1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 #define DEBUG_TYPE "legalizer" 31 32 using namespace llvm; 33 using namespace LegalizeActions; 34 using namespace MIPatternMatch; 35 36 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 37 /// 38 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 39 /// with any leftover piece as type \p LeftoverTy 40 /// 41 /// Returns -1 in the first element of the pair if the breakdown is not 42 /// satisfiable. 43 static std::pair<int, int> 44 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 45 assert(!LeftoverTy.isValid() && "this is an out argument"); 46 47 unsigned Size = OrigTy.getSizeInBits(); 48 unsigned NarrowSize = NarrowTy.getSizeInBits(); 49 unsigned NumParts = Size / NarrowSize; 50 unsigned LeftoverSize = Size - NumParts * NarrowSize; 51 assert(Size > NarrowSize); 52 53 if (LeftoverSize == 0) 54 return {NumParts, 0}; 55 56 if (NarrowTy.isVector()) { 57 unsigned EltSize = OrigTy.getScalarSizeInBits(); 58 if (LeftoverSize % EltSize != 0) 59 return {-1, -1}; 60 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 61 } else { 62 LeftoverTy = LLT::scalar(LeftoverSize); 63 } 64 65 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 66 return std::make_pair(NumParts, NumLeftover); 67 } 68 69 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 70 71 if (!Ty.isScalar()) 72 return nullptr; 73 74 switch (Ty.getSizeInBits()) { 75 case 16: 76 return Type::getHalfTy(Ctx); 77 case 32: 78 return Type::getFloatTy(Ctx); 79 case 64: 80 return Type::getDoubleTy(Ctx); 81 case 80: 82 return Type::getX86_FP80Ty(Ctx); 83 case 128: 84 return Type::getFP128Ty(Ctx); 85 default: 86 return nullptr; 87 } 88 } 89 90 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 91 GISelChangeObserver &Observer, 92 MachineIRBuilder &Builder) 93 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 94 LI(*MF.getSubtarget().getLegalizerInfo()), 95 TLI(*MF.getSubtarget().getTargetLowering()) { } 96 97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 98 GISelChangeObserver &Observer, 99 MachineIRBuilder &B) 100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 101 TLI(*MF.getSubtarget().getTargetLowering()) { } 102 103 LegalizerHelper::LegalizeResult 104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 106 107 MIRBuilder.setInstrAndDebugLoc(MI); 108 109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 112 auto Step = LI.getAction(MI, MRI); 113 switch (Step.Action) { 114 case Legal: 115 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 116 return AlreadyLegal; 117 case Libcall: 118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 119 return libcall(MI); 120 case NarrowScalar: 121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 122 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 123 case WidenScalar: 124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 125 return widenScalar(MI, Step.TypeIdx, Step.NewType); 126 case Bitcast: 127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 128 return bitcast(MI, Step.TypeIdx, Step.NewType); 129 case Lower: 130 LLVM_DEBUG(dbgs() << ".. Lower\n"); 131 return lower(MI, Step.TypeIdx, Step.NewType); 132 case FewerElements: 133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case MoreElements: 136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 138 case Custom: 139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 141 default: 142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 143 return UnableToLegalize; 144 } 145 } 146 147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 148 SmallVectorImpl<Register> &VRegs) { 149 for (int i = 0; i < NumParts; ++i) 150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 151 MIRBuilder.buildUnmerge(VRegs, Reg); 152 } 153 154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 155 LLT MainTy, LLT &LeftoverTy, 156 SmallVectorImpl<Register> &VRegs, 157 SmallVectorImpl<Register> &LeftoverRegs) { 158 assert(!LeftoverTy.isValid() && "this is an out argument"); 159 160 unsigned RegSize = RegTy.getSizeInBits(); 161 unsigned MainSize = MainTy.getSizeInBits(); 162 unsigned NumParts = RegSize / MainSize; 163 unsigned LeftoverSize = RegSize - NumParts * MainSize; 164 165 // Use an unmerge when possible. 166 if (LeftoverSize == 0) { 167 for (unsigned I = 0; I < NumParts; ++I) 168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 169 MIRBuilder.buildUnmerge(VRegs, Reg); 170 return true; 171 } 172 173 if (MainTy.isVector()) { 174 unsigned EltSize = MainTy.getScalarSizeInBits(); 175 if (LeftoverSize % EltSize != 0) 176 return false; 177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 178 } else { 179 LeftoverTy = LLT::scalar(LeftoverSize); 180 } 181 182 // For irregular sizes, extract the individual parts. 183 for (unsigned I = 0; I != NumParts; ++I) { 184 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 185 VRegs.push_back(NewReg); 186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 187 } 188 189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 190 Offset += LeftoverSize) { 191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 192 LeftoverRegs.push_back(NewReg); 193 MIRBuilder.buildExtract(NewReg, Reg, Offset); 194 } 195 196 return true; 197 } 198 199 void LegalizerHelper::insertParts(Register DstReg, 200 LLT ResultTy, LLT PartTy, 201 ArrayRef<Register> PartRegs, 202 LLT LeftoverTy, 203 ArrayRef<Register> LeftoverRegs) { 204 if (!LeftoverTy.isValid()) { 205 assert(LeftoverRegs.empty()); 206 207 if (!ResultTy.isVector()) { 208 MIRBuilder.buildMerge(DstReg, PartRegs); 209 return; 210 } 211 212 if (PartTy.isVector()) 213 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 214 else 215 MIRBuilder.buildBuildVector(DstReg, PartRegs); 216 return; 217 } 218 219 unsigned PartSize = PartTy.getSizeInBits(); 220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 221 222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildUndef(CurResultReg); 224 225 unsigned Offset = 0; 226 for (Register PartReg : PartRegs) { 227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 229 CurResultReg = NewResultReg; 230 Offset += PartSize; 231 } 232 233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 234 // Use the original output register for the final insert to avoid a copy. 235 Register NewResultReg = (I + 1 == E) ? 236 DstReg : MRI.createGenericVirtualRegister(ResultTy); 237 238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 239 CurResultReg = NewResultReg; 240 Offset += LeftoverPartSize; 241 } 242 } 243 244 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 246 const MachineInstr &MI) { 247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 248 249 const int StartIdx = Regs.size(); 250 const int NumResults = MI.getNumOperands() - 1; 251 Regs.resize(Regs.size() + NumResults); 252 for (int I = 0; I != NumResults; ++I) 253 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 254 } 255 256 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 257 LLT GCDTy, Register SrcReg) { 258 LLT SrcTy = MRI.getType(SrcReg); 259 if (SrcTy == GCDTy) { 260 // If the source already evenly divides the result type, we don't need to do 261 // anything. 262 Parts.push_back(SrcReg); 263 } else { 264 // Need to split into common type sized pieces. 265 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 266 getUnmergeResults(Parts, *Unmerge); 267 } 268 } 269 270 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 271 LLT NarrowTy, Register SrcReg) { 272 LLT SrcTy = MRI.getType(SrcReg); 273 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 274 extractGCDType(Parts, GCDTy, SrcReg); 275 return GCDTy; 276 } 277 278 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 279 SmallVectorImpl<Register> &VRegs, 280 unsigned PadStrategy) { 281 LLT LCMTy = getLCMType(DstTy, NarrowTy); 282 283 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 284 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 285 int NumOrigSrc = VRegs.size(); 286 287 Register PadReg; 288 289 // Get a value we can use to pad the source value if the sources won't evenly 290 // cover the result type. 291 if (NumOrigSrc < NumParts * NumSubParts) { 292 if (PadStrategy == TargetOpcode::G_ZEXT) 293 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 294 else if (PadStrategy == TargetOpcode::G_ANYEXT) 295 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 296 else { 297 assert(PadStrategy == TargetOpcode::G_SEXT); 298 299 // Shift the sign bit of the low register through the high register. 300 auto ShiftAmt = 301 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 302 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 303 } 304 } 305 306 // Registers for the final merge to be produced. 307 SmallVector<Register, 4> Remerge(NumParts); 308 309 // Registers needed for intermediate merges, which will be merged into a 310 // source for Remerge. 311 SmallVector<Register, 4> SubMerge(NumSubParts); 312 313 // Once we've fully read off the end of the original source bits, we can reuse 314 // the same high bits for remaining padding elements. 315 Register AllPadReg; 316 317 // Build merges to the LCM type to cover the original result type. 318 for (int I = 0; I != NumParts; ++I) { 319 bool AllMergePartsArePadding = true; 320 321 // Build the requested merges to the requested type. 322 for (int J = 0; J != NumSubParts; ++J) { 323 int Idx = I * NumSubParts + J; 324 if (Idx >= NumOrigSrc) { 325 SubMerge[J] = PadReg; 326 continue; 327 } 328 329 SubMerge[J] = VRegs[Idx]; 330 331 // There are meaningful bits here we can't reuse later. 332 AllMergePartsArePadding = false; 333 } 334 335 // If we've filled up a complete piece with padding bits, we can directly 336 // emit the natural sized constant if applicable, rather than a merge of 337 // smaller constants. 338 if (AllMergePartsArePadding && !AllPadReg) { 339 if (PadStrategy == TargetOpcode::G_ANYEXT) 340 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 341 else if (PadStrategy == TargetOpcode::G_ZEXT) 342 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 343 344 // If this is a sign extension, we can't materialize a trivial constant 345 // with the right type and have to produce a merge. 346 } 347 348 if (AllPadReg) { 349 // Avoid creating additional instructions if we're just adding additional 350 // copies of padding bits. 351 Remerge[I] = AllPadReg; 352 continue; 353 } 354 355 if (NumSubParts == 1) 356 Remerge[I] = SubMerge[0]; 357 else 358 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 359 360 // In the sign extend padding case, re-use the first all-signbit merge. 361 if (AllMergePartsArePadding && !AllPadReg) 362 AllPadReg = Remerge[I]; 363 } 364 365 VRegs = std::move(Remerge); 366 return LCMTy; 367 } 368 369 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 370 ArrayRef<Register> RemergeRegs) { 371 LLT DstTy = MRI.getType(DstReg); 372 373 // Create the merge to the widened source, and extract the relevant bits into 374 // the result. 375 376 if (DstTy == LCMTy) { 377 MIRBuilder.buildMerge(DstReg, RemergeRegs); 378 return; 379 } 380 381 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 382 if (DstTy.isScalar() && LCMTy.isScalar()) { 383 MIRBuilder.buildTrunc(DstReg, Remerge); 384 return; 385 } 386 387 if (LCMTy.isVector()) { 388 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 389 SmallVector<Register, 8> UnmergeDefs(NumDefs); 390 UnmergeDefs[0] = DstReg; 391 for (unsigned I = 1; I != NumDefs; ++I) 392 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 393 394 MIRBuilder.buildUnmerge(UnmergeDefs, 395 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 396 return; 397 } 398 399 llvm_unreachable("unhandled case"); 400 } 401 402 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 403 #define RTLIBCASE_INT(LibcallPrefix) \ 404 do { \ 405 switch (Size) { \ 406 case 32: \ 407 return RTLIB::LibcallPrefix##32; \ 408 case 64: \ 409 return RTLIB::LibcallPrefix##64; \ 410 case 128: \ 411 return RTLIB::LibcallPrefix##128; \ 412 default: \ 413 llvm_unreachable("unexpected size"); \ 414 } \ 415 } while (0) 416 417 #define RTLIBCASE(LibcallPrefix) \ 418 do { \ 419 switch (Size) { \ 420 case 32: \ 421 return RTLIB::LibcallPrefix##32; \ 422 case 64: \ 423 return RTLIB::LibcallPrefix##64; \ 424 case 80: \ 425 return RTLIB::LibcallPrefix##80; \ 426 case 128: \ 427 return RTLIB::LibcallPrefix##128; \ 428 default: \ 429 llvm_unreachable("unexpected size"); \ 430 } \ 431 } while (0) 432 433 switch (Opcode) { 434 case TargetOpcode::G_SDIV: 435 RTLIBCASE_INT(SDIV_I); 436 case TargetOpcode::G_UDIV: 437 RTLIBCASE_INT(UDIV_I); 438 case TargetOpcode::G_SREM: 439 RTLIBCASE_INT(SREM_I); 440 case TargetOpcode::G_UREM: 441 RTLIBCASE_INT(UREM_I); 442 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 443 RTLIBCASE_INT(CTLZ_I); 444 case TargetOpcode::G_FADD: 445 RTLIBCASE(ADD_F); 446 case TargetOpcode::G_FSUB: 447 RTLIBCASE(SUB_F); 448 case TargetOpcode::G_FMUL: 449 RTLIBCASE(MUL_F); 450 case TargetOpcode::G_FDIV: 451 RTLIBCASE(DIV_F); 452 case TargetOpcode::G_FEXP: 453 RTLIBCASE(EXP_F); 454 case TargetOpcode::G_FEXP2: 455 RTLIBCASE(EXP2_F); 456 case TargetOpcode::G_FREM: 457 RTLIBCASE(REM_F); 458 case TargetOpcode::G_FPOW: 459 RTLIBCASE(POW_F); 460 case TargetOpcode::G_FMA: 461 RTLIBCASE(FMA_F); 462 case TargetOpcode::G_FSIN: 463 RTLIBCASE(SIN_F); 464 case TargetOpcode::G_FCOS: 465 RTLIBCASE(COS_F); 466 case TargetOpcode::G_FLOG10: 467 RTLIBCASE(LOG10_F); 468 case TargetOpcode::G_FLOG: 469 RTLIBCASE(LOG_F); 470 case TargetOpcode::G_FLOG2: 471 RTLIBCASE(LOG2_F); 472 case TargetOpcode::G_FCEIL: 473 RTLIBCASE(CEIL_F); 474 case TargetOpcode::G_FFLOOR: 475 RTLIBCASE(FLOOR_F); 476 case TargetOpcode::G_FMINNUM: 477 RTLIBCASE(FMIN_F); 478 case TargetOpcode::G_FMAXNUM: 479 RTLIBCASE(FMAX_F); 480 case TargetOpcode::G_FSQRT: 481 RTLIBCASE(SQRT_F); 482 case TargetOpcode::G_FRINT: 483 RTLIBCASE(RINT_F); 484 case TargetOpcode::G_FNEARBYINT: 485 RTLIBCASE(NEARBYINT_F); 486 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 487 RTLIBCASE(ROUNDEVEN_F); 488 } 489 llvm_unreachable("Unknown libcall function"); 490 } 491 492 /// True if an instruction is in tail position in its caller. Intended for 493 /// legalizing libcalls as tail calls when possible. 494 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 495 MachineInstr &MI) { 496 MachineBasicBlock &MBB = *MI.getParent(); 497 const Function &F = MBB.getParent()->getFunction(); 498 499 // Conservatively require the attributes of the call to match those of 500 // the return. Ignore NoAlias and NonNull because they don't affect the 501 // call sequence. 502 AttributeList CallerAttrs = F.getAttributes(); 503 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 504 .removeAttribute(Attribute::NoAlias) 505 .removeAttribute(Attribute::NonNull) 506 .hasAttributes()) 507 return false; 508 509 // It's not safe to eliminate the sign / zero extension of the return value. 510 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 511 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 512 return false; 513 514 // Only tail call if the following instruction is a standard return. 515 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 516 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 517 return false; 518 519 return true; 520 } 521 522 LegalizerHelper::LegalizeResult 523 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 524 const CallLowering::ArgInfo &Result, 525 ArrayRef<CallLowering::ArgInfo> Args, 526 const CallingConv::ID CC) { 527 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 528 529 CallLowering::CallLoweringInfo Info; 530 Info.CallConv = CC; 531 Info.Callee = MachineOperand::CreateES(Name); 532 Info.OrigRet = Result; 533 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 534 if (!CLI.lowerCall(MIRBuilder, Info)) 535 return LegalizerHelper::UnableToLegalize; 536 537 return LegalizerHelper::Legalized; 538 } 539 540 LegalizerHelper::LegalizeResult 541 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 542 const CallLowering::ArgInfo &Result, 543 ArrayRef<CallLowering::ArgInfo> Args) { 544 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 545 const char *Name = TLI.getLibcallName(Libcall); 546 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 547 return createLibcall(MIRBuilder, Name, Result, Args, CC); 548 } 549 550 // Useful for libcalls where all operands have the same type. 551 static LegalizerHelper::LegalizeResult 552 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 553 Type *OpType) { 554 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 555 556 SmallVector<CallLowering::ArgInfo, 3> Args; 557 for (unsigned i = 1; i < MI.getNumOperands(); i++) 558 Args.push_back({MI.getOperand(i).getReg(), OpType}); 559 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 560 Args); 561 } 562 563 LegalizerHelper::LegalizeResult 564 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 565 MachineInstr &MI) { 566 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 567 568 SmallVector<CallLowering::ArgInfo, 3> Args; 569 // Add all the args, except for the last which is an imm denoting 'tail'. 570 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 571 Register Reg = MI.getOperand(i).getReg(); 572 573 // Need derive an IR type for call lowering. 574 LLT OpLLT = MRI.getType(Reg); 575 Type *OpTy = nullptr; 576 if (OpLLT.isPointer()) 577 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 578 else 579 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 580 Args.push_back({Reg, OpTy}); 581 } 582 583 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 584 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 585 RTLIB::Libcall RTLibcall; 586 unsigned Opc = MI.getOpcode(); 587 switch (Opc) { 588 case TargetOpcode::G_BZERO: 589 RTLibcall = RTLIB::BZERO; 590 break; 591 case TargetOpcode::G_MEMCPY: 592 RTLibcall = RTLIB::MEMCPY; 593 break; 594 case TargetOpcode::G_MEMMOVE: 595 RTLibcall = RTLIB::MEMMOVE; 596 break; 597 case TargetOpcode::G_MEMSET: 598 RTLibcall = RTLIB::MEMSET; 599 break; 600 default: 601 return LegalizerHelper::UnableToLegalize; 602 } 603 const char *Name = TLI.getLibcallName(RTLibcall); 604 605 // Unsupported libcall on the target. 606 if (!Name) { 607 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 608 << MIRBuilder.getTII().getName(Opc) << "\n"); 609 return LegalizerHelper::UnableToLegalize; 610 } 611 612 CallLowering::CallLoweringInfo Info; 613 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 614 Info.Callee = MachineOperand::CreateES(Name); 615 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 616 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 617 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 618 619 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 620 if (!CLI.lowerCall(MIRBuilder, Info)) 621 return LegalizerHelper::UnableToLegalize; 622 623 if (Info.LoweredTailCall) { 624 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 625 // We must have a return following the call (or debug insts) to get past 626 // isLibCallInTailPosition. 627 do { 628 MachineInstr *Next = MI.getNextNode(); 629 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 630 "Expected instr following MI to be return or debug inst?"); 631 // We lowered a tail call, so the call is now the return from the block. 632 // Delete the old return. 633 Next->eraseFromParent(); 634 } while (MI.getNextNode()); 635 } 636 637 return LegalizerHelper::Legalized; 638 } 639 640 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 641 Type *FromType) { 642 auto ToMVT = MVT::getVT(ToType); 643 auto FromMVT = MVT::getVT(FromType); 644 645 switch (Opcode) { 646 case TargetOpcode::G_FPEXT: 647 return RTLIB::getFPEXT(FromMVT, ToMVT); 648 case TargetOpcode::G_FPTRUNC: 649 return RTLIB::getFPROUND(FromMVT, ToMVT); 650 case TargetOpcode::G_FPTOSI: 651 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 652 case TargetOpcode::G_FPTOUI: 653 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 654 case TargetOpcode::G_SITOFP: 655 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 656 case TargetOpcode::G_UITOFP: 657 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 658 } 659 llvm_unreachable("Unsupported libcall function"); 660 } 661 662 static LegalizerHelper::LegalizeResult 663 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 664 Type *FromType) { 665 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 666 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 667 {{MI.getOperand(1).getReg(), FromType}}); 668 } 669 670 LegalizerHelper::LegalizeResult 671 LegalizerHelper::libcall(MachineInstr &MI) { 672 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 673 unsigned Size = LLTy.getSizeInBits(); 674 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 675 676 switch (MI.getOpcode()) { 677 default: 678 return UnableToLegalize; 679 case TargetOpcode::G_SDIV: 680 case TargetOpcode::G_UDIV: 681 case TargetOpcode::G_SREM: 682 case TargetOpcode::G_UREM: 683 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 684 Type *HLTy = IntegerType::get(Ctx, Size); 685 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 686 if (Status != Legalized) 687 return Status; 688 break; 689 } 690 case TargetOpcode::G_FADD: 691 case TargetOpcode::G_FSUB: 692 case TargetOpcode::G_FMUL: 693 case TargetOpcode::G_FDIV: 694 case TargetOpcode::G_FMA: 695 case TargetOpcode::G_FPOW: 696 case TargetOpcode::G_FREM: 697 case TargetOpcode::G_FCOS: 698 case TargetOpcode::G_FSIN: 699 case TargetOpcode::G_FLOG10: 700 case TargetOpcode::G_FLOG: 701 case TargetOpcode::G_FLOG2: 702 case TargetOpcode::G_FEXP: 703 case TargetOpcode::G_FEXP2: 704 case TargetOpcode::G_FCEIL: 705 case TargetOpcode::G_FFLOOR: 706 case TargetOpcode::G_FMINNUM: 707 case TargetOpcode::G_FMAXNUM: 708 case TargetOpcode::G_FSQRT: 709 case TargetOpcode::G_FRINT: 710 case TargetOpcode::G_FNEARBYINT: 711 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 712 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 713 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 714 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 715 return UnableToLegalize; 716 } 717 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 718 if (Status != Legalized) 719 return Status; 720 break; 721 } 722 case TargetOpcode::G_FPEXT: 723 case TargetOpcode::G_FPTRUNC: { 724 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 725 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 726 if (!FromTy || !ToTy) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 729 if (Status != Legalized) 730 return Status; 731 break; 732 } 733 case TargetOpcode::G_FPTOSI: 734 case TargetOpcode::G_FPTOUI: { 735 // FIXME: Support other types 736 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 737 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 738 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall( 741 MI, MIRBuilder, 742 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 743 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 744 if (Status != Legalized) 745 return Status; 746 break; 747 } 748 case TargetOpcode::G_SITOFP: 749 case TargetOpcode::G_UITOFP: { 750 // FIXME: Support other types 751 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 752 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 753 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 754 return UnableToLegalize; 755 LegalizeResult Status = conversionLibcall( 756 MI, MIRBuilder, 757 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 758 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 759 if (Status != Legalized) 760 return Status; 761 break; 762 } 763 case TargetOpcode::G_BZERO: 764 case TargetOpcode::G_MEMCPY: 765 case TargetOpcode::G_MEMMOVE: 766 case TargetOpcode::G_MEMSET: { 767 LegalizeResult Result = 768 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 769 if (Result != Legalized) 770 return Result; 771 MI.eraseFromParent(); 772 return Result; 773 } 774 } 775 776 MI.eraseFromParent(); 777 return Legalized; 778 } 779 780 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 781 unsigned TypeIdx, 782 LLT NarrowTy) { 783 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 784 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 785 786 switch (MI.getOpcode()) { 787 default: 788 return UnableToLegalize; 789 case TargetOpcode::G_IMPLICIT_DEF: { 790 Register DstReg = MI.getOperand(0).getReg(); 791 LLT DstTy = MRI.getType(DstReg); 792 793 // If SizeOp0 is not an exact multiple of NarrowSize, emit 794 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 795 // FIXME: Although this would also be legal for the general case, it causes 796 // a lot of regressions in the emitted code (superfluous COPYs, artifact 797 // combines not being hit). This seems to be a problem related to the 798 // artifact combiner. 799 if (SizeOp0 % NarrowSize != 0) { 800 LLT ImplicitTy = NarrowTy; 801 if (DstTy.isVector()) 802 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 803 804 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 805 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 806 807 MI.eraseFromParent(); 808 return Legalized; 809 } 810 811 int NumParts = SizeOp0 / NarrowSize; 812 813 SmallVector<Register, 2> DstRegs; 814 for (int i = 0; i < NumParts; ++i) 815 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 816 817 if (DstTy.isVector()) 818 MIRBuilder.buildBuildVector(DstReg, DstRegs); 819 else 820 MIRBuilder.buildMerge(DstReg, DstRegs); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 case TargetOpcode::G_CONSTANT: { 825 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 826 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 827 unsigned TotalSize = Ty.getSizeInBits(); 828 unsigned NarrowSize = NarrowTy.getSizeInBits(); 829 int NumParts = TotalSize / NarrowSize; 830 831 SmallVector<Register, 4> PartRegs; 832 for (int I = 0; I != NumParts; ++I) { 833 unsigned Offset = I * NarrowSize; 834 auto K = MIRBuilder.buildConstant(NarrowTy, 835 Val.lshr(Offset).trunc(NarrowSize)); 836 PartRegs.push_back(K.getReg(0)); 837 } 838 839 LLT LeftoverTy; 840 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 841 SmallVector<Register, 1> LeftoverRegs; 842 if (LeftoverBits != 0) { 843 LeftoverTy = LLT::scalar(LeftoverBits); 844 auto K = MIRBuilder.buildConstant( 845 LeftoverTy, 846 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 847 LeftoverRegs.push_back(K.getReg(0)); 848 } 849 850 insertParts(MI.getOperand(0).getReg(), 851 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 852 853 MI.eraseFromParent(); 854 return Legalized; 855 } 856 case TargetOpcode::G_SEXT: 857 case TargetOpcode::G_ZEXT: 858 case TargetOpcode::G_ANYEXT: 859 return narrowScalarExt(MI, TypeIdx, NarrowTy); 860 case TargetOpcode::G_TRUNC: { 861 if (TypeIdx != 1) 862 return UnableToLegalize; 863 864 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 865 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 866 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 867 return UnableToLegalize; 868 } 869 870 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 871 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 872 MI.eraseFromParent(); 873 return Legalized; 874 } 875 876 case TargetOpcode::G_FREEZE: 877 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 878 case TargetOpcode::G_ADD: 879 case TargetOpcode::G_SUB: 880 case TargetOpcode::G_SADDO: 881 case TargetOpcode::G_SSUBO: 882 case TargetOpcode::G_SADDE: 883 case TargetOpcode::G_SSUBE: 884 case TargetOpcode::G_UADDO: 885 case TargetOpcode::G_USUBO: 886 case TargetOpcode::G_UADDE: 887 case TargetOpcode::G_USUBE: 888 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 889 case TargetOpcode::G_MUL: 890 case TargetOpcode::G_UMULH: 891 return narrowScalarMul(MI, NarrowTy); 892 case TargetOpcode::G_EXTRACT: 893 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 894 case TargetOpcode::G_INSERT: 895 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 896 case TargetOpcode::G_LOAD: { 897 auto &MMO = **MI.memoperands_begin(); 898 Register DstReg = MI.getOperand(0).getReg(); 899 LLT DstTy = MRI.getType(DstReg); 900 if (DstTy.isVector()) 901 return UnableToLegalize; 902 903 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 904 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 905 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 906 MIRBuilder.buildAnyExt(DstReg, TmpReg); 907 MI.eraseFromParent(); 908 return Legalized; 909 } 910 911 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 912 } 913 case TargetOpcode::G_ZEXTLOAD: 914 case TargetOpcode::G_SEXTLOAD: { 915 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 916 Register DstReg = MI.getOperand(0).getReg(); 917 Register PtrReg = MI.getOperand(1).getReg(); 918 919 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 920 auto &MMO = **MI.memoperands_begin(); 921 unsigned MemSize = MMO.getSizeInBits(); 922 923 if (MemSize == NarrowSize) { 924 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 925 } else if (MemSize < NarrowSize) { 926 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 927 } else if (MemSize > NarrowSize) { 928 // FIXME: Need to split the load. 929 return UnableToLegalize; 930 } 931 932 if (ZExt) 933 MIRBuilder.buildZExt(DstReg, TmpReg); 934 else 935 MIRBuilder.buildSExt(DstReg, TmpReg); 936 937 MI.eraseFromParent(); 938 return Legalized; 939 } 940 case TargetOpcode::G_STORE: { 941 const auto &MMO = **MI.memoperands_begin(); 942 943 Register SrcReg = MI.getOperand(0).getReg(); 944 LLT SrcTy = MRI.getType(SrcReg); 945 if (SrcTy.isVector()) 946 return UnableToLegalize; 947 948 int NumParts = SizeOp0 / NarrowSize; 949 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 950 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 951 if (SrcTy.isVector() && LeftoverBits != 0) 952 return UnableToLegalize; 953 954 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 955 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 956 auto &MMO = **MI.memoperands_begin(); 957 MIRBuilder.buildTrunc(TmpReg, SrcReg); 958 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 959 MI.eraseFromParent(); 960 return Legalized; 961 } 962 963 return reduceLoadStoreWidth(MI, 0, NarrowTy); 964 } 965 case TargetOpcode::G_SELECT: 966 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 967 case TargetOpcode::G_AND: 968 case TargetOpcode::G_OR: 969 case TargetOpcode::G_XOR: { 970 // Legalize bitwise operation: 971 // A = BinOp<Ty> B, C 972 // into: 973 // B1, ..., BN = G_UNMERGE_VALUES B 974 // C1, ..., CN = G_UNMERGE_VALUES C 975 // A1 = BinOp<Ty/N> B1, C2 976 // ... 