1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 #define DEBUG_TYPE "legalizer"
31 
32 using namespace llvm;
33 using namespace LegalizeActions;
34 using namespace MIPatternMatch;
35 
36 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
37 ///
38 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
39 /// with any leftover piece as type \p LeftoverTy
40 ///
41 /// Returns -1 in the first element of the pair if the breakdown is not
42 /// satisfiable.
43 static std::pair<int, int>
44 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
45   assert(!LeftoverTy.isValid() && "this is an out argument");
46 
47   unsigned Size = OrigTy.getSizeInBits();
48   unsigned NarrowSize = NarrowTy.getSizeInBits();
49   unsigned NumParts = Size / NarrowSize;
50   unsigned LeftoverSize = Size - NumParts * NarrowSize;
51   assert(Size > NarrowSize);
52 
53   if (LeftoverSize == 0)
54     return {NumParts, 0};
55 
56   if (NarrowTy.isVector()) {
57     unsigned EltSize = OrigTy.getScalarSizeInBits();
58     if (LeftoverSize % EltSize != 0)
59       return {-1, -1};
60     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
61   } else {
62     LeftoverTy = LLT::scalar(LeftoverSize);
63   }
64 
65   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
66   return std::make_pair(NumParts, NumLeftover);
67 }
68 
69 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
70 
71   if (!Ty.isScalar())
72     return nullptr;
73 
74   switch (Ty.getSizeInBits()) {
75   case 16:
76     return Type::getHalfTy(Ctx);
77   case 32:
78     return Type::getFloatTy(Ctx);
79   case 64:
80     return Type::getDoubleTy(Ctx);
81   case 80:
82     return Type::getX86_FP80Ty(Ctx);
83   case 128:
84     return Type::getFP128Ty(Ctx);
85   default:
86     return nullptr;
87   }
88 }
89 
90 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
91                                  GISelChangeObserver &Observer,
92                                  MachineIRBuilder &Builder)
93     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
94       LI(*MF.getSubtarget().getLegalizerInfo()),
95       TLI(*MF.getSubtarget().getTargetLowering()) { }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
101     TLI(*MF.getSubtarget().getTargetLowering()) { }
102 
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int StartIdx = Regs.size();
250   const int NumResults = MI.getNumOperands() - 1;
251   Regs.resize(Regs.size() + NumResults);
252   for (int I = 0; I != NumResults; ++I)
253     Regs[StartIdx + I] = MI.getOperand(I).getReg();
254 }
255 
256 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
257                                      LLT GCDTy, Register SrcReg) {
258   LLT SrcTy = MRI.getType(SrcReg);
259   if (SrcTy == GCDTy) {
260     // If the source already evenly divides the result type, we don't need to do
261     // anything.
262     Parts.push_back(SrcReg);
263   } else {
264     // Need to split into common type sized pieces.
265     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
266     getUnmergeResults(Parts, *Unmerge);
267   }
268 }
269 
270 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
271                                     LLT NarrowTy, Register SrcReg) {
272   LLT SrcTy = MRI.getType(SrcReg);
273   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
274   extractGCDType(Parts, GCDTy, SrcReg);
275   return GCDTy;
276 }
277 
278 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
279                                          SmallVectorImpl<Register> &VRegs,
280                                          unsigned PadStrategy) {
281   LLT LCMTy = getLCMType(DstTy, NarrowTy);
282 
283   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
284   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
285   int NumOrigSrc = VRegs.size();
286 
287   Register PadReg;
288 
289   // Get a value we can use to pad the source value if the sources won't evenly
290   // cover the result type.
291   if (NumOrigSrc < NumParts * NumSubParts) {
292     if (PadStrategy == TargetOpcode::G_ZEXT)
293       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
294     else if (PadStrategy == TargetOpcode::G_ANYEXT)
295       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
296     else {
297       assert(PadStrategy == TargetOpcode::G_SEXT);
298 
299       // Shift the sign bit of the low register through the high register.
300       auto ShiftAmt =
301         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
302       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
303     }
304   }
305 
306   // Registers for the final merge to be produced.
307   SmallVector<Register, 4> Remerge(NumParts);
308 
309   // Registers needed for intermediate merges, which will be merged into a
310   // source for Remerge.
311   SmallVector<Register, 4> SubMerge(NumSubParts);
312 
313   // Once we've fully read off the end of the original source bits, we can reuse
314   // the same high bits for remaining padding elements.
315   Register AllPadReg;
316 
317   // Build merges to the LCM type to cover the original result type.
318   for (int I = 0; I != NumParts; ++I) {
319     bool AllMergePartsArePadding = true;
320 
321     // Build the requested merges to the requested type.
322     for (int J = 0; J != NumSubParts; ++J) {
323       int Idx = I * NumSubParts + J;
324       if (Idx >= NumOrigSrc) {
325         SubMerge[J] = PadReg;
326         continue;
327       }
328 
329       SubMerge[J] = VRegs[Idx];
330 
331       // There are meaningful bits here we can't reuse later.
332       AllMergePartsArePadding = false;
333     }
334 
335     // If we've filled up a complete piece with padding bits, we can directly
336     // emit the natural sized constant if applicable, rather than a merge of
337     // smaller constants.
338     if (AllMergePartsArePadding && !AllPadReg) {
339       if (PadStrategy == TargetOpcode::G_ANYEXT)
340         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
341       else if (PadStrategy == TargetOpcode::G_ZEXT)
342         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
343 
344       // If this is a sign extension, we can't materialize a trivial constant
345       // with the right type and have to produce a merge.
346     }
347 
348     if (AllPadReg) {
349       // Avoid creating additional instructions if we're just adding additional
350       // copies of padding bits.
351       Remerge[I] = AllPadReg;
352       continue;
353     }
354 
355     if (NumSubParts == 1)
356       Remerge[I] = SubMerge[0];
357     else
358       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
359 
360     // In the sign extend padding case, re-use the first all-signbit merge.
361     if (AllMergePartsArePadding && !AllPadReg)
362       AllPadReg = Remerge[I];
363   }
364 
365   VRegs = std::move(Remerge);
366   return LCMTy;
367 }
368 
369 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
370                                                ArrayRef<Register> RemergeRegs) {
371   LLT DstTy = MRI.getType(DstReg);
372 
373   // Create the merge to the widened source, and extract the relevant bits into
374   // the result.
375 
376   if (DstTy == LCMTy) {
377     MIRBuilder.buildMerge(DstReg, RemergeRegs);
378     return;
379   }
380 
381   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
382   if (DstTy.isScalar() && LCMTy.isScalar()) {
383     MIRBuilder.buildTrunc(DstReg, Remerge);
384     return;
385   }
386 
387   if (LCMTy.isVector()) {
388     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
389     SmallVector<Register, 8> UnmergeDefs(NumDefs);
390     UnmergeDefs[0] = DstReg;
391     for (unsigned I = 1; I != NumDefs; ++I)
392       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
393 
394     MIRBuilder.buildUnmerge(UnmergeDefs,
395                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
396     return;
397   }
398 
399   llvm_unreachable("unhandled case");
400 }
401 
402 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
403 #define RTLIBCASE_INT(LibcallPrefix)                                           \
404   do {                                                                         \
405     switch (Size) {                                                            \
406     case 32:                                                                   \
407       return RTLIB::LibcallPrefix##32;                                         \
408     case 64:                                                                   \
409       return RTLIB::LibcallPrefix##64;                                         \
410     case 128:                                                                  \
411       return RTLIB::LibcallPrefix##128;                                        \
412     default:                                                                   \
413       llvm_unreachable("unexpected size");                                     \
414     }                                                                          \
415   } while (0)
416 
417 #define RTLIBCASE(LibcallPrefix)                                               \
418   do {                                                                         \
419     switch (Size) {                                                            \
420     case 32:                                                                   \
421       return RTLIB::LibcallPrefix##32;                                         \
422     case 64:                                                                   \
423       return RTLIB::LibcallPrefix##64;                                         \
424     case 80:                                                                   \
425       return RTLIB::LibcallPrefix##80;                                         \
426     case 128:                                                                  \
427       return RTLIB::LibcallPrefix##128;                                        \
428     default:                                                                   \
429       llvm_unreachable("unexpected size");                                     \
430     }                                                                          \
431   } while (0)
432 
433   switch (Opcode) {
434   case TargetOpcode::G_SDIV:
435     RTLIBCASE_INT(SDIV_I);
436   case TargetOpcode::G_UDIV:
437     RTLIBCASE_INT(UDIV_I);
438   case TargetOpcode::G_SREM:
439     RTLIBCASE_INT(SREM_I);
440   case TargetOpcode::G_UREM:
441     RTLIBCASE_INT(UREM_I);
442   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
443     RTLIBCASE_INT(CTLZ_I);
444   case TargetOpcode::G_FADD:
445     RTLIBCASE(ADD_F);
446   case TargetOpcode::G_FSUB:
447     RTLIBCASE(SUB_F);
448   case TargetOpcode::G_FMUL:
449     RTLIBCASE(MUL_F);
450   case TargetOpcode::G_FDIV:
451     RTLIBCASE(DIV_F);
452   case TargetOpcode::G_FEXP:
453     RTLIBCASE(EXP_F);
454   case TargetOpcode::G_FEXP2:
455     RTLIBCASE(EXP2_F);
456   case TargetOpcode::G_FREM:
457     RTLIBCASE(REM_F);
458   case TargetOpcode::G_FPOW:
459     RTLIBCASE(POW_F);
460   case TargetOpcode::G_FMA:
461     RTLIBCASE(FMA_F);
462   case TargetOpcode::G_FSIN:
463     RTLIBCASE(SIN_F);
464   case TargetOpcode::G_FCOS:
465     RTLIBCASE(COS_F);
466   case TargetOpcode::G_FLOG10:
467     RTLIBCASE(LOG10_F);
468   case TargetOpcode::G_FLOG:
469     RTLIBCASE(LOG_F);
470   case TargetOpcode::G_FLOG2:
471     RTLIBCASE(LOG2_F);
472   case TargetOpcode::G_FCEIL:
473     RTLIBCASE(CEIL_F);
474   case TargetOpcode::G_FFLOOR:
475     RTLIBCASE(FLOOR_F);
476   case TargetOpcode::G_FMINNUM:
477     RTLIBCASE(FMIN_F);
478   case TargetOpcode::G_FMAXNUM:
479     RTLIBCASE(FMAX_F);
480   case TargetOpcode::G_FSQRT:
481     RTLIBCASE(SQRT_F);
482   case TargetOpcode::G_FRINT:
483     RTLIBCASE(RINT_F);
484   case TargetOpcode::G_FNEARBYINT:
485     RTLIBCASE(NEARBYINT_F);
486   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
487     RTLIBCASE(ROUNDEVEN_F);
488   }
489   llvm_unreachable("Unknown libcall function");
490 }
491 
492 /// True if an instruction is in tail position in its caller. Intended for
493 /// legalizing libcalls as tail calls when possible.
494 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
495                                     MachineInstr &MI) {
496   MachineBasicBlock &MBB = *MI.getParent();
497   const Function &F = MBB.getParent()->getFunction();
498 
499   // Conservatively require the attributes of the call to match those of
500   // the return. Ignore NoAlias and NonNull because they don't affect the
501   // call sequence.
502   AttributeList CallerAttrs = F.getAttributes();
503   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
504           .removeAttribute(Attribute::NoAlias)
505           .removeAttribute(Attribute::NonNull)
506           .hasAttributes())
507     return false;
508 
509   // It's not safe to eliminate the sign / zero extension of the return value.
510   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
511       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
512     return false;
513 
514   // Only tail call if the following instruction is a standard return.
515   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
516   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
517     return false;
518 
519   return true;
520 }
521 
522 LegalizerHelper::LegalizeResult
523 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
524                     const CallLowering::ArgInfo &Result,
525                     ArrayRef<CallLowering::ArgInfo> Args,
526                     const CallingConv::ID CC) {
527   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
528 
529   CallLowering::CallLoweringInfo Info;
530   Info.CallConv = CC;
531   Info.Callee = MachineOperand::CreateES(Name);
532   Info.OrigRet = Result;
533   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
534   if (!CLI.lowerCall(MIRBuilder, Info))
535     return LegalizerHelper::UnableToLegalize;
536 
537   return LegalizerHelper::Legalized;
538 }
539 
540 LegalizerHelper::LegalizeResult
541 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
542                     const CallLowering::ArgInfo &Result,
543                     ArrayRef<CallLowering::ArgInfo> Args) {
544   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
545   const char *Name = TLI.getLibcallName(Libcall);
546   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
547   return createLibcall(MIRBuilder, Name, Result, Args, CC);
548 }
549 
550 // Useful for libcalls where all operands have the same type.
551 static LegalizerHelper::LegalizeResult
552 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
553               Type *OpType) {
554   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
555 
556   SmallVector<CallLowering::ArgInfo, 3> Args;
557   for (unsigned i = 1; i < MI.getNumOperands(); i++)
558     Args.push_back({MI.getOperand(i).getReg(), OpType});
559   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
560                        Args);
561 }
562 
563 LegalizerHelper::LegalizeResult
564 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
565                        MachineInstr &MI) {
566   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
567 
568   SmallVector<CallLowering::ArgInfo, 3> Args;
569   // Add all the args, except for the last which is an imm denoting 'tail'.
570   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
571     Register Reg = MI.getOperand(i).getReg();
572 
573     // Need derive an IR type for call lowering.
574     LLT OpLLT = MRI.getType(Reg);
575     Type *OpTy = nullptr;
576     if (OpLLT.isPointer())
577       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
578     else
579       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
580     Args.push_back({Reg, OpTy});
581   }
582 
583   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
584   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
585   RTLIB::Libcall RTLibcall;
586   unsigned Opc = MI.getOpcode();
587   switch (Opc) {
588   case TargetOpcode::G_BZERO:
589     RTLibcall = RTLIB::BZERO;
590     break;
591   case TargetOpcode::G_MEMCPY:
592     RTLibcall = RTLIB::MEMCPY;
593     break;
594   case TargetOpcode::G_MEMMOVE:
595     RTLibcall = RTLIB::MEMMOVE;
596     break;
597   case TargetOpcode::G_MEMSET:
598     RTLibcall = RTLIB::MEMSET;
599     break;
600   default:
601     return LegalizerHelper::UnableToLegalize;
602   }
603   const char *Name = TLI.getLibcallName(RTLibcall);
604 
605   // Unsupported libcall on the target.
606   if (!Name) {
607     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
608                       << MIRBuilder.getTII().getName(Opc) << "\n");
609     return LegalizerHelper::UnableToLegalize;
610   }
611 
612   CallLowering::CallLoweringInfo Info;
613   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
614   Info.Callee = MachineOperand::CreateES(Name);
615   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
616   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
617                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
618 
619   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
620   if (!CLI.lowerCall(MIRBuilder, Info))
621     return LegalizerHelper::UnableToLegalize;
622 
623   if (Info.LoweredTailCall) {
624     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
625     // We must have a return following the call (or debug insts) to get past
626     // isLibCallInTailPosition.
627     do {
628       MachineInstr *Next = MI.getNextNode();
629       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
630              "Expected instr following MI to be return or debug inst?");
631       // We lowered a tail call, so the call is now the return from the block.
632       // Delete the old return.
633       Next->eraseFromParent();
634     } while (MI.getNextNode());
635   }
636 
637   return LegalizerHelper::Legalized;
638 }
639 
640 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
641                                        Type *FromType) {
642   auto ToMVT = MVT::getVT(ToType);
643   auto FromMVT = MVT::getVT(FromType);
644 
645   switch (Opcode) {
646   case TargetOpcode::G_FPEXT:
647     return RTLIB::getFPEXT(FromMVT, ToMVT);
648   case TargetOpcode::G_FPTRUNC:
649     return RTLIB::getFPROUND(FromMVT, ToMVT);
650   case TargetOpcode::G_FPTOSI:
651     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
652   case TargetOpcode::G_FPTOUI:
653     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
654   case TargetOpcode::G_SITOFP:
655     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
656   case TargetOpcode::G_UITOFP:
657     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
658   }
659   llvm_unreachable("Unsupported libcall function");
660 }
661 
662 static LegalizerHelper::LegalizeResult
663 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
664                   Type *FromType) {
665   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
666   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
667                        {{MI.getOperand(1).getReg(), FromType}});
668 }
669 
670 LegalizerHelper::LegalizeResult
671 LegalizerHelper::libcall(MachineInstr &MI) {
672   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
673   unsigned Size = LLTy.getSizeInBits();
674   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
675 
676   switch (MI.getOpcode()) {
677   default:
678     return UnableToLegalize;
679   case TargetOpcode::G_SDIV:
680   case TargetOpcode::G_UDIV:
681   case TargetOpcode::G_SREM:
682   case TargetOpcode::G_UREM:
683   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
684     Type *HLTy = IntegerType::get(Ctx, Size);
685     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
686     if (Status != Legalized)
687       return Status;
688     break;
689   }
690   case TargetOpcode::G_FADD:
691   case TargetOpcode::G_FSUB:
692   case TargetOpcode::G_FMUL:
693   case TargetOpcode::G_FDIV:
694   case TargetOpcode::G_FMA:
695   case TargetOpcode::G_FPOW:
696   case TargetOpcode::G_FREM:
697   case TargetOpcode::G_FCOS:
698   case TargetOpcode::G_FSIN:
699   case TargetOpcode::G_FLOG10:
700   case TargetOpcode::G_FLOG:
701   case TargetOpcode::G_FLOG2:
702   case TargetOpcode::G_FEXP:
703   case TargetOpcode::G_FEXP2:
704   case TargetOpcode::G_FCEIL:
705   case TargetOpcode::G_FFLOOR:
706   case TargetOpcode::G_FMINNUM:
707   case TargetOpcode::G_FMAXNUM:
708   case TargetOpcode::G_FSQRT:
709   case TargetOpcode::G_FRINT:
710   case TargetOpcode::G_FNEARBYINT:
711   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
712     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
713     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
714       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
715       return UnableToLegalize;
716     }
717     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
718     if (Status != Legalized)
719       return Status;
720     break;
721   }
722   case TargetOpcode::G_FPEXT:
723   case TargetOpcode::G_FPTRUNC: {
724     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
725     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
726     if (!FromTy || !ToTy)
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
729     if (Status != Legalized)
730       return Status;
731     break;
732   }
733   case TargetOpcode::G_FPTOSI:
734   case TargetOpcode::G_FPTOUI: {
735     // FIXME: Support other types
736     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
737     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
738     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
739       return UnableToLegalize;
740     LegalizeResult Status = conversionLibcall(
741         MI, MIRBuilder,
742         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
743         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
744     if (Status != Legalized)
745       return Status;
746     break;
747   }
748   case TargetOpcode::G_SITOFP:
749   case TargetOpcode::G_UITOFP: {
750     // FIXME: Support other types
751     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
752     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
753     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
754       return UnableToLegalize;
755     LegalizeResult Status = conversionLibcall(
756         MI, MIRBuilder,
757         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
758         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
759     if (Status != Legalized)
760       return Status;
761     break;
762   }
763   case TargetOpcode::G_BZERO:
764   case TargetOpcode::G_MEMCPY:
765   case TargetOpcode::G_MEMMOVE:
766   case TargetOpcode::G_MEMSET: {
767     LegalizeResult Result =
768         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
769     if (Result != Legalized)
770       return Result;
771     MI.eraseFromParent();
772     return Result;
773   }
774   }
775 
776   MI.eraseFromParent();
777   return Legalized;
778 }
779 
780 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
781                                                               unsigned TypeIdx,
782                                                               LLT NarrowTy) {
783   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
784   uint64_t NarrowSize = NarrowTy.getSizeInBits();
785 
786   switch (MI.getOpcode()) {
787   default:
788     return UnableToLegalize;
789   case TargetOpcode::G_IMPLICIT_DEF: {
790     Register DstReg = MI.getOperand(0).getReg();
791     LLT DstTy = MRI.getType(DstReg);
792 
793     // If SizeOp0 is not an exact multiple of NarrowSize, emit
794     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
795     // FIXME: Although this would also be legal for the general case, it causes
796     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
797     //  combines not being hit). This seems to be a problem related to the
798     //  artifact combiner.
799     if (SizeOp0 % NarrowSize != 0) {
800       LLT ImplicitTy = NarrowTy;
801       if (DstTy.isVector())
802         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
803 
804       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
805       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
806 
807       MI.eraseFromParent();
808       return Legalized;
809     }
810 
811     int NumParts = SizeOp0 / NarrowSize;
812 
813     SmallVector<Register, 2> DstRegs;
814     for (int i = 0; i < NumParts; ++i)
815       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
816 
817     if (DstTy.isVector())
818       MIRBuilder.buildBuildVector(DstReg, DstRegs);
819     else
820       MIRBuilder.buildMerge(DstReg, DstRegs);
821     MI.eraseFromParent();
822     return Legalized;
823   }
824   case TargetOpcode::G_CONSTANT: {
825     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
826     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
827     unsigned TotalSize = Ty.getSizeInBits();
828     unsigned NarrowSize = NarrowTy.getSizeInBits();
829     int NumParts = TotalSize / NarrowSize;
830 
831     SmallVector<Register, 4> PartRegs;
832     for (int I = 0; I != NumParts; ++I) {
833       unsigned Offset = I * NarrowSize;
834       auto K = MIRBuilder.buildConstant(NarrowTy,
835                                         Val.lshr(Offset).trunc(NarrowSize));
836       PartRegs.push_back(K.getReg(0));
837     }
838 
839     LLT LeftoverTy;
840     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
841     SmallVector<Register, 1> LeftoverRegs;
842     if (LeftoverBits != 0) {
843       LeftoverTy = LLT::scalar(LeftoverBits);
844       auto K = MIRBuilder.buildConstant(
845         LeftoverTy,
846         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
847       LeftoverRegs.push_back(K.getReg(0));
848     }
849 
850     insertParts(MI.getOperand(0).getReg(),
851                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
852 
853     MI.eraseFromParent();
854     return Legalized;
855   }
856   case TargetOpcode::G_SEXT:
857   case TargetOpcode::G_ZEXT:
858   case TargetOpcode::G_ANYEXT:
859     return narrowScalarExt(MI, TypeIdx, NarrowTy);
860   case TargetOpcode::G_TRUNC: {
861     if (TypeIdx != 1)
862       return UnableToLegalize;
863 
864     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
865     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
866       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
867       return UnableToLegalize;
868     }
869 
870     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
871     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
872     MI.eraseFromParent();
873     return Legalized;
874   }
875 
876   case TargetOpcode::G_FREEZE:
877     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_ADD:
879   case TargetOpcode::G_SUB:
880   case TargetOpcode::G_SADDO:
881   case TargetOpcode::G_SSUBO:
882   case TargetOpcode::G_SADDE:
883   case TargetOpcode::G_SSUBE:
884   case TargetOpcode::G_UADDO:
885   case TargetOpcode::G_USUBO:
886   case TargetOpcode::G_UADDE:
887   case TargetOpcode::G_USUBE:
888     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
889   case TargetOpcode::G_MUL:
890   case TargetOpcode::G_UMULH:
891     return narrowScalarMul(MI, NarrowTy);
892   case TargetOpcode::G_EXTRACT:
893     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
894   case TargetOpcode::G_INSERT:
895     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
896   case TargetOpcode::G_LOAD: {
897     auto &MMO = **MI.memoperands_begin();
898     Register DstReg = MI.getOperand(0).getReg();
899     LLT DstTy = MRI.getType(DstReg);
900     if (DstTy.isVector())
901       return UnableToLegalize;
902 
903     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
904       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
905       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
906       MIRBuilder.buildAnyExt(DstReg, TmpReg);
907       MI.eraseFromParent();
908       return Legalized;
909     }
910 
911     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
912   }
913   case TargetOpcode::G_ZEXTLOAD:
914   case TargetOpcode::G_SEXTLOAD: {
915     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
916     Register DstReg = MI.getOperand(0).getReg();
917     Register PtrReg = MI.getOperand(1).getReg();
918 
919     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
920     auto &MMO = **MI.memoperands_begin();
921     unsigned MemSize = MMO.getSizeInBits();
922 
923     if (MemSize == NarrowSize) {
924       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
925     } else if (MemSize < NarrowSize) {
926       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
927     } else if (MemSize > NarrowSize) {
928       // FIXME: Need to split the load.
