1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setChangeObserver(Observer);
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &B)
96     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
97   MIRBuilder.setChangeObserver(Observer);
98 }
99 LegalizerHelper::LegalizeResult
100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
101   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
102 
103   MIRBuilder.setInstrAndDebugLoc(MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   MachineBasicBlock &MBB = *MI.getParent();
466   const Function &F = MBB.getParent()->getFunction();
467 
468   // Conservatively require the attributes of the call to match those of
469   // the return. Ignore NoAlias and NonNull because they don't affect the
470   // call sequence.
471   AttributeList CallerAttrs = F.getAttributes();
472   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
473           .removeAttribute(Attribute::NoAlias)
474           .removeAttribute(Attribute::NonNull)
475           .hasAttributes())
476     return false;
477 
478   // It's not safe to eliminate the sign / zero extension of the return value.
479   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
480       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
481     return false;
482 
483   // Only tail call if the following instruction is a standard return.
484   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
485   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
486   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
487     return false;
488 
489   return true;
490 }
491 
492 LegalizerHelper::LegalizeResult
493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
494                     const CallLowering::ArgInfo &Result,
495                     ArrayRef<CallLowering::ArgInfo> Args,
496                     const CallingConv::ID CC) {
497   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
498 
499   CallLowering::CallLoweringInfo Info;
500   Info.CallConv = CC;
501   Info.Callee = MachineOperand::CreateES(Name);
502   Info.OrigRet = Result;
503   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
504   if (!CLI.lowerCall(MIRBuilder, Info))
505     return LegalizerHelper::UnableToLegalize;
506 
507   return LegalizerHelper::Legalized;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args) {
514   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
515   const char *Name = TLI.getLibcallName(Libcall);
516   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
517   return createLibcall(MIRBuilder, Name, Result, Args, CC);
518 }
519 
520 // Useful for libcalls where all operands have the same type.
521 static LegalizerHelper::LegalizeResult
522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
523               Type *OpType) {
524   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
525 
526   SmallVector<CallLowering::ArgInfo, 3> Args;
527   for (unsigned i = 1; i < MI.getNumOperands(); i++)
528     Args.push_back({MI.getOperand(i).getReg(), OpType});
529   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
530                        Args);
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
535                        MachineInstr &MI) {
536   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
537   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
538 
539   SmallVector<CallLowering::ArgInfo, 3> Args;
540   // Add all the args, except for the last which is an imm denoting 'tail'.
541   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
542     Register Reg = MI.getOperand(i).getReg();
543 
544     // Need derive an IR type for call lowering.
545     LLT OpLLT = MRI.getType(Reg);
546     Type *OpTy = nullptr;
547     if (OpLLT.isPointer())
548       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
549     else
550       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
551     Args.push_back({Reg, OpTy});
552   }
553 
554   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
555   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
556   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
557   RTLIB::Libcall RTLibcall;
558   switch (ID) {
559   case Intrinsic::memcpy:
560     RTLibcall = RTLIB::MEMCPY;
561     break;
562   case Intrinsic::memset:
563     RTLibcall = RTLIB::MEMSET;
564     break;
565   case Intrinsic::memmove:
566     RTLibcall = RTLIB::MEMMOVE;
567     break;
568   default:
569     return LegalizerHelper::UnableToLegalize;
570   }
571   const char *Name = TLI.getLibcallName(RTLibcall);
572 
573   MIRBuilder.setInstrAndDebugLoc(MI);
574 
575   CallLowering::CallLoweringInfo Info;
576   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
577   Info.Callee = MachineOperand::CreateES(Name);
578   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
579   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
580                     isLibCallInTailPosition(MI);
581 
582   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
583   if (!CLI.lowerCall(MIRBuilder, Info))
584     return LegalizerHelper::UnableToLegalize;
585 
586   if (Info.LoweredTailCall) {
587     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
588     // We must have a return following the call (or debug insts) to get past
589     // isLibCallInTailPosition.
590     do {
591       MachineInstr *Next = MI.getNextNode();
592       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
593              "Expected instr following MI to be return or debug inst?");
594       // We lowered a tail call, so the call is now the return from the block.
595       // Delete the old return.
596       Next->eraseFromParent();
597     } while (MI.getNextNode());
598   }
599 
600   return LegalizerHelper::Legalized;
601 }
602 
603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
604                                        Type *FromType) {
605   auto ToMVT = MVT::getVT(ToType);
606   auto FromMVT = MVT::getVT(FromType);
607 
608   switch (Opcode) {
609   case TargetOpcode::G_FPEXT:
610     return RTLIB::getFPEXT(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTRUNC:
612     return RTLIB::getFPROUND(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOSI:
614     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
615   case TargetOpcode::G_FPTOUI:
616     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
617   case TargetOpcode::G_SITOFP:
618     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
619   case TargetOpcode::G_UITOFP:
620     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
621   }
622   llvm_unreachable("Unsupported libcall function");
623 }
624 
625 static LegalizerHelper::LegalizeResult
626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
627                   Type *FromType) {
628   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
629   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
630                        {{MI.getOperand(1).getReg(), FromType}});
631 }
632 
633 LegalizerHelper::LegalizeResult
634 LegalizerHelper::libcall(MachineInstr &MI) {
635   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
636   unsigned Size = LLTy.getSizeInBits();
637   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
638 
639   switch (MI.getOpcode()) {
640   default:
641     return UnableToLegalize;
642   case TargetOpcode::G_SDIV:
643   case TargetOpcode::G_UDIV:
644   case TargetOpcode::G_SREM:
645   case TargetOpcode::G_UREM:
646   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
647     Type *HLTy = IntegerType::get(Ctx, Size);
648     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
649     if (Status != Legalized)
650       return Status;
651     break;
652   }
653   case TargetOpcode::G_FADD:
654   case TargetOpcode::G_FSUB:
655   case TargetOpcode::G_FMUL:
656   case TargetOpcode::G_FDIV:
657   case TargetOpcode::G_FMA:
658   case TargetOpcode::G_FPOW:
659   case TargetOpcode::G_FREM:
660   case TargetOpcode::G_FCOS:
661   case TargetOpcode::G_FSIN:
662   case TargetOpcode::G_FLOG10:
663   case TargetOpcode::G_FLOG:
664   case TargetOpcode::G_FLOG2:
665   case TargetOpcode::G_FEXP:
666   case TargetOpcode::G_FEXP2:
667   case TargetOpcode::G_FCEIL:
668   case TargetOpcode::G_FFLOOR:
669   case TargetOpcode::G_FMINNUM:
670   case TargetOpcode::G_FMAXNUM:
671   case TargetOpcode::G_FSQRT:
672   case TargetOpcode::G_FRINT:
673   case TargetOpcode::G_FNEARBYINT: {
674     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
675     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
676       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
677       return UnableToLegalize;
678     }
679     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
680     if (Status != Legalized)
681       return Status;
682     break;
683   }
684   case TargetOpcode::G_FPEXT:
685   case TargetOpcode::G_FPTRUNC: {
686     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
687     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
688     if (!FromTy || !ToTy)
689       return UnableToLegalize;
690     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
691     if (Status != Legalized)
692       return Status;
693     break;
694   }
695   case TargetOpcode::G_FPTOSI:
696   case TargetOpcode::G_FPTOUI: {
697     // FIXME: Support other types
698     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
699     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
700     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
701       return UnableToLegalize;
702     LegalizeResult Status = conversionLibcall(
703         MI, MIRBuilder,
704         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
705         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_SITOFP:
711   case TargetOpcode::G_UITOFP: {
712     // FIXME: Support other types
713     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
714     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
715     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
716       return UnableToLegalize;
717     LegalizeResult Status = conversionLibcall(
718         MI, MIRBuilder,
719         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
720         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
721     if (Status != Legalized)
722       return Status;
723     break;
724   }
725   }
726 
727   MI.eraseFromParent();
728   return Legalized;
729 }
730 
731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
732                                                               unsigned TypeIdx,
733                                                               LLT NarrowTy) {
734   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
735   uint64_t NarrowSize = NarrowTy.getSizeInBits();
736 
737   switch (MI.getOpcode()) {
738   default:
739     return UnableToLegalize;
740   case TargetOpcode::G_IMPLICIT_DEF: {
741     Register DstReg = MI.getOperand(0).getReg();
742     LLT DstTy = MRI.getType(DstReg);
743 
744     // If SizeOp0 is not an exact multiple of NarrowSize, emit
745     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
746     // FIXME: Although this would also be legal for the general case, it causes
747     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
748     //  combines not being hit). This seems to be a problem related to the
749     //  artifact combiner.