977 // AN = BinOp<Ty/N> BN, CN 978 // A = G_MERGE_VALUES A1, ..., AN 979 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 980 } 981 case TargetOpcode::G_SHL: 982 case TargetOpcode::G_LSHR: 983 case TargetOpcode::G_ASHR: 984 return narrowScalarShift(MI, TypeIdx, NarrowTy); 985 case TargetOpcode::G_CTLZ: 986 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 987 case TargetOpcode::G_CTTZ: 988 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTPOP: 990 if (TypeIdx == 1) 991 switch (MI.getOpcode()) { 992 case TargetOpcode::G_CTLZ: 993 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 994 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 995 case TargetOpcode::G_CTTZ: 996 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 997 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 998 case TargetOpcode::G_CTPOP: 999 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1000 default: 1001 return UnableToLegalize; 1002 } 1003 1004 Observer.changingInstr(MI); 1005 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1006 Observer.changedInstr(MI); 1007 return Legalized; 1008 case TargetOpcode::G_INTTOPTR: 1009 if (TypeIdx != 1) 1010 return UnableToLegalize; 1011 1012 Observer.changingInstr(MI); 1013 narrowScalarSrc(MI, NarrowTy, 1); 1014 Observer.changedInstr(MI); 1015 return Legalized; 1016 case TargetOpcode::G_PTRTOINT: 1017 if (TypeIdx != 0) 1018 return UnableToLegalize; 1019 1020 Observer.changingInstr(MI); 1021 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1022 Observer.changedInstr(MI); 1023 return Legalized; 1024 case TargetOpcode::G_PHI: { 1025 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1026 // NarrowSize. 1027 if (SizeOp0 % NarrowSize != 0) 1028 return UnableToLegalize; 1029 1030 unsigned NumParts = SizeOp0 / NarrowSize; 1031 SmallVector<Register, 2> DstRegs(NumParts); 1032 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1033 Observer.changingInstr(MI); 1034 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1035 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1036 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1037 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1038 SrcRegs[i / 2]); 1039 } 1040 MachineBasicBlock &MBB = *MI.getParent(); 1041 MIRBuilder.setInsertPt(MBB, MI); 1042 for (unsigned i = 0; i < NumParts; ++i) { 1043 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1044 MachineInstrBuilder MIB = 1045 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1046 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1047 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1048 } 1049 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1050 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1051 Observer.changedInstr(MI); 1052 MI.eraseFromParent(); 1053 return Legalized; 1054 } 1055 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1056 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1057 if (TypeIdx != 2) 1058 return UnableToLegalize; 1059 1060 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1061 Observer.changingInstr(MI); 1062 narrowScalarSrc(MI, NarrowTy, OpIdx); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 } 1066 case TargetOpcode::G_ICMP: { 1067 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1068 if (NarrowSize * 2 != SrcSize) 1069 return UnableToLegalize; 1070 1071 Observer.changingInstr(MI); 1072 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1073 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1074 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1075 1076 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1077 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1078 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1079 1080 CmpInst::Predicate Pred = 1081 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1082 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1083 1084 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1085 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1086 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1087 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1088 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1089 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1090 } else { 1091 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1092 MachineInstrBuilder CmpHEQ = 1093 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1094 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1095 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1096 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1097 } 1098 Observer.changedInstr(MI); 1099 MI.eraseFromParent(); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_SEXT_INREG: { 1103 if (TypeIdx != 0) 1104 return UnableToLegalize; 1105 1106 int64_t SizeInBits = MI.getOperand(2).getImm(); 1107 1108 // So long as the new type has more bits than the bits we're extending we 1109 // don't need to break it apart. 1110 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1111 Observer.changingInstr(MI); 1112 // We don't lose any non-extension bits by truncating the src and 1113 // sign-extending the dst. 1114 MachineOperand &MO1 = MI.getOperand(1); 1115 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1116 MO1.setReg(TruncMIB.getReg(0)); 1117 1118 MachineOperand &MO2 = MI.getOperand(0); 1119 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1120 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1121 MIRBuilder.buildSExt(MO2, DstExt); 1122 MO2.setReg(DstExt); 1123 Observer.changedInstr(MI); 1124 return Legalized; 1125 } 1126 1127 // Break it apart. Components below the extension point are unmodified. The 1128 // component containing the extension point becomes a narrower SEXT_INREG. 1129 // Components above it are ashr'd from the component containing the 1130 // extension point. 1131 if (SizeOp0 % NarrowSize != 0) 1132 return UnableToLegalize; 1133 int NumParts = SizeOp0 / NarrowSize; 1134 1135 // List the registers where the destination will be scattered. 1136 SmallVector<Register, 2> DstRegs; 1137 // List the registers where the source will be split. 1138 SmallVector<Register, 2> SrcRegs; 1139 1140 // Create all the temporary registers. 1141 for (int i = 0; i < NumParts; ++i) { 1142 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1143 1144 SrcRegs.push_back(SrcReg); 1145 } 1146 1147 // Explode the big arguments into smaller chunks. 1148 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1149 1150 Register AshrCstReg = 1151 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1152 .getReg(0); 1153 Register FullExtensionReg = 0; 1154 Register PartialExtensionReg = 0; 1155 1156 // Do the operation on each small part. 1157 for (int i = 0; i < NumParts; ++i) { 1158 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1159 DstRegs.push_back(SrcRegs[i]); 1160 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1161 assert(PartialExtensionReg && 1162 "Expected to visit partial extension before full"); 1163 if (FullExtensionReg) { 1164 DstRegs.push_back(FullExtensionReg); 1165 continue; 1166 } 1167 DstRegs.push_back( 1168 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1169 .getReg(0)); 1170 FullExtensionReg = DstRegs.back(); 1171 } else { 1172 DstRegs.push_back( 1173 MIRBuilder 1174 .buildInstr( 1175 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1176 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1177 .getReg(0)); 1178 PartialExtensionReg = DstRegs.back(); 1179 } 1180 } 1181 1182 // Gather the destination registers into the final destination. 1183 Register DstReg = MI.getOperand(0).getReg(); 1184 MIRBuilder.buildMerge(DstReg, DstRegs); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_BSWAP: 1189 case TargetOpcode::G_BITREVERSE: { 1190 if (SizeOp0 % NarrowSize != 0) 1191 return UnableToLegalize; 1192 1193 Observer.changingInstr(MI); 1194 SmallVector<Register, 2> SrcRegs, DstRegs; 1195 unsigned NumParts = SizeOp0 / NarrowSize; 1196 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1197 1198 for (unsigned i = 0; i < NumParts; ++i) { 1199 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1200 {SrcRegs[NumParts - 1 - i]}); 1201 DstRegs.push_back(DstPart.getReg(0)); 1202 } 1203 1204 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1205 1206 Observer.changedInstr(MI); 1207 MI.eraseFromParent(); 1208 return Legalized; 1209 } 1210 case TargetOpcode::G_PTR_ADD: 1211 case TargetOpcode::G_PTRMASK: { 1212 if (TypeIdx != 1) 1213 return UnableToLegalize; 1214 Observer.changingInstr(MI); 1215 narrowScalarSrc(MI, NarrowTy, 2); 1216 Observer.changedInstr(MI); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_FPTOUI: 1220 case TargetOpcode::G_FPTOSI: 1221 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1222 case TargetOpcode::G_FPEXT: 1223 if (TypeIdx != 0) 1224 return UnableToLegalize; 1225 Observer.changingInstr(MI); 1226 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1227 Observer.changedInstr(MI); 1228 return Legalized; 1229 } 1230 } 1231 1232 Register LegalizerHelper::coerceToScalar(Register Val) { 1233 LLT Ty = MRI.getType(Val); 1234 if (Ty.isScalar()) 1235 return Val; 1236 1237 const DataLayout &DL = MIRBuilder.getDataLayout(); 1238 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1239 if (Ty.isPointer()) { 1240 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1241 return Register(); 1242 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1243 } 1244 1245 Register NewVal = Val; 1246 1247 assert(Ty.isVector()); 1248 LLT EltTy = Ty.getElementType(); 1249 if (EltTy.isPointer()) 1250 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1251 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1252 } 1253 1254 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned ExtOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1258 MO.setReg(ExtB.getReg(0)); 1259 } 1260 1261 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1262 unsigned OpIdx) { 1263 MachineOperand &MO = MI.getOperand(OpIdx); 1264 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1265 MO.setReg(ExtB.getReg(0)); 1266 } 1267 1268 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1269 unsigned OpIdx, unsigned TruncOpcode) { 1270 MachineOperand &MO = MI.getOperand(OpIdx); 1271 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1272 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1273 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1274 MO.setReg(DstExt); 1275 } 1276 1277 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1278 unsigned OpIdx, unsigned ExtOpcode) { 1279 MachineOperand &MO = MI.getOperand(OpIdx); 1280 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1281 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1282 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1283 MO.setReg(DstTrunc); 1284 } 1285 1286 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1287 unsigned OpIdx) { 1288 MachineOperand &MO = MI.getOperand(OpIdx); 1289 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1290 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1291 } 1292 1293 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1294 unsigned OpIdx) { 1295 MachineOperand &MO = MI.getOperand(OpIdx); 1296 1297 LLT OldTy = MRI.getType(MO.getReg()); 1298 unsigned OldElts = OldTy.getNumElements(); 1299 unsigned NewElts = MoreTy.getNumElements(); 1300 1301 unsigned NumParts = NewElts / OldElts; 1302 1303 // Use concat_vectors if the result is a multiple of the number of elements. 1304 if (NumParts * OldElts == NewElts) { 1305 SmallVector<Register, 8> Parts; 1306 Parts.push_back(MO.getReg()); 1307 1308 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1309 for (unsigned I = 1; I != NumParts; ++I) 1310 Parts.push_back(ImpDef); 1311 1312 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1313 MO.setReg(Concat.getReg(0)); 1314 return; 1315 } 1316 1317 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1318 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1319 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1320 MO.setReg(MoreReg); 1321 } 1322 1323 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1324 MachineOperand &Op = MI.getOperand(OpIdx); 1325 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1326 } 1327 1328 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1329 MachineOperand &MO = MI.getOperand(OpIdx); 1330 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1331 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1332 MIRBuilder.buildBitcast(MO, CastDst); 1333 MO.setReg(CastDst); 1334 } 1335 1336 LegalizerHelper::LegalizeResult 1337 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1338 LLT WideTy) { 1339 if (TypeIdx != 1) 1340 return UnableToLegalize; 1341 1342 Register DstReg = MI.getOperand(0).getReg(); 1343 LLT DstTy = MRI.getType(DstReg); 1344 if (DstTy.isVector()) 1345 return UnableToLegalize; 1346 1347 Register Src1 = MI.getOperand(1).getReg(); 1348 LLT SrcTy = MRI.getType(Src1); 1349 const int DstSize = DstTy.getSizeInBits(); 1350 const int SrcSize = SrcTy.getSizeInBits(); 1351 const int WideSize = WideTy.getSizeInBits(); 1352 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1353 1354 unsigned NumOps = MI.getNumOperands(); 1355 unsigned NumSrc = MI.getNumOperands() - 1; 1356 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1357 1358 if (WideSize >= DstSize) { 1359 // Directly pack the bits in the target type. 1360 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1361 1362 for (unsigned I = 2; I != NumOps; ++I) { 1363 const unsigned Offset = (I - 1) * PartSize; 1364 1365 Register SrcReg = MI.getOperand(I).getReg(); 1366 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1367 1368 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1369 1370 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1371 MRI.createGenericVirtualRegister(WideTy); 1372 1373 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1374 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1375 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1376 ResultReg = NextResult; 1377 } 1378 1379 if (WideSize > DstSize) 1380 MIRBuilder.buildTrunc(DstReg, ResultReg); 1381 else if (DstTy.isPointer()) 1382 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1383 1384 MI.eraseFromParent(); 1385 return Legalized; 1386 } 1387 1388 // Unmerge the original values to the GCD type, and recombine to the next 1389 // multiple greater than the original type. 1390 // 1391 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1392 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1393 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1394 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1395 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1396 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1397 // %12:_(s12) = G_MERGE_VALUES %10, %11 1398 // 1399 // Padding with undef if necessary: 1400 // 1401 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1402 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1403 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1404 // %7:_(s2) = G_IMPLICIT_DEF 1405 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1406 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1407 // %10:_(s12) = G_MERGE_VALUES %8, %9 1408 1409 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1410 LLT GCDTy = LLT::scalar(GCD); 1411 1412 SmallVector<Register, 8> Parts; 1413 SmallVector<Register, 8> NewMergeRegs; 1414 SmallVector<Register, 8> Unmerges; 1415 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1416 1417 // Decompose the original operands if they don't evenly divide. 1418 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1419 Register SrcReg = MI.getOperand(I).getReg(); 1420 if (GCD == SrcSize) { 1421 Unmerges.push_back(SrcReg); 1422 } else { 1423 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1424 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1425 Unmerges.push_back(Unmerge.getReg(J)); 1426 } 1427 } 1428 1429 // Pad with undef to the next size that is a multiple of the requested size. 1430 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1431 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1432 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1433 Unmerges.push_back(UndefReg); 1434 } 1435 1436 const int PartsPerGCD = WideSize / GCD; 1437 1438 // Build merges of each piece. 1439 ArrayRef<Register> Slicer(Unmerges); 1440 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1441 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1442 NewMergeRegs.push_back(Merge.getReg(0)); 1443 } 1444 1445 // A truncate may be necessary if the requested type doesn't evenly divide the 1446 // original result type. 1447 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1448 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1449 } else { 1450 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1451 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1452 } 1453 1454 MI.eraseFromParent(); 1455 return Legalized; 1456 } 1457 1458 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1459 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1460 LLT OrigTy = MRI.getType(OrigReg); 1461 LLT LCMTy = getLCMType(WideTy, OrigTy); 1462 1463 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1464 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1465 1466 Register UnmergeSrc = WideReg; 1467 1468 // Create a merge to the LCM type, padding with undef 1469 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1470 // => 1471 // %1:_(<4 x s32>) = G_FOO 1472 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1473 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1474 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1475 if (NumMergeParts > 1) { 1476 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1477 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1478 MergeParts[0] = WideReg; 1479 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1480 } 1481 1482 // Unmerge to the original register and pad with dead defs. 1483 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1484 UnmergeResults[0] = OrigReg; 1485 for (int I = 1; I != NumUnmergeParts; ++I) 1486 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1487 1488 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1489 return WideReg; 1490 } 1491 1492 LegalizerHelper::LegalizeResult 1493 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1494 LLT WideTy) { 1495 if (TypeIdx != 0) 1496 return UnableToLegalize; 1497 1498 int NumDst = MI.getNumOperands() - 1; 1499 Register SrcReg = MI.getOperand(NumDst).getReg(); 1500 LLT SrcTy = MRI.getType(SrcReg); 1501 if (SrcTy.isVector()) 1502 return UnableToLegalize; 1503 1504 Register Dst0Reg = MI.getOperand(0).getReg(); 1505 LLT DstTy = MRI.getType(Dst0Reg); 1506 if (!DstTy.isScalar()) 1507 return UnableToLegalize; 1508 1509 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1510 if (SrcTy.isPointer()) { 1511 const DataLayout &DL = MIRBuilder.getDataLayout(); 1512 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1513 LLVM_DEBUG( 1514 dbgs() << "Not casting non-integral address space integer\n"); 1515 return UnableToLegalize; 1516 } 1517 1518 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1519 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1520 } 1521 1522 // Widen SrcTy to WideTy. This does not affect the result, but since the 1523 // user requested this size, it is probably better handled than SrcTy and 1524 // should reduce the total number of legalization artifacts 1525 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1526 SrcTy = WideTy; 1527 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1528 } 1529 1530 // Theres no unmerge type to target. Directly extract the bits from the 1531 // source type 1532 unsigned DstSize = DstTy.getSizeInBits(); 1533 1534 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1535 for (int I = 1; I != NumDst; ++I) { 1536 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1537 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1538 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1539 } 1540 1541 MI.eraseFromParent(); 1542 return Legalized; 1543 } 1544 1545 // Extend the source to a wider type. 1546 LLT LCMTy = getLCMType(SrcTy, WideTy); 1547 1548 Register WideSrc = SrcReg; 1549 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1550 // TODO: If this is an integral address space, cast to integer and anyext. 1551 if (SrcTy.isPointer()) { 1552 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1553 return UnableToLegalize; 1554 } 1555 1556 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1557 } 1558 1559 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1560 1561 // Create a sequence of unmerges and merges to the original results. Since we 1562 // may have widened the source, we will need to pad the results with dead defs 1563 // to cover the source register. 1564 // e.g. widen s48 to s64: 1565 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1566 // 1567 // => 1568 // %4:_(s192) = G_ANYEXT %0:_(s96) 1569 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1570 // ; unpack to GCD type, with extra dead defs 1571 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1572 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1573 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1574 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1575 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1576 const LLT GCDTy = getGCDType(WideTy, DstTy); 1577 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1578 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1579 1580 // Directly unmerge to the destination without going through a GCD type 1581 // if possible 1582 if (PartsPerRemerge == 1) { 1583 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1584 1585 for (int I = 0; I != NumUnmerge; ++I) { 1586 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1587 1588 for (int J = 0; J != PartsPerUnmerge; ++J) { 1589 int Idx = I * PartsPerUnmerge + J; 1590 if (Idx < NumDst) 1591 MIB.addDef(MI.getOperand(Idx).getReg()); 1592 else { 1593 // Create dead def for excess components. 1594 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1595 } 1596 } 1597 1598 MIB.addUse(Unmerge.getReg(I)); 1599 } 1600 } else { 1601 SmallVector<Register, 16> Parts; 1602 for (int J = 0; J != NumUnmerge; ++J) 1603 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1604 1605 SmallVector<Register, 8> RemergeParts; 1606 for (int I = 0; I != NumDst; ++I) { 1607 for (int J = 0; J < PartsPerRemerge; ++J) { 1608 const int Idx = I * PartsPerRemerge + J; 1609 RemergeParts.emplace_back(Parts[Idx]); 1610 } 1611 1612 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1613 RemergeParts.clear(); 1614 } 1615 } 1616 1617 MI.eraseFromParent(); 1618 return Legalized; 1619 } 1620 1621 LegalizerHelper::LegalizeResult 1622 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1623 LLT WideTy) { 1624 Register DstReg = MI.getOperand(0).getReg(); 1625 Register SrcReg = MI.getOperand(1).getReg(); 1626 LLT SrcTy = MRI.getType(SrcReg); 1627 1628 LLT DstTy = MRI.getType(DstReg); 1629 unsigned Offset = MI.getOperand(2).getImm(); 1630 1631 if (TypeIdx == 0) { 1632 if (SrcTy.isVector() || DstTy.isVector()) 1633 return UnableToLegalize; 1634 1635 SrcOp Src(SrcReg); 1636 if (SrcTy.isPointer()) { 1637 // Extracts from pointers can be handled only if they are really just 1638 // simple integers. 1639 const DataLayout &DL = MIRBuilder.getDataLayout(); 1640 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1641 return UnableToLegalize; 1642 1643 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1644 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1645 SrcTy = SrcAsIntTy; 1646 } 1647 1648 if (DstTy.isPointer()) 1649 return UnableToLegalize; 1650 1651 if (Offset == 0) { 1652 // Avoid a shift in the degenerate case. 1653 MIRBuilder.buildTrunc(DstReg, 1654 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1655 MI.eraseFromParent(); 1656 return Legalized; 1657 } 1658 1659 // Do a shift in the source type. 1660 LLT ShiftTy = SrcTy; 1661 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1662 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1663 ShiftTy = WideTy; 1664 } 1665 1666 auto LShr = MIRBuilder.buildLShr( 1667 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1668 MIRBuilder.buildTrunc(DstReg, LShr); 1669 MI.eraseFromParent(); 1670 return Legalized; 1671 } 1672 1673 if (SrcTy.isScalar()) { 1674 Observer.changingInstr(MI); 1675 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1676 Observer.changedInstr(MI); 1677 return Legalized; 1678 } 1679 1680 if (!SrcTy.isVector()) 1681 return UnableToLegalize; 1682 1683 if (DstTy != SrcTy.getElementType()) 1684 return UnableToLegalize; 1685 1686 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1687 return UnableToLegalize; 1688 1689 Observer.changingInstr(MI); 1690 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1691 1692 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1693 Offset); 1694 widenScalarDst(MI, WideTy.getScalarType(), 0); 1695 Observer.changedInstr(MI); 1696 return Legalized; 1697 } 1698 1699 LegalizerHelper::LegalizeResult 1700 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1701 LLT WideTy) { 1702 if (TypeIdx != 0 || WideTy.isVector()) 1703 return UnableToLegalize; 1704 Observer.changingInstr(MI); 1705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1706 widenScalarDst(MI, WideTy); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx == 1) 1715 return UnableToLegalize; // TODO 1716 1717 unsigned Opcode; 1718 unsigned ExtOpcode; 1719 Optional<Register> CarryIn = None; 1720 switch (MI.getOpcode()) { 1721 default: 1722 llvm_unreachable("Unexpected opcode!"); 1723 case TargetOpcode::G_SADDO: 1724 Opcode = TargetOpcode::G_ADD; 1725 ExtOpcode = TargetOpcode::G_SEXT; 1726 break; 1727 case TargetOpcode::G_SSUBO: 1728 Opcode = TargetOpcode::G_SUB; 1729 ExtOpcode = TargetOpcode::G_SEXT; 1730 break; 1731 case TargetOpcode::G_UADDO: 1732 Opcode = TargetOpcode::G_ADD; 1733 ExtOpcode = TargetOpcode::G_ZEXT; 1734 break; 1735 case TargetOpcode::G_USUBO: 1736 Opcode = TargetOpcode::G_SUB; 1737 ExtOpcode = TargetOpcode::G_ZEXT; 1738 break; 1739 case TargetOpcode::G_SADDE: 1740 Opcode = TargetOpcode::G_UADDE; 1741 ExtOpcode = TargetOpcode::G_SEXT; 1742 CarryIn = MI.getOperand(4).getReg(); 1743 break; 1744 case TargetOpcode::G_SSUBE: 1745 Opcode = TargetOpcode::G_USUBE; 1746 ExtOpcode = TargetOpcode::G_SEXT; 1747 CarryIn = MI.getOperand(4).getReg(); 1748 break; 1749 case TargetOpcode::G_UADDE: 1750 Opcode = TargetOpcode::G_UADDE; 1751 ExtOpcode = TargetOpcode::G_ZEXT; 1752 CarryIn = MI.getOperand(4).getReg(); 1753 break; 1754 case TargetOpcode::G_USUBE: 1755 Opcode = TargetOpcode::G_USUBE; 1756 ExtOpcode = TargetOpcode::G_ZEXT; 1757 CarryIn = MI.getOperand(4).getReg(); 1758 break; 1759 } 1760 1761 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1762 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1763 // Do the arithmetic in the larger type. 1764 Register NewOp; 1765 if (CarryIn) { 1766 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1767 NewOp = MIRBuilder 1768 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1769 {LHSExt, RHSExt, *CarryIn}) 1770 .getReg(0); 1771 } else { 1772 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1773 } 1774 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1775 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1776 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1777 // There is no overflow if the ExtOp is the same as NewOp. 1778 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1779 // Now trunc the NewOp to the original result. 1780 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1781 MI.eraseFromParent(); 1782 return Legalized; 1783 } 1784 1785 LegalizerHelper::LegalizeResult 1786 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1787 LLT WideTy) { 1788 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1789 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1790 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1791 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1792 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1793 // We can convert this to: 1794 // 1. Any extend iN to iM 1795 // 2. SHL by M-N 1796 // 3. [US][ADD|SUB|SHL]SAT 1797 // 4. L/ASHR by M-N 1798 // 1799 // It may be more efficient to lower this to a min and a max operation in 1800 // the higher precision arithmetic if the promoted operation isn't legal, 1801 // but this decision is up to the target's lowering request. 