929       return UnableToLegalize;
930     }
931 
932     if (ZExt)
933       MIRBuilder.buildZExt(DstReg, TmpReg);
934     else
935       MIRBuilder.buildSExt(DstReg, TmpReg);
936 
937     MI.eraseFromParent();
938     return Legalized;
939   }
940   case TargetOpcode::G_STORE: {
941     const auto &MMO = **MI.memoperands_begin();
942 
943     Register SrcReg = MI.getOperand(0).getReg();
944     LLT SrcTy = MRI.getType(SrcReg);
945     if (SrcTy.isVector())
946       return UnableToLegalize;
947 
948     int NumParts = SizeOp0 / NarrowSize;
949     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
950     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
951     if (SrcTy.isVector() && LeftoverBits != 0)
952       return UnableToLegalize;
953 
954     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
955       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
956       auto &MMO = **MI.memoperands_begin();
957       MIRBuilder.buildTrunc(TmpReg, SrcReg);
958       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
959       MI.eraseFromParent();
960       return Legalized;
961     }
962 
963     return reduceLoadStoreWidth(MI, 0, NarrowTy);
964   }
965   case TargetOpcode::G_SELECT:
966     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
967   case TargetOpcode::G_AND:
968   case TargetOpcode::G_OR:
969   case TargetOpcode::G_XOR: {
970     // Legalize bitwise operation:
971     // A = BinOp<Ty> B, C
972     // into:
973     // B1, ..., BN = G_UNMERGE_VALUES B
974     // C1, ..., CN = G_UNMERGE_VALUES C
975     // A1 = BinOp<Ty/N> B1, C2
976     // ...
977     // AN = BinOp<Ty/N> BN, CN
978     // A = G_MERGE_VALUES A1, ..., AN
979     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
980   }
981   case TargetOpcode::G_SHL:
982   case TargetOpcode::G_LSHR:
983   case TargetOpcode::G_ASHR:
984     return narrowScalarShift(MI, TypeIdx, NarrowTy);
985   case TargetOpcode::G_CTLZ:
986   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
987   case TargetOpcode::G_CTTZ:
988   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTPOP:
990     if (TypeIdx == 1)
991       switch (MI.getOpcode()) {
992       case TargetOpcode::G_CTLZ:
993       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
994         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
995       case TargetOpcode::G_CTTZ:
996       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
997         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
998       case TargetOpcode::G_CTPOP:
999         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1000       default:
1001         return UnableToLegalize;
1002       }
1003 
1004     Observer.changingInstr(MI);
1005     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006     Observer.changedInstr(MI);
1007     return Legalized;
1008   case TargetOpcode::G_INTTOPTR:
1009     if (TypeIdx != 1)
1010       return UnableToLegalize;
1011 
1012     Observer.changingInstr(MI);
1013     narrowScalarSrc(MI, NarrowTy, 1);
1014     Observer.changedInstr(MI);
1015     return Legalized;
1016   case TargetOpcode::G_PTRTOINT:
1017     if (TypeIdx != 0)
1018       return UnableToLegalize;
1019 
1020     Observer.changingInstr(MI);
1021     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1022     Observer.changedInstr(MI);
1023     return Legalized;
1024   case TargetOpcode::G_PHI: {
1025     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1026     // NarrowSize.
1027     if (SizeOp0 % NarrowSize != 0)
1028       return UnableToLegalize;
1029 
1030     unsigned NumParts = SizeOp0 / NarrowSize;
1031     SmallVector<Register, 2> DstRegs(NumParts);
1032     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1033     Observer.changingInstr(MI);
1034     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1035       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1036       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1037       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1038                    SrcRegs[i / 2]);
1039     }
1040     MachineBasicBlock &MBB = *MI.getParent();
1041     MIRBuilder.setInsertPt(MBB, MI);
1042     for (unsigned i = 0; i < NumParts; ++i) {
1043       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1044       MachineInstrBuilder MIB =
1045           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1046       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1047         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1048     }
1049     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1050     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1051     Observer.changedInstr(MI);
1052     MI.eraseFromParent();
1053     return Legalized;
1054   }
1055   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1056   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1057     if (TypeIdx != 2)
1058       return UnableToLegalize;
1059 
1060     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1061     Observer.changingInstr(MI);
1062     narrowScalarSrc(MI, NarrowTy, OpIdx);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   }
1066   case TargetOpcode::G_ICMP: {
1067     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1068     if (NarrowSize * 2 != SrcSize)
1069       return UnableToLegalize;
1070 
1071     Observer.changingInstr(MI);
1072     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1073     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1074     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1075 
1076     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1077     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1078     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1079 
1080     CmpInst::Predicate Pred =
1081         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1082     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1083 
1084     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1085       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1086       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1087       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1088       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1089       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1090     } else {
1091       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1092       MachineInstrBuilder CmpHEQ =
1093           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1094       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1095           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1096       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1097     }
1098     Observer.changedInstr(MI);
1099     MI.eraseFromParent();
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_SEXT_INREG: {
1103     if (TypeIdx != 0)
1104       return UnableToLegalize;
1105 
1106     int64_t SizeInBits = MI.getOperand(2).getImm();
1107 
1108     // So long as the new type has more bits than the bits we're extending we
1109     // don't need to break it apart.
1110     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1111       Observer.changingInstr(MI);
1112       // We don't lose any non-extension bits by truncating the src and
1113       // sign-extending the dst.
1114       MachineOperand &MO1 = MI.getOperand(1);
1115       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1116       MO1.setReg(TruncMIB.getReg(0));
1117 
1118       MachineOperand &MO2 = MI.getOperand(0);
1119       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1120       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1121       MIRBuilder.buildSExt(MO2, DstExt);
1122       MO2.setReg(DstExt);
1123       Observer.changedInstr(MI);
1124       return Legalized;
1125     }
1126 
1127     // Break it apart. Components below the extension point are unmodified. The
1128     // component containing the extension point becomes a narrower SEXT_INREG.
1129     // Components above it are ashr'd from the component containing the
1130     // extension point.
1131     if (SizeOp0 % NarrowSize != 0)
1132       return UnableToLegalize;
1133     int NumParts = SizeOp0 / NarrowSize;
1134 
1135     // List the registers where the destination will be scattered.
1136     SmallVector<Register, 2> DstRegs;
1137     // List the registers where the source will be split.
1138     SmallVector<Register, 2> SrcRegs;
1139 
1140     // Create all the temporary registers.
1141     for (int i = 0; i < NumParts; ++i) {
1142       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1143 
1144       SrcRegs.push_back(SrcReg);
1145     }
1146 
1147     // Explode the big arguments into smaller chunks.
1148     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1149 
1150     Register AshrCstReg =
1151         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1152             .getReg(0);
1153     Register FullExtensionReg = 0;
1154     Register PartialExtensionReg = 0;
1155 
1156     // Do the operation on each small part.
1157     for (int i = 0; i < NumParts; ++i) {
1158       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1159         DstRegs.push_back(SrcRegs[i]);
1160       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1161         assert(PartialExtensionReg &&
1162                "Expected to visit partial extension before full");
1163         if (FullExtensionReg) {
1164           DstRegs.push_back(FullExtensionReg);
1165           continue;
1166         }
1167         DstRegs.push_back(
1168             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1169                 .getReg(0));
1170         FullExtensionReg = DstRegs.back();
1171       } else {
1172         DstRegs.push_back(
1173             MIRBuilder
1174                 .buildInstr(
1175                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1176                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1177                 .getReg(0));
1178         PartialExtensionReg = DstRegs.back();
1179       }
1180     }
1181 
1182     // Gather the destination registers into the final destination.
1183     Register DstReg = MI.getOperand(0).getReg();
1184     MIRBuilder.buildMerge(DstReg, DstRegs);
1185     MI.eraseFromParent();
1186     return Legalized;
1187   }
1188   case TargetOpcode::G_BSWAP:
1189   case TargetOpcode::G_BITREVERSE: {
1190     if (SizeOp0 % NarrowSize != 0)
1191       return UnableToLegalize;
1192 
1193     Observer.changingInstr(MI);
1194     SmallVector<Register, 2> SrcRegs, DstRegs;
1195     unsigned NumParts = SizeOp0 / NarrowSize;
1196     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1197 
1198     for (unsigned i = 0; i < NumParts; ++i) {
1199       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1200                                            {SrcRegs[NumParts - 1 - i]});
1201       DstRegs.push_back(DstPart.getReg(0));
1202     }
1203 
1204     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1205 
1206     Observer.changedInstr(MI);
1207     MI.eraseFromParent();
1208     return Legalized;
1209   }
1210   case TargetOpcode::G_PTR_ADD:
1211   case TargetOpcode::G_PTRMASK: {
1212     if (TypeIdx != 1)
1213       return UnableToLegalize;
1214     Observer.changingInstr(MI);
1215     narrowScalarSrc(MI, NarrowTy, 2);
1216     Observer.changedInstr(MI);
1217     return Legalized;
1218   }
1219   case TargetOpcode::G_FPTOUI:
1220   case TargetOpcode::G_FPTOSI:
1221     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1222   case TargetOpcode::G_FPEXT:
1223     if (TypeIdx != 0)
1224       return UnableToLegalize;
1225     Observer.changingInstr(MI);
1226     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1227     Observer.changedInstr(MI);
1228     return Legalized;
1229   }
1230 }
1231 
1232 Register LegalizerHelper::coerceToScalar(Register Val) {
1233   LLT Ty = MRI.getType(Val);
1234   if (Ty.isScalar())
1235     return Val;
1236 
1237   const DataLayout &DL = MIRBuilder.getDataLayout();
1238   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1239   if (Ty.isPointer()) {
1240     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1241       return Register();
1242     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1243   }
1244 
1245   Register NewVal = Val;
1246 
1247   assert(Ty.isVector());
1248   LLT EltTy = Ty.getElementType();
1249   if (EltTy.isPointer())
1250     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1251   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1252 }
1253 
1254 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1255                                      unsigned OpIdx, unsigned ExtOpcode) {
1256   MachineOperand &MO = MI.getOperand(OpIdx);
1257   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1258   MO.setReg(ExtB.getReg(0));
1259 }
1260 
1261 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1262                                       unsigned OpIdx) {
1263   MachineOperand &MO = MI.getOperand(OpIdx);
1264   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1265   MO.setReg(ExtB.getReg(0));
1266 }
1267 
1268 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1269                                      unsigned OpIdx, unsigned TruncOpcode) {
1270   MachineOperand &MO = MI.getOperand(OpIdx);
1271   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1272   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1273   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1274   MO.setReg(DstExt);
1275 }
1276 
1277 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1278                                       unsigned OpIdx, unsigned ExtOpcode) {
1279   MachineOperand &MO = MI.getOperand(OpIdx);
1280   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1281   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1282   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1283   MO.setReg(DstTrunc);
1284 }
1285 
1286 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1287                                             unsigned OpIdx) {
1288   MachineOperand &MO = MI.getOperand(OpIdx);
1289   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1290   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1291 }
1292 
1293 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1294                                             unsigned OpIdx) {
1295   MachineOperand &MO = MI.getOperand(OpIdx);
1296 
1297   LLT OldTy = MRI.getType(MO.getReg());
1298   unsigned OldElts = OldTy.getNumElements();
1299   unsigned NewElts = MoreTy.getNumElements();
1300 
1301   unsigned NumParts = NewElts / OldElts;
1302 
1303   // Use concat_vectors if the result is a multiple of the number of elements.
1304   if (NumParts * OldElts == NewElts) {
1305     SmallVector<Register, 8> Parts;
1306     Parts.push_back(MO.getReg());
1307 
1308     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1309     for (unsigned I = 1; I != NumParts; ++I)
1310       Parts.push_back(ImpDef);
1311 
1312     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1313     MO.setReg(Concat.getReg(0));
1314     return;
1315   }
1316 
1317   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1318   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1319   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1320   MO.setReg(MoreReg);
1321 }
1322 
1323 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1324   MachineOperand &Op = MI.getOperand(OpIdx);
1325   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1326 }
1327 
1328 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1329   MachineOperand &MO = MI.getOperand(OpIdx);
1330   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1331   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1332   MIRBuilder.buildBitcast(MO, CastDst);
1333   MO.setReg(CastDst);
1334 }
1335 
1336 LegalizerHelper::LegalizeResult
1337 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1338                                         LLT WideTy) {
1339   if (TypeIdx != 1)
1340     return UnableToLegalize;
1341 
1342   Register DstReg = MI.getOperand(0).getReg();
1343   LLT DstTy = MRI.getType(DstReg);
1344   if (DstTy.isVector())
1345     return UnableToLegalize;
1346 
1347   Register Src1 = MI.getOperand(1).getReg();
1348   LLT SrcTy = MRI.getType(Src1);
1349   const int DstSize = DstTy.getSizeInBits();
1350   const int SrcSize = SrcTy.getSizeInBits();
1351   const int WideSize = WideTy.getSizeInBits();
1352   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1353 
1354   unsigned NumOps = MI.getNumOperands();
1355   unsigned NumSrc = MI.getNumOperands() - 1;
1356   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1357 
1358   if (WideSize >= DstSize) {
1359     // Directly pack the bits in the target type.
1360     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1361 
1362     for (unsigned I = 2; I != NumOps; ++I) {
1363       const unsigned Offset = (I - 1) * PartSize;
1364 
1365       Register SrcReg = MI.getOperand(I).getReg();
1366       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1367 
1368       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1369 
1370       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1371         MRI.createGenericVirtualRegister(WideTy);
1372 
1373       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1374       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1375       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1376       ResultReg = NextResult;
1377     }
1378 
1379     if (WideSize > DstSize)
1380       MIRBuilder.buildTrunc(DstReg, ResultReg);
1381     else if (DstTy.isPointer())
1382       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1383 
1384     MI.eraseFromParent();
1385     return Legalized;
1386   }
1387 
1388   // Unmerge the original values to the GCD type, and recombine to the next
1389   // multiple greater than the original type.
1390   //
1391   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1392   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1393   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1394   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1395   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1396   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1397   // %12:_(s12) = G_MERGE_VALUES %10, %11
1398   //
1399   // Padding with undef if necessary:
1400   //
1401   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1402   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1403   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1404   // %7:_(s2) = G_IMPLICIT_DEF
1405   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1406   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1407   // %10:_(s12) = G_MERGE_VALUES %8, %9
1408 
1409   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1410   LLT GCDTy = LLT::scalar(GCD);
1411 
1412   SmallVector<Register, 8> Parts;
1413   SmallVector<Register, 8> NewMergeRegs;
1414   SmallVector<Register, 8> Unmerges;
1415   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1416 
1417   // Decompose the original operands if they don't evenly divide.
1418   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1419     Register SrcReg = MI.getOperand(I).getReg();
1420     if (GCD == SrcSize) {
1421       Unmerges.push_back(SrcReg);
1422     } else {
1423       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1424       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1425         Unmerges.push_back(Unmerge.getReg(J));
1426     }
1427   }
1428 
1429   // Pad with undef to the next size that is a multiple of the requested size.
1430   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1431     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1432     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1433       Unmerges.push_back(UndefReg);
1434   }
1435 
1436   const int PartsPerGCD = WideSize / GCD;
1437 
1438   // Build merges of each piece.
1439   ArrayRef<Register> Slicer(Unmerges);
1440   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1441     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1442     NewMergeRegs.push_back(Merge.getReg(0));
1443   }
1444 
1445   // A truncate may be necessary if the requested type doesn't evenly divide the
1446   // original result type.
1447   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1448     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1449   } else {
1450     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1451     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1452   }
1453 
1454   MI.eraseFromParent();
1455   return Legalized;
1456 }
1457 
1458 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1459   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1460   LLT OrigTy = MRI.getType(OrigReg);
1461   LLT LCMTy = getLCMType(WideTy, OrigTy);
1462 
1463   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1464   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1465 
1466   Register UnmergeSrc = WideReg;
1467 
1468   // Create a merge to the LCM type, padding with undef
1469   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1470   // =>
1471   // %1:_(<4 x s32>) = G_FOO
1472   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1473   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1474   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1475   if (NumMergeParts > 1) {
1476     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1477     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1478     MergeParts[0] = WideReg;
1479     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1480   }
1481 
1482   // Unmerge to the original register and pad with dead defs.
1483   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1484   UnmergeResults[0] = OrigReg;
1485   for (int I = 1; I != NumUnmergeParts; ++I)
1486     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1487 
1488   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1489   return WideReg;
1490 }
1491 
1492 LegalizerHelper::LegalizeResult
1493 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1494                                           LLT WideTy) {
1495   if (TypeIdx != 0)
1496     return UnableToLegalize;
1497 
1498   int NumDst = MI.getNumOperands() - 1;
1499   Register SrcReg = MI.getOperand(NumDst).getReg();
1500   LLT SrcTy = MRI.getType(SrcReg);
1501   if (SrcTy.isVector())
1502     return UnableToLegalize;
1503 
1504   Register Dst0Reg = MI.getOperand(0).getReg();
1505   LLT DstTy = MRI.getType(Dst0Reg);
1506   if (!DstTy.isScalar())
1507     return UnableToLegalize;
1508 
1509   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1510     if (SrcTy.isPointer()) {
1511       const DataLayout &DL = MIRBuilder.getDataLayout();
1512       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1513         LLVM_DEBUG(
1514             dbgs() << "Not casting non-integral address space integer\n");
1515         return UnableToLegalize;
1516       }
1517 
1518       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1519       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1520     }
1521 
1522     // Widen SrcTy to WideTy. This does not affect the result, but since the
1523     // user requested this size, it is probably better handled than SrcTy and
1524     // should reduce the total number of legalization artifacts
1525     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1526       SrcTy = WideTy;
1527       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1528     }
1529 
1530     // Theres no unmerge type to target. Directly extract the bits from the
1531     // source type
1532     unsigned DstSize = DstTy.getSizeInBits();
1533 
1534     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1535     for (int I = 1; I != NumDst; ++I) {
1536       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1537       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1538       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1539     }
1540 
1541     MI.eraseFromParent();
1542     return Legalized;
1543   }
1544 
1545   // Extend the source to a wider type.
1546   LLT LCMTy = getLCMType(SrcTy, WideTy);
1547 
1548   Register WideSrc = SrcReg;
1549   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1550     // TODO: If this is an integral address space, cast to integer and anyext.
1551     if (SrcTy.isPointer()) {
1552       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1553       return UnableToLegalize;
1554     }
1555 
1556     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1557   }
1558 
1559   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1560 
1561   // Create a sequence of unmerges and merges to the original results. Since we
1562   // may have widened the source, we will need to pad the results with dead defs
1563   // to cover the source register.
1564   // e.g. widen s48 to s64:
1565   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1566   //
1567   // =>
1568   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1569   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1570   //  ; unpack to GCD type, with extra dead defs
1571   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1572   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1573   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1574   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1575   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1576   const LLT GCDTy = getGCDType(WideTy, DstTy);
1577   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1578   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1579 
1580   // Directly unmerge to the destination without going through a GCD type
1581   // if possible
1582   if (PartsPerRemerge == 1) {
1583     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1584 
1585     for (int I = 0; I != NumUnmerge; ++I) {
1586       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1587 
1588       for (int J = 0; J != PartsPerUnmerge; ++J) {
1589         int Idx = I * PartsPerUnmerge + J;
1590         if (Idx < NumDst)
1591           MIB.addDef(MI.getOperand(Idx).getReg());
1592         else {
1593           // Create dead def for excess components.
1594           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1595         }
1596       }
1597 
1598       MIB.addUse(Unmerge.getReg(I));
1599     }
1600   } else {
1601     SmallVector<Register, 16> Parts;
1602     for (int J = 0; J != NumUnmerge; ++J)
1603       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1604 
1605     SmallVector<Register, 8> RemergeParts;
1606     for (int I = 0; I != NumDst; ++I) {
1607       for (int J = 0; J < PartsPerRemerge; ++J) {
1608         const int Idx = I * PartsPerRemerge + J;
1609         RemergeParts.emplace_back(Parts[Idx]);
1610       }
1611 
1612       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1613       RemergeParts.clear();
1614     }
1615   }
1616 
1617   MI.eraseFromParent();
1618   return Legalized;
1619 }
1620 
1621 LegalizerHelper::LegalizeResult
1622 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1623                                     LLT WideTy) {
1624   Register DstReg = MI.getOperand(0).getReg();
1625   Register SrcReg = MI.getOperand(1).getReg();
1626   LLT SrcTy = MRI.getType(SrcReg);
1627 
1628   LLT DstTy = MRI.getType(DstReg);
1629   unsigned Offset = MI.getOperand(2).getImm();
1630 
1631   if (TypeIdx == 0) {
1632     if (SrcTy.isVector() || DstTy.isVector())
1633       return UnableToLegalize;
1634 
1635     SrcOp Src(SrcReg);
1636     if (SrcTy.isPointer()) {
1637       // Extracts from pointers can be handled only if they are really just
1638       // simple integers.
1639       const DataLayout &DL = MIRBuilder.getDataLayout();
1640       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1641         return UnableToLegalize;
1642 
1643       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1644       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1645       SrcTy = SrcAsIntTy;
1646     }
1647 
1648     if (DstTy.isPointer())
1649       return UnableToLegalize;
1650 
1651     if (Offset == 0) {
1652       // Avoid a shift in the degenerate case.
1653       MIRBuilder.buildTrunc(DstReg,
1654                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1655       MI.eraseFromParent();
1656       return Legalized;
1657     }
1658 
1659     // Do a shift in the source type.
1660     LLT ShiftTy = SrcTy;
1661     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1662       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1663       ShiftTy = WideTy;
1664     }
1665 
1666     auto LShr = MIRBuilder.buildLShr(
1667       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1668     MIRBuilder.buildTrunc(DstReg, LShr);
1669     MI.eraseFromParent();
1670     return Legalized;
1671   }
1672 
1673   if (SrcTy.isScalar()) {
1674     Observer.changingInstr(MI);
1675     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1676     Observer.changedInstr(MI);
1677     return Legalized;
1678   }
1679 
1680   if (!SrcTy.isVector())
1681     return UnableToLegalize;
1682 
1683   if (DstTy != SrcTy.getElementType())
1684     return UnableToLegalize;
1685 
1686   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1687     return UnableToLegalize;
1688 
1689   Observer.changingInstr(MI);
1690   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1691 
1692   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1693                           Offset);
1694   widenScalarDst(MI, WideTy.getScalarType(), 0);
1695   Observer.changedInstr(MI);
1696   return Legalized;
1697 }
1698 
1699 LegalizerHelper::LegalizeResult
1700 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1701                                    LLT WideTy) {
1702   if (TypeIdx != 0 || WideTy.isVector())
1703     return UnableToLegalize;
1704   Observer.changingInstr(MI);
1705   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1706   widenScalarDst(MI, WideTy);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1713                                            LLT WideTy) {
1714   if (TypeIdx == 1)
1715     return UnableToLegalize; // TODO
1716 
1717   unsigned Opcode;
1718   unsigned ExtOpcode;
1719   Optional<Register> CarryIn = None;
1720   switch (MI.getOpcode()) {
1721   default:
1722     llvm_unreachable("Unexpected opcode!");
1723   case TargetOpcode::G_SADDO:
1724     Opcode = TargetOpcode::G_ADD;
1725     ExtOpcode = TargetOpcode::G_SEXT;
1726     break;
1727   case TargetOpcode::G_SSUBO:
1728     Opcode = TargetOpcode::G_SUB;
1729     ExtOpcode = TargetOpcode::G_SEXT;
1730     break;
1731   case TargetOpcode::G_UADDO:
1732     Opcode = TargetOpcode::G_ADD;
1733     ExtOpcode = TargetOpcode::G_ZEXT;
1734     break;
1735   case TargetOpcode::G_USUBO:
1736     Opcode = TargetOpcode::G_SUB;
1737     ExtOpcode = TargetOpcode::G_ZEXT;
1738     break;
1739   case TargetOpcode::G_SADDE:
1740     Opcode = TargetOpcode::G_UADDE;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     CarryIn = MI.getOperand(4).getReg();
1743     break;
1744   case TargetOpcode::G_SSUBE:
1745     Opcode = TargetOpcode::G_USUBE;
1746     ExtOpcode = TargetOpcode::G_SEXT;
1747     CarryIn = MI.getOperand(4).getReg();
1748     break;
1749   case TargetOpcode::G_UADDE:
1750     Opcode = TargetOpcode::G_UADDE;
1751     ExtOpcode = TargetOpcode::G_ZEXT;
1752     CarryIn = MI.getOperand(4).getReg();
1753     break;
1754   case TargetOpcode::G_USUBE:
1755     Opcode = TargetOpcode::G_USUBE;
1756     ExtOpcode = TargetOpcode::G_ZEXT;
1757     CarryIn = MI.getOperand(4).getReg();
1758     break;
1759   }
1760 
1761   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1762   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1763   // Do the arithmetic in the larger type.
1764   Register NewOp;
1765   if (CarryIn) {
1766     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1767     NewOp = MIRBuilder
1768                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1769                             {LHSExt, RHSExt, *CarryIn})
1770                 .getReg(0);
1771   } else {
1772     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1773   }
1774   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1775   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1776   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1777   // There is no overflow if the ExtOp is the same as NewOp.
1778   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1779   // Now trunc the NewOp to the original result.
1780   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1781   MI.eraseFromParent();
1782   return Legalized;
1783 }
1784 
1785 LegalizerHelper::LegalizeResult
1786 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1787                                          LLT WideTy) {
1788   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1789                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1790                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1791   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1792                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1793   // We can convert this to:
1794   //   1. Any extend iN to iM
1795   //   2. SHL by M-N
1796   //   3. [US][ADD|SUB|SHL]SAT
1797   //   4. L/ASHR by M-N
1798   //
1799   // It may be more efficient to lower this to a min and a max operation in
1800   // the higher precision arithmetic if the promoted operation isn't legal,
1801   // but this decision is up to the target's lowering request.
