { 186 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 187 VRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 189 } 190 191 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 192 Offset += LeftoverSize) { 193 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 194 LeftoverRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, Offset); 196 } 197 198 return true; 199 } 200 201 void LegalizerHelper::insertParts(Register DstReg, 202 LLT ResultTy, LLT PartTy, 203 ArrayRef<Register> PartRegs, 204 LLT LeftoverTy, 205 ArrayRef<Register> LeftoverRegs) { 206 if (!LeftoverTy.isValid()) { 207 assert(LeftoverRegs.empty()); 208 209 if (!ResultTy.isVector()) { 210 MIRBuilder.buildMerge(DstReg, PartRegs); 211 return; 212 } 213 214 if (PartTy.isVector()) 215 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 216 else 217 MIRBuilder.buildBuildVector(DstReg, PartRegs); 218 return; 219 } 220 221 unsigned PartSize = PartTy.getSizeInBits(); 222 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 223 224 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 225 MIRBuilder.buildUndef(CurResultReg); 226 227 unsigned Offset = 0; 228 for (Register PartReg : PartRegs) { 229 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 230 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 231 CurResultReg = NewResultReg; 232 Offset += PartSize; 233 } 234 235 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 236 // Use the original output register for the final insert to avoid a copy. 237 Register NewResultReg = (I + 1 == E) ? 238 DstReg : MRI.createGenericVirtualRegister(ResultTy); 239 240 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 241 CurResultReg = NewResultReg; 242 Offset += LeftoverPartSize; 243 } 244 } 245 246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 248 const MachineInstr &MI) { 249 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 250 251 const int StartIdx = Regs.size(); 252 const int NumResults = MI.getNumOperands() - 1; 253 Regs.resize(Regs.size() + NumResults); 254 for (int I = 0; I != NumResults; ++I) 255 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 256 } 257 258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 259 LLT GCDTy, Register SrcReg) { 260 LLT SrcTy = MRI.getType(SrcReg); 261 if (SrcTy == GCDTy) { 262 // If the source already evenly divides the result type, we don't need to do 263 // anything. 264 Parts.push_back(SrcReg); 265 } else { 266 // Need to split into common type sized pieces. 267 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 268 getUnmergeResults(Parts, *Unmerge); 269 } 270 } 271 272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 273 LLT NarrowTy, Register SrcReg) { 274 LLT SrcTy = MRI.getType(SrcReg); 275 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 276 extractGCDType(Parts, GCDTy, SrcReg); 277 return GCDTy; 278 } 279 280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 281 SmallVectorImpl<Register> &VRegs, 282 unsigned PadStrategy) { 283 LLT LCMTy = getLCMType(DstTy, NarrowTy); 284 285 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 286 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 287 int NumOrigSrc = VRegs.size(); 288 289 Register PadReg; 290 291 // Get a value we can use to pad the source value if the sources won't evenly 292 // cover the result type. 293 if (NumOrigSrc < NumParts * NumSubParts) { 294 if (PadStrategy == TargetOpcode::G_ZEXT) 295 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 296 else if (PadStrategy == TargetOpcode::G_ANYEXT) 297 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 298 else { 299 assert(PadStrategy == TargetOpcode::G_SEXT); 300 301 // Shift the sign bit of the low register through the high register. 302 auto ShiftAmt = 303 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 304 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 305 } 306 } 307 308 // Registers for the final merge to be produced. 309 SmallVector<Register, 4> Remerge(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge(NumSubParts); 314 315 // Once we've fully read off the end of the original source bits, we can reuse 316 // the same high bits for remaining padding elements. 317 Register AllPadReg; 318 319 // Build merges to the LCM type to cover the original result type. 320 for (int I = 0; I != NumParts; ++I) { 321 bool AllMergePartsArePadding = true; 322 323 // Build the requested merges to the requested type. 324 for (int J = 0; J != NumSubParts; ++J) { 325 int Idx = I * NumSubParts + J; 326 if (Idx >= NumOrigSrc) { 327 SubMerge[J] = PadReg; 328 continue; 329 } 330 331 SubMerge[J] = VRegs[Idx]; 332 333 // There are meaningful bits here we can't reuse later. 334 AllMergePartsArePadding = false; 335 } 336 337 // If we've filled up a complete piece with padding bits, we can directly 338 // emit the natural sized constant if applicable, rather than a merge of 339 // smaller constants. 340 if (AllMergePartsArePadding && !AllPadReg) { 341 if (PadStrategy == TargetOpcode::G_ANYEXT) 342 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 343 else if (PadStrategy == TargetOpcode::G_ZEXT) 344 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 345 346 // If this is a sign extension, we can't materialize a trivial constant 347 // with the right type and have to produce a merge. 348 } 349 350 if (AllPadReg) { 351 // Avoid creating additional instructions if we're just adding additional 352 // copies of padding bits. 353 Remerge[I] = AllPadReg; 354 continue; 355 } 356 357 if (NumSubParts == 1) 358 Remerge[I] = SubMerge[0]; 359 else 360 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 361 362 // In the sign extend padding case, re-use the first all-signbit merge. 363 if (AllMergePartsArePadding && !AllPadReg) 364 AllPadReg = Remerge[I]; 365 } 366 367 VRegs = std::move(Remerge); 368 return LCMTy; 369 } 370 371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 372 ArrayRef<Register> RemergeRegs) { 373 LLT DstTy = MRI.getType(DstReg); 374 375 // Create the merge to the widened source, and extract the relevant bits into 376 // the result. 377 378 if (DstTy == LCMTy) { 379 MIRBuilder.buildMerge(DstReg, RemergeRegs); 380 return; 381 } 382 383 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 384 if (DstTy.isScalar() && LCMTy.isScalar()) { 385 MIRBuilder.buildTrunc(DstReg, Remerge); 386 return; 387 } 388 389 if (LCMTy.isVector()) { 390 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 391 SmallVector<Register, 8> UnmergeDefs(NumDefs); 392 UnmergeDefs[0] = DstReg; 393 for (unsigned I = 1; I != NumDefs; ++I) 394 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 395 396 MIRBuilder.buildUnmerge(UnmergeDefs, 397 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 398 return; 399 } 400 401 llvm_unreachable("unhandled case"); 402 } 403 404 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 405 #define RTLIBCASE_INT(LibcallPrefix) \ 406 do { \ 407 switch (Size) { \ 408 case 32: \ 409 return RTLIB::LibcallPrefix##32; \ 410 case 64: \ 411 return RTLIB::LibcallPrefix##64; \ 412 case 128: \ 413 return RTLIB::LibcallPrefix##128; \ 414 default: \ 415 llvm_unreachable("unexpected size"); \ 416 } \ 417 } while (0) 418 419 #define RTLIBCASE(LibcallPrefix) \ 420 do { \ 421 switch (Size) { \ 422 case 32: \ 423 return RTLIB::LibcallPrefix##32; \ 424 case 64: \ 425 return RTLIB::LibcallPrefix##64; \ 426 case 80: \ 427 return RTLIB::LibcallPrefix##80; \ 428 case 128: \ 429 return RTLIB::LibcallPrefix##128; \ 430 default: \ 431 llvm_unreachable("unexpected size"); \ 432 } \ 433 } while (0) 434 435 switch (Opcode) { 436 case TargetOpcode::G_SDIV: 437 RTLIBCASE_INT(SDIV_I); 438 case TargetOpcode::G_UDIV: 439 RTLIBCASE_INT(UDIV_I); 440 case TargetOpcode::G_SREM: 441 RTLIBCASE_INT(SREM_I); 442 case TargetOpcode::G_UREM: 443 RTLIBCASE_INT(UREM_I); 444 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 445 RTLIBCASE_INT(CTLZ_I); 446 case TargetOpcode::G_FADD: 447 RTLIBCASE(ADD_F); 448 case TargetOpcode::G_FSUB: 449 RTLIBCASE(SUB_F); 450 case TargetOpcode::G_FMUL: 451 RTLIBCASE(MUL_F); 452 case TargetOpcode::G_FDIV: 453 RTLIBCASE(DIV_F); 454 case TargetOpcode::G_FEXP: 455 RTLIBCASE(EXP_F); 456 case TargetOpcode::G_FEXP2: 457 RTLIBCASE(EXP2_F); 458 case TargetOpcode::G_FREM: 459 RTLIBCASE(REM_F); 460 case TargetOpcode::G_FPOW: 461 RTLIBCASE(POW_F); 462 case TargetOpcode::G_FMA: 463 RTLIBCASE(FMA_F); 464 case TargetOpcode::G_FSIN: 465 RTLIBCASE(SIN_F); 466 case TargetOpcode::G_FCOS: 467 RTLIBCASE(COS_F); 468 case TargetOpcode::G_FLOG10: 469 RTLIBCASE(LOG10_F); 470 case TargetOpcode::G_FLOG: 471 RTLIBCASE(LOG_F); 472 case TargetOpcode::G_FLOG2: 473 RTLIBCASE(LOG2_F); 474 case TargetOpcode::G_FCEIL: 475 RTLIBCASE(CEIL_F); 476 case TargetOpcode::G_FFLOOR: 477 RTLIBCASE(FLOOR_F); 478 case TargetOpcode::G_FMINNUM: 479 RTLIBCASE(FMIN_F); 480 case TargetOpcode::G_FMAXNUM: 481 RTLIBCASE(FMAX_F); 482 case TargetOpcode::G_FSQRT: 483 RTLIBCASE(SQRT_F); 484 case TargetOpcode::G_FRINT: 485 RTLIBCASE(RINT_F); 486 case TargetOpcode::G_FNEARBYINT: 487 RTLIBCASE(NEARBYINT_F); 488 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 489 RTLIBCASE(ROUNDEVEN_F); 490 } 491 llvm_unreachable("Unknown libcall function"); 492 } 493 494 /// True if an instruction is in tail position in its caller. Intended for 495 /// legalizing libcalls as tail calls when possible. 496 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 497 MachineInstr &MI) { 498 MachineBasicBlock &MBB = *MI.getParent(); 499 const Function &F = MBB.getParent()->getFunction(); 500 501 // Conservatively require the attributes of the call to match those of 502 // the return. Ignore NoAlias and NonNull because they don't affect the 503 // call sequence. 504 AttributeList CallerAttrs = F.getAttributes(); 505 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 506 .removeAttribute(Attribute::NoAlias) 507 .removeAttribute(Attribute::NonNull) 508 .hasAttributes()) 509 return false; 510 511 // It's not safe to eliminate the sign / zero extension of the return value. 512 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 513 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 514 return false; 515 516 // Only tail call if the following instruction is a standard return. 517 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 518 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 519 return false; 520 521 return true; 522 } 523 524 LegalizerHelper::LegalizeResult 525 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 526 const CallLowering::ArgInfo &Result, 527 ArrayRef<CallLowering::ArgInfo> Args, 528 const CallingConv::ID CC) { 529 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 530 531 CallLowering::CallLoweringInfo Info; 532 Info.CallConv = CC; 533 Info.Callee = MachineOperand::CreateES(Name); 534 Info.OrigRet = Result; 535 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 536 if (!CLI.lowerCall(MIRBuilder, Info)) 537 return LegalizerHelper::UnableToLegalize; 538 539 return LegalizerHelper::Legalized; 540 } 541 542 LegalizerHelper::LegalizeResult 543 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 544 const CallLowering::ArgInfo &Result, 545 ArrayRef<CallLowering::ArgInfo> Args) { 546 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 547 const char *Name = TLI.getLibcallName(Libcall); 548 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 549 return createLibcall(MIRBuilder, Name, Result, Args, CC); 550 } 551 552 // Useful for libcalls where all operands have the same type. 553 static LegalizerHelper::LegalizeResult 554 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 555 Type *OpType) { 556 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 557 558 SmallVector<CallLowering::ArgInfo, 3> Args; 559 for (unsigned i = 1; i < MI.getNumOperands(); i++) 560 Args.push_back({MI.getOperand(i).getReg(), OpType}); 561 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 562 Args); 563 } 564 565 LegalizerHelper::LegalizeResult 566 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 567 MachineInstr &MI) { 568 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 569 570 SmallVector<CallLowering::ArgInfo, 3> Args; 571 // Add all the args, except for the last which is an imm denoting 'tail'. 572 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 573 Register Reg = MI.getOperand(i).getReg(); 574 575 // Need derive an IR type for call lowering. 576 LLT OpLLT = MRI.getType(Reg); 577 Type *OpTy = nullptr; 578 if (OpLLT.isPointer()) 579 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 580 else 581 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 582 Args.push_back({Reg, OpTy}); 583 } 584 585 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 586 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 587 RTLIB::Libcall RTLibcall; 588 switch (MI.getOpcode()) { 589 case TargetOpcode::G_MEMCPY: 590 RTLibcall = RTLIB::MEMCPY; 591 break; 592 case TargetOpcode::G_MEMMOVE: 593 RTLibcall = RTLIB::MEMMOVE; 594 break; 595 case TargetOpcode::G_MEMSET: 596 RTLibcall = RTLIB::MEMSET; 597 break; 598 default: 599 return LegalizerHelper::UnableToLegalize; 600 } 601 const char *Name = TLI.getLibcallName(RTLibcall); 602 603 CallLowering::CallLoweringInfo Info; 604 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 605 Info.Callee = MachineOperand::CreateES(Name); 606 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 607 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 608 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 609 610 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 611 if (!CLI.lowerCall(MIRBuilder, Info)) 612 return LegalizerHelper::UnableToLegalize; 613 614 if (Info.LoweredTailCall) { 615 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 616 // We must have a return following the call (or debug insts) to get past 617 // isLibCallInTailPosition. 618 do { 619 MachineInstr *Next = MI.getNextNode(); 620 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 621 "Expected instr following MI to be return or debug inst?"); 622 // We lowered a tail call, so the call is now the return from the block. 623 // Delete the old return. 624 Next->eraseFromParent(); 625 } while (MI.getNextNode()); 626 } 627 628 return LegalizerHelper::Legalized; 629 } 630 631 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 632 Type *FromType) { 633 auto ToMVT = MVT::getVT(ToType); 634 auto FromMVT = MVT::getVT(FromType); 635 636 switch (Opcode) { 637 case TargetOpcode::G_FPEXT: 638 return RTLIB::getFPEXT(FromMVT, ToMVT); 639 case TargetOpcode::G_FPTRUNC: 640 return RTLIB::getFPROUND(FromMVT, ToMVT); 641 case TargetOpcode::G_FPTOSI: 642 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 643 case TargetOpcode::G_FPTOUI: 644 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 645 case TargetOpcode::G_SITOFP: 646 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 647 case TargetOpcode::G_UITOFP: 648 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 649 } 650 llvm_unreachable("Unsupported libcall function"); 651 } 652 653 static LegalizerHelper::LegalizeResult 654 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 655 Type *FromType) { 656 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 657 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 658 {{MI.getOperand(1).getReg(), FromType}}); 659 } 660 661 LegalizerHelper::LegalizeResult 662 LegalizerHelper::libcall(MachineInstr &MI) { 663 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 664 unsigned Size = LLTy.getSizeInBits(); 665 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 666 667 switch (MI.getOpcode()) { 668 default: 669 return UnableToLegalize; 670 case TargetOpcode::G_SDIV: 671 case TargetOpcode::G_UDIV: 672 case TargetOpcode::G_SREM: 673 case TargetOpcode::G_UREM: 674 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 675 Type *HLTy = IntegerType::get(Ctx, Size); 676 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 677 if (Status != Legalized) 678 return Status; 679 break; 680 } 681 case TargetOpcode::G_FADD: 682 case TargetOpcode::G_FSUB: 683 case TargetOpcode::G_FMUL: 684 case TargetOpcode::G_FDIV: 685 case TargetOpcode::G_FMA: 686 case TargetOpcode::G_FPOW: 687 case TargetOpcode::G_FREM: 688 case TargetOpcode::G_FCOS: 689 case TargetOpcode::G_FSIN: 690 case TargetOpcode::G_FLOG10: 691 case TargetOpcode::G_FLOG: 692 case TargetOpcode::G_FLOG2: 693 case TargetOpcode::G_FEXP: 694 case TargetOpcode::G_FEXP2: 695 case TargetOpcode::G_FCEIL: 696 case TargetOpcode::G_FFLOOR: 697 case TargetOpcode::G_FMINNUM: 698 case TargetOpcode::G_FMAXNUM: 699 case TargetOpcode::G_FSQRT: 700 case TargetOpcode::G_FRINT: 701 case TargetOpcode::G_FNEARBYINT: 702 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 703 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 704 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 705 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 706 return UnableToLegalize; 707 } 708 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 709 if (Status != Legalized) 710 return Status; 711 break; 712 } 713 case TargetOpcode::G_FPEXT: 714 case TargetOpcode::G_FPTRUNC: { 715 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 716 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 717 if (!FromTy || !ToTy) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 720 if (Status != Legalized) 721 return Status; 722 break; 723 } 724 case TargetOpcode::G_FPTOSI: 725 case TargetOpcode::G_FPTOUI: { 726 // FIXME: Support other types 727 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 728 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 729 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 730 return UnableToLegalize; 731 LegalizeResult Status = conversionLibcall( 732 MI, MIRBuilder, 733 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 734 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 735 if (Status != Legalized) 736 return Status; 737 break; 738 } 739 case TargetOpcode::G_SITOFP: 740 case TargetOpcode::G_UITOFP: { 741 // FIXME: Support other types 742 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 743 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 744 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 745 return UnableToLegalize; 746 LegalizeResult Status = conversionLibcall( 747 MI, MIRBuilder, 748 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 749 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 750 if (Status != Legalized) 751 return Status; 752 break; 753 } 754 case TargetOpcode::G_MEMCPY: 755 case TargetOpcode::G_MEMMOVE: 756 case TargetOpcode::G_MEMSET: { 757 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 758 MI.eraseFromParent(); 759 return Result; 760 } 761 } 762 763 MI.eraseFromParent(); 764 return Legalized; 765 } 766 767 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 768 unsigned TypeIdx, 769 LLT NarrowTy) { 770 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 771 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 772 773 switch (MI.getOpcode()) { 774 default: 775 return UnableToLegalize; 776 case TargetOpcode::G_IMPLICIT_DEF: { 777 Register DstReg = MI.getOperand(0).getReg(); 778 LLT DstTy = MRI.getType(DstReg); 779 780 // If SizeOp0 is not an exact multiple of NarrowSize, emit 781 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 782 // FIXME: Although this would also be legal for the general case, it causes 783 // a lot of regressions in the emitted code (superfluous COPYs, artifact 784 // combines not being hit). This seems to be a problem related to the 785 // artifact combiner. 786 if (SizeOp0 % NarrowSize != 0) { 787 LLT ImplicitTy = NarrowTy; 788 if (DstTy.isVector()) 789 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 790 791 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 792 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 793 794 MI.eraseFromParent(); 795 return Legalized; 796 } 797 798 int NumParts = SizeOp0 / NarrowSize; 799 800 SmallVector<Register, 2> DstRegs; 801 for (int i = 0; i < NumParts; ++i) 802 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 803 804 if (DstTy.isVector()) 805 MIRBuilder.buildBuildVector(DstReg, DstRegs); 806 else 807 MIRBuilder.buildMerge(DstReg, DstRegs); 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 case TargetOpcode::G_CONSTANT: { 812 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 813 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 814 unsigned TotalSize = Ty.getSizeInBits(); 815 unsigned NarrowSize = NarrowTy.getSizeInBits(); 816 int NumParts = TotalSize / NarrowSize; 817 818 SmallVector<Register, 4> PartRegs; 819 for (int I = 0; I != NumParts; ++I) { 820 unsigned Offset = I * NarrowSize; 821 auto K = MIRBuilder.buildConstant(NarrowTy, 822 Val.lshr(Offset).trunc(NarrowSize)); 823 PartRegs.push_back(K.getReg(0)); 824 } 825 826 LLT LeftoverTy; 827 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 828 SmallVector<Register, 1> LeftoverRegs; 829 if (LeftoverBits != 0) { 830 LeftoverTy = LLT::scalar(LeftoverBits); 831 auto K = MIRBuilder.buildConstant( 832 LeftoverTy, 833 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 834 LeftoverRegs.push_back(K.getReg(0)); 835 } 836 837 insertParts(MI.getOperand(0).getReg(), 838 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 839 840 MI.eraseFromParent(); 841 return Legalized; 842 } 843 case TargetOpcode::G_SEXT: 844 case TargetOpcode::G_ZEXT: 845 case TargetOpcode::G_ANYEXT: 846 return narrowScalarExt(MI, TypeIdx, NarrowTy); 847 case TargetOpcode::G_TRUNC: { 848 if (TypeIdx != 1) 849 return UnableToLegalize; 850 851 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 852 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 853 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 854 return UnableToLegalize; 855 } 856 857 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 858 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 859 MI.eraseFromParent(); 860 return Legalized; 861 } 862 863 case TargetOpcode::G_FREEZE: 864 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 865 866 case TargetOpcode::G_ADD: { 867 // FIXME: add support for when SizeOp0 isn't an exact multiple of 868 // NarrowSize. 869 if (SizeOp0 % NarrowSize != 0) 870 return UnableToLegalize; 871 // Expand in terms of carry-setting/consuming G_ADDE instructions. 872 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 873 874 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 875 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 876 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 877 878 Register CarryIn; 879 for (int i = 0; i < NumParts; ++i) { 880 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 881 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 882 883 if (i == 0) 884 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 885 else { 886 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 887 Src2Regs[i], CarryIn); 888 } 889 890 DstRegs.push_back(DstReg); 891 CarryIn = CarryOut; 892 } 893 Register DstReg = MI.getOperand(0).getReg(); 894 if(MRI.getType(DstReg).isVector()) 895 MIRBuilder.buildBuildVector(DstReg, DstRegs); 896 else 897 MIRBuilder.buildMerge(DstReg, DstRegs); 898 MI.eraseFromParent(); 899 return Legalized; 900 } 901 case TargetOpcode::G_SUB: { 902 // FIXME: add support for when SizeOp0 isn't an exact multiple of 903 // NarrowSize. 904 if (SizeOp0 % NarrowSize != 0) 905 return UnableToLegalize; 906 907 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 908 909 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 910 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 911 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 912 913 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 914 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 915 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 916 {Src1Regs[0], Src2Regs[0]}); 917 DstRegs.push_back(DstReg); 918 Register BorrowIn = BorrowOut; 919 for (int i = 1; i < NumParts; ++i) { 920 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 921 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 922 923 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 924 {Src1Regs[i], Src2Regs[i], BorrowIn}); 925 926 DstRegs.push_back(DstReg); 927 BorrowIn = BorrowOut; 928 } 929 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 930 MI.eraseFromParent(); 931 return Legalized; 932 } 933 case TargetOpcode::G_MUL: 934 case TargetOpcode::G_UMULH: 935 return narrowScalarMul(MI, NarrowTy); 936 case TargetOpcode::G_EXTRACT: 937 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_INSERT: 939 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 940 case TargetOpcode::G_LOAD: { 941 auto &MMO = **MI.memoperands_begin(); 942 Register DstReg = MI.getOperand(0).getReg(); 943 LLT DstTy = MRI.getType(DstReg); 944 if (DstTy.isVector()) 945 return UnableToLegalize; 946 947 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 948 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 949 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 950 MIRBuilder.buildAnyExt(DstReg, TmpReg); 951 MI.eraseFromParent(); 952 return Legalized; 953 } 954 955 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 956 } 957 case TargetOpcode::G_ZEXTLOAD: 958 case TargetOpcode::G_SEXTLOAD: { 959 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 960 Register DstReg = MI.getOperand(0).getReg(); 961 Register PtrReg = MI.getOperand(1).getReg(); 962 963 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 964 auto &MMO = **MI.memoperands_begin(); 965 if (MMO.getSizeInBits() == NarrowSize) { 966 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 967 } else { 968 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 969 } 970 971 if (ZExt) 972 MIRBuilder.buildZExt(DstReg, TmpReg); 973 else 974 MIRBuilder.buildSExt(DstReg, TmpReg); 975 976 MI.eraseFromParent(); 977 return Legalized; 978 } 979 case TargetOpcode::G_STORE: { 980 const auto &MMO = **MI.memoperands_begin(); 981 982 Register SrcReg = MI.getOperand(0).getReg(); 983 LLT SrcTy = MRI.getType(SrcReg); 984 if (SrcTy.isVector()) 985 return UnableToLegalize; 986 987 int NumParts = SizeOp0 / NarrowSize; 988 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 989 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 990 if (SrcTy.isVector() && LeftoverBits != 0) 991 return UnableToLegalize; 992 993 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 994 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 995 auto &MMO = **MI.memoperands_begin(); 996 MIRBuilder.buildTrunc(TmpReg, SrcReg); 997 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 998 MI.eraseFromParent(); 999 return Legalized; 1000 } 1001 1002 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1003 } 1004 case TargetOpcode::G_SELECT: 1005 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1006 case TargetOpcode::G_AND: 1007 case TargetOpcode::G_OR: 1008 case TargetOpcode::G_XOR: { 1009 // Legalize bitwise operation: 1010 // A = BinOp<Ty> B, C 1011 // into: 1012 // B1, ..., BN = G_UNMERGE_VALUES B 1013 // C1, ..., CN = G_UNMERGE_VALUES C 1014 // A1 = BinOp<Ty/N> B1, C2 1015 // ... 