1802 Register DstReg = MI.getOperand(0).getReg(); 1803 1804 unsigned NewBits = WideTy.getScalarSizeInBits(); 1805 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1806 1807 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1808 // must not left shift the RHS to preserve the shift amount. 1809 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1810 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1811 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1812 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1813 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1814 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1815 1816 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1817 {ShiftL, ShiftR}, MI.getFlags()); 1818 1819 // Use a shift that will preserve the number of sign bits when the trunc is 1820 // folded away. 1821 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1822 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1823 1824 MIRBuilder.buildTrunc(DstReg, Result); 1825 MI.eraseFromParent(); 1826 return Legalized; 1827 } 1828 1829 LegalizerHelper::LegalizeResult 1830 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1831 LLT WideTy) { 1832 if (TypeIdx == 1) 1833 return UnableToLegalize; 1834 1835 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1836 Register Result = MI.getOperand(0).getReg(); 1837 Register OriginalOverflow = MI.getOperand(1).getReg(); 1838 Register LHS = MI.getOperand(2).getReg(); 1839 Register RHS = MI.getOperand(3).getReg(); 1840 LLT SrcTy = MRI.getType(LHS); 1841 LLT OverflowTy = MRI.getType(OriginalOverflow); 1842 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1843 1844 // To determine if the result overflowed in the larger type, we extend the 1845 // input to the larger type, do the multiply (checking if it overflows), 1846 // then also check the high bits of the result to see if overflow happened 1847 // there. 1848 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1849 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1850 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1851 1852 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1853 {LeftOperand, RightOperand}); 1854 auto Mul = Mulo->getOperand(0); 1855 MIRBuilder.buildTrunc(Result, Mul); 1856 1857 MachineInstrBuilder ExtResult; 1858 // Overflow occurred if it occurred in the larger type, or if the high part 1859 // of the result does not zero/sign-extend the low part. Check this second 1860 // possibility first. 1861 if (IsSigned) { 1862 // For signed, overflow occurred when the high part does not sign-extend 1863 // the low part. 1864 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1865 } else { 1866 // Unsigned overflow occurred when the high part does not zero-extend the 1867 // low part. 1868 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1869 } 1870 1871 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1872 // so we don't need to check the overflow result of larger type Mulo. 1873 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1874 auto Overflow = 1875 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1876 // Finally check if the multiplication in the larger type itself overflowed. 1877 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1878 } else { 1879 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1880 } 1881 MI.eraseFromParent(); 1882 return Legalized; 1883 } 1884 1885 LegalizerHelper::LegalizeResult 1886 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1887 switch (MI.getOpcode()) { 1888 default: 1889 return UnableToLegalize; 1890 case TargetOpcode::G_EXTRACT: 1891 return widenScalarExtract(MI, TypeIdx, WideTy); 1892 case TargetOpcode::G_INSERT: 1893 return widenScalarInsert(MI, TypeIdx, WideTy); 1894 case TargetOpcode::G_MERGE_VALUES: 1895 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1896 case TargetOpcode::G_UNMERGE_VALUES: 1897 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1898 case TargetOpcode::G_SADDO: 1899 case TargetOpcode::G_SSUBO: 1900 case TargetOpcode::G_UADDO: 1901 case TargetOpcode::G_USUBO: 1902 case TargetOpcode::G_SADDE: 1903 case TargetOpcode::G_SSUBE: 1904 case TargetOpcode::G_UADDE: 1905 case TargetOpcode::G_USUBE: 1906 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1907 case TargetOpcode::G_UMULO: 1908 case TargetOpcode::G_SMULO: 1909 return widenScalarMulo(MI, TypeIdx, WideTy); 1910 case TargetOpcode::G_SADDSAT: 1911 case TargetOpcode::G_SSUBSAT: 1912 case TargetOpcode::G_SSHLSAT: 1913 case TargetOpcode::G_UADDSAT: 1914 case TargetOpcode::G_USUBSAT: 1915 case TargetOpcode::G_USHLSAT: 1916 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1917 case TargetOpcode::G_CTTZ: 1918 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1919 case TargetOpcode::G_CTLZ: 1920 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1921 case TargetOpcode::G_CTPOP: { 1922 if (TypeIdx == 0) { 1923 Observer.changingInstr(MI); 1924 widenScalarDst(MI, WideTy, 0); 1925 Observer.changedInstr(MI); 1926 return Legalized; 1927 } 1928 1929 Register SrcReg = MI.getOperand(1).getReg(); 1930 1931 // First ZEXT the input. 1932 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1933 LLT CurTy = MRI.getType(SrcReg); 1934 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1935 // The count is the same in the larger type except if the original 1936 // value was zero. This can be handled by setting the bit just off 1937 // the top of the original type. 1938 auto TopBit = 1939 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1940 MIBSrc = MIRBuilder.buildOr( 1941 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1942 } 1943 1944 // Perform the operation at the larger size. 1945 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1946 // This is already the correct result for CTPOP and CTTZs 1947 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1948 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1949 // The correct result is NewOp - (Difference in widety and current ty). 1950 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1951 MIBNewOp = MIRBuilder.buildSub( 1952 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1953 } 1954 1955 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1956 MI.eraseFromParent(); 1957 return Legalized; 1958 } 1959 case TargetOpcode::G_BSWAP: { 1960 Observer.changingInstr(MI); 1961 Register DstReg = MI.getOperand(0).getReg(); 1962 1963 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1964 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1965 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1967 1968 MI.getOperand(0).setReg(DstExt); 1969 1970 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1971 1972 LLT Ty = MRI.getType(DstReg); 1973 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1974 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1975 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1976 1977 MIRBuilder.buildTrunc(DstReg, ShrReg); 1978 Observer.changedInstr(MI); 1979 return Legalized; 1980 } 1981 case TargetOpcode::G_BITREVERSE: { 1982 Observer.changingInstr(MI); 1983 1984 Register DstReg = MI.getOperand(0).getReg(); 1985 LLT Ty = MRI.getType(DstReg); 1986 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1987 1988 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1990 MI.getOperand(0).setReg(DstExt); 1991 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1992 1993 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1994 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1995 MIRBuilder.buildTrunc(DstReg, Shift); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 } 1999 case TargetOpcode::G_FREEZE: 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2002 widenScalarDst(MI, WideTy); 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 2006 case TargetOpcode::G_ADD: 2007 case TargetOpcode::G_AND: 2008 case TargetOpcode::G_MUL: 2009 case TargetOpcode::G_OR: 2010 case TargetOpcode::G_XOR: 2011 case TargetOpcode::G_SUB: 2012 // Perform operation at larger width (any extension is fines here, high bits 2013 // don't affect the result) and then truncate the result back to the 2014 // original type. 2015 Observer.changingInstr(MI); 2016 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2018 widenScalarDst(MI, WideTy); 2019 Observer.changedInstr(MI); 2020 return Legalized; 2021 2022 case TargetOpcode::G_SHL: 2023 Observer.changingInstr(MI); 2024 2025 if (TypeIdx == 0) { 2026 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2027 widenScalarDst(MI, WideTy); 2028 } else { 2029 assert(TypeIdx == 1); 2030 // The "number of bits to shift" operand must preserve its value as an 2031 // unsigned integer: 2032 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2033 } 2034 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 2038 case TargetOpcode::G_SDIV: 2039 case TargetOpcode::G_SREM: 2040 case TargetOpcode::G_SMIN: 2041 case TargetOpcode::G_SMAX: 2042 Observer.changingInstr(MI); 2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2044 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2045 widenScalarDst(MI, WideTy); 2046 Observer.changedInstr(MI); 2047 return Legalized; 2048 2049 case TargetOpcode::G_ASHR: 2050 case TargetOpcode::G_LSHR: 2051 Observer.changingInstr(MI); 2052 2053 if (TypeIdx == 0) { 2054 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2055 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2056 2057 widenScalarSrc(MI, WideTy, 1, CvtOp); 2058 widenScalarDst(MI, WideTy); 2059 } else { 2060 assert(TypeIdx == 1); 2061 // The "number of bits to shift" operand must preserve its value as an 2062 // unsigned integer: 2063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2064 } 2065 2066 Observer.changedInstr(MI); 2067 return Legalized; 2068 case TargetOpcode::G_UDIV: 2069 case TargetOpcode::G_UREM: 2070 case TargetOpcode::G_UMIN: 2071 case TargetOpcode::G_UMAX: 2072 Observer.changingInstr(MI); 2073 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2074 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2075 widenScalarDst(MI, WideTy); 2076 Observer.changedInstr(MI); 2077 return Legalized; 2078 2079 case TargetOpcode::G_SELECT: 2080 Observer.changingInstr(MI); 2081 if (TypeIdx == 0) { 2082 // Perform operation at larger width (any extension is fine here, high 2083 // bits don't affect the result) and then truncate the result back to the 2084 // original type. 2085 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2086 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2087 widenScalarDst(MI, WideTy); 2088 } else { 2089 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2090 // Explicit extension is required here since high bits affect the result. 2091 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2092 } 2093 Observer.changedInstr(MI); 2094 return Legalized; 2095 2096 case TargetOpcode::G_FPTOSI: 2097 case TargetOpcode::G_FPTOUI: 2098 Observer.changingInstr(MI); 2099 2100 if (TypeIdx == 0) 2101 widenScalarDst(MI, WideTy); 2102 else 2103 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2104 2105 Observer.changedInstr(MI); 2106 return Legalized; 2107 case TargetOpcode::G_SITOFP: 2108 Observer.changingInstr(MI); 2109 2110 if (TypeIdx == 0) 2111 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2112 else 2113 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2114 2115 Observer.changedInstr(MI); 2116 return Legalized; 2117 case TargetOpcode::G_UITOFP: 2118 Observer.changingInstr(MI); 2119 2120 if (TypeIdx == 0) 2121 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2122 else 2123 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2124 2125 Observer.changedInstr(MI); 2126 return Legalized; 2127 case TargetOpcode::G_LOAD: 2128 case TargetOpcode::G_SEXTLOAD: 2129 case TargetOpcode::G_ZEXTLOAD: 2130 Observer.changingInstr(MI); 2131 widenScalarDst(MI, WideTy); 2132 Observer.changedInstr(MI); 2133 return Legalized; 2134 2135 case TargetOpcode::G_STORE: { 2136 if (TypeIdx != 0) 2137 return UnableToLegalize; 2138 2139 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2140 if (!Ty.isScalar()) 2141 return UnableToLegalize; 2142 2143 Observer.changingInstr(MI); 2144 2145 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2146 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2147 widenScalarSrc(MI, WideTy, 0, ExtType); 2148 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 } 2152 case TargetOpcode::G_CONSTANT: { 2153 MachineOperand &SrcMO = MI.getOperand(1); 2154 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2155 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2156 MRI.getType(MI.getOperand(0).getReg())); 2157 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2158 ExtOpc == TargetOpcode::G_ANYEXT) && 2159 "Illegal Extend"); 2160 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2161 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2162 ? SrcVal.sext(WideTy.getSizeInBits()) 2163 : SrcVal.zext(WideTy.getSizeInBits()); 2164 Observer.changingInstr(MI); 2165 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2166 2167 widenScalarDst(MI, WideTy); 2168 Observer.changedInstr(MI); 2169 return Legalized; 2170 } 2171 case TargetOpcode::G_FCONSTANT: { 2172 MachineOperand &SrcMO = MI.getOperand(1); 2173 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2174 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2175 bool LosesInfo; 2176 switch (WideTy.getSizeInBits()) { 2177 case 32: 2178 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2179 &LosesInfo); 2180 break; 2181 case 64: 2182 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2183 &LosesInfo); 2184 break; 2185 default: 2186 return UnableToLegalize; 2187 } 2188 2189 assert(!LosesInfo && "extend should always be lossless"); 2190 2191 Observer.changingInstr(MI); 2192 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2193 2194 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2195 Observer.changedInstr(MI); 2196 return Legalized; 2197 } 2198 case TargetOpcode::G_IMPLICIT_DEF: { 2199 Observer.changingInstr(MI); 2200 widenScalarDst(MI, WideTy); 2201 Observer.changedInstr(MI); 2202 return Legalized; 2203 } 2204 case TargetOpcode::G_BRCOND: 2205 Observer.changingInstr(MI); 2206 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2207 Observer.changedInstr(MI); 2208 return Legalized; 2209 2210 case TargetOpcode::G_FCMP: 2211 Observer.changingInstr(MI); 2212 if (TypeIdx == 0) 2213 widenScalarDst(MI, WideTy); 2214 else { 2215 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2216 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2217 } 2218 Observer.changedInstr(MI); 2219 return Legalized; 2220 2221 case TargetOpcode::G_ICMP: 2222 Observer.changingInstr(MI); 2223 if (TypeIdx == 0) 2224 widenScalarDst(MI, WideTy); 2225 else { 2226 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2227 MI.getOperand(1).getPredicate())) 2228 ? TargetOpcode::G_SEXT 2229 : TargetOpcode::G_ZEXT; 2230 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2231 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2232 } 2233 Observer.changedInstr(MI); 2234 return Legalized; 2235 2236 case TargetOpcode::G_PTR_ADD: 2237 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2238 Observer.changingInstr(MI); 2239 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2240 Observer.changedInstr(MI); 2241 return Legalized; 2242 2243 case TargetOpcode::G_PHI: { 2244 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2245 2246 Observer.changingInstr(MI); 2247 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2248 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2249 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2250 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2251 } 2252 2253 MachineBasicBlock &MBB = *MI.getParent(); 2254 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2255 widenScalarDst(MI, WideTy); 2256 Observer.changedInstr(MI); 2257 return Legalized; 2258 } 2259 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2260 if (TypeIdx == 0) { 2261 Register VecReg = MI.getOperand(1).getReg(); 2262 LLT VecTy = MRI.getType(VecReg); 2263 Observer.changingInstr(MI); 2264 2265 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2266 WideTy.getSizeInBits()), 2267 1, TargetOpcode::G_SEXT); 2268 2269 widenScalarDst(MI, WideTy, 0); 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 } 2273 2274 if (TypeIdx != 2) 2275 return UnableToLegalize; 2276 Observer.changingInstr(MI); 2277 // TODO: Probably should be zext 2278 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2279 Observer.changedInstr(MI); 2280 return Legalized; 2281 } 2282 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2283 if (TypeIdx == 1) { 2284 Observer.changingInstr(MI); 2285 2286 Register VecReg = MI.getOperand(1).getReg(); 2287 LLT VecTy = MRI.getType(VecReg); 2288 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2289 2290 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2291 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2292 widenScalarDst(MI, WideVecTy, 0); 2293 Observer.changedInstr(MI); 2294 return Legalized; 2295 } 2296 2297 if (TypeIdx == 2) { 2298 Observer.changingInstr(MI); 2299 // TODO: Probably should be zext 2300 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2301 Observer.changedInstr(MI); 2302 return Legalized; 2303 } 2304 2305 return UnableToLegalize; 2306 } 2307 case TargetOpcode::G_FADD: 2308 case TargetOpcode::G_FMUL: 2309 case TargetOpcode::G_FSUB: 2310 case TargetOpcode::G_FMA: 2311 case TargetOpcode::G_FMAD: 2312 case TargetOpcode::G_FNEG: 2313 case TargetOpcode::G_FABS: 2314 case TargetOpcode::G_FCANONICALIZE: 2315 case TargetOpcode::G_FMINNUM: 2316 case TargetOpcode::G_FMAXNUM: 2317 case TargetOpcode::G_FMINNUM_IEEE: 2318 case TargetOpcode::G_FMAXNUM_IEEE: 2319 case TargetOpcode::G_FMINIMUM: 2320 case TargetOpcode::G_FMAXIMUM: 2321 case TargetOpcode::G_FDIV: 2322 case TargetOpcode::G_FREM: 2323 case TargetOpcode::G_FCEIL: 2324 case TargetOpcode::G_FFLOOR: 2325 case TargetOpcode::G_FCOS: 2326 case TargetOpcode::G_FSIN: 2327 case TargetOpcode::G_FLOG10: 2328 case TargetOpcode::G_FLOG: 2329 case TargetOpcode::G_FLOG2: 2330 case TargetOpcode::G_FRINT: 2331 case TargetOpcode::G_FNEARBYINT: 2332 case TargetOpcode::G_FSQRT: 2333 case TargetOpcode::G_FEXP: 2334 case TargetOpcode::G_FEXP2: 2335 case TargetOpcode::G_FPOW: 2336 case TargetOpcode::G_INTRINSIC_TRUNC: 2337 case TargetOpcode::G_INTRINSIC_ROUND: 2338 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2339 assert(TypeIdx == 0); 2340 Observer.changingInstr(MI); 2341 2342 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2343 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2344 2345 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2346 Observer.changedInstr(MI); 2347 return Legalized; 2348 case TargetOpcode::G_FPOWI: { 2349 if (TypeIdx != 0) 2350 return UnableToLegalize; 2351 Observer.changingInstr(MI); 2352 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2354 Observer.changedInstr(MI); 2355 return Legalized; 2356 } 2357 case TargetOpcode::G_INTTOPTR: 2358 if (TypeIdx != 1) 2359 return UnableToLegalize; 2360 2361 Observer.changingInstr(MI); 2362 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2363 Observer.changedInstr(MI); 2364 return Legalized; 2365 case TargetOpcode::G_PTRTOINT: 2366 if (TypeIdx != 0) 2367 return UnableToLegalize; 2368 2369 Observer.changingInstr(MI); 2370 widenScalarDst(MI, WideTy, 0); 2371 Observer.changedInstr(MI); 2372 return Legalized; 2373 case TargetOpcode::G_BUILD_VECTOR: { 2374 Observer.changingInstr(MI); 2375 2376 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2377 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2378 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2379 2380 // Avoid changing the result vector type if the source element type was 2381 // requested. 2382 if (TypeIdx == 1) { 2383 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2384 } else { 2385 widenScalarDst(MI, WideTy, 0); 2386 } 2387 2388 Observer.changedInstr(MI); 2389 return Legalized; 2390 } 2391 case TargetOpcode::G_SEXT_INREG: 2392 if (TypeIdx != 0) 2393 return UnableToLegalize; 2394 2395 Observer.changingInstr(MI); 2396 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2397 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2398 Observer.changedInstr(MI); 2399 return Legalized; 2400 case TargetOpcode::G_PTRMASK: { 2401 if (TypeIdx != 1) 2402 return UnableToLegalize; 2403 Observer.changingInstr(MI); 2404 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2405 Observer.changedInstr(MI); 2406 return Legalized; 2407 } 2408 } 2409 } 2410 2411 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2412 MachineIRBuilder &B, Register Src, LLT Ty) { 2413 auto Unmerge = B.buildUnmerge(Ty, Src); 2414 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2415 Pieces.push_back(Unmerge.getReg(I)); 2416 } 2417 2418 LegalizerHelper::LegalizeResult 2419 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2420 Register Dst = MI.getOperand(0).getReg(); 2421 Register Src = MI.getOperand(1).getReg(); 2422 LLT DstTy = MRI.getType(Dst); 2423 LLT SrcTy = MRI.getType(Src); 2424 2425 if (SrcTy.isVector()) { 2426 LLT SrcEltTy = SrcTy.getElementType(); 2427 SmallVector<Register, 8> SrcRegs; 2428 2429 if (DstTy.isVector()) { 2430 int NumDstElt = DstTy.getNumElements(); 2431 int NumSrcElt = SrcTy.getNumElements(); 2432 2433 LLT DstEltTy = DstTy.getElementType(); 2434 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2435 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2436 2437 // If there's an element size mismatch, insert intermediate casts to match 2438 // the result element type. 2439 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2440 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2441 // 2442 // => 2443 // 2444 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2445 // %3:_(<2 x s8>) = G_BITCAST %2 2446 // %4:_(<2 x s8>) = G_BITCAST %3 2447 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2448 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2449 SrcPartTy = SrcEltTy; 2450 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2451 // 2452 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2453 // 2454 // => 2455 // 2456 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2457 // %3:_(s16) = G_BITCAST %2 2458 // %4:_(s16) = G_BITCAST %3 2459 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2460 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2461 DstCastTy = DstEltTy; 2462 } 2463 2464 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2465 for (Register &SrcReg : SrcRegs) 2466 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2467 } else 2468 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2469 2470 MIRBuilder.buildMerge(Dst, SrcRegs); 2471 MI.eraseFromParent(); 2472 return Legalized; 2473 } 2474 2475 if (DstTy.isVector()) { 2476 SmallVector<Register, 8> SrcRegs; 2477 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2478 MIRBuilder.buildMerge(Dst, SrcRegs); 2479 MI.eraseFromParent(); 2480 return Legalized; 2481 } 2482 2483 return UnableToLegalize; 2484 } 2485 2486 /// Figure out the bit offset into a register when coercing a vector index for 2487 /// the wide element type. This is only for the case when promoting vector to 2488 /// one with larger elements. 2489 // 2490 /// 2491 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2492 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2493 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2494 Register Idx, 2495 unsigned NewEltSize, 2496 unsigned OldEltSize) { 2497 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2498 LLT IdxTy = B.getMRI()->getType(Idx); 2499 2500 // Now figure out the amount we need to shift to get the target bits. 2501 auto OffsetMask = B.buildConstant( 2502 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2503 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2504 return B.buildShl(IdxTy, OffsetIdx, 2505 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2506 } 2507 2508 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2509 /// is casting to a vector with a smaller element size, perform multiple element 2510 /// extracts and merge the results. If this is coercing to a vector with larger 2511 /// elements, index the bitcasted vector and extract the target element with bit 2512 /// operations. This is intended to force the indexing in the native register 2513 /// size for architectures that can dynamically index the register file. 2514 LegalizerHelper::LegalizeResult 2515 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2516 LLT CastTy) { 2517 if (TypeIdx != 1) 2518 return UnableToLegalize; 2519 2520 Register Dst = MI.getOperand(0).getReg(); 2521 Register SrcVec = MI.getOperand(1).getReg(); 2522 Register Idx = MI.getOperand(2).getReg(); 2523 LLT SrcVecTy = MRI.getType(SrcVec); 2524 LLT IdxTy = MRI.getType(Idx); 2525 2526 LLT SrcEltTy = SrcVecTy.getElementType(); 2527 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2528 unsigned OldNumElts = SrcVecTy.getNumElements(); 2529 2530 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2531 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2532 2533 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2534 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2535 if (NewNumElts > OldNumElts) { 2536 // Decreasing the vector element size 2537 // 2538 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2539 // => 2540 // v4i32:castx = bitcast x:v2i64 2541 // 2542 // i64 = bitcast 2543 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2544 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2545 // 2546 if (NewNumElts % OldNumElts != 0) 2547 return UnableToLegalize; 2548 2549 // Type of the intermediate result vector. 2550 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2551 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2552 2553 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2554 2555 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2556 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2557 2558 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2559 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2560 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2561 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2562 NewOps[I] = Elt.getReg(0); 2563 } 2564 2565 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2566 MIRBuilder.buildBitcast(Dst, NewVec); 2567 MI.eraseFromParent(); 2568 return Legalized; 2569 } 2570 2571 if (NewNumElts < OldNumElts) { 2572 if (NewEltSize % OldEltSize != 0) 2573 return UnableToLegalize; 2574 2575 // This only depends on powers of 2 because we use bit tricks to figure out 2576 // the bit offset we need to shift to get the target element. A general 2577 // expansion could emit division/multiply. 2578 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2579 return UnableToLegalize; 2580 2581 // Increasing the vector element size. 2582 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2583 // 2584 // => 2585 // 2586 // %cast = G_BITCAST %vec 2587 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2588 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2589 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2590 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2591 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2592 // %elt = G_TRUNC %elt_bits 2593 2594 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2595 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2596 2597 // Divide to get the index in the wider element type. 2598 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2599 2600 Register WideElt = CastVec; 2601 if (CastTy.isVector()) { 2602 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2603 ScaledIdx).getReg(0); 2604 } 2605 2606 // Compute the bit offset into the register of the target element. 2607 Register OffsetBits = getBitcastWiderVectorElementOffset( 2608 MIRBuilder, Idx, NewEltSize, OldEltSize); 2609 2610 // Shift the wide element to get the target element. 2611 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2612 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2613 MI.eraseFromParent(); 2614 return Legalized; 2615 } 2616 2617 return UnableToLegalize; 2618 } 2619 2620 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2621 /// TargetReg, while preserving other bits in \p TargetReg. 2622 /// 2623 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2624 static Register buildBitFieldInsert(MachineIRBuilder &B, 2625 Register TargetReg, Register InsertReg, 2626 Register OffsetBits) { 2627 LLT TargetTy = B.getMRI()->getType(TargetReg); 2628 LLT InsertTy = B.getMRI()->getType(InsertReg); 2629 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2630 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2631 2632 // Produce a bitmask of the value to insert 2633 auto EltMask = B.buildConstant( 2634 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2635 InsertTy.getSizeInBits())); 2636 // Shift it into position 2637 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2638 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2639 2640 // Clear out the bits in the wide element 2641 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2642 2643 // The value to insert has all zeros already, so stick it into the masked 2644 // wide element. 