1802   Register DstReg = MI.getOperand(0).getReg();
1803 
1804   unsigned NewBits = WideTy.getScalarSizeInBits();
1805   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1806 
1807   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1808   // must not left shift the RHS to preserve the shift amount.
1809   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1810   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1811                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1812   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1813   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1814   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1815 
1816   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1817                                         {ShiftL, ShiftR}, MI.getFlags());
1818 
1819   // Use a shift that will preserve the number of sign bits when the trunc is
1820   // folded away.
1821   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1822                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1823 
1824   MIRBuilder.buildTrunc(DstReg, Result);
1825   MI.eraseFromParent();
1826   return Legalized;
1827 }
1828 
1829 LegalizerHelper::LegalizeResult
1830 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1831                                  LLT WideTy) {
1832   if (TypeIdx == 1)
1833     return UnableToLegalize;
1834 
1835   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1836   Register Result = MI.getOperand(0).getReg();
1837   Register OriginalOverflow = MI.getOperand(1).getReg();
1838   Register LHS = MI.getOperand(2).getReg();
1839   Register RHS = MI.getOperand(3).getReg();
1840   LLT SrcTy = MRI.getType(LHS);
1841   LLT OverflowTy = MRI.getType(OriginalOverflow);
1842   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1843 
1844   // To determine if the result overflowed in the larger type, we extend the
1845   // input to the larger type, do the multiply (checking if it overflows),
1846   // then also check the high bits of the result to see if overflow happened
1847   // there.
1848   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1849   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1850   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1851 
1852   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1853                                     {LeftOperand, RightOperand});
1854   auto Mul = Mulo->getOperand(0);
1855   MIRBuilder.buildTrunc(Result, Mul);
1856 
1857   MachineInstrBuilder ExtResult;
1858   // Overflow occurred if it occurred in the larger type, or if the high part
1859   // of the result does not zero/sign-extend the low part.  Check this second
1860   // possibility first.
1861   if (IsSigned) {
1862     // For signed, overflow occurred when the high part does not sign-extend
1863     // the low part.
1864     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1865   } else {
1866     // Unsigned overflow occurred when the high part does not zero-extend the
1867     // low part.
1868     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1869   }
1870 
1871   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1872   // so we don't need to check the overflow result of larger type Mulo.
1873   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1874     auto Overflow =
1875         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1876     // Finally check if the multiplication in the larger type itself overflowed.
1877     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1878   } else {
1879     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1880   }
1881   MI.eraseFromParent();
1882   return Legalized;
1883 }
1884 
1885 LegalizerHelper::LegalizeResult
1886 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1887   switch (MI.getOpcode()) {
1888   default:
1889     return UnableToLegalize;
1890   case TargetOpcode::G_EXTRACT:
1891     return widenScalarExtract(MI, TypeIdx, WideTy);
1892   case TargetOpcode::G_INSERT:
1893     return widenScalarInsert(MI, TypeIdx, WideTy);
1894   case TargetOpcode::G_MERGE_VALUES:
1895     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1896   case TargetOpcode::G_UNMERGE_VALUES:
1897     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1898   case TargetOpcode::G_SADDO:
1899   case TargetOpcode::G_SSUBO:
1900   case TargetOpcode::G_UADDO:
1901   case TargetOpcode::G_USUBO:
1902   case TargetOpcode::G_SADDE:
1903   case TargetOpcode::G_SSUBE:
1904   case TargetOpcode::G_UADDE:
1905   case TargetOpcode::G_USUBE:
1906     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1907   case TargetOpcode::G_UMULO:
1908   case TargetOpcode::G_SMULO:
1909     return widenScalarMulo(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDSAT:
1911   case TargetOpcode::G_SSUBSAT:
1912   case TargetOpcode::G_SSHLSAT:
1913   case TargetOpcode::G_UADDSAT:
1914   case TargetOpcode::G_USUBSAT:
1915   case TargetOpcode::G_USHLSAT:
1916     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1917   case TargetOpcode::G_CTTZ:
1918   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1919   case TargetOpcode::G_CTLZ:
1920   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1921   case TargetOpcode::G_CTPOP: {
1922     if (TypeIdx == 0) {
1923       Observer.changingInstr(MI);
1924       widenScalarDst(MI, WideTy, 0);
1925       Observer.changedInstr(MI);
1926       return Legalized;
1927     }
1928 
1929     Register SrcReg = MI.getOperand(1).getReg();
1930 
1931     // First ZEXT the input.
1932     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1933     LLT CurTy = MRI.getType(SrcReg);
1934     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1935       // The count is the same in the larger type except if the original
1936       // value was zero.  This can be handled by setting the bit just off
1937       // the top of the original type.
1938       auto TopBit =
1939           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1940       MIBSrc = MIRBuilder.buildOr(
1941         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1942     }
1943 
1944     // Perform the operation at the larger size.
1945     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1946     // This is already the correct result for CTPOP and CTTZs
1947     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1948         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1949       // The correct result is NewOp - (Difference in widety and current ty).
1950       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1951       MIBNewOp = MIRBuilder.buildSub(
1952           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1953     }
1954 
1955     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1956     MI.eraseFromParent();
1957     return Legalized;
1958   }
1959   case TargetOpcode::G_BSWAP: {
1960     Observer.changingInstr(MI);
1961     Register DstReg = MI.getOperand(0).getReg();
1962 
1963     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1964     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1965     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1966     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1967 
1968     MI.getOperand(0).setReg(DstExt);
1969 
1970     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1971 
1972     LLT Ty = MRI.getType(DstReg);
1973     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1974     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1975     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1976 
1977     MIRBuilder.buildTrunc(DstReg, ShrReg);
1978     Observer.changedInstr(MI);
1979     return Legalized;
1980   }
1981   case TargetOpcode::G_BITREVERSE: {
1982     Observer.changingInstr(MI);
1983 
1984     Register DstReg = MI.getOperand(0).getReg();
1985     LLT Ty = MRI.getType(DstReg);
1986     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1987 
1988     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1989     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1990     MI.getOperand(0).setReg(DstExt);
1991     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1992 
1993     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1994     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1995     MIRBuilder.buildTrunc(DstReg, Shift);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   }
1999   case TargetOpcode::G_FREEZE:
2000     Observer.changingInstr(MI);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     widenScalarDst(MI, WideTy);
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005 
2006   case TargetOpcode::G_ADD:
2007   case TargetOpcode::G_AND:
2008   case TargetOpcode::G_MUL:
2009   case TargetOpcode::G_OR:
2010   case TargetOpcode::G_XOR:
2011   case TargetOpcode::G_SUB:
2012     // Perform operation at larger width (any extension is fines here, high bits
2013     // don't affect the result) and then truncate the result back to the
2014     // original type.
2015     Observer.changingInstr(MI);
2016     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2017     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2018     widenScalarDst(MI, WideTy);
2019     Observer.changedInstr(MI);
2020     return Legalized;
2021 
2022   case TargetOpcode::G_SHL:
2023     Observer.changingInstr(MI);
2024 
2025     if (TypeIdx == 0) {
2026       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2027       widenScalarDst(MI, WideTy);
2028     } else {
2029       assert(TypeIdx == 1);
2030       // The "number of bits to shift" operand must preserve its value as an
2031       // unsigned integer:
2032       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2033     }
2034 
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037 
2038   case TargetOpcode::G_SDIV:
2039   case TargetOpcode::G_SREM:
2040   case TargetOpcode::G_SMIN:
2041   case TargetOpcode::G_SMAX:
2042     Observer.changingInstr(MI);
2043     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2044     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2045     widenScalarDst(MI, WideTy);
2046     Observer.changedInstr(MI);
2047     return Legalized;
2048 
2049   case TargetOpcode::G_ASHR:
2050   case TargetOpcode::G_LSHR:
2051     Observer.changingInstr(MI);
2052 
2053     if (TypeIdx == 0) {
2054       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2055         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2056 
2057       widenScalarSrc(MI, WideTy, 1, CvtOp);
2058       widenScalarDst(MI, WideTy);
2059     } else {
2060       assert(TypeIdx == 1);
2061       // The "number of bits to shift" operand must preserve its value as an
2062       // unsigned integer:
2063       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2064     }
2065 
2066     Observer.changedInstr(MI);
2067     return Legalized;
2068   case TargetOpcode::G_UDIV:
2069   case TargetOpcode::G_UREM:
2070   case TargetOpcode::G_UMIN:
2071   case TargetOpcode::G_UMAX:
2072     Observer.changingInstr(MI);
2073     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2074     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2075     widenScalarDst(MI, WideTy);
2076     Observer.changedInstr(MI);
2077     return Legalized;
2078 
2079   case TargetOpcode::G_SELECT:
2080     Observer.changingInstr(MI);
2081     if (TypeIdx == 0) {
2082       // Perform operation at larger width (any extension is fine here, high
2083       // bits don't affect the result) and then truncate the result back to the
2084       // original type.
2085       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2086       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2087       widenScalarDst(MI, WideTy);
2088     } else {
2089       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2090       // Explicit extension is required here since high bits affect the result.
2091       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2092     }
2093     Observer.changedInstr(MI);
2094     return Legalized;
2095 
2096   case TargetOpcode::G_FPTOSI:
2097   case TargetOpcode::G_FPTOUI:
2098     Observer.changingInstr(MI);
2099 
2100     if (TypeIdx == 0)
2101       widenScalarDst(MI, WideTy);
2102     else
2103       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2104 
2105     Observer.changedInstr(MI);
2106     return Legalized;
2107   case TargetOpcode::G_SITOFP:
2108     Observer.changingInstr(MI);
2109 
2110     if (TypeIdx == 0)
2111       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2112     else
2113       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2114 
2115     Observer.changedInstr(MI);
2116     return Legalized;
2117   case TargetOpcode::G_UITOFP:
2118     Observer.changingInstr(MI);
2119 
2120     if (TypeIdx == 0)
2121       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2122     else
2123       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2124 
2125     Observer.changedInstr(MI);
2126     return Legalized;
2127   case TargetOpcode::G_LOAD:
2128   case TargetOpcode::G_SEXTLOAD:
2129   case TargetOpcode::G_ZEXTLOAD:
2130     Observer.changingInstr(MI);
2131     widenScalarDst(MI, WideTy);
2132     Observer.changedInstr(MI);
2133     return Legalized;
2134 
2135   case TargetOpcode::G_STORE: {
2136     if (TypeIdx != 0)
2137       return UnableToLegalize;
2138 
2139     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2140     if (!Ty.isScalar())
2141       return UnableToLegalize;
2142 
2143     Observer.changingInstr(MI);
2144 
2145     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2146       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2147     widenScalarSrc(MI, WideTy, 0, ExtType);
2148 
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151   }
2152   case TargetOpcode::G_CONSTANT: {
2153     MachineOperand &SrcMO = MI.getOperand(1);
2154     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2155     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2156         MRI.getType(MI.getOperand(0).getReg()));
2157     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2158             ExtOpc == TargetOpcode::G_ANYEXT) &&
2159            "Illegal Extend");
2160     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2161     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2162                            ? SrcVal.sext(WideTy.getSizeInBits())
2163                            : SrcVal.zext(WideTy.getSizeInBits());
2164     Observer.changingInstr(MI);
2165     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2166 
2167     widenScalarDst(MI, WideTy);
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170   }
2171   case TargetOpcode::G_FCONSTANT: {
2172     MachineOperand &SrcMO = MI.getOperand(1);
2173     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2174     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2175     bool LosesInfo;
2176     switch (WideTy.getSizeInBits()) {
2177     case 32:
2178       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2179                   &LosesInfo);
2180       break;
2181     case 64:
2182       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2183                   &LosesInfo);
2184       break;
2185     default:
2186       return UnableToLegalize;
2187     }
2188 
2189     assert(!LosesInfo && "extend should always be lossless");
2190 
2191     Observer.changingInstr(MI);
2192     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2193 
2194     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2195     Observer.changedInstr(MI);
2196     return Legalized;
2197   }
2198   case TargetOpcode::G_IMPLICIT_DEF: {
2199     Observer.changingInstr(MI);
2200     widenScalarDst(MI, WideTy);
2201     Observer.changedInstr(MI);
2202     return Legalized;
2203   }
2204   case TargetOpcode::G_BRCOND:
2205     Observer.changingInstr(MI);
2206     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209 
2210   case TargetOpcode::G_FCMP:
2211     Observer.changingInstr(MI);
2212     if (TypeIdx == 0)
2213       widenScalarDst(MI, WideTy);
2214     else {
2215       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2216       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2217     }
2218     Observer.changedInstr(MI);
2219     return Legalized;
2220 
2221   case TargetOpcode::G_ICMP:
2222     Observer.changingInstr(MI);
2223     if (TypeIdx == 0)
2224       widenScalarDst(MI, WideTy);
2225     else {
2226       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2227                                MI.getOperand(1).getPredicate()))
2228                                ? TargetOpcode::G_SEXT
2229                                : TargetOpcode::G_ZEXT;
2230       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2231       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2232     }
2233     Observer.changedInstr(MI);
2234     return Legalized;
2235 
2236   case TargetOpcode::G_PTR_ADD:
2237     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2238     Observer.changingInstr(MI);
2239     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2240     Observer.changedInstr(MI);
2241     return Legalized;
2242 
2243   case TargetOpcode::G_PHI: {
2244     assert(TypeIdx == 0 && "Expecting only Idx 0");
2245 
2246     Observer.changingInstr(MI);
2247     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2248       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2249       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2250       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2251     }
2252 
2253     MachineBasicBlock &MBB = *MI.getParent();
2254     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2255     widenScalarDst(MI, WideTy);
2256     Observer.changedInstr(MI);
2257     return Legalized;
2258   }
2259   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2260     if (TypeIdx == 0) {
2261       Register VecReg = MI.getOperand(1).getReg();
2262       LLT VecTy = MRI.getType(VecReg);
2263       Observer.changingInstr(MI);
2264 
2265       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2266                                      WideTy.getSizeInBits()),
2267                      1, TargetOpcode::G_SEXT);
2268 
2269       widenScalarDst(MI, WideTy, 0);
2270       Observer.changedInstr(MI);
2271       return Legalized;
2272     }
2273 
2274     if (TypeIdx != 2)
2275       return UnableToLegalize;
2276     Observer.changingInstr(MI);
2277     // TODO: Probably should be zext
2278     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2279     Observer.changedInstr(MI);
2280     return Legalized;
2281   }
2282   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2283     if (TypeIdx == 1) {
2284       Observer.changingInstr(MI);
2285 
2286       Register VecReg = MI.getOperand(1).getReg();
2287       LLT VecTy = MRI.getType(VecReg);
2288       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2289 
2290       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2291       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2292       widenScalarDst(MI, WideVecTy, 0);
2293       Observer.changedInstr(MI);
2294       return Legalized;
2295     }
2296 
2297     if (TypeIdx == 2) {
2298       Observer.changingInstr(MI);
2299       // TODO: Probably should be zext
2300       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2301       Observer.changedInstr(MI);
2302       return Legalized;
2303     }
2304 
2305     return UnableToLegalize;
2306   }
2307   case TargetOpcode::G_FADD:
2308   case TargetOpcode::G_FMUL:
2309   case TargetOpcode::G_FSUB:
2310   case TargetOpcode::G_FMA:
2311   case TargetOpcode::G_FMAD:
2312   case TargetOpcode::G_FNEG:
2313   case TargetOpcode::G_FABS:
2314   case TargetOpcode::G_FCANONICALIZE:
2315   case TargetOpcode::G_FMINNUM:
2316   case TargetOpcode::G_FMAXNUM:
2317   case TargetOpcode::G_FMINNUM_IEEE:
2318   case TargetOpcode::G_FMAXNUM_IEEE:
2319   case TargetOpcode::G_FMINIMUM:
2320   case TargetOpcode::G_FMAXIMUM:
2321   case TargetOpcode::G_FDIV:
2322   case TargetOpcode::G_FREM:
2323   case TargetOpcode::G_FCEIL:
2324   case TargetOpcode::G_FFLOOR:
2325   case TargetOpcode::G_FCOS:
2326   case TargetOpcode::G_FSIN:
2327   case TargetOpcode::G_FLOG10:
2328   case TargetOpcode::G_FLOG:
2329   case TargetOpcode::G_FLOG2:
2330   case TargetOpcode::G_FRINT:
2331   case TargetOpcode::G_FNEARBYINT:
2332   case TargetOpcode::G_FSQRT:
2333   case TargetOpcode::G_FEXP:
2334   case TargetOpcode::G_FEXP2:
2335   case TargetOpcode::G_FPOW:
2336   case TargetOpcode::G_INTRINSIC_TRUNC:
2337   case TargetOpcode::G_INTRINSIC_ROUND:
2338   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2339     assert(TypeIdx == 0);
2340     Observer.changingInstr(MI);
2341 
2342     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2343       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2344 
2345     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2346     Observer.changedInstr(MI);
2347     return Legalized;
2348   case TargetOpcode::G_FPOWI: {
2349     if (TypeIdx != 0)
2350       return UnableToLegalize;
2351     Observer.changingInstr(MI);
2352     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2353     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2354     Observer.changedInstr(MI);
2355     return Legalized;
2356   }
2357   case TargetOpcode::G_INTTOPTR:
2358     if (TypeIdx != 1)
2359       return UnableToLegalize;
2360 
2361     Observer.changingInstr(MI);
2362     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2363     Observer.changedInstr(MI);
2364     return Legalized;
2365   case TargetOpcode::G_PTRTOINT:
2366     if (TypeIdx != 0)
2367       return UnableToLegalize;
2368 
2369     Observer.changingInstr(MI);
2370     widenScalarDst(MI, WideTy, 0);
2371     Observer.changedInstr(MI);
2372     return Legalized;
2373   case TargetOpcode::G_BUILD_VECTOR: {
2374     Observer.changingInstr(MI);
2375 
2376     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2377     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2378       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2379 
2380     // Avoid changing the result vector type if the source element type was
2381     // requested.
2382     if (TypeIdx == 1) {
2383       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2384     } else {
2385       widenScalarDst(MI, WideTy, 0);
2386     }
2387 
2388     Observer.changedInstr(MI);
2389     return Legalized;
2390   }
2391   case TargetOpcode::G_SEXT_INREG:
2392     if (TypeIdx != 0)
2393       return UnableToLegalize;
2394 
2395     Observer.changingInstr(MI);
2396     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2397     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2398     Observer.changedInstr(MI);
2399     return Legalized;
2400   case TargetOpcode::G_PTRMASK: {
2401     if (TypeIdx != 1)
2402       return UnableToLegalize;
2403     Observer.changingInstr(MI);
2404     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2405     Observer.changedInstr(MI);
2406     return Legalized;
2407   }
2408   }
2409 }
2410 
2411 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2412                              MachineIRBuilder &B, Register Src, LLT Ty) {
2413   auto Unmerge = B.buildUnmerge(Ty, Src);
2414   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2415     Pieces.push_back(Unmerge.getReg(I));
2416 }
2417 
2418 LegalizerHelper::LegalizeResult
2419 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2420   Register Dst = MI.getOperand(0).getReg();
2421   Register Src = MI.getOperand(1).getReg();
2422   LLT DstTy = MRI.getType(Dst);
2423   LLT SrcTy = MRI.getType(Src);
2424 
2425   if (SrcTy.isVector()) {
2426     LLT SrcEltTy = SrcTy.getElementType();
2427     SmallVector<Register, 8> SrcRegs;
2428 
2429     if (DstTy.isVector()) {
2430       int NumDstElt = DstTy.getNumElements();
2431       int NumSrcElt = SrcTy.getNumElements();
2432 
2433       LLT DstEltTy = DstTy.getElementType();
2434       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2435       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2436 
2437       // If there's an element size mismatch, insert intermediate casts to match
2438       // the result element type.
2439       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2440         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2441         //
2442         // =>
2443         //
2444         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2445         // %3:_(<2 x s8>) = G_BITCAST %2
2446         // %4:_(<2 x s8>) = G_BITCAST %3
2447         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2448         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2449         SrcPartTy = SrcEltTy;
2450       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2451         //
2452         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2453         //
2454         // =>
2455         //
2456         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2457         // %3:_(s16) = G_BITCAST %2
2458         // %4:_(s16) = G_BITCAST %3
2459         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2460         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2461         DstCastTy = DstEltTy;
2462       }
2463 
2464       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2465       for (Register &SrcReg : SrcRegs)
2466         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2467     } else
2468       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2469 
2470     MIRBuilder.buildMerge(Dst, SrcRegs);
2471     MI.eraseFromParent();
2472     return Legalized;
2473   }
2474 
2475   if (DstTy.isVector()) {
2476     SmallVector<Register, 8> SrcRegs;
2477     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2478     MIRBuilder.buildMerge(Dst, SrcRegs);
2479     MI.eraseFromParent();
2480     return Legalized;
2481   }
2482 
2483   return UnableToLegalize;
2484 }
2485 
2486 /// Figure out the bit offset into a register when coercing a vector index for
2487 /// the wide element type. This is only for the case when promoting vector to
2488 /// one with larger elements.
2489 //
2490 ///
2491 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2492 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2493 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2494                                                    Register Idx,
2495                                                    unsigned NewEltSize,
2496                                                    unsigned OldEltSize) {
2497   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2498   LLT IdxTy = B.getMRI()->getType(Idx);
2499 
2500   // Now figure out the amount we need to shift to get the target bits.
2501   auto OffsetMask = B.buildConstant(
2502     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2503   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2504   return B.buildShl(IdxTy, OffsetIdx,
2505                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2506 }
2507 
2508 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2509 /// is casting to a vector with a smaller element size, perform multiple element
2510 /// extracts and merge the results. If this is coercing to a vector with larger
2511 /// elements, index the bitcasted vector and extract the target element with bit
2512 /// operations. This is intended to force the indexing in the native register
2513 /// size for architectures that can dynamically index the register file.
2514 LegalizerHelper::LegalizeResult
2515 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2516                                          LLT CastTy) {
2517   if (TypeIdx != 1)
2518     return UnableToLegalize;
2519 
2520   Register Dst = MI.getOperand(0).getReg();
2521   Register SrcVec = MI.getOperand(1).getReg();
2522   Register Idx = MI.getOperand(2).getReg();
2523   LLT SrcVecTy = MRI.getType(SrcVec);
2524   LLT IdxTy = MRI.getType(Idx);
2525 
2526   LLT SrcEltTy = SrcVecTy.getElementType();
2527   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2528   unsigned OldNumElts = SrcVecTy.getNumElements();
2529 
2530   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2531   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2532 
2533   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2534   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2535   if (NewNumElts > OldNumElts) {
2536     // Decreasing the vector element size
2537     //
2538     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2539     //  =>
2540     //  v4i32:castx = bitcast x:v2i64
2541     //
2542     // i64 = bitcast
2543     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2544     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2545     //
2546     if (NewNumElts % OldNumElts != 0)
2547       return UnableToLegalize;
2548 
2549     // Type of the intermediate result vector.
2550     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2551     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2552 
2553     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2554 
2555     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2556     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2557 
2558     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2559       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2560       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2561       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2562       NewOps[I] = Elt.getReg(0);
2563     }
2564 
2565     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2566     MIRBuilder.buildBitcast(Dst, NewVec);
2567     MI.eraseFromParent();
2568     return Legalized;
2569   }
2570 
2571   if (NewNumElts < OldNumElts) {
2572     if (NewEltSize % OldEltSize != 0)
2573       return UnableToLegalize;
2574 
2575     // This only depends on powers of 2 because we use bit tricks to figure out
2576     // the bit offset we need to shift to get the target element. A general
2577     // expansion could emit division/multiply.
2578     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2579       return UnableToLegalize;
2580 
2581     // Increasing the vector element size.
2582     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2583     //
2584     //   =>
2585     //
2586     // %cast = G_BITCAST %vec
2587     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2588     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2589     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2590     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2591     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2592     // %elt = G_TRUNC %elt_bits
2593 
2594     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2595     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2596 
2597     // Divide to get the index in the wider element type.
2598     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2599 
2600     Register WideElt = CastVec;
2601     if (CastTy.isVector()) {
2602       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2603                                                      ScaledIdx).getReg(0);
2604     }
2605 
2606     // Compute the bit offset into the register of the target element.
2607     Register OffsetBits = getBitcastWiderVectorElementOffset(
2608       MIRBuilder, Idx, NewEltSize, OldEltSize);
2609 
2610     // Shift the wide element to get the target element.
2611     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2612     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2613     MI.eraseFromParent();
2614     return Legalized;
2615   }
2616 
2617   return UnableToLegalize;
2618 }
2619 
2620 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2621 /// TargetReg, while preserving other bits in \p TargetReg.