1016 // AN = BinOp<Ty/N> BN, CN 1017 // A = G_MERGE_VALUES A1, ..., AN 1018 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1019 } 1020 case TargetOpcode::G_SHL: 1021 case TargetOpcode::G_LSHR: 1022 case TargetOpcode::G_ASHR: 1023 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1024 case TargetOpcode::G_CTLZ: 1025 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1026 case TargetOpcode::G_CTTZ: 1027 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTPOP: 1029 if (TypeIdx == 1) 1030 switch (MI.getOpcode()) { 1031 case TargetOpcode::G_CTLZ: 1032 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1033 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1034 case TargetOpcode::G_CTTZ: 1035 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1036 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1037 case TargetOpcode::G_CTPOP: 1038 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1039 default: 1040 return UnableToLegalize; 1041 } 1042 1043 Observer.changingInstr(MI); 1044 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1045 Observer.changedInstr(MI); 1046 return Legalized; 1047 case TargetOpcode::G_INTTOPTR: 1048 if (TypeIdx != 1) 1049 return UnableToLegalize; 1050 1051 Observer.changingInstr(MI); 1052 narrowScalarSrc(MI, NarrowTy, 1); 1053 Observer.changedInstr(MI); 1054 return Legalized; 1055 case TargetOpcode::G_PTRTOINT: 1056 if (TypeIdx != 0) 1057 return UnableToLegalize; 1058 1059 Observer.changingInstr(MI); 1060 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1061 Observer.changedInstr(MI); 1062 return Legalized; 1063 case TargetOpcode::G_PHI: { 1064 unsigned NumParts = SizeOp0 / NarrowSize; 1065 SmallVector<Register, 2> DstRegs(NumParts); 1066 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1067 Observer.changingInstr(MI); 1068 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1069 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1070 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1071 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1072 SrcRegs[i / 2]); 1073 } 1074 MachineBasicBlock &MBB = *MI.getParent(); 1075 MIRBuilder.setInsertPt(MBB, MI); 1076 for (unsigned i = 0; i < NumParts; ++i) { 1077 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1078 MachineInstrBuilder MIB = 1079 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1080 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1081 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1082 } 1083 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1084 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1085 Observer.changedInstr(MI); 1086 MI.eraseFromParent(); 1087 return Legalized; 1088 } 1089 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1090 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1091 if (TypeIdx != 2) 1092 return UnableToLegalize; 1093 1094 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1095 Observer.changingInstr(MI); 1096 narrowScalarSrc(MI, NarrowTy, OpIdx); 1097 Observer.changedInstr(MI); 1098 return Legalized; 1099 } 1100 case TargetOpcode::G_ICMP: { 1101 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1102 if (NarrowSize * 2 != SrcSize) 1103 return UnableToLegalize; 1104 1105 Observer.changingInstr(MI); 1106 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1107 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1108 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1109 1110 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1111 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1112 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1113 1114 CmpInst::Predicate Pred = 1115 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1116 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1117 1118 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1119 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1120 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1121 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1122 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1123 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1124 } else { 1125 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1126 MachineInstrBuilder CmpHEQ = 1127 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1128 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1129 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1130 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1131 } 1132 Observer.changedInstr(MI); 1133 MI.eraseFromParent(); 1134 return Legalized; 1135 } 1136 case TargetOpcode::G_SEXT_INREG: { 1137 if (TypeIdx != 0) 1138 return UnableToLegalize; 1139 1140 int64_t SizeInBits = MI.getOperand(2).getImm(); 1141 1142 // So long as the new type has more bits than the bits we're extending we 1143 // don't need to break it apart. 1144 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1145 Observer.changingInstr(MI); 1146 // We don't lose any non-extension bits by truncating the src and 1147 // sign-extending the dst. 1148 MachineOperand &MO1 = MI.getOperand(1); 1149 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1150 MO1.setReg(TruncMIB.getReg(0)); 1151 1152 MachineOperand &MO2 = MI.getOperand(0); 1153 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1154 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1155 MIRBuilder.buildSExt(MO2, DstExt); 1156 MO2.setReg(DstExt); 1157 Observer.changedInstr(MI); 1158 return Legalized; 1159 } 1160 1161 // Break it apart. Components below the extension point are unmodified. The 1162 // component containing the extension point becomes a narrower SEXT_INREG. 1163 // Components above it are ashr'd from the component containing the 1164 // extension point. 1165 if (SizeOp0 % NarrowSize != 0) 1166 return UnableToLegalize; 1167 int NumParts = SizeOp0 / NarrowSize; 1168 1169 // List the registers where the destination will be scattered. 1170 SmallVector<Register, 2> DstRegs; 1171 // List the registers where the source will be split. 1172 SmallVector<Register, 2> SrcRegs; 1173 1174 // Create all the temporary registers. 1175 for (int i = 0; i < NumParts; ++i) { 1176 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1177 1178 SrcRegs.push_back(SrcReg); 1179 } 1180 1181 // Explode the big arguments into smaller chunks. 1182 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1183 1184 Register AshrCstReg = 1185 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1186 .getReg(0); 1187 Register FullExtensionReg = 0; 1188 Register PartialExtensionReg = 0; 1189 1190 // Do the operation on each small part. 1191 for (int i = 0; i < NumParts; ++i) { 1192 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1193 DstRegs.push_back(SrcRegs[i]); 1194 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1195 assert(PartialExtensionReg && 1196 "Expected to visit partial extension before full"); 1197 if (FullExtensionReg) { 1198 DstRegs.push_back(FullExtensionReg); 1199 continue; 1200 } 1201 DstRegs.push_back( 1202 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1203 .getReg(0)); 1204 FullExtensionReg = DstRegs.back(); 1205 } else { 1206 DstRegs.push_back( 1207 MIRBuilder 1208 .buildInstr( 1209 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1210 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1211 .getReg(0)); 1212 PartialExtensionReg = DstRegs.back(); 1213 } 1214 } 1215 1216 // Gather the destination registers into the final destination. 1217 Register DstReg = MI.getOperand(0).getReg(); 1218 MIRBuilder.buildMerge(DstReg, DstRegs); 1219 MI.eraseFromParent(); 1220 return Legalized; 1221 } 1222 case TargetOpcode::G_BSWAP: 1223 case TargetOpcode::G_BITREVERSE: { 1224 if (SizeOp0 % NarrowSize != 0) 1225 return UnableToLegalize; 1226 1227 Observer.changingInstr(MI); 1228 SmallVector<Register, 2> SrcRegs, DstRegs; 1229 unsigned NumParts = SizeOp0 / NarrowSize; 1230 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1231 1232 for (unsigned i = 0; i < NumParts; ++i) { 1233 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1234 {SrcRegs[NumParts - 1 - i]}); 1235 DstRegs.push_back(DstPart.getReg(0)); 1236 } 1237 1238 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1239 1240 Observer.changedInstr(MI); 1241 MI.eraseFromParent(); 1242 return Legalized; 1243 } 1244 case TargetOpcode::G_PTR_ADD: 1245 case TargetOpcode::G_PTRMASK: { 1246 if (TypeIdx != 1) 1247 return UnableToLegalize; 1248 Observer.changingInstr(MI); 1249 narrowScalarSrc(MI, NarrowTy, 2); 1250 Observer.changedInstr(MI); 1251 return Legalized; 1252 } 1253 case TargetOpcode::G_FPTOUI: { 1254 if (TypeIdx != 0) 1255 return UnableToLegalize; 1256 Observer.changingInstr(MI); 1257 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1258 Observer.changedInstr(MI); 1259 return Legalized; 1260 } 1261 case TargetOpcode::G_FPTOSI: { 1262 if (TypeIdx != 0) 1263 return UnableToLegalize; 1264 Observer.changingInstr(MI); 1265 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1266 Observer.changedInstr(MI); 1267 return Legalized; 1268 } 1269 case TargetOpcode::G_FPEXT: 1270 if (TypeIdx != 0) 1271 return UnableToLegalize; 1272 Observer.changingInstr(MI); 1273 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1274 Observer.changedInstr(MI); 1275 return Legalized; 1276 } 1277 } 1278 1279 Register LegalizerHelper::coerceToScalar(Register Val) { 1280 LLT Ty = MRI.getType(Val); 1281 if (Ty.isScalar()) 1282 return Val; 1283 1284 const DataLayout &DL = MIRBuilder.getDataLayout(); 1285 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1286 if (Ty.isPointer()) { 1287 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1288 return Register(); 1289 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1290 } 1291 1292 Register NewVal = Val; 1293 1294 assert(Ty.isVector()); 1295 LLT EltTy = Ty.getElementType(); 1296 if (EltTy.isPointer()) 1297 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1298 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1299 } 1300 1301 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1302 unsigned OpIdx, unsigned ExtOpcode) { 1303 MachineOperand &MO = MI.getOperand(OpIdx); 1304 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1305 MO.setReg(ExtB.getReg(0)); 1306 } 1307 1308 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1309 unsigned OpIdx) { 1310 MachineOperand &MO = MI.getOperand(OpIdx); 1311 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1312 MO.setReg(ExtB.getReg(0)); 1313 } 1314 1315 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1316 unsigned OpIdx, unsigned TruncOpcode) { 1317 MachineOperand &MO = MI.getOperand(OpIdx); 1318 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1321 MO.setReg(DstExt); 1322 } 1323 1324 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1325 unsigned OpIdx, unsigned ExtOpcode) { 1326 MachineOperand &MO = MI.getOperand(OpIdx); 1327 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1328 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1329 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1330 MO.setReg(DstTrunc); 1331 } 1332 1333 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1334 unsigned OpIdx) { 1335 MachineOperand &MO = MI.getOperand(OpIdx); 1336 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1337 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1338 } 1339 1340 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1341 unsigned OpIdx) { 1342 MachineOperand &MO = MI.getOperand(OpIdx); 1343 1344 LLT OldTy = MRI.getType(MO.getReg()); 1345 unsigned OldElts = OldTy.getNumElements(); 1346 unsigned NewElts = MoreTy.getNumElements(); 1347 1348 unsigned NumParts = NewElts / OldElts; 1349 1350 // Use concat_vectors if the result is a multiple of the number of elements. 1351 if (NumParts * OldElts == NewElts) { 1352 SmallVector<Register, 8> Parts; 1353 Parts.push_back(MO.getReg()); 1354 1355 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1356 for (unsigned I = 1; I != NumParts; ++I) 1357 Parts.push_back(ImpDef); 1358 1359 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1360 MO.setReg(Concat.getReg(0)); 1361 return; 1362 } 1363 1364 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1365 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1366 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1367 MO.setReg(MoreReg); 1368 } 1369 1370 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1371 MachineOperand &Op = MI.getOperand(OpIdx); 1372 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1373 } 1374 1375 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1376 MachineOperand &MO = MI.getOperand(OpIdx); 1377 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1378 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1379 MIRBuilder.buildBitcast(MO, CastDst); 1380 MO.setReg(CastDst); 1381 } 1382 1383 LegalizerHelper::LegalizeResult 1384 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1385 LLT WideTy) { 1386 if (TypeIdx != 1) 1387 return UnableToLegalize; 1388 1389 Register DstReg = MI.getOperand(0).getReg(); 1390 LLT DstTy = MRI.getType(DstReg); 1391 if (DstTy.isVector()) 1392 return UnableToLegalize; 1393 1394 Register Src1 = MI.getOperand(1).getReg(); 1395 LLT SrcTy = MRI.getType(Src1); 1396 const int DstSize = DstTy.getSizeInBits(); 1397 const int SrcSize = SrcTy.getSizeInBits(); 1398 const int WideSize = WideTy.getSizeInBits(); 1399 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1400 1401 unsigned NumOps = MI.getNumOperands(); 1402 unsigned NumSrc = MI.getNumOperands() - 1; 1403 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1404 1405 if (WideSize >= DstSize) { 1406 // Directly pack the bits in the target type. 1407 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1408 1409 for (unsigned I = 2; I != NumOps; ++I) { 1410 const unsigned Offset = (I - 1) * PartSize; 1411 1412 Register SrcReg = MI.getOperand(I).getReg(); 1413 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1414 1415 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1416 1417 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1418 MRI.createGenericVirtualRegister(WideTy); 1419 1420 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1421 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1422 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1423 ResultReg = NextResult; 1424 } 1425 1426 if (WideSize > DstSize) 1427 MIRBuilder.buildTrunc(DstReg, ResultReg); 1428 else if (DstTy.isPointer()) 1429 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1430 1431 MI.eraseFromParent(); 1432 return Legalized; 1433 } 1434 1435 // Unmerge the original values to the GCD type, and recombine to the next 1436 // multiple greater than the original type. 1437 // 1438 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1439 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1440 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1441 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1442 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1443 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1444 // %12:_(s12) = G_MERGE_VALUES %10, %11 1445 // 1446 // Padding with undef if necessary: 1447 // 1448 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1449 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1450 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1451 // %7:_(s2) = G_IMPLICIT_DEF 1452 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1453 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1454 // %10:_(s12) = G_MERGE_VALUES %8, %9 1455 1456 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1457 LLT GCDTy = LLT::scalar(GCD); 1458 1459 SmallVector<Register, 8> Parts; 1460 SmallVector<Register, 8> NewMergeRegs; 1461 SmallVector<Register, 8> Unmerges; 1462 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1463 1464 // Decompose the original operands if they don't evenly divide. 1465 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1466 Register SrcReg = MI.getOperand(I).getReg(); 1467 if (GCD == SrcSize) { 1468 Unmerges.push_back(SrcReg); 1469 } else { 1470 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1471 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1472 Unmerges.push_back(Unmerge.getReg(J)); 1473 } 1474 } 1475 1476 // Pad with undef to the next size that is a multiple of the requested size. 1477 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1478 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1479 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1480 Unmerges.push_back(UndefReg); 1481 } 1482 1483 const int PartsPerGCD = WideSize / GCD; 1484 1485 // Build merges of each piece. 1486 ArrayRef<Register> Slicer(Unmerges); 1487 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1488 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1489 NewMergeRegs.push_back(Merge.getReg(0)); 1490 } 1491 1492 // A truncate may be necessary if the requested type doesn't evenly divide the 1493 // original result type. 1494 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1495 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1496 } else { 1497 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1498 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1499 } 1500 1501 MI.eraseFromParent(); 1502 return Legalized; 1503 } 1504 1505 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1506 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1507 LLT OrigTy = MRI.getType(OrigReg); 1508 LLT LCMTy = getLCMType(WideTy, OrigTy); 1509 1510 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1511 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1512 1513 Register UnmergeSrc = WideReg; 1514 1515 // Create a merge to the LCM type, padding with undef 1516 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1517 // => 1518 // %1:_(<4 x s32>) = G_FOO 1519 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1520 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1521 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1522 if (NumMergeParts > 1) { 1523 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1524 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1525 MergeParts[0] = WideReg; 1526 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1527 } 1528 1529 // Unmerge to the original register and pad with dead defs. 1530 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1531 UnmergeResults[0] = OrigReg; 1532 for (int I = 1; I != NumUnmergeParts; ++I) 1533 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1534 1535 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1536 return WideReg; 1537 } 1538 1539 LegalizerHelper::LegalizeResult 1540 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1541 LLT WideTy) { 1542 if (TypeIdx != 0) 1543 return UnableToLegalize; 1544 1545 int NumDst = MI.getNumOperands() - 1; 1546 Register SrcReg = MI.getOperand(NumDst).getReg(); 1547 LLT SrcTy = MRI.getType(SrcReg); 1548 if (SrcTy.isVector()) 1549 return UnableToLegalize; 1550 1551 Register Dst0Reg = MI.getOperand(0).getReg(); 1552 LLT DstTy = MRI.getType(Dst0Reg); 1553 if (!DstTy.isScalar()) 1554 return UnableToLegalize; 1555 1556 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1557 if (SrcTy.isPointer()) { 1558 const DataLayout &DL = MIRBuilder.getDataLayout(); 1559 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1560 LLVM_DEBUG( 1561 dbgs() << "Not casting non-integral address space integer\n"); 1562 return UnableToLegalize; 1563 } 1564 1565 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1566 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1567 } 1568 1569 // Widen SrcTy to WideTy. This does not affect the result, but since the 1570 // user requested this size, it is probably better handled than SrcTy and 1571 // should reduce the total number of legalization artifacts 1572 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1573 SrcTy = WideTy; 1574 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1575 } 1576 1577 // Theres no unmerge type to target. Directly extract the bits from the 1578 // source type 1579 unsigned DstSize = DstTy.getSizeInBits(); 1580 1581 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1582 for (int I = 1; I != NumDst; ++I) { 1583 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1584 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1585 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1586 } 1587 1588 MI.eraseFromParent(); 1589 return Legalized; 1590 } 1591 1592 // Extend the source to a wider type. 1593 LLT LCMTy = getLCMType(SrcTy, WideTy); 1594 1595 Register WideSrc = SrcReg; 1596 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1597 // TODO: If this is an integral address space, cast to integer and anyext. 1598 if (SrcTy.isPointer()) { 1599 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1600 return UnableToLegalize; 1601 } 1602 1603 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1604 } 1605 1606 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1607 1608 // Create a sequence of unmerges and merges to the original results. Since we 1609 // may have widened the source, we will need to pad the results with dead defs 1610 // to cover the source register. 1611 // e.g. widen s48 to s64: 1612 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1613 // 1614 // => 1615 // %4:_(s192) = G_ANYEXT %0:_(s96) 1616 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1617 // ; unpack to GCD type, with extra dead defs 1618 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1619 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1620 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1621 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1622 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1623 const LLT GCDTy = getGCDType(WideTy, DstTy); 1624 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1625 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1626 1627 // Directly unmerge to the destination without going through a GCD type 1628 // if possible 1629 if (PartsPerRemerge == 1) { 1630 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1631 1632 for (int I = 0; I != NumUnmerge; ++I) { 1633 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1634 1635 for (int J = 0; J != PartsPerUnmerge; ++J) { 1636 int Idx = I * PartsPerUnmerge + J; 1637 if (Idx < NumDst) 1638 MIB.addDef(MI.getOperand(Idx).getReg()); 1639 else { 1640 // Create dead def for excess components. 1641 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1642 } 1643 } 1644 1645 MIB.addUse(Unmerge.getReg(I)); 1646 } 1647 } else { 1648 SmallVector<Register, 16> Parts; 1649 for (int J = 0; J != NumUnmerge; ++J) 1650 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1651 1652 SmallVector<Register, 8> RemergeParts; 1653 for (int I = 0; I != NumDst; ++I) { 1654 for (int J = 0; J < PartsPerRemerge; ++J) { 1655 const int Idx = I * PartsPerRemerge + J; 1656 RemergeParts.emplace_back(Parts[Idx]); 1657 } 1658 1659 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1660 RemergeParts.clear(); 1661 } 1662 } 1663 1664 MI.eraseFromParent(); 1665 return Legalized; 1666 } 1667 1668 LegalizerHelper::LegalizeResult 1669 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1670 LLT WideTy) { 1671 Register DstReg = MI.getOperand(0).getReg(); 1672 Register SrcReg = MI.getOperand(1).getReg(); 1673 LLT SrcTy = MRI.getType(SrcReg); 1674 1675 LLT DstTy = MRI.getType(DstReg); 1676 unsigned Offset = MI.getOperand(2).getImm(); 1677 1678 if (TypeIdx == 0) { 1679 if (SrcTy.isVector() || DstTy.isVector()) 1680 return UnableToLegalize; 1681 1682 SrcOp Src(SrcReg); 1683 if (SrcTy.isPointer()) { 1684 // Extracts from pointers can be handled only if they are really just 1685 // simple integers. 1686 const DataLayout &DL = MIRBuilder.getDataLayout(); 1687 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1688 return UnableToLegalize; 1689 1690 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1691 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1692 SrcTy = SrcAsIntTy; 1693 } 1694 1695 if (DstTy.isPointer()) 1696 return UnableToLegalize; 1697 1698 if (Offset == 0) { 1699 // Avoid a shift in the degenerate case. 1700 MIRBuilder.buildTrunc(DstReg, 1701 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1702 MI.eraseFromParent(); 1703 return Legalized; 1704 } 1705 1706 // Do a shift in the source type. 1707 LLT ShiftTy = SrcTy; 1708 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1709 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1710 ShiftTy = WideTy; 1711 } 1712 1713 auto LShr = MIRBuilder.buildLShr( 1714 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1715 MIRBuilder.buildTrunc(DstReg, LShr); 1716 MI.eraseFromParent(); 1717 return Legalized; 1718 } 1719 1720 if (SrcTy.isScalar()) { 1721 Observer.changingInstr(MI); 1722 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1723 Observer.changedInstr(MI); 1724 return Legalized; 1725 } 1726 1727 if (!SrcTy.isVector()) 1728 return UnableToLegalize; 1729 1730 if (DstTy != SrcTy.getElementType()) 1731 return UnableToLegalize; 1732 1733 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1734 return UnableToLegalize; 1735 1736 Observer.changingInstr(MI); 1737 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1738 1739 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1740 Offset); 1741 widenScalarDst(MI, WideTy.getScalarType(), 0); 1742 Observer.changedInstr(MI); 1743 return Legalized; 1744 } 1745 1746 LegalizerHelper::LegalizeResult 1747 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1748 LLT WideTy) { 1749 if (TypeIdx != 0 || WideTy.isVector()) 1750 return UnableToLegalize; 1751 Observer.changingInstr(MI); 1752 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1753 widenScalarDst(MI, WideTy); 1754 Observer.changedInstr(MI); 1755 return Legalized; 1756 } 1757 1758 LegalizerHelper::LegalizeResult 1759 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1760 LLT WideTy) { 1761 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1762 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1763 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1764 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1765 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1766 // We can convert this to: 1767 // 1. Any extend iN to iM 1768 // 2. SHL by M-N 1769 // 3. [US][ADD|SUB|SHL]SAT 1770 // 4. L/ASHR by M-N 1771 // 1772 // It may be more efficient to lower this to a min and a max operation in 1773 // the higher precision arithmetic if the promoted operation isn't legal, 1774 // but this decision is up to the target's lowering request. 