2645 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2646 } 2647 2648 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2649 /// is increasing the element size, perform the indexing in the target element 2650 /// type, and use bit operations to insert at the element position. This is 2651 /// intended for architectures that can dynamically index the register file and 2652 /// want to force indexing in the native register size. 2653 LegalizerHelper::LegalizeResult 2654 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2655 LLT CastTy) { 2656 if (TypeIdx != 0) 2657 return UnableToLegalize; 2658 2659 Register Dst = MI.getOperand(0).getReg(); 2660 Register SrcVec = MI.getOperand(1).getReg(); 2661 Register Val = MI.getOperand(2).getReg(); 2662 Register Idx = MI.getOperand(3).getReg(); 2663 2664 LLT VecTy = MRI.getType(Dst); 2665 LLT IdxTy = MRI.getType(Idx); 2666 2667 LLT VecEltTy = VecTy.getElementType(); 2668 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2669 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2670 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2671 2672 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2673 unsigned OldNumElts = VecTy.getNumElements(); 2674 2675 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2676 if (NewNumElts < OldNumElts) { 2677 if (NewEltSize % OldEltSize != 0) 2678 return UnableToLegalize; 2679 2680 // This only depends on powers of 2 because we use bit tricks to figure out 2681 // the bit offset we need to shift to get the target element. A general 2682 // expansion could emit division/multiply. 2683 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2684 return UnableToLegalize; 2685 2686 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2687 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2688 2689 // Divide to get the index in the wider element type. 2690 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2691 2692 Register ExtractedElt = CastVec; 2693 if (CastTy.isVector()) { 2694 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2695 ScaledIdx).getReg(0); 2696 } 2697 2698 // Compute the bit offset into the register of the target element. 2699 Register OffsetBits = getBitcastWiderVectorElementOffset( 2700 MIRBuilder, Idx, NewEltSize, OldEltSize); 2701 2702 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2703 Val, OffsetBits); 2704 if (CastTy.isVector()) { 2705 InsertedElt = MIRBuilder.buildInsertVectorElement( 2706 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2707 } 2708 2709 MIRBuilder.buildBitcast(Dst, InsertedElt); 2710 MI.eraseFromParent(); 2711 return Legalized; 2712 } 2713 2714 return UnableToLegalize; 2715 } 2716 2717 LegalizerHelper::LegalizeResult 2718 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2719 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2720 Register DstReg = MI.getOperand(0).getReg(); 2721 Register PtrReg = MI.getOperand(1).getReg(); 2722 LLT DstTy = MRI.getType(DstReg); 2723 auto &MMO = **MI.memoperands_begin(); 2724 2725 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2726 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2727 // This load needs splitting into power of 2 sized loads. 2728 if (DstTy.isVector()) 2729 return UnableToLegalize; 2730 if (isPowerOf2_32(DstTy.getSizeInBits())) 2731 return UnableToLegalize; // Don't know what we're being asked to do. 2732 2733 // Our strategy here is to generate anyextending loads for the smaller 2734 // types up to next power-2 result type, and then combine the two larger 2735 // result values together, before truncating back down to the non-pow-2 2736 // type. 2737 // E.g. v1 = i24 load => 2738 // v2 = i32 zextload (2 byte) 2739 // v3 = i32 load (1 byte) 2740 // v4 = i32 shl v3, 16 2741 // v5 = i32 or v4, v2 2742 // v1 = i24 trunc v5 2743 // By doing this we generate the correct truncate which should get 2744 // combined away as an artifact with a matching extend. 2745 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2746 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2747 2748 MachineFunction &MF = MIRBuilder.getMF(); 2749 MachineMemOperand *LargeMMO = 2750 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2751 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2752 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2753 2754 LLT PtrTy = MRI.getType(PtrReg); 2755 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2756 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2757 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2758 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2759 auto LargeLoad = MIRBuilder.buildLoadInstr( 2760 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2761 2762 auto OffsetCst = MIRBuilder.buildConstant( 2763 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2764 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2765 auto SmallPtr = 2766 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2767 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2768 *SmallMMO); 2769 2770 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2771 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2772 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2773 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2774 MI.eraseFromParent(); 2775 return Legalized; 2776 } 2777 2778 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2779 MI.eraseFromParent(); 2780 return Legalized; 2781 } 2782 2783 if (DstTy.isScalar()) { 2784 Register TmpReg = 2785 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2786 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2787 switch (MI.getOpcode()) { 2788 default: 2789 llvm_unreachable("Unexpected opcode"); 2790 case TargetOpcode::G_LOAD: 2791 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2792 break; 2793 case TargetOpcode::G_SEXTLOAD: 2794 MIRBuilder.buildSExt(DstReg, TmpReg); 2795 break; 2796 case TargetOpcode::G_ZEXTLOAD: 2797 MIRBuilder.buildZExt(DstReg, TmpReg); 2798 break; 2799 } 2800 2801 MI.eraseFromParent(); 2802 return Legalized; 2803 } 2804 2805 return UnableToLegalize; 2806 } 2807 2808 LegalizerHelper::LegalizeResult 2809 LegalizerHelper::lowerStore(MachineInstr &MI) { 2810 // Lower a non-power of 2 store into multiple pow-2 stores. 2811 // E.g. split an i24 store into an i16 store + i8 store. 2812 // We do this by first extending the stored value to the next largest power 2813 // of 2 type, and then using truncating stores to store the components. 2814 // By doing this, likewise with G_LOAD, generate an extend that can be 2815 // artifact-combined away instead of leaving behind extracts. 2816 Register SrcReg = MI.getOperand(0).getReg(); 2817 Register PtrReg = MI.getOperand(1).getReg(); 2818 LLT SrcTy = MRI.getType(SrcReg); 2819 MachineMemOperand &MMO = **MI.memoperands_begin(); 2820 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2821 return UnableToLegalize; 2822 if (SrcTy.isVector()) 2823 return UnableToLegalize; 2824 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2825 return UnableToLegalize; // Don't know what we're being asked to do. 2826 2827 // Extend to the next pow-2. 2828 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2829 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2830 2831 // Obtain the smaller value by shifting away the larger value. 2832 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2833 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2834 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2835 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2836 2837 // Generate the PtrAdd and truncating stores. 2838 LLT PtrTy = MRI.getType(PtrReg); 2839 auto OffsetCst = MIRBuilder.buildConstant( 2840 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2841 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2842 auto SmallPtr = 2843 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2844 2845 MachineFunction &MF = MIRBuilder.getMF(); 2846 MachineMemOperand *LargeMMO = 2847 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2848 MachineMemOperand *SmallMMO = 2849 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2850 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2851 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2852 MI.eraseFromParent(); 2853 return Legalized; 2854 } 2855 2856 LegalizerHelper::LegalizeResult 2857 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2858 switch (MI.getOpcode()) { 2859 case TargetOpcode::G_LOAD: { 2860 if (TypeIdx != 0) 2861 return UnableToLegalize; 2862 2863 Observer.changingInstr(MI); 2864 bitcastDst(MI, CastTy, 0); 2865 Observer.changedInstr(MI); 2866 return Legalized; 2867 } 2868 case TargetOpcode::G_STORE: { 2869 if (TypeIdx != 0) 2870 return UnableToLegalize; 2871 2872 Observer.changingInstr(MI); 2873 bitcastSrc(MI, CastTy, 0); 2874 Observer.changedInstr(MI); 2875 return Legalized; 2876 } 2877 case TargetOpcode::G_SELECT: { 2878 if (TypeIdx != 0) 2879 return UnableToLegalize; 2880 2881 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2882 LLVM_DEBUG( 2883 dbgs() << "bitcast action not implemented for vector select\n"); 2884 return UnableToLegalize; 2885 } 2886 2887 Observer.changingInstr(MI); 2888 bitcastSrc(MI, CastTy, 2); 2889 bitcastSrc(MI, CastTy, 3); 2890 bitcastDst(MI, CastTy, 0); 2891 Observer.changedInstr(MI); 2892 return Legalized; 2893 } 2894 case TargetOpcode::G_AND: 2895 case TargetOpcode::G_OR: 2896 case TargetOpcode::G_XOR: { 2897 Observer.changingInstr(MI); 2898 bitcastSrc(MI, CastTy, 1); 2899 bitcastSrc(MI, CastTy, 2); 2900 bitcastDst(MI, CastTy, 0); 2901 Observer.changedInstr(MI); 2902 return Legalized; 2903 } 2904 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2905 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2906 case TargetOpcode::G_INSERT_VECTOR_ELT: 2907 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2908 default: 2909 return UnableToLegalize; 2910 } 2911 } 2912 2913 // Legalize an instruction by changing the opcode in place. 2914 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2915 Observer.changingInstr(MI); 2916 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2917 Observer.changedInstr(MI); 2918 } 2919 2920 LegalizerHelper::LegalizeResult 2921 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2922 using namespace TargetOpcode; 2923 2924 switch(MI.getOpcode()) { 2925 default: 2926 return UnableToLegalize; 2927 case TargetOpcode::G_BITCAST: 2928 return lowerBitcast(MI); 2929 case TargetOpcode::G_SREM: 2930 case TargetOpcode::G_UREM: { 2931 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2932 auto Quot = 2933 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2934 {MI.getOperand(1), MI.getOperand(2)}); 2935 2936 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2937 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2938 MI.eraseFromParent(); 2939 return Legalized; 2940 } 2941 case TargetOpcode::G_SADDO: 2942 case TargetOpcode::G_SSUBO: 2943 return lowerSADDO_SSUBO(MI); 2944 case TargetOpcode::G_UMULH: 2945 case TargetOpcode::G_SMULH: 2946 return lowerSMULH_UMULH(MI); 2947 case TargetOpcode::G_SMULO: 2948 case TargetOpcode::G_UMULO: { 2949 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2950 // result. 2951 Register Res = MI.getOperand(0).getReg(); 2952 Register Overflow = MI.getOperand(1).getReg(); 2953 Register LHS = MI.getOperand(2).getReg(); 2954 Register RHS = MI.getOperand(3).getReg(); 2955 LLT Ty = MRI.getType(Res); 2956 2957 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2958 ? TargetOpcode::G_SMULH 2959 : TargetOpcode::G_UMULH; 2960 2961 Observer.changingInstr(MI); 2962 const auto &TII = MIRBuilder.getTII(); 2963 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2964 MI.RemoveOperand(1); 2965 Observer.changedInstr(MI); 2966 2967 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2968 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2969 2970 // Move insert point forward so we can use the Res register if needed. 2971 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2972 2973 // For *signed* multiply, overflow is detected by checking: 2974 // (hi != (lo >> bitwidth-1)) 2975 if (Opcode == TargetOpcode::G_SMULH) { 2976 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2977 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2978 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2979 } else { 2980 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2981 } 2982 return Legalized; 2983 } 2984 case TargetOpcode::G_FNEG: { 2985 Register Res = MI.getOperand(0).getReg(); 2986 LLT Ty = MRI.getType(Res); 2987 2988 // TODO: Handle vector types once we are able to 2989 // represent them. 2990 if (Ty.isVector()) 2991 return UnableToLegalize; 2992 auto SignMask = 2993 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2994 Register SubByReg = MI.getOperand(1).getReg(); 2995 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2996 MI.eraseFromParent(); 2997 return Legalized; 2998 } 2999 case TargetOpcode::G_FSUB: { 3000 Register Res = MI.getOperand(0).getReg(); 3001 LLT Ty = MRI.getType(Res); 3002 3003 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3004 // First, check if G_FNEG is marked as Lower. If so, we may 3005 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3006 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3007 return UnableToLegalize; 3008 Register LHS = MI.getOperand(1).getReg(); 3009 Register RHS = MI.getOperand(2).getReg(); 3010 Register Neg = MRI.createGenericVirtualRegister(Ty); 3011 MIRBuilder.buildFNeg(Neg, RHS); 3012 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3013 MI.eraseFromParent(); 3014 return Legalized; 3015 } 3016 case TargetOpcode::G_FMAD: 3017 return lowerFMad(MI); 3018 case TargetOpcode::G_FFLOOR: 3019 return lowerFFloor(MI); 3020 case TargetOpcode::G_INTRINSIC_ROUND: 3021 return lowerIntrinsicRound(MI); 3022 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3023 // Since round even is the assumed rounding mode for unconstrained FP 3024 // operations, rint and roundeven are the same operation. 3025 changeOpcode(MI, TargetOpcode::G_FRINT); 3026 return Legalized; 3027 } 3028 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3029 Register OldValRes = MI.getOperand(0).getReg(); 3030 Register SuccessRes = MI.getOperand(1).getReg(); 3031 Register Addr = MI.getOperand(2).getReg(); 3032 Register CmpVal = MI.getOperand(3).getReg(); 3033 Register NewVal = MI.getOperand(4).getReg(); 3034 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3035 **MI.memoperands_begin()); 3036 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3037 MI.eraseFromParent(); 3038 return Legalized; 3039 } 3040 case TargetOpcode::G_LOAD: 3041 case TargetOpcode::G_SEXTLOAD: 3042 case TargetOpcode::G_ZEXTLOAD: 3043 return lowerLoad(MI); 3044 case TargetOpcode::G_STORE: 3045 return lowerStore(MI); 3046 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3047 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3048 case TargetOpcode::G_CTLZ: 3049 case TargetOpcode::G_CTTZ: 3050 case TargetOpcode::G_CTPOP: 3051 return lowerBitCount(MI); 3052 case G_UADDO: { 3053 Register Res = MI.getOperand(0).getReg(); 3054 Register CarryOut = MI.getOperand(1).getReg(); 3055 Register LHS = MI.getOperand(2).getReg(); 3056 Register RHS = MI.getOperand(3).getReg(); 3057 3058 MIRBuilder.buildAdd(Res, LHS, RHS); 3059 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3060 3061 MI.eraseFromParent(); 3062 return Legalized; 3063 } 3064 case G_UADDE: { 3065 Register Res = MI.getOperand(0).getReg(); 3066 Register CarryOut = MI.getOperand(1).getReg(); 3067 Register LHS = MI.getOperand(2).getReg(); 3068 Register RHS = MI.getOperand(3).getReg(); 3069 Register CarryIn = MI.getOperand(4).getReg(); 3070 LLT Ty = MRI.getType(Res); 3071 3072 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3073 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3074 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3075 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3076 3077 MI.eraseFromParent(); 3078 return Legalized; 3079 } 3080 case G_USUBO: { 3081 Register Res = MI.getOperand(0).getReg(); 3082 Register BorrowOut = MI.getOperand(1).getReg(); 3083 Register LHS = MI.getOperand(2).getReg(); 3084 Register RHS = MI.getOperand(3).getReg(); 3085 3086 MIRBuilder.buildSub(Res, LHS, RHS); 3087 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3088 3089 MI.eraseFromParent(); 3090 return Legalized; 3091 } 3092 case G_USUBE: { 3093 Register Res = MI.getOperand(0).getReg(); 3094 Register BorrowOut = MI.getOperand(1).getReg(); 3095 Register LHS = MI.getOperand(2).getReg(); 3096 Register RHS = MI.getOperand(3).getReg(); 3097 Register BorrowIn = MI.getOperand(4).getReg(); 3098 const LLT CondTy = MRI.getType(BorrowOut); 3099 const LLT Ty = MRI.getType(Res); 3100 3101 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3102 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3103 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3104 3105 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3106 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3107 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3108 3109 MI.eraseFromParent(); 3110 return Legalized; 3111 } 3112 case G_UITOFP: 3113 return lowerUITOFP(MI); 3114 case G_SITOFP: 3115 return lowerSITOFP(MI); 3116 case G_FPTOUI: 3117 return lowerFPTOUI(MI); 3118 case G_FPTOSI: 3119 return lowerFPTOSI(MI); 3120 case G_FPTRUNC: 3121 return lowerFPTRUNC(MI); 3122 case G_FPOWI: 3123 return lowerFPOWI(MI); 3124 case G_SMIN: 3125 case G_SMAX: 3126 case G_UMIN: 3127 case G_UMAX: 3128 return lowerMinMax(MI); 3129 case G_FCOPYSIGN: 3130 return lowerFCopySign(MI); 3131 case G_FMINNUM: 3132 case G_FMAXNUM: 3133 return lowerFMinNumMaxNum(MI); 3134 case G_MERGE_VALUES: 3135 return lowerMergeValues(MI); 3136 case G_UNMERGE_VALUES: 3137 return lowerUnmergeValues(MI); 3138 case TargetOpcode::G_SEXT_INREG: { 3139 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3140 int64_t SizeInBits = MI.getOperand(2).getImm(); 3141 3142 Register DstReg = MI.getOperand(0).getReg(); 3143 Register SrcReg = MI.getOperand(1).getReg(); 3144 LLT DstTy = MRI.getType(DstReg); 3145 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3146 3147 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3148 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3149 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3150 MI.eraseFromParent(); 3151 return Legalized; 3152 } 3153 case G_EXTRACT_VECTOR_ELT: 3154 case G_INSERT_VECTOR_ELT: 3155 return lowerExtractInsertVectorElt(MI); 3156 case G_SHUFFLE_VECTOR: 3157 return lowerShuffleVector(MI); 3158 case G_DYN_STACKALLOC: 3159 return lowerDynStackAlloc(MI); 3160 case G_EXTRACT: 3161 return lowerExtract(MI); 3162 case G_INSERT: 3163 return lowerInsert(MI); 3164 case G_BSWAP: 3165 return lowerBswap(MI); 3166 case G_BITREVERSE: 3167 return lowerBitreverse(MI); 3168 case G_READ_REGISTER: 3169 case G_WRITE_REGISTER: 3170 return lowerReadWriteRegister(MI); 3171 case G_UADDSAT: 3172 case G_USUBSAT: { 3173 // Try to make a reasonable guess about which lowering strategy to use. The 3174 // target can override this with custom lowering and calling the 3175 // implementation functions. 3176 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3177 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3178 return lowerAddSubSatToMinMax(MI); 3179 return lowerAddSubSatToAddoSubo(MI); 3180 } 3181 case G_SADDSAT: 3182 case G_SSUBSAT: { 3183 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3184 3185 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3186 // since it's a shorter expansion. However, we would need to figure out the 3187 // preferred boolean type for the carry out for the query. 3188 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3189 return lowerAddSubSatToMinMax(MI); 3190 return lowerAddSubSatToAddoSubo(MI); 3191 } 3192 case G_SSHLSAT: 3193 case G_USHLSAT: 3194 return lowerShlSat(MI); 3195 case G_ABS: { 3196 // Expand %res = G_ABS %a into: 3197 // %v1 = G_ASHR %a, scalar_size-1 3198 // %v2 = G_ADD %a, %v1 3199 // %res = G_XOR %v2, %v1 3200 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3201 Register OpReg = MI.getOperand(1).getReg(); 3202 auto ShiftAmt = 3203 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3204 auto Shift = 3205 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3206 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3207 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3208 MI.eraseFromParent(); 3209 return Legalized; 3210 } 3211 case G_SELECT: 3212 return lowerSelect(MI); 3213 case G_SDIVREM: 3214 case G_UDIVREM: 3215 return lowerDIVREM(MI); 3216 case G_FSHL: 3217 case G_FSHR: 3218 return lowerFunnelShift(MI); 3219 case G_ROTL: 3220 case G_ROTR: 3221 return lowerRotate(MI); 3222 } 3223 } 3224 3225 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3226 Align MinAlign) const { 3227 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3228 // datalayout for the preferred alignment. Also there should be a target hook 3229 // for this to allow targets to reduce the alignment and ignore the 3230 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3231 // the type. 3232 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3233 } 3234 3235 MachineInstrBuilder 3236 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3237 MachinePointerInfo &PtrInfo) { 3238 MachineFunction &MF = MIRBuilder.getMF(); 3239 const DataLayout &DL = MIRBuilder.getDataLayout(); 3240 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3241 3242 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3243 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3244 3245 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3246 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3247 } 3248 3249 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3250 LLT VecTy) { 3251 int64_t IdxVal; 3252 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3253 return IdxReg; 3254 3255 LLT IdxTy = B.getMRI()->getType(IdxReg); 3256 unsigned NElts = VecTy.getNumElements(); 3257 if (isPowerOf2_32(NElts)) { 3258 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3259 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3260 } 3261 3262 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3263 .getReg(0); 3264 } 3265 3266 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3267 Register Index) { 3268 LLT EltTy = VecTy.getElementType(); 3269 3270 // Calculate the element offset and add it to the pointer. 3271 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3272 assert(EltSize * 8 == EltTy.getSizeInBits() && 3273 "Converting bits to bytes lost precision"); 3274 3275 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3276 3277 LLT IdxTy = MRI.getType(Index); 3278 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3279 MIRBuilder.buildConstant(IdxTy, EltSize)); 3280 3281 LLT PtrTy = MRI.getType(VecPtr); 3282 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3283 } 3284 3285 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3286 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3287 Register DstReg = MI.getOperand(0).getReg(); 3288 LLT DstTy = MRI.getType(DstReg); 3289 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3290 3291 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3292 3293 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3294 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3295 3296 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3297 MI.eraseFromParent(); 3298 return Legalized; 3299 } 3300 3301 // Handle splitting vector operations which need to have the same number of 3302 // elements in each type index, but each type index may have a different element 3303 // type. 3304 // 3305 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3306 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3307 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3308 // 3309 // Also handles some irregular breakdown cases, e.g. 3310 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3311 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3312 // s64 = G_SHL s64, s32 3313 LegalizerHelper::LegalizeResult 3314 LegalizerHelper::fewerElementsVectorMultiEltType( 3315 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3316 if (TypeIdx != 0) 3317 return UnableToLegalize; 3318 3319 const LLT NarrowTy0 = NarrowTyArg; 3320 const unsigned NewNumElts = 3321 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3322 3323 const Register DstReg = MI.getOperand(0).getReg(); 3324 LLT DstTy = MRI.getType(DstReg); 3325 LLT LeftoverTy0; 3326 3327 // All of the operands need to have the same number of elements, so if we can 3328 // determine a type breakdown for the result type, we can for all of the 3329 // source types. 3330 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3331 if (NumParts < 0) 3332 return UnableToLegalize; 3333 3334 SmallVector<MachineInstrBuilder, 4> NewInsts; 3335 3336 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3337 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3338 3339 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3340 Register SrcReg = MI.getOperand(I).getReg(); 3341 LLT SrcTyI = MRI.getType(SrcReg); 3342 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3343 LLT LeftoverTyI; 3344 3345 // Split this operand into the requested typed registers, and any leftover 3346 // required to reproduce the original type. 3347 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3348 LeftoverRegs)) 3349 return UnableToLegalize; 3350 3351 if (I == 1) { 3352 // For the first operand, create an instruction for each part and setup 3353 // the result. 3354 for (Register PartReg : PartRegs) { 3355 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3356 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3357 .addDef(PartDstReg) 3358 .addUse(PartReg)); 3359 DstRegs.push_back(PartDstReg); 3360 } 3361 3362 for (Register LeftoverReg : LeftoverRegs) { 3363 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3364 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3365 .addDef(PartDstReg) 3366 .addUse(LeftoverReg)); 3367 LeftoverDstRegs.push_back(PartDstReg); 3368 } 3369 } else { 3370 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3371 3372 // Add the newly created operand splits to the existing instructions. The 3373 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3374 // pieces. 3375 unsigned InstCount = 0; 3376 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3377 NewInsts[InstCount++].addUse(PartRegs[J]); 3378 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3379 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3380 } 3381 3382 PartRegs.clear(); 3383 LeftoverRegs.clear(); 3384 } 3385 3386 // Insert the newly built operations and rebuild the result register. 3387 for (auto &MIB : NewInsts) 3388 MIRBuilder.insertInstr(MIB); 3389 3390 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3391 3392 MI.eraseFromParent(); 3393 return Legalized; 3394 } 3395 3396 LegalizerHelper::LegalizeResult 3397 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3398 LLT NarrowTy) { 3399 if (TypeIdx != 0) 3400 return UnableToLegalize; 3401 3402 Register DstReg = MI.getOperand(0).getReg(); 3403 Register SrcReg = MI.getOperand(1).getReg(); 3404 LLT DstTy = MRI.getType(DstReg); 3405 LLT SrcTy = MRI.getType(SrcReg); 3406 3407 LLT NarrowTy0 = NarrowTy; 3408 LLT NarrowTy1; 3409 unsigned NumParts; 3410 3411 if (NarrowTy.isVector()) { 3412 // Uneven breakdown not handled. 3413 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3414 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3415 return UnableToLegalize; 3416 3417 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3418 } else { 3419 NumParts = DstTy.getNumElements(); 3420 NarrowTy1 = SrcTy.getElementType(); 3421 } 3422 3423 SmallVector<Register, 4> SrcRegs, DstRegs; 3424 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3425 3426 for (unsigned I = 0; I < NumParts; ++I) { 3427 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3428 MachineInstr *NewInst = 3429 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3430 3431 NewInst->setFlags(MI.getFlags()); 3432 DstRegs.push_back(DstReg); 3433 } 3434 3435 if (NarrowTy.isVector()) 3436 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3437 else 3438 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3439 3440 MI.eraseFromParent(); 3441 return Legalized; 3442 } 3443 3444 LegalizerHelper::LegalizeResult 3445 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3446 LLT NarrowTy) { 3447 Register DstReg = MI.getOperand(0).getReg(); 3448 Register Src0Reg = MI.getOperand(2).getReg(); 3449 LLT DstTy = MRI.getType(DstReg); 3450 LLT SrcTy = MRI.getType(Src0Reg); 3451 3452 unsigned NumParts; 3453 LLT NarrowTy0, NarrowTy1; 3454 3455 if (TypeIdx == 0) { 3456 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3457 unsigned OldElts = DstTy.getNumElements(); 3458 3459 NarrowTy0 = NarrowTy; 3460 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3461 NarrowTy1 = NarrowTy.isVector() ? 