750     if (SizeOp0 % NarrowSize != 0) {
751       LLT ImplicitTy = NarrowTy;
752       if (DstTy.isVector())
753         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
754 
755       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
756       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
757 
758       MI.eraseFromParent();
759       return Legalized;
760     }
761 
762     int NumParts = SizeOp0 / NarrowSize;
763 
764     SmallVector<Register, 2> DstRegs;
765     for (int i = 0; i < NumParts; ++i)
766       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
767 
768     if (DstTy.isVector())
769       MIRBuilder.buildBuildVector(DstReg, DstRegs);
770     else
771       MIRBuilder.buildMerge(DstReg, DstRegs);
772     MI.eraseFromParent();
773     return Legalized;
774   }
775   case TargetOpcode::G_CONSTANT: {
776     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
777     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
778     unsigned TotalSize = Ty.getSizeInBits();
779     unsigned NarrowSize = NarrowTy.getSizeInBits();
780     int NumParts = TotalSize / NarrowSize;
781 
782     SmallVector<Register, 4> PartRegs;
783     for (int I = 0; I != NumParts; ++I) {
784       unsigned Offset = I * NarrowSize;
785       auto K = MIRBuilder.buildConstant(NarrowTy,
786                                         Val.lshr(Offset).trunc(NarrowSize));
787       PartRegs.push_back(K.getReg(0));
788     }
789 
790     LLT LeftoverTy;
791     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
792     SmallVector<Register, 1> LeftoverRegs;
793     if (LeftoverBits != 0) {
794       LeftoverTy = LLT::scalar(LeftoverBits);
795       auto K = MIRBuilder.buildConstant(
796         LeftoverTy,
797         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
798       LeftoverRegs.push_back(K.getReg(0));
799     }
800 
801     insertParts(MI.getOperand(0).getReg(),
802                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
803 
804     MI.eraseFromParent();
805     return Legalized;
806   }
807   case TargetOpcode::G_SEXT:
808   case TargetOpcode::G_ZEXT:
809   case TargetOpcode::G_ANYEXT:
810     return narrowScalarExt(MI, TypeIdx, NarrowTy);
811   case TargetOpcode::G_TRUNC: {
812     if (TypeIdx != 1)
813       return UnableToLegalize;
814 
815     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
816     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
817       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
818       return UnableToLegalize;
819     }
820 
821     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
822     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
823     MI.eraseFromParent();
824     return Legalized;
825   }
826 
827   case TargetOpcode::G_FREEZE:
828     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
829 
830   case TargetOpcode::G_ADD: {
831     // FIXME: add support for when SizeOp0 isn't an exact multiple of
832     // NarrowSize.
833     if (SizeOp0 % NarrowSize != 0)
834       return UnableToLegalize;
835     // Expand in terms of carry-setting/consuming G_ADDE instructions.
836     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
837 
838     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
839     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
840     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
841 
842     Register CarryIn;
843     for (int i = 0; i < NumParts; ++i) {
844       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
845       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
846 
847       if (i == 0)
848         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
849       else {
850         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
851                               Src2Regs[i], CarryIn);
852       }
853 
854       DstRegs.push_back(DstReg);
855       CarryIn = CarryOut;
856     }
857     Register DstReg = MI.getOperand(0).getReg();
858     if(MRI.getType(DstReg).isVector())
859       MIRBuilder.buildBuildVector(DstReg, DstRegs);
860     else
861       MIRBuilder.buildMerge(DstReg, DstRegs);
862     MI.eraseFromParent();
863     return Legalized;
864   }
865   case TargetOpcode::G_SUB: {
866     // FIXME: add support for when SizeOp0 isn't an exact multiple of
867     // NarrowSize.
868     if (SizeOp0 % NarrowSize != 0)
869       return UnableToLegalize;
870 
871     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
872 
873     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
874     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
875     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
876 
877     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
880                           {Src1Regs[0], Src2Regs[0]});
881     DstRegs.push_back(DstReg);
882     Register BorrowIn = BorrowOut;
883     for (int i = 1; i < NumParts; ++i) {
884       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
885       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
886 
887       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
888                             {Src1Regs[i], Src2Regs[i], BorrowIn});
889 
890       DstRegs.push_back(DstReg);
891       BorrowIn = BorrowOut;
892     }
893     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
894     MI.eraseFromParent();
895     return Legalized;
896   }
897   case TargetOpcode::G_MUL:
898   case TargetOpcode::G_UMULH:
899     return narrowScalarMul(MI, NarrowTy);
900   case TargetOpcode::G_EXTRACT:
901     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_INSERT:
903     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
904   case TargetOpcode::G_LOAD: {
905     const auto &MMO = **MI.memoperands_begin();
906     Register DstReg = MI.getOperand(0).getReg();
907     LLT DstTy = MRI.getType(DstReg);
908     if (DstTy.isVector())
909       return UnableToLegalize;
910 
911     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
912       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
913       auto &MMO = **MI.memoperands_begin();
914       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
915       MIRBuilder.buildAnyExt(DstReg, TmpReg);
916       MI.eraseFromParent();
917       return Legalized;
918     }
919 
920     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
921   }
922   case TargetOpcode::G_ZEXTLOAD:
923   case TargetOpcode::G_SEXTLOAD: {
924     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
925     Register DstReg = MI.getOperand(0).getReg();
926     Register PtrReg = MI.getOperand(1).getReg();
927 
928     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
929     auto &MMO = **MI.memoperands_begin();
930     if (MMO.getSizeInBits() == NarrowSize) {
931       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
932     } else {
933       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
934     }
935 
936     if (ZExt)
937       MIRBuilder.buildZExt(DstReg, TmpReg);
938     else
939       MIRBuilder.buildSExt(DstReg, TmpReg);
940 
941     MI.eraseFromParent();
942     return Legalized;
943   }
944   case TargetOpcode::G_STORE: {
945     const auto &MMO = **MI.memoperands_begin();
946 
947     Register SrcReg = MI.getOperand(0).getReg();
948     LLT SrcTy = MRI.getType(SrcReg);
949     if (SrcTy.isVector())
950       return UnableToLegalize;
951 
952     int NumParts = SizeOp0 / NarrowSize;
953     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
954     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
955     if (SrcTy.isVector() && LeftoverBits != 0)
956       return UnableToLegalize;
957 
958     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
959       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
960       auto &MMO = **MI.memoperands_begin();
961       MIRBuilder.buildTrunc(TmpReg, SrcReg);
962       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
963       MI.eraseFromParent();
964       return Legalized;
965     }
966 
967     return reduceLoadStoreWidth(MI, 0, NarrowTy);
968   }
969   case TargetOpcode::G_SELECT:
970     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
971   case TargetOpcode::G_AND:
972   case TargetOpcode::G_OR:
973   case TargetOpcode::G_XOR: {
974     // Legalize bitwise operation:
975     // A = BinOp<Ty> B, C
976     // into:
977     // B1, ..., BN = G_UNMERGE_VALUES B
978     // C1, ..., CN = G_UNMERGE_VALUES C
979     // A1 = BinOp<Ty/N> B1, C2
980     // ...