1775 Register DstReg = MI.getOperand(0).getReg(); 1776 1777 unsigned NewBits = WideTy.getScalarSizeInBits(); 1778 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1779 1780 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1781 // must not left shift the RHS to preserve the shift amount. 1782 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1783 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1784 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1785 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1786 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1787 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1788 1789 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1790 {ShiftL, ShiftR}, MI.getFlags()); 1791 1792 // Use a shift that will preserve the number of sign bits when the trunc is 1793 // folded away. 1794 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1795 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1796 1797 MIRBuilder.buildTrunc(DstReg, Result); 1798 MI.eraseFromParent(); 1799 return Legalized; 1800 } 1801 1802 LegalizerHelper::LegalizeResult 1803 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1804 switch (MI.getOpcode()) { 1805 default: 1806 return UnableToLegalize; 1807 case TargetOpcode::G_EXTRACT: 1808 return widenScalarExtract(MI, TypeIdx, WideTy); 1809 case TargetOpcode::G_INSERT: 1810 return widenScalarInsert(MI, TypeIdx, WideTy); 1811 case TargetOpcode::G_MERGE_VALUES: 1812 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1813 case TargetOpcode::G_UNMERGE_VALUES: 1814 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1815 case TargetOpcode::G_UADDO: 1816 case TargetOpcode::G_USUBO: { 1817 if (TypeIdx == 1) 1818 return UnableToLegalize; // TODO 1819 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1820 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1821 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1822 ? TargetOpcode::G_ADD 1823 : TargetOpcode::G_SUB; 1824 // Do the arithmetic in the larger type. 1825 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1826 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1827 APInt Mask = 1828 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1829 auto AndOp = MIRBuilder.buildAnd( 1830 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1831 // There is no overflow if the AndOp is the same as NewOp. 1832 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1833 // Now trunc the NewOp to the original result. 1834 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1835 MI.eraseFromParent(); 1836 return Legalized; 1837 } 1838 case TargetOpcode::G_SADDSAT: 1839 case TargetOpcode::G_SSUBSAT: 1840 case TargetOpcode::G_SSHLSAT: 1841 case TargetOpcode::G_UADDSAT: 1842 case TargetOpcode::G_USUBSAT: 1843 case TargetOpcode::G_USHLSAT: 1844 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1845 case TargetOpcode::G_CTTZ: 1846 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1847 case TargetOpcode::G_CTLZ: 1848 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1849 case TargetOpcode::G_CTPOP: { 1850 if (TypeIdx == 0) { 1851 Observer.changingInstr(MI); 1852 widenScalarDst(MI, WideTy, 0); 1853 Observer.changedInstr(MI); 1854 return Legalized; 1855 } 1856 1857 Register SrcReg = MI.getOperand(1).getReg(); 1858 1859 // First ZEXT the input. 1860 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1861 LLT CurTy = MRI.getType(SrcReg); 1862 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1863 // The count is the same in the larger type except if the original 1864 // value was zero. This can be handled by setting the bit just off 1865 // the top of the original type. 1866 auto TopBit = 1867 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1868 MIBSrc = MIRBuilder.buildOr( 1869 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1870 } 1871 1872 // Perform the operation at the larger size. 1873 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1874 // This is already the correct result for CTPOP and CTTZs 1875 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1876 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1877 // The correct result is NewOp - (Difference in widety and current ty). 1878 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1879 MIBNewOp = MIRBuilder.buildSub( 1880 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1881 } 1882 1883 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1884 MI.eraseFromParent(); 1885 return Legalized; 1886 } 1887 case TargetOpcode::G_BSWAP: { 1888 Observer.changingInstr(MI); 1889 Register DstReg = MI.getOperand(0).getReg(); 1890 1891 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1892 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1893 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1894 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1895 1896 MI.getOperand(0).setReg(DstExt); 1897 1898 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1899 1900 LLT Ty = MRI.getType(DstReg); 1901 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1902 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1903 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1904 1905 MIRBuilder.buildTrunc(DstReg, ShrReg); 1906 Observer.changedInstr(MI); 1907 return Legalized; 1908 } 1909 case TargetOpcode::G_BITREVERSE: { 1910 Observer.changingInstr(MI); 1911 1912 Register DstReg = MI.getOperand(0).getReg(); 1913 LLT Ty = MRI.getType(DstReg); 1914 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1915 1916 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1917 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1918 MI.getOperand(0).setReg(DstExt); 1919 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1920 1921 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1922 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1923 MIRBuilder.buildTrunc(DstReg, Shift); 1924 Observer.changedInstr(MI); 1925 return Legalized; 1926 } 1927 case TargetOpcode::G_FREEZE: 1928 Observer.changingInstr(MI); 1929 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1930 widenScalarDst(MI, WideTy); 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 1934 case TargetOpcode::G_ADD: 1935 case TargetOpcode::G_AND: 1936 case TargetOpcode::G_MUL: 1937 case TargetOpcode::G_OR: 1938 case TargetOpcode::G_XOR: 1939 case TargetOpcode::G_SUB: 1940 // Perform operation at larger width (any extension is fines here, high bits 1941 // don't affect the result) and then truncate the result back to the 1942 // original type. 1943 Observer.changingInstr(MI); 1944 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1945 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1946 widenScalarDst(MI, WideTy); 1947 Observer.changedInstr(MI); 1948 return Legalized; 1949 1950 case TargetOpcode::G_SHL: 1951 Observer.changingInstr(MI); 1952 1953 if (TypeIdx == 0) { 1954 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1955 widenScalarDst(MI, WideTy); 1956 } else { 1957 assert(TypeIdx == 1); 1958 // The "number of bits to shift" operand must preserve its value as an 1959 // unsigned integer: 1960 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1961 } 1962 1963 Observer.changedInstr(MI); 1964 return Legalized; 1965 1966 case TargetOpcode::G_SDIV: 1967 case TargetOpcode::G_SREM: 1968 case TargetOpcode::G_SMIN: 1969 case TargetOpcode::G_SMAX: 1970 Observer.changingInstr(MI); 1971 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1972 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1973 widenScalarDst(MI, WideTy); 1974 Observer.changedInstr(MI); 1975 return Legalized; 1976 1977 case TargetOpcode::G_ASHR: 1978 case TargetOpcode::G_LSHR: 1979 Observer.changingInstr(MI); 1980 1981 if (TypeIdx == 0) { 1982 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1983 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1984 1985 widenScalarSrc(MI, WideTy, 1, CvtOp); 1986 widenScalarDst(MI, WideTy); 1987 } else { 1988 assert(TypeIdx == 1); 1989 // The "number of bits to shift" operand must preserve its value as an 1990 // unsigned integer: 1991 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1992 } 1993 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 case TargetOpcode::G_UDIV: 1997 case TargetOpcode::G_UREM: 1998 case TargetOpcode::G_UMIN: 1999 case TargetOpcode::G_UMAX: 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2002 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2003 widenScalarDst(MI, WideTy); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 2007 case TargetOpcode::G_SELECT: 2008 Observer.changingInstr(MI); 2009 if (TypeIdx == 0) { 2010 // Perform operation at larger width (any extension is fine here, high 2011 // bits don't affect the result) and then truncate the result back to the 2012 // original type. 2013 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2014 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2015 widenScalarDst(MI, WideTy); 2016 } else { 2017 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2018 // Explicit extension is required here since high bits affect the result. 2019 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2020 } 2021 Observer.changedInstr(MI); 2022 return Legalized; 2023 2024 case TargetOpcode::G_FPTOSI: 2025 case TargetOpcode::G_FPTOUI: 2026 Observer.changingInstr(MI); 2027 2028 if (TypeIdx == 0) 2029 widenScalarDst(MI, WideTy); 2030 else 2031 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2032 2033 Observer.changedInstr(MI); 2034 return Legalized; 2035 case TargetOpcode::G_SITOFP: 2036 Observer.changingInstr(MI); 2037 2038 if (TypeIdx == 0) 2039 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2040 else 2041 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2042 2043 Observer.changedInstr(MI); 2044 return Legalized; 2045 case TargetOpcode::G_UITOFP: 2046 Observer.changingInstr(MI); 2047 2048 if (TypeIdx == 0) 2049 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2050 else 2051 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2052 2053 Observer.changedInstr(MI); 2054 return Legalized; 2055 case TargetOpcode::G_LOAD: 2056 case TargetOpcode::G_SEXTLOAD: 2057 case TargetOpcode::G_ZEXTLOAD: 2058 Observer.changingInstr(MI); 2059 widenScalarDst(MI, WideTy); 2060 Observer.changedInstr(MI); 2061 return Legalized; 2062 2063 case TargetOpcode::G_STORE: { 2064 if (TypeIdx != 0) 2065 return UnableToLegalize; 2066 2067 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2068 if (!Ty.isScalar()) 2069 return UnableToLegalize; 2070 2071 Observer.changingInstr(MI); 2072 2073 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2074 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2075 widenScalarSrc(MI, WideTy, 0, ExtType); 2076 2077 Observer.changedInstr(MI); 2078 return Legalized; 2079 } 2080 case TargetOpcode::G_CONSTANT: { 2081 MachineOperand &SrcMO = MI.getOperand(1); 2082 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2083 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2084 MRI.getType(MI.getOperand(0).getReg())); 2085 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2086 ExtOpc == TargetOpcode::G_ANYEXT) && 2087 "Illegal Extend"); 2088 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2089 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2090 ? SrcVal.sext(WideTy.getSizeInBits()) 2091 : SrcVal.zext(WideTy.getSizeInBits()); 2092 Observer.changingInstr(MI); 2093 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2094 2095 widenScalarDst(MI, WideTy); 2096 Observer.changedInstr(MI); 2097 return Legalized; 2098 } 2099 case TargetOpcode::G_FCONSTANT: { 2100 MachineOperand &SrcMO = MI.getOperand(1); 2101 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2102 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2103 bool LosesInfo; 2104 switch (WideTy.getSizeInBits()) { 2105 case 32: 2106 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2107 &LosesInfo); 2108 break; 2109 case 64: 2110 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2111 &LosesInfo); 2112 break; 2113 default: 2114 return UnableToLegalize; 2115 } 2116 2117 assert(!LosesInfo && "extend should always be lossless"); 2118 2119 Observer.changingInstr(MI); 2120 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2121 2122 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2123 Observer.changedInstr(MI); 2124 return Legalized; 2125 } 2126 case TargetOpcode::G_IMPLICIT_DEF: { 2127 Observer.changingInstr(MI); 2128 widenScalarDst(MI, WideTy); 2129 Observer.changedInstr(MI); 2130 return Legalized; 2131 } 2132 case TargetOpcode::G_BRCOND: 2133 Observer.changingInstr(MI); 2134 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2135 Observer.changedInstr(MI); 2136 return Legalized; 2137 2138 case TargetOpcode::G_FCMP: 2139 Observer.changingInstr(MI); 2140 if (TypeIdx == 0) 2141 widenScalarDst(MI, WideTy); 2142 else { 2143 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2144 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2145 } 2146 Observer.changedInstr(MI); 2147 return Legalized; 2148 2149 case TargetOpcode::G_ICMP: 2150 Observer.changingInstr(MI); 2151 if (TypeIdx == 0) 2152 widenScalarDst(MI, WideTy); 2153 else { 2154 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2155 MI.getOperand(1).getPredicate())) 2156 ? TargetOpcode::G_SEXT 2157 : TargetOpcode::G_ZEXT; 2158 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2159 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2160 } 2161 Observer.changedInstr(MI); 2162 return Legalized; 2163 2164 case TargetOpcode::G_PTR_ADD: 2165 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2166 Observer.changingInstr(MI); 2167 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2168 Observer.changedInstr(MI); 2169 return Legalized; 2170 2171 case TargetOpcode::G_PHI: { 2172 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2173 2174 Observer.changingInstr(MI); 2175 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2176 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2177 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2178 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2179 } 2180 2181 MachineBasicBlock &MBB = *MI.getParent(); 2182 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2183 widenScalarDst(MI, WideTy); 2184 Observer.changedInstr(MI); 2185 return Legalized; 2186 } 2187 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2188 if (TypeIdx == 0) { 2189 Register VecReg = MI.getOperand(1).getReg(); 2190 LLT VecTy = MRI.getType(VecReg); 2191 Observer.changingInstr(MI); 2192 2193 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2194 WideTy.getSizeInBits()), 2195 1, TargetOpcode::G_SEXT); 2196 2197 widenScalarDst(MI, WideTy, 0); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 } 2201 2202 if (TypeIdx != 2) 2203 return UnableToLegalize; 2204 Observer.changingInstr(MI); 2205 // TODO: Probably should be zext 2206 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2207 Observer.changedInstr(MI); 2208 return Legalized; 2209 } 2210 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2211 if (TypeIdx == 1) { 2212 Observer.changingInstr(MI); 2213 2214 Register VecReg = MI.getOperand(1).getReg(); 2215 LLT VecTy = MRI.getType(VecReg); 2216 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2217 2218 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2219 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2220 widenScalarDst(MI, WideVecTy, 0); 2221 Observer.changedInstr(MI); 2222 return Legalized; 2223 } 2224 2225 if (TypeIdx == 2) { 2226 Observer.changingInstr(MI); 2227 // TODO: Probably should be zext 2228 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2229 Observer.changedInstr(MI); 2230 return Legalized; 2231 } 2232 2233 return UnableToLegalize; 2234 } 2235 case TargetOpcode::G_FADD: 2236 case TargetOpcode::G_FMUL: 2237 case TargetOpcode::G_FSUB: 2238 case TargetOpcode::G_FMA: 2239 case TargetOpcode::G_FMAD: 2240 case TargetOpcode::G_FNEG: 2241 case TargetOpcode::G_FABS: 2242 case TargetOpcode::G_FCANONICALIZE: 2243 case TargetOpcode::G_FMINNUM: 2244 case TargetOpcode::G_FMAXNUM: 2245 case TargetOpcode::G_FMINNUM_IEEE: 2246 case TargetOpcode::G_FMAXNUM_IEEE: 2247 case TargetOpcode::G_FMINIMUM: 2248 case TargetOpcode::G_FMAXIMUM: 2249 case TargetOpcode::G_FDIV: 2250 case TargetOpcode::G_FREM: 2251 case TargetOpcode::G_FCEIL: 2252 case TargetOpcode::G_FFLOOR: 2253 case TargetOpcode::G_FCOS: 2254 case TargetOpcode::G_FSIN: 2255 case TargetOpcode::G_FLOG10: 2256 case TargetOpcode::G_FLOG: 2257 case TargetOpcode::G_FLOG2: 2258 case TargetOpcode::G_FRINT: 2259 case TargetOpcode::G_FNEARBYINT: 2260 case TargetOpcode::G_FSQRT: 2261 case TargetOpcode::G_FEXP: 2262 case TargetOpcode::G_FEXP2: 2263 case TargetOpcode::G_FPOW: 2264 case TargetOpcode::G_INTRINSIC_TRUNC: 2265 case TargetOpcode::G_INTRINSIC_ROUND: 2266 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2267 assert(TypeIdx == 0); 2268 Observer.changingInstr(MI); 2269 2270 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2271 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2272 2273 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 case TargetOpcode::G_FPOWI: { 2277 if (TypeIdx != 0) 2278 return UnableToLegalize; 2279 Observer.changingInstr(MI); 2280 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2281 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2282 Observer.changedInstr(MI); 2283 return Legalized; 2284 } 2285 case TargetOpcode::G_INTTOPTR: 2286 if (TypeIdx != 1) 2287 return UnableToLegalize; 2288 2289 Observer.changingInstr(MI); 2290 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 case TargetOpcode::G_PTRTOINT: 2294 if (TypeIdx != 0) 2295 return UnableToLegalize; 2296 2297 Observer.changingInstr(MI); 2298 widenScalarDst(MI, WideTy, 0); 2299 Observer.changedInstr(MI); 2300 return Legalized; 2301 case TargetOpcode::G_BUILD_VECTOR: { 2302 Observer.changingInstr(MI); 2303 2304 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2305 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2306 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2307 2308 // Avoid changing the result vector type if the source element type was 2309 // requested. 2310 if (TypeIdx == 1) { 2311 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2312 } else { 2313 widenScalarDst(MI, WideTy, 0); 2314 } 2315 2316 Observer.changedInstr(MI); 2317 return Legalized; 2318 } 2319 case TargetOpcode::G_SEXT_INREG: 2320 if (TypeIdx != 0) 2321 return UnableToLegalize; 2322 2323 Observer.changingInstr(MI); 2324 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2325 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2326 Observer.changedInstr(MI); 2327 return Legalized; 2328 case TargetOpcode::G_PTRMASK: { 2329 if (TypeIdx != 1) 2330 return UnableToLegalize; 2331 Observer.changingInstr(MI); 2332 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2333 Observer.changedInstr(MI); 2334 return Legalized; 2335 } 2336 } 2337 } 2338 2339 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2340 MachineIRBuilder &B, Register Src, LLT Ty) { 2341 auto Unmerge = B.buildUnmerge(Ty, Src); 2342 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2343 Pieces.push_back(Unmerge.getReg(I)); 2344 } 2345 2346 LegalizerHelper::LegalizeResult 2347 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2348 Register Dst = MI.getOperand(0).getReg(); 2349 Register Src = MI.getOperand(1).getReg(); 2350 LLT DstTy = MRI.getType(Dst); 2351 LLT SrcTy = MRI.getType(Src); 2352 2353 if (SrcTy.isVector()) { 2354 LLT SrcEltTy = SrcTy.getElementType(); 2355 SmallVector<Register, 8> SrcRegs; 2356 2357 if (DstTy.isVector()) { 2358 int NumDstElt = DstTy.getNumElements(); 2359 int NumSrcElt = SrcTy.getNumElements(); 2360 2361 LLT DstEltTy = DstTy.getElementType(); 2362 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2363 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2364 2365 // If there's an element size mismatch, insert intermediate casts to match 2366 // the result element type. 2367 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2368 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2369 // 2370 // => 2371 // 2372 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2373 // %3:_(<2 x s8>) = G_BITCAST %2 2374 // %4:_(<2 x s8>) = G_BITCAST %3 2375 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2376 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2377 SrcPartTy = SrcEltTy; 2378 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2379 // 2380 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2381 // 2382 // => 2383 // 2384 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2385 // %3:_(s16) = G_BITCAST %2 2386 // %4:_(s16) = G_BITCAST %3 2387 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2388 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2389 DstCastTy = DstEltTy; 2390 } 2391 2392 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2393 for (Register &SrcReg : SrcRegs) 2394 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2395 } else 2396 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2397 2398 MIRBuilder.buildMerge(Dst, SrcRegs); 2399 MI.eraseFromParent(); 2400 return Legalized; 2401 } 2402 2403 if (DstTy.isVector()) { 2404 SmallVector<Register, 8> SrcRegs; 2405 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2406 MIRBuilder.buildMerge(Dst, SrcRegs); 2407 MI.eraseFromParent(); 2408 return Legalized; 2409 } 2410 2411 return UnableToLegalize; 2412 } 2413 2414 /// Figure out the bit offset into a register when coercing a vector index for 2415 /// the wide element type. This is only for the case when promoting vector to 2416 /// one with larger elements. 2417 // 2418 /// 2419 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2420 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2421 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2422 Register Idx, 2423 unsigned NewEltSize, 2424 unsigned OldEltSize) { 2425 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2426 LLT IdxTy = B.getMRI()->getType(Idx); 2427 2428 // Now figure out the amount we need to shift to get the target bits. 2429 auto OffsetMask = B.buildConstant( 2430 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2431 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2432 return B.buildShl(IdxTy, OffsetIdx, 2433 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2434 } 2435 2436 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2437 /// is casting to a vector with a smaller element size, perform multiple element 2438 /// extracts and merge the results. If this is coercing to a vector with larger 2439 /// elements, index the bitcasted vector and extract the target element with bit 2440 /// operations. This is intended to force the indexing in the native register 2441 /// size for architectures that can dynamically index the register file. 2442 LegalizerHelper::LegalizeResult 2443 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2444 LLT CastTy) { 2445 if (TypeIdx != 1) 2446 return UnableToLegalize; 2447 2448 Register Dst = MI.getOperand(0).getReg(); 2449 Register SrcVec = MI.getOperand(1).getReg(); 2450 Register Idx = MI.getOperand(2).getReg(); 2451 LLT SrcVecTy = MRI.getType(SrcVec); 2452 LLT IdxTy = MRI.getType(Idx); 2453 2454 LLT SrcEltTy = SrcVecTy.getElementType(); 2455 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2456 unsigned OldNumElts = SrcVecTy.getNumElements(); 2457 2458 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2459 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2460 2461 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2462 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2463 if (NewNumElts > OldNumElts) { 2464 // Decreasing the vector element size 2465 // 2466 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2467 // => 2468 // v4i32:castx = bitcast x:v2i64 2469 // 2470 // i64 = bitcast 2471 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2472 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2473 // 2474 if (NewNumElts % OldNumElts != 0) 2475 return UnableToLegalize; 2476 2477 // Type of the intermediate result vector. 2478 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2479 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2480 2481 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2482 2483 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2484 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2485 2486 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2487 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2488 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2489 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2490 NewOps[I] = Elt.getReg(0); 2491 } 2492 2493 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2494 MIRBuilder.buildBitcast(Dst, NewVec); 2495 MI.eraseFromParent(); 2496 return Legalized; 2497 } 2498 2499 if (NewNumElts < OldNumElts) { 2500 if (NewEltSize % OldEltSize != 0) 2501 return UnableToLegalize; 2502 2503 // This only depends on powers of 2 because we use bit tricks to figure out 2504 // the bit offset we need to shift to get the target element. A general 2505 // expansion could emit division/multiply. 