3462 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3463 SrcTy.getElementType(); 3464 3465 } else { 3466 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3467 unsigned OldElts = SrcTy.getNumElements(); 3468 3469 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3470 NarrowTy.getNumElements(); 3471 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3472 DstTy.getScalarSizeInBits()); 3473 NarrowTy1 = NarrowTy; 3474 } 3475 3476 // FIXME: Don't know how to handle the situation where the small vectors 3477 // aren't all the same size yet. 3478 if (NarrowTy1.isVector() && 3479 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3480 return UnableToLegalize; 3481 3482 CmpInst::Predicate Pred 3483 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3484 3485 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3486 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3487 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3488 3489 for (unsigned I = 0; I < NumParts; ++I) { 3490 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3491 DstRegs.push_back(DstReg); 3492 3493 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3494 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3495 else { 3496 MachineInstr *NewCmp 3497 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3498 NewCmp->setFlags(MI.getFlags()); 3499 } 3500 } 3501 3502 if (NarrowTy1.isVector()) 3503 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3504 else 3505 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3506 3507 MI.eraseFromParent(); 3508 return Legalized; 3509 } 3510 3511 LegalizerHelper::LegalizeResult 3512 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3513 LLT NarrowTy) { 3514 Register DstReg = MI.getOperand(0).getReg(); 3515 Register CondReg = MI.getOperand(1).getReg(); 3516 3517 unsigned NumParts = 0; 3518 LLT NarrowTy0, NarrowTy1; 3519 3520 LLT DstTy = MRI.getType(DstReg); 3521 LLT CondTy = MRI.getType(CondReg); 3522 unsigned Size = DstTy.getSizeInBits(); 3523 3524 assert(TypeIdx == 0 || CondTy.isVector()); 3525 3526 if (TypeIdx == 0) { 3527 NarrowTy0 = NarrowTy; 3528 NarrowTy1 = CondTy; 3529 3530 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3531 // FIXME: Don't know how to handle the situation where the small vectors 3532 // aren't all the same size yet. 3533 if (Size % NarrowSize != 0) 3534 return UnableToLegalize; 3535 3536 NumParts = Size / NarrowSize; 3537 3538 // Need to break down the condition type 3539 if (CondTy.isVector()) { 3540 if (CondTy.getNumElements() == NumParts) 3541 NarrowTy1 = CondTy.getElementType(); 3542 else 3543 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3544 CondTy.getScalarSizeInBits()); 3545 } 3546 } else { 3547 NumParts = CondTy.getNumElements(); 3548 if (NarrowTy.isVector()) { 3549 // TODO: Handle uneven breakdown. 3550 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3551 return UnableToLegalize; 3552 3553 return UnableToLegalize; 3554 } else { 3555 NarrowTy0 = DstTy.getElementType(); 3556 NarrowTy1 = NarrowTy; 3557 } 3558 } 3559 3560 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3561 if (CondTy.isVector()) 3562 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3563 3564 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3565 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3566 3567 for (unsigned i = 0; i < NumParts; ++i) { 3568 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3569 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3570 Src1Regs[i], Src2Regs[i]); 3571 DstRegs.push_back(DstReg); 3572 } 3573 3574 if (NarrowTy0.isVector()) 3575 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3576 else 3577 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3578 3579 MI.eraseFromParent(); 3580 return Legalized; 3581 } 3582 3583 LegalizerHelper::LegalizeResult 3584 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3585 LLT NarrowTy) { 3586 const Register DstReg = MI.getOperand(0).getReg(); 3587 LLT PhiTy = MRI.getType(DstReg); 3588 LLT LeftoverTy; 3589 3590 // All of the operands need to have the same number of elements, so if we can 3591 // determine a type breakdown for the result type, we can for all of the 3592 // source types. 3593 int NumParts, NumLeftover; 3594 std::tie(NumParts, NumLeftover) 3595 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3596 if (NumParts < 0) 3597 return UnableToLegalize; 3598 3599 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3600 SmallVector<MachineInstrBuilder, 4> NewInsts; 3601 3602 const int TotalNumParts = NumParts + NumLeftover; 3603 3604 // Insert the new phis in the result block first. 3605 for (int I = 0; I != TotalNumParts; ++I) { 3606 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3607 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3608 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3609 .addDef(PartDstReg)); 3610 if (I < NumParts) 3611 DstRegs.push_back(PartDstReg); 3612 else 3613 LeftoverDstRegs.push_back(PartDstReg); 3614 } 3615 3616 MachineBasicBlock *MBB = MI.getParent(); 3617 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3618 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3619 3620 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3621 3622 // Insert code to extract the incoming values in each predecessor block. 3623 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3624 PartRegs.clear(); 3625 LeftoverRegs.clear(); 3626 3627 Register SrcReg = MI.getOperand(I).getReg(); 3628 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3629 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3630 3631 LLT Unused; 3632 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3633 LeftoverRegs)) 3634 return UnableToLegalize; 3635 3636 // Add the newly created operand splits to the existing instructions. The 3637 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3638 // pieces. 3639 for (int J = 0; J != TotalNumParts; ++J) { 3640 MachineInstrBuilder MIB = NewInsts[J]; 3641 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3642 MIB.addMBB(&OpMBB); 3643 } 3644 } 3645 3646 MI.eraseFromParent(); 3647 return Legalized; 3648 } 3649 3650 LegalizerHelper::LegalizeResult 3651 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3652 unsigned TypeIdx, 3653 LLT NarrowTy) { 3654 if (TypeIdx != 1) 3655 return UnableToLegalize; 3656 3657 const int NumDst = MI.getNumOperands() - 1; 3658 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3659 LLT SrcTy = MRI.getType(SrcReg); 3660 3661 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3662 3663 // TODO: Create sequence of extracts. 3664 if (DstTy == NarrowTy) 3665 return UnableToLegalize; 3666 3667 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3668 if (DstTy == GCDTy) { 3669 // This would just be a copy of the same unmerge. 3670 // TODO: Create extracts, pad with undef and create intermediate merges. 3671 return UnableToLegalize; 3672 } 3673 3674 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3675 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3676 const int PartsPerUnmerge = NumDst / NumUnmerge; 3677 3678 for (int I = 0; I != NumUnmerge; ++I) { 3679 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3680 3681 for (int J = 0; J != PartsPerUnmerge; ++J) 3682 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3683 MIB.addUse(Unmerge.getReg(I)); 3684 } 3685 3686 MI.eraseFromParent(); 3687 return Legalized; 3688 } 3689 3690 LegalizerHelper::LegalizeResult 3691 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3692 LLT NarrowTy) { 3693 Register Result = MI.getOperand(0).getReg(); 3694 Register Overflow = MI.getOperand(1).getReg(); 3695 Register LHS = MI.getOperand(2).getReg(); 3696 Register RHS = MI.getOperand(3).getReg(); 3697 3698 LLT SrcTy = MRI.getType(LHS); 3699 if (!SrcTy.isVector()) 3700 return UnableToLegalize; 3701 3702 LLT ElementType = SrcTy.getElementType(); 3703 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3704 const int NumResult = SrcTy.getNumElements(); 3705 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3706 3707 // Unmerge the operands to smaller parts of GCD type. 3708 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3709 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3710 3711 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3712 const int PartsPerUnmerge = NumResult / NumOps; 3713 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3714 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3715 3716 // Perform the operation over unmerged parts. 3717 SmallVector<Register, 8> ResultParts; 3718 SmallVector<Register, 8> OverflowParts; 3719 for (int I = 0; I != NumOps; ++I) { 3720 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3721 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3722 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3723 {Operand1, Operand2}); 3724 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3725 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3726 } 3727 3728 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3729 LLT OverflowLCMTy = 3730 LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy); 3731 3732 // Recombine the pieces to the original result and overflow registers. 3733 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3734 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3735 MI.eraseFromParent(); 3736 return Legalized; 3737 } 3738 3739 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3740 // a vector 3741 // 3742 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3743 // undef as necessary. 3744 // 3745 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3746 // -> <2 x s16> 3747 // 3748 // %4:_(s16) = G_IMPLICIT_DEF 3749 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3750 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3751 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3752 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3753 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3754 LegalizerHelper::LegalizeResult 3755 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3756 LLT NarrowTy) { 3757 Register DstReg = MI.getOperand(0).getReg(); 3758 LLT DstTy = MRI.getType(DstReg); 3759 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3760 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3761 3762 // Break into a common type 3763 SmallVector<Register, 16> Parts; 3764 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3765 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3766 3767 // Build the requested new merge, padding with undef. 3768 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3769 TargetOpcode::G_ANYEXT); 3770 3771 // Pack into the original result register. 3772 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3773 3774 MI.eraseFromParent(); 3775 return Legalized; 3776 } 3777 3778 LegalizerHelper::LegalizeResult 3779 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3780 unsigned TypeIdx, 3781 LLT NarrowVecTy) { 3782 Register DstReg = MI.getOperand(0).getReg(); 3783 Register SrcVec = MI.getOperand(1).getReg(); 3784 Register InsertVal; 3785 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3786 3787 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3788 if (IsInsert) 3789 InsertVal = MI.getOperand(2).getReg(); 3790 3791 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3792 3793 // TODO: Handle total scalarization case. 3794 if (!NarrowVecTy.isVector()) 3795 return UnableToLegalize; 3796 3797 LLT VecTy = MRI.getType(SrcVec); 3798 3799 // If the index is a constant, we can really break this down as you would 3800 // expect, and index into the target size pieces. 3801 int64_t IdxVal; 3802 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3803 // Avoid out of bounds indexing the pieces. 3804 if (IdxVal >= VecTy.getNumElements()) { 3805 MIRBuilder.buildUndef(DstReg); 3806 MI.eraseFromParent(); 3807 return Legalized; 3808 } 3809 3810 SmallVector<Register, 8> VecParts; 3811 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3812 3813 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3814 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3815 TargetOpcode::G_ANYEXT); 3816 3817 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3818 3819 LLT IdxTy = MRI.getType(Idx); 3820 int64_t PartIdx = IdxVal / NewNumElts; 3821 auto NewIdx = 3822 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3823 3824 if (IsInsert) { 3825 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3826 3827 // Use the adjusted index to insert into one of the subvectors. 3828 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3829 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3830 VecParts[PartIdx] = InsertPart.getReg(0); 3831 3832 // Recombine the inserted subvector with the others to reform the result 3833 // vector. 3834 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3835 } else { 3836 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3837 } 3838 3839 MI.eraseFromParent(); 3840 return Legalized; 3841 } 3842 3843 // With a variable index, we can't perform the operation in a smaller type, so 3844 // we're forced to expand this. 3845 // 3846 // TODO: We could emit a chain of compare/select to figure out which piece to 3847 // index. 3848 return lowerExtractInsertVectorElt(MI); 3849 } 3850 3851 LegalizerHelper::LegalizeResult 3852 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3853 LLT NarrowTy) { 3854 // FIXME: Don't know how to handle secondary types yet. 3855 if (TypeIdx != 0) 3856 return UnableToLegalize; 3857 3858 MachineMemOperand *MMO = *MI.memoperands_begin(); 3859 3860 // This implementation doesn't work for atomics. Give up instead of doing 3861 // something invalid. 3862 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3863 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3864 return UnableToLegalize; 3865 3866 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3867 Register ValReg = MI.getOperand(0).getReg(); 3868 Register AddrReg = MI.getOperand(1).getReg(); 3869 LLT ValTy = MRI.getType(ValReg); 3870 3871 // FIXME: Do we need a distinct NarrowMemory legalize action? 3872 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3873 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3874 return UnableToLegalize; 3875 } 3876 3877 int NumParts = -1; 3878 int NumLeftover = -1; 3879 LLT LeftoverTy; 3880 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3881 if (IsLoad) { 3882 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3883 } else { 3884 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3885 NarrowLeftoverRegs)) { 3886 NumParts = NarrowRegs.size(); 3887 NumLeftover = NarrowLeftoverRegs.size(); 3888 } 3889 } 3890 3891 if (NumParts == -1) 3892 return UnableToLegalize; 3893 3894 LLT PtrTy = MRI.getType(AddrReg); 3895 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3896 3897 unsigned TotalSize = ValTy.getSizeInBits(); 3898 3899 // Split the load/store into PartTy sized pieces starting at Offset. If this 3900 // is a load, return the new registers in ValRegs. For a store, each elements 3901 // of ValRegs should be PartTy. Returns the next offset that needs to be 3902 // handled. 3903 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3904 unsigned Offset) -> unsigned { 3905 MachineFunction &MF = MIRBuilder.getMF(); 3906 unsigned PartSize = PartTy.getSizeInBits(); 3907 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3908 Offset += PartSize, ++Idx) { 3909 unsigned ByteSize = PartSize / 8; 3910 unsigned ByteOffset = Offset / 8; 3911 Register NewAddrReg; 3912 3913 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3914 3915 MachineMemOperand *NewMMO = 3916 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3917 3918 if (IsLoad) { 3919 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3920 ValRegs.push_back(Dst); 3921 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3922 } else { 3923 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3924 } 3925 } 3926 3927 return Offset; 3928 }; 3929 3930 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3931 3932 // Handle the rest of the register if this isn't an even type breakdown. 3933 if (LeftoverTy.isValid()) 3934 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3935 3936 if (IsLoad) { 3937 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3938 LeftoverTy, NarrowLeftoverRegs); 3939 } 3940 3941 MI.eraseFromParent(); 3942 return Legalized; 3943 } 3944 3945 LegalizerHelper::LegalizeResult 3946 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3947 LLT NarrowTy) { 3948 assert(TypeIdx == 0 && "only one type index expected"); 3949 3950 const unsigned Opc = MI.getOpcode(); 3951 const int NumDefOps = MI.getNumExplicitDefs(); 3952 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 3953 const unsigned Flags = MI.getFlags(); 3954 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3955 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3956 3957 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 3958 "result and 1-3 sources or 2 results and " 3959 "1-2 sources"); 3960 3961 SmallVector<Register, 2> DstRegs; 3962 for (int I = 0; I < NumDefOps; ++I) 3963 DstRegs.push_back(MI.getOperand(I).getReg()); 3964 3965 // First of all check whether we are narrowing (changing the element type) 3966 // or reducing the vector elements 3967 const LLT DstTy = MRI.getType(DstRegs[0]); 3968 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3969 3970 SmallVector<Register, 8> ExtractedRegs[3]; 3971 SmallVector<Register, 8> Parts; 3972 3973 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3974 3975 // Break down all the sources into NarrowTy pieces we can operate on. This may 3976 // involve creating merges to a wider type, padded with undef. 3977 for (int I = 0; I != NumSrcOps; ++I) { 3978 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 3979 LLT SrcTy = MRI.getType(SrcReg); 3980 3981 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3982 // For fewerElements, this is a smaller vector with the same element type. 3983 LLT OpNarrowTy; 3984 if (IsNarrow) { 3985 OpNarrowTy = NarrowScalarTy; 3986 3987 // In case of narrowing, we need to cast vectors to scalars for this to 3988 // work properly 3989 // FIXME: Can we do without the bitcast here if we're narrowing? 3990 if (SrcTy.isVector()) { 3991 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3992 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3993 } 3994 } else { 3995 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3996 } 3997 3998 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3999 4000 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4001 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4002 TargetOpcode::G_ANYEXT); 4003 } 4004 4005 SmallVector<Register, 8> ResultRegs[2]; 4006 4007 // Input operands for each sub-instruction. 4008 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4009 4010 int NumParts = ExtractedRegs[0].size(); 4011 const unsigned DstSize = DstTy.getSizeInBits(); 4012 const LLT DstScalarTy = LLT::scalar(DstSize); 4013 4014 // Narrowing needs to use scalar types 4015 LLT DstLCMTy, NarrowDstTy; 4016 if (IsNarrow) { 4017 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4018 NarrowDstTy = NarrowScalarTy; 4019 } else { 4020 DstLCMTy = getLCMType(DstTy, NarrowTy); 4021 NarrowDstTy = NarrowTy; 4022 } 4023 4024 // We widened the source registers to satisfy merge/unmerge size 4025 // constraints. We'll have some extra fully undef parts. 4026 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4027 4028 for (int I = 0; I != NumRealParts; ++I) { 4029 // Emit this instruction on each of the split pieces. 4030 for (int J = 0; J != NumSrcOps; ++J) 4031 InputRegs[J] = ExtractedRegs[J][I]; 4032 4033 MachineInstrBuilder Inst; 4034 if (NumDefOps == 1) 4035 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4036 else 4037 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4038 Flags); 4039 4040 for (int J = 0; J != NumDefOps; ++J) 4041 ResultRegs[J].push_back(Inst.getReg(J)); 4042 } 4043 4044 // Fill out the widened result with undef instead of creating instructions 4045 // with undef inputs. 4046 int NumUndefParts = NumParts - NumRealParts; 4047 if (NumUndefParts != 0) { 4048 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4049 for (int I = 0; I != NumDefOps; ++I) 4050 ResultRegs[I].append(NumUndefParts, Undef); 4051 } 4052 4053 // Extract the possibly padded result. Use a scratch register if we need to do 4054 // a final bitcast, otherwise use the original result register. 4055 Register MergeDstReg; 4056 for (int I = 0; I != NumDefOps; ++I) { 4057 if (IsNarrow && DstTy.isVector()) 4058 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4059 else 4060 MergeDstReg = DstRegs[I]; 4061 4062 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4063 4064 // Recast to vector if we narrowed a vector 4065 if (IsNarrow && DstTy.isVector()) 4066 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4067 } 4068 4069 MI.eraseFromParent(); 4070 return Legalized; 4071 } 4072 4073 LegalizerHelper::LegalizeResult 4074 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4075 LLT NarrowTy) { 4076 Register DstReg = MI.getOperand(0).getReg(); 4077 Register SrcReg = MI.getOperand(1).getReg(); 4078 int64_t Imm = MI.getOperand(2).getImm(); 4079 4080 LLT DstTy = MRI.getType(DstReg); 4081 4082 SmallVector<Register, 8> Parts; 4083 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4084 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4085 4086 for (Register &R : Parts) 4087 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4088 4089 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4090 4091 MI.eraseFromParent(); 4092 return Legalized; 4093 } 4094 4095 LegalizerHelper::LegalizeResult 4096 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4097 LLT NarrowTy) { 4098 using namespace TargetOpcode; 4099 4100 switch (MI.getOpcode()) { 4101 case G_IMPLICIT_DEF: 4102 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4103 case G_TRUNC: 4104 case G_AND: 4105 case G_OR: 4106 case G_XOR: 4107 case G_ADD: 4108 case G_SUB: 4109 case G_MUL: 4110 case G_PTR_ADD: 4111 case G_SMULH: 4112 case G_UMULH: 4113 case G_FADD: 4114 case G_FMUL: 4115 case G_FSUB: 4116 case G_FNEG: 4117 case G_FABS: 4118 case G_FCANONICALIZE: 4119 case G_FDIV: 4120 case G_FREM: 4121 case G_FMA: 4122 case G_FMAD: 4123 case G_FPOW: 4124 case G_FEXP: 4125 case G_FEXP2: 4126 case G_FLOG: 4127 case G_FLOG2: 4128 case G_FLOG10: 4129 case G_FNEARBYINT: 4130 case G_FCEIL: 4131 case G_FFLOOR: 4132 case G_FRINT: 4133 case G_INTRINSIC_ROUND: 4134 case G_INTRINSIC_ROUNDEVEN: 4135 case G_INTRINSIC_TRUNC: 4136 case G_FCOS: 4137 case G_FSIN: 4138 case G_FSQRT: 4139 case G_BSWAP: 4140 case G_BITREVERSE: 4141 case G_SDIV: 4142 case G_UDIV: 4143 case G_SREM: 4144 case G_UREM: 4145 case G_SMIN: 4146 case G_SMAX: 4147 case G_UMIN: 4148 case G_UMAX: 4149 case G_FMINNUM: 4150 case G_FMAXNUM: 4151 case G_FMINNUM_IEEE: 4152 case G_FMAXNUM_IEEE: 4153 case G_FMINIMUM: 4154 case G_FMAXIMUM: 4155 case G_FSHL: 4156 case G_FSHR: 4157 case G_FREEZE: 4158 case G_SADDSAT: 4159 case G_SSUBSAT: 4160 case G_UADDSAT: 4161 case G_USUBSAT: 4162 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4163 case G_UMULO: 4164 case G_SMULO: 4165 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4166 case G_SHL: 4167 case G_LSHR: 4168 case G_ASHR: 4169 case G_SSHLSAT: 4170 case G_USHLSAT: 4171 case G_CTLZ: 4172 case G_CTLZ_ZERO_UNDEF: 4173 case G_CTTZ: 4174 case G_CTTZ_ZERO_UNDEF: 4175 case G_CTPOP: 4176 case G_FCOPYSIGN: 4177 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4178 case G_ZEXT: 4179 case G_SEXT: 4180 case G_ANYEXT: 4181 case G_FPEXT: 4182 case G_FPTRUNC: 4183 case G_SITOFP: 4184 case G_UITOFP: 4185 case G_FPTOSI: 4186 case G_FPTOUI: 4187 case G_INTTOPTR: 4188 case G_PTRTOINT: 4189 case G_ADDRSPACE_CAST: 4190 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4191 case G_ICMP: 4192 case G_FCMP: 4193 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4194 case G_SELECT: 4195 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4196 case G_PHI: 4197 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4198 case G_UNMERGE_VALUES: 4199 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4200 case G_BUILD_VECTOR: 4201 assert(TypeIdx == 0 && "not a vector type index"); 4202 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4203 case G_CONCAT_VECTORS: 4204 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4205 return UnableToLegalize; 4206 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4207 case G_EXTRACT_VECTOR_ELT: 4208 case G_INSERT_VECTOR_ELT: 4209 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4210 case G_LOAD: 4211 case G_STORE: 4212 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4213 case G_SEXT_INREG: 4214 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4215 GISEL_VECREDUCE_CASES_NONSEQ 4216 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4217 default: 4218 return UnableToLegalize; 4219 } 4220 } 4221 4222 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4223 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4224 unsigned Opc = MI.getOpcode(); 4225 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4226 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4227 "Sequential reductions not expected"); 4228 4229 if (TypeIdx != 1) 4230 return UnableToLegalize; 4231 4232 // The semantics of the normal non-sequential reductions allow us to freely 4233 // re-associate the operation. 4234 Register SrcReg = MI.getOperand(1).getReg(); 4235 LLT SrcTy = MRI.getType(SrcReg); 4236 Register DstReg = MI.getOperand(0).getReg(); 4237 LLT DstTy = MRI.getType(DstReg); 4238 4239 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4240 return UnableToLegalize; 4241 4242 SmallVector<Register> SplitSrcs; 4243 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4244 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4245 SmallVector<Register> PartialReductions; 4246 for (unsigned Part = 0; Part < NumParts; ++Part) { 4247 PartialReductions.push_back( 4248 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4249 } 4250 4251 unsigned ScalarOpc; 4252 switch (Opc) { 4253 case TargetOpcode::G_VECREDUCE_FADD: 4254 ScalarOpc = TargetOpcode::G_FADD; 4255 break; 4256 case TargetOpcode::G_VECREDUCE_FMUL: 4257 ScalarOpc = TargetOpcode::G_FMUL; 4258 break; 4259 case TargetOpcode::G_VECREDUCE_FMAX: 4260 ScalarOpc = TargetOpcode::G_FMAXNUM; 4261 break; 4262 case TargetOpcode::G_VECREDUCE_FMIN: 4263 ScalarOpc = TargetOpcode::G_FMINNUM; 4264 break; 4265 case TargetOpcode::G_VECREDUCE_ADD: 4266 ScalarOpc = TargetOpcode::G_ADD; 4267 break; 4268 case TargetOpcode::G_VECREDUCE_MUL: 4269 ScalarOpc = TargetOpcode::G_MUL; 4270 break; 4271 case TargetOpcode::G_VECREDUCE_AND: 4272 ScalarOpc = TargetOpcode::G_AND; 4273 break; 4274 case TargetOpcode::G_VECREDUCE_OR: 4275 ScalarOpc = TargetOpcode::G_OR; 4276 break; 4277 case TargetOpcode::G_VECREDUCE_XOR: 4278 ScalarOpc = TargetOpcode::G_XOR; 4279 break; 4280 case TargetOpcode::G_VECREDUCE_SMAX: 4281 ScalarOpc = TargetOpcode::G_SMAX; 4282 break; 4283 case TargetOpcode::G_VECREDUCE_SMIN: 4284 ScalarOpc = TargetOpcode::G_SMIN; 4285 break; 4286 case TargetOpcode::G_VECREDUCE_UMAX: 4287 ScalarOpc = TargetOpcode::G_UMAX; 4288 break; 4289 case TargetOpcode::G_VECREDUCE_UMIN: 4290 ScalarOpc = TargetOpcode::G_UMIN; 4291 break; 4292 default: 4293 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4294 return UnableToLegalize; 4295 } 4296 4297 // If the types involved are powers of 2, we can generate intermediate vector 4298 // ops, before generating a final reduction operation. 4299 if (isPowerOf2_32(SrcTy.getNumElements()) && 4300 isPowerOf2_32(NarrowTy.getNumElements())) { 4301 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4302 } 4303 4304 Register Acc = PartialReductions[0]; 4305 for (unsigned Part = 1; Part < NumParts; ++Part) { 4306 if (Part == NumParts - 1) { 4307 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4308 {Acc, PartialReductions[Part]}); 4309 } else { 4310 Acc = MIRBuilder 4311 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4312 .getReg(0); 4313 } 4314 } 4315 MI.eraseFromParent(); 4316 return Legalized; 4317 } 4318 4319 LegalizerHelper::LegalizeResult 4320 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4321 LLT SrcTy, LLT NarrowTy, 4322 unsigned ScalarOpc) { 4323 SmallVector<Register> SplitSrcs; 4324 // Split the sources into NarrowTy size pieces. 4325 extractParts(SrcReg, NarrowTy, 4326 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4327 // We're going to do a tree reduction using vector operations until we have 4328 // one NarrowTy size value left. 4329 while (SplitSrcs.size() > 1) { 4330 SmallVector<Register> PartialRdxs; 4331 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4332 Register LHS = SplitSrcs[Idx]; 4333 Register RHS = SplitSrcs[Idx + 1]; 4334 // Create the intermediate vector op. 4335 Register Res = 4336 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4337 PartialRdxs.push_back(Res); 4338 } 4339 SplitSrcs = std::move(PartialRdxs); 4340 } 4341 // Finally generate the requested NarrowTy based reduction. 