2622 ///
2623 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2624 static Register buildBitFieldInsert(MachineIRBuilder &B,
2625                                     Register TargetReg, Register InsertReg,
2626                                     Register OffsetBits) {
2627   LLT TargetTy = B.getMRI()->getType(TargetReg);
2628   LLT InsertTy = B.getMRI()->getType(InsertReg);
2629   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2630   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2631 
2632   // Produce a bitmask of the value to insert
2633   auto EltMask = B.buildConstant(
2634     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2635                                    InsertTy.getSizeInBits()));
2636   // Shift it into position
2637   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2638   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2639 
2640   // Clear out the bits in the wide element
2641   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2642 
2643   // The value to insert has all zeros already, so stick it into the masked
2644   // wide element.
2645   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2646 }
2647 
2648 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2649 /// is increasing the element size, perform the indexing in the target element
2650 /// type, and use bit operations to insert at the element position. This is
2651 /// intended for architectures that can dynamically index the register file and
2652 /// want to force indexing in the native register size.
2653 LegalizerHelper::LegalizeResult
2654 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2655                                         LLT CastTy) {
2656   if (TypeIdx != 0)
2657     return UnableToLegalize;
2658 
2659   Register Dst = MI.getOperand(0).getReg();
2660   Register SrcVec = MI.getOperand(1).getReg();
2661   Register Val = MI.getOperand(2).getReg();
2662   Register Idx = MI.getOperand(3).getReg();
2663 
2664   LLT VecTy = MRI.getType(Dst);
2665   LLT IdxTy = MRI.getType(Idx);
2666 
2667   LLT VecEltTy = VecTy.getElementType();
2668   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2669   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2670   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2671 
2672   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2673   unsigned OldNumElts = VecTy.getNumElements();
2674 
2675   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2676   if (NewNumElts < OldNumElts) {
2677     if (NewEltSize % OldEltSize != 0)
2678       return UnableToLegalize;
2679 
2680     // This only depends on powers of 2 because we use bit tricks to figure out
2681     // the bit offset we need to shift to get the target element. A general
2682     // expansion could emit division/multiply.
2683     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2684       return UnableToLegalize;
2685 
2686     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2687     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2688 
2689     // Divide to get the index in the wider element type.
2690     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2691 
2692     Register ExtractedElt = CastVec;
2693     if (CastTy.isVector()) {
2694       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2695                                                           ScaledIdx).getReg(0);
2696     }
2697 
2698     // Compute the bit offset into the register of the target element.
2699     Register OffsetBits = getBitcastWiderVectorElementOffset(
2700       MIRBuilder, Idx, NewEltSize, OldEltSize);
2701 
2702     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2703                                                Val, OffsetBits);
2704     if (CastTy.isVector()) {
2705       InsertedElt = MIRBuilder.buildInsertVectorElement(
2706         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2707     }
2708 
2709     MIRBuilder.buildBitcast(Dst, InsertedElt);
2710     MI.eraseFromParent();
2711     return Legalized;
2712   }
2713 
2714   return UnableToLegalize;
2715 }
2716 
2717 LegalizerHelper::LegalizeResult
2718 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2719   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2720   Register DstReg = MI.getOperand(0).getReg();
2721   Register PtrReg = MI.getOperand(1).getReg();
2722   LLT DstTy = MRI.getType(DstReg);
2723   auto &MMO = **MI.memoperands_begin();
2724 
2725   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2726     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2727       // This load needs splitting into power of 2 sized loads.
2728       if (DstTy.isVector())
2729         return UnableToLegalize;
2730       if (isPowerOf2_32(DstTy.getSizeInBits()))
2731         return UnableToLegalize; // Don't know what we're being asked to do.
2732 
2733       // Our strategy here is to generate anyextending loads for the smaller
2734       // types up to next power-2 result type, and then combine the two larger
2735       // result values together, before truncating back down to the non-pow-2
2736       // type.
2737       // E.g. v1 = i24 load =>
2738       // v2 = i32 zextload (2 byte)
2739       // v3 = i32 load (1 byte)
2740       // v4 = i32 shl v3, 16
2741       // v5 = i32 or v4, v2
2742       // v1 = i24 trunc v5
2743       // By doing this we generate the correct truncate which should get
2744       // combined away as an artifact with a matching extend.
2745       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2746       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2747 
2748       MachineFunction &MF = MIRBuilder.getMF();
2749       MachineMemOperand *LargeMMO =
2750         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2751       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2752         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2753 
2754       LLT PtrTy = MRI.getType(PtrReg);
2755       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2756       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2757       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2758       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2759       auto LargeLoad = MIRBuilder.buildLoadInstr(
2760         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2761 
2762       auto OffsetCst = MIRBuilder.buildConstant(
2763         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2764       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2765       auto SmallPtr =
2766         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2767       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2768                                             *SmallMMO);
2769 
2770       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2771       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2772       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2773       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2774       MI.eraseFromParent();
2775       return Legalized;
2776     }
2777 
2778     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2779     MI.eraseFromParent();
2780     return Legalized;
2781   }
2782 
2783   if (DstTy.isScalar()) {
2784     Register TmpReg =
2785       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2786     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2787     switch (MI.getOpcode()) {
2788     default:
2789       llvm_unreachable("Unexpected opcode");
2790     case TargetOpcode::G_LOAD:
2791       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2792       break;
2793     case TargetOpcode::G_SEXTLOAD:
2794       MIRBuilder.buildSExt(DstReg, TmpReg);
2795       break;
2796     case TargetOpcode::G_ZEXTLOAD:
2797       MIRBuilder.buildZExt(DstReg, TmpReg);
2798       break;
2799     }
2800 
2801     MI.eraseFromParent();
2802     return Legalized;
2803   }
2804 
2805   return UnableToLegalize;
2806 }
2807 
2808 LegalizerHelper::LegalizeResult
2809 LegalizerHelper::lowerStore(MachineInstr &MI) {
2810   // Lower a non-power of 2 store into multiple pow-2 stores.
2811   // E.g. split an i24 store into an i16 store + i8 store.
2812   // We do this by first extending the stored value to the next largest power
2813   // of 2 type, and then using truncating stores to store the components.
2814   // By doing this, likewise with G_LOAD, generate an extend that can be
2815   // artifact-combined away instead of leaving behind extracts.
2816   Register SrcReg = MI.getOperand(0).getReg();
2817   Register PtrReg = MI.getOperand(1).getReg();
2818   LLT SrcTy = MRI.getType(SrcReg);
2819   MachineMemOperand &MMO = **MI.memoperands_begin();
2820   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2821     return UnableToLegalize;
2822   if (SrcTy.isVector())
2823     return UnableToLegalize;
2824   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2825     return UnableToLegalize; // Don't know what we're being asked to do.
2826 
2827   // Extend to the next pow-2.
2828   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2829   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2830 
2831   // Obtain the smaller value by shifting away the larger value.
2832   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2833   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2834   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2835   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2836 
2837   // Generate the PtrAdd and truncating stores.
2838   LLT PtrTy = MRI.getType(PtrReg);
2839   auto OffsetCst = MIRBuilder.buildConstant(
2840     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2841   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2842   auto SmallPtr =
2843     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2844 
2845   MachineFunction &MF = MIRBuilder.getMF();
2846   MachineMemOperand *LargeMMO =
2847     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2848   MachineMemOperand *SmallMMO =
2849     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2850   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2851   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2852   MI.eraseFromParent();
2853   return Legalized;
2854 }
2855 
2856 LegalizerHelper::LegalizeResult
2857 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2858   switch (MI.getOpcode()) {
2859   case TargetOpcode::G_LOAD: {
2860     if (TypeIdx != 0)
2861       return UnableToLegalize;
2862 
2863     Observer.changingInstr(MI);
2864     bitcastDst(MI, CastTy, 0);
2865     Observer.changedInstr(MI);
2866     return Legalized;
2867   }
2868   case TargetOpcode::G_STORE: {
2869     if (TypeIdx != 0)
2870       return UnableToLegalize;
2871 
2872     Observer.changingInstr(MI);
2873     bitcastSrc(MI, CastTy, 0);
2874     Observer.changedInstr(MI);
2875     return Legalized;
2876   }
2877   case TargetOpcode::G_SELECT: {
2878     if (TypeIdx != 0)
2879       return UnableToLegalize;
2880 
2881     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2882       LLVM_DEBUG(
2883           dbgs() << "bitcast action not implemented for vector select\n");
2884       return UnableToLegalize;
2885     }
2886 
2887     Observer.changingInstr(MI);
2888     bitcastSrc(MI, CastTy, 2);
2889     bitcastSrc(MI, CastTy, 3);
2890     bitcastDst(MI, CastTy, 0);
2891     Observer.changedInstr(MI);
2892     return Legalized;
2893   }
2894   case TargetOpcode::G_AND:
2895   case TargetOpcode::G_OR:
2896   case TargetOpcode::G_XOR: {
2897     Observer.changingInstr(MI);
2898     bitcastSrc(MI, CastTy, 1);
2899     bitcastSrc(MI, CastTy, 2);
2900     bitcastDst(MI, CastTy, 0);
2901     Observer.changedInstr(MI);
2902     return Legalized;
2903   }
2904   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2905     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2906   case TargetOpcode::G_INSERT_VECTOR_ELT:
2907     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2908   default:
2909     return UnableToLegalize;
2910   }
2911 }
2912 
2913 // Legalize an instruction by changing the opcode in place.
2914 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2915     Observer.changingInstr(MI);
2916     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2917     Observer.changedInstr(MI);
2918 }
2919 
2920 LegalizerHelper::LegalizeResult
2921 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2922   using namespace TargetOpcode;
2923 
2924   switch(MI.getOpcode()) {
2925   default:
2926     return UnableToLegalize;
2927   case TargetOpcode::G_BITCAST:
2928     return lowerBitcast(MI);
2929   case TargetOpcode::G_SREM:
2930   case TargetOpcode::G_UREM: {
2931     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2932     auto Quot =
2933         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2934                               {MI.getOperand(1), MI.getOperand(2)});
2935 
2936     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2937     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2938     MI.eraseFromParent();
2939     return Legalized;
2940   }
2941   case TargetOpcode::G_SADDO:
2942   case TargetOpcode::G_SSUBO:
2943     return lowerSADDO_SSUBO(MI);
2944   case TargetOpcode::G_UMULH:
2945   case TargetOpcode::G_SMULH:
2946     return lowerSMULH_UMULH(MI);
2947   case TargetOpcode::G_SMULO:
2948   case TargetOpcode::G_UMULO: {
2949     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2950     // result.
2951     Register Res = MI.getOperand(0).getReg();
2952     Register Overflow = MI.getOperand(1).getReg();
2953     Register LHS = MI.getOperand(2).getReg();
2954     Register RHS = MI.getOperand(3).getReg();
2955     LLT Ty = MRI.getType(Res);
2956 
2957     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2958                           ? TargetOpcode::G_SMULH
2959                           : TargetOpcode::G_UMULH;
2960 
2961     Observer.changingInstr(MI);
2962     const auto &TII = MIRBuilder.getTII();
2963     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2964     MI.RemoveOperand(1);
2965     Observer.changedInstr(MI);
2966 
2967     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2968     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2969 
2970     // Move insert point forward so we can use the Res register if needed.
2971     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2972 
2973     // For *signed* multiply, overflow is detected by checking:
2974     // (hi != (lo >> bitwidth-1))
2975     if (Opcode == TargetOpcode::G_SMULH) {
2976       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2977       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2978       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2979     } else {
2980       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2981     }
2982     return Legalized;
2983   }
2984   case TargetOpcode::G_FNEG: {
2985     Register Res = MI.getOperand(0).getReg();
2986     LLT Ty = MRI.getType(Res);
2987 
2988     // TODO: Handle vector types once we are able to
2989     // represent them.
2990     if (Ty.isVector())
2991       return UnableToLegalize;
2992     auto SignMask =
2993         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2994     Register SubByReg = MI.getOperand(1).getReg();
2995     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2996     MI.eraseFromParent();
2997     return Legalized;
2998   }
2999   case TargetOpcode::G_FSUB: {
3000     Register Res = MI.getOperand(0).getReg();
3001     LLT Ty = MRI.getType(Res);
3002 
3003     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3004     // First, check if G_FNEG is marked as Lower. If so, we may
3005     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3006     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3007       return UnableToLegalize;
3008     Register LHS = MI.getOperand(1).getReg();
3009     Register RHS = MI.getOperand(2).getReg();
3010     Register Neg = MRI.createGenericVirtualRegister(Ty);
3011     MIRBuilder.buildFNeg(Neg, RHS);
3012     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3013     MI.eraseFromParent();
3014     return Legalized;
3015   }
3016   case TargetOpcode::G_FMAD:
3017     return lowerFMad(MI);
3018   case TargetOpcode::G_FFLOOR:
3019     return lowerFFloor(MI);
3020   case TargetOpcode::G_INTRINSIC_ROUND:
3021     return lowerIntrinsicRound(MI);
3022   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3023     // Since round even is the assumed rounding mode for unconstrained FP
3024     // operations, rint and roundeven are the same operation.
3025     changeOpcode(MI, TargetOpcode::G_FRINT);
3026     return Legalized;
3027   }
3028   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3029     Register OldValRes = MI.getOperand(0).getReg();
3030     Register SuccessRes = MI.getOperand(1).getReg();
3031     Register Addr = MI.getOperand(2).getReg();
3032     Register CmpVal = MI.getOperand(3).getReg();
3033     Register NewVal = MI.getOperand(4).getReg();
3034     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3035                                   **MI.memoperands_begin());
3036     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3037     MI.eraseFromParent();
3038     return Legalized;
3039   }
3040   case TargetOpcode::G_LOAD:
3041   case TargetOpcode::G_SEXTLOAD:
3042   case TargetOpcode::G_ZEXTLOAD:
3043     return lowerLoad(MI);
3044   case TargetOpcode::G_STORE:
3045     return lowerStore(MI);
3046   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3047   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3048   case TargetOpcode::G_CTLZ:
3049   case TargetOpcode::G_CTTZ:
3050   case TargetOpcode::G_CTPOP:
3051     return lowerBitCount(MI);
3052   case G_UADDO: {
3053     Register Res = MI.getOperand(0).getReg();
3054     Register CarryOut = MI.getOperand(1).getReg();
3055     Register LHS = MI.getOperand(2).getReg();
3056     Register RHS = MI.getOperand(3).getReg();
3057 
3058     MIRBuilder.buildAdd(Res, LHS, RHS);
3059     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3060 
3061     MI.eraseFromParent();
3062     return Legalized;
3063   }
3064   case G_UADDE: {
3065     Register Res = MI.getOperand(0).getReg();
3066     Register CarryOut = MI.getOperand(1).getReg();
3067     Register LHS = MI.getOperand(2).getReg();
3068     Register RHS = MI.getOperand(3).getReg();
3069     Register CarryIn = MI.getOperand(4).getReg();
3070     LLT Ty = MRI.getType(Res);
3071 
3072     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3073     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3074     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3075     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3076 
3077     MI.eraseFromParent();
3078     return Legalized;
3079   }
3080   case G_USUBO: {
3081     Register Res = MI.getOperand(0).getReg();
3082     Register BorrowOut = MI.getOperand(1).getReg();
3083     Register LHS = MI.getOperand(2).getReg();
3084     Register RHS = MI.getOperand(3).getReg();
3085 
3086     MIRBuilder.buildSub(Res, LHS, RHS);
3087     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3088 
3089     MI.eraseFromParent();
3090     return Legalized;
3091   }
3092   case G_USUBE: {
3093     Register Res = MI.getOperand(0).getReg();
3094     Register BorrowOut = MI.getOperand(1).getReg();
3095     Register LHS = MI.getOperand(2).getReg();
3096     Register RHS = MI.getOperand(3).getReg();
3097     Register BorrowIn = MI.getOperand(4).getReg();
3098     const LLT CondTy = MRI.getType(BorrowOut);
3099     const LLT Ty = MRI.getType(Res);
3100 
3101     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3102     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3103     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3104 
3105     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3106     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3107     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3108 
3109     MI.eraseFromParent();
3110     return Legalized;
3111   }
3112   case G_UITOFP:
3113     return lowerUITOFP(MI);
3114   case G_SITOFP:
3115     return lowerSITOFP(MI);
3116   case G_FPTOUI:
3117     return lowerFPTOUI(MI);
3118   case G_FPTOSI:
3119     return lowerFPTOSI(MI);
3120   case G_FPTRUNC:
3121     return lowerFPTRUNC(MI);
3122   case G_FPOWI:
3123     return lowerFPOWI(MI);
3124   case G_SMIN:
3125   case G_SMAX:
3126   case G_UMIN:
3127   case G_UMAX:
3128     return lowerMinMax(MI);
3129   case G_FCOPYSIGN:
3130     return lowerFCopySign(MI);
3131   case G_FMINNUM:
3132   case G_FMAXNUM:
3133     return lowerFMinNumMaxNum(MI);
3134   case G_MERGE_VALUES:
3135     return lowerMergeValues(MI);
3136   case G_UNMERGE_VALUES:
3137     return lowerUnmergeValues(MI);
3138   case TargetOpcode::G_SEXT_INREG: {
3139     assert(MI.getOperand(2).isImm() && "Expected immediate");
3140     int64_t SizeInBits = MI.getOperand(2).getImm();
3141 
3142     Register DstReg = MI.getOperand(0).getReg();
3143     Register SrcReg = MI.getOperand(1).getReg();
3144     LLT DstTy = MRI.getType(DstReg);
3145     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3146 
3147     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3148     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3149     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3150     MI.eraseFromParent();
3151     return Legalized;
3152   }
3153   case G_EXTRACT_VECTOR_ELT:
3154   case G_INSERT_VECTOR_ELT:
3155     return lowerExtractInsertVectorElt(MI);
3156   case G_SHUFFLE_VECTOR:
3157     return lowerShuffleVector(MI);
3158   case G_DYN_STACKALLOC:
3159     return lowerDynStackAlloc(MI);
3160   case G_EXTRACT:
3161     return lowerExtract(MI);
3162   case G_INSERT:
3163     return lowerInsert(MI);
3164   case G_BSWAP:
3165     return lowerBswap(MI);
3166   case G_BITREVERSE:
3167     return lowerBitreverse(MI);
3168   case G_READ_REGISTER:
3169   case G_WRITE_REGISTER:
3170     return lowerReadWriteRegister(MI);
3171   case G_UADDSAT:
3172   case G_USUBSAT: {
3173     // Try to make a reasonable guess about which lowering strategy to use. The
3174     // target can override this with custom lowering and calling the
3175     // implementation functions.
3176     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3177     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3178       return lowerAddSubSatToMinMax(MI);
3179     return lowerAddSubSatToAddoSubo(MI);
3180   }
3181   case G_SADDSAT:
3182   case G_SSUBSAT: {
3183     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3184 
3185     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3186     // since it's a shorter expansion. However, we would need to figure out the
3187     // preferred boolean type for the carry out for the query.
3188     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3189       return lowerAddSubSatToMinMax(MI);
3190     return lowerAddSubSatToAddoSubo(MI);
3191   }
3192   case G_SSHLSAT:
3193   case G_USHLSAT:
3194     return lowerShlSat(MI);
3195   case G_ABS: {
3196     // Expand %res = G_ABS %a into:
3197     // %v1 = G_ASHR %a, scalar_size-1
3198     // %v2 = G_ADD %a, %v1
3199     // %res = G_XOR %v2, %v1
3200     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3201     Register OpReg = MI.getOperand(1).getReg();
3202     auto ShiftAmt =
3203         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3204     auto Shift =
3205         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3206     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3207     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3208     MI.eraseFromParent();
3209     return Legalized;
3210   }
3211   case G_SELECT:
3212     return lowerSelect(MI);
3213   case G_SDIVREM:
3214   case G_UDIVREM:
3215     return lowerDIVREM(MI);
3216   case G_FSHL:
3217   case G_FSHR:
3218     return lowerFunnelShift(MI);
3219   case G_ROTL:
3220   case G_ROTR:
3221     return lowerRotate(MI);
3222   }
3223 }
3224 
3225 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3226                                                   Align MinAlign) const {
3227   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3228   // datalayout for the preferred alignment. Also there should be a target hook
3229   // for this to allow targets to reduce the alignment and ignore the
3230   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3231   // the type.
3232   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3233 }
3234 
3235 MachineInstrBuilder
3236 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3237                                       MachinePointerInfo &PtrInfo) {
3238   MachineFunction &MF = MIRBuilder.getMF();
3239   const DataLayout &DL = MIRBuilder.getDataLayout();
3240   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3241 
3242   unsigned AddrSpace = DL.getAllocaAddrSpace();
3243   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3244 
3245   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3246   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3247 }
3248 
3249 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3250                                         LLT VecTy) {
3251   int64_t IdxVal;
3252   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3253     return IdxReg;
3254 
3255   LLT IdxTy = B.getMRI()->getType(IdxReg);
3256   unsigned NElts = VecTy.getNumElements();
3257   if (isPowerOf2_32(NElts)) {
3258     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3259     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3260   }
3261 
3262   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3263       .getReg(0);
3264 }
3265 
3266 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3267                                                   Register Index) {
3268   LLT EltTy = VecTy.getElementType();
3269 
3270   // Calculate the element offset and add it to the pointer.
3271   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3272   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3273          "Converting bits to bytes lost precision");
3274 
3275   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3276 
3277   LLT IdxTy = MRI.getType(Index);
3278   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3279                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3280 
3281   LLT PtrTy = MRI.getType(VecPtr);
3282   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3283 }
3284 
3285 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3286     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3287   Register DstReg = MI.getOperand(0).getReg();
3288   LLT DstTy = MRI.getType(DstReg);
3289   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3290 
3291   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3292 
3293   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3294   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3295 
3296   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3297   MI.eraseFromParent();
3298   return Legalized;
3299 }
3300 
3301 // Handle splitting vector operations which need to have the same number of
3302 // elements in each type index, but each type index may have a different element
3303 // type.
3304 //
3305 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3306 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3307 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3308 //
3309 // Also handles some irregular breakdown cases, e.g.
3310 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3311 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3312 //             s64 = G_SHL s64, s32
3313 LegalizerHelper::LegalizeResult
3314 LegalizerHelper::fewerElementsVectorMultiEltType(
3315   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3316   if (TypeIdx != 0)
3317     return UnableToLegalize;
3318 
3319   const LLT NarrowTy0 = NarrowTyArg;
3320   const unsigned NewNumElts =
3321       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3322 
3323   const Register DstReg = MI.getOperand(0).getReg();
3324   LLT DstTy = MRI.getType(DstReg);
3325   LLT LeftoverTy0;
3326 
3327   // All of the operands need to have the same number of elements, so if we can
3328   // determine a type breakdown for the result type, we can for all of the
3329   // source types.
3330   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3331   if (NumParts < 0)
3332     return UnableToLegalize;
3333 
3334   SmallVector<MachineInstrBuilder, 4> NewInsts;
3335 
3336   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3337   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3338 
3339   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3340     Register SrcReg = MI.getOperand(I).getReg();
3341     LLT SrcTyI = MRI.getType(SrcReg);
3342     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3343     LLT LeftoverTyI;
3344 
3345     // Split this operand into the requested typed registers, and any leftover
3346     // required to reproduce the original type.
3347     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3348                       LeftoverRegs))
3349       return UnableToLegalize;
3350 
3351     if (I == 1) {
3352       // For the first operand, create an instruction for each part and setup
3353       // the result.
3354       for (Register PartReg : PartRegs) {
3355         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3356         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3357                                .addDef(PartDstReg)
3358                                .addUse(PartReg));
3359         DstRegs.push_back(PartDstReg);
3360       }
3361 
3362       for (Register LeftoverReg : LeftoverRegs) {
3363         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3364         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3365                                .addDef(PartDstReg)
3366                                .addUse(LeftoverReg));
3367         LeftoverDstRegs.push_back(PartDstReg);
3368       }
3369     } else {
3370       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3371 
3372       // Add the newly created operand splits to the existing instructions. The
3373       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3374       // pieces.
3375       unsigned InstCount = 0;
3376       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3377         NewInsts[InstCount++].addUse(PartRegs[J]);
3378       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3379         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3380     }
3381 
3382     PartRegs.clear();
3383     LeftoverRegs.clear();
3384   }
3385 
3386   // Insert the newly built operations and rebuild the result register.
3387   for (auto &MIB : NewInsts)
3388     MIRBuilder.insertInstr(MIB);
3389 
3390   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3391 
3392   MI.eraseFromParent();
3393   return Legalized;
3394 }
3395 
3396 LegalizerHelper::LegalizeResult
3397 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3398                                           LLT NarrowTy) {
3399   if (TypeIdx != 0)
3400     return UnableToLegalize;
3401 
3402   Register DstReg = MI.getOperand(0).getReg();
3403   Register SrcReg = MI.getOperand(1).getReg();
3404   LLT DstTy = MRI.getType(DstReg);
3405   LLT SrcTy = MRI.getType(SrcReg);
3406 
3407   LLT NarrowTy0 = NarrowTy;
3408   LLT NarrowTy1;
3409   unsigned NumParts;
3410 
3411   if (NarrowTy.isVector()) {
3412     // Uneven breakdown not handled.