2506 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2507 return UnableToLegalize; 2508 2509 // Increasing the vector element size. 2510 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2511 // 2512 // => 2513 // 2514 // %cast = G_BITCAST %vec 2515 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2516 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2517 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2518 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2519 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2520 // %elt = G_TRUNC %elt_bits 2521 2522 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2523 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2524 2525 // Divide to get the index in the wider element type. 2526 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2527 2528 Register WideElt = CastVec; 2529 if (CastTy.isVector()) { 2530 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2531 ScaledIdx).getReg(0); 2532 } 2533 2534 // Compute the bit offset into the register of the target element. 2535 Register OffsetBits = getBitcastWiderVectorElementOffset( 2536 MIRBuilder, Idx, NewEltSize, OldEltSize); 2537 2538 // Shift the wide element to get the target element. 2539 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2540 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2541 MI.eraseFromParent(); 2542 return Legalized; 2543 } 2544 2545 return UnableToLegalize; 2546 } 2547 2548 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2549 /// TargetReg, while preserving other bits in \p TargetReg. 2550 /// 2551 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2552 static Register buildBitFieldInsert(MachineIRBuilder &B, 2553 Register TargetReg, Register InsertReg, 2554 Register OffsetBits) { 2555 LLT TargetTy = B.getMRI()->getType(TargetReg); 2556 LLT InsertTy = B.getMRI()->getType(InsertReg); 2557 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2558 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2559 2560 // Produce a bitmask of the value to insert 2561 auto EltMask = B.buildConstant( 2562 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2563 InsertTy.getSizeInBits())); 2564 // Shift it into position 2565 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2566 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2567 2568 // Clear out the bits in the wide element 2569 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2570 2571 // The value to insert has all zeros already, so stick it into the masked 2572 // wide element. 2573 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2574 } 2575 2576 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2577 /// is increasing the element size, perform the indexing in the target element 2578 /// type, and use bit operations to insert at the element position. This is 2579 /// intended for architectures that can dynamically index the register file and 2580 /// want to force indexing in the native register size. 2581 LegalizerHelper::LegalizeResult 2582 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2583 LLT CastTy) { 2584 if (TypeIdx != 0) 2585 return UnableToLegalize; 2586 2587 Register Dst = MI.getOperand(0).getReg(); 2588 Register SrcVec = MI.getOperand(1).getReg(); 2589 Register Val = MI.getOperand(2).getReg(); 2590 Register Idx = MI.getOperand(3).getReg(); 2591 2592 LLT VecTy = MRI.getType(Dst); 2593 LLT IdxTy = MRI.getType(Idx); 2594 2595 LLT VecEltTy = VecTy.getElementType(); 2596 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2597 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2598 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2599 2600 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2601 unsigned OldNumElts = VecTy.getNumElements(); 2602 2603 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2604 if (NewNumElts < OldNumElts) { 2605 if (NewEltSize % OldEltSize != 0) 2606 return UnableToLegalize; 2607 2608 // This only depends on powers of 2 because we use bit tricks to figure out 2609 // the bit offset we need to shift to get the target element. A general 2610 // expansion could emit division/multiply. 2611 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2612 return UnableToLegalize; 2613 2614 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2615 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2616 2617 // Divide to get the index in the wider element type. 2618 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2619 2620 Register ExtractedElt = CastVec; 2621 if (CastTy.isVector()) { 2622 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2623 ScaledIdx).getReg(0); 2624 } 2625 2626 // Compute the bit offset into the register of the target element. 2627 Register OffsetBits = getBitcastWiderVectorElementOffset( 2628 MIRBuilder, Idx, NewEltSize, OldEltSize); 2629 2630 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2631 Val, OffsetBits); 2632 if (CastTy.isVector()) { 2633 InsertedElt = MIRBuilder.buildInsertVectorElement( 2634 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2635 } 2636 2637 MIRBuilder.buildBitcast(Dst, InsertedElt); 2638 MI.eraseFromParent(); 2639 return Legalized; 2640 } 2641 2642 return UnableToLegalize; 2643 } 2644 2645 LegalizerHelper::LegalizeResult 2646 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2647 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2648 Register DstReg = MI.getOperand(0).getReg(); 2649 Register PtrReg = MI.getOperand(1).getReg(); 2650 LLT DstTy = MRI.getType(DstReg); 2651 auto &MMO = **MI.memoperands_begin(); 2652 2653 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2654 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2655 // This load needs splitting into power of 2 sized loads. 2656 if (DstTy.isVector()) 2657 return UnableToLegalize; 2658 if (isPowerOf2_32(DstTy.getSizeInBits())) 2659 return UnableToLegalize; // Don't know what we're being asked to do. 2660 2661 // Our strategy here is to generate anyextending loads for the smaller 2662 // types up to next power-2 result type, and then combine the two larger 2663 // result values together, before truncating back down to the non-pow-2 2664 // type. 2665 // E.g. v1 = i24 load => 2666 // v2 = i32 zextload (2 byte) 2667 // v3 = i32 load (1 byte) 2668 // v4 = i32 shl v3, 16 2669 // v5 = i32 or v4, v2 2670 // v1 = i24 trunc v5 2671 // By doing this we generate the correct truncate which should get 2672 // combined away as an artifact with a matching extend. 2673 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2674 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2675 2676 MachineFunction &MF = MIRBuilder.getMF(); 2677 MachineMemOperand *LargeMMO = 2678 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2679 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2680 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2681 2682 LLT PtrTy = MRI.getType(PtrReg); 2683 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2684 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2685 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2686 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2687 auto LargeLoad = MIRBuilder.buildLoadInstr( 2688 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2689 2690 auto OffsetCst = MIRBuilder.buildConstant( 2691 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2692 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2693 auto SmallPtr = 2694 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2695 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2696 *SmallMMO); 2697 2698 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2699 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2700 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2701 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2702 MI.eraseFromParent(); 2703 return Legalized; 2704 } 2705 2706 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2707 MI.eraseFromParent(); 2708 return Legalized; 2709 } 2710 2711 if (DstTy.isScalar()) { 2712 Register TmpReg = 2713 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2714 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2715 switch (MI.getOpcode()) { 2716 default: 2717 llvm_unreachable("Unexpected opcode"); 2718 case TargetOpcode::G_LOAD: 2719 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2720 break; 2721 case TargetOpcode::G_SEXTLOAD: 2722 MIRBuilder.buildSExt(DstReg, TmpReg); 2723 break; 2724 case TargetOpcode::G_ZEXTLOAD: 2725 MIRBuilder.buildZExt(DstReg, TmpReg); 2726 break; 2727 } 2728 2729 MI.eraseFromParent(); 2730 return Legalized; 2731 } 2732 2733 return UnableToLegalize; 2734 } 2735 2736 LegalizerHelper::LegalizeResult 2737 LegalizerHelper::lowerStore(MachineInstr &MI) { 2738 // Lower a non-power of 2 store into multiple pow-2 stores. 2739 // E.g. split an i24 store into an i16 store + i8 store. 2740 // We do this by first extending the stored value to the next largest power 2741 // of 2 type, and then using truncating stores to store the components. 2742 // By doing this, likewise with G_LOAD, generate an extend that can be 2743 // artifact-combined away instead of leaving behind extracts. 2744 Register SrcReg = MI.getOperand(0).getReg(); 2745 Register PtrReg = MI.getOperand(1).getReg(); 2746 LLT SrcTy = MRI.getType(SrcReg); 2747 MachineMemOperand &MMO = **MI.memoperands_begin(); 2748 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2749 return UnableToLegalize; 2750 if (SrcTy.isVector()) 2751 return UnableToLegalize; 2752 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2753 return UnableToLegalize; // Don't know what we're being asked to do. 2754 2755 // Extend to the next pow-2. 2756 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2757 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2758 2759 // Obtain the smaller value by shifting away the larger value. 2760 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2761 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2762 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2763 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2764 2765 // Generate the PtrAdd and truncating stores. 2766 LLT PtrTy = MRI.getType(PtrReg); 2767 auto OffsetCst = MIRBuilder.buildConstant( 2768 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2769 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2770 auto SmallPtr = 2771 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2772 2773 MachineFunction &MF = MIRBuilder.getMF(); 2774 MachineMemOperand *LargeMMO = 2775 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2776 MachineMemOperand *SmallMMO = 2777 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2778 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2779 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2780 MI.eraseFromParent(); 2781 return Legalized; 2782 } 2783 2784 LegalizerHelper::LegalizeResult 2785 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2786 switch (MI.getOpcode()) { 2787 case TargetOpcode::G_LOAD: { 2788 if (TypeIdx != 0) 2789 return UnableToLegalize; 2790 2791 Observer.changingInstr(MI); 2792 bitcastDst(MI, CastTy, 0); 2793 Observer.changedInstr(MI); 2794 return Legalized; 2795 } 2796 case TargetOpcode::G_STORE: { 2797 if (TypeIdx != 0) 2798 return UnableToLegalize; 2799 2800 Observer.changingInstr(MI); 2801 bitcastSrc(MI, CastTy, 0); 2802 Observer.changedInstr(MI); 2803 return Legalized; 2804 } 2805 case TargetOpcode::G_SELECT: { 2806 if (TypeIdx != 0) 2807 return UnableToLegalize; 2808 2809 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2810 LLVM_DEBUG( 2811 dbgs() << "bitcast action not implemented for vector select\n"); 2812 return UnableToLegalize; 2813 } 2814 2815 Observer.changingInstr(MI); 2816 bitcastSrc(MI, CastTy, 2); 2817 bitcastSrc(MI, CastTy, 3); 2818 bitcastDst(MI, CastTy, 0); 2819 Observer.changedInstr(MI); 2820 return Legalized; 2821 } 2822 case TargetOpcode::G_AND: 2823 case TargetOpcode::G_OR: 2824 case TargetOpcode::G_XOR: { 2825 Observer.changingInstr(MI); 2826 bitcastSrc(MI, CastTy, 1); 2827 bitcastSrc(MI, CastTy, 2); 2828 bitcastDst(MI, CastTy, 0); 2829 Observer.changedInstr(MI); 2830 return Legalized; 2831 } 2832 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2833 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2834 case TargetOpcode::G_INSERT_VECTOR_ELT: 2835 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2836 default: 2837 return UnableToLegalize; 2838 } 2839 } 2840 2841 // Legalize an instruction by changing the opcode in place. 2842 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2843 Observer.changingInstr(MI); 2844 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2845 Observer.changedInstr(MI); 2846 } 2847 2848 LegalizerHelper::LegalizeResult 2849 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2850 using namespace TargetOpcode; 2851 2852 switch(MI.getOpcode()) { 2853 default: 2854 return UnableToLegalize; 2855 case TargetOpcode::G_BITCAST: 2856 return lowerBitcast(MI); 2857 case TargetOpcode::G_SREM: 2858 case TargetOpcode::G_UREM: { 2859 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2860 auto Quot = 2861 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2862 {MI.getOperand(1), MI.getOperand(2)}); 2863 2864 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2865 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2866 MI.eraseFromParent(); 2867 return Legalized; 2868 } 2869 case TargetOpcode::G_SADDO: 2870 case TargetOpcode::G_SSUBO: 2871 return lowerSADDO_SSUBO(MI); 2872 case TargetOpcode::G_UMULH: 2873 case TargetOpcode::G_SMULH: 2874 return lowerSMULH_UMULH(MI); 2875 case TargetOpcode::G_SMULO: 2876 case TargetOpcode::G_UMULO: { 2877 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2878 // result. 2879 Register Res = MI.getOperand(0).getReg(); 2880 Register Overflow = MI.getOperand(1).getReg(); 2881 Register LHS = MI.getOperand(2).getReg(); 2882 Register RHS = MI.getOperand(3).getReg(); 2883 LLT Ty = MRI.getType(Res); 2884 2885 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2886 ? TargetOpcode::G_SMULH 2887 : TargetOpcode::G_UMULH; 2888 2889 Observer.changingInstr(MI); 2890 const auto &TII = MIRBuilder.getTII(); 2891 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2892 MI.RemoveOperand(1); 2893 Observer.changedInstr(MI); 2894 2895 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2896 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2897 2898 // Move insert point forward so we can use the Res register if needed. 2899 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2900 2901 // For *signed* multiply, overflow is detected by checking: 2902 // (hi != (lo >> bitwidth-1)) 2903 if (Opcode == TargetOpcode::G_SMULH) { 2904 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2905 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2906 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2907 } else { 2908 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2909 } 2910 return Legalized; 2911 } 2912 case TargetOpcode::G_FNEG: { 2913 Register Res = MI.getOperand(0).getReg(); 2914 LLT Ty = MRI.getType(Res); 2915 2916 // TODO: Handle vector types once we are able to 2917 // represent them. 2918 if (Ty.isVector()) 2919 return UnableToLegalize; 2920 auto SignMask = 2921 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2922 Register SubByReg = MI.getOperand(1).getReg(); 2923 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2924 MI.eraseFromParent(); 2925 return Legalized; 2926 } 2927 case TargetOpcode::G_FSUB: { 2928 Register Res = MI.getOperand(0).getReg(); 2929 LLT Ty = MRI.getType(Res); 2930 2931 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2932 // First, check if G_FNEG is marked as Lower. If so, we may 2933 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2934 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2935 return UnableToLegalize; 2936 Register LHS = MI.getOperand(1).getReg(); 2937 Register RHS = MI.getOperand(2).getReg(); 2938 Register Neg = MRI.createGenericVirtualRegister(Ty); 2939 MIRBuilder.buildFNeg(Neg, RHS); 2940 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2941 MI.eraseFromParent(); 2942 return Legalized; 2943 } 2944 case TargetOpcode::G_FMAD: 2945 return lowerFMad(MI); 2946 case TargetOpcode::G_FFLOOR: 2947 return lowerFFloor(MI); 2948 case TargetOpcode::G_INTRINSIC_ROUND: 2949 return lowerIntrinsicRound(MI); 2950 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2951 // Since round even is the assumed rounding mode for unconstrained FP 2952 // operations, rint and roundeven are the same operation. 2953 changeOpcode(MI, TargetOpcode::G_FRINT); 2954 return Legalized; 2955 } 2956 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2957 Register OldValRes = MI.getOperand(0).getReg(); 2958 Register SuccessRes = MI.getOperand(1).getReg(); 2959 Register Addr = MI.getOperand(2).getReg(); 2960 Register CmpVal = MI.getOperand(3).getReg(); 2961 Register NewVal = MI.getOperand(4).getReg(); 2962 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2963 **MI.memoperands_begin()); 2964 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2965 MI.eraseFromParent(); 2966 return Legalized; 2967 } 2968 case TargetOpcode::G_LOAD: 2969 case TargetOpcode::G_SEXTLOAD: 2970 case TargetOpcode::G_ZEXTLOAD: 2971 return lowerLoad(MI); 2972 case TargetOpcode::G_STORE: 2973 return lowerStore(MI); 2974 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2975 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2976 case TargetOpcode::G_CTLZ: 2977 case TargetOpcode::G_CTTZ: 2978 case TargetOpcode::G_CTPOP: 2979 return lowerBitCount(MI); 2980 case G_UADDO: { 2981 Register Res = MI.getOperand(0).getReg(); 2982 Register CarryOut = MI.getOperand(1).getReg(); 2983 Register LHS = MI.getOperand(2).getReg(); 2984 Register RHS = MI.getOperand(3).getReg(); 2985 2986 MIRBuilder.buildAdd(Res, LHS, RHS); 2987 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2988 2989 MI.eraseFromParent(); 2990 return Legalized; 2991 } 2992 case G_UADDE: { 2993 Register Res = MI.getOperand(0).getReg(); 2994 Register CarryOut = MI.getOperand(1).getReg(); 2995 Register LHS = MI.getOperand(2).getReg(); 2996 Register RHS = MI.getOperand(3).getReg(); 2997 Register CarryIn = MI.getOperand(4).getReg(); 2998 LLT Ty = MRI.getType(Res); 2999 3000 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3001 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3002 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3003 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3004 3005 MI.eraseFromParent(); 3006 return Legalized; 3007 } 3008 case G_USUBO: { 3009 Register Res = MI.getOperand(0).getReg(); 3010 Register BorrowOut = MI.getOperand(1).getReg(); 3011 Register LHS = MI.getOperand(2).getReg(); 3012 Register RHS = MI.getOperand(3).getReg(); 3013 3014 MIRBuilder.buildSub(Res, LHS, RHS); 3015 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3016 3017 MI.eraseFromParent(); 3018 return Legalized; 3019 } 3020 case G_USUBE: { 3021 Register Res = MI.getOperand(0).getReg(); 3022 Register BorrowOut = MI.getOperand(1).getReg(); 3023 Register LHS = MI.getOperand(2).getReg(); 3024 Register RHS = MI.getOperand(3).getReg(); 3025 Register BorrowIn = MI.getOperand(4).getReg(); 3026 const LLT CondTy = MRI.getType(BorrowOut); 3027 const LLT Ty = MRI.getType(Res); 3028 3029 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3030 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3031 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3032 3033 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3034 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3035 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3036 3037 MI.eraseFromParent(); 3038 return Legalized; 3039 } 3040 case G_UITOFP: 3041 return lowerUITOFP(MI); 3042 case G_SITOFP: 3043 return lowerSITOFP(MI); 3044 case G_FPTOUI: 3045 return lowerFPTOUI(MI); 3046 case G_FPTOSI: 3047 return lowerFPTOSI(MI); 3048 case G_FPTRUNC: 3049 return lowerFPTRUNC(MI); 3050 case G_FPOWI: 3051 return lowerFPOWI(MI); 3052 case G_SMIN: 3053 case G_SMAX: 3054 case G_UMIN: 3055 case G_UMAX: 3056 return lowerMinMax(MI); 3057 case G_FCOPYSIGN: 3058 return lowerFCopySign(MI); 3059 case G_FMINNUM: 3060 case G_FMAXNUM: 3061 return lowerFMinNumMaxNum(MI); 3062 case G_MERGE_VALUES: 3063 return lowerMergeValues(MI); 3064 case G_UNMERGE_VALUES: 3065 return lowerUnmergeValues(MI); 3066 case TargetOpcode::G_SEXT_INREG: { 3067 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3068 int64_t SizeInBits = MI.getOperand(2).getImm(); 3069 3070 Register DstReg = MI.getOperand(0).getReg(); 3071 Register SrcReg = MI.getOperand(1).getReg(); 3072 LLT DstTy = MRI.getType(DstReg); 3073 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3074 3075 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3076 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3077 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3078 MI.eraseFromParent(); 3079 return Legalized; 3080 } 3081 case G_EXTRACT_VECTOR_ELT: 3082 case G_INSERT_VECTOR_ELT: 3083 return lowerExtractInsertVectorElt(MI); 3084 case G_SHUFFLE_VECTOR: 3085 return lowerShuffleVector(MI); 3086 case G_DYN_STACKALLOC: 3087 return lowerDynStackAlloc(MI); 3088 case G_EXTRACT: 3089 return lowerExtract(MI); 3090 case G_INSERT: 3091 return lowerInsert(MI); 3092 case G_BSWAP: 3093 return lowerBswap(MI); 3094 case G_BITREVERSE: 3095 return lowerBitreverse(MI); 3096 case G_READ_REGISTER: 3097 case G_WRITE_REGISTER: 3098 return lowerReadWriteRegister(MI); 3099 case G_UADDSAT: 3100 case G_USUBSAT: { 3101 // Try to make a reasonable guess about which lowering strategy to use. The 3102 // target can override this with custom lowering and calling the 3103 // implementation functions. 3104 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3105 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3106 return lowerAddSubSatToMinMax(MI); 3107 return lowerAddSubSatToAddoSubo(MI); 3108 } 3109 case G_SADDSAT: 3110 case G_SSUBSAT: { 3111 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3112 3113 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3114 // since it's a shorter expansion. However, we would need to figure out the 3115 // preferred boolean type for the carry out for the query. 3116 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3117 return lowerAddSubSatToMinMax(MI); 3118 return lowerAddSubSatToAddoSubo(MI); 3119 } 3120 case G_SSHLSAT: 3121 case G_USHLSAT: 3122 return lowerShlSat(MI); 3123 case G_ABS: { 3124 // Expand %res = G_ABS %a into: 3125 // %v1 = G_ASHR %a, scalar_size-1 3126 // %v2 = G_ADD %a, %v1 3127 // %res = G_XOR %v2, %v1 3128 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3129 Register OpReg = MI.getOperand(1).getReg(); 3130 auto ShiftAmt = 3131 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3132 auto Shift = 3133 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3134 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3135 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3136 MI.eraseFromParent(); 3137 return Legalized; 3138 } 3139 case G_SELECT: 3140 return lowerSelect(MI); 3141 } 3142 } 3143 3144 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3145 Align MinAlign) const { 3146 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3147 // datalayout for the preferred alignment. Also there should be a target hook 3148 // for this to allow targets to reduce the alignment and ignore the 3149 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3150 // the type. 3151 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3152 } 3153 3154 MachineInstrBuilder 3155 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3156 MachinePointerInfo &PtrInfo) { 3157 MachineFunction &MF = MIRBuilder.getMF(); 3158 const DataLayout &DL = MIRBuilder.getDataLayout(); 3159 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3160 3161 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3162 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3163 3164 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3165 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3166 } 3167 3168 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3169 LLT VecTy) { 3170 int64_t IdxVal; 3171 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3172 return IdxReg; 3173 3174 LLT IdxTy = B.getMRI()->getType(IdxReg); 3175 unsigned NElts = VecTy.getNumElements(); 3176 if (isPowerOf2_32(NElts)) { 3177 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3178 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3179 } 3180 3181 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3182 .getReg(0); 3183 } 3184 3185 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3186 Register Index) { 3187 LLT EltTy = VecTy.getElementType(); 3188 3189 // Calculate the element offset and add it to the pointer. 3190 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3191 assert(EltSize * 8 == EltTy.getSizeInBits() && 3192 "Converting bits to bytes lost precision"); 3193 3194 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3195 3196 LLT IdxTy = MRI.getType(Index); 3197 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3198 MIRBuilder.buildConstant(IdxTy, EltSize)); 3199 3200 LLT PtrTy = MRI.getType(VecPtr); 3201 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3202 } 3203 3204 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3205 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3206 Register DstReg = MI.getOperand(0).getReg(); 3207 LLT DstTy = MRI.getType(DstReg); 3208 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3209 3210 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3211 3212 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3213 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3214 3215 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3216 MI.eraseFromParent(); 3217 return Legalized; 3218 } 3219 3220 // Handle splitting vector operations which need to have the same number of 3221 // elements in each type index, but each type index may have a different element 3222 // type. 3223 // 3224 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3225 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3226 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3227 // 3228 // Also handles some irregular breakdown cases, e.g. 3229 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3230 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3231 // s64 = G_SHL s64, s32 3232 LegalizerHelper::LegalizeResult 3233 LegalizerHelper::fewerElementsVectorMultiEltType( 3234 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3235 if (TypeIdx != 0) 3236 return UnableToLegalize; 3237 3238 const LLT NarrowTy0 = NarrowTyArg; 3239 const unsigned NewNumElts = 3240 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3241 3242 const Register DstReg = MI.getOperand(0).getReg(); 3243 LLT DstTy = MRI.getType(DstReg); 3244 LLT LeftoverTy0; 3245 3246 // All of the operands need to have the same number of elements, so if we can 3247 // determine a type breakdown for the result type, we can for all of the 3248 // source types. 