981     // AN = BinOp<Ty/N> BN, CN
982     // A = G_MERGE_VALUES A1, ..., AN
983     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
984   }
985   case TargetOpcode::G_SHL:
986   case TargetOpcode::G_LSHR:
987   case TargetOpcode::G_ASHR:
988     return narrowScalarShift(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_CTLZ:
990   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTTZ:
992   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
993   case TargetOpcode::G_CTPOP:
994     if (TypeIdx == 1)
995       switch (MI.getOpcode()) {
996       case TargetOpcode::G_CTLZ:
997       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
998         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
999       case TargetOpcode::G_CTTZ:
1000       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1002       case TargetOpcode::G_CTPOP:
1003         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1004       default:
1005         return UnableToLegalize;
1006       }
1007 
1008     Observer.changingInstr(MI);
1009     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1010     Observer.changedInstr(MI);
1011     return Legalized;
1012   case TargetOpcode::G_INTTOPTR:
1013     if (TypeIdx != 1)
1014       return UnableToLegalize;
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarSrc(MI, NarrowTy, 1);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_PTRTOINT:
1021     if (TypeIdx != 0)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PHI: {
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTRMASK: {
1210     if (TypeIdx != 1)
1211       return UnableToLegalize;
1212     Observer.changingInstr(MI);
1213     narrowScalarSrc(MI, NarrowTy, 2);
1214     Observer.changedInstr(MI);
1215     return Legalized;
1216   }
1217   }
1218 }
1219 
1220 Register LegalizerHelper::coerceToScalar(Register Val) {
1221   LLT Ty = MRI.getType(Val);
1222   if (Ty.isScalar())
1223     return Val;
1224 
1225   const DataLayout &DL = MIRBuilder.getDataLayout();
1226   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1227   if (Ty.isPointer()) {
1228     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1229       return Register();
1230     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1231   }
1232 
1233   Register NewVal = Val;
1234 
1235   assert(Ty.isVector());
1236   LLT EltTy = Ty.getElementType();
1237   if (EltTy.isPointer())
1238     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1239   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1240 }
1241 
1242 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1243                                      unsigned OpIdx, unsigned ExtOpcode) {
1244   MachineOperand &MO = MI.getOperand(OpIdx);
1245   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1246   MO.setReg(ExtB.getReg(0));
1247 }
1248 
1249 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1250                                       unsigned OpIdx) {
1251   MachineOperand &MO = MI.getOperand(OpIdx);
1252   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1253   MO.setReg(ExtB.getReg(0));
1254 }
1255 
1256 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1257                                      unsigned OpIdx, unsigned TruncOpcode) {
1258   MachineOperand &MO = MI.getOperand(OpIdx);
1259   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1260   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1261   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1262   MO.setReg(DstExt);
1263 }
1264 
1265 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1266                                       unsigned OpIdx, unsigned ExtOpcode) {
1267   MachineOperand &MO = MI.getOperand(OpIdx);
1268   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1269   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1270   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1271   MO.setReg(DstTrunc);
1272 }
1273 
1274 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1275                                             unsigned OpIdx) {
1276   MachineOperand &MO = MI.getOperand(OpIdx);
1277   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1278   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1279   MIRBuilder.buildExtract(MO, DstExt, 0);
1280   MO.setReg(DstExt);
1281 }
1282 
1283 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1284                                             unsigned OpIdx) {
1285   MachineOperand &MO = MI.getOperand(OpIdx);
1286 
1287   LLT OldTy = MRI.getType(MO.getReg());
1288   unsigned OldElts = OldTy.getNumElements();
1289   unsigned NewElts = MoreTy.getNumElements();
1290 
1291   unsigned NumParts = NewElts / OldElts;
1292 
1293   // Use concat_vectors if the result is a multiple of the number of elements.
1294   if (NumParts * OldElts == NewElts) {
1295     SmallVector<Register, 8> Parts;
1296     Parts.push_back(MO.getReg());
1297 
1298     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1299     for (unsigned I = 1; I != NumParts; ++I)
1300       Parts.push_back(ImpDef);
1301 
1302     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1303     MO.setReg(Concat.getReg(0));
1304     return;
1305   }
1306 
1307   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1308   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1309   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1310   MO.setReg(MoreReg);
1311 }
1312 
1313 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1314   MachineOperand &Op = MI.getOperand(OpIdx);
1315   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1316 }
1317 
1318 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildBitcast(MO, CastDst);
1323   MO.setReg(CastDst);
1324 }
1325 
1326 LegalizerHelper::LegalizeResult
1327 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1328                                         LLT WideTy) {
1329   if (TypeIdx != 1)
1330     return UnableToLegalize;
1331 
1332   Register DstReg = MI.getOperand(0).getReg();
1333   LLT DstTy = MRI.getType(DstReg);
1334   if (DstTy.isVector())
1335     return UnableToLegalize;
1336 
1337   Register Src1 = MI.getOperand(1).getReg();
1338   LLT SrcTy = MRI.getType(Src1);
1339   const int DstSize = DstTy.getSizeInBits();
1340   const int SrcSize = SrcTy.getSizeInBits();
1341   const int WideSize = WideTy.getSizeInBits();
1342   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1343 
1344   unsigned NumOps = MI.getNumOperands();
1345   unsigned NumSrc = MI.getNumOperands() - 1;
1346   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1347 
1348   if (WideSize >= DstSize) {
1349     // Directly pack the bits in the target type.
1350     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1351 
1352     for (unsigned I = 2; I != NumOps; ++I) {
1353       const unsigned Offset = (I - 1) * PartSize;
1354 
1355       Register SrcReg = MI.getOperand(I).getReg();
1356       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1357 
1358       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1359 
1360       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1361         MRI.createGenericVirtualRegister(WideTy);
1362 
1363       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1364       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1365       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1366       ResultReg = NextResult;
1367     }
1368 
1369     if (WideSize > DstSize)
1370       MIRBuilder.buildTrunc(DstReg, ResultReg);
1371     else if (DstTy.isPointer())
1372       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1373 
1374     MI.eraseFromParent();
1375     return Legalized;
1376   }
1377 
1378   // Unmerge the original values to the GCD type, and recombine to the next
1379   // multiple greater than the original type.