3413     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3414     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3415       return UnableToLegalize;
3416 
3417     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3418   } else {
3419     NumParts = DstTy.getNumElements();
3420     NarrowTy1 = SrcTy.getElementType();
3421   }
3422 
3423   SmallVector<Register, 4> SrcRegs, DstRegs;
3424   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3425 
3426   for (unsigned I = 0; I < NumParts; ++I) {
3427     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3428     MachineInstr *NewInst =
3429         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3430 
3431     NewInst->setFlags(MI.getFlags());
3432     DstRegs.push_back(DstReg);
3433   }
3434 
3435   if (NarrowTy.isVector())
3436     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3437   else
3438     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3439 
3440   MI.eraseFromParent();
3441   return Legalized;
3442 }
3443 
3444 LegalizerHelper::LegalizeResult
3445 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3446                                         LLT NarrowTy) {
3447   Register DstReg = MI.getOperand(0).getReg();
3448   Register Src0Reg = MI.getOperand(2).getReg();
3449   LLT DstTy = MRI.getType(DstReg);
3450   LLT SrcTy = MRI.getType(Src0Reg);
3451 
3452   unsigned NumParts;
3453   LLT NarrowTy0, NarrowTy1;
3454 
3455   if (TypeIdx == 0) {
3456     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3457     unsigned OldElts = DstTy.getNumElements();
3458 
3459     NarrowTy0 = NarrowTy;
3460     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3461     NarrowTy1 = NarrowTy.isVector() ?
3462       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3463       SrcTy.getElementType();
3464 
3465   } else {
3466     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3467     unsigned OldElts = SrcTy.getNumElements();
3468 
3469     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3470       NarrowTy.getNumElements();
3471     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3472                             DstTy.getScalarSizeInBits());
3473     NarrowTy1 = NarrowTy;
3474   }
3475 
3476   // FIXME: Don't know how to handle the situation where the small vectors
3477   // aren't all the same size yet.
3478   if (NarrowTy1.isVector() &&
3479       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3480     return UnableToLegalize;
3481 
3482   CmpInst::Predicate Pred
3483     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3484 
3485   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3486   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3487   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3488 
3489   for (unsigned I = 0; I < NumParts; ++I) {
3490     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3491     DstRegs.push_back(DstReg);
3492 
3493     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3494       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3495     else {
3496       MachineInstr *NewCmp
3497         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3498       NewCmp->setFlags(MI.getFlags());
3499     }
3500   }
3501 
3502   if (NarrowTy1.isVector())
3503     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3504   else
3505     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3506 
3507   MI.eraseFromParent();
3508   return Legalized;
3509 }
3510 
3511 LegalizerHelper::LegalizeResult
3512 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3513                                            LLT NarrowTy) {
3514   Register DstReg = MI.getOperand(0).getReg();
3515   Register CondReg = MI.getOperand(1).getReg();
3516 
3517   unsigned NumParts = 0;
3518   LLT NarrowTy0, NarrowTy1;
3519 
3520   LLT DstTy = MRI.getType(DstReg);
3521   LLT CondTy = MRI.getType(CondReg);
3522   unsigned Size = DstTy.getSizeInBits();
3523 
3524   assert(TypeIdx == 0 || CondTy.isVector());
3525 
3526   if (TypeIdx == 0) {
3527     NarrowTy0 = NarrowTy;
3528     NarrowTy1 = CondTy;
3529 
3530     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3531     // FIXME: Don't know how to handle the situation where the small vectors
3532     // aren't all the same size yet.
3533     if (Size % NarrowSize != 0)
3534       return UnableToLegalize;
3535 
3536     NumParts = Size / NarrowSize;
3537 
3538     // Need to break down the condition type
3539     if (CondTy.isVector()) {
3540       if (CondTy.getNumElements() == NumParts)
3541         NarrowTy1 = CondTy.getElementType();
3542       else
3543         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3544                                 CondTy.getScalarSizeInBits());
3545     }
3546   } else {
3547     NumParts = CondTy.getNumElements();
3548     if (NarrowTy.isVector()) {
3549       // TODO: Handle uneven breakdown.
3550       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3551         return UnableToLegalize;
3552 
3553       return UnableToLegalize;
3554     } else {
3555       NarrowTy0 = DstTy.getElementType();
3556       NarrowTy1 = NarrowTy;
3557     }
3558   }
3559 
3560   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3561   if (CondTy.isVector())
3562     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3563 
3564   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3565   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3566 
3567   for (unsigned i = 0; i < NumParts; ++i) {
3568     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3569     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3570                            Src1Regs[i], Src2Regs[i]);
3571     DstRegs.push_back(DstReg);
3572   }
3573 
3574   if (NarrowTy0.isVector())
3575     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3576   else
3577     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3578 
3579   MI.eraseFromParent();
3580   return Legalized;
3581 }
3582 
3583 LegalizerHelper::LegalizeResult
3584 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3585                                         LLT NarrowTy) {
3586   const Register DstReg = MI.getOperand(0).getReg();
3587   LLT PhiTy = MRI.getType(DstReg);
3588   LLT LeftoverTy;
3589 
3590   // All of the operands need to have the same number of elements, so if we can
3591   // determine a type breakdown for the result type, we can for all of the
3592   // source types.
3593   int NumParts, NumLeftover;
3594   std::tie(NumParts, NumLeftover)
3595     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3596   if (NumParts < 0)
3597     return UnableToLegalize;
3598 
3599   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3600   SmallVector<MachineInstrBuilder, 4> NewInsts;
3601 
3602   const int TotalNumParts = NumParts + NumLeftover;
3603 
3604   // Insert the new phis in the result block first.
3605   for (int I = 0; I != TotalNumParts; ++I) {
3606     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3607     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3608     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3609                        .addDef(PartDstReg));
3610     if (I < NumParts)
3611       DstRegs.push_back(PartDstReg);
3612     else
3613       LeftoverDstRegs.push_back(PartDstReg);
3614   }
3615 
3616   MachineBasicBlock *MBB = MI.getParent();
3617   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3618   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3619 
3620   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3621 
3622   // Insert code to extract the incoming values in each predecessor block.
3623   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3624     PartRegs.clear();
3625     LeftoverRegs.clear();
3626 
3627     Register SrcReg = MI.getOperand(I).getReg();
3628     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3629     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3630 
3631     LLT Unused;
3632     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3633                       LeftoverRegs))
3634       return UnableToLegalize;
3635 
3636     // Add the newly created operand splits to the existing instructions. The
3637     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3638     // pieces.
3639     for (int J = 0; J != TotalNumParts; ++J) {
3640       MachineInstrBuilder MIB = NewInsts[J];
3641       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3642       MIB.addMBB(&OpMBB);
3643     }
3644   }
3645 
3646   MI.eraseFromParent();
3647   return Legalized;
3648 }
3649 
3650 LegalizerHelper::LegalizeResult
3651 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3652                                                   unsigned TypeIdx,
3653                                                   LLT NarrowTy) {
3654   if (TypeIdx != 1)
3655     return UnableToLegalize;
3656 
3657   const int NumDst = MI.getNumOperands() - 1;
3658   const Register SrcReg = MI.getOperand(NumDst).getReg();
3659   LLT SrcTy = MRI.getType(SrcReg);
3660 
3661   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3662 
3663   // TODO: Create sequence of extracts.
3664   if (DstTy == NarrowTy)
3665     return UnableToLegalize;
3666 
3667   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3668   if (DstTy == GCDTy) {
3669     // This would just be a copy of the same unmerge.
3670     // TODO: Create extracts, pad with undef and create intermediate merges.
3671     return UnableToLegalize;
3672   }
3673 
3674   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3675   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3676   const int PartsPerUnmerge = NumDst / NumUnmerge;
3677 
3678   for (int I = 0; I != NumUnmerge; ++I) {
3679     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3680 
3681     for (int J = 0; J != PartsPerUnmerge; ++J)
3682       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3683     MIB.addUse(Unmerge.getReg(I));
3684   }
3685 
3686   MI.eraseFromParent();
3687   return Legalized;
3688 }
3689 
3690 LegalizerHelper::LegalizeResult
3691 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3692                                          LLT NarrowTy) {
3693   Register Result = MI.getOperand(0).getReg();
3694   Register Overflow = MI.getOperand(1).getReg();
3695   Register LHS = MI.getOperand(2).getReg();
3696   Register RHS = MI.getOperand(3).getReg();
3697 
3698   LLT SrcTy = MRI.getType(LHS);
3699   if (!SrcTy.isVector())
3700     return UnableToLegalize;
3701 
3702   LLT ElementType = SrcTy.getElementType();
3703   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3704   const int NumResult = SrcTy.getNumElements();
3705   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3706 
3707   // Unmerge the operands to smaller parts of GCD type.
3708   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3709   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3710 
3711   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3712   const int PartsPerUnmerge = NumResult / NumOps;
3713   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3714   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3715 
3716   // Perform the operation over unmerged parts.
3717   SmallVector<Register, 8> ResultParts;
3718   SmallVector<Register, 8> OverflowParts;
3719   for (int I = 0; I != NumOps; ++I) {
3720     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3721     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3722     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3723                                          {Operand1, Operand2});
3724     ResultParts.push_back(PartMul->getOperand(0).getReg());
3725     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3726   }
3727 
3728   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3729   LLT OverflowLCMTy =
3730       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3731 
3732   // Recombine the pieces to the original result and overflow registers.
3733   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3734   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3735   MI.eraseFromParent();
3736   return Legalized;
3737 }
3738 
3739 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3740 // a vector
3741 //
3742 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3743 // undef as necessary.
3744 //
3745 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3746 //   -> <2 x s16>
3747 //
3748 // %4:_(s16) = G_IMPLICIT_DEF
3749 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3750 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3751 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3752 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3753 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3754 LegalizerHelper::LegalizeResult
3755 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3756                                           LLT NarrowTy) {
3757   Register DstReg = MI.getOperand(0).getReg();
3758   LLT DstTy = MRI.getType(DstReg);
3759   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3760   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3761 
3762   // Break into a common type
3763   SmallVector<Register, 16> Parts;
3764   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3765     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3766 
3767   // Build the requested new merge, padding with undef.
3768   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3769                                   TargetOpcode::G_ANYEXT);
3770 
3771   // Pack into the original result register.
3772   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3773 
3774   MI.eraseFromParent();
3775   return Legalized;
3776 }
3777 
3778 LegalizerHelper::LegalizeResult
3779 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3780                                                            unsigned TypeIdx,
3781                                                            LLT NarrowVecTy) {
3782   Register DstReg = MI.getOperand(0).getReg();
3783   Register SrcVec = MI.getOperand(1).getReg();
3784   Register InsertVal;
3785   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3786 
3787   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3788   if (IsInsert)
3789     InsertVal = MI.getOperand(2).getReg();
3790 
3791   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3792 
3793   // TODO: Handle total scalarization case.
3794   if (!NarrowVecTy.isVector())
3795     return UnableToLegalize;
3796 
3797   LLT VecTy = MRI.getType(SrcVec);
3798 
3799   // If the index is a constant, we can really break this down as you would
3800   // expect, and index into the target size pieces.
3801   int64_t IdxVal;
3802   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3803     // Avoid out of bounds indexing the pieces.
3804     if (IdxVal >= VecTy.getNumElements()) {
3805       MIRBuilder.buildUndef(DstReg);
3806       MI.eraseFromParent();
3807       return Legalized;
3808     }
3809 
3810     SmallVector<Register, 8> VecParts;
3811     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3812 
3813     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3814     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3815                                     TargetOpcode::G_ANYEXT);
3816 
3817     unsigned NewNumElts = NarrowVecTy.getNumElements();
3818 
3819     LLT IdxTy = MRI.getType(Idx);
3820     int64_t PartIdx = IdxVal / NewNumElts;
3821     auto NewIdx =
3822         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3823 
3824     if (IsInsert) {
3825       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3826 
3827       // Use the adjusted index to insert into one of the subvectors.
3828       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3829           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3830       VecParts[PartIdx] = InsertPart.getReg(0);
3831 
3832       // Recombine the inserted subvector with the others to reform the result
3833       // vector.
3834       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3835     } else {
3836       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3837     }
3838 
3839     MI.eraseFromParent();
3840     return Legalized;
3841   }
3842 
3843   // With a variable index, we can't perform the operation in a smaller type, so
3844   // we're forced to expand this.
3845   //
3846   // TODO: We could emit a chain of compare/select to figure out which piece to
3847   // index.
3848   return lowerExtractInsertVectorElt(MI);
3849 }
3850 
3851 LegalizerHelper::LegalizeResult
3852 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3853                                       LLT NarrowTy) {
3854   // FIXME: Don't know how to handle secondary types yet.
3855   if (TypeIdx != 0)
3856     return UnableToLegalize;
3857 
3858   MachineMemOperand *MMO = *MI.memoperands_begin();
3859 
3860   // This implementation doesn't work for atomics. Give up instead of doing
3861   // something invalid.
3862   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3863       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3864     return UnableToLegalize;
3865 
3866   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3867   Register ValReg = MI.getOperand(0).getReg();
3868   Register AddrReg = MI.getOperand(1).getReg();
3869   LLT ValTy = MRI.getType(ValReg);
3870 
3871   // FIXME: Do we need a distinct NarrowMemory legalize action?
3872   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3873     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3874     return UnableToLegalize;
3875   }
3876 
3877   int NumParts = -1;
3878   int NumLeftover = -1;
3879   LLT LeftoverTy;
3880   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3881   if (IsLoad) {
3882     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3883   } else {
3884     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3885                      NarrowLeftoverRegs)) {
3886       NumParts = NarrowRegs.size();
3887       NumLeftover = NarrowLeftoverRegs.size();
3888     }
3889   }
3890 
3891   if (NumParts == -1)
3892     return UnableToLegalize;
3893 
3894   LLT PtrTy = MRI.getType(AddrReg);
3895   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3896 
3897   unsigned TotalSize = ValTy.getSizeInBits();
3898 
3899   // Split the load/store into PartTy sized pieces starting at Offset. If this
3900   // is a load, return the new registers in ValRegs. For a store, each elements
3901   // of ValRegs should be PartTy. Returns the next offset that needs to be
3902   // handled.
3903   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3904                              unsigned Offset) -> unsigned {
3905     MachineFunction &MF = MIRBuilder.getMF();
3906     unsigned PartSize = PartTy.getSizeInBits();
3907     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3908          Offset += PartSize, ++Idx) {
3909       unsigned ByteSize = PartSize / 8;
3910       unsigned ByteOffset = Offset / 8;
3911       Register NewAddrReg;
3912 
3913       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3914 
3915       MachineMemOperand *NewMMO =
3916         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3917 
3918       if (IsLoad) {
3919         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3920         ValRegs.push_back(Dst);
3921         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3922       } else {
3923         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3924       }
3925     }
3926 
3927     return Offset;
3928   };
3929 
3930   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3931 
3932   // Handle the rest of the register if this isn't an even type breakdown.
3933   if (LeftoverTy.isValid())
3934     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3935 
3936   if (IsLoad) {
3937     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3938                 LeftoverTy, NarrowLeftoverRegs);
3939   }
3940 
3941   MI.eraseFromParent();
3942   return Legalized;
3943 }
3944 
3945 LegalizerHelper::LegalizeResult
3946 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3947                                       LLT NarrowTy) {
3948   assert(TypeIdx == 0 && "only one type index expected");
3949 
3950   const unsigned Opc = MI.getOpcode();
3951   const int NumOps = MI.getNumOperands() - 1;
3952   const Register DstReg = MI.getOperand(0).getReg();
3953   const unsigned Flags = MI.getFlags();
3954   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3955   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3956 
3957   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3958 
3959   // First of all check whether we are narrowing (changing the element type)
3960   // or reducing the vector elements
3961   const LLT DstTy = MRI.getType(DstReg);
3962   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3963 
3964   SmallVector<Register, 8> ExtractedRegs[3];
3965   SmallVector<Register, 8> Parts;
3966 
3967   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3968 
3969   // Break down all the sources into NarrowTy pieces we can operate on. This may
3970   // involve creating merges to a wider type, padded with undef.
3971   for (int I = 0; I != NumOps; ++I) {
3972     Register SrcReg = MI.getOperand(I + 1).getReg();
3973     LLT SrcTy = MRI.getType(SrcReg);
3974 
3975     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3976     // For fewerElements, this is a smaller vector with the same element type.
3977     LLT OpNarrowTy;
3978     if (IsNarrow) {
3979       OpNarrowTy = NarrowScalarTy;
3980 
3981       // In case of narrowing, we need to cast vectors to scalars for this to
3982       // work properly
3983       // FIXME: Can we do without the bitcast here if we're narrowing?
3984       if (SrcTy.isVector()) {
3985         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3986         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3987       }
3988     } else {
3989       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3990     }
3991 
3992     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3993 
3994     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3995     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3996                         TargetOpcode::G_ANYEXT);
3997   }
3998 
3999   SmallVector<Register, 8> ResultRegs;
4000 
4001   // Input operands for each sub-instruction.
4002   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
4003 
4004   int NumParts = ExtractedRegs[0].size();
4005   const unsigned DstSize = DstTy.getSizeInBits();
4006   const LLT DstScalarTy = LLT::scalar(DstSize);
4007 
4008   // Narrowing needs to use scalar types
4009   LLT DstLCMTy, NarrowDstTy;
4010   if (IsNarrow) {
4011     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4012     NarrowDstTy = NarrowScalarTy;
4013   } else {
4014     DstLCMTy = getLCMType(DstTy, NarrowTy);
4015     NarrowDstTy = NarrowTy;
4016   }
4017 
4018   // We widened the source registers to satisfy merge/unmerge size
4019   // constraints. We'll have some extra fully undef parts.
4020   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4021 
4022   for (int I = 0; I != NumRealParts; ++I) {
4023     // Emit this instruction on each of the split pieces.
4024     for (int J = 0; J != NumOps; ++J)
4025       InputRegs[J] = ExtractedRegs[J][I];
4026 
4027     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4028     ResultRegs.push_back(Inst.getReg(0));
4029   }
4030 
4031   // Fill out the widened result with undef instead of creating instructions
4032   // with undef inputs.
4033   int NumUndefParts = NumParts - NumRealParts;
4034   if (NumUndefParts != 0)
4035     ResultRegs.append(NumUndefParts,
4036                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
4037 
4038   // Extract the possibly padded result. Use a scratch register if we need to do
4039   // a final bitcast, otherwise use the original result register.
4040   Register MergeDstReg;
4041   if (IsNarrow && DstTy.isVector())
4042     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4043   else
4044     MergeDstReg = DstReg;
4045 
4046   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
4047 
4048   // Recast to vector if we narrowed a vector
4049   if (IsNarrow && DstTy.isVector())
4050     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
4051 
4052   MI.eraseFromParent();
4053   return Legalized;
4054 }
4055 
4056 LegalizerHelper::LegalizeResult
4057 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4058                                               LLT NarrowTy) {
4059   Register DstReg = MI.getOperand(0).getReg();
4060   Register SrcReg = MI.getOperand(1).getReg();
4061   int64_t Imm = MI.getOperand(2).getImm();
4062 
4063   LLT DstTy = MRI.getType(DstReg);
4064 
4065   SmallVector<Register, 8> Parts;
4066   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4067   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4068 
4069   for (Register &R : Parts)
4070     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4071 
4072   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4073 
4074   MI.eraseFromParent();
4075   return Legalized;
4076 }
4077 
4078 LegalizerHelper::LegalizeResult
4079 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4080                                      LLT NarrowTy) {
4081   using namespace TargetOpcode;
4082 
4083   switch (MI.getOpcode()) {
4084   case G_IMPLICIT_DEF:
4085     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4086   case G_TRUNC:
4087   case G_AND:
4088   case G_OR:
4089   case G_XOR:
4090   case G_ADD:
4091   case G_SUB:
4092   case G_MUL:
4093   case G_PTR_ADD:
4094   case G_SMULH:
4095   case G_UMULH:
4096   case G_FADD:
4097   case G_FMUL:
4098   case G_FSUB:
4099   case G_FNEG:
4100   case G_FABS:
4101   case G_FCANONICALIZE:
4102   case G_FDIV:
4103   case G_FREM:
4104   case G_FMA:
4105   case G_FMAD:
4106   case G_FPOW:
4107   case G_FEXP:
4108   case G_FEXP2:
4109   case G_FLOG:
4110   case G_FLOG2:
4111   case G_FLOG10:
4112   case G_FNEARBYINT:
4113   case G_FCEIL:
4114   case G_FFLOOR:
4115   case G_FRINT:
4116   case G_INTRINSIC_ROUND:
4117   case G_INTRINSIC_ROUNDEVEN:
4118   case G_INTRINSIC_TRUNC:
4119   case G_FCOS:
4120   case G_FSIN:
4121   case G_FSQRT:
4122   case G_BSWAP:
4123   case G_BITREVERSE:
4124   case G_SDIV:
4125   case G_UDIV:
4126   case G_SREM:
4127   case G_UREM:
4128   case G_SMIN:
4129   case G_SMAX:
4130   case G_UMIN:
4131   case G_UMAX:
4132   case G_FMINNUM:
4133   case G_FMAXNUM:
4134   case G_FMINNUM_IEEE:
4135   case G_FMAXNUM_IEEE:
4136   case G_FMINIMUM:
4137   case G_FMAXIMUM:
4138   case G_FSHL:
4139   case G_FSHR:
4140   case G_FREEZE:
4141   case G_SADDSAT:
4142   case G_SSUBSAT:
4143   case G_UADDSAT:
4144   case G_USUBSAT:
4145     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4146   case G_UMULO:
4147   case G_SMULO:
4148     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4149   case G_SHL:
4150   case G_LSHR:
4151   case G_ASHR:
4152   case G_SSHLSAT:
4153   case G_USHLSAT:
4154   case G_CTLZ:
4155   case G_CTLZ_ZERO_UNDEF:
4156   case G_CTTZ:
4157   case G_CTTZ_ZERO_UNDEF:
4158   case G_CTPOP:
4159   case G_FCOPYSIGN:
4160     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4161   case G_ZEXT:
4162   case G_SEXT:
4163   case G_ANYEXT:
4164   case G_FPEXT:
4165   case G_FPTRUNC:
4166   case G_SITOFP:
4167   case G_UITOFP:
4168   case G_FPTOSI:
4169   case G_FPTOUI:
4170   case G_INTTOPTR:
4171   case G_PTRTOINT:
4172   case G_ADDRSPACE_CAST:
4173     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4174   case G_ICMP:
4175   case G_FCMP:
4176     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4177   case G_SELECT:
4178     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4179   case G_PHI:
4180     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4181   case G_UNMERGE_VALUES:
4182     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4183   case G_BUILD_VECTOR:
4184     assert(TypeIdx == 0 && "not a vector type index");
4185     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4186   case G_CONCAT_VECTORS:
4187     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4188       return UnableToLegalize;
4189     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4190   case G_EXTRACT_VECTOR_ELT:
4191   case G_INSERT_VECTOR_ELT:
4192     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4193   case G_LOAD:
4194   case G_STORE:
4195     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4196   case G_SEXT_INREG:
4197     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4198   GISEL_VECREDUCE_CASES_NONSEQ
4199     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4200   default:
4201     return UnableToLegalize;
4202   }
4203 }
4204 
4205 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4206     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4207   unsigned Opc = MI.getOpcode();
4208   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4209          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4210          "Sequential reductions not expected");
4211 
4212   if (TypeIdx != 1)
4213     return UnableToLegalize;
4214 
4215   // The semantics of the normal non-sequential reductions allow us to freely
4216   // re-associate the operation.
4217   Register SrcReg = MI.getOperand(1).getReg();
4218   LLT SrcTy = MRI.getType(SrcReg);
4219   Register DstReg = MI.getOperand(0).getReg();
4220   LLT DstTy = MRI.getType(DstReg);
4221 
4222   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4223     return UnableToLegalize;
4224 
4225   SmallVector<Register> SplitSrcs;
4226   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4227   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4228   SmallVector<Register> PartialReductions;
4229   for (unsigned Part = 0; Part < NumParts; ++Part) {
4230     PartialReductions.push_back(
4231         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4232   }
4233 
4234   unsigned ScalarOpc;
4235   switch (Opc) {
4236   case TargetOpcode::G_VECREDUCE_FADD:
4237     ScalarOpc = TargetOpcode::G_FADD;
4238     break;
4239   case TargetOpcode::G_VECREDUCE_FMUL:
4240     ScalarOpc = TargetOpcode::G_FMUL;
4241     break;
4242   case TargetOpcode::G_VECREDUCE_FMAX:
4243     ScalarOpc = TargetOpcode::G_FMAXNUM;
4244     break;
4245   case TargetOpcode::G_VECREDUCE_FMIN:
4246     ScalarOpc = TargetOpcode::G_FMINNUM;
4247     break;
4248   case TargetOpcode::G_VECREDUCE_ADD:
4249     ScalarOpc = TargetOpcode::G_ADD;
4250     break;
4251   case TargetOpcode::G_VECREDUCE_MUL:
4252     ScalarOpc = TargetOpcode::G_MUL;
4253     break;
4254   case TargetOpcode::G_VECREDUCE_AND:
4255     ScalarOpc = TargetOpcode::G_AND;
4256     break;
4257   case TargetOpcode::G_VECREDUCE_OR:
4258     ScalarOpc = TargetOpcode::G_OR;
4259     break;
4260   case TargetOpcode::G_VECREDUCE_XOR:
4261     ScalarOpc = TargetOpcode::G_XOR;
4262     break;
4263   case TargetOpcode::G_VECREDUCE_SMAX:
4264     ScalarOpc = TargetOpcode::G_SMAX;
4265     break;
4266   case TargetOpcode::G_VECREDUCE_SMIN:
4267     ScalarOpc = TargetOpcode::G_SMIN;
4268     break;
4269   case TargetOpcode::G_VECREDUCE_UMAX:
4270     ScalarOpc = TargetOpcode::G_UMAX;
4271     break;
4272   case TargetOpcode::G_VECREDUCE_UMIN:
4273     ScalarOpc = TargetOpcode::G_UMIN;
4274     break;
4275   default:
4276     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4277     return UnableToLegalize;
4278   }
4279 
4280   // If the types involved are powers of 2, we can generate intermediate vector
4281   // ops, before generating a final reduction operation.