3249 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3250 if (NumParts < 0) 3251 return UnableToLegalize; 3252 3253 SmallVector<MachineInstrBuilder, 4> NewInsts; 3254 3255 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3256 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3257 3258 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3259 Register SrcReg = MI.getOperand(I).getReg(); 3260 LLT SrcTyI = MRI.getType(SrcReg); 3261 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3262 LLT LeftoverTyI; 3263 3264 // Split this operand into the requested typed registers, and any leftover 3265 // required to reproduce the original type. 3266 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3267 LeftoverRegs)) 3268 return UnableToLegalize; 3269 3270 if (I == 1) { 3271 // For the first operand, create an instruction for each part and setup 3272 // the result. 3273 for (Register PartReg : PartRegs) { 3274 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3275 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3276 .addDef(PartDstReg) 3277 .addUse(PartReg)); 3278 DstRegs.push_back(PartDstReg); 3279 } 3280 3281 for (Register LeftoverReg : LeftoverRegs) { 3282 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3283 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3284 .addDef(PartDstReg) 3285 .addUse(LeftoverReg)); 3286 LeftoverDstRegs.push_back(PartDstReg); 3287 } 3288 } else { 3289 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3290 3291 // Add the newly created operand splits to the existing instructions. The 3292 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3293 // pieces. 3294 unsigned InstCount = 0; 3295 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3296 NewInsts[InstCount++].addUse(PartRegs[J]); 3297 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3298 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3299 } 3300 3301 PartRegs.clear(); 3302 LeftoverRegs.clear(); 3303 } 3304 3305 // Insert the newly built operations and rebuild the result register. 3306 for (auto &MIB : NewInsts) 3307 MIRBuilder.insertInstr(MIB); 3308 3309 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3310 3311 MI.eraseFromParent(); 3312 return Legalized; 3313 } 3314 3315 LegalizerHelper::LegalizeResult 3316 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3317 LLT NarrowTy) { 3318 if (TypeIdx != 0) 3319 return UnableToLegalize; 3320 3321 Register DstReg = MI.getOperand(0).getReg(); 3322 Register SrcReg = MI.getOperand(1).getReg(); 3323 LLT DstTy = MRI.getType(DstReg); 3324 LLT SrcTy = MRI.getType(SrcReg); 3325 3326 LLT NarrowTy0 = NarrowTy; 3327 LLT NarrowTy1; 3328 unsigned NumParts; 3329 3330 if (NarrowTy.isVector()) { 3331 // Uneven breakdown not handled. 3332 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3333 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3334 return UnableToLegalize; 3335 3336 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3337 } else { 3338 NumParts = DstTy.getNumElements(); 3339 NarrowTy1 = SrcTy.getElementType(); 3340 } 3341 3342 SmallVector<Register, 4> SrcRegs, DstRegs; 3343 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3344 3345 for (unsigned I = 0; I < NumParts; ++I) { 3346 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3347 MachineInstr *NewInst = 3348 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3349 3350 NewInst->setFlags(MI.getFlags()); 3351 DstRegs.push_back(DstReg); 3352 } 3353 3354 if (NarrowTy.isVector()) 3355 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3356 else 3357 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3358 3359 MI.eraseFromParent(); 3360 return Legalized; 3361 } 3362 3363 LegalizerHelper::LegalizeResult 3364 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3365 LLT NarrowTy) { 3366 Register DstReg = MI.getOperand(0).getReg(); 3367 Register Src0Reg = MI.getOperand(2).getReg(); 3368 LLT DstTy = MRI.getType(DstReg); 3369 LLT SrcTy = MRI.getType(Src0Reg); 3370 3371 unsigned NumParts; 3372 LLT NarrowTy0, NarrowTy1; 3373 3374 if (TypeIdx == 0) { 3375 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3376 unsigned OldElts = DstTy.getNumElements(); 3377 3378 NarrowTy0 = NarrowTy; 3379 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3380 NarrowTy1 = NarrowTy.isVector() ? 3381 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3382 SrcTy.getElementType(); 3383 3384 } else { 3385 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3386 unsigned OldElts = SrcTy.getNumElements(); 3387 3388 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3389 NarrowTy.getNumElements(); 3390 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3391 DstTy.getScalarSizeInBits()); 3392 NarrowTy1 = NarrowTy; 3393 } 3394 3395 // FIXME: Don't know how to handle the situation where the small vectors 3396 // aren't all the same size yet. 3397 if (NarrowTy1.isVector() && 3398 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3399 return UnableToLegalize; 3400 3401 CmpInst::Predicate Pred 3402 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3403 3404 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3405 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3406 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3407 3408 for (unsigned I = 0; I < NumParts; ++I) { 3409 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3410 DstRegs.push_back(DstReg); 3411 3412 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3413 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3414 else { 3415 MachineInstr *NewCmp 3416 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3417 NewCmp->setFlags(MI.getFlags()); 3418 } 3419 } 3420 3421 if (NarrowTy1.isVector()) 3422 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3423 else 3424 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3425 3426 MI.eraseFromParent(); 3427 return Legalized; 3428 } 3429 3430 LegalizerHelper::LegalizeResult 3431 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3432 LLT NarrowTy) { 3433 Register DstReg = MI.getOperand(0).getReg(); 3434 Register CondReg = MI.getOperand(1).getReg(); 3435 3436 unsigned NumParts = 0; 3437 LLT NarrowTy0, NarrowTy1; 3438 3439 LLT DstTy = MRI.getType(DstReg); 3440 LLT CondTy = MRI.getType(CondReg); 3441 unsigned Size = DstTy.getSizeInBits(); 3442 3443 assert(TypeIdx == 0 || CondTy.isVector()); 3444 3445 if (TypeIdx == 0) { 3446 NarrowTy0 = NarrowTy; 3447 NarrowTy1 = CondTy; 3448 3449 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3450 // FIXME: Don't know how to handle the situation where the small vectors 3451 // aren't all the same size yet. 3452 if (Size % NarrowSize != 0) 3453 return UnableToLegalize; 3454 3455 NumParts = Size / NarrowSize; 3456 3457 // Need to break down the condition type 3458 if (CondTy.isVector()) { 3459 if (CondTy.getNumElements() == NumParts) 3460 NarrowTy1 = CondTy.getElementType(); 3461 else 3462 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3463 CondTy.getScalarSizeInBits()); 3464 } 3465 } else { 3466 NumParts = CondTy.getNumElements(); 3467 if (NarrowTy.isVector()) { 3468 // TODO: Handle uneven breakdown. 3469 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3470 return UnableToLegalize; 3471 3472 return UnableToLegalize; 3473 } else { 3474 NarrowTy0 = DstTy.getElementType(); 3475 NarrowTy1 = NarrowTy; 3476 } 3477 } 3478 3479 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3480 if (CondTy.isVector()) 3481 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3482 3483 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3484 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3485 3486 for (unsigned i = 0; i < NumParts; ++i) { 3487 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3488 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3489 Src1Regs[i], Src2Regs[i]); 3490 DstRegs.push_back(DstReg); 3491 } 3492 3493 if (NarrowTy0.isVector()) 3494 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3495 else 3496 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3497 3498 MI.eraseFromParent(); 3499 return Legalized; 3500 } 3501 3502 LegalizerHelper::LegalizeResult 3503 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3504 LLT NarrowTy) { 3505 const Register DstReg = MI.getOperand(0).getReg(); 3506 LLT PhiTy = MRI.getType(DstReg); 3507 LLT LeftoverTy; 3508 3509 // All of the operands need to have the same number of elements, so if we can 3510 // determine a type breakdown for the result type, we can for all of the 3511 // source types. 3512 int NumParts, NumLeftover; 3513 std::tie(NumParts, NumLeftover) 3514 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3515 if (NumParts < 0) 3516 return UnableToLegalize; 3517 3518 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3519 SmallVector<MachineInstrBuilder, 4> NewInsts; 3520 3521 const int TotalNumParts = NumParts + NumLeftover; 3522 3523 // Insert the new phis in the result block first. 3524 for (int I = 0; I != TotalNumParts; ++I) { 3525 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3526 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3527 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3528 .addDef(PartDstReg)); 3529 if (I < NumParts) 3530 DstRegs.push_back(PartDstReg); 3531 else 3532 LeftoverDstRegs.push_back(PartDstReg); 3533 } 3534 3535 MachineBasicBlock *MBB = MI.getParent(); 3536 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3537 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3538 3539 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3540 3541 // Insert code to extract the incoming values in each predecessor block. 3542 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3543 PartRegs.clear(); 3544 LeftoverRegs.clear(); 3545 3546 Register SrcReg = MI.getOperand(I).getReg(); 3547 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3548 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3549 3550 LLT Unused; 3551 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3552 LeftoverRegs)) 3553 return UnableToLegalize; 3554 3555 // Add the newly created operand splits to the existing instructions. The 3556 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3557 // pieces. 3558 for (int J = 0; J != TotalNumParts; ++J) { 3559 MachineInstrBuilder MIB = NewInsts[J]; 3560 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3561 MIB.addMBB(&OpMBB); 3562 } 3563 } 3564 3565 MI.eraseFromParent(); 3566 return Legalized; 3567 } 3568 3569 LegalizerHelper::LegalizeResult 3570 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3571 unsigned TypeIdx, 3572 LLT NarrowTy) { 3573 if (TypeIdx != 1) 3574 return UnableToLegalize; 3575 3576 const int NumDst = MI.getNumOperands() - 1; 3577 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3578 LLT SrcTy = MRI.getType(SrcReg); 3579 3580 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3581 3582 // TODO: Create sequence of extracts. 3583 if (DstTy == NarrowTy) 3584 return UnableToLegalize; 3585 3586 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3587 if (DstTy == GCDTy) { 3588 // This would just be a copy of the same unmerge. 3589 // TODO: Create extracts, pad with undef and create intermediate merges. 3590 return UnableToLegalize; 3591 } 3592 3593 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3594 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3595 const int PartsPerUnmerge = NumDst / NumUnmerge; 3596 3597 for (int I = 0; I != NumUnmerge; ++I) { 3598 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3599 3600 for (int J = 0; J != PartsPerUnmerge; ++J) 3601 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3602 MIB.addUse(Unmerge.getReg(I)); 3603 } 3604 3605 MI.eraseFromParent(); 3606 return Legalized; 3607 } 3608 3609 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3610 // a vector 3611 // 3612 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3613 // undef as necessary. 3614 // 3615 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3616 // -> <2 x s16> 3617 // 3618 // %4:_(s16) = G_IMPLICIT_DEF 3619 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3620 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3621 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3622 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3623 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3624 LegalizerHelper::LegalizeResult 3625 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3626 LLT NarrowTy) { 3627 Register DstReg = MI.getOperand(0).getReg(); 3628 LLT DstTy = MRI.getType(DstReg); 3629 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3630 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3631 3632 // Break into a common type 3633 SmallVector<Register, 16> Parts; 3634 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3635 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3636 3637 // Build the requested new merge, padding with undef. 3638 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3639 TargetOpcode::G_ANYEXT); 3640 3641 // Pack into the original result register. 3642 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3643 3644 MI.eraseFromParent(); 3645 return Legalized; 3646 } 3647 3648 LegalizerHelper::LegalizeResult 3649 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3650 unsigned TypeIdx, 3651 LLT NarrowVecTy) { 3652 Register DstReg = MI.getOperand(0).getReg(); 3653 Register SrcVec = MI.getOperand(1).getReg(); 3654 Register InsertVal; 3655 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3656 3657 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3658 if (IsInsert) 3659 InsertVal = MI.getOperand(2).getReg(); 3660 3661 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3662 3663 // TODO: Handle total scalarization case. 3664 if (!NarrowVecTy.isVector()) 3665 return UnableToLegalize; 3666 3667 LLT VecTy = MRI.getType(SrcVec); 3668 3669 // If the index is a constant, we can really break this down as you would 3670 // expect, and index into the target size pieces. 3671 int64_t IdxVal; 3672 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3673 // Avoid out of bounds indexing the pieces. 3674 if (IdxVal >= VecTy.getNumElements()) { 3675 MIRBuilder.buildUndef(DstReg); 3676 MI.eraseFromParent(); 3677 return Legalized; 3678 } 3679 3680 SmallVector<Register, 8> VecParts; 3681 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3682 3683 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3684 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3685 TargetOpcode::G_ANYEXT); 3686 3687 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3688 3689 LLT IdxTy = MRI.getType(Idx); 3690 int64_t PartIdx = IdxVal / NewNumElts; 3691 auto NewIdx = 3692 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3693 3694 if (IsInsert) { 3695 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3696 3697 // Use the adjusted index to insert into one of the subvectors. 3698 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3699 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3700 VecParts[PartIdx] = InsertPart.getReg(0); 3701 3702 // Recombine the inserted subvector with the others to reform the result 3703 // vector. 3704 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3705 } else { 3706 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3707 } 3708 3709 MI.eraseFromParent(); 3710 return Legalized; 3711 } 3712 3713 // With a variable index, we can't perform the operation in a smaller type, so 3714 // we're forced to expand this. 3715 // 3716 // TODO: We could emit a chain of compare/select to figure out which piece to 3717 // index. 3718 return lowerExtractInsertVectorElt(MI); 3719 } 3720 3721 LegalizerHelper::LegalizeResult 3722 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3723 LLT NarrowTy) { 3724 // FIXME: Don't know how to handle secondary types yet. 3725 if (TypeIdx != 0) 3726 return UnableToLegalize; 3727 3728 MachineMemOperand *MMO = *MI.memoperands_begin(); 3729 3730 // This implementation doesn't work for atomics. Give up instead of doing 3731 // something invalid. 3732 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3733 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3734 return UnableToLegalize; 3735 3736 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3737 Register ValReg = MI.getOperand(0).getReg(); 3738 Register AddrReg = MI.getOperand(1).getReg(); 3739 LLT ValTy = MRI.getType(ValReg); 3740 3741 // FIXME: Do we need a distinct NarrowMemory legalize action? 3742 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3743 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3744 return UnableToLegalize; 3745 } 3746 3747 int NumParts = -1; 3748 int NumLeftover = -1; 3749 LLT LeftoverTy; 3750 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3751 if (IsLoad) { 3752 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3753 } else { 3754 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3755 NarrowLeftoverRegs)) { 3756 NumParts = NarrowRegs.size(); 3757 NumLeftover = NarrowLeftoverRegs.size(); 3758 } 3759 } 3760 3761 if (NumParts == -1) 3762 return UnableToLegalize; 3763 3764 LLT PtrTy = MRI.getType(AddrReg); 3765 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3766 3767 unsigned TotalSize = ValTy.getSizeInBits(); 3768 3769 // Split the load/store into PartTy sized pieces starting at Offset. If this 3770 // is a load, return the new registers in ValRegs. For a store, each elements 3771 // of ValRegs should be PartTy. Returns the next offset that needs to be 3772 // handled. 3773 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3774 unsigned Offset) -> unsigned { 3775 MachineFunction &MF = MIRBuilder.getMF(); 3776 unsigned PartSize = PartTy.getSizeInBits(); 3777 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3778 Offset += PartSize, ++Idx) { 3779 unsigned ByteSize = PartSize / 8; 3780 unsigned ByteOffset = Offset / 8; 3781 Register NewAddrReg; 3782 3783 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3784 3785 MachineMemOperand *NewMMO = 3786 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3787 3788 if (IsLoad) { 3789 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3790 ValRegs.push_back(Dst); 3791 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3792 } else { 3793 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3794 } 3795 } 3796 3797 return Offset; 3798 }; 3799 3800 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3801 3802 // Handle the rest of the register if this isn't an even type breakdown. 3803 if (LeftoverTy.isValid()) 3804 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3805 3806 if (IsLoad) { 3807 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3808 LeftoverTy, NarrowLeftoverRegs); 3809 } 3810 3811 MI.eraseFromParent(); 3812 return Legalized; 3813 } 3814 3815 LegalizerHelper::LegalizeResult 3816 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3817 LLT NarrowTy) { 3818 assert(TypeIdx == 0 && "only one type index expected"); 3819 3820 const unsigned Opc = MI.getOpcode(); 3821 const int NumOps = MI.getNumOperands() - 1; 3822 const Register DstReg = MI.getOperand(0).getReg(); 3823 const unsigned Flags = MI.getFlags(); 3824 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3825 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3826 3827 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3828 3829 // First of all check whether we are narrowing (changing the element type) 3830 // or reducing the vector elements 3831 const LLT DstTy = MRI.getType(DstReg); 3832 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3833 3834 SmallVector<Register, 8> ExtractedRegs[3]; 3835 SmallVector<Register, 8> Parts; 3836 3837 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3838 3839 // Break down all the sources into NarrowTy pieces we can operate on. This may 3840 // involve creating merges to a wider type, padded with undef. 3841 for (int I = 0; I != NumOps; ++I) { 3842 Register SrcReg = MI.getOperand(I + 1).getReg(); 3843 LLT SrcTy = MRI.getType(SrcReg); 3844 3845 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3846 // For fewerElements, this is a smaller vector with the same element type. 3847 LLT OpNarrowTy; 3848 if (IsNarrow) { 3849 OpNarrowTy = NarrowScalarTy; 3850 3851 // In case of narrowing, we need to cast vectors to scalars for this to 3852 // work properly 3853 // FIXME: Can we do without the bitcast here if we're narrowing? 3854 if (SrcTy.isVector()) { 3855 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3856 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3857 } 3858 } else { 3859 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3860 } 3861 3862 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3863 3864 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3865 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3866 TargetOpcode::G_ANYEXT); 3867 } 3868 3869 SmallVector<Register, 8> ResultRegs; 3870 3871 // Input operands for each sub-instruction. 3872 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3873 3874 int NumParts = ExtractedRegs[0].size(); 3875 const unsigned DstSize = DstTy.getSizeInBits(); 3876 const LLT DstScalarTy = LLT::scalar(DstSize); 3877 3878 // Narrowing needs to use scalar types 3879 LLT DstLCMTy, NarrowDstTy; 3880 if (IsNarrow) { 3881 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3882 NarrowDstTy = NarrowScalarTy; 3883 } else { 3884 DstLCMTy = getLCMType(DstTy, NarrowTy); 3885 NarrowDstTy = NarrowTy; 3886 } 3887 3888 // We widened the source registers to satisfy merge/unmerge size 3889 // constraints. We'll have some extra fully undef parts. 3890 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3891 3892 for (int I = 0; I != NumRealParts; ++I) { 3893 // Emit this instruction on each of the split pieces. 3894 for (int J = 0; J != NumOps; ++J) 3895 InputRegs[J] = ExtractedRegs[J][I]; 3896 3897 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3898 ResultRegs.push_back(Inst.getReg(0)); 3899 } 3900 3901 // Fill out the widened result with undef instead of creating instructions 3902 // with undef inputs. 3903 int NumUndefParts = NumParts - NumRealParts; 3904 if (NumUndefParts != 0) 3905 ResultRegs.append(NumUndefParts, 3906 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3907 3908 // Extract the possibly padded result. Use a scratch register if we need to do 3909 // a final bitcast, otherwise use the original result register. 