4342 Observer.changingInstr(MI); 4343 MI.getOperand(1).setReg(SplitSrcs[0]); 4344 Observer.changedInstr(MI); 4345 return Legalized; 4346 } 4347 4348 LegalizerHelper::LegalizeResult 4349 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4350 const LLT HalfTy, const LLT AmtTy) { 4351 4352 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4353 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4354 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4355 4356 if (Amt.isNullValue()) { 4357 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4358 MI.eraseFromParent(); 4359 return Legalized; 4360 } 4361 4362 LLT NVT = HalfTy; 4363 unsigned NVTBits = HalfTy.getSizeInBits(); 4364 unsigned VTBits = 2 * NVTBits; 4365 4366 SrcOp Lo(Register(0)), Hi(Register(0)); 4367 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4368 if (Amt.ugt(VTBits)) { 4369 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4370 } else if (Amt.ugt(NVTBits)) { 4371 Lo = MIRBuilder.buildConstant(NVT, 0); 4372 Hi = MIRBuilder.buildShl(NVT, InL, 4373 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4374 } else if (Amt == NVTBits) { 4375 Lo = MIRBuilder.buildConstant(NVT, 0); 4376 Hi = InL; 4377 } else { 4378 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4379 auto OrLHS = 4380 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4381 auto OrRHS = MIRBuilder.buildLShr( 4382 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4383 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4384 } 4385 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4386 if (Amt.ugt(VTBits)) { 4387 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4388 } else if (Amt.ugt(NVTBits)) { 4389 Lo = MIRBuilder.buildLShr(NVT, InH, 4390 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4391 Hi = MIRBuilder.buildConstant(NVT, 0); 4392 } else if (Amt == NVTBits) { 4393 Lo = InH; 4394 Hi = MIRBuilder.buildConstant(NVT, 0); 4395 } else { 4396 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4397 4398 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4399 auto OrRHS = MIRBuilder.buildShl( 4400 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4401 4402 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4403 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4404 } 4405 } else { 4406 if (Amt.ugt(VTBits)) { 4407 Hi = Lo = MIRBuilder.buildAShr( 4408 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4409 } else if (Amt.ugt(NVTBits)) { 4410 Lo = MIRBuilder.buildAShr(NVT, InH, 4411 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4412 Hi = MIRBuilder.buildAShr(NVT, InH, 4413 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4414 } else if (Amt == NVTBits) { 4415 Lo = InH; 4416 Hi = MIRBuilder.buildAShr(NVT, InH, 4417 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4418 } else { 4419 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4420 4421 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4422 auto OrRHS = MIRBuilder.buildShl( 4423 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4424 4425 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4426 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4427 } 4428 } 4429 4430 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4431 MI.eraseFromParent(); 4432 4433 return Legalized; 4434 } 4435 4436 // TODO: Optimize if constant shift amount. 4437 LegalizerHelper::LegalizeResult 4438 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4439 LLT RequestedTy) { 4440 if (TypeIdx == 1) { 4441 Observer.changingInstr(MI); 4442 narrowScalarSrc(MI, RequestedTy, 2); 4443 Observer.changedInstr(MI); 4444 return Legalized; 4445 } 4446 4447 Register DstReg = MI.getOperand(0).getReg(); 4448 LLT DstTy = MRI.getType(DstReg); 4449 if (DstTy.isVector()) 4450 return UnableToLegalize; 4451 4452 Register Amt = MI.getOperand(2).getReg(); 4453 LLT ShiftAmtTy = MRI.getType(Amt); 4454 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4455 if (DstEltSize % 2 != 0) 4456 return UnableToLegalize; 4457 4458 // Ignore the input type. We can only go to exactly half the size of the 4459 // input. If that isn't small enough, the resulting pieces will be further 4460 // legalized. 4461 const unsigned NewBitSize = DstEltSize / 2; 4462 const LLT HalfTy = LLT::scalar(NewBitSize); 4463 const LLT CondTy = LLT::scalar(1); 4464 4465 if (const MachineInstr *KShiftAmt = 4466 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4467 return narrowScalarShiftByConstant( 4468 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4469 } 4470 4471 // TODO: Expand with known bits. 4472 4473 // Handle the fully general expansion by an unknown amount. 4474 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4475 4476 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4477 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4478 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4479 4480 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4481 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4482 4483 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4484 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4485 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4486 4487 Register ResultRegs[2]; 4488 switch (MI.getOpcode()) { 4489 case TargetOpcode::G_SHL: { 4490 // Short: ShAmt < NewBitSize 4491 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4492 4493 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4494 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4495 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4496 4497 // Long: ShAmt >= NewBitSize 4498 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4499 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4500 4501 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4502 auto Hi = MIRBuilder.buildSelect( 4503 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4504 4505 ResultRegs[0] = Lo.getReg(0); 4506 ResultRegs[1] = Hi.getReg(0); 4507 break; 4508 } 4509 case TargetOpcode::G_LSHR: 4510 case TargetOpcode::G_ASHR: { 4511 // Short: ShAmt < NewBitSize 4512 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4513 4514 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4515 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4516 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4517 4518 // Long: ShAmt >= NewBitSize 4519 MachineInstrBuilder HiL; 4520 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4521 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4522 } else { 4523 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4524 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4525 } 4526 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4527 {InH, AmtExcess}); // Lo from Hi part. 4528 4529 auto Lo = MIRBuilder.buildSelect( 4530 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4531 4532 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4533 4534 ResultRegs[0] = Lo.getReg(0); 4535 ResultRegs[1] = Hi.getReg(0); 4536 break; 4537 } 4538 default: 4539 llvm_unreachable("not a shift"); 4540 } 4541 4542 MIRBuilder.buildMerge(DstReg, ResultRegs); 4543 MI.eraseFromParent(); 4544 return Legalized; 4545 } 4546 4547 LegalizerHelper::LegalizeResult 4548 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4549 LLT MoreTy) { 4550 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4551 4552 Observer.changingInstr(MI); 4553 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4554 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4555 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4556 moreElementsVectorSrc(MI, MoreTy, I); 4557 } 4558 4559 MachineBasicBlock &MBB = *MI.getParent(); 4560 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4561 moreElementsVectorDst(MI, MoreTy, 0); 4562 Observer.changedInstr(MI); 4563 return Legalized; 4564 } 4565 4566 LegalizerHelper::LegalizeResult 4567 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4568 LLT MoreTy) { 4569 unsigned Opc = MI.getOpcode(); 4570 switch (Opc) { 4571 case TargetOpcode::G_IMPLICIT_DEF: 4572 case TargetOpcode::G_LOAD: { 4573 if (TypeIdx != 0) 4574 return UnableToLegalize; 4575 Observer.changingInstr(MI); 4576 moreElementsVectorDst(MI, MoreTy, 0); 4577 Observer.changedInstr(MI); 4578 return Legalized; 4579 } 4580 case TargetOpcode::G_STORE: 4581 if (TypeIdx != 0) 4582 return UnableToLegalize; 4583 Observer.changingInstr(MI); 4584 moreElementsVectorSrc(MI, MoreTy, 0); 4585 Observer.changedInstr(MI); 4586 return Legalized; 4587 case TargetOpcode::G_AND: 4588 case TargetOpcode::G_OR: 4589 case TargetOpcode::G_XOR: 4590 case TargetOpcode::G_SMIN: 4591 case TargetOpcode::G_SMAX: 4592 case TargetOpcode::G_UMIN: 4593 case TargetOpcode::G_UMAX: 4594 case TargetOpcode::G_FMINNUM: 4595 case TargetOpcode::G_FMAXNUM: 4596 case TargetOpcode::G_FMINNUM_IEEE: 4597 case TargetOpcode::G_FMAXNUM_IEEE: 4598 case TargetOpcode::G_FMINIMUM: 4599 case TargetOpcode::G_FMAXIMUM: { 4600 Observer.changingInstr(MI); 4601 moreElementsVectorSrc(MI, MoreTy, 1); 4602 moreElementsVectorSrc(MI, MoreTy, 2); 4603 moreElementsVectorDst(MI, MoreTy, 0); 4604 Observer.changedInstr(MI); 4605 return Legalized; 4606 } 4607 case TargetOpcode::G_EXTRACT: 4608 if (TypeIdx != 1) 4609 return UnableToLegalize; 4610 Observer.changingInstr(MI); 4611 moreElementsVectorSrc(MI, MoreTy, 1); 4612 Observer.changedInstr(MI); 4613 return Legalized; 4614 case TargetOpcode::G_INSERT: 4615 case TargetOpcode::G_FREEZE: 4616 if (TypeIdx != 0) 4617 return UnableToLegalize; 4618 Observer.changingInstr(MI); 4619 moreElementsVectorSrc(MI, MoreTy, 1); 4620 moreElementsVectorDst(MI, MoreTy, 0); 4621 Observer.changedInstr(MI); 4622 return Legalized; 4623 case TargetOpcode::G_SELECT: 4624 if (TypeIdx != 0) 4625 return UnableToLegalize; 4626 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4627 return UnableToLegalize; 4628 4629 Observer.changingInstr(MI); 4630 moreElementsVectorSrc(MI, MoreTy, 2); 4631 moreElementsVectorSrc(MI, MoreTy, 3); 4632 moreElementsVectorDst(MI, MoreTy, 0); 4633 Observer.changedInstr(MI); 4634 return Legalized; 4635 case TargetOpcode::G_UNMERGE_VALUES: { 4636 if (TypeIdx != 1) 4637 return UnableToLegalize; 4638 4639 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4640 int NumDst = MI.getNumOperands() - 1; 4641 moreElementsVectorSrc(MI, MoreTy, NumDst); 4642 4643 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4644 for (int I = 0; I != NumDst; ++I) 4645 MIB.addDef(MI.getOperand(I).getReg()); 4646 4647 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4648 for (int I = NumDst; I != NewNumDst; ++I) 4649 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4650 4651 MIB.addUse(MI.getOperand(NumDst).getReg()); 4652 MI.eraseFromParent(); 4653 return Legalized; 4654 } 4655 case TargetOpcode::G_PHI: 4656 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4657 default: 4658 return UnableToLegalize; 4659 } 4660 } 4661 4662 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4663 ArrayRef<Register> Src1Regs, 4664 ArrayRef<Register> Src2Regs, 4665 LLT NarrowTy) { 4666 MachineIRBuilder &B = MIRBuilder; 4667 unsigned SrcParts = Src1Regs.size(); 4668 unsigned DstParts = DstRegs.size(); 4669 4670 unsigned DstIdx = 0; // Low bits of the result. 4671 Register FactorSum = 4672 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4673 DstRegs[DstIdx] = FactorSum; 4674 4675 unsigned CarrySumPrevDstIdx; 4676 SmallVector<Register, 4> Factors; 4677 4678 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4679 // Collect low parts of muls for DstIdx. 4680 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4681 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4682 MachineInstrBuilder Mul = 4683 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4684 Factors.push_back(Mul.getReg(0)); 4685 } 4686 // Collect high parts of muls from previous DstIdx. 4687 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4688 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4689 MachineInstrBuilder Umulh = 4690 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4691 Factors.push_back(Umulh.getReg(0)); 4692 } 4693 // Add CarrySum from additions calculated for previous DstIdx. 4694 if (DstIdx != 1) { 4695 Factors.push_back(CarrySumPrevDstIdx); 4696 } 4697 4698 Register CarrySum; 4699 // Add all factors and accumulate all carries into CarrySum. 4700 if (DstIdx != DstParts - 1) { 4701 MachineInstrBuilder Uaddo = 4702 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4703 FactorSum = Uaddo.getReg(0); 4704 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4705 for (unsigned i = 2; i < Factors.size(); ++i) { 4706 MachineInstrBuilder Uaddo = 4707 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4708 FactorSum = Uaddo.getReg(0); 4709 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4710 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4711 } 4712 } else { 4713 // Since value for the next index is not calculated, neither is CarrySum. 4714 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4715 for (unsigned i = 2; i < Factors.size(); ++i) 4716 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4717 } 4718 4719 CarrySumPrevDstIdx = CarrySum; 4720 DstRegs[DstIdx] = FactorSum; 4721 Factors.clear(); 4722 } 4723 } 4724 4725 LegalizerHelper::LegalizeResult 4726 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4727 LLT NarrowTy) { 4728 if (TypeIdx != 0) 4729 return UnableToLegalize; 4730 4731 Register DstReg = MI.getOperand(0).getReg(); 4732 LLT DstType = MRI.getType(DstReg); 4733 // FIXME: add support for vector types 4734 if (DstType.isVector()) 4735 return UnableToLegalize; 4736 4737 uint64_t SizeOp0 = DstType.getSizeInBits(); 4738 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4739 4740 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4741 // NarrowSize. 4742 if (SizeOp0 % NarrowSize != 0) 4743 return UnableToLegalize; 4744 4745 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4746 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4747 4748 unsigned Opcode = MI.getOpcode(); 4749 unsigned OpO, OpE, OpF; 4750 switch (Opcode) { 4751 case TargetOpcode::G_SADDO: 4752 case TargetOpcode::G_SADDE: 4753 case TargetOpcode::G_UADDO: 4754 case TargetOpcode::G_UADDE: 4755 case TargetOpcode::G_ADD: 4756 OpO = TargetOpcode::G_UADDO; 4757 OpE = TargetOpcode::G_UADDE; 4758 OpF = TargetOpcode::G_UADDE; 4759 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4760 OpF = TargetOpcode::G_SADDE; 4761 break; 4762 case TargetOpcode::G_SSUBO: 4763 case TargetOpcode::G_SSUBE: 4764 case TargetOpcode::G_USUBO: 4765 case TargetOpcode::G_USUBE: 4766 case TargetOpcode::G_SUB: 4767 OpO = TargetOpcode::G_USUBO; 4768 OpE = TargetOpcode::G_USUBE; 4769 OpF = TargetOpcode::G_USUBE; 4770 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4771 OpF = TargetOpcode::G_SSUBE; 4772 break; 4773 default: 4774 llvm_unreachable("Unexpected add/sub opcode!"); 4775 } 4776 4777 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4778 unsigned NumDefs = MI.getNumExplicitDefs(); 4779 Register Src1 = MI.getOperand(NumDefs).getReg(); 4780 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4781 Register CarryDst; 4782 if (NumDefs == 2) 4783 CarryDst = MI.getOperand(1).getReg(); 4784 Register CarryIn; 4785 if (MI.getNumOperands() == NumDefs + 3) 4786 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4787 4788 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4789 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4790 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4791 4792 for (int i = 0; i < NumParts; ++i) { 4793 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4794 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4795 // Forward the final carry-out to the destination register 4796 if (i == NumParts - 1 && CarryDst) 4797 CarryOut = CarryDst; 4798 4799 if (!CarryIn) { 4800 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4801 {Src1Regs[i], Src2Regs[i]}); 4802 } else if (i == NumParts - 1) { 4803 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4804 {Src1Regs[i], Src2Regs[i], CarryIn}); 4805 } else { 4806 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4807 {Src1Regs[i], Src2Regs[i], CarryIn}); 4808 } 4809 4810 DstRegs.push_back(DstReg); 4811 CarryIn = CarryOut; 4812 } 4813 MIRBuilder.buildMerge(DstReg, DstRegs); 4814 MI.eraseFromParent(); 4815 return Legalized; 4816 } 4817 4818 LegalizerHelper::LegalizeResult 4819 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4820 Register DstReg = MI.getOperand(0).getReg(); 4821 Register Src1 = MI.getOperand(1).getReg(); 4822 Register Src2 = MI.getOperand(2).getReg(); 4823 4824 LLT Ty = MRI.getType(DstReg); 4825 if (Ty.isVector()) 4826 return UnableToLegalize; 4827 4828 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4829 unsigned DstSize = Ty.getSizeInBits(); 4830 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4831 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4832 return UnableToLegalize; 4833 4834 unsigned NumDstParts = DstSize / NarrowSize; 4835 unsigned NumSrcParts = SrcSize / NarrowSize; 4836 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4837 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4838 4839 SmallVector<Register, 2> Src1Parts, Src2Parts; 4840 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4841 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4842 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4843 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4844 4845 // Take only high half of registers if this is high mul. 4846 ArrayRef<Register> DstRegs( 4847 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4848 MIRBuilder.buildMerge(DstReg, DstRegs); 4849 MI.eraseFromParent(); 4850 return Legalized; 4851 } 4852 4853 LegalizerHelper::LegalizeResult 4854 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 4855 LLT NarrowTy) { 4856 if (TypeIdx != 0) 4857 return UnableToLegalize; 4858 4859 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 4860 4861 Register Src = MI.getOperand(1).getReg(); 4862 LLT SrcTy = MRI.getType(Src); 4863 4864 // If all finite floats fit into the narrowed integer type, we can just swap 4865 // out the result type. This is practically only useful for conversions from 4866 // half to at least 16-bits, so just handle the one case. 4867 if (SrcTy.getScalarType() != LLT::scalar(16) || 4868 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 4869 return UnableToLegalize; 4870 4871 Observer.changingInstr(MI); 4872 narrowScalarDst(MI, NarrowTy, 0, 4873 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 4874 Observer.changedInstr(MI); 4875 return Legalized; 4876 } 4877 4878 LegalizerHelper::LegalizeResult 4879 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4880 LLT NarrowTy) { 4881 if (TypeIdx != 1) 4882 return UnableToLegalize; 4883 4884 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4885 4886 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4887 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4888 // NarrowSize. 4889 if (SizeOp1 % NarrowSize != 0) 4890 return UnableToLegalize; 4891 int NumParts = SizeOp1 / NarrowSize; 4892 4893 SmallVector<Register, 2> SrcRegs, DstRegs; 4894 SmallVector<uint64_t, 2> Indexes; 4895 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4896 4897 Register OpReg = MI.getOperand(0).getReg(); 4898 uint64_t OpStart = MI.getOperand(2).getImm(); 4899 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4900 for (int i = 0; i < NumParts; ++i) { 4901 unsigned SrcStart = i * NarrowSize; 4902 4903 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4904 // No part of the extract uses this subregister, ignore it. 4905 continue; 4906 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4907 // The entire subregister is extracted, forward the value. 4908 DstRegs.push_back(SrcRegs[i]); 4909 continue; 4910 } 4911 4912 // OpSegStart is where this destination segment would start in OpReg if it 4913 // extended infinitely in both directions. 4914 int64_t ExtractOffset; 4915 uint64_t SegSize; 4916 if (OpStart < SrcStart) { 4917 ExtractOffset = 0; 4918 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4919 } else { 4920 ExtractOffset = OpStart - SrcStart; 4921 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4922 } 4923 4924 Register SegReg = SrcRegs[i]; 4925 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4926 // A genuine extract is needed. 4927 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4928 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4929 } 4930 4931 DstRegs.push_back(SegReg); 4932 } 4933 4934 Register DstReg = MI.getOperand(0).getReg(); 4935 if (MRI.getType(DstReg).isVector()) 4936 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4937 else if (DstRegs.size() > 1) 4938 MIRBuilder.buildMerge(DstReg, DstRegs); 4939 else 4940 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4941 MI.eraseFromParent(); 4942 return Legalized; 4943 } 4944 4945 LegalizerHelper::LegalizeResult 4946 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4947 LLT NarrowTy) { 4948 // FIXME: Don't know how to handle secondary types yet. 4949 if (TypeIdx != 0) 4950 return UnableToLegalize; 4951 4952 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4953 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4954 4955 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4956 // NarrowSize. 4957 if (SizeOp0 % NarrowSize != 0) 4958 return UnableToLegalize; 4959 4960 int NumParts = SizeOp0 / NarrowSize; 4961 4962 SmallVector<Register, 2> SrcRegs, DstRegs; 4963 SmallVector<uint64_t, 2> Indexes; 4964 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4965 4966 Register OpReg = MI.getOperand(2).getReg(); 4967 uint64_t OpStart = MI.getOperand(3).getImm(); 4968 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4969 for (int i = 0; i < NumParts; ++i) { 4970 unsigned DstStart = i * NarrowSize; 4971 4972 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4973 // No part of the insert affects this subregister, forward the original. 4974 DstRegs.push_back(SrcRegs[i]); 4975 continue; 4976 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4977 // The entire subregister is defined by this insert, forward the new 4978 // value. 4979 DstRegs.push_back(OpReg); 4980 continue; 4981 } 4982 4983 // OpSegStart is where this destination segment would start in OpReg if it 4984 // extended infinitely in both directions. 4985 int64_t ExtractOffset, InsertOffset; 4986 uint64_t SegSize; 4987 if (OpStart < DstStart) { 4988 InsertOffset = 0; 4989 ExtractOffset = DstStart - OpStart; 4990 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4991 } else { 4992 InsertOffset = OpStart - DstStart; 4993 ExtractOffset = 0; 4994 SegSize = 4995 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4996 } 4997 4998 Register SegReg = OpReg; 4999 if (ExtractOffset != 0 || SegSize != OpSize) { 5000 // A genuine extract is needed. 5001 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5002 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5003 } 5004 5005 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5006 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 5007 DstRegs.push_back(DstReg); 5008 } 5009 5010 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 5011 Register DstReg = MI.getOperand(0).getReg(); 5012 if(MRI.getType(DstReg).isVector()) 5013 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5014 else 5015 MIRBuilder.buildMerge(DstReg, DstRegs); 5016 MI.eraseFromParent(); 5017 return Legalized; 5018 } 5019 5020 LegalizerHelper::LegalizeResult 5021 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5022 LLT NarrowTy) { 5023 Register DstReg = MI.getOperand(0).getReg(); 5024 LLT DstTy = MRI.getType(DstReg); 5025 5026 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5027 5028 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5029 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5030 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5031 LLT LeftoverTy; 5032 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5033 Src0Regs, Src0LeftoverRegs)) 5034 return UnableToLegalize; 5035 5036 LLT Unused; 5037 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5038 Src1Regs, Src1LeftoverRegs)) 5039 llvm_unreachable("inconsistent extractParts result"); 5040 5041 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5042 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5043 {Src0Regs[I], Src1Regs[I]}); 5044 DstRegs.push_back(Inst.getReg(0)); 5045 } 5046 5047 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5048 auto Inst = MIRBuilder.buildInstr( 5049 MI.getOpcode(), 5050 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5051 DstLeftoverRegs.push_back(Inst.getReg(0)); 5052 } 5053 5054 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5055 LeftoverTy, DstLeftoverRegs); 5056 5057 MI.eraseFromParent(); 5058 return Legalized; 5059 } 5060 5061 LegalizerHelper::LegalizeResult 5062 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5063 LLT NarrowTy) { 5064 if (TypeIdx != 0) 5065 return UnableToLegalize; 5066 5067 Register DstReg = MI.getOperand(0).getReg(); 5068 Register SrcReg = MI.getOperand(1).getReg(); 5069 5070 LLT DstTy = MRI.getType(DstReg); 5071 if (DstTy.isVector()) 5072 return UnableToLegalize; 5073 5074 SmallVector<Register, 8> Parts; 5075 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5076 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5077 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5078 5079 MI.eraseFromParent(); 5080 return Legalized; 5081 } 5082 5083 LegalizerHelper::LegalizeResult 5084 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5085 LLT NarrowTy) { 5086 if (TypeIdx != 0) 5087 return UnableToLegalize; 5088 5089 Register CondReg = MI.getOperand(1).getReg(); 5090 LLT CondTy = MRI.getType(CondReg); 5091 if (CondTy.isVector()) // TODO: Handle vselect 5092 return UnableToLegalize; 5093 5094 Register DstReg = MI.getOperand(0).getReg(); 5095 LLT DstTy = MRI.getType(DstReg); 5096 5097 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5098 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5099 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5100 LLT LeftoverTy; 5101 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5102 Src1Regs, Src1LeftoverRegs)) 5103 return UnableToLegalize; 5104 5105 LLT Unused; 5106 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5107 Src2Regs, Src2LeftoverRegs)) 5108 llvm_unreachable("inconsistent extractParts result"); 5109 5110 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5111 auto Select = MIRBuilder.buildSelect(NarrowTy, 5112 CondReg, Src1Regs[I], Src2Regs[I]); 5113 DstRegs.push_back(Select.getReg(0)); 5114 } 5115 5116 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5117 auto Select = MIRBuilder.buildSelect( 5118 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5119 DstLeftoverRegs.push_back(Select.getReg(0)); 5120 } 5121 5122 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5123 LeftoverTy, DstLeftoverRegs); 5124 5125 MI.eraseFromParent(); 5126 return Legalized; 5127 } 5128 5129 LegalizerHelper::LegalizeResult 5130 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5131 LLT NarrowTy) { 5132 if (TypeIdx != 1) 5133 return UnableToLegalize; 5134 5135 Register DstReg = MI.getOperand(0).getReg(); 5136 Register SrcReg = MI.getOperand(1).getReg(); 5137 LLT DstTy = MRI.getType(DstReg); 5138 LLT SrcTy = MRI.getType(SrcReg); 5139 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5140 5141 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5142 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5143 5144 MachineIRBuilder &B = MIRBuilder; 5145 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5146 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5147 auto C_0 = B.buildConstant(NarrowTy, 0); 5148 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5149 UnmergeSrc.getReg(1), C_0); 5150 auto LoCTLZ = IsUndef ? 5151 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5152 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5153 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5154 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5155 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5156 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5157 5158 MI.eraseFromParent(); 5159 return Legalized; 5160 } 5161 5162 return UnableToLegalize; 5163 } 5164 5165 LegalizerHelper::LegalizeResult 5166 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5167 LLT NarrowTy) { 5168 if (TypeIdx != 1) 5169 return UnableToLegalize; 5170 5171 Register DstReg = MI.getOperand(0).getReg(); 5172 Register SrcReg = MI.getOperand(1).getReg(); 5173 LLT DstTy = MRI.getType(DstReg); 5174 LLT SrcTy = MRI.getType(SrcReg); 5175 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5176 5177 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5178 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5179 5180 MachineIRBuilder &B = MIRBuilder; 5181 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5182 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5183 auto C_0 = B.buildConstant(NarrowTy, 0); 5184 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5185 UnmergeSrc.getReg(0), C_0); 5186 auto HiCTTZ = IsUndef ? 5187 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5188 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5189 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5190 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5191 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5192 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5193 5194 MI.eraseFromParent(); 5195 return Legalized; 5196 } 5197 5198 return UnableToLegalize; 5199 } 5200 5201 LegalizerHelper::LegalizeResult 5202 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5203 LLT NarrowTy) { 5204 if (TypeIdx != 1) 5205 return UnableToLegalize; 5206 5207 Register DstReg = MI.getOperand(0).getReg(); 5208 LLT DstTy = MRI.getType(DstReg); 5209 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5210 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5211 5212 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5213 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5214 5215 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5216 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5217 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5218 5219 MI.eraseFromParent(); 5220 return Legalized; 5221 } 5222 5223 return UnableToLegalize; 5224 } 5225 5226 LegalizerHelper::LegalizeResult 5227 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5228 unsigned Opc = MI.getOpcode(); 5229 const auto &TII = MIRBuilder.getTII(); 5230 auto isSupported = [this](const LegalityQuery &Q) { 5231 auto QAction = LI.getAction(Q).Action; 5232 return QAction == Legal || QAction == Libcall || QAction == Custom; 5233 }; 5234 switch (Opc) { 5235 default: 5236 return UnableToLegalize; 5237 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5238 // This trivially expands to CTLZ. 5239 Observer.changingInstr(MI); 5240 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5241 Observer.changedInstr(MI); 5242 return Legalized; 5243 } 5244 case TargetOpcode::G_CTLZ: { 5245 Register DstReg = MI.getOperand(0).getReg(); 5246 Register SrcReg = MI.getOperand(1).getReg(); 5247 LLT DstTy = MRI.getType(DstReg); 5248 LLT SrcTy = MRI.getType(SrcReg); 5249 unsigned Len = SrcTy.getSizeInBits(); 5250 5251 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5252 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5253 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5254 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5255 auto ICmp = MIRBuilder.buildICmp( 5256 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5257 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5258 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5259 MI.eraseFromParent(); 5260 return Legalized; 5261 } 5262 // for now, we do this: 5263 // NewLen = NextPowerOf2(Len); 5264 // x = x | (x >> 1); 5265 // x = x | (x >> 2); 5266 // ... 