4282   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4283       isPowerOf2_32(NarrowTy.getNumElements())) {
4284     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4285   }
4286 
4287   Register Acc = PartialReductions[0];
4288   for (unsigned Part = 1; Part < NumParts; ++Part) {
4289     if (Part == NumParts - 1) {
4290       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4291                             {Acc, PartialReductions[Part]});
4292     } else {
4293       Acc = MIRBuilder
4294                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4295                 .getReg(0);
4296     }
4297   }
4298   MI.eraseFromParent();
4299   return Legalized;
4300 }
4301 
4302 LegalizerHelper::LegalizeResult
4303 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4304                                         LLT SrcTy, LLT NarrowTy,
4305                                         unsigned ScalarOpc) {
4306   SmallVector<Register> SplitSrcs;
4307   // Split the sources into NarrowTy size pieces.
4308   extractParts(SrcReg, NarrowTy,
4309                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4310   // We're going to do a tree reduction using vector operations until we have
4311   // one NarrowTy size value left.
4312   while (SplitSrcs.size() > 1) {
4313     SmallVector<Register> PartialRdxs;
4314     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4315       Register LHS = SplitSrcs[Idx];
4316       Register RHS = SplitSrcs[Idx + 1];
4317       // Create the intermediate vector op.
4318       Register Res =
4319           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4320       PartialRdxs.push_back(Res);
4321     }
4322     SplitSrcs = std::move(PartialRdxs);
4323   }
4324   // Finally generate the requested NarrowTy based reduction.
4325   Observer.changingInstr(MI);
4326   MI.getOperand(1).setReg(SplitSrcs[0]);
4327   Observer.changedInstr(MI);
4328   return Legalized;
4329 }
4330 
4331 LegalizerHelper::LegalizeResult
4332 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4333                                              const LLT HalfTy, const LLT AmtTy) {
4334 
4335   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4336   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4337   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4338 
4339   if (Amt.isNullValue()) {
4340     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4341     MI.eraseFromParent();
4342     return Legalized;
4343   }
4344 
4345   LLT NVT = HalfTy;
4346   unsigned NVTBits = HalfTy.getSizeInBits();
4347   unsigned VTBits = 2 * NVTBits;
4348 
4349   SrcOp Lo(Register(0)), Hi(Register(0));
4350   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4351     if (Amt.ugt(VTBits)) {
4352       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4353     } else if (Amt.ugt(NVTBits)) {
4354       Lo = MIRBuilder.buildConstant(NVT, 0);
4355       Hi = MIRBuilder.buildShl(NVT, InL,
4356                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4357     } else if (Amt == NVTBits) {
4358       Lo = MIRBuilder.buildConstant(NVT, 0);
4359       Hi = InL;
4360     } else {
4361       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4362       auto OrLHS =
4363           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4364       auto OrRHS = MIRBuilder.buildLShr(
4365           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4366       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4367     }
4368   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4369     if (Amt.ugt(VTBits)) {
4370       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4371     } else if (Amt.ugt(NVTBits)) {
4372       Lo = MIRBuilder.buildLShr(NVT, InH,
4373                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4374       Hi = MIRBuilder.buildConstant(NVT, 0);
4375     } else if (Amt == NVTBits) {
4376       Lo = InH;
4377       Hi = MIRBuilder.buildConstant(NVT, 0);
4378     } else {
4379       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4380 
4381       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4382       auto OrRHS = MIRBuilder.buildShl(
4383           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4384 
4385       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4386       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4387     }
4388   } else {
4389     if (Amt.ugt(VTBits)) {
4390       Hi = Lo = MIRBuilder.buildAShr(
4391           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4392     } else if (Amt.ugt(NVTBits)) {
4393       Lo = MIRBuilder.buildAShr(NVT, InH,
4394                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4395       Hi = MIRBuilder.buildAShr(NVT, InH,
4396                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4397     } else if (Amt == NVTBits) {
4398       Lo = InH;
4399       Hi = MIRBuilder.buildAShr(NVT, InH,
4400                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4401     } else {
4402       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4403 
4404       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4405       auto OrRHS = MIRBuilder.buildShl(
4406           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4407 
4408       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4409       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4410     }
4411   }
4412 
4413   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4414   MI.eraseFromParent();
4415 
4416   return Legalized;
4417 }
4418 
4419 // TODO: Optimize if constant shift amount.
4420 LegalizerHelper::LegalizeResult
4421 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4422                                    LLT RequestedTy) {
4423   if (TypeIdx == 1) {
4424     Observer.changingInstr(MI);
4425     narrowScalarSrc(MI, RequestedTy, 2);
4426     Observer.changedInstr(MI);
4427     return Legalized;
4428   }
4429 
4430   Register DstReg = MI.getOperand(0).getReg();
4431   LLT DstTy = MRI.getType(DstReg);
4432   if (DstTy.isVector())
4433     return UnableToLegalize;
4434 
4435   Register Amt = MI.getOperand(2).getReg();
4436   LLT ShiftAmtTy = MRI.getType(Amt);
4437   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4438   if (DstEltSize % 2 != 0)
4439     return UnableToLegalize;
4440 
4441   // Ignore the input type. We can only go to exactly half the size of the
4442   // input. If that isn't small enough, the resulting pieces will be further
4443   // legalized.
4444   const unsigned NewBitSize = DstEltSize / 2;
4445   const LLT HalfTy = LLT::scalar(NewBitSize);
4446   const LLT CondTy = LLT::scalar(1);
4447 
4448   if (const MachineInstr *KShiftAmt =
4449           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4450     return narrowScalarShiftByConstant(
4451         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4452   }
4453 
4454   // TODO: Expand with known bits.
4455 
4456   // Handle the fully general expansion by an unknown amount.
4457   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4458 
4459   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4460   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4461   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4462 
4463   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4464   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4465 
4466   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4467   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4468   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4469 
4470   Register ResultRegs[2];
4471   switch (MI.getOpcode()) {
4472   case TargetOpcode::G_SHL: {
4473     // Short: ShAmt < NewBitSize
4474     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4475 
4476     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4477     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4478     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4479 
4480     // Long: ShAmt >= NewBitSize
4481     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4482     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4483 
4484     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4485     auto Hi = MIRBuilder.buildSelect(
4486         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4487 
4488     ResultRegs[0] = Lo.getReg(0);
4489     ResultRegs[1] = Hi.getReg(0);
4490     break;
4491   }
4492   case TargetOpcode::G_LSHR:
4493   case TargetOpcode::G_ASHR: {
4494     // Short: ShAmt < NewBitSize
4495     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4496 
4497     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4498     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4499     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4500 
4501     // Long: ShAmt >= NewBitSize
4502     MachineInstrBuilder HiL;
4503     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4504       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4505     } else {
4506       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4507       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4508     }
4509     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4510                                      {InH, AmtExcess});     // Lo from Hi part.
4511 
4512     auto Lo = MIRBuilder.buildSelect(
4513         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4514 
4515     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4516 
4517     ResultRegs[0] = Lo.getReg(0);
4518     ResultRegs[1] = Hi.getReg(0);
4519     break;
4520   }
4521   default:
4522     llvm_unreachable("not a shift");
4523   }
4524 
4525   MIRBuilder.buildMerge(DstReg, ResultRegs);
4526   MI.eraseFromParent();
4527   return Legalized;
4528 }
4529 
4530 LegalizerHelper::LegalizeResult
4531 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4532                                        LLT MoreTy) {
4533   assert(TypeIdx == 0 && "Expecting only Idx 0");
4534 
4535   Observer.changingInstr(MI);
4536   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4537     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4538     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4539     moreElementsVectorSrc(MI, MoreTy, I);
4540   }
4541 
4542   MachineBasicBlock &MBB = *MI.getParent();
4543   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4544   moreElementsVectorDst(MI, MoreTy, 0);
4545   Observer.changedInstr(MI);
4546   return Legalized;
4547 }
4548 
4549 LegalizerHelper::LegalizeResult
4550 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4551                                     LLT MoreTy) {
4552   unsigned Opc = MI.getOpcode();
4553   switch (Opc) {
4554   case TargetOpcode::G_IMPLICIT_DEF:
4555   case TargetOpcode::G_LOAD: {
4556     if (TypeIdx != 0)
4557       return UnableToLegalize;
4558     Observer.changingInstr(MI);
4559     moreElementsVectorDst(MI, MoreTy, 0);
4560     Observer.changedInstr(MI);
4561     return Legalized;
4562   }
4563   case TargetOpcode::G_STORE:
4564     if (TypeIdx != 0)
4565       return UnableToLegalize;
4566     Observer.changingInstr(MI);
4567     moreElementsVectorSrc(MI, MoreTy, 0);
4568     Observer.changedInstr(MI);
4569     return Legalized;
4570   case TargetOpcode::G_AND:
4571   case TargetOpcode::G_OR:
4572   case TargetOpcode::G_XOR:
4573   case TargetOpcode::G_SMIN:
4574   case TargetOpcode::G_SMAX:
4575   case TargetOpcode::G_UMIN:
4576   case TargetOpcode::G_UMAX:
4577   case TargetOpcode::G_FMINNUM:
4578   case TargetOpcode::G_FMAXNUM:
4579   case TargetOpcode::G_FMINNUM_IEEE:
4580   case TargetOpcode::G_FMAXNUM_IEEE:
4581   case TargetOpcode::G_FMINIMUM:
4582   case TargetOpcode::G_FMAXIMUM: {
4583     Observer.changingInstr(MI);
4584     moreElementsVectorSrc(MI, MoreTy, 1);
4585     moreElementsVectorSrc(MI, MoreTy, 2);
4586     moreElementsVectorDst(MI, MoreTy, 0);
4587     Observer.changedInstr(MI);
4588     return Legalized;
4589   }
4590   case TargetOpcode::G_EXTRACT:
4591     if (TypeIdx != 1)
4592       return UnableToLegalize;
4593     Observer.changingInstr(MI);
4594     moreElementsVectorSrc(MI, MoreTy, 1);
4595     Observer.changedInstr(MI);
4596     return Legalized;
4597   case TargetOpcode::G_INSERT:
4598   case TargetOpcode::G_FREEZE:
4599     if (TypeIdx != 0)
4600       return UnableToLegalize;
4601     Observer.changingInstr(MI);
4602     moreElementsVectorSrc(MI, MoreTy, 1);
4603     moreElementsVectorDst(MI, MoreTy, 0);
4604     Observer.changedInstr(MI);
4605     return Legalized;
4606   case TargetOpcode::G_SELECT:
4607     if (TypeIdx != 0)
4608       return UnableToLegalize;
4609     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4610       return UnableToLegalize;
4611 
4612     Observer.changingInstr(MI);
4613     moreElementsVectorSrc(MI, MoreTy, 2);
4614     moreElementsVectorSrc(MI, MoreTy, 3);
4615     moreElementsVectorDst(MI, MoreTy, 0);
4616     Observer.changedInstr(MI);
4617     return Legalized;
4618   case TargetOpcode::G_UNMERGE_VALUES: {
4619     if (TypeIdx != 1)
4620       return UnableToLegalize;
4621 
4622     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4623     int NumDst = MI.getNumOperands() - 1;
4624     moreElementsVectorSrc(MI, MoreTy, NumDst);
4625 
4626     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4627     for (int I = 0; I != NumDst; ++I)
4628       MIB.addDef(MI.getOperand(I).getReg());
4629 
4630     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4631     for (int I = NumDst; I != NewNumDst; ++I)
4632       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4633 
4634     MIB.addUse(MI.getOperand(NumDst).getReg());
4635     MI.eraseFromParent();
4636     return Legalized;
4637   }
4638   case TargetOpcode::G_PHI:
4639     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4640   default:
4641     return UnableToLegalize;
4642   }
4643 }
4644 
4645 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4646                                         ArrayRef<Register> Src1Regs,
4647                                         ArrayRef<Register> Src2Regs,
4648                                         LLT NarrowTy) {
4649   MachineIRBuilder &B = MIRBuilder;
4650   unsigned SrcParts = Src1Regs.size();
4651   unsigned DstParts = DstRegs.size();
4652 
4653   unsigned DstIdx = 0; // Low bits of the result.
4654   Register FactorSum =
4655       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4656   DstRegs[DstIdx] = FactorSum;
4657 
4658   unsigned CarrySumPrevDstIdx;
4659   SmallVector<Register, 4> Factors;
4660 
4661   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4662     // Collect low parts of muls for DstIdx.
4663     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4664          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4665       MachineInstrBuilder Mul =
4666           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4667       Factors.push_back(Mul.getReg(0));
4668     }
4669     // Collect high parts of muls from previous DstIdx.
4670     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4671          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4672       MachineInstrBuilder Umulh =
4673           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4674       Factors.push_back(Umulh.getReg(0));
4675     }
4676     // Add CarrySum from additions calculated for previous DstIdx.
4677     if (DstIdx != 1) {
4678       Factors.push_back(CarrySumPrevDstIdx);
4679     }
4680 
4681     Register CarrySum;
4682     // Add all factors and accumulate all carries into CarrySum.
4683     if (DstIdx != DstParts - 1) {
4684       MachineInstrBuilder Uaddo =
4685           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4686       FactorSum = Uaddo.getReg(0);
4687       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4688       for (unsigned i = 2; i < Factors.size(); ++i) {
4689         MachineInstrBuilder Uaddo =
4690             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4691         FactorSum = Uaddo.getReg(0);
4692         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4693         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4694       }
4695     } else {
4696       // Since value for the next index is not calculated, neither is CarrySum.
4697       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4698       for (unsigned i = 2; i < Factors.size(); ++i)
4699         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4700     }
4701 
4702     CarrySumPrevDstIdx = CarrySum;
4703     DstRegs[DstIdx] = FactorSum;
4704     Factors.clear();
4705   }
4706 }
4707 
4708 LegalizerHelper::LegalizeResult
4709 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4710                                     LLT NarrowTy) {
4711   if (TypeIdx != 0)
4712     return UnableToLegalize;
4713 
4714   Register DstReg = MI.getOperand(0).getReg();
4715   LLT DstType = MRI.getType(DstReg);
4716   // FIXME: add support for vector types
4717   if (DstType.isVector())
4718     return UnableToLegalize;
4719 
4720   uint64_t SizeOp0 = DstType.getSizeInBits();
4721   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4722 
4723   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4724   // NarrowSize.
4725   if (SizeOp0 % NarrowSize != 0)
4726     return UnableToLegalize;
4727 
4728   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4729   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4730 
4731   unsigned Opcode = MI.getOpcode();
4732   unsigned OpO, OpE, OpF;
4733   switch (Opcode) {
4734   case TargetOpcode::G_SADDO:
4735   case TargetOpcode::G_SADDE:
4736   case TargetOpcode::G_UADDO:
4737   case TargetOpcode::G_UADDE:
4738   case TargetOpcode::G_ADD:
4739     OpO = TargetOpcode::G_UADDO;
4740     OpE = TargetOpcode::G_UADDE;
4741     OpF = TargetOpcode::G_UADDE;
4742     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4743       OpF = TargetOpcode::G_SADDE;
4744     break;
4745   case TargetOpcode::G_SSUBO:
4746   case TargetOpcode::G_SSUBE:
4747   case TargetOpcode::G_USUBO:
4748   case TargetOpcode::G_USUBE:
4749   case TargetOpcode::G_SUB:
4750     OpO = TargetOpcode::G_USUBO;
4751     OpE = TargetOpcode::G_USUBE;
4752     OpF = TargetOpcode::G_USUBE;
4753     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4754       OpF = TargetOpcode::G_SSUBE;
4755     break;
4756   default:
4757     llvm_unreachable("Unexpected add/sub opcode!");
4758   }
4759 
4760   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4761   unsigned NumDefs = MI.getNumExplicitDefs();
4762   Register Src1 = MI.getOperand(NumDefs).getReg();
4763   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4764   Register CarryDst;
4765   if (NumDefs == 2)
4766     CarryDst = MI.getOperand(1).getReg();
4767   Register CarryIn;
4768   if (MI.getNumOperands() == NumDefs + 3)
4769     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4770 
4771   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4772   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4773   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4774 
4775   for (int i = 0; i < NumParts; ++i) {
4776     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4777     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4778     // Forward the final carry-out to the destination register
4779     if (i == NumParts - 1 && CarryDst)
4780       CarryOut = CarryDst;
4781 
4782     if (!CarryIn) {
4783       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4784                             {Src1Regs[i], Src2Regs[i]});
4785     } else if (i == NumParts - 1) {
4786       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4787                             {Src1Regs[i], Src2Regs[i], CarryIn});
4788     } else {
4789       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4790                             {Src1Regs[i], Src2Regs[i], CarryIn});
4791     }
4792 
4793     DstRegs.push_back(DstReg);
4794     CarryIn = CarryOut;
4795   }
4796   MIRBuilder.buildMerge(DstReg, DstRegs);
4797   MI.eraseFromParent();
4798   return Legalized;
4799 }
4800 
4801 LegalizerHelper::LegalizeResult
4802 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4803   Register DstReg = MI.getOperand(0).getReg();
4804   Register Src1 = MI.getOperand(1).getReg();
4805   Register Src2 = MI.getOperand(2).getReg();
4806 
4807   LLT Ty = MRI.getType(DstReg);
4808   if (Ty.isVector())
4809     return UnableToLegalize;
4810 
4811   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4812   unsigned DstSize = Ty.getSizeInBits();
4813   unsigned NarrowSize = NarrowTy.getSizeInBits();
4814   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4815     return UnableToLegalize;
4816 
4817   unsigned NumDstParts = DstSize / NarrowSize;
4818   unsigned NumSrcParts = SrcSize / NarrowSize;
4819   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4820   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4821 
4822   SmallVector<Register, 2> Src1Parts, Src2Parts;
4823   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4824   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4825   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4826   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4827 
4828   // Take only high half of registers if this is high mul.
4829   ArrayRef<Register> DstRegs(
4830       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4831   MIRBuilder.buildMerge(DstReg, DstRegs);
4832   MI.eraseFromParent();
4833   return Legalized;
4834 }
4835 
4836 LegalizerHelper::LegalizeResult
4837 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4838                                    LLT NarrowTy) {
4839   if (TypeIdx != 0)
4840     return UnableToLegalize;
4841 
4842   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4843 
4844   Register Src = MI.getOperand(1).getReg();
4845   LLT SrcTy = MRI.getType(Src);
4846 
4847   // If all finite floats fit into the narrowed integer type, we can just swap
4848   // out the result type. This is practically only useful for conversions from
4849   // half to at least 16-bits, so just handle the one case.
4850   if (SrcTy.getScalarType() != LLT::scalar(16) ||
4851       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
4852     return UnableToLegalize;
4853 
4854   Observer.changingInstr(MI);
4855   narrowScalarDst(MI, NarrowTy, 0,
4856                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
4857   Observer.changedInstr(MI);
4858   return Legalized;
4859 }
4860 
4861 LegalizerHelper::LegalizeResult
4862 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4863                                      LLT NarrowTy) {
4864   if (TypeIdx != 1)
4865     return UnableToLegalize;
4866 
4867   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4868 
4869   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4870   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4871   // NarrowSize.
4872   if (SizeOp1 % NarrowSize != 0)
4873     return UnableToLegalize;
4874   int NumParts = SizeOp1 / NarrowSize;
4875 
4876   SmallVector<Register, 2> SrcRegs, DstRegs;
4877   SmallVector<uint64_t, 2> Indexes;
4878   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4879 
4880   Register OpReg = MI.getOperand(0).getReg();
4881   uint64_t OpStart = MI.getOperand(2).getImm();
4882   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4883   for (int i = 0; i < NumParts; ++i) {
4884     unsigned SrcStart = i * NarrowSize;
4885 
4886     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4887       // No part of the extract uses this subregister, ignore it.
4888       continue;
4889     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4890       // The entire subregister is extracted, forward the value.
4891       DstRegs.push_back(SrcRegs[i]);
4892       continue;
4893     }
4894 
4895     // OpSegStart is where this destination segment would start in OpReg if it
4896     // extended infinitely in both directions.
4897     int64_t ExtractOffset;
4898     uint64_t SegSize;
4899     if (OpStart < SrcStart) {
4900       ExtractOffset = 0;
4901       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4902     } else {
4903       ExtractOffset = OpStart - SrcStart;
4904       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4905     }
4906 
4907     Register SegReg = SrcRegs[i];
4908     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4909       // A genuine extract is needed.
4910       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4911       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4912     }
4913 
4914     DstRegs.push_back(SegReg);
4915   }
4916 
4917   Register DstReg = MI.getOperand(0).getReg();
4918   if (MRI.getType(DstReg).isVector())
4919     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4920   else if (DstRegs.size() > 1)
4921     MIRBuilder.buildMerge(DstReg, DstRegs);
4922   else
4923     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4924   MI.eraseFromParent();
4925   return Legalized;
4926 }
4927 
4928 LegalizerHelper::LegalizeResult
4929 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4930                                     LLT NarrowTy) {
4931   // FIXME: Don't know how to handle secondary types yet.
4932   if (TypeIdx != 0)
4933     return UnableToLegalize;
4934 
4935   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4936   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4937 
4938   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4939   // NarrowSize.
4940   if (SizeOp0 % NarrowSize != 0)
4941     return UnableToLegalize;
4942 
4943   int NumParts = SizeOp0 / NarrowSize;
4944 
4945   SmallVector<Register, 2> SrcRegs, DstRegs;
4946   SmallVector<uint64_t, 2> Indexes;
4947   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4948 
4949   Register OpReg = MI.getOperand(2).getReg();
4950   uint64_t OpStart = MI.getOperand(3).getImm();
4951   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4952   for (int i = 0; i < NumParts; ++i) {
4953     unsigned DstStart = i * NarrowSize;
4954 
4955     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4956       // No part of the insert affects this subregister, forward the original.
4957       DstRegs.push_back(SrcRegs[i]);
4958       continue;
4959     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4960       // The entire subregister is defined by this insert, forward the new
4961       // value.
4962       DstRegs.push_back(OpReg);
4963       continue;
4964     }
4965 
4966     // OpSegStart is where this destination segment would start in OpReg if it
4967     // extended infinitely in both directions.
4968     int64_t ExtractOffset, InsertOffset;
4969     uint64_t SegSize;
4970     if (OpStart < DstStart) {
4971       InsertOffset = 0;
4972       ExtractOffset = DstStart - OpStart;
4973       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4974     } else {
4975       InsertOffset = OpStart - DstStart;
4976       ExtractOffset = 0;
4977       SegSize =
4978         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4979     }
4980 
4981     Register SegReg = OpReg;
4982     if (ExtractOffset != 0 || SegSize != OpSize) {
4983       // A genuine extract is needed.