3910 Register MergeDstReg; 3911 if (IsNarrow && DstTy.isVector()) 3912 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3913 else 3914 MergeDstReg = DstReg; 3915 3916 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3917 3918 // Recast to vector if we narrowed a vector 3919 if (IsNarrow && DstTy.isVector()) 3920 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3921 3922 MI.eraseFromParent(); 3923 return Legalized; 3924 } 3925 3926 LegalizerHelper::LegalizeResult 3927 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3928 LLT NarrowTy) { 3929 Register DstReg = MI.getOperand(0).getReg(); 3930 Register SrcReg = MI.getOperand(1).getReg(); 3931 int64_t Imm = MI.getOperand(2).getImm(); 3932 3933 LLT DstTy = MRI.getType(DstReg); 3934 3935 SmallVector<Register, 8> Parts; 3936 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3937 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3938 3939 for (Register &R : Parts) 3940 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3941 3942 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3943 3944 MI.eraseFromParent(); 3945 return Legalized; 3946 } 3947 3948 LegalizerHelper::LegalizeResult 3949 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3950 LLT NarrowTy) { 3951 using namespace TargetOpcode; 3952 3953 switch (MI.getOpcode()) { 3954 case G_IMPLICIT_DEF: 3955 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3956 case G_TRUNC: 3957 case G_AND: 3958 case G_OR: 3959 case G_XOR: 3960 case G_ADD: 3961 case G_SUB: 3962 case G_MUL: 3963 case G_PTR_ADD: 3964 case G_SMULH: 3965 case G_UMULH: 3966 case G_FADD: 3967 case G_FMUL: 3968 case G_FSUB: 3969 case G_FNEG: 3970 case G_FABS: 3971 case G_FCANONICALIZE: 3972 case G_FDIV: 3973 case G_FREM: 3974 case G_FMA: 3975 case G_FMAD: 3976 case G_FPOW: 3977 case G_FEXP: 3978 case G_FEXP2: 3979 case G_FLOG: 3980 case G_FLOG2: 3981 case G_FLOG10: 3982 case G_FNEARBYINT: 3983 case G_FCEIL: 3984 case G_FFLOOR: 3985 case G_FRINT: 3986 case G_INTRINSIC_ROUND: 3987 case G_INTRINSIC_ROUNDEVEN: 3988 case G_INTRINSIC_TRUNC: 3989 case G_FCOS: 3990 case G_FSIN: 3991 case G_FSQRT: 3992 case G_BSWAP: 3993 case G_BITREVERSE: 3994 case G_SDIV: 3995 case G_UDIV: 3996 case G_SREM: 3997 case G_UREM: 3998 case G_SMIN: 3999 case G_SMAX: 4000 case G_UMIN: 4001 case G_UMAX: 4002 case G_FMINNUM: 4003 case G_FMAXNUM: 4004 case G_FMINNUM_IEEE: 4005 case G_FMAXNUM_IEEE: 4006 case G_FMINIMUM: 4007 case G_FMAXIMUM: 4008 case G_FSHL: 4009 case G_FSHR: 4010 case G_FREEZE: 4011 case G_SADDSAT: 4012 case G_SSUBSAT: 4013 case G_UADDSAT: 4014 case G_USUBSAT: 4015 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4016 case G_SHL: 4017 case G_LSHR: 4018 case G_ASHR: 4019 case G_SSHLSAT: 4020 case G_USHLSAT: 4021 case G_CTLZ: 4022 case G_CTLZ_ZERO_UNDEF: 4023 case G_CTTZ: 4024 case G_CTTZ_ZERO_UNDEF: 4025 case G_CTPOP: 4026 case G_FCOPYSIGN: 4027 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4028 case G_ZEXT: 4029 case G_SEXT: 4030 case G_ANYEXT: 4031 case G_FPEXT: 4032 case G_FPTRUNC: 4033 case G_SITOFP: 4034 case G_UITOFP: 4035 case G_FPTOSI: 4036 case G_FPTOUI: 4037 case G_INTTOPTR: 4038 case G_PTRTOINT: 4039 case G_ADDRSPACE_CAST: 4040 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4041 case G_ICMP: 4042 case G_FCMP: 4043 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4044 case G_SELECT: 4045 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4046 case G_PHI: 4047 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4048 case G_UNMERGE_VALUES: 4049 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4050 case G_BUILD_VECTOR: 4051 assert(TypeIdx == 0 && "not a vector type index"); 4052 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4053 case G_CONCAT_VECTORS: 4054 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4055 return UnableToLegalize; 4056 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4057 case G_EXTRACT_VECTOR_ELT: 4058 case G_INSERT_VECTOR_ELT: 4059 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4060 case G_LOAD: 4061 case G_STORE: 4062 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4063 case G_SEXT_INREG: 4064 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4065 default: 4066 return UnableToLegalize; 4067 } 4068 } 4069 4070 LegalizerHelper::LegalizeResult 4071 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4072 const LLT HalfTy, const LLT AmtTy) { 4073 4074 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4075 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4076 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4077 4078 if (Amt.isNullValue()) { 4079 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4080 MI.eraseFromParent(); 4081 return Legalized; 4082 } 4083 4084 LLT NVT = HalfTy; 4085 unsigned NVTBits = HalfTy.getSizeInBits(); 4086 unsigned VTBits = 2 * NVTBits; 4087 4088 SrcOp Lo(Register(0)), Hi(Register(0)); 4089 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4090 if (Amt.ugt(VTBits)) { 4091 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4092 } else if (Amt.ugt(NVTBits)) { 4093 Lo = MIRBuilder.buildConstant(NVT, 0); 4094 Hi = MIRBuilder.buildShl(NVT, InL, 4095 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4096 } else if (Amt == NVTBits) { 4097 Lo = MIRBuilder.buildConstant(NVT, 0); 4098 Hi = InL; 4099 } else { 4100 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4101 auto OrLHS = 4102 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4103 auto OrRHS = MIRBuilder.buildLShr( 4104 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4105 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4106 } 4107 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4108 if (Amt.ugt(VTBits)) { 4109 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4110 } else if (Amt.ugt(NVTBits)) { 4111 Lo = MIRBuilder.buildLShr(NVT, InH, 4112 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4113 Hi = MIRBuilder.buildConstant(NVT, 0); 4114 } else if (Amt == NVTBits) { 4115 Lo = InH; 4116 Hi = MIRBuilder.buildConstant(NVT, 0); 4117 } else { 4118 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4119 4120 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4121 auto OrRHS = MIRBuilder.buildShl( 4122 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4123 4124 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4125 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4126 } 4127 } else { 4128 if (Amt.ugt(VTBits)) { 4129 Hi = Lo = MIRBuilder.buildAShr( 4130 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4131 } else if (Amt.ugt(NVTBits)) { 4132 Lo = MIRBuilder.buildAShr(NVT, InH, 4133 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4134 Hi = MIRBuilder.buildAShr(NVT, InH, 4135 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4136 } else if (Amt == NVTBits) { 4137 Lo = InH; 4138 Hi = MIRBuilder.buildAShr(NVT, InH, 4139 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4140 } else { 4141 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4142 4143 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4144 auto OrRHS = MIRBuilder.buildShl( 4145 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4146 4147 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4148 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4149 } 4150 } 4151 4152 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4153 MI.eraseFromParent(); 4154 4155 return Legalized; 4156 } 4157 4158 // TODO: Optimize if constant shift amount. 4159 LegalizerHelper::LegalizeResult 4160 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4161 LLT RequestedTy) { 4162 if (TypeIdx == 1) { 4163 Observer.changingInstr(MI); 4164 narrowScalarSrc(MI, RequestedTy, 2); 4165 Observer.changedInstr(MI); 4166 return Legalized; 4167 } 4168 4169 Register DstReg = MI.getOperand(0).getReg(); 4170 LLT DstTy = MRI.getType(DstReg); 4171 if (DstTy.isVector()) 4172 return UnableToLegalize; 4173 4174 Register Amt = MI.getOperand(2).getReg(); 4175 LLT ShiftAmtTy = MRI.getType(Amt); 4176 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4177 if (DstEltSize % 2 != 0) 4178 return UnableToLegalize; 4179 4180 // Ignore the input type. We can only go to exactly half the size of the 4181 // input. If that isn't small enough, the resulting pieces will be further 4182 // legalized. 4183 const unsigned NewBitSize = DstEltSize / 2; 4184 const LLT HalfTy = LLT::scalar(NewBitSize); 4185 const LLT CondTy = LLT::scalar(1); 4186 4187 if (const MachineInstr *KShiftAmt = 4188 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4189 return narrowScalarShiftByConstant( 4190 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4191 } 4192 4193 // TODO: Expand with known bits. 4194 4195 // Handle the fully general expansion by an unknown amount. 4196 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4197 4198 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4199 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4200 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4201 4202 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4203 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4204 4205 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4206 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4207 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4208 4209 Register ResultRegs[2]; 4210 switch (MI.getOpcode()) { 4211 case TargetOpcode::G_SHL: { 4212 // Short: ShAmt < NewBitSize 4213 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4214 4215 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4216 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4217 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4218 4219 // Long: ShAmt >= NewBitSize 4220 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4221 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4222 4223 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4224 auto Hi = MIRBuilder.buildSelect( 4225 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4226 4227 ResultRegs[0] = Lo.getReg(0); 4228 ResultRegs[1] = Hi.getReg(0); 4229 break; 4230 } 4231 case TargetOpcode::G_LSHR: 4232 case TargetOpcode::G_ASHR: { 4233 // Short: ShAmt < NewBitSize 4234 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4235 4236 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4237 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4238 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4239 4240 // Long: ShAmt >= NewBitSize 4241 MachineInstrBuilder HiL; 4242 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4243 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4244 } else { 4245 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4246 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4247 } 4248 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4249 {InH, AmtExcess}); // Lo from Hi part. 4250 4251 auto Lo = MIRBuilder.buildSelect( 4252 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4253 4254 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4255 4256 ResultRegs[0] = Lo.getReg(0); 4257 ResultRegs[1] = Hi.getReg(0); 4258 break; 4259 } 4260 default: 4261 llvm_unreachable("not a shift"); 4262 } 4263 4264 MIRBuilder.buildMerge(DstReg, ResultRegs); 4265 MI.eraseFromParent(); 4266 return Legalized; 4267 } 4268 4269 LegalizerHelper::LegalizeResult 4270 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4271 LLT MoreTy) { 4272 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4273 4274 Observer.changingInstr(MI); 4275 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4276 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4277 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4278 moreElementsVectorSrc(MI, MoreTy, I); 4279 } 4280 4281 MachineBasicBlock &MBB = *MI.getParent(); 4282 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4283 moreElementsVectorDst(MI, MoreTy, 0); 4284 Observer.changedInstr(MI); 4285 return Legalized; 4286 } 4287 4288 LegalizerHelper::LegalizeResult 4289 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4290 LLT MoreTy) { 4291 unsigned Opc = MI.getOpcode(); 4292 switch (Opc) { 4293 case TargetOpcode::G_IMPLICIT_DEF: 4294 case TargetOpcode::G_LOAD: { 4295 if (TypeIdx != 0) 4296 return UnableToLegalize; 4297 Observer.changingInstr(MI); 4298 moreElementsVectorDst(MI, MoreTy, 0); 4299 Observer.changedInstr(MI); 4300 return Legalized; 4301 } 4302 case TargetOpcode::G_STORE: 4303 if (TypeIdx != 0) 4304 return UnableToLegalize; 4305 Observer.changingInstr(MI); 4306 moreElementsVectorSrc(MI, MoreTy, 0); 4307 Observer.changedInstr(MI); 4308 return Legalized; 4309 case TargetOpcode::G_AND: 4310 case TargetOpcode::G_OR: 4311 case TargetOpcode::G_XOR: 4312 case TargetOpcode::G_SMIN: 4313 case TargetOpcode::G_SMAX: 4314 case TargetOpcode::G_UMIN: 4315 case TargetOpcode::G_UMAX: 4316 case TargetOpcode::G_FMINNUM: 4317 case TargetOpcode::G_FMAXNUM: 4318 case TargetOpcode::G_FMINNUM_IEEE: 4319 case TargetOpcode::G_FMAXNUM_IEEE: 4320 case TargetOpcode::G_FMINIMUM: 4321 case TargetOpcode::G_FMAXIMUM: { 4322 Observer.changingInstr(MI); 4323 moreElementsVectorSrc(MI, MoreTy, 1); 4324 moreElementsVectorSrc(MI, MoreTy, 2); 4325 moreElementsVectorDst(MI, MoreTy, 0); 4326 Observer.changedInstr(MI); 4327 return Legalized; 4328 } 4329 case TargetOpcode::G_EXTRACT: 4330 if (TypeIdx != 1) 4331 return UnableToLegalize; 4332 Observer.changingInstr(MI); 4333 moreElementsVectorSrc(MI, MoreTy, 1); 4334 Observer.changedInstr(MI); 4335 return Legalized; 4336 case TargetOpcode::G_INSERT: 4337 case TargetOpcode::G_FREEZE: 4338 if (TypeIdx != 0) 4339 return UnableToLegalize; 4340 Observer.changingInstr(MI); 4341 moreElementsVectorSrc(MI, MoreTy, 1); 4342 moreElementsVectorDst(MI, MoreTy, 0); 4343 Observer.changedInstr(MI); 4344 return Legalized; 4345 case TargetOpcode::G_SELECT: 4346 if (TypeIdx != 0) 4347 return UnableToLegalize; 4348 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4349 return UnableToLegalize; 4350 4351 Observer.changingInstr(MI); 4352 moreElementsVectorSrc(MI, MoreTy, 2); 4353 moreElementsVectorSrc(MI, MoreTy, 3); 4354 moreElementsVectorDst(MI, MoreTy, 0); 4355 Observer.changedInstr(MI); 4356 return Legalized; 4357 case TargetOpcode::G_UNMERGE_VALUES: { 4358 if (TypeIdx != 1) 4359 return UnableToLegalize; 4360 4361 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4362 int NumDst = MI.getNumOperands() - 1; 4363 moreElementsVectorSrc(MI, MoreTy, NumDst); 4364 4365 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4366 for (int I = 0; I != NumDst; ++I) 4367 MIB.addDef(MI.getOperand(I).getReg()); 4368 4369 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4370 for (int I = NumDst; I != NewNumDst; ++I) 4371 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4372 4373 MIB.addUse(MI.getOperand(NumDst).getReg()); 4374 MI.eraseFromParent(); 4375 return Legalized; 4376 } 4377 case TargetOpcode::G_PHI: 4378 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4379 default: 4380 return UnableToLegalize; 4381 } 4382 } 4383 4384 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4385 ArrayRef<Register> Src1Regs, 4386 ArrayRef<Register> Src2Regs, 4387 LLT NarrowTy) { 4388 MachineIRBuilder &B = MIRBuilder; 4389 unsigned SrcParts = Src1Regs.size(); 4390 unsigned DstParts = DstRegs.size(); 4391 4392 unsigned DstIdx = 0; // Low bits of the result. 4393 Register FactorSum = 4394 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4395 DstRegs[DstIdx] = FactorSum; 4396 4397 unsigned CarrySumPrevDstIdx; 4398 SmallVector<Register, 4> Factors; 4399 4400 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4401 // Collect low parts of muls for DstIdx. 4402 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4403 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4404 MachineInstrBuilder Mul = 4405 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4406 Factors.push_back(Mul.getReg(0)); 4407 } 4408 // Collect high parts of muls from previous DstIdx. 4409 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4410 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4411 MachineInstrBuilder Umulh = 4412 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4413 Factors.push_back(Umulh.getReg(0)); 4414 } 4415 // Add CarrySum from additions calculated for previous DstIdx. 4416 if (DstIdx != 1) { 4417 Factors.push_back(CarrySumPrevDstIdx); 4418 } 4419 4420 Register CarrySum; 4421 // Add all factors and accumulate all carries into CarrySum. 4422 if (DstIdx != DstParts - 1) { 4423 MachineInstrBuilder Uaddo = 4424 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4425 FactorSum = Uaddo.getReg(0); 4426 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4427 for (unsigned i = 2; i < Factors.size(); ++i) { 4428 MachineInstrBuilder Uaddo = 4429 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4430 FactorSum = Uaddo.getReg(0); 4431 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4432 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4433 } 4434 } else { 4435 // Since value for the next index is not calculated, neither is CarrySum. 4436 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4437 for (unsigned i = 2; i < Factors.size(); ++i) 4438 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4439 } 4440 4441 CarrySumPrevDstIdx = CarrySum; 4442 DstRegs[DstIdx] = FactorSum; 4443 Factors.clear(); 4444 } 4445 } 4446 4447 LegalizerHelper::LegalizeResult 4448 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4449 Register DstReg = MI.getOperand(0).getReg(); 4450 Register Src1 = MI.getOperand(1).getReg(); 4451 Register Src2 = MI.getOperand(2).getReg(); 4452 4453 LLT Ty = MRI.getType(DstReg); 4454 if (Ty.isVector()) 4455 return UnableToLegalize; 4456 4457 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4458 unsigned DstSize = Ty.getSizeInBits(); 4459 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4460 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4461 return UnableToLegalize; 4462 4463 unsigned NumDstParts = DstSize / NarrowSize; 4464 unsigned NumSrcParts = SrcSize / NarrowSize; 4465 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4466 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4467 4468 SmallVector<Register, 2> Src1Parts, Src2Parts; 4469 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4470 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4471 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4472 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4473 4474 // Take only high half of registers if this is high mul. 4475 ArrayRef<Register> DstRegs( 4476 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4477 MIRBuilder.buildMerge(DstReg, DstRegs); 4478 MI.eraseFromParent(); 4479 return Legalized; 4480 } 4481 4482 LegalizerHelper::LegalizeResult 4483 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4484 LLT NarrowTy) { 4485 if (TypeIdx != 1) 4486 return UnableToLegalize; 4487 4488 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4489 4490 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4491 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4492 // NarrowSize. 4493 if (SizeOp1 % NarrowSize != 0) 4494 return UnableToLegalize; 4495 int NumParts = SizeOp1 / NarrowSize; 4496 4497 SmallVector<Register, 2> SrcRegs, DstRegs; 4498 SmallVector<uint64_t, 2> Indexes; 4499 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4500 4501 Register OpReg = MI.getOperand(0).getReg(); 4502 uint64_t OpStart = MI.getOperand(2).getImm(); 4503 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4504 for (int i = 0; i < NumParts; ++i) { 4505 unsigned SrcStart = i * NarrowSize; 4506 4507 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4508 // No part of the extract uses this subregister, ignore it. 4509 continue; 4510 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4511 // The entire subregister is extracted, forward the value. 4512 DstRegs.push_back(SrcRegs[i]); 4513 continue; 4514 } 4515 4516 // OpSegStart is where this destination segment would start in OpReg if it 4517 // extended infinitely in both directions. 4518 int64_t ExtractOffset; 4519 uint64_t SegSize; 4520 if (OpStart < SrcStart) { 4521 ExtractOffset = 0; 4522 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4523 } else { 4524 ExtractOffset = OpStart - SrcStart; 4525 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4526 } 4527 4528 Register SegReg = SrcRegs[i]; 4529 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4530 // A genuine extract is needed. 4531 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4532 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4533 } 4534 4535 DstRegs.push_back(SegReg); 4536 } 4537 4538 Register DstReg = MI.getOperand(0).getReg(); 4539 if (MRI.getType(DstReg).isVector()) 4540 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4541 else if (DstRegs.size() > 1) 4542 MIRBuilder.buildMerge(DstReg, DstRegs); 4543 else 4544 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4545 MI.eraseFromParent(); 4546 return Legalized; 4547 } 4548 4549 LegalizerHelper::LegalizeResult 4550 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4551 LLT NarrowTy) { 4552 // FIXME: Don't know how to handle secondary types yet. 4553 if (TypeIdx != 0) 4554 return UnableToLegalize; 4555 4556 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4557 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4558 4559 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4560 // NarrowSize. 4561 if (SizeOp0 % NarrowSize != 0) 4562 return UnableToLegalize; 4563 4564 int NumParts = SizeOp0 / NarrowSize; 4565 4566 SmallVector<Register, 2> SrcRegs, DstRegs; 4567 SmallVector<uint64_t, 2> Indexes; 4568 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4569 4570 Register OpReg = MI.getOperand(2).getReg(); 4571 uint64_t OpStart = MI.getOperand(3).getImm(); 4572 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4573 for (int i = 0; i < NumParts; ++i) { 4574 unsigned DstStart = i * NarrowSize; 4575 4576 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4577 // No part of the insert affects this subregister, forward the original. 4578 DstRegs.push_back(SrcRegs[i]); 4579 continue; 4580 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4581 // The entire subregister is defined by this insert, forward the new 4582 // value. 4583 DstRegs.push_back(OpReg); 4584 continue; 4585 } 4586 4587 // OpSegStart is where this destination segment would start in OpReg if it 4588 // extended infinitely in both directions. 4589 int64_t ExtractOffset, InsertOffset; 4590 uint64_t SegSize; 4591 if (OpStart < DstStart) { 4592 InsertOffset = 0; 4593 ExtractOffset = DstStart - OpStart; 4594 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4595 } else { 4596 InsertOffset = OpStart - DstStart; 4597 ExtractOffset = 0; 4598 SegSize = 4599 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4600 } 4601 4602 Register SegReg = OpReg; 4603 if (ExtractOffset != 0 || SegSize != OpSize) { 4604 // A genuine extract is needed. 4605 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4606 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4607 } 4608 4609 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4610 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4611 DstRegs.push_back(DstReg); 4612 } 4613 4614 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4615 Register DstReg = MI.getOperand(0).getReg(); 4616 if(MRI.getType(DstReg).isVector()) 4617 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4618 else 4619 MIRBuilder.buildMerge(DstReg, DstRegs); 4620 MI.eraseFromParent(); 4621 return Legalized; 4622 } 4623 4624 LegalizerHelper::LegalizeResult 4625 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4626 LLT NarrowTy) { 4627 Register DstReg = MI.getOperand(0).getReg(); 4628 LLT DstTy = MRI.getType(DstReg); 4629 4630 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4631 4632 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4633 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4634 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4635 LLT LeftoverTy; 4636 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4637 Src0Regs, Src0LeftoverRegs)) 4638 return UnableToLegalize; 4639 4640 LLT Unused; 4641 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4642 Src1Regs, Src1LeftoverRegs)) 4643 llvm_unreachable("inconsistent extractParts result"); 4644 4645 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4646 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4647 {Src0Regs[I], Src1Regs[I]}); 4648 DstRegs.push_back(Inst.getReg(0)); 4649 } 4650 4651 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4652 auto Inst = MIRBuilder.buildInstr( 4653 MI.getOpcode(), 4654 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4655 DstLeftoverRegs.push_back(Inst.getReg(0)); 4656 } 4657 4658 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4659 LeftoverTy, DstLeftoverRegs); 4660 4661 MI.eraseFromParent(); 4662 return Legalized; 4663 } 4664 4665 LegalizerHelper::LegalizeResult 4666 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4667 LLT NarrowTy) { 4668 if (TypeIdx != 0) 4669 return UnableToLegalize; 4670 4671 Register DstReg = MI.getOperand(0).getReg(); 4672 Register SrcReg = MI.getOperand(1).getReg(); 4673 4674 LLT DstTy = MRI.getType(DstReg); 4675 if (DstTy.isVector()) 4676 return UnableToLegalize; 4677 4678 SmallVector<Register, 8> Parts; 4679 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4680 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4681 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4682 4683 MI.eraseFromParent(); 4684 return Legalized; 4685 } 4686 4687 LegalizerHelper::LegalizeResult 4688 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4689 LLT NarrowTy) { 4690 if (TypeIdx != 0) 4691 return UnableToLegalize; 4692 4693 Register CondReg = MI.getOperand(1).getReg(); 4694 LLT CondTy = MRI.getType(CondReg); 4695 if (CondTy.isVector()) // TODO: Handle vselect 4696 return UnableToLegalize; 4697 4698 Register DstReg = MI.getOperand(0).getReg(); 4699 LLT DstTy = MRI.getType(DstReg); 4700 4701 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4702 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4703 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4704 LLT LeftoverTy; 4705 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4706 Src1Regs, Src1LeftoverRegs)) 4707 return UnableToLegalize; 4708 4709 LLT Unused; 4710 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4711 Src2Regs, Src2LeftoverRegs)) 4712 llvm_unreachable("inconsistent extractParts result"); 4713 4714 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4715 auto Select = MIRBuilder.buildSelect(NarrowTy, 4716 CondReg, Src1Regs[I], Src2Regs[I]); 4717 DstRegs.push_back(Select.getReg(0)); 4718 } 4719 4720 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4721 auto Select = MIRBuilder.buildSelect( 4722 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4723 DstLeftoverRegs.push_back(Select.getReg(0)); 4724 } 4725 4726 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4727 LeftoverTy, DstLeftoverRegs); 4728 4729 MI.eraseFromParent(); 4730 return Legalized; 4731 } 4732 4733 LegalizerHelper::LegalizeResult 4734 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4735 LLT NarrowTy) { 4736 if (TypeIdx != 1) 4737 return UnableToLegalize; 4738 4739 Register DstReg = MI.getOperand(0).getReg(); 4740 Register SrcReg = MI.getOperand(1).getReg(); 4741 LLT DstTy = MRI.getType(DstReg); 4742 LLT SrcTy = MRI.getType(SrcReg); 4743 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4744 4745 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4746 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4747 4748 MachineIRBuilder &B = MIRBuilder; 4749 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4750 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4751 auto C_0 = B.buildConstant(NarrowTy, 0); 4752 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4753 UnmergeSrc.getReg(1), C_0); 4754 auto LoCTLZ = IsUndef ? 4755 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4756 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4757 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4758 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4759 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4760 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4761 4762 MI.eraseFromParent(); 4763 return Legalized; 4764 } 4765 4766 return UnableToLegalize; 4767 } 4768 4769 LegalizerHelper::LegalizeResult 4770 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4771 LLT NarrowTy) { 4772 if (TypeIdx != 1) 4773 return UnableToLegalize; 4774 4775 Register DstReg = MI.getOperand(0).getReg(); 4776 Register SrcReg = MI.getOperand(1).getReg(); 4777 LLT DstTy = MRI.getType(DstReg); 4778 LLT SrcTy = MRI.getType(SrcReg); 4779 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4780 4781 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4782 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4783 4784 MachineIRBuilder &B = MIRBuilder; 4785 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4786 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4787 auto C_0 = B.buildConstant(NarrowTy, 0); 4788 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4789 UnmergeSrc.getReg(0), C_0); 4790 auto HiCTTZ = IsUndef ? 