5267 // x = x | (x >>16); 5268 // x = x | (x >>32); // for 64-bit input 5269 // Upto NewLen/2 5270 // return Len - popcount(x); 5271 // 5272 // Ref: "Hacker's Delight" by Henry Warren 5273 Register Op = SrcReg; 5274 unsigned NewLen = PowerOf2Ceil(Len); 5275 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5276 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5277 auto MIBOp = MIRBuilder.buildOr( 5278 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5279 Op = MIBOp.getReg(0); 5280 } 5281 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5282 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5283 MIBPop); 5284 MI.eraseFromParent(); 5285 return Legalized; 5286 } 5287 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5288 // This trivially expands to CTTZ. 5289 Observer.changingInstr(MI); 5290 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5291 Observer.changedInstr(MI); 5292 return Legalized; 5293 } 5294 case TargetOpcode::G_CTTZ: { 5295 Register DstReg = MI.getOperand(0).getReg(); 5296 Register SrcReg = MI.getOperand(1).getReg(); 5297 LLT DstTy = MRI.getType(DstReg); 5298 LLT SrcTy = MRI.getType(SrcReg); 5299 5300 unsigned Len = SrcTy.getSizeInBits(); 5301 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5302 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5303 // zero. 5304 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5305 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5306 auto ICmp = MIRBuilder.buildICmp( 5307 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5308 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5309 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5310 MI.eraseFromParent(); 5311 return Legalized; 5312 } 5313 // for now, we use: { return popcount(~x & (x - 1)); } 5314 // unless the target has ctlz but not ctpop, in which case we use: 5315 // { return 32 - nlz(~x & (x-1)); } 5316 // Ref: "Hacker's Delight" by Henry Warren 5317 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5318 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5319 auto MIBTmp = MIRBuilder.buildAnd( 5320 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5321 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5322 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5323 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5324 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5325 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5326 MI.eraseFromParent(); 5327 return Legalized; 5328 } 5329 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5330 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5331 return Legalized; 5332 } 5333 case TargetOpcode::G_CTPOP: { 5334 Register SrcReg = MI.getOperand(1).getReg(); 5335 LLT Ty = MRI.getType(SrcReg); 5336 unsigned Size = Ty.getSizeInBits(); 5337 MachineIRBuilder &B = MIRBuilder; 5338 5339 // Count set bits in blocks of 2 bits. Default approach would be 5340 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5341 // We use following formula instead: 5342 // B2Count = val - { (val >> 1) & 0x55555555 } 5343 // since it gives same result in blocks of 2 with one instruction less. 5344 auto C_1 = B.buildConstant(Ty, 1); 5345 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5346 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5347 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5348 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5349 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5350 5351 // In order to get count in blocks of 4 add values from adjacent block of 2. 5352 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5353 auto C_2 = B.buildConstant(Ty, 2); 5354 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5355 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5356 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5357 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5358 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5359 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5360 5361 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5362 // addition since count value sits in range {0,...,8} and 4 bits are enough 5363 // to hold such binary values. After addition high 4 bits still hold count 5364 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5365 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5366 auto C_4 = B.buildConstant(Ty, 4); 5367 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5368 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5369 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5370 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5371 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5372 5373 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5374 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5375 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5376 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5377 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5378 5379 // Shift count result from 8 high bits to low bits. 5380 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5381 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5382 5383 MI.eraseFromParent(); 5384 return Legalized; 5385 } 5386 } 5387 } 5388 5389 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5390 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5391 Register Reg, unsigned BW) { 5392 return matchUnaryPredicate( 5393 MRI, Reg, 5394 [=](const Constant *C) { 5395 // Null constant here means an undef. 5396 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5397 return !CI || CI->getValue().urem(BW) != 0; 5398 }, 5399 /*AllowUndefs*/ true); 5400 } 5401 5402 LegalizerHelper::LegalizeResult 5403 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5404 Register Dst = MI.getOperand(0).getReg(); 5405 Register X = MI.getOperand(1).getReg(); 5406 Register Y = MI.getOperand(2).getReg(); 5407 Register Z = MI.getOperand(3).getReg(); 5408 LLT Ty = MRI.getType(Dst); 5409 LLT ShTy = MRI.getType(Z); 5410 5411 unsigned BW = Ty.getScalarSizeInBits(); 5412 5413 if (!isPowerOf2_32(BW)) 5414 return UnableToLegalize; 5415 5416 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5417 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5418 5419 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5420 // fshl X, Y, Z -> fshr X, Y, -Z 5421 // fshr X, Y, Z -> fshl X, Y, -Z 5422 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5423 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5424 } else { 5425 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5426 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5427 auto One = MIRBuilder.buildConstant(ShTy, 1); 5428 if (IsFSHL) { 5429 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5430 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5431 } else { 5432 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5433 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5434 } 5435 5436 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5437 } 5438 5439 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5440 MI.eraseFromParent(); 5441 return Legalized; 5442 } 5443 5444 LegalizerHelper::LegalizeResult 5445 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5446 Register Dst = MI.getOperand(0).getReg(); 5447 Register X = MI.getOperand(1).getReg(); 5448 Register Y = MI.getOperand(2).getReg(); 5449 Register Z = MI.getOperand(3).getReg(); 5450 LLT Ty = MRI.getType(Dst); 5451 LLT ShTy = MRI.getType(Z); 5452 5453 const unsigned BW = Ty.getScalarSizeInBits(); 5454 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5455 5456 Register ShX, ShY; 5457 Register ShAmt, InvShAmt; 5458 5459 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5460 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5461 // fshl: X << C | Y >> (BW - C) 5462 // fshr: X << (BW - C) | Y >> C 5463 // where C = Z % BW is not zero 5464 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5465 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5466 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5467 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5468 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5469 } else { 5470 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5471 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5472 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5473 if (isPowerOf2_32(BW)) { 5474 // Z % BW -> Z & (BW - 1) 5475 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5476 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5477 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5478 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5479 } else { 5480 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5481 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5482 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5483 } 5484 5485 auto One = MIRBuilder.buildConstant(ShTy, 1); 5486 if (IsFSHL) { 5487 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5488 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5489 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5490 } else { 5491 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5492 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5493 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5494 } 5495 } 5496 5497 MIRBuilder.buildOr(Dst, ShX, ShY); 5498 MI.eraseFromParent(); 5499 return Legalized; 5500 } 5501 5502 LegalizerHelper::LegalizeResult 5503 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5504 // These operations approximately do the following (while avoiding undefined 5505 // shifts by BW): 5506 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5507 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5508 Register Dst = MI.getOperand(0).getReg(); 5509 LLT Ty = MRI.getType(Dst); 5510 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5511 5512 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5513 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5514 5515 // TODO: Use smarter heuristic that accounts for vector legalization. 5516 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5517 return lowerFunnelShiftAsShifts(MI); 5518 5519 // This only works for powers of 2, fallback to shifts if it fails. 5520 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5521 if (Result == UnableToLegalize) 5522 return lowerFunnelShiftAsShifts(MI); 5523 return Result; 5524 } 5525 5526 LegalizerHelper::LegalizeResult 5527 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5528 Register Dst = MI.getOperand(0).getReg(); 5529 Register Src = MI.getOperand(1).getReg(); 5530 Register Amt = MI.getOperand(2).getReg(); 5531 LLT AmtTy = MRI.getType(Amt); 5532 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5533 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5534 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5535 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5536 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5537 MI.eraseFromParent(); 5538 return Legalized; 5539 } 5540 5541 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5542 Register Dst = MI.getOperand(0).getReg(); 5543 Register Src = MI.getOperand(1).getReg(); 5544 Register Amt = MI.getOperand(2).getReg(); 5545 LLT DstTy = MRI.getType(Dst); 5546 LLT SrcTy = MRI.getType(Dst); 5547 LLT AmtTy = MRI.getType(Amt); 5548 5549 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5550 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5551 5552 MIRBuilder.setInstrAndDebugLoc(MI); 5553 5554 // If a rotate in the other direction is supported, use it. 5555 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5556 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5557 isPowerOf2_32(EltSizeInBits)) 5558 return lowerRotateWithReverseRotate(MI); 5559 5560 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5561 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5562 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5563 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5564 Register ShVal; 5565 Register RevShiftVal; 5566 if (isPowerOf2_32(EltSizeInBits)) { 5567 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5568 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5569 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5570 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5571 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5572 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5573 RevShiftVal = 5574 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5575 } else { 5576 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5577 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5578 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5579 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5580 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5581 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5582 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5583 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5584 RevShiftVal = 5585 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5586 } 5587 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5588 MI.eraseFromParent(); 5589 return Legalized; 5590 } 5591 5592 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5593 // representation. 5594 LegalizerHelper::LegalizeResult 5595 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5596 Register Dst = MI.getOperand(0).getReg(); 5597 Register Src = MI.getOperand(1).getReg(); 5598 const LLT S64 = LLT::scalar(64); 5599 const LLT S32 = LLT::scalar(32); 5600 const LLT S1 = LLT::scalar(1); 5601 5602 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5603 5604 // unsigned cul2f(ulong u) { 5605 // uint lz = clz(u); 5606 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5607 // u = (u << lz) & 0x7fffffffffffffffUL; 5608 // ulong t = u & 0xffffffffffUL; 5609 // uint v = (e << 23) | (uint)(u >> 40); 5610 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5611 // return as_float(v + r); 5612 // } 5613 5614 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5615 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5616 5617 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5618 5619 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5620 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5621 5622 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5623 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5624 5625 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5626 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5627 5628 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5629 5630 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5631 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5632 5633 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5634 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5635 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5636 5637 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5638 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5639 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5640 auto One = MIRBuilder.buildConstant(S32, 1); 5641 5642 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5643 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5644 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5645 MIRBuilder.buildAdd(Dst, V, R); 5646 5647 MI.eraseFromParent(); 5648 return Legalized; 5649 } 5650 5651 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5652 Register Dst = MI.getOperand(0).getReg(); 5653 Register Src = MI.getOperand(1).getReg(); 5654 LLT DstTy = MRI.getType(Dst); 5655 LLT SrcTy = MRI.getType(Src); 5656 5657 if (SrcTy == LLT::scalar(1)) { 5658 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5659 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5660 MIRBuilder.buildSelect(Dst, Src, True, False); 5661 MI.eraseFromParent(); 5662 return Legalized; 5663 } 5664 5665 if (SrcTy != LLT::scalar(64)) 5666 return UnableToLegalize; 5667 5668 if (DstTy == LLT::scalar(32)) { 5669 // TODO: SelectionDAG has several alternative expansions to port which may 5670 // be more reasonble depending on the available instructions. If a target 5671 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5672 // intermediate type, this is probably worse. 5673 return lowerU64ToF32BitOps(MI); 5674 } 5675 5676 return UnableToLegalize; 5677 } 5678 5679 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5680 Register Dst = MI.getOperand(0).getReg(); 5681 Register Src = MI.getOperand(1).getReg(); 5682 LLT DstTy = MRI.getType(Dst); 5683 LLT SrcTy = MRI.getType(Src); 5684 5685 const LLT S64 = LLT::scalar(64); 5686 const LLT S32 = LLT::scalar(32); 5687 const LLT S1 = LLT::scalar(1); 5688 5689 if (SrcTy == S1) { 5690 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5691 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5692 MIRBuilder.buildSelect(Dst, Src, True, False); 5693 MI.eraseFromParent(); 5694 return Legalized; 5695 } 5696 5697 if (SrcTy != S64) 5698 return UnableToLegalize; 5699 5700 if (DstTy == S32) { 5701 // signed cl2f(long l) { 5702 // long s = l >> 63; 5703 // float r = cul2f((l + s) ^ s); 5704 // return s ? -r : r; 5705 // } 5706 Register L = Src; 5707 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5708 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5709 5710 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5711 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5712 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5713 5714 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5715 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5716 MIRBuilder.buildConstant(S64, 0)); 5717 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5718 MI.eraseFromParent(); 5719 return Legalized; 5720 } 5721 5722 return UnableToLegalize; 5723 } 5724 5725 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5726 Register Dst = MI.getOperand(0).getReg(); 5727 Register Src = MI.getOperand(1).getReg(); 5728 LLT DstTy = MRI.getType(Dst); 5729 LLT SrcTy = MRI.getType(Src); 5730 const LLT S64 = LLT::scalar(64); 5731 const LLT S32 = LLT::scalar(32); 5732 5733 if (SrcTy != S64 && SrcTy != S32) 5734 return UnableToLegalize; 5735 if (DstTy != S32 && DstTy != S64) 5736 return UnableToLegalize; 5737 5738 // FPTOSI gives same result as FPTOUI for positive signed integers. 5739 // FPTOUI needs to deal with fp values that convert to unsigned integers 5740 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5741 5742 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5743 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5744 : APFloat::IEEEdouble(), 5745 APInt::getNullValue(SrcTy.getSizeInBits())); 5746 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5747 5748 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5749 5750 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5751 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5752 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5753 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5754 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5755 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5756 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5757 5758 const LLT S1 = LLT::scalar(1); 5759 5760 MachineInstrBuilder FCMP = 5761 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5762 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5763 5764 MI.eraseFromParent(); 5765 return Legalized; 5766 } 5767 5768 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5769 Register Dst = MI.getOperand(0).getReg(); 5770 Register Src = MI.getOperand(1).getReg(); 5771 LLT DstTy = MRI.getType(Dst); 5772 LLT SrcTy = MRI.getType(Src); 5773 const LLT S64 = LLT::scalar(64); 5774 const LLT S32 = LLT::scalar(32); 5775 5776 // FIXME: Only f32 to i64 conversions are supported. 5777 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5778 return UnableToLegalize; 5779 5780 // Expand f32 -> i64 conversion 5781 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5782 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5783 5784 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5785 5786 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5787 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5788 5789 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5790 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5791 5792 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5793 APInt::getSignMask(SrcEltBits)); 5794 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5795 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5796 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5797 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5798 5799 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5800 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5801 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5802 5803 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5804 R = MIRBuilder.buildZExt(DstTy, R); 5805 5806 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5807 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5808 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5809 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5810 5811 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5812 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5813 5814 const LLT S1 = LLT::scalar(1); 5815 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5816 S1, Exponent, ExponentLoBit); 5817 5818 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5819 5820 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5821 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5822 5823 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5824 5825 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5826 S1, Exponent, ZeroSrcTy); 5827 5828 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5829 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5830 5831 MI.eraseFromParent(); 5832 return Legalized; 5833 } 5834 5835 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5836 LegalizerHelper::LegalizeResult 5837 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5838 Register Dst = MI.getOperand(0).getReg(); 5839 Register Src = MI.getOperand(1).getReg(); 5840 5841 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5842 return UnableToLegalize; 5843 5844 const unsigned ExpMask = 0x7ff; 5845 const unsigned ExpBiasf64 = 1023; 5846 const unsigned ExpBiasf16 = 15; 5847 const LLT S32 = LLT::scalar(32); 5848 const LLT S1 = LLT::scalar(1); 5849 5850 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5851 Register U = Unmerge.getReg(0); 5852 Register UH = Unmerge.getReg(1); 5853 5854 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5855 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5856 5857 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5858 // add the f16 bias (15) to get the biased exponent for the f16 format. 5859 E = MIRBuilder.buildAdd( 5860 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5861 5862 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5863 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5864 5865 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5866 MIRBuilder.buildConstant(S32, 0x1ff)); 5867 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5868 5869 auto Zero = MIRBuilder.buildConstant(S32, 0); 5870 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5871 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5872 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5873 5874 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5875 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5876 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5877 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5878 5879 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5880 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5881 5882 // N = M | (E << 12); 5883 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5884 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5885 5886 // B = clamp(1-E, 0, 13); 5887 auto One = MIRBuilder.buildConstant(S32, 1); 5888 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5889 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5890 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5891 5892 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5893 MIRBuilder.buildConstant(S32, 0x1000)); 5894 5895 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5896 auto D0 = MIRBuilder.buildShl(S32, D, B); 5897 5898 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5899 D0, SigSetHigh); 5900 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5901 D = MIRBuilder.buildOr(S32, D, D1); 5902 5903 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5904 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5905 5906 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5907 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5908 5909 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5910 MIRBuilder.buildConstant(S32, 3)); 5911 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5912 5913 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5914 MIRBuilder.buildConstant(S32, 5)); 5915 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5916 5917 V1 = MIRBuilder.buildOr(S32, V0, V1); 5918 V = MIRBuilder.buildAdd(S32, V, V1); 5919 5920 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5921 E, MIRBuilder.buildConstant(S32, 30)); 5922 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5923 MIRBuilder.buildConstant(S32, 0x7c00), V); 5924 5925 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5926 E, MIRBuilder.buildConstant(S32, 1039)); 5927 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5928 5929 // Extract the sign bit. 5930 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5931 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5932 5933 // Insert the sign bit 5934 V = MIRBuilder.buildOr(S32, Sign, V); 5935 5936 MIRBuilder.buildTrunc(Dst, V); 5937 MI.eraseFromParent(); 5938 return Legalized; 5939 } 5940 5941 LegalizerHelper::LegalizeResult 5942 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5943 Register Dst = MI.getOperand(0).getReg(); 5944 Register Src = MI.getOperand(1).getReg(); 5945 5946 LLT DstTy = MRI.getType(Dst); 5947 LLT SrcTy = MRI.getType(Src); 5948 const LLT S64 = LLT::scalar(64); 5949 const LLT S16 = LLT::scalar(16); 5950 5951 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5952 return lowerFPTRUNC_F64_TO_F16(MI); 5953 5954 return UnableToLegalize; 5955 } 5956 5957 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5958 // multiplication tree. 5959 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5960 Register Dst = MI.getOperand(0).getReg(); 5961 Register Src0 = MI.getOperand(1).getReg(); 5962 Register Src1 = MI.getOperand(2).getReg(); 5963 LLT Ty = MRI.getType(Dst); 5964 5965 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5966 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5967 MI.eraseFromParent(); 5968 return Legalized; 5969 } 5970 5971 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5972 switch (Opc) { 5973 case TargetOpcode::G_SMIN: 5974 return CmpInst::ICMP_SLT; 5975 case TargetOpcode::G_SMAX: 5976 return CmpInst::ICMP_SGT; 5977 case TargetOpcode::G_UMIN: 5978 return CmpInst::ICMP_ULT; 5979 case TargetOpcode::G_UMAX: 5980 return CmpInst::ICMP_UGT; 5981 default: 5982 llvm_unreachable("not in integer min/max"); 5983 } 5984 } 5985 5986 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5987 Register Dst = MI.getOperand(0).getReg(); 5988 Register Src0 = MI.getOperand(1).getReg(); 5989 Register Src1 = MI.getOperand(2).getReg(); 5990 5991 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5992 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5993 5994 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5995 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5996 5997 MI.eraseFromParent(); 5998 return Legalized; 5999 } 6000 6001 LegalizerHelper::LegalizeResult 6002 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6003 Register Dst = MI.getOperand(0).getReg(); 6004 Register Src0 = MI.getOperand(1).getReg(); 6005 Register Src1 = MI.getOperand(2).getReg(); 6006 6007 const LLT Src0Ty = MRI.getType(Src0); 6008 const LLT Src1Ty = MRI.getType(Src1); 6009 6010 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6011 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6012 6013 auto SignBitMask = MIRBuilder.buildConstant( 6014 Src0Ty, APInt::getSignMask(Src0Size)); 6015 6016 auto NotSignBitMask = MIRBuilder.buildConstant( 6017 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6018 6019 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6020 Register And1; 6021 if (Src0Ty == Src1Ty) { 6022 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6023 } else if (Src0Size > Src1Size) { 6024 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6025 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6026 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6027 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6028 } else { 6029 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6030 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6031 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6032 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6033 } 6034 6035 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6036 // constants are a nan and -0.0, but the final result should preserve 6037 // everything. 