4984       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4985       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4986     }
4987 
4988     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4989     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4990     DstRegs.push_back(DstReg);
4991   }
4992 
4993   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4994   Register DstReg = MI.getOperand(0).getReg();
4995   if(MRI.getType(DstReg).isVector())
4996     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4997   else
4998     MIRBuilder.buildMerge(DstReg, DstRegs);
4999   MI.eraseFromParent();
5000   return Legalized;
5001 }
5002 
5003 LegalizerHelper::LegalizeResult
5004 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5005                                    LLT NarrowTy) {
5006   Register DstReg = MI.getOperand(0).getReg();
5007   LLT DstTy = MRI.getType(DstReg);
5008 
5009   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5010 
5011   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5012   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5013   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5014   LLT LeftoverTy;
5015   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5016                     Src0Regs, Src0LeftoverRegs))
5017     return UnableToLegalize;
5018 
5019   LLT Unused;
5020   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5021                     Src1Regs, Src1LeftoverRegs))
5022     llvm_unreachable("inconsistent extractParts result");
5023 
5024   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5025     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5026                                         {Src0Regs[I], Src1Regs[I]});
5027     DstRegs.push_back(Inst.getReg(0));
5028   }
5029 
5030   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5031     auto Inst = MIRBuilder.buildInstr(
5032       MI.getOpcode(),
5033       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5034     DstLeftoverRegs.push_back(Inst.getReg(0));
5035   }
5036 
5037   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5038               LeftoverTy, DstLeftoverRegs);
5039 
5040   MI.eraseFromParent();
5041   return Legalized;
5042 }
5043 
5044 LegalizerHelper::LegalizeResult
5045 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5046                                  LLT NarrowTy) {
5047   if (TypeIdx != 0)
5048     return UnableToLegalize;
5049 
5050   Register DstReg = MI.getOperand(0).getReg();
5051   Register SrcReg = MI.getOperand(1).getReg();
5052 
5053   LLT DstTy = MRI.getType(DstReg);
5054   if (DstTy.isVector())
5055     return UnableToLegalize;
5056 
5057   SmallVector<Register, 8> Parts;
5058   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5059   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5060   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5061 
5062   MI.eraseFromParent();
5063   return Legalized;
5064 }
5065 
5066 LegalizerHelper::LegalizeResult
5067 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5068                                     LLT NarrowTy) {
5069   if (TypeIdx != 0)
5070     return UnableToLegalize;
5071 
5072   Register CondReg = MI.getOperand(1).getReg();
5073   LLT CondTy = MRI.getType(CondReg);
5074   if (CondTy.isVector()) // TODO: Handle vselect
5075     return UnableToLegalize;
5076 
5077   Register DstReg = MI.getOperand(0).getReg();
5078   LLT DstTy = MRI.getType(DstReg);
5079 
5080   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5081   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5082   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5083   LLT LeftoverTy;
5084   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5085                     Src1Regs, Src1LeftoverRegs))
5086     return UnableToLegalize;
5087 
5088   LLT Unused;
5089   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5090                     Src2Regs, Src2LeftoverRegs))
5091     llvm_unreachable("inconsistent extractParts result");
5092 
5093   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5094     auto Select = MIRBuilder.buildSelect(NarrowTy,
5095                                          CondReg, Src1Regs[I], Src2Regs[I]);
5096     DstRegs.push_back(Select.getReg(0));
5097   }
5098 
5099   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5100     auto Select = MIRBuilder.buildSelect(
5101       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5102     DstLeftoverRegs.push_back(Select.getReg(0));
5103   }
5104 
5105   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5106               LeftoverTy, DstLeftoverRegs);
5107 
5108   MI.eraseFromParent();
5109   return Legalized;
5110 }
5111 
5112 LegalizerHelper::LegalizeResult
5113 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5114                                   LLT NarrowTy) {
5115   if (TypeIdx != 1)
5116     return UnableToLegalize;
5117 
5118   Register DstReg = MI.getOperand(0).getReg();
5119   Register SrcReg = MI.getOperand(1).getReg();
5120   LLT DstTy = MRI.getType(DstReg);
5121   LLT SrcTy = MRI.getType(SrcReg);
5122   unsigned NarrowSize = NarrowTy.getSizeInBits();
5123 
5124   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5125     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5126 
5127     MachineIRBuilder &B = MIRBuilder;
5128     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5129     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5130     auto C_0 = B.buildConstant(NarrowTy, 0);
5131     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5132                                 UnmergeSrc.getReg(1), C_0);
5133     auto LoCTLZ = IsUndef ?
5134       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5135       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5136     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5137     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5138     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5139     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5140 
5141     MI.eraseFromParent();
5142     return Legalized;
5143   }
5144 
5145   return UnableToLegalize;
5146 }
5147 
5148 LegalizerHelper::LegalizeResult
5149 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5150                                   LLT NarrowTy) {
5151   if (TypeIdx != 1)
5152     return UnableToLegalize;
5153 
5154   Register DstReg = MI.getOperand(0).getReg();
5155   Register SrcReg = MI.getOperand(1).getReg();
5156   LLT DstTy = MRI.getType(DstReg);
5157   LLT SrcTy = MRI.getType(SrcReg);
5158   unsigned NarrowSize = NarrowTy.getSizeInBits();
5159 
5160   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5161     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5162 
5163     MachineIRBuilder &B = MIRBuilder;
5164     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5165     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5166     auto C_0 = B.buildConstant(NarrowTy, 0);
5167     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5168                                 UnmergeSrc.getReg(0), C_0);
5169     auto HiCTTZ = IsUndef ?
5170       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5171       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5172     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5173     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5174     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5175     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5176 
5177     MI.eraseFromParent();
5178     return Legalized;
5179   }
5180 
5181   return UnableToLegalize;
5182 }
5183 
5184 LegalizerHelper::LegalizeResult
5185 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5186                                    LLT NarrowTy) {
5187   if (TypeIdx != 1)
5188     return UnableToLegalize;
5189 
5190   Register DstReg = MI.getOperand(0).getReg();
5191   LLT DstTy = MRI.getType(DstReg);
5192   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5193   unsigned NarrowSize = NarrowTy.getSizeInBits();
5194 
5195   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5196     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5197 
5198     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5199     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5200     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5201 
5202     MI.eraseFromParent();
5203     return Legalized;
5204   }
5205 
5206   return UnableToLegalize;
5207 }
5208 
5209 LegalizerHelper::LegalizeResult
5210 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5211   unsigned Opc = MI.getOpcode();
5212   const auto &TII = MIRBuilder.getTII();
5213   auto isSupported = [this](const LegalityQuery &Q) {
5214     auto QAction = LI.getAction(Q).Action;
5215     return QAction == Legal || QAction == Libcall || QAction == Custom;
5216   };
5217   switch (Opc) {
5218   default:
5219     return UnableToLegalize;
5220   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5221     // This trivially expands to CTLZ.
5222     Observer.changingInstr(MI);
5223     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5224     Observer.changedInstr(MI);
5225     return Legalized;
5226   }
5227   case TargetOpcode::G_CTLZ: {
5228     Register DstReg = MI.getOperand(0).getReg();
5229     Register SrcReg = MI.getOperand(1).getReg();
5230     LLT DstTy = MRI.getType(DstReg);
5231     LLT SrcTy = MRI.getType(SrcReg);
5232     unsigned Len = SrcTy.getSizeInBits();
5233 
5234     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5235       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5236       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5237       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5238       auto ICmp = MIRBuilder.buildICmp(
5239           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5240       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5241       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5242       MI.eraseFromParent();
5243       return Legalized;
5244     }
5245     // for now, we do this:
5246     // NewLen = NextPowerOf2(Len);
5247     // x = x | (x >> 1);
5248     // x = x | (x >> 2);
5249     // ...
5250     // x = x | (x >>16);
5251     // x = x | (x >>32); // for 64-bit input
5252     // Upto NewLen/2
5253     // return Len - popcount(x);
5254     //
5255     // Ref: "Hacker's Delight" by Henry Warren
5256     Register Op = SrcReg;
5257     unsigned NewLen = PowerOf2Ceil(Len);
5258     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5259       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5260       auto MIBOp = MIRBuilder.buildOr(
5261           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5262       Op = MIBOp.getReg(0);
5263     }
5264     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5265     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5266                         MIBPop);
5267     MI.eraseFromParent();
5268     return Legalized;
5269   }
5270   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5271     // This trivially expands to CTTZ.
5272     Observer.changingInstr(MI);
5273     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5274     Observer.changedInstr(MI);
5275     return Legalized;
5276   }
5277   case TargetOpcode::G_CTTZ: {
5278     Register DstReg = MI.getOperand(0).getReg();
5279     Register SrcReg = MI.getOperand(1).getReg();
5280     LLT DstTy = MRI.getType(DstReg);
5281     LLT SrcTy = MRI.getType(SrcReg);
5282 
5283     unsigned Len = SrcTy.getSizeInBits();
5284     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5285       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5286       // zero.
5287       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5288       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5289       auto ICmp = MIRBuilder.buildICmp(
5290           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5291       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5292       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5293       MI.eraseFromParent();
5294       return Legalized;
5295     }
5296     // for now, we use: { return popcount(~x & (x - 1)); }
5297     // unless the target has ctlz but not ctpop, in which case we use:
5298     // { return 32 - nlz(~x & (x-1)); }
5299     // Ref: "Hacker's Delight" by Henry Warren
5300     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5301     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5302     auto MIBTmp = MIRBuilder.buildAnd(
5303         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5304     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5305         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5306       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5307       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5308                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5309       MI.eraseFromParent();
5310       return Legalized;
5311     }
5312     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5313     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5314     return Legalized;
5315   }
5316   case TargetOpcode::G_CTPOP: {
5317     Register SrcReg = MI.getOperand(1).getReg();
5318     LLT Ty = MRI.getType(SrcReg);
5319     unsigned Size = Ty.getSizeInBits();
5320     MachineIRBuilder &B = MIRBuilder;
5321 
5322     // Count set bits in blocks of 2 bits. Default approach would be
5323     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5324     // We use following formula instead:
5325     // B2Count = val - { (val >> 1) & 0x55555555 }
5326     // since it gives same result in blocks of 2 with one instruction less.
5327     auto C_1 = B.buildConstant(Ty, 1);
5328     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5329     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5330     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5331     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5332     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5333 
5334     // In order to get count in blocks of 4 add values from adjacent block of 2.
5335     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5336     auto C_2 = B.buildConstant(Ty, 2);
5337     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5338     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5339     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5340     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5341     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5342     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5343 
5344     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5345     // addition since count value sits in range {0,...,8} and 4 bits are enough
5346     // to hold such binary values. After addition high 4 bits still hold count
5347     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5348     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5349     auto C_4 = B.buildConstant(Ty, 4);
5350     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5351     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5352     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5353     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5354     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5355 
5356     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5357     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5358     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5359     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5360     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5361 
5362     // Shift count result from 8 high bits to low bits.
5363     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5364     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5365 
5366     MI.eraseFromParent();
5367     return Legalized;
5368   }
5369   }
5370 }
5371 
5372 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5373 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5374                                         Register Reg, unsigned BW) {
5375   return matchUnaryPredicate(
5376       MRI, Reg,
5377       [=](const Constant *C) {
5378         // Null constant here means an undef.
5379         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5380         return !CI || CI->getValue().urem(BW) != 0;
5381       },
5382       /*AllowUndefs*/ true);
5383 }
5384 
5385 LegalizerHelper::LegalizeResult
5386 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5387   Register Dst = MI.getOperand(0).getReg();
5388   Register X = MI.getOperand(1).getReg();
5389   Register Y = MI.getOperand(2).getReg();
5390   Register Z = MI.getOperand(3).getReg();
5391   LLT Ty = MRI.getType(Dst);
5392   LLT ShTy = MRI.getType(Z);
5393 
5394   unsigned BW = Ty.getScalarSizeInBits();
5395 
5396   if (!isPowerOf2_32(BW))
5397     return UnableToLegalize;
5398 
5399   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5400   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5401 
5402   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5403     // fshl X, Y, Z -> fshr X, Y, -Z
5404     // fshr X, Y, Z -> fshl X, Y, -Z
5405     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5406     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5407   } else {
5408     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5409     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5410     auto One = MIRBuilder.buildConstant(ShTy, 1);
5411     if (IsFSHL) {
5412       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5413       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5414     } else {
5415       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5416       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5417     }
5418 
5419     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5420   }
5421 
5422   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5423   MI.eraseFromParent();
5424   return Legalized;
5425 }
5426 
5427 LegalizerHelper::LegalizeResult
5428 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5429   Register Dst = MI.getOperand(0).getReg();
5430   Register X = MI.getOperand(1).getReg();
5431   Register Y = MI.getOperand(2).getReg();
5432   Register Z = MI.getOperand(3).getReg();
5433   LLT Ty = MRI.getType(Dst);
5434   LLT ShTy = MRI.getType(Z);
5435 
5436   const unsigned BW = Ty.getScalarSizeInBits();
5437   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5438 
5439   Register ShX, ShY;
5440   Register ShAmt, InvShAmt;
5441 
5442   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5443   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5444     // fshl: X << C | Y >> (BW - C)
5445     // fshr: X << (BW - C) | Y >> C
5446     // where C = Z % BW is not zero
5447     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5448     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5449     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5450     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5451     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5452   } else {
5453     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5454     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5455     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5456     if (isPowerOf2_32(BW)) {
5457       // Z % BW -> Z & (BW - 1)
5458       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5459       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5460       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5461       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5462     } else {
5463       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5464       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5465       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5466     }
5467 
5468     auto One = MIRBuilder.buildConstant(ShTy, 1);
5469     if (IsFSHL) {
5470       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5471       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5472       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5473     } else {
5474       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5475       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5476       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5477     }
5478   }
5479 
5480   MIRBuilder.buildOr(Dst, ShX, ShY);
5481   MI.eraseFromParent();
5482   return Legalized;
5483 }
5484 
5485 LegalizerHelper::LegalizeResult
5486 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5487   // These operations approximately do the following (while avoiding undefined
5488   // shifts by BW):
5489   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5490   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5491   Register Dst = MI.getOperand(0).getReg();
5492   LLT Ty = MRI.getType(Dst);
5493   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5494 
5495   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5496   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5497 
5498   // TODO: Use smarter heuristic that accounts for vector legalization.
5499   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5500     return lowerFunnelShiftAsShifts(MI);
5501 
5502   // This only works for powers of 2, fallback to shifts if it fails.
5503   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5504   if (Result == UnableToLegalize)
5505     return lowerFunnelShiftAsShifts(MI);
5506   return Result;
5507 }
5508 
5509 LegalizerHelper::LegalizeResult
5510 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5511   Register Dst = MI.getOperand(0).getReg();
5512   Register Src = MI.getOperand(1).getReg();
5513   Register Amt = MI.getOperand(2).getReg();
5514   LLT AmtTy = MRI.getType(Amt);
5515   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5516   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5517   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5518   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5519   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5520   MI.eraseFromParent();
5521   return Legalized;
5522 }
5523 
5524 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5525   Register Dst = MI.getOperand(0).getReg();
5526   Register Src = MI.getOperand(1).getReg();
5527   Register Amt = MI.getOperand(2).getReg();
5528   LLT DstTy = MRI.getType(Dst);
5529   LLT SrcTy = MRI.getType(Dst);
5530   LLT AmtTy = MRI.getType(Amt);
5531 
5532   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5533   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5534 
5535   MIRBuilder.setInstrAndDebugLoc(MI);
5536 
5537   // If a rotate in the other direction is supported, use it.
5538   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5539   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5540       isPowerOf2_32(EltSizeInBits))
5541     return lowerRotateWithReverseRotate(MI);
5542 
5543   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5544   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5545   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5546   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5547   Register ShVal;
5548   Register RevShiftVal;
5549   if (isPowerOf2_32(EltSizeInBits)) {
5550     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5551     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5552     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5553     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5554     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5555     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5556     RevShiftVal =
5557         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5558   } else {
5559     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5560     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5561     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5562     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5563     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5564     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5565     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5566     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5567     RevShiftVal =
5568         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5569   }
5570   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5571   MI.eraseFromParent();
5572   return Legalized;
5573 }
5574 
5575 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5576 // representation.
5577 LegalizerHelper::LegalizeResult
5578 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5579   Register Dst = MI.getOperand(0).getReg();
5580   Register Src = MI.getOperand(1).getReg();
5581   const LLT S64 = LLT::scalar(64);
5582   const LLT S32 = LLT::scalar(32);
5583   const LLT S1 = LLT::scalar(1);
5584 
5585   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5586 
5587   // unsigned cul2f(ulong u) {
5588   //   uint lz = clz(u);
5589   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5590   //   u = (u << lz) & 0x7fffffffffffffffUL;
5591   //   ulong t = u & 0xffffffffffUL;
5592   //   uint v = (e << 23) | (uint)(u >> 40);
5593   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5594   //   return as_float(v + r);
5595   // }
5596 
5597   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5598   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5599 
5600   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5601 
5602   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5603   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5604 
5605   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5606   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5607 
5608   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5609   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5610 
5611   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5612 
5613   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5614   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5615 
5616   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5617   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5618   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5619 
5620   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5621   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5622   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5623   auto One = MIRBuilder.buildConstant(S32, 1);
5624 
5625   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5626   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5627   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5628   MIRBuilder.buildAdd(Dst, V, R);
5629 
5630   MI.eraseFromParent();
5631   return Legalized;
5632 }
5633 
5634 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5635   Register Dst = MI.getOperand(0).getReg();
5636   Register Src = MI.getOperand(1).getReg();
5637   LLT DstTy = MRI.getType(Dst);
5638   LLT SrcTy = MRI.getType(Src);
5639 
5640   if (SrcTy == LLT::scalar(1)) {
5641     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5642     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5643     MIRBuilder.buildSelect(Dst, Src, True, False);
5644     MI.eraseFromParent();
5645     return Legalized;
5646   }
5647 
5648   if (SrcTy != LLT::scalar(64))
5649     return UnableToLegalize;
5650 
5651   if (DstTy == LLT::scalar(32)) {
5652     // TODO: SelectionDAG has several alternative expansions to port which may
5653     // be more reasonble depending on the available instructions. If a target
5654     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5655     // intermediate type, this is probably worse.
5656     return lowerU64ToF32BitOps(MI);
5657   }
5658 
5659   return UnableToLegalize;
5660 }
5661 
5662 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5663   Register Dst = MI.getOperand(0).getReg();
5664   Register Src = MI.getOperand(1).getReg();
5665   LLT DstTy = MRI.getType(Dst);
5666   LLT SrcTy = MRI.getType(Src);
5667 
5668   const LLT S64 = LLT::scalar(64);
5669   const LLT S32 = LLT::scalar(32);
5670   const LLT S1 = LLT::scalar(1);
5671 
5672   if (SrcTy == S1) {
5673     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5674     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5675     MIRBuilder.buildSelect(Dst, Src, True, False);
5676     MI.eraseFromParent();
5677     return Legalized;
5678   }
5679 
5680   if (SrcTy != S64)
5681     return UnableToLegalize;
5682 
5683   if (DstTy == S32) {
5684     // signed cl2f(long l) {
5685     //   long s = l >> 63;
5686     //   float r = cul2f((l + s) ^ s);
5687     //   return s ? -r : r;
5688     // }
5689     Register L = Src;
5690     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5691     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5692 
5693     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5694     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5695     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5696 
5697     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5698     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5699                                             MIRBuilder.buildConstant(S64, 0));
5700     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5701     MI.eraseFromParent();
5702     return Legalized;
5703   }
5704 
5705   return UnableToLegalize;
5706 }
5707 
5708 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5709   Register Dst = MI.getOperand(0).getReg();
5710   Register Src = MI.getOperand(1).getReg();
5711   LLT DstTy = MRI.getType(Dst);
5712   LLT SrcTy = MRI.getType(Src);
5713   const LLT S64 = LLT::scalar(64);
5714   const LLT S32 = LLT::scalar(32);
5715 
5716   if (SrcTy != S64 && SrcTy != S32)
5717     return UnableToLegalize;
5718   if (DstTy != S32 && DstTy != S64)
5719     return UnableToLegalize;
5720 
5721   // FPTOSI gives same result as FPTOUI for positive signed integers.
5722   // FPTOUI needs to deal with fp values that convert to unsigned integers
5723   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5724 
5725   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5726   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5727                                                 : APFloat::IEEEdouble(),
5728                     APInt::getNullValue(SrcTy.getSizeInBits()));
5729   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5730 
5731   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5732 
5733   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5734   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5735   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5736   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5737   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5738   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5739   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5740 
5741   const LLT S1 = LLT::scalar(1);
5742 
5743   MachineInstrBuilder FCMP =
5744       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5745   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5746 
5747   MI.eraseFromParent();
5748   return Legalized;
5749 }
5750 
5751 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5752   Register Dst = MI.getOperand(0).getReg();
5753   Register Src = MI.getOperand(1).getReg();
5754   LLT DstTy = MRI.getType(Dst);
5755   LLT SrcTy = MRI.getType(Src);
5756   const LLT S64 = LLT::scalar(64);
5757   const LLT S32 = LLT::scalar(32);
5758 
5759   // FIXME: Only f32 to i64 conversions are supported.
5760   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5761     return UnableToLegalize;
5762 
5763   // Expand f32 -> i64 conversion
5764   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5765   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5766 
5767   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5768 
5769   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5770   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5771 
5772   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5773   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5774 
5775   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5776                                            APInt::getSignMask(SrcEltBits));
5777   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5778   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5779   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5780   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5781 
5782   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5783   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5784   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5785 
5786   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5787   R = MIRBuilder.buildZExt(DstTy, R);
5788 
5789   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5790   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5791   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5792   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5793 
5794   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5795   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5796 
5797   const LLT S1 = LLT::scalar(1);
5798   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5799                                     S1, Exponent, ExponentLoBit);
5800 
5801   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5802 
5803   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5804   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5805 
5806   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5807 
5808   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5809                                           S1, Exponent, ZeroSrcTy);
5810 
5811   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5812   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5813 
5814   MI.eraseFromParent();
5815   return Legalized;
5816 }
5817 
5818 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5819 LegalizerHelper::LegalizeResult
5820 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5821   Register Dst = MI.getOperand(0).getReg();
5822   Register Src = MI.getOperand(1).getReg();
5823 
5824   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5825     return UnableToLegalize;
5826 
5827   const unsigned ExpMask = 0x7ff;
5828   const unsigned ExpBiasf64 = 1023;
5829   const unsigned ExpBiasf16 = 15;
5830   const LLT S32 = LLT::scalar(32);
5831   const LLT S1 = LLT::scalar(1);
5832 
5833   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5834   Register U = Unmerge.getReg(0);
5835   Register UH = Unmerge.getReg(1);
5836 
5837   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5838   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5839 
5840   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5841   // add the f16 bias (15) to get the biased exponent for the f16 format.
5842   E = MIRBuilder.buildAdd(
5843     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5844 
5845   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5846   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5847 
5848   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5849                                        MIRBuilder.buildConstant(S32, 0x1ff));
5850   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5851 
5852   auto Zero = MIRBuilder.buildConstant(S32, 0);
5853   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5854   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5855   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5856 
5857   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5858   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5859   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5860   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5861 
5862   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5863   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5864 
5865   // N = M | (E << 12);
5866   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5867   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5868 
5869   // B = clamp(1-E, 0, 13);
5870   auto One = MIRBuilder.buildConstant(S32, 1);
5871   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5872   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5873   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5874 
5875   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5876                                        MIRBuilder.buildConstant(S32, 0x1000));
5877 
5878   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5879   auto D0 = MIRBuilder.buildShl(S32, D, B);
5880 
5881   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5882                                              D0, SigSetHigh);
5883   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5884   D = MIRBuilder.buildOr(S32, D, D1);
5885 
5886   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5887   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5888 
5889   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5890   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5891 
5892   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5893                                        MIRBuilder.buildConstant(S32, 3));
5894   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5895 
5896   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5897                                        MIRBuilder.buildConstant(S32, 5));
5898   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5899 
5900   V1 = MIRBuilder.buildOr(S32, V0, V1);
5901   V = MIRBuilder.buildAdd(S32, V, V1);
5902 
5903   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5904                                        E, MIRBuilder.buildConstant(S32, 30));
5905   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5906                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5907 
5908   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5909                                          E, MIRBuilder.buildConstant(S32, 1039));
5910   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5911 
5912   // Extract the sign bit.
5913   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5914   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5915 
5916   // Insert the sign bit
5917   V = MIRBuilder.buildOr(S32, Sign, V);
5918 
5919   MIRBuilder.buildTrunc(Dst, V);
5920   MI.eraseFromParent();
5921   return Legalized;
5922 }
5923 
5924 LegalizerHelper::LegalizeResult
5925 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5926   Register Dst = MI.getOperand(0).getReg();
5927   Register Src = MI.getOperand(1).getReg();
5928 
5929   LLT DstTy = MRI.getType(Dst);
5930   LLT SrcTy = MRI.getType(Src);
5931   const LLT S64 = LLT::scalar(64);
5932   const LLT S16 = LLT::scalar(16);
5933 
5934   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5935     return lowerFPTRUNC_F64_TO_F16(MI);
5936 
5937   return UnableToLegalize;
5938 }
5939 
5940 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5941 // multiplication tree.