4791 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4792 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4793 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4794 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4795 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4796 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4797 4798 MI.eraseFromParent(); 4799 return Legalized; 4800 } 4801 4802 return UnableToLegalize; 4803 } 4804 4805 LegalizerHelper::LegalizeResult 4806 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4807 LLT NarrowTy) { 4808 if (TypeIdx != 1) 4809 return UnableToLegalize; 4810 4811 Register DstReg = MI.getOperand(0).getReg(); 4812 LLT DstTy = MRI.getType(DstReg); 4813 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4814 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4815 4816 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4817 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4818 4819 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4820 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4821 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4822 4823 MI.eraseFromParent(); 4824 return Legalized; 4825 } 4826 4827 return UnableToLegalize; 4828 } 4829 4830 LegalizerHelper::LegalizeResult 4831 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4832 unsigned Opc = MI.getOpcode(); 4833 const auto &TII = MIRBuilder.getTII(); 4834 auto isSupported = [this](const LegalityQuery &Q) { 4835 auto QAction = LI.getAction(Q).Action; 4836 return QAction == Legal || QAction == Libcall || QAction == Custom; 4837 }; 4838 switch (Opc) { 4839 default: 4840 return UnableToLegalize; 4841 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4842 // This trivially expands to CTLZ. 4843 Observer.changingInstr(MI); 4844 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4845 Observer.changedInstr(MI); 4846 return Legalized; 4847 } 4848 case TargetOpcode::G_CTLZ: { 4849 Register DstReg = MI.getOperand(0).getReg(); 4850 Register SrcReg = MI.getOperand(1).getReg(); 4851 LLT DstTy = MRI.getType(DstReg); 4852 LLT SrcTy = MRI.getType(SrcReg); 4853 unsigned Len = SrcTy.getSizeInBits(); 4854 4855 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4856 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4857 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4858 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4859 auto ICmp = MIRBuilder.buildICmp( 4860 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4861 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4862 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4863 MI.eraseFromParent(); 4864 return Legalized; 4865 } 4866 // for now, we do this: 4867 // NewLen = NextPowerOf2(Len); 4868 // x = x | (x >> 1); 4869 // x = x | (x >> 2); 4870 // ... 4871 // x = x | (x >>16); 4872 // x = x | (x >>32); // for 64-bit input 4873 // Upto NewLen/2 4874 // return Len - popcount(x); 4875 // 4876 // Ref: "Hacker's Delight" by Henry Warren 4877 Register Op = SrcReg; 4878 unsigned NewLen = PowerOf2Ceil(Len); 4879 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4880 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4881 auto MIBOp = MIRBuilder.buildOr( 4882 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4883 Op = MIBOp.getReg(0); 4884 } 4885 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4886 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4887 MIBPop); 4888 MI.eraseFromParent(); 4889 return Legalized; 4890 } 4891 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4892 // This trivially expands to CTTZ. 4893 Observer.changingInstr(MI); 4894 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4895 Observer.changedInstr(MI); 4896 return Legalized; 4897 } 4898 case TargetOpcode::G_CTTZ: { 4899 Register DstReg = MI.getOperand(0).getReg(); 4900 Register SrcReg = MI.getOperand(1).getReg(); 4901 LLT DstTy = MRI.getType(DstReg); 4902 LLT SrcTy = MRI.getType(SrcReg); 4903 4904 unsigned Len = SrcTy.getSizeInBits(); 4905 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4906 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4907 // zero. 4908 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4909 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4910 auto ICmp = MIRBuilder.buildICmp( 4911 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4912 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4913 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4914 MI.eraseFromParent(); 4915 return Legalized; 4916 } 4917 // for now, we use: { return popcount(~x & (x - 1)); } 4918 // unless the target has ctlz but not ctpop, in which case we use: 4919 // { return 32 - nlz(~x & (x-1)); } 4920 // Ref: "Hacker's Delight" by Henry Warren 4921 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4922 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4923 auto MIBTmp = MIRBuilder.buildAnd( 4924 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4925 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4926 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4927 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4928 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4929 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4930 MI.eraseFromParent(); 4931 return Legalized; 4932 } 4933 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4934 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4935 return Legalized; 4936 } 4937 case TargetOpcode::G_CTPOP: { 4938 Register SrcReg = MI.getOperand(1).getReg(); 4939 LLT Ty = MRI.getType(SrcReg); 4940 unsigned Size = Ty.getSizeInBits(); 4941 MachineIRBuilder &B = MIRBuilder; 4942 4943 // Count set bits in blocks of 2 bits. Default approach would be 4944 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4945 // We use following formula instead: 4946 // B2Count = val - { (val >> 1) & 0x55555555 } 4947 // since it gives same result in blocks of 2 with one instruction less. 4948 auto C_1 = B.buildConstant(Ty, 1); 4949 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4950 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4951 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4952 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4953 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4954 4955 // In order to get count in blocks of 4 add values from adjacent block of 2. 4956 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4957 auto C_2 = B.buildConstant(Ty, 2); 4958 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4959 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4960 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4961 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4962 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4963 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4964 4965 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4966 // addition since count value sits in range {0,...,8} and 4 bits are enough 4967 // to hold such binary values. After addition high 4 bits still hold count 4968 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4969 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4970 auto C_4 = B.buildConstant(Ty, 4); 4971 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4972 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4973 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4974 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4975 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4976 4977 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4978 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4979 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4980 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4981 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4982 4983 // Shift count result from 8 high bits to low bits. 4984 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4985 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4986 4987 MI.eraseFromParent(); 4988 return Legalized; 4989 } 4990 } 4991 } 4992 4993 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4994 // representation. 4995 LegalizerHelper::LegalizeResult 4996 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4997 Register Dst = MI.getOperand(0).getReg(); 4998 Register Src = MI.getOperand(1).getReg(); 4999 const LLT S64 = LLT::scalar(64); 5000 const LLT S32 = LLT::scalar(32); 5001 const LLT S1 = LLT::scalar(1); 5002 5003 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5004 5005 // unsigned cul2f(ulong u) { 5006 // uint lz = clz(u); 5007 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5008 // u = (u << lz) & 0x7fffffffffffffffUL; 5009 // ulong t = u & 0xffffffffffUL; 5010 // uint v = (e << 23) | (uint)(u >> 40); 5011 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5012 // return as_float(v + r); 5013 // } 5014 5015 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5016 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5017 5018 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5019 5020 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5021 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5022 5023 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5024 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5025 5026 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5027 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5028 5029 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5030 5031 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5032 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5033 5034 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5035 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5036 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5037 5038 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5039 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5040 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5041 auto One = MIRBuilder.buildConstant(S32, 1); 5042 5043 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5044 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5045 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5046 MIRBuilder.buildAdd(Dst, V, R); 5047 5048 MI.eraseFromParent(); 5049 return Legalized; 5050 } 5051 5052 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5053 Register Dst = MI.getOperand(0).getReg(); 5054 Register Src = MI.getOperand(1).getReg(); 5055 LLT DstTy = MRI.getType(Dst); 5056 LLT SrcTy = MRI.getType(Src); 5057 5058 if (SrcTy == LLT::scalar(1)) { 5059 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5060 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5061 MIRBuilder.buildSelect(Dst, Src, True, False); 5062 MI.eraseFromParent(); 5063 return Legalized; 5064 } 5065 5066 if (SrcTy != LLT::scalar(64)) 5067 return UnableToLegalize; 5068 5069 if (DstTy == LLT::scalar(32)) { 5070 // TODO: SelectionDAG has several alternative expansions to port which may 5071 // be more reasonble depending on the available instructions. If a target 5072 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5073 // intermediate type, this is probably worse. 5074 return lowerU64ToF32BitOps(MI); 5075 } 5076 5077 return UnableToLegalize; 5078 } 5079 5080 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5081 Register Dst = MI.getOperand(0).getReg(); 5082 Register Src = MI.getOperand(1).getReg(); 5083 LLT DstTy = MRI.getType(Dst); 5084 LLT SrcTy = MRI.getType(Src); 5085 5086 const LLT S64 = LLT::scalar(64); 5087 const LLT S32 = LLT::scalar(32); 5088 const LLT S1 = LLT::scalar(1); 5089 5090 if (SrcTy == S1) { 5091 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5092 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5093 MIRBuilder.buildSelect(Dst, Src, True, False); 5094 MI.eraseFromParent(); 5095 return Legalized; 5096 } 5097 5098 if (SrcTy != S64) 5099 return UnableToLegalize; 5100 5101 if (DstTy == S32) { 5102 // signed cl2f(long l) { 5103 // long s = l >> 63; 5104 // float r = cul2f((l + s) ^ s); 5105 // return s ? -r : r; 5106 // } 5107 Register L = Src; 5108 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5109 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5110 5111 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5112 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5113 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5114 5115 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5116 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5117 MIRBuilder.buildConstant(S64, 0)); 5118 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5119 MI.eraseFromParent(); 5120 return Legalized; 5121 } 5122 5123 return UnableToLegalize; 5124 } 5125 5126 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5127 Register Dst = MI.getOperand(0).getReg(); 5128 Register Src = MI.getOperand(1).getReg(); 5129 LLT DstTy = MRI.getType(Dst); 5130 LLT SrcTy = MRI.getType(Src); 5131 const LLT S64 = LLT::scalar(64); 5132 const LLT S32 = LLT::scalar(32); 5133 5134 if (SrcTy != S64 && SrcTy != S32) 5135 return UnableToLegalize; 5136 if (DstTy != S32 && DstTy != S64) 5137 return UnableToLegalize; 5138 5139 // FPTOSI gives same result as FPTOUI for positive signed integers. 5140 // FPTOUI needs to deal with fp values that convert to unsigned integers 5141 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5142 5143 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5144 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5145 : APFloat::IEEEdouble(), 5146 APInt::getNullValue(SrcTy.getSizeInBits())); 5147 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5148 5149 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5150 5151 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5152 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5153 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5154 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5155 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5156 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5157 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5158 5159 const LLT S1 = LLT::scalar(1); 5160 5161 MachineInstrBuilder FCMP = 5162 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5163 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5164 5165 MI.eraseFromParent(); 5166 return Legalized; 5167 } 5168 5169 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5170 Register Dst = MI.getOperand(0).getReg(); 5171 Register Src = MI.getOperand(1).getReg(); 5172 LLT DstTy = MRI.getType(Dst); 5173 LLT SrcTy = MRI.getType(Src); 5174 const LLT S64 = LLT::scalar(64); 5175 const LLT S32 = LLT::scalar(32); 5176 5177 // FIXME: Only f32 to i64 conversions are supported. 5178 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5179 return UnableToLegalize; 5180 5181 // Expand f32 -> i64 conversion 5182 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5183 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5184 5185 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5186 5187 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5188 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5189 5190 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5191 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5192 5193 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5194 APInt::getSignMask(SrcEltBits)); 5195 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5196 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5197 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5198 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5199 5200 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5201 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5202 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5203 5204 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5205 R = MIRBuilder.buildZExt(DstTy, R); 5206 5207 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5208 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5209 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5210 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5211 5212 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5213 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5214 5215 const LLT S1 = LLT::scalar(1); 5216 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5217 S1, Exponent, ExponentLoBit); 5218 5219 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5220 5221 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5222 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5223 5224 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5225 5226 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5227 S1, Exponent, ZeroSrcTy); 5228 5229 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5230 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5231 5232 MI.eraseFromParent(); 5233 return Legalized; 5234 } 5235 5236 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5237 LegalizerHelper::LegalizeResult 5238 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5239 Register Dst = MI.getOperand(0).getReg(); 5240 Register Src = MI.getOperand(1).getReg(); 5241 5242 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5243 return UnableToLegalize; 5244 5245 const unsigned ExpMask = 0x7ff; 5246 const unsigned ExpBiasf64 = 1023; 5247 const unsigned ExpBiasf16 = 15; 5248 const LLT S32 = LLT::scalar(32); 5249 const LLT S1 = LLT::scalar(1); 5250 5251 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5252 Register U = Unmerge.getReg(0); 5253 Register UH = Unmerge.getReg(1); 5254 5255 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5256 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5257 5258 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5259 // add the f16 bias (15) to get the biased exponent for the f16 format. 5260 E = MIRBuilder.buildAdd( 5261 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5262 5263 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5264 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5265 5266 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5267 MIRBuilder.buildConstant(S32, 0x1ff)); 5268 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5269 5270 auto Zero = MIRBuilder.buildConstant(S32, 0); 5271 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5272 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5273 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5274 5275 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5276 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5277 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5278 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5279 5280 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5281 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5282 5283 // N = M | (E << 12); 5284 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5285 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5286 5287 // B = clamp(1-E, 0, 13); 5288 auto One = MIRBuilder.buildConstant(S32, 1); 5289 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5290 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5291 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5292 5293 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5294 MIRBuilder.buildConstant(S32, 0x1000)); 5295 5296 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5297 auto D0 = MIRBuilder.buildShl(S32, D, B); 5298 5299 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5300 D0, SigSetHigh); 5301 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5302 D = MIRBuilder.buildOr(S32, D, D1); 5303 5304 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5305 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5306 5307 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5308 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5309 5310 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5311 MIRBuilder.buildConstant(S32, 3)); 5312 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5313 5314 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5315 MIRBuilder.buildConstant(S32, 5)); 5316 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5317 5318 V1 = MIRBuilder.buildOr(S32, V0, V1); 5319 V = MIRBuilder.buildAdd(S32, V, V1); 5320 5321 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5322 E, MIRBuilder.buildConstant(S32, 30)); 5323 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5324 MIRBuilder.buildConstant(S32, 0x7c00), V); 5325 5326 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5327 E, MIRBuilder.buildConstant(S32, 1039)); 5328 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5329 5330 // Extract the sign bit. 5331 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5332 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5333 5334 // Insert the sign bit 5335 V = MIRBuilder.buildOr(S32, Sign, V); 5336 5337 MIRBuilder.buildTrunc(Dst, V); 5338 MI.eraseFromParent(); 5339 return Legalized; 5340 } 5341 5342 LegalizerHelper::LegalizeResult 5343 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5344 Register Dst = MI.getOperand(0).getReg(); 5345 Register Src = MI.getOperand(1).getReg(); 5346 5347 LLT DstTy = MRI.getType(Dst); 5348 LLT SrcTy = MRI.getType(Src); 5349 const LLT S64 = LLT::scalar(64); 5350 const LLT S16 = LLT::scalar(16); 5351 5352 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5353 return lowerFPTRUNC_F64_TO_F16(MI); 5354 5355 return UnableToLegalize; 5356 } 5357 5358 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5359 // multiplication tree. 5360 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5361 Register Dst = MI.getOperand(0).getReg(); 5362 Register Src0 = MI.getOperand(1).getReg(); 5363 Register Src1 = MI.getOperand(2).getReg(); 5364 LLT Ty = MRI.getType(Dst); 5365 5366 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5367 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5368 MI.eraseFromParent(); 5369 return Legalized; 5370 } 5371 5372 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5373 switch (Opc) { 5374 case TargetOpcode::G_SMIN: 5375 return CmpInst::ICMP_SLT; 5376 case TargetOpcode::G_SMAX: 5377 return CmpInst::ICMP_SGT; 5378 case TargetOpcode::G_UMIN: 5379 return CmpInst::ICMP_ULT; 5380 case TargetOpcode::G_UMAX: 5381 return CmpInst::ICMP_UGT; 5382 default: 5383 llvm_unreachable("not in integer min/max"); 5384 } 5385 } 5386 5387 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5388 Register Dst = MI.getOperand(0).getReg(); 5389 Register Src0 = MI.getOperand(1).getReg(); 5390 Register Src1 = MI.getOperand(2).getReg(); 5391 5392 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5393 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5394 5395 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5396 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5397 5398 MI.eraseFromParent(); 5399 return Legalized; 5400 } 5401 5402 LegalizerHelper::LegalizeResult 5403 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5404 Register Dst = MI.getOperand(0).getReg(); 5405 Register Src0 = MI.getOperand(1).getReg(); 5406 Register Src1 = MI.getOperand(2).getReg(); 5407 5408 const LLT Src0Ty = MRI.getType(Src0); 5409 const LLT Src1Ty = MRI.getType(Src1); 5410 5411 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5412 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5413 5414 auto SignBitMask = MIRBuilder.buildConstant( 5415 Src0Ty, APInt::getSignMask(Src0Size)); 5416 5417 auto NotSignBitMask = MIRBuilder.buildConstant( 5418 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5419 5420 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5421 MachineInstr *Or; 5422 5423 if (Src0Ty == Src1Ty) { 5424 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5425 Or = MIRBuilder.buildOr(Dst, And0, And1); 5426 } else if (Src0Size > Src1Size) { 5427 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5428 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5429 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5430 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5431 Or = MIRBuilder.buildOr(Dst, And0, And1); 5432 } else { 5433 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5434 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5435 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5436 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5437 Or = MIRBuilder.buildOr(Dst, And0, And1); 5438 } 5439 5440 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5441 // constants are a nan and -0.0, but the final result should preserve 5442 // everything. 5443 if (unsigned Flags = MI.getFlags()) 5444 Or->setFlags(Flags); 5445 5446 MI.eraseFromParent(); 5447 return Legalized; 5448 } 5449 5450 LegalizerHelper::LegalizeResult 5451 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5452 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5453 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5454 5455 Register Dst = MI.getOperand(0).getReg(); 5456 Register Src0 = MI.getOperand(1).getReg(); 5457 Register Src1 = MI.getOperand(2).getReg(); 5458 LLT Ty = MRI.getType(Dst); 5459 5460 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5461 // Insert canonicalizes if it's possible we need to quiet to get correct 5462 // sNaN behavior. 5463 5464 // Note this must be done here, and not as an optimization combine in the 5465 // absence of a dedicate quiet-snan instruction as we're using an 5466 // omni-purpose G_FCANONICALIZE. 5467 if (!isKnownNeverSNaN(Src0, MRI)) 5468 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5469 5470 if (!isKnownNeverSNaN(Src1, MRI)) 5471 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5472 } 5473 5474 // If there are no nans, it's safe to simply replace this with the non-IEEE 5475 // version. 