6038 unsigned Flags = MI.getFlags(); 6039 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6040 6041 MI.eraseFromParent(); 6042 return Legalized; 6043 } 6044 6045 LegalizerHelper::LegalizeResult 6046 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6047 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6048 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6049 6050 Register Dst = MI.getOperand(0).getReg(); 6051 Register Src0 = MI.getOperand(1).getReg(); 6052 Register Src1 = MI.getOperand(2).getReg(); 6053 LLT Ty = MRI.getType(Dst); 6054 6055 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6056 // Insert canonicalizes if it's possible we need to quiet to get correct 6057 // sNaN behavior. 6058 6059 // Note this must be done here, and not as an optimization combine in the 6060 // absence of a dedicate quiet-snan instruction as we're using an 6061 // omni-purpose G_FCANONICALIZE. 6062 if (!isKnownNeverSNaN(Src0, MRI)) 6063 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6064 6065 if (!isKnownNeverSNaN(Src1, MRI)) 6066 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6067 } 6068 6069 // If there are no nans, it's safe to simply replace this with the non-IEEE 6070 // version. 6071 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6072 MI.eraseFromParent(); 6073 return Legalized; 6074 } 6075 6076 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6077 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6078 Register DstReg = MI.getOperand(0).getReg(); 6079 LLT Ty = MRI.getType(DstReg); 6080 unsigned Flags = MI.getFlags(); 6081 6082 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6083 Flags); 6084 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6085 MI.eraseFromParent(); 6086 return Legalized; 6087 } 6088 6089 LegalizerHelper::LegalizeResult 6090 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6091 Register DstReg = MI.getOperand(0).getReg(); 6092 Register X = MI.getOperand(1).getReg(); 6093 const unsigned Flags = MI.getFlags(); 6094 const LLT Ty = MRI.getType(DstReg); 6095 const LLT CondTy = Ty.changeElementSize(1); 6096 6097 // round(x) => 6098 // t = trunc(x); 6099 // d = fabs(x - t); 6100 // o = copysign(1.0f, x); 6101 // return t + (d >= 0.5 ? o : 0.0); 6102 6103 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6104 6105 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6106 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6107 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6108 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6109 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6110 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6111 6112 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6113 Flags); 6114 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6115 6116 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6117 6118 MI.eraseFromParent(); 6119 return Legalized; 6120 } 6121 6122 LegalizerHelper::LegalizeResult 6123 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6124 Register DstReg = MI.getOperand(0).getReg(); 6125 Register SrcReg = MI.getOperand(1).getReg(); 6126 unsigned Flags = MI.getFlags(); 6127 LLT Ty = MRI.getType(DstReg); 6128 const LLT CondTy = Ty.changeElementSize(1); 6129 6130 // result = trunc(src); 6131 // if (src < 0.0 && src != result) 6132 // result += -1.0. 6133 6134 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6135 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6136 6137 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6138 SrcReg, Zero, Flags); 6139 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6140 SrcReg, Trunc, Flags); 6141 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6142 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6143 6144 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6145 MI.eraseFromParent(); 6146 return Legalized; 6147 } 6148 6149 LegalizerHelper::LegalizeResult 6150 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6151 const unsigned NumOps = MI.getNumOperands(); 6152 Register DstReg = MI.getOperand(0).getReg(); 6153 Register Src0Reg = MI.getOperand(1).getReg(); 6154 LLT DstTy = MRI.getType(DstReg); 6155 LLT SrcTy = MRI.getType(Src0Reg); 6156 unsigned PartSize = SrcTy.getSizeInBits(); 6157 6158 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6159 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6160 6161 for (unsigned I = 2; I != NumOps; ++I) { 6162 const unsigned Offset = (I - 1) * PartSize; 6163 6164 Register SrcReg = MI.getOperand(I).getReg(); 6165 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6166 6167 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6168 MRI.createGenericVirtualRegister(WideTy); 6169 6170 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6171 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6172 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6173 ResultReg = NextResult; 6174 } 6175 6176 if (DstTy.isPointer()) { 6177 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6178 DstTy.getAddressSpace())) { 6179 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6180 return UnableToLegalize; 6181 } 6182 6183 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6184 } 6185 6186 MI.eraseFromParent(); 6187 return Legalized; 6188 } 6189 6190 LegalizerHelper::LegalizeResult 6191 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6192 const unsigned NumDst = MI.getNumOperands() - 1; 6193 Register SrcReg = MI.getOperand(NumDst).getReg(); 6194 Register Dst0Reg = MI.getOperand(0).getReg(); 6195 LLT DstTy = MRI.getType(Dst0Reg); 6196 if (DstTy.isPointer()) 6197 return UnableToLegalize; // TODO 6198 6199 SrcReg = coerceToScalar(SrcReg); 6200 if (!SrcReg) 6201 return UnableToLegalize; 6202 6203 // Expand scalarizing unmerge as bitcast to integer and shift. 6204 LLT IntTy = MRI.getType(SrcReg); 6205 6206 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6207 6208 const unsigned DstSize = DstTy.getSizeInBits(); 6209 unsigned Offset = DstSize; 6210 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6211 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6212 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6213 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6214 } 6215 6216 MI.eraseFromParent(); 6217 return Legalized; 6218 } 6219 6220 /// Lower a vector extract or insert by writing the vector to a stack temporary 6221 /// and reloading the element or vector. 6222 /// 6223 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6224 /// => 6225 /// %stack_temp = G_FRAME_INDEX 6226 /// G_STORE %vec, %stack_temp 6227 /// %idx = clamp(%idx, %vec.getNumElements()) 6228 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6229 /// %dst = G_LOAD %element_ptr 6230 LegalizerHelper::LegalizeResult 6231 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6232 Register DstReg = MI.getOperand(0).getReg(); 6233 Register SrcVec = MI.getOperand(1).getReg(); 6234 Register InsertVal; 6235 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6236 InsertVal = MI.getOperand(2).getReg(); 6237 6238 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6239 6240 LLT VecTy = MRI.getType(SrcVec); 6241 LLT EltTy = VecTy.getElementType(); 6242 if (!EltTy.isByteSized()) { // Not implemented. 6243 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6244 return UnableToLegalize; 6245 } 6246 6247 unsigned EltBytes = EltTy.getSizeInBytes(); 6248 Align VecAlign = getStackTemporaryAlignment(VecTy); 6249 Align EltAlign; 6250 6251 MachinePointerInfo PtrInfo; 6252 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6253 VecAlign, PtrInfo); 6254 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6255 6256 // Get the pointer to the element, and be sure not to hit undefined behavior 6257 // if the index is out of bounds. 6258 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6259 6260 int64_t IdxVal; 6261 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6262 int64_t Offset = IdxVal * EltBytes; 6263 PtrInfo = PtrInfo.getWithOffset(Offset); 6264 EltAlign = commonAlignment(VecAlign, Offset); 6265 } else { 6266 // We lose information with a variable offset. 6267 EltAlign = getStackTemporaryAlignment(EltTy); 6268 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6269 } 6270 6271 if (InsertVal) { 6272 // Write the inserted element 6273 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6274 6275 // Reload the whole vector. 6276 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6277 } else { 6278 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6279 } 6280 6281 MI.eraseFromParent(); 6282 return Legalized; 6283 } 6284 6285 LegalizerHelper::LegalizeResult 6286 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6287 Register DstReg = MI.getOperand(0).getReg(); 6288 Register Src0Reg = MI.getOperand(1).getReg(); 6289 Register Src1Reg = MI.getOperand(2).getReg(); 6290 LLT Src0Ty = MRI.getType(Src0Reg); 6291 LLT DstTy = MRI.getType(DstReg); 6292 LLT IdxTy = LLT::scalar(32); 6293 6294 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6295 6296 if (DstTy.isScalar()) { 6297 if (Src0Ty.isVector()) 6298 return UnableToLegalize; 6299 6300 // This is just a SELECT. 6301 assert(Mask.size() == 1 && "Expected a single mask element"); 6302 Register Val; 6303 if (Mask[0] < 0 || Mask[0] > 1) 6304 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6305 else 6306 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6307 MIRBuilder.buildCopy(DstReg, Val); 6308 MI.eraseFromParent(); 6309 return Legalized; 6310 } 6311 6312 Register Undef; 6313 SmallVector<Register, 32> BuildVec; 6314 LLT EltTy = DstTy.getElementType(); 6315 6316 for (int Idx : Mask) { 6317 if (Idx < 0) { 6318 if (!Undef.isValid()) 6319 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6320 BuildVec.push_back(Undef); 6321 continue; 6322 } 6323 6324 if (Src0Ty.isScalar()) { 6325 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6326 } else { 6327 int NumElts = Src0Ty.getNumElements(); 6328 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6329 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6330 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6331 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6332 BuildVec.push_back(Extract.getReg(0)); 6333 } 6334 } 6335 6336 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6337 MI.eraseFromParent(); 6338 return Legalized; 6339 } 6340 6341 LegalizerHelper::LegalizeResult 6342 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6343 const auto &MF = *MI.getMF(); 6344 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6345 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6346 return UnableToLegalize; 6347 6348 Register Dst = MI.getOperand(0).getReg(); 6349 Register AllocSize = MI.getOperand(1).getReg(); 6350 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6351 6352 LLT PtrTy = MRI.getType(Dst); 6353 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6354 6355 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6356 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6357 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6358 6359 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6360 // have to generate an extra instruction to negate the alloc and then use 6361 // G_PTR_ADD to add the negative offset. 6362 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6363 if (Alignment > Align(1)) { 6364 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6365 AlignMask.negate(); 6366 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6367 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6368 } 6369 6370 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6371 MIRBuilder.buildCopy(SPReg, SPTmp); 6372 MIRBuilder.buildCopy(Dst, SPTmp); 6373 6374 MI.eraseFromParent(); 6375 return Legalized; 6376 } 6377 6378 LegalizerHelper::LegalizeResult 6379 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6380 Register Dst = MI.getOperand(0).getReg(); 6381 Register Src = MI.getOperand(1).getReg(); 6382 unsigned Offset = MI.getOperand(2).getImm(); 6383 6384 LLT DstTy = MRI.getType(Dst); 6385 LLT SrcTy = MRI.getType(Src); 6386 6387 if (DstTy.isScalar() && 6388 (SrcTy.isScalar() || 6389 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6390 LLT SrcIntTy = SrcTy; 6391 if (!SrcTy.isScalar()) { 6392 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6393 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6394 } 6395 6396 if (Offset == 0) 6397 MIRBuilder.buildTrunc(Dst, Src); 6398 else { 6399 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6400 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6401 MIRBuilder.buildTrunc(Dst, Shr); 6402 } 6403 6404 MI.eraseFromParent(); 6405 return Legalized; 6406 } 6407 6408 return UnableToLegalize; 6409 } 6410 6411 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6412 Register Dst = MI.getOperand(0).getReg(); 6413 Register Src = MI.getOperand(1).getReg(); 6414 Register InsertSrc = MI.getOperand(2).getReg(); 6415 uint64_t Offset = MI.getOperand(3).getImm(); 6416 6417 LLT DstTy = MRI.getType(Src); 6418 LLT InsertTy = MRI.getType(InsertSrc); 6419 6420 if (InsertTy.isVector() || 6421 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6422 return UnableToLegalize; 6423 6424 const DataLayout &DL = MIRBuilder.getDataLayout(); 6425 if ((DstTy.isPointer() && 6426 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6427 (InsertTy.isPointer() && 6428 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6429 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6430 return UnableToLegalize; 6431 } 6432 6433 LLT IntDstTy = DstTy; 6434 6435 if (!DstTy.isScalar()) { 6436 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6437 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6438 } 6439 6440 if (!InsertTy.isScalar()) { 6441 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6442 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6443 } 6444 6445 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6446 if (Offset != 0) { 6447 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6448 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6449 } 6450 6451 APInt MaskVal = APInt::getBitsSetWithWrap( 6452 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6453 6454 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6455 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6456 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6457 6458 MIRBuilder.buildCast(Dst, Or); 6459 MI.eraseFromParent(); 6460 return Legalized; 6461 } 6462 6463 LegalizerHelper::LegalizeResult 6464 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6465 Register Dst0 = MI.getOperand(0).getReg(); 6466 Register Dst1 = MI.getOperand(1).getReg(); 6467 Register LHS = MI.getOperand(2).getReg(); 6468 Register RHS = MI.getOperand(3).getReg(); 6469 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6470 6471 LLT Ty = MRI.getType(Dst0); 6472 LLT BoolTy = MRI.getType(Dst1); 6473 6474 if (IsAdd) 6475 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6476 else 6477 MIRBuilder.buildSub(Dst0, LHS, RHS); 6478 6479 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6480 6481 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6482 6483 // For an addition, the result should be less than one of the operands (LHS) 6484 // if and only if the other operand (RHS) is negative, otherwise there will 6485 // be overflow. 6486 // For a subtraction, the result should be less than one of the operands 6487 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6488 // otherwise there will be overflow. 6489 auto ResultLowerThanLHS = 6490 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6491 auto ConditionRHS = MIRBuilder.buildICmp( 6492 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6493 6494 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6495 MI.eraseFromParent(); 6496 return Legalized; 6497 } 6498 6499 LegalizerHelper::LegalizeResult 6500 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6501 Register Res = MI.getOperand(0).getReg(); 6502 Register LHS = MI.getOperand(1).getReg(); 6503 Register RHS = MI.getOperand(2).getReg(); 6504 LLT Ty = MRI.getType(Res); 6505 bool IsSigned; 6506 bool IsAdd; 6507 unsigned BaseOp; 6508 switch (MI.getOpcode()) { 6509 default: 6510 llvm_unreachable("unexpected addsat/subsat opcode"); 6511 case TargetOpcode::G_UADDSAT: 6512 IsSigned = false; 6513 IsAdd = true; 6514 BaseOp = TargetOpcode::G_ADD; 6515 break; 6516 case TargetOpcode::G_SADDSAT: 6517 IsSigned = true; 6518 IsAdd = true; 6519 BaseOp = TargetOpcode::G_ADD; 6520 break; 6521 case TargetOpcode::G_USUBSAT: 6522 IsSigned = false; 6523 IsAdd = false; 6524 BaseOp = TargetOpcode::G_SUB; 6525 break; 6526 case TargetOpcode::G_SSUBSAT: 6527 IsSigned = true; 6528 IsAdd = false; 6529 BaseOp = TargetOpcode::G_SUB; 6530 break; 6531 } 6532 6533 if (IsSigned) { 6534 // sadd.sat(a, b) -> 6535 // hi = 0x7fffffff - smax(a, 0) 6536 // lo = 0x80000000 - smin(a, 0) 6537 // a + smin(smax(lo, b), hi) 6538 // ssub.sat(a, b) -> 6539 // lo = smax(a, -1) - 0x7fffffff 6540 // hi = smin(a, -1) - 0x80000000 6541 // a - smin(smax(lo, b), hi) 6542 // TODO: AMDGPU can use a "median of 3" instruction here: 6543 // a +/- med3(lo, b, hi) 6544 uint64_t NumBits = Ty.getScalarSizeInBits(); 6545 auto MaxVal = 6546 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6547 auto MinVal = 6548 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6549 MachineInstrBuilder Hi, Lo; 6550 if (IsAdd) { 6551 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6552 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6553 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6554 } else { 6555 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6556 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6557 MaxVal); 6558 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6559 MinVal); 6560 } 6561 auto RHSClamped = 6562 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6563 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6564 } else { 6565 // uadd.sat(a, b) -> a + umin(~a, b) 6566 // usub.sat(a, b) -> a - umin(a, b) 6567 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6568 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6569 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6570 } 6571 6572 MI.eraseFromParent(); 6573 return Legalized; 6574 } 6575 6576 LegalizerHelper::LegalizeResult 6577 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6578 Register Res = MI.getOperand(0).getReg(); 6579 Register LHS = MI.getOperand(1).getReg(); 6580 Register RHS = MI.getOperand(2).getReg(); 6581 LLT Ty = MRI.getType(Res); 6582 LLT BoolTy = Ty.changeElementSize(1); 6583 bool IsSigned; 6584 bool IsAdd; 6585 unsigned OverflowOp; 6586 switch (MI.getOpcode()) { 6587 default: 6588 llvm_unreachable("unexpected addsat/subsat opcode"); 6589 case TargetOpcode::G_UADDSAT: 6590 IsSigned = false; 6591 IsAdd = true; 6592 OverflowOp = TargetOpcode::G_UADDO; 6593 break; 6594 case TargetOpcode::G_SADDSAT: 6595 IsSigned = true; 6596 IsAdd = true; 6597 OverflowOp = TargetOpcode::G_SADDO; 6598 break; 6599 case TargetOpcode::G_USUBSAT: 6600 IsSigned = false; 6601 IsAdd = false; 6602 OverflowOp = TargetOpcode::G_USUBO; 6603 break; 6604 case TargetOpcode::G_SSUBSAT: 6605 IsSigned = true; 6606 IsAdd = false; 6607 OverflowOp = TargetOpcode::G_SSUBO; 6608 break; 6609 } 6610 6611 auto OverflowRes = 6612 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6613 Register Tmp = OverflowRes.getReg(0); 6614 Register Ov = OverflowRes.getReg(1); 6615 MachineInstrBuilder Clamp; 6616 if (IsSigned) { 6617 // sadd.sat(a, b) -> 6618 // {tmp, ov} = saddo(a, b) 6619 // ov ? (tmp >>s 31) + 0x80000000 : r 6620 // ssub.sat(a, b) -> 6621 // {tmp, ov} = ssubo(a, b) 6622 // ov ? (tmp >>s 31) + 0x80000000 : r 6623 uint64_t NumBits = Ty.getScalarSizeInBits(); 6624 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6625 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6626 auto MinVal = 6627 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6628 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6629 } else { 6630 // uadd.sat(a, b) -> 6631 // {tmp, ov} = uaddo(a, b) 6632 // ov ? 0xffffffff : tmp 6633 // usub.sat(a, b) -> 6634 // {tmp, ov} = usubo(a, b) 6635 // ov ? 0 : tmp 6636 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6637 } 6638 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6639 6640 MI.eraseFromParent(); 6641 return Legalized; 6642 } 6643 6644 LegalizerHelper::LegalizeResult 6645 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6646 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6647 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6648 "Expected shlsat opcode!"); 6649 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6650 Register Res = MI.getOperand(0).getReg(); 6651 Register LHS = MI.getOperand(1).getReg(); 6652 Register RHS = MI.getOperand(2).getReg(); 6653 LLT Ty = MRI.getType(Res); 6654 LLT BoolTy = Ty.changeElementSize(1); 6655 6656 unsigned BW = Ty.getScalarSizeInBits(); 6657 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6658 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6659 : MIRBuilder.buildLShr(Ty, Result, RHS); 6660 6661 MachineInstrBuilder SatVal; 6662 if (IsSigned) { 6663 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6664 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6665 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6666 MIRBuilder.buildConstant(Ty, 0)); 6667 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6668 } else { 6669 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6670 } 6671 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6672 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6673 6674 MI.eraseFromParent(); 6675 return Legalized; 6676 } 6677 6678 LegalizerHelper::LegalizeResult 6679 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6680 Register Dst = MI.getOperand(0).getReg(); 6681 Register Src = MI.getOperand(1).getReg(); 6682 const LLT Ty = MRI.getType(Src); 6683 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6684 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6685 6686 // Swap most and least significant byte, set remaining bytes in Res to zero. 6687 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6688 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6689 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6690 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6691 6692 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6693 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6694 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6695 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6696 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6697 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6698 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6699 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6700 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6701 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6702 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6703 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6704 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6705 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6706 } 6707 Res.getInstr()->getOperand(0).setReg(Dst); 6708 6709 MI.eraseFromParent(); 6710 return Legalized; 6711 } 6712 6713 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6714 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6715 MachineInstrBuilder Src, APInt Mask) { 6716 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6717 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6718 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6719 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6720 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6721 return B.buildOr(Dst, LHS, RHS); 6722 } 6723 6724 LegalizerHelper::LegalizeResult 6725 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6726 Register Dst = MI.getOperand(0).getReg(); 6727 Register Src = MI.getOperand(1).getReg(); 6728 const LLT Ty = MRI.getType(Src); 6729 unsigned Size = Ty.getSizeInBits(); 6730 6731 MachineInstrBuilder BSWAP = 6732 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6733 6734 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6735 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6736 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6737 MachineInstrBuilder Swap4 = 6738 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6739 6740 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6741 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6742 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6743 MachineInstrBuilder Swap2 = 6744 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6745 6746 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6747 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6748 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6749 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6750 6751 MI.eraseFromParent(); 6752 return Legalized; 6753 } 6754 6755 LegalizerHelper::LegalizeResult 6756 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6757 MachineFunction &MF = MIRBuilder.getMF(); 6758 6759 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6760 int NameOpIdx = IsRead ? 1 : 0; 6761 int ValRegIndex = IsRead ? 0 : 1; 6762 6763 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6764 const LLT Ty = MRI.getType(ValReg); 6765 const MDString *RegStr = cast<MDString>( 6766 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6767 6768 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6769 if (!PhysReg.isValid()) 6770 return UnableToLegalize; 6771 6772 if (IsRead) 6773 MIRBuilder.buildCopy(ValReg, PhysReg); 6774 else 6775 MIRBuilder.buildCopy(PhysReg, ValReg); 6776 6777 MI.eraseFromParent(); 6778 return Legalized; 6779 } 6780 6781 LegalizerHelper::LegalizeResult 6782 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6783 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6784 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6785 Register Result = MI.getOperand(0).getReg(); 6786 LLT OrigTy = MRI.getType(Result); 6787 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6788 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6789 6790 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6791 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6792 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6793 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6794 6795 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6796 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6797 MIRBuilder.buildTrunc(Result, Shifted); 6798 6799 MI.eraseFromParent(); 6800 return Legalized; 6801 } 6802 6803 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6804 // Implement vector G_SELECT in terms of XOR, AND, OR. 6805 Register DstReg = MI.getOperand(0).getReg(); 6806 Register MaskReg = MI.getOperand(1).getReg(); 6807 Register Op1Reg = MI.getOperand(2).getReg(); 6808 Register Op2Reg = MI.getOperand(3).getReg(); 6809 LLT DstTy = MRI.getType(DstReg); 6810 LLT MaskTy = MRI.getType(MaskReg); 6811 LLT Op1Ty = MRI.getType(Op1Reg); 6812 if (!DstTy.isVector()) 6813 return UnableToLegalize; 6814 6815 // Vector selects can have a scalar predicate. If so, splat into a vector and 6816 // finish for later legalization attempts to try again. 6817 if (MaskTy.isScalar()) { 6818 Register MaskElt = MaskReg; 6819 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6820 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6821 // Generate a vector splat idiom to be pattern matched later. 6822 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6823 Observer.changingInstr(MI); 6824 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6825 Observer.changedInstr(MI); 6826 return Legalized; 6827 } 6828 6829 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6830 return UnableToLegalize; 6831 } 6832 6833 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6834 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6835 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6836 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6837 MI.eraseFromParent(); 6838 return Legalized; 6839 } 6840 6841 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 6842 // Split DIVREM into individual instructions. 6843 unsigned Opcode = MI.getOpcode(); 6844 6845 MIRBuilder.buildInstr( 6846 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 6847 : TargetOpcode::G_UDIV, 6848 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6849 MIRBuilder.buildInstr( 6850 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 6851 : TargetOpcode::G_UREM, 6852 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6853 MI.eraseFromParent(); 6854 return Legalized; 6855 } 6856