5942 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5943   Register Dst = MI.getOperand(0).getReg();
5944   Register Src0 = MI.getOperand(1).getReg();
5945   Register Src1 = MI.getOperand(2).getReg();
5946   LLT Ty = MRI.getType(Dst);
5947 
5948   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5949   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5950   MI.eraseFromParent();
5951   return Legalized;
5952 }
5953 
5954 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5955   switch (Opc) {
5956   case TargetOpcode::G_SMIN:
5957     return CmpInst::ICMP_SLT;
5958   case TargetOpcode::G_SMAX:
5959     return CmpInst::ICMP_SGT;
5960   case TargetOpcode::G_UMIN:
5961     return CmpInst::ICMP_ULT;
5962   case TargetOpcode::G_UMAX:
5963     return CmpInst::ICMP_UGT;
5964   default:
5965     llvm_unreachable("not in integer min/max");
5966   }
5967 }
5968 
5969 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5970   Register Dst = MI.getOperand(0).getReg();
5971   Register Src0 = MI.getOperand(1).getReg();
5972   Register Src1 = MI.getOperand(2).getReg();
5973 
5974   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5975   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5976 
5977   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5978   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5979 
5980   MI.eraseFromParent();
5981   return Legalized;
5982 }
5983 
5984 LegalizerHelper::LegalizeResult
5985 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5986   Register Dst = MI.getOperand(0).getReg();
5987   Register Src0 = MI.getOperand(1).getReg();
5988   Register Src1 = MI.getOperand(2).getReg();
5989 
5990   const LLT Src0Ty = MRI.getType(Src0);
5991   const LLT Src1Ty = MRI.getType(Src1);
5992 
5993   const int Src0Size = Src0Ty.getScalarSizeInBits();
5994   const int Src1Size = Src1Ty.getScalarSizeInBits();
5995 
5996   auto SignBitMask = MIRBuilder.buildConstant(
5997     Src0Ty, APInt::getSignMask(Src0Size));
5998 
5999   auto NotSignBitMask = MIRBuilder.buildConstant(
6000     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6001 
6002   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6003   Register And1;
6004   if (Src0Ty == Src1Ty) {
6005     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6006   } else if (Src0Size > Src1Size) {
6007     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6008     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6009     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6010     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6011   } else {
6012     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6013     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6014     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6015     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6016   }
6017 
6018   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6019   // constants are a nan and -0.0, but the final result should preserve
6020   // everything.
6021   unsigned Flags = MI.getFlags();
6022   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6023 
6024   MI.eraseFromParent();
6025   return Legalized;
6026 }
6027 
6028 LegalizerHelper::LegalizeResult
6029 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6030   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6031     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6032 
6033   Register Dst = MI.getOperand(0).getReg();
6034   Register Src0 = MI.getOperand(1).getReg();
6035   Register Src1 = MI.getOperand(2).getReg();
6036   LLT Ty = MRI.getType(Dst);
6037 
6038   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6039     // Insert canonicalizes if it's possible we need to quiet to get correct
6040     // sNaN behavior.
6041 
6042     // Note this must be done here, and not as an optimization combine in the
6043     // absence of a dedicate quiet-snan instruction as we're using an
6044     // omni-purpose G_FCANONICALIZE.
6045     if (!isKnownNeverSNaN(Src0, MRI))
6046       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6047 
6048     if (!isKnownNeverSNaN(Src1, MRI))
6049       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6050   }
6051 
6052   // If there are no nans, it's safe to simply replace this with the non-IEEE
6053   // version.
6054   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6055   MI.eraseFromParent();
6056   return Legalized;
6057 }
6058 
6059 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6060   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6061   Register DstReg = MI.getOperand(0).getReg();
6062   LLT Ty = MRI.getType(DstReg);
6063   unsigned Flags = MI.getFlags();
6064 
6065   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6066                                   Flags);
6067   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6068   MI.eraseFromParent();
6069   return Legalized;
6070 }
6071 
6072 LegalizerHelper::LegalizeResult
6073 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6074   Register DstReg = MI.getOperand(0).getReg();
6075   Register X = MI.getOperand(1).getReg();
6076   const unsigned Flags = MI.getFlags();
6077   const LLT Ty = MRI.getType(DstReg);
6078   const LLT CondTy = Ty.changeElementSize(1);
6079 
6080   // round(x) =>
6081   //  t = trunc(x);
6082   //  d = fabs(x - t);
6083   //  o = copysign(1.0f, x);
6084   //  return t + (d >= 0.5 ? o : 0.0);
6085 
6086   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6087 
6088   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6089   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6090   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6091   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6092   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6093   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6094 
6095   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6096                                   Flags);
6097   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6098 
6099   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6100 
6101   MI.eraseFromParent();
6102   return Legalized;
6103 }
6104 
6105 LegalizerHelper::LegalizeResult
6106 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6107   Register DstReg = MI.getOperand(0).getReg();
6108   Register SrcReg = MI.getOperand(1).getReg();
6109   unsigned Flags = MI.getFlags();
6110   LLT Ty = MRI.getType(DstReg);
6111   const LLT CondTy = Ty.changeElementSize(1);
6112 
6113   // result = trunc(src);
6114   // if (src < 0.0 && src != result)
6115   //   result += -1.0.
6116 
6117   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6118   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6119 
6120   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6121                                   SrcReg, Zero, Flags);
6122   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6123                                       SrcReg, Trunc, Flags);
6124   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6125   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6126 
6127   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6128   MI.eraseFromParent();
6129   return Legalized;
6130 }
6131 
6132 LegalizerHelper::LegalizeResult
6133 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6134   const unsigned NumOps = MI.getNumOperands();
6135   Register DstReg = MI.getOperand(0).getReg();
6136   Register Src0Reg = MI.getOperand(1).getReg();
6137   LLT DstTy = MRI.getType(DstReg);
6138   LLT SrcTy = MRI.getType(Src0Reg);
6139   unsigned PartSize = SrcTy.getSizeInBits();
6140 
6141   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6142   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6143 
6144   for (unsigned I = 2; I != NumOps; ++I) {
6145     const unsigned Offset = (I - 1) * PartSize;
6146 
6147     Register SrcReg = MI.getOperand(I).getReg();
6148     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6149 
6150     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6151       MRI.createGenericVirtualRegister(WideTy);
6152 
6153     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6154     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6155     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6156     ResultReg = NextResult;
6157   }
6158 
6159   if (DstTy.isPointer()) {
6160     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6161           DstTy.getAddressSpace())) {
6162       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6163       return UnableToLegalize;
6164     }
6165 
6166     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6167   }
6168 
6169   MI.eraseFromParent();
6170   return Legalized;
6171 }
6172 
6173 LegalizerHelper::LegalizeResult
6174 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6175   const unsigned NumDst = MI.getNumOperands() - 1;
6176   Register SrcReg = MI.getOperand(NumDst).getReg();
6177   Register Dst0Reg = MI.getOperand(0).getReg();
6178   LLT DstTy = MRI.getType(Dst0Reg);
6179   if (DstTy.isPointer())
6180     return UnableToLegalize; // TODO
6181 
6182   SrcReg = coerceToScalar(SrcReg);
6183   if (!SrcReg)
6184     return UnableToLegalize;
6185 
6186   // Expand scalarizing unmerge as bitcast to integer and shift.
6187   LLT IntTy = MRI.getType(SrcReg);
6188 
6189   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6190 
6191   const unsigned DstSize = DstTy.getSizeInBits();
6192   unsigned Offset = DstSize;
6193   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6194     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6195     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6196     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6197   }
6198 
6199   MI.eraseFromParent();
6200   return Legalized;
6201 }
6202 
6203 /// Lower a vector extract or insert by writing the vector to a stack temporary
6204 /// and reloading the element or vector.
6205 ///
6206 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6207 ///  =>
6208 ///  %stack_temp = G_FRAME_INDEX
6209 ///  G_STORE %vec, %stack_temp
6210 ///  %idx = clamp(%idx, %vec.getNumElements())
6211 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6212 ///  %dst = G_LOAD %element_ptr
6213 LegalizerHelper::LegalizeResult
6214 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6215   Register DstReg = MI.getOperand(0).getReg();
6216   Register SrcVec = MI.getOperand(1).getReg();
6217   Register InsertVal;
6218   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6219     InsertVal = MI.getOperand(2).getReg();
6220 
6221   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6222 
6223   LLT VecTy = MRI.getType(SrcVec);
6224   LLT EltTy = VecTy.getElementType();
6225   if (!EltTy.isByteSized()) { // Not implemented.
6226     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6227     return UnableToLegalize;
6228   }
6229 
6230   unsigned EltBytes = EltTy.getSizeInBytes();
6231   Align VecAlign = getStackTemporaryAlignment(VecTy);
6232   Align EltAlign;
6233 
6234   MachinePointerInfo PtrInfo;
6235   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6236                                         VecAlign, PtrInfo);
6237   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6238 
6239   // Get the pointer to the element, and be sure not to hit undefined behavior
6240   // if the index is out of bounds.
6241   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6242 
6243   int64_t IdxVal;
6244   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6245     int64_t Offset = IdxVal * EltBytes;
6246     PtrInfo = PtrInfo.getWithOffset(Offset);
6247     EltAlign = commonAlignment(VecAlign, Offset);
6248   } else {
6249     // We lose information with a variable offset.
6250     EltAlign = getStackTemporaryAlignment(EltTy);
6251     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6252   }
6253 
6254   if (InsertVal) {
6255     // Write the inserted element
6256     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6257 
6258     // Reload the whole vector.
6259     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6260   } else {
6261     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6262   }
6263 
6264   MI.eraseFromParent();
6265   return Legalized;
6266 }
6267 
6268 LegalizerHelper::LegalizeResult
6269 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6270   Register DstReg = MI.getOperand(0).getReg();
6271   Register Src0Reg = MI.getOperand(1).getReg();
6272   Register Src1Reg = MI.getOperand(2).getReg();
6273   LLT Src0Ty = MRI.getType(Src0Reg);
6274   LLT DstTy = MRI.getType(DstReg);
6275   LLT IdxTy = LLT::scalar(32);
6276 
6277   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6278 
6279   if (DstTy.isScalar()) {
6280     if (Src0Ty.isVector())
6281       return UnableToLegalize;
6282 
6283     // This is just a SELECT.
6284     assert(Mask.size() == 1 && "Expected a single mask element");
6285     Register Val;
6286     if (Mask[0] < 0 || Mask[0] > 1)
6287       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6288     else
6289       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6290     MIRBuilder.buildCopy(DstReg, Val);
6291     MI.eraseFromParent();
6292     return Legalized;
6293   }
6294 
6295   Register Undef;
6296   SmallVector<Register, 32> BuildVec;
6297   LLT EltTy = DstTy.getElementType();
6298 
6299   for (int Idx : Mask) {
6300     if (Idx < 0) {
6301       if (!Undef.isValid())
6302         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6303       BuildVec.push_back(Undef);
6304       continue;
6305     }
6306 
6307     if (Src0Ty.isScalar()) {
6308       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6309     } else {
6310       int NumElts = Src0Ty.getNumElements();
6311       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6312       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6313       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6314       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6315       BuildVec.push_back(Extract.getReg(0));
6316     }
6317   }
6318 
6319   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6320   MI.eraseFromParent();
6321   return Legalized;
6322 }
6323 
6324 LegalizerHelper::LegalizeResult
6325 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6326   const auto &MF = *MI.getMF();
6327   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6328   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6329     return UnableToLegalize;
6330 
6331   Register Dst = MI.getOperand(0).getReg();
6332   Register AllocSize = MI.getOperand(1).getReg();
6333   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6334 
6335   LLT PtrTy = MRI.getType(Dst);
6336   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6337 
6338   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6339   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6340   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6341 
6342   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6343   // have to generate an extra instruction to negate the alloc and then use
6344   // G_PTR_ADD to add the negative offset.
6345   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6346   if (Alignment > Align(1)) {
6347     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6348     AlignMask.negate();
6349     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6350     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6351   }
6352 
6353   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6354   MIRBuilder.buildCopy(SPReg, SPTmp);
6355   MIRBuilder.buildCopy(Dst, SPTmp);
6356 
6357   MI.eraseFromParent();
6358   return Legalized;
6359 }
6360 
6361 LegalizerHelper::LegalizeResult
6362 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6363   Register Dst = MI.getOperand(0).getReg();
6364   Register Src = MI.getOperand(1).getReg();
6365   unsigned Offset = MI.getOperand(2).getImm();
6366 
6367   LLT DstTy = MRI.getType(Dst);
6368   LLT SrcTy = MRI.getType(Src);
6369 
6370   if (DstTy.isScalar() &&
6371       (SrcTy.isScalar() ||
6372        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6373     LLT SrcIntTy = SrcTy;
6374     if (!SrcTy.isScalar()) {
6375       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6376       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6377     }
6378 
6379     if (Offset == 0)
6380       MIRBuilder.buildTrunc(Dst, Src);
6381     else {
6382       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6383       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6384       MIRBuilder.buildTrunc(Dst, Shr);
6385     }
6386 
6387     MI.eraseFromParent();
6388     return Legalized;
6389   }
6390 
6391   return UnableToLegalize;
6392 }
6393 
6394 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6395   Register Dst = MI.getOperand(0).getReg();
6396   Register Src = MI.getOperand(1).getReg();
6397   Register InsertSrc = MI.getOperand(2).getReg();
6398   uint64_t Offset = MI.getOperand(3).getImm();
6399 
6400   LLT DstTy = MRI.getType(Src);
6401   LLT InsertTy = MRI.getType(InsertSrc);
6402 
6403   if (InsertTy.isVector() ||
6404       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6405     return UnableToLegalize;
6406 
6407   const DataLayout &DL = MIRBuilder.getDataLayout();
6408   if ((DstTy.isPointer() &&
6409        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6410       (InsertTy.isPointer() &&
6411        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6412     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6413     return UnableToLegalize;
6414   }
6415 
6416   LLT IntDstTy = DstTy;
6417 
6418   if (!DstTy.isScalar()) {
6419     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6420     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6421   }
6422 
6423   if (!InsertTy.isScalar()) {
6424     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6425     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6426   }
6427 
6428   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6429   if (Offset != 0) {
6430     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6431     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6432   }
6433 
6434   APInt MaskVal = APInt::getBitsSetWithWrap(
6435       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6436 
6437   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6438   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6439   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6440 
6441   MIRBuilder.buildCast(Dst, Or);
6442   MI.eraseFromParent();
6443   return Legalized;
6444 }
6445 
6446 LegalizerHelper::LegalizeResult
6447 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6448   Register Dst0 = MI.getOperand(0).getReg();
6449   Register Dst1 = MI.getOperand(1).getReg();
6450   Register LHS = MI.getOperand(2).getReg();
6451   Register RHS = MI.getOperand(3).getReg();
6452   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6453 
6454   LLT Ty = MRI.getType(Dst0);
6455   LLT BoolTy = MRI.getType(Dst1);
6456 
6457   if (IsAdd)
6458     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6459   else
6460     MIRBuilder.buildSub(Dst0, LHS, RHS);
6461 
6462   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6463 
6464   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6465 
6466   // For an addition, the result should be less than one of the operands (LHS)
6467   // if and only if the other operand (RHS) is negative, otherwise there will
6468   // be overflow.
6469   // For a subtraction, the result should be less than one of the operands
6470   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6471   // otherwise there will be overflow.
6472   auto ResultLowerThanLHS =
6473       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6474   auto ConditionRHS = MIRBuilder.buildICmp(
6475       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6476 
6477   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6478   MI.eraseFromParent();
6479   return Legalized;
6480 }
6481 
6482 LegalizerHelper::LegalizeResult
6483 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6484   Register Res = MI.getOperand(0).getReg();
6485   Register LHS = MI.getOperand(1).getReg();
6486   Register RHS = MI.getOperand(2).getReg();
6487   LLT Ty = MRI.getType(Res);
6488   bool IsSigned;
6489   bool IsAdd;
6490   unsigned BaseOp;
6491   switch (MI.getOpcode()) {
6492   default:
6493     llvm_unreachable("unexpected addsat/subsat opcode");
6494   case TargetOpcode::G_UADDSAT:
6495     IsSigned = false;
6496     IsAdd = true;
6497     BaseOp = TargetOpcode::G_ADD;
6498     break;
6499   case TargetOpcode::G_SADDSAT:
6500     IsSigned = true;
6501     IsAdd = true;
6502     BaseOp = TargetOpcode::G_ADD;
6503     break;
6504   case TargetOpcode::G_USUBSAT:
6505     IsSigned = false;
6506     IsAdd = false;
6507     BaseOp = TargetOpcode::G_SUB;
6508     break;
6509   case TargetOpcode::G_SSUBSAT:
6510     IsSigned = true;
6511     IsAdd = false;
6512     BaseOp = TargetOpcode::G_SUB;
6513     break;
6514   }
6515 
6516   if (IsSigned) {
6517     // sadd.sat(a, b) ->
6518     //   hi = 0x7fffffff - smax(a, 0)
6519     //   lo = 0x80000000 - smin(a, 0)
6520     //   a + smin(smax(lo, b), hi)
6521     // ssub.sat(a, b) ->
6522     //   lo = smax(a, -1) - 0x7fffffff
6523     //   hi = smin(a, -1) - 0x80000000
6524     //   a - smin(smax(lo, b), hi)
6525     // TODO: AMDGPU can use a "median of 3" instruction here:
6526     //   a +/- med3(lo, b, hi)
6527     uint64_t NumBits = Ty.getScalarSizeInBits();
6528     auto MaxVal =
6529         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6530     auto MinVal =
6531         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6532     MachineInstrBuilder Hi, Lo;
6533     if (IsAdd) {
6534       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6535       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6536       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6537     } else {
6538       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6539       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6540                                MaxVal);
6541       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6542                                MinVal);
6543     }
6544     auto RHSClamped =
6545         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6546     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6547   } else {
6548     // uadd.sat(a, b) -> a + umin(~a, b)
6549     // usub.sat(a, b) -> a - umin(a, b)
6550     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6551     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6552     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6553   }
6554 
6555   MI.eraseFromParent();
6556   return Legalized;
6557 }
6558 
6559 LegalizerHelper::LegalizeResult
6560 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6561   Register Res = MI.getOperand(0).getReg();
6562   Register LHS = MI.getOperand(1).getReg();
6563   Register RHS = MI.getOperand(2).getReg();
6564   LLT Ty = MRI.getType(Res);
6565   LLT BoolTy = Ty.changeElementSize(1);
6566   bool IsSigned;
6567   bool IsAdd;
6568   unsigned OverflowOp;
6569   switch (MI.getOpcode()) {
6570   default:
6571     llvm_unreachable("unexpected addsat/subsat opcode");
6572   case TargetOpcode::G_UADDSAT:
6573     IsSigned = false;
6574     IsAdd = true;
6575     OverflowOp = TargetOpcode::G_UADDO;
6576     break;
6577   case TargetOpcode::G_SADDSAT:
6578     IsSigned = true;
6579     IsAdd = true;
6580     OverflowOp = TargetOpcode::G_SADDO;
6581     break;
6582   case TargetOpcode::G_USUBSAT:
6583     IsSigned = false;
6584     IsAdd = false;
6585     OverflowOp = TargetOpcode::G_USUBO;
6586     break;
6587   case TargetOpcode::G_SSUBSAT:
6588     IsSigned = true;
6589     IsAdd = false;
6590     OverflowOp = TargetOpcode::G_SSUBO;
6591     break;
6592   }
6593 
6594   auto OverflowRes =
6595       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6596   Register Tmp = OverflowRes.getReg(0);
6597   Register Ov = OverflowRes.getReg(1);
6598   MachineInstrBuilder Clamp;
6599   if (IsSigned) {
6600     // sadd.sat(a, b) ->
6601     //   {tmp, ov} = saddo(a, b)
6602     //   ov ? (tmp >>s 31) + 0x80000000 : r
6603     // ssub.sat(a, b) ->
6604     //   {tmp, ov} = ssubo(a, b)
6605     //   ov ? (tmp >>s 31) + 0x80000000 : r
6606     uint64_t NumBits = Ty.getScalarSizeInBits();
6607     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6608     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6609     auto MinVal =
6610         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6611     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6612   } else {
6613     // uadd.sat(a, b) ->
6614     //   {tmp, ov} = uaddo(a, b)
6615     //   ov ? 0xffffffff : tmp
6616     // usub.sat(a, b) ->
6617     //   {tmp, ov} = usubo(a, b)
6618     //   ov ? 0 : tmp
6619     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6620   }
6621   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6622 
6623   MI.eraseFromParent();
6624   return Legalized;
6625 }
6626 
6627 LegalizerHelper::LegalizeResult
6628 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6629   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6630           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6631          "Expected shlsat opcode!");
6632   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6633   Register Res = MI.getOperand(0).getReg();
6634   Register LHS = MI.getOperand(1).getReg();
6635   Register RHS = MI.getOperand(2).getReg();
6636   LLT Ty = MRI.getType(Res);
6637   LLT BoolTy = Ty.changeElementSize(1);
6638 
6639   unsigned BW = Ty.getScalarSizeInBits();
6640   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6641   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6642                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6643 
6644   MachineInstrBuilder SatVal;
6645   if (IsSigned) {
6646     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6647     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6648     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6649                                     MIRBuilder.buildConstant(Ty, 0));
6650     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6651   } else {
6652     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6653   }
6654   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6655   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6656 
6657   MI.eraseFromParent();
6658   return Legalized;
6659 }
6660 
6661 LegalizerHelper::LegalizeResult
6662 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6663   Register Dst = MI.getOperand(0).getReg();
6664   Register Src = MI.getOperand(1).getReg();
6665   const LLT Ty = MRI.getType(Src);
6666   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6667   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6668 
6669   // Swap most and least significant byte, set remaining bytes in Res to zero.
6670   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6671   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6672   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6673   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6674 
6675   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6676   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6677     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6678     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6679     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6680     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6681     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6682     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6683     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6684     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6685     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6686     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6687     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6688     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6689   }
6690   Res.getInstr()->getOperand(0).setReg(Dst);
6691 
6692   MI.eraseFromParent();
6693   return Legalized;
6694 }
6695 
6696 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6697 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6698                                  MachineInstrBuilder Src, APInt Mask) {
6699   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6700   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6701   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6702   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6703   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6704   return B.buildOr(Dst, LHS, RHS);
6705 }
6706 
6707 LegalizerHelper::LegalizeResult
6708 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6709   Register Dst = MI.getOperand(0).getReg();
6710   Register Src = MI.getOperand(1).getReg();
6711   const LLT Ty = MRI.getType(Src);
6712   unsigned Size = Ty.getSizeInBits();
6713 
6714   MachineInstrBuilder BSWAP =
6715       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6716 
6717   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6718   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6719   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6720   MachineInstrBuilder Swap4 =
6721       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6722 
6723   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6724   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6725   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6726   MachineInstrBuilder Swap2 =
6727       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6728 
6729   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6730   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6731   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6732   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6733 
6734   MI.eraseFromParent();
6735   return Legalized;
6736 }
6737 
6738 LegalizerHelper::LegalizeResult
6739 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6740   MachineFunction &MF = MIRBuilder.getMF();
6741 
6742   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6743   int NameOpIdx = IsRead ? 1 : 0;
6744   int ValRegIndex = IsRead ? 0 : 1;
6745 
6746   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6747   const LLT Ty = MRI.getType(ValReg);
6748   const MDString *RegStr = cast<MDString>(
6749     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6750 
6751   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6752   if (!PhysReg.isValid())
6753     return UnableToLegalize;
6754 
6755   if (IsRead)
6756     MIRBuilder.buildCopy(ValReg, PhysReg);
6757   else
6758     MIRBuilder.buildCopy(PhysReg, ValReg);
6759 
6760   MI.eraseFromParent();
6761   return Legalized;
6762 }
6763 
6764 LegalizerHelper::LegalizeResult
6765 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6766   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6767   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6768   Register Result = MI.getOperand(0).getReg();
6769   LLT OrigTy = MRI.getType(Result);
6770   auto SizeInBits = OrigTy.getScalarSizeInBits();
6771   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6772 
6773   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6774   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6775   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6776   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6777 
6778   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6779   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6780   MIRBuilder.buildTrunc(Result, Shifted);
6781 
6782   MI.eraseFromParent();
6783   return Legalized;
6784 }
6785 
6786 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6787   // Implement vector G_SELECT in terms of XOR, AND, OR.
6788   Register DstReg = MI.getOperand(0).getReg();
6789   Register MaskReg = MI.getOperand(1).getReg();
6790   Register Op1Reg = MI.getOperand(2).getReg();
6791   Register Op2Reg = MI.getOperand(3).getReg();
6792   LLT DstTy = MRI.getType(DstReg);
6793   LLT MaskTy = MRI.getType(MaskReg);
6794   LLT Op1Ty = MRI.getType(Op1Reg);
6795   if (!DstTy.isVector())
6796     return UnableToLegalize;
6797 
6798   // Vector selects can have a scalar predicate. If so, splat into a vector and
6799   // finish for later legalization attempts to try again.
6800   if (MaskTy.isScalar()) {
6801     Register MaskElt = MaskReg;
6802     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6803       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6804     // Generate a vector splat idiom to be pattern matched later.
6805     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6806     Observer.changingInstr(MI);
6807     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6808     Observer.changedInstr(MI);
6809     return Legalized;
6810   }
6811 
6812   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6813     return UnableToLegalize;
6814   }
6815 
6816   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6817   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6818   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6819   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6820   MI.eraseFromParent();
6821   return Legalized;
6822 }
6823 
6824 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6825   // Split DIVREM into individual instructions.
6826   unsigned Opcode = MI.getOpcode();
6827 
6828   MIRBuilder.buildInstr(
6829       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6830                                         : TargetOpcode::G_UDIV,
6831       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6832   MIRBuilder.buildInstr(
6833       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6834                                         : TargetOpcode::G_UREM,
6835       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6836   MI.eraseFromParent();
6837   return Legalized;
6838 }
6839