1380   //
1381   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1382   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1383   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1384   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1385   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1386   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1387   // %12:_(s12) = G_MERGE_VALUES %10, %11
1388   //
1389   // Padding with undef if necessary:
1390   //
1391   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1392   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1393   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1394   // %7:_(s2) = G_IMPLICIT_DEF
1395   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1396   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1397   // %10:_(s12) = G_MERGE_VALUES %8, %9
1398 
1399   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1400   LLT GCDTy = LLT::scalar(GCD);
1401 
1402   SmallVector<Register, 8> Parts;
1403   SmallVector<Register, 8> NewMergeRegs;
1404   SmallVector<Register, 8> Unmerges;
1405   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1406 
1407   // Decompose the original operands if they don't evenly divide.
1408   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1409     Register SrcReg = MI.getOperand(I).getReg();
1410     if (GCD == SrcSize) {
1411       Unmerges.push_back(SrcReg);
1412     } else {
1413       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1414       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1415         Unmerges.push_back(Unmerge.getReg(J));
1416     }
1417   }
1418 
1419   // Pad with undef to the next size that is a multiple of the requested size.
1420   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1421     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1422     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1423       Unmerges.push_back(UndefReg);
1424   }
1425 
1426   const int PartsPerGCD = WideSize / GCD;
1427 
1428   // Build merges of each piece.
1429   ArrayRef<Register> Slicer(Unmerges);
1430   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1431     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1432     NewMergeRegs.push_back(Merge.getReg(0));
1433   }
1434 
1435   // A truncate may be necessary if the requested type doesn't evenly divide the
1436   // original result type.
1437   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1438     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1439   } else {
1440     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1441     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1442   }
1443 
1444   MI.eraseFromParent();
1445   return Legalized;
1446 }
1447 
1448 LegalizerHelper::LegalizeResult
1449 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1450                                           LLT WideTy) {
1451   if (TypeIdx != 0)
1452     return UnableToLegalize;
1453 
1454   int NumDst = MI.getNumOperands() - 1;
1455   Register SrcReg = MI.getOperand(NumDst).getReg();
1456   LLT SrcTy = MRI.getType(SrcReg);
1457   if (SrcTy.isVector())
1458     return UnableToLegalize;
1459 
1460   Register Dst0Reg = MI.getOperand(0).getReg();
1461   LLT DstTy = MRI.getType(Dst0Reg);
1462   if (!DstTy.isScalar())
1463     return UnableToLegalize;
1464 
1465   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1466     if (SrcTy.isPointer()) {
1467       const DataLayout &DL = MIRBuilder.getDataLayout();
1468       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1469         LLVM_DEBUG(
1470             dbgs() << "Not casting non-integral address space integer\n");
1471         return UnableToLegalize;
1472       }
1473 
1474       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1475       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1476     }
1477 
1478     // Widen SrcTy to WideTy. This does not affect the result, but since the
1479     // user requested this size, it is probably better handled than SrcTy and
1480     // should reduce the total number of legalization artifacts
1481     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1482       SrcTy = WideTy;
1483       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1484     }
1485 
1486     // Theres no unmerge type to target. Directly extract the bits from the
1487     // source type
1488     unsigned DstSize = DstTy.getSizeInBits();
1489 
1490     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1491     for (int I = 1; I != NumDst; ++I) {
1492       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1493       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1494       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1495     }
1496 
1497     MI.eraseFromParent();
1498     return Legalized;
1499   }
1500 
1501   // Extend the source to a wider type.
1502   LLT LCMTy = getLCMType(SrcTy, WideTy);
1503 
1504   Register WideSrc = SrcReg;
1505   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1506     // TODO: If this is an integral address space, cast to integer and anyext.
1507     if (SrcTy.isPointer()) {
1508       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1509       return UnableToLegalize;
1510     }
1511 
1512     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1513   }
1514 
1515   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1516 
1517   // Create a sequence of unmerges to the original results. since we may have
1518   // widened the source, we will need to pad the results with dead defs to cover
1519   // the source register.
1520   // e.g. widen s16 to s32:
1521   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1522   //
1523   // =>
1524   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1525   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1526   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1527   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1528 
1529   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1530   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1531 
1532   for (int I = 0; I != NumUnmerge; ++I) {
1533     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1534 
1535     for (int J = 0; J != PartsPerUnmerge; ++J) {
1536       int Idx = I * PartsPerUnmerge + J;
1537       if (Idx < NumDst)
1538         MIB.addDef(MI.getOperand(Idx).getReg());
1539       else {
1540         // Create dead def for excess components.
1541         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1542       }
1543     }
1544 
1545     MIB.addUse(Unmerge.getReg(I));
1546   }
1547 
1548   MI.eraseFromParent();
1549   return Legalized;
1550 }
1551 
1552 LegalizerHelper::LegalizeResult
1553 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1554                                     LLT WideTy) {
1555   Register DstReg = MI.getOperand(0).getReg();
1556   Register SrcReg = MI.getOperand(1).getReg();
1557   LLT SrcTy = MRI.getType(SrcReg);
1558 
1559   LLT DstTy = MRI.getType(DstReg);
1560   unsigned Offset = MI.getOperand(2).getImm();
1561 
1562   if (TypeIdx == 0) {
1563     if (SrcTy.isVector() || DstTy.isVector())
1564       return UnableToLegalize;
1565 
1566     SrcOp Src(SrcReg);
1567     if (SrcTy.isPointer()) {
1568       // Extracts from pointers can be handled only if they are really just
1569       // simple integers.
1570       const DataLayout &DL = MIRBuilder.getDataLayout();
1571       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1572         return UnableToLegalize;
1573 
1574       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1575       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1576       SrcTy = SrcAsIntTy;
1577     }
1578 
1579     if (DstTy.isPointer())
1580       return UnableToLegalize;
1581 
1582     if (Offset == 0) {
1583       // Avoid a shift in the degenerate case.
1584       MIRBuilder.buildTrunc(DstReg,
1585                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1586       MI.eraseFromParent();
1587       return Legalized;
1588     }
1589 
1590     // Do a shift in the source type.
1591     LLT ShiftTy = SrcTy;
1592     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1593       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1594       ShiftTy = WideTy;
1595     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1596       return UnableToLegalize;
1597 
1598     auto LShr = MIRBuilder.buildLShr(
1599       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1600     MIRBuilder.buildTrunc(DstReg, LShr);
1601     MI.eraseFromParent();
1602     return Legalized;
1603   }
1604 
1605   if (SrcTy.isScalar()) {
1606     Observer.changingInstr(MI);
1607     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1608     Observer.changedInstr(MI);
1609     return Legalized;
1610   }
1611 
1612   if (!SrcTy.isVector())
1613     return UnableToLegalize;
1614 
1615   if (DstTy != SrcTy.getElementType())
1616     return UnableToLegalize;
1617 
1618   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1619     return UnableToLegalize;
1620 
1621   Observer.changingInstr(MI);
1622   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1623 
1624   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1625                           Offset);
1626   widenScalarDst(MI, WideTy.getScalarType(), 0);
1627   Observer.changedInstr(MI);
1628   return Legalized;
1629 }
1630 
1631 LegalizerHelper::LegalizeResult
1632 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1633                                    LLT WideTy) {
1634   if (TypeIdx != 0)
1635     return UnableToLegalize;
1636   Observer.changingInstr(MI);
1637   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1638   widenScalarDst(MI, WideTy);
1639   Observer.changedInstr(MI);
1640   return Legalized;
1641 }
1642 
1643 LegalizerHelper::LegalizeResult
1644 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1645   switch (MI.getOpcode()) {
1646   default:
1647     return UnableToLegalize;
1648   case TargetOpcode::G_EXTRACT:
1649     return widenScalarExtract(MI, TypeIdx, WideTy);
1650   case TargetOpcode::G_INSERT:
1651     return widenScalarInsert(MI, TypeIdx, WideTy);
1652   case TargetOpcode::G_MERGE_VALUES:
1653     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1654   case TargetOpcode::G_UNMERGE_VALUES:
1655     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1656   case TargetOpcode::G_UADDO:
1657   case TargetOpcode::G_USUBO: {
1658     if (TypeIdx == 1)
1659       return UnableToLegalize; // TODO
1660     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1661     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1662     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1663                           ? TargetOpcode::G_ADD
1664                           : TargetOpcode::G_SUB;
1665     // Do the arithmetic in the larger type.
1666     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1667     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1668     APInt Mask =
1669         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1670     auto AndOp = MIRBuilder.buildAnd(
1671         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1672     // There is no overflow if the AndOp is the same as NewOp.
1673     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1674     // Now trunc the NewOp to the original result.
1675     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1676     MI.eraseFromParent();
1677     return Legalized;
1678   }
1679   case TargetOpcode::G_CTTZ:
1680   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1681   case TargetOpcode::G_CTLZ:
1682   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1683   case TargetOpcode::G_CTPOP: {
1684     if (TypeIdx == 0) {
1685       Observer.changingInstr(MI);
1686       widenScalarDst(MI, WideTy, 0);
1687       Observer.changedInstr(MI);
1688       return Legalized;
1689     }
1690 
1691     Register SrcReg = MI.getOperand(1).getReg();
1692 
1693     // First ZEXT the input.
1694     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1695     LLT CurTy = MRI.getType(SrcReg);
1696     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1697       // The count is the same in the larger type except if the original
1698       // value was zero.  This can be handled by setting the bit just off
1699       // the top of the original type.
1700       auto TopBit =
1701           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1702       MIBSrc = MIRBuilder.buildOr(
1703         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1704     }
1705 
1706     // Perform the operation at the larger size.
1707     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1708     // This is already the correct result for CTPOP and CTTZs
1709     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1710         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1711       // The correct result is NewOp - (Difference in widety and current ty).
1712       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1713       MIBNewOp = MIRBuilder.buildSub(
1714           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1715     }
1716 
1717     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721   case TargetOpcode::G_BSWAP: {
1722     Observer.changingInstr(MI);
1723     Register DstReg = MI.getOperand(0).getReg();
1724 
1725     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1726     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1727     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1728     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1729 
1730     MI.getOperand(0).setReg(DstExt);
1731 
1732     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1733 
1734     LLT Ty = MRI.getType(DstReg);
1735     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1736     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1737     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1738 
1739     MIRBuilder.buildTrunc(DstReg, ShrReg);
1740     Observer.changedInstr(MI);
1741     return Legalized;
1742   }
1743   case TargetOpcode::G_BITREVERSE: {
1744     Observer.changingInstr(MI);
1745 
1746     Register DstReg = MI.getOperand(0).getReg();
1747     LLT Ty = MRI.getType(DstReg);
1748     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1749 
1750     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1751     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1752     MI.getOperand(0).setReg(DstExt);
1753     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1754 
1755     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1756     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1757     MIRBuilder.buildTrunc(DstReg, Shift);
1758     Observer.changedInstr(MI);
1759     return Legalized;
1760   }
1761   case TargetOpcode::G_FREEZE:
1762     Observer.changingInstr(MI);
1763     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1764     widenScalarDst(MI, WideTy);
1765     Observer.changedInstr(MI);
1766     return Legalized;
1767 
1768   case TargetOpcode::G_ADD:
1769   case TargetOpcode::G_AND:
1770   case TargetOpcode::G_MUL:
1771   case TargetOpcode::G_OR:
1772   case TargetOpcode::G_XOR:
1773   case TargetOpcode::G_SUB:
1774     // Perform operation at larger width (any extension is fines here, high bits
1775     // don't affect the result) and then truncate the result back to the
1776     // original type.
1777     Observer.changingInstr(MI);
1778     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1779     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1780     widenScalarDst(MI, WideTy);
1781     Observer.changedInstr(MI);
1782     return Legalized;
1783 
1784   case TargetOpcode::G_SHL:
1785     Observer.changingInstr(MI);
1786 
1787     if (TypeIdx == 0) {
1788       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1789       widenScalarDst(MI, WideTy);
1790     } else {
1791       assert(TypeIdx == 1);
1792       // The "number of bits to shift" operand must preserve its value as an
1793       // unsigned integer:
1794       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1795     }
1796 
1797     Observer.changedInstr(MI);
1798     return Legalized;
1799 
1800   case TargetOpcode::G_SDIV:
1801   case TargetOpcode::G_SREM:
1802   case TargetOpcode::G_SMIN:
1803   case TargetOpcode::G_SMAX:
1804     Observer.changingInstr(MI);
1805     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1806     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1807     widenScalarDst(MI, WideTy);
1808     Observer.changedInstr(MI);
1809     return Legalized;
1810 
1811   case TargetOpcode::G_ASHR:
1812   case TargetOpcode::G_LSHR:
1813     Observer.changingInstr(MI);
1814 
1815     if (TypeIdx == 0) {
1816       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1817         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1818 
1819       widenScalarSrc(MI, WideTy, 1, CvtOp);
1820       widenScalarDst(MI, WideTy);
1821     } else {
1822       assert(TypeIdx == 1);
1823       // The "number of bits to shift" operand must preserve its value as an
1824       // unsigned integer:
1825       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1826     }
1827 
1828     Observer.changedInstr(MI);
1829     return Legalized;
1830   case TargetOpcode::G_UDIV:
1831   case TargetOpcode::G_UREM:
1832   case TargetOpcode::G_UMIN:
1833   case TargetOpcode::G_UMAX:
1834     Observer.changingInstr(MI);
1835     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1836     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1837     widenScalarDst(MI, WideTy);
1838     Observer.changedInstr(MI);
1839     return Legalized;
1840 
1841   case TargetOpcode::G_SELECT:
1842     Observer.changingInstr(MI);
1843     if (TypeIdx == 0) {
1844       // Perform operation at larger width (any extension is fine here, high
1845       // bits don't affect the result) and then truncate the result back to the
1846       // original type.
1847       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1848       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1849       widenScalarDst(MI, WideTy);
1850     } else {
1851       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1852       // Explicit extension is required here since high bits affect the result.
1853       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1854     }
1855     Observer.changedInstr(MI);
1856     return Legalized;
1857 
1858   case TargetOpcode::G_FPTOSI:
1859   case TargetOpcode::G_FPTOUI:
1860     Observer.changingInstr(MI);
1861 
1862     if (TypeIdx == 0)
1863       widenScalarDst(MI, WideTy);
1864     else
1865       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1866 
1867     Observer.changedInstr(MI);
1868     return Legalized;
1869   case TargetOpcode::G_SITOFP:
1870     if (TypeIdx != 1)
1871       return UnableToLegalize;
1872     Observer.changingInstr(MI);
1873     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1874     Observer.changedInstr(MI);
1875     return Legalized;
1876 
1877   case TargetOpcode::G_UITOFP:
1878     if (TypeIdx != 1)
1879       return UnableToLegalize;
1880     Observer.changingInstr(MI);
1881     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884 
1885   case TargetOpcode::G_LOAD:
1886   case TargetOpcode::G_SEXTLOAD:
1887   case TargetOpcode::G_ZEXTLOAD:
1888     Observer.changingInstr(MI);
1889     widenScalarDst(MI, WideTy);
1890     Observer.changedInstr(MI);
1891     return Legalized;
1892 
1893   case TargetOpcode::G_STORE: {
1894     if (TypeIdx != 0)
1895       return UnableToLegalize;
1896 
1897     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1898     if (!isPowerOf2_32(Ty.getSizeInBits()))
1899       return UnableToLegalize;
1900 
1901     Observer.changingInstr(MI);
1902 
1903     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1904       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1905     widenScalarSrc(MI, WideTy, 0, ExtType);
1906 
1907     Observer.changedInstr(MI);
1908     return Legalized;
1909   }
1910   case TargetOpcode::G_CONSTANT: {
1911     MachineOperand &SrcMO = MI.getOperand(1);
1912     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1913     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1914         MRI.getType(MI.getOperand(0).getReg()));
1915     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1916             ExtOpc == TargetOpcode::G_ANYEXT) &&
1917            "Illegal Extend");
1918     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1919     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1920                            ? SrcVal.sext(WideTy.getSizeInBits())
1921                            : SrcVal.zext(WideTy.getSizeInBits());
1922     Observer.changingInstr(MI);
1923     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1924 
1925     widenScalarDst(MI, WideTy);
1926     Observer.changedInstr(MI);
1927     return Legalized;
1928   }
1929   case TargetOpcode::G_FCONSTANT: {
1930     MachineOperand &SrcMO = MI.getOperand(1);
1931     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1932     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1933     bool LosesInfo;
1934     switch (WideTy.getSizeInBits()) {
1935     case 32:
1936       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1937                   &LosesInfo);
1938       break;
1939     case 64:
1940       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1941                   &LosesInfo);
1942       break;
1943     default:
1944       return UnableToLegalize;
1945     }
1946 
1947     assert(!LosesInfo && "extend should always be lossless");
1948 
1949     Observer.changingInstr(MI);
1950     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1951 
1952     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1953     Observer.changedInstr(MI);
1954     return Legalized;
1955   }
1956   case TargetOpcode::G_IMPLICIT_DEF: {
1957     Observer.changingInstr(MI);
1958     widenScalarDst(MI, WideTy);
1959     Observer.changedInstr(MI);
1960     return Legalized;
1961   }
1962   case TargetOpcode::G_BRCOND:
1963     Observer.changingInstr(MI);
1964     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1965     Observer.changedInstr(MI);
1966     return Legalized;
1967 
1968   case TargetOpcode::G_FCMP:
1969     Observer.changingInstr(MI);
1970     if (TypeIdx == 0)
1971       widenScalarDst(MI, WideTy);
1972     else {
1973       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1974       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1975     }
1976     Observer.changedInstr(MI);
1977     return Legalized;
1978 
1979   case TargetOpcode::G_ICMP:
1980     Observer.changingInstr(MI);
1981     if (TypeIdx == 0)
1982       widenScalarDst(MI, WideTy);
1983     else {
1984       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1985                                MI.getOperand(1).getPredicate()))
1986                                ? TargetOpcode::G_SEXT
1987                                : TargetOpcode::G_ZEXT;
1988       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1989       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1990     }
1991     Observer.changedInstr(MI);
1992     return Legalized;
1993 
1994   case TargetOpcode::G_PTR_ADD:
1995     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1996     Observer.changingInstr(MI);
1997     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1998     Observer.changedInstr(MI);
1999     return Legalized;
2000 
2001   case TargetOpcode::G_PHI: {
2002     assert(TypeIdx == 0 && "Expecting only Idx 0");
2003 
2004     Observer.changingInstr(MI);
2005     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2006       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2007       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2008       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2009     }
2010 
2011     MachineBasicBlock &MBB = *MI.getParent();
2012     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2013     widenScalarDst(MI, WideTy);
2014     Observer.changedInstr(MI);
2015     return Legalized;
2016   }
2017   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2018     if (TypeIdx == 0) {
2019       Register VecReg = MI.getOperand(1).getReg();
2020       LLT VecTy = MRI.getType(VecReg);
2021       Observer.changingInstr(MI);
2022 
2023       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2024                                      WideTy.getSizeInBits()),
2025                      1, TargetOpcode::G_SEXT);
2026 
2027       widenScalarDst(MI, WideTy, 0);
2028       Observer.changedInstr(MI);
2029       return Legalized;
2030     }
2031 
2032     if (TypeIdx != 2)
2033       return UnableToLegalize;
2034     Observer.changingInstr(MI);
2035     // TODO: Probably should be zext
2036     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2037     Observer.changedInstr(MI);
2038     return Legalized;
2039   }
2040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2041     if (TypeIdx == 1) {
2042       Observer.changingInstr(MI);
2043 
2044       Register VecReg = MI.getOperand(1).getReg();
2045       LLT VecTy = MRI.getType(VecReg);
2046       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2047 
2048       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2049       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2050       widenScalarDst(MI, WideVecTy, 0);
2051       Observer.changedInstr(MI);
2052       return Legalized;
2053     }
2054 
2055     if (TypeIdx == 2) {
2056       Observer.changingInstr(MI);
2057       // TODO: Probably should be zext
2058       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2059       Observer.changedInstr(MI);
2060       return Legalized;
2061     }
2062 
2063     return UnableToLegalize;
2064   }
2065   case TargetOpcode::G_FADD:
2066   case TargetOpcode::G_FMUL:
2067   case TargetOpcode::G_FSUB:
2068   case TargetOpcode::G_FMA:
2069   case TargetOpcode::G_FMAD:
2070   case TargetOpcode::G_FNEG:
2071   case TargetOpcode::G_FABS:
2072   case TargetOpcode::G_FCANONICALIZE:
2073   case TargetOpcode::G_FMINNUM:
2074   case TargetOpcode::G_FMAXNUM:
2075   case TargetOpcode::G_FMINNUM_IEEE:
2076   case TargetOpcode::G_FMAXNUM_IEEE:
2077   case TargetOpcode::G_FMINIMUM:
2078   case TargetOpcode::G_FMAXIMUM:
2079   case TargetOpcode::G_FDIV:
2080   case TargetOpcode::G_FREM:
2081   case TargetOpcode::G_FCEIL:
2082   case TargetOpcode::G_FFLOOR:
2083   case TargetOpcode::G_FCOS:
2084   case TargetOpcode::G_FSIN:
2085   case TargetOpcode::G_FLOG10:
2086   case TargetOpcode::G_FLOG:
2087   case TargetOpcode::G_FLOG2:
2088   case TargetOpcode::G_FRINT:
2089   case TargetOpcode::G_FNEARBYINT:
2090   case TargetOpcode::G_FSQRT:
2091   case TargetOpcode::G_FEXP:
2092   case TargetOpcode::G_FEXP2:
2093   case TargetOpcode::G_FPOW:
2094   case TargetOpcode::G_INTRINSIC_TRUNC:
2095   case TargetOpcode::G_INTRINSIC_ROUND:
2096     assert(TypeIdx == 0);
2097     Observer.changingInstr(MI);
2098 
2099     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2100       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2101 
2102     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2103     Observer.changedInstr(MI);
2104     return Legalized;
2105   case TargetOpcode::G_INTTOPTR:
2106     if (TypeIdx != 1)
2107       return UnableToLegalize;
2108 
2109     Observer.changingInstr(MI);
2110     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2111     Observer.changedInstr(MI);
2112     return Legalized;
2113   case TargetOpcode::G_PTRTOINT:
2114     if (TypeIdx != 0)
2115       return UnableToLegalize;
2116 
2117     Observer.changingInstr(MI);
2118     widenScalarDst(MI, WideTy, 0);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121   case TargetOpcode::G_BUILD_VECTOR: {
2122     Observer.changingInstr(MI);
2123 
2124     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2125     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2126       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2127 
2128     // Avoid changing the result vector type if the source element type was
2129     // requested.
2130     if (TypeIdx == 1) {
2131       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2132       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2133     } else {
2134       widenScalarDst(MI, WideTy, 0);
2135     }
2136 
2137     Observer.changedInstr(MI);
2138     return Legalized;
2139   }
2140   case TargetOpcode::G_SEXT_INREG:
2141     if (TypeIdx != 0)
2142       return UnableToLegalize;
2143 
2144     Observer.changingInstr(MI);
2145     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2146     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2147     Observer.changedInstr(MI);
2148     return Legalized;
2149   case TargetOpcode::G_PTRMASK: {
2150     if (TypeIdx != 1)
2151       return UnableToLegalize;
2152     Observer.changingInstr(MI);
2153     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2154     Observer.changedInstr(MI);
2155     return Legalized;
2156   }
2157   }
2158 }
2159 
2160 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2161                              MachineIRBuilder &B, Register Src, LLT Ty) {
2162   auto Unmerge = B.buildUnmerge(Ty, Src);
2163   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2164     Pieces.push_back(Unmerge.getReg(I));
2165 }
2166 
2167 LegalizerHelper::LegalizeResult
2168 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2169   Register Dst = MI.getOperand(0).getReg();
2170   Register Src = MI.getOperand(1).getReg();
2171   LLT DstTy = MRI.getType(Dst);
2172   LLT SrcTy = MRI.getType(Src);
2173 
2174   if (SrcTy.isVector()) {
2175     LLT SrcEltTy = SrcTy.getElementType();
2176     SmallVector<Register, 8> SrcRegs;
2177 
2178     if (DstTy.isVector()) {
2179       int NumDstElt = DstTy.getNumElements();
2180       int NumSrcElt = SrcTy.getNumElements();
2181 
2182       LLT DstEltTy = DstTy.getElementType();
2183       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2184       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2185 
2186       // If there's an element size mismatch, insert intermediate casts to match
2187       // the result element type.
2188       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2189         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2190         //
2191         // =>
2192         //
2193         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2194         // %3:_(<2 x s8>) = G_BITCAST %2
2195         // %4:_(<2 x s8>) = G_BITCAST %3
2196         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2197         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2198         SrcPartTy = SrcEltTy;
2199       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2200         //
2201         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2202         //
2203         // =>
2204         //
2205         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2206         // %3:_(s16) = G_BITCAST %2
2207         // %4:_(s16) = G_BITCAST %3
2208         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2209         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2210         DstCastTy = DstEltTy;
2211       }
2212 
2213       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2214       for (Register &SrcReg : SrcRegs)
2215         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2216     } else
2217       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2218 
2219     MIRBuilder.buildMerge(Dst, SrcRegs);
2220     MI.eraseFromParent();
2221     return Legalized;
2222   }
2223 
2224   if (DstTy.isVector()) {
2225     SmallVector<Register, 8> SrcRegs;
2226     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2227     MIRBuilder.buildMerge(Dst, SrcRegs);
2228     MI.eraseFromParent();
2229     return Legalized;
2230   }
2231 
2232   return UnableToLegalize;
2233 }
2234 
2235 LegalizerHelper::LegalizeResult
2236 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2237   switch (MI.getOpcode()) {
2238   case TargetOpcode::G_LOAD: {
2239     if (TypeIdx != 0)
2240       return UnableToLegalize;
2241 
2242     Observer.changingInstr(MI);
2243     bitcastDst(MI, CastTy, 0);
2244     Observer.changedInstr(MI);
2245     return Legalized;
2246   }
2247   case TargetOpcode::G_STORE: {
2248     if (TypeIdx != 0)
2249       return UnableToLegalize;
2250 
2251     Observer.changingInstr(MI);
2252     bitcastSrc(MI, CastTy, 0);
2253     Observer.changedInstr(MI);
2254     return Legalized;
2255   }
2256   case TargetOpcode::G_SELECT: {
2257     if (TypeIdx != 0)
2258       return UnableToLegalize;
2259 
2260     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2261       LLVM_DEBUG(
2262           dbgs() << "bitcast action not implemented for vector select\n");
2263       return UnableToLegalize;
2264     }
2265 
2266     Observer.changingInstr(MI);
2267     bitcastSrc(MI, CastTy, 2);
2268     bitcastSrc(MI, CastTy, 3);
2269     bitcastDst(MI, CastTy, 0);
2270     Observer.changedInstr(MI);
2271     return Legalized;
2272   }
2273   case TargetOpcode::G_AND:
2274   case TargetOpcode::G_OR:
2275   case TargetOpcode::G_XOR: {
2276     Observer.changingInstr(MI);
2277     bitcastSrc(MI, CastTy, 1);
2278     bitcastSrc(MI, CastTy, 2);
2279     bitcastDst(MI, CastTy, 0);
2280     Observer.changedInstr(MI);
2281     return Legalized;
2282   }
2283   default:
2284     return UnableToLegalize;
2285   }
2286 }
2287 
2288 LegalizerHelper::LegalizeResult
2289 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2290   using namespace TargetOpcode;
2291 
2292   switch(MI.getOpcode()) {
2293   default:
2294     return UnableToLegalize;
2295   case TargetOpcode::G_BITCAST:
2296     return lowerBitcast(MI);
2297   case TargetOpcode::G_SREM:
2298   case TargetOpcode::G_UREM: {
2299     auto Quot =
2300         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2301                               {MI.getOperand(1), MI.getOperand(2)});
2302 
2303     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2304     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2305     MI.eraseFromParent();
2306     return Legalized;
2307   }
2308   case TargetOpcode::G_SADDO:
2309   case TargetOpcode::G_SSUBO:
2310     return lowerSADDO_SSUBO(MI);
2311   case TargetOpcode::G_SMULO:
2312   case TargetOpcode::G_UMULO: {
2313     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2314     // result.
2315     Register Res = MI.getOperand(0).getReg();
2316     Register Overflow = MI.getOperand(1).getReg();
2317     Register LHS = MI.getOperand(2).getReg();
2318     Register RHS = MI.getOperand(3).getReg();
2319 
2320     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2321                           ? TargetOpcode::G_SMULH
2322                           : TargetOpcode::G_UMULH;
2323 
2324     Observer.changingInstr(MI);
2325     const auto &TII = MIRBuilder.getTII();
2326     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2327     MI.RemoveOperand(1);
2328     Observer.changedInstr(MI);
2329 
2330     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2331 
2332     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2333     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2334 
2335     // For *signed* multiply, overflow is detected by checking:
2336     // (hi != (lo >> bitwidth-1))
2337     if (Opcode == TargetOpcode::G_SMULH) {
2338       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2339       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2340       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2341     } else {
2342       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2343     }
2344     return Legalized;
2345   }
2346   case TargetOpcode::G_FNEG: {
2347     // TODO: Handle vector types once we are able to
2348     // represent them.
2349     if (Ty.isVector())
2350       return UnableToLegalize;
2351     Register Res = MI.getOperand(0).getReg();
2352     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2353     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2354     if (!ZeroTy)
2355       return UnableToLegalize;
2356     ConstantFP &ZeroForNegation =
2357         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2358     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2359     Register SubByReg = MI.getOperand(1).getReg();
2360     Register ZeroReg = Zero.getReg(0);
2361     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2362     MI.eraseFromParent();
2363     return Legalized;
2364   }
2365   case TargetOpcode::G_FSUB: {
2366     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2367     // First, check if G_FNEG is marked as Lower. If so, we may
2368     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2369     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2370       return UnableToLegalize;
2371     Register Res = MI.getOperand(0).getReg();
2372     Register LHS = MI.getOperand(1).getReg();
2373     Register RHS = MI.getOperand(2).getReg();
2374     Register Neg = MRI.createGenericVirtualRegister(Ty);
2375     MIRBuilder.buildFNeg(Neg, RHS);
2376     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2377     MI.eraseFromParent();
2378     return Legalized;
2379   }
2380   case TargetOpcode::G_FMAD:
2381     return lowerFMad(MI);
2382   case TargetOpcode::G_FFLOOR:
2383     return lowerFFloor(MI);
2384   case TargetOpcode::G_INTRINSIC_ROUND:
2385     return lowerIntrinsicRound(MI);
2386   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2387     Register OldValRes = MI.getOperand(0).getReg();
2388     Register SuccessRes = MI.getOperand(1).getReg();
2389     Register Addr = MI.getOperand(2).getReg();
2390     Register CmpVal = MI.getOperand(3).getReg();
2391     Register NewVal = MI.getOperand(4).getReg();
2392     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2393                                   **MI.memoperands_begin());
2394     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2395     MI.eraseFromParent();
2396     return Legalized;
2397   }
2398   case TargetOpcode::G_LOAD:
2399   case TargetOpcode::G_SEXTLOAD:
2400   case TargetOpcode::G_ZEXTLOAD: {
2401     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2402     Register DstReg = MI.getOperand(0).getReg();
2403     Register PtrReg = MI.getOperand(1).getReg();
2404     LLT DstTy = MRI.getType(DstReg);
2405     auto &MMO = **MI.memoperands_begin();
2406 
2407     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2408       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2409         // This load needs splitting into power of 2 sized loads.
2410         if (DstTy.isVector())
2411           return UnableToLegalize;
2412         if (isPowerOf2_32(DstTy.getSizeInBits()))
2413           return UnableToLegalize; // Don't know what we're being asked to do.
2414 
2415         // Our strategy here is to generate anyextending loads for the smaller
2416         // types up to next power-2 result type, and then combine the two larger
2417         // result values together, before truncating back down to the non-pow-2
2418         // type.
2419         // E.g. v1 = i24 load =>
2420         // v2 = i32 zextload (2 byte)
2421         // v3 = i32 load (1 byte)
2422         // v4 = i32 shl v3, 16
2423         // v5 = i32 or v4, v2
2424         // v1 = i24 trunc v5
2425         // By doing this we generate the correct truncate which should get
2426         // combined away as an artifact with a matching extend.
2427         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2428         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2429 
2430         MachineFunction &MF = MIRBuilder.getMF();
2431         MachineMemOperand *LargeMMO =
2432             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2433         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2434             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2435 
2436         LLT PtrTy = MRI.getType(PtrReg);
2437         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2438         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2439         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2440         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2441         auto LargeLoad = MIRBuilder.buildLoadInstr(
2442             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2443 
2444         auto OffsetCst = MIRBuilder.buildConstant(
2445             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2446         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2447         auto SmallPtr =
2448             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2449         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2450                                               *SmallMMO);
2451 
2452         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2453         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2454         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2455         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2456         MI.eraseFromParent();
2457         return Legalized;
2458       }
2459       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2460       MI.eraseFromParent();
2461       return Legalized;
2462     }
2463 
2464     if (DstTy.isScalar()) {
2465       Register TmpReg =
2466           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2467       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2468       switch (MI.getOpcode()) {
2469       default:
2470         llvm_unreachable("Unexpected opcode");
2471       case TargetOpcode::G_LOAD:
2472         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2473         break;
2474       case TargetOpcode::G_SEXTLOAD:
2475         MIRBuilder.buildSExt(DstReg, TmpReg);
2476         break;
2477       case TargetOpcode::G_ZEXTLOAD:
2478         MIRBuilder.buildZExt(DstReg, TmpReg);
2479         break;
2480       }
2481       MI.eraseFromParent();
2482       return Legalized;
2483     }
2484 
2485     return UnableToLegalize;
2486   }
2487   case TargetOpcode::G_STORE: {
2488     // Lower a non-power of 2 store into multiple pow-2 stores.
2489     // E.g. split an i24 store into an i16 store + i8 store.
2490     // We do this by first extending the stored value to the next largest power
2491     // of 2 type, and then using truncating stores to store the components.
2492     // By doing this, likewise with G_LOAD, generate an extend that can be
2493     // artifact-combined away instead of leaving behind extracts.
2494     Register SrcReg = MI.getOperand(0).getReg();
2495     Register PtrReg = MI.getOperand(1).getReg();
2496     LLT SrcTy = MRI.getType(SrcReg);
2497     MachineMemOperand &MMO = **MI.memoperands_begin();
2498     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2499       return UnableToLegalize;
2500     if (SrcTy.isVector())
2501       return UnableToLegalize;
2502     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2503       return UnableToLegalize; // Don't know what we're being asked to do.
2504 
2505     // Extend to the next pow-2.
2506     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2507     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2508 
2509     // Obtain the smaller value by shifting away the larger value.
2510     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2511     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2512     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2513     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2514 
2515     // Generate the PtrAdd and truncating stores.
2516     LLT PtrTy = MRI.getType(PtrReg);
2517     auto OffsetCst = MIRBuilder.buildConstant(
2518             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2519     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2520     auto SmallPtr =
2521         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2522 
2523     MachineFunction &MF = MIRBuilder.getMF();
2524     MachineMemOperand *LargeMMO =
2525         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2526     MachineMemOperand *SmallMMO =
2527         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2528     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2529     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2530     MI.eraseFromParent();
2531     return Legalized;
2532   }
2533   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2534   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2535   case TargetOpcode::G_CTLZ:
2536   case TargetOpcode::G_CTTZ:
2537   case TargetOpcode::G_CTPOP:
2538     return lowerBitCount(MI, TypeIdx, Ty);
2539   case G_UADDO: {
2540     Register Res = MI.getOperand(0).getReg();
2541     Register CarryOut = MI.getOperand(1).getReg