5476 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5477 MI.eraseFromParent(); 5478 return Legalized; 5479 } 5480 5481 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5482 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5483 Register DstReg = MI.getOperand(0).getReg(); 5484 LLT Ty = MRI.getType(DstReg); 5485 unsigned Flags = MI.getFlags(); 5486 5487 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5488 Flags); 5489 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5490 MI.eraseFromParent(); 5491 return Legalized; 5492 } 5493 5494 LegalizerHelper::LegalizeResult 5495 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5496 Register DstReg = MI.getOperand(0).getReg(); 5497 Register X = MI.getOperand(1).getReg(); 5498 const unsigned Flags = MI.getFlags(); 5499 const LLT Ty = MRI.getType(DstReg); 5500 const LLT CondTy = Ty.changeElementSize(1); 5501 5502 // round(x) => 5503 // t = trunc(x); 5504 // d = fabs(x - t); 5505 // o = copysign(1.0f, x); 5506 // return t + (d >= 0.5 ? o : 0.0); 5507 5508 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5509 5510 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5511 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5512 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5513 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5514 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5515 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5516 5517 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5518 Flags); 5519 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5520 5521 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5522 5523 MI.eraseFromParent(); 5524 return Legalized; 5525 } 5526 5527 LegalizerHelper::LegalizeResult 5528 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5529 Register DstReg = MI.getOperand(0).getReg(); 5530 Register SrcReg = MI.getOperand(1).getReg(); 5531 unsigned Flags = MI.getFlags(); 5532 LLT Ty = MRI.getType(DstReg); 5533 const LLT CondTy = Ty.changeElementSize(1); 5534 5535 // result = trunc(src); 5536 // if (src < 0.0 && src != result) 5537 // result += -1.0. 5538 5539 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5540 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5541 5542 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5543 SrcReg, Zero, Flags); 5544 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5545 SrcReg, Trunc, Flags); 5546 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5547 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5548 5549 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5550 MI.eraseFromParent(); 5551 return Legalized; 5552 } 5553 5554 LegalizerHelper::LegalizeResult 5555 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5556 const unsigned NumOps = MI.getNumOperands(); 5557 Register DstReg = MI.getOperand(0).getReg(); 5558 Register Src0Reg = MI.getOperand(1).getReg(); 5559 LLT DstTy = MRI.getType(DstReg); 5560 LLT SrcTy = MRI.getType(Src0Reg); 5561 unsigned PartSize = SrcTy.getSizeInBits(); 5562 5563 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5564 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5565 5566 for (unsigned I = 2; I != NumOps; ++I) { 5567 const unsigned Offset = (I - 1) * PartSize; 5568 5569 Register SrcReg = MI.getOperand(I).getReg(); 5570 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5571 5572 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5573 MRI.createGenericVirtualRegister(WideTy); 5574 5575 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5576 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5577 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5578 ResultReg = NextResult; 5579 } 5580 5581 if (DstTy.isPointer()) { 5582 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5583 DstTy.getAddressSpace())) { 5584 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5585 return UnableToLegalize; 5586 } 5587 5588 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5589 } 5590 5591 MI.eraseFromParent(); 5592 return Legalized; 5593 } 5594 5595 LegalizerHelper::LegalizeResult 5596 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5597 const unsigned NumDst = MI.getNumOperands() - 1; 5598 Register SrcReg = MI.getOperand(NumDst).getReg(); 5599 Register Dst0Reg = MI.getOperand(0).getReg(); 5600 LLT DstTy = MRI.getType(Dst0Reg); 5601 if (DstTy.isPointer()) 5602 return UnableToLegalize; // TODO 5603 5604 SrcReg = coerceToScalar(SrcReg); 5605 if (!SrcReg) 5606 return UnableToLegalize; 5607 5608 // Expand scalarizing unmerge as bitcast to integer and shift. 5609 LLT IntTy = MRI.getType(SrcReg); 5610 5611 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5612 5613 const unsigned DstSize = DstTy.getSizeInBits(); 5614 unsigned Offset = DstSize; 5615 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5616 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5617 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5618 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5619 } 5620 5621 MI.eraseFromParent(); 5622 return Legalized; 5623 } 5624 5625 /// Lower a vector extract or insert by writing the vector to a stack temporary 5626 /// and reloading the element or vector. 5627 /// 5628 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5629 /// => 5630 /// %stack_temp = G_FRAME_INDEX 5631 /// G_STORE %vec, %stack_temp 5632 /// %idx = clamp(%idx, %vec.getNumElements()) 5633 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5634 /// %dst = G_LOAD %element_ptr 5635 LegalizerHelper::LegalizeResult 5636 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5637 Register DstReg = MI.getOperand(0).getReg(); 5638 Register SrcVec = MI.getOperand(1).getReg(); 5639 Register InsertVal; 5640 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5641 InsertVal = MI.getOperand(2).getReg(); 5642 5643 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5644 5645 LLT VecTy = MRI.getType(SrcVec); 5646 LLT EltTy = VecTy.getElementType(); 5647 if (!EltTy.isByteSized()) { // Not implemented. 5648 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5649 return UnableToLegalize; 5650 } 5651 5652 unsigned EltBytes = EltTy.getSizeInBytes(); 5653 Align VecAlign = getStackTemporaryAlignment(VecTy); 5654 Align EltAlign; 5655 5656 MachinePointerInfo PtrInfo; 5657 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5658 VecAlign, PtrInfo); 5659 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5660 5661 // Get the pointer to the element, and be sure not to hit undefined behavior 5662 // if the index is out of bounds. 5663 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5664 5665 int64_t IdxVal; 5666 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5667 int64_t Offset = IdxVal * EltBytes; 5668 PtrInfo = PtrInfo.getWithOffset(Offset); 5669 EltAlign = commonAlignment(VecAlign, Offset); 5670 } else { 5671 // We lose information with a variable offset. 5672 EltAlign = getStackTemporaryAlignment(EltTy); 5673 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5674 } 5675 5676 if (InsertVal) { 5677 // Write the inserted element 5678 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5679 5680 // Reload the whole vector. 5681 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5682 } else { 5683 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5684 } 5685 5686 MI.eraseFromParent(); 5687 return Legalized; 5688 } 5689 5690 LegalizerHelper::LegalizeResult 5691 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5692 Register DstReg = MI.getOperand(0).getReg(); 5693 Register Src0Reg = MI.getOperand(1).getReg(); 5694 Register Src1Reg = MI.getOperand(2).getReg(); 5695 LLT Src0Ty = MRI.getType(Src0Reg); 5696 LLT DstTy = MRI.getType(DstReg); 5697 LLT IdxTy = LLT::scalar(32); 5698 5699 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5700 5701 if (DstTy.isScalar()) { 5702 if (Src0Ty.isVector()) 5703 return UnableToLegalize; 5704 5705 // This is just a SELECT. 5706 assert(Mask.size() == 1 && "Expected a single mask element"); 5707 Register Val; 5708 if (Mask[0] < 0 || Mask[0] > 1) 5709 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5710 else 5711 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5712 MIRBuilder.buildCopy(DstReg, Val); 5713 MI.eraseFromParent(); 5714 return Legalized; 5715 } 5716 5717 Register Undef; 5718 SmallVector<Register, 32> BuildVec; 5719 LLT EltTy = DstTy.getElementType(); 5720 5721 for (int Idx : Mask) { 5722 if (Idx < 0) { 5723 if (!Undef.isValid()) 5724 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5725 BuildVec.push_back(Undef); 5726 continue; 5727 } 5728 5729 if (Src0Ty.isScalar()) { 5730 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5731 } else { 5732 int NumElts = Src0Ty.getNumElements(); 5733 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5734 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5735 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5736 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5737 BuildVec.push_back(Extract.getReg(0)); 5738 } 5739 } 5740 5741 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5742 MI.eraseFromParent(); 5743 return Legalized; 5744 } 5745 5746 LegalizerHelper::LegalizeResult 5747 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5748 const auto &MF = *MI.getMF(); 5749 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5750 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5751 return UnableToLegalize; 5752 5753 Register Dst = MI.getOperand(0).getReg(); 5754 Register AllocSize = MI.getOperand(1).getReg(); 5755 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5756 5757 LLT PtrTy = MRI.getType(Dst); 5758 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5759 5760 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5761 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5762 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5763 5764 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5765 // have to generate an extra instruction to negate the alloc and then use 5766 // G_PTR_ADD to add the negative offset. 5767 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5768 if (Alignment > Align(1)) { 5769 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5770 AlignMask.negate(); 5771 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5772 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5773 } 5774 5775 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5776 MIRBuilder.buildCopy(SPReg, SPTmp); 5777 MIRBuilder.buildCopy(Dst, SPTmp); 5778 5779 MI.eraseFromParent(); 5780 return Legalized; 5781 } 5782 5783 LegalizerHelper::LegalizeResult 5784 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5785 Register Dst = MI.getOperand(0).getReg(); 5786 Register Src = MI.getOperand(1).getReg(); 5787 unsigned Offset = MI.getOperand(2).getImm(); 5788 5789 LLT DstTy = MRI.getType(Dst); 5790 LLT SrcTy = MRI.getType(Src); 5791 5792 if (DstTy.isScalar() && 5793 (SrcTy.isScalar() || 5794 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5795 LLT SrcIntTy = SrcTy; 5796 if (!SrcTy.isScalar()) { 5797 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5798 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5799 } 5800 5801 if (Offset == 0) 5802 MIRBuilder.buildTrunc(Dst, Src); 5803 else { 5804 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5805 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5806 MIRBuilder.buildTrunc(Dst, Shr); 5807 } 5808 5809 MI.eraseFromParent(); 5810 return Legalized; 5811 } 5812 5813 return UnableToLegalize; 5814 } 5815 5816 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5817 Register Dst = MI.getOperand(0).getReg(); 5818 Register Src = MI.getOperand(1).getReg(); 5819 Register InsertSrc = MI.getOperand(2).getReg(); 5820 uint64_t Offset = MI.getOperand(3).getImm(); 5821 5822 LLT DstTy = MRI.getType(Src); 5823 LLT InsertTy = MRI.getType(InsertSrc); 5824 5825 if (InsertTy.isVector() || 5826 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5827 return UnableToLegalize; 5828 5829 const DataLayout &DL = MIRBuilder.getDataLayout(); 5830 if ((DstTy.isPointer() && 5831 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5832 (InsertTy.isPointer() && 5833 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5834 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5835 return UnableToLegalize; 5836 } 5837 5838 LLT IntDstTy = DstTy; 5839 5840 if (!DstTy.isScalar()) { 5841 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5842 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5843 } 5844 5845 if (!InsertTy.isScalar()) { 5846 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5847 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5848 } 5849 5850 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5851 if (Offset != 0) { 5852 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5853 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5854 } 5855 5856 APInt MaskVal = APInt::getBitsSetWithWrap( 5857 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5858 5859 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5860 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5861 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5862 5863 MIRBuilder.buildCast(Dst, Or); 5864 MI.eraseFromParent(); 5865 return Legalized; 5866 } 5867 5868 LegalizerHelper::LegalizeResult 5869 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5870 Register Dst0 = MI.getOperand(0).getReg(); 5871 Register Dst1 = MI.getOperand(1).getReg(); 5872 Register LHS = MI.getOperand(2).getReg(); 5873 Register RHS = MI.getOperand(3).getReg(); 5874 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5875 5876 LLT Ty = MRI.getType(Dst0); 5877 LLT BoolTy = MRI.getType(Dst1); 5878 5879 if (IsAdd) 5880 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5881 else 5882 MIRBuilder.buildSub(Dst0, LHS, RHS); 5883 5884 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5885 5886 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5887 5888 // For an addition, the result should be less than one of the operands (LHS) 5889 // if and only if the other operand (RHS) is negative, otherwise there will 5890 // be overflow. 5891 // For a subtraction, the result should be less than one of the operands 5892 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5893 // otherwise there will be overflow. 5894 auto ResultLowerThanLHS = 5895 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5896 auto ConditionRHS = MIRBuilder.buildICmp( 5897 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5898 5899 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5900 MI.eraseFromParent(); 5901 return Legalized; 5902 } 5903 5904 LegalizerHelper::LegalizeResult 5905 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5906 Register Res = MI.getOperand(0).getReg(); 5907 Register LHS = MI.getOperand(1).getReg(); 5908 Register RHS = MI.getOperand(2).getReg(); 5909 LLT Ty = MRI.getType(Res); 5910 bool IsSigned; 5911 bool IsAdd; 5912 unsigned BaseOp; 5913 switch (MI.getOpcode()) { 5914 default: 5915 llvm_unreachable("unexpected addsat/subsat opcode"); 5916 case TargetOpcode::G_UADDSAT: 5917 IsSigned = false; 5918 IsAdd = true; 5919 BaseOp = TargetOpcode::G_ADD; 5920 break; 5921 case TargetOpcode::G_SADDSAT: 5922 IsSigned = true; 5923 IsAdd = true; 5924 BaseOp = TargetOpcode::G_ADD; 5925 break; 5926 case TargetOpcode::G_USUBSAT: 5927 IsSigned = false; 5928 IsAdd = false; 5929 BaseOp = TargetOpcode::G_SUB; 5930 break; 5931 case TargetOpcode::G_SSUBSAT: 5932 IsSigned = true; 5933 IsAdd = false; 5934 BaseOp = TargetOpcode::G_SUB; 5935 break; 5936 } 5937 5938 if (IsSigned) { 5939 // sadd.sat(a, b) -> 5940 // hi = 0x7fffffff - smax(a, 0) 5941 // lo = 0x80000000 - smin(a, 0) 5942 // a + smin(smax(lo, b), hi) 5943 // ssub.sat(a, b) -> 5944 // lo = smax(a, -1) - 0x7fffffff 5945 // hi = smin(a, -1) - 0x80000000 5946 // a - smin(smax(lo, b), hi) 5947 // TODO: AMDGPU can use a "median of 3" instruction here: 5948 // a +/- med3(lo, b, hi) 5949 uint64_t NumBits = Ty.getScalarSizeInBits(); 5950 auto MaxVal = 5951 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5952 auto MinVal = 5953 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5954 MachineInstrBuilder Hi, Lo; 5955 if (IsAdd) { 5956 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5957 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5958 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5959 } else { 5960 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5961 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5962 MaxVal); 5963 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5964 MinVal); 5965 } 5966 auto RHSClamped = 5967 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5968 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5969 } else { 5970 // uadd.sat(a, b) -> a + umin(~a, b) 5971 // usub.sat(a, b) -> a - umin(a, b) 5972 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5973 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5974 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5975 } 5976 5977 MI.eraseFromParent(); 5978 return Legalized; 5979 } 5980 5981 LegalizerHelper::LegalizeResult 5982 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5983 Register Res = MI.getOperand(0).getReg(); 5984 Register LHS = MI.getOperand(1).getReg(); 5985 Register RHS = MI.getOperand(2).getReg(); 5986 LLT Ty = MRI.getType(Res); 5987 LLT BoolTy = Ty.changeElementSize(1); 5988 bool IsSigned; 5989 bool IsAdd; 5990 unsigned OverflowOp; 5991 switch (MI.getOpcode()) { 5992 default: 5993 llvm_unreachable("unexpected addsat/subsat opcode"); 5994 case TargetOpcode::G_UADDSAT: 5995 IsSigned = false; 5996 IsAdd = true; 5997 OverflowOp = TargetOpcode::G_UADDO; 5998 break; 5999 case TargetOpcode::G_SADDSAT: 6000 IsSigned = true; 6001 IsAdd = true; 6002 OverflowOp = TargetOpcode::G_SADDO; 6003 break; 6004 case TargetOpcode::G_USUBSAT: 6005 IsSigned = false; 6006 IsAdd = false; 6007 OverflowOp = TargetOpcode::G_USUBO; 6008 break; 6009 case TargetOpcode::G_SSUBSAT: 6010 IsSigned = true; 6011 IsAdd = false; 6012 OverflowOp = TargetOpcode::G_SSUBO; 6013 break; 6014 } 6015 6016 auto OverflowRes = 6017 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6018 Register Tmp = OverflowRes.getReg(0); 6019 Register Ov = OverflowRes.getReg(1); 6020 MachineInstrBuilder Clamp; 6021 if (IsSigned) { 6022 // sadd.sat(a, b) -> 6023 // {tmp, ov} = saddo(a, b) 6024 // ov ? (tmp >>s 31) + 0x80000000 : r 6025 // ssub.sat(a, b) -> 6026 // {tmp, ov} = ssubo(a, b) 6027 // ov ? (tmp >>s 31) + 0x80000000 : r 6028 uint64_t NumBits = Ty.getScalarSizeInBits(); 6029 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6030 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6031 auto MinVal = 6032 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6033 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6034 } else { 6035 // uadd.sat(a, b) -> 6036 // {tmp, ov} = uaddo(a, b) 6037 // ov ? 0xffffffff : tmp 6038 // usub.sat(a, b) -> 6039 // {tmp, ov} = usubo(a, b) 6040 // ov ? 0 : tmp 6041 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6042 } 6043 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6044 6045 MI.eraseFromParent(); 6046 return Legalized; 6047 } 6048 6049 LegalizerHelper::LegalizeResult 6050 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6051 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6052 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6053 "Expected shlsat opcode!"); 6054 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6055 Register Res = MI.getOperand(0).getReg(); 6056 Register LHS = MI.getOperand(1).getReg(); 6057 Register RHS = MI.getOperand(2).getReg(); 6058 LLT Ty = MRI.getType(Res); 6059 LLT BoolTy = Ty.changeElementSize(1); 6060 6061 unsigned BW = Ty.getScalarSizeInBits(); 6062 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6063 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6064 : MIRBuilder.buildLShr(Ty, Result, RHS); 6065 6066 MachineInstrBuilder SatVal; 6067 if (IsSigned) { 6068 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6069 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6070 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6071 MIRBuilder.buildConstant(Ty, 0)); 6072 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6073 } else { 6074 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6075 } 6076 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6077 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6078 6079 MI.eraseFromParent(); 6080 return Legalized; 6081 } 6082 6083 LegalizerHelper::LegalizeResult 6084 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6085 Register Dst = MI.getOperand(0).getReg(); 6086 Register Src = MI.getOperand(1).getReg(); 6087 const LLT Ty = MRI.getType(Src); 6088 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6089 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6090 6091 // Swap most and least significant byte, set remaining bytes in Res to zero. 6092 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6093 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6094 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6095 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6096 6097 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6098 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6099 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6100 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6101 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6102 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6103 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6104 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6105 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6106 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6107 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6108 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6109 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6110 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6111 } 6112 Res.getInstr()->getOperand(0).setReg(Dst); 6113 6114 MI.eraseFromParent(); 6115 return Legalized; 6116 } 6117 6118 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6119 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6120 MachineInstrBuilder Src, APInt Mask) { 6121 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6122 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6123 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6124 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6125 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6126 return B.buildOr(Dst, LHS, RHS); 6127 } 6128 6129 LegalizerHelper::LegalizeResult 6130 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6131 Register Dst = MI.getOperand(0).getReg(); 6132 Register Src = MI.getOperand(1).getReg(); 6133 const LLT Ty = MRI.getType(Src); 6134 unsigned Size = Ty.getSizeInBits(); 6135 6136 MachineInstrBuilder BSWAP = 6137 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6138 6139 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6140 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6141 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6142 MachineInstrBuilder Swap4 = 6143 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6144 6145 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6146 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6147 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6148 MachineInstrBuilder Swap2 = 6149 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6150 6151 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6152 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6153 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6154 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6155 6156 MI.eraseFromParent(); 6157 return Legalized; 6158 } 6159 6160 LegalizerHelper::LegalizeResult 6161 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6162 MachineFunction &MF = MIRBuilder.getMF(); 6163 6164 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6165 int NameOpIdx = IsRead ? 1 : 0; 6166 int ValRegIndex = IsRead ? 0 : 1; 6167 6168 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6169 const LLT Ty = MRI.getType(ValReg); 6170 const MDString *RegStr = cast<MDString>( 6171 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6172 6173 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6174 if (!PhysReg.isValid()) 6175 return UnableToLegalize; 6176 6177 if (IsRead) 6178 MIRBuilder.buildCopy(ValReg, PhysReg); 6179 else 6180 MIRBuilder.buildCopy(PhysReg, ValReg); 6181 6182 MI.eraseFromParent(); 6183 return Legalized; 6184 } 6185 6186 LegalizerHelper::LegalizeResult 6187 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6188 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6189 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6190 Register Result = MI.getOperand(0).getReg(); 6191 LLT OrigTy = MRI.getType(Result); 6192 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6193 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6194 6195 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6196 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6197 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6198 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6199 6200 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6201 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6202 MIRBuilder.buildTrunc(Result, Shifted); 6203 6204 MI.eraseFromParent(); 6205 return Legalized; 6206 } 6207 6208 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6209 // Implement vector G_SELECT in terms of XOR, AND, OR. 6210 Register DstReg = MI.getOperand(0).getReg(); 6211 Register MaskReg = MI.getOperand(1).getReg(); 6212 Register Op1Reg = MI.getOperand(2).getReg(); 6213 Register Op2Reg = MI.getOperand(3).getReg(); 6214 LLT DstTy = MRI.getType(DstReg); 6215 LLT MaskTy = MRI.getType(MaskReg); 6216 LLT Op1Ty = MRI.getType(Op1Reg); 6217 if (!DstTy.isVector()) 6218 return UnableToLegalize; 6219 6220 // Vector selects can have a scalar predicate. If so, splat into a vector and 6221 // finish for later legalization attempts to try again. 6222 if (MaskTy.isScalar()) { 6223 Register MaskElt = MaskReg; 6224 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6225 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6226 // Generate a vector splat idiom to be pattern matched later. 6227 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6228 Observer.changingInstr(MI); 6229 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6230 Observer.changedInstr(MI); 6231 return Legalized; 6232 } 6233 6234 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6235 return UnableToLegalize; 6236 } 6237 6238 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6239 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6240 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6241 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6242 MI.eraseFromParent(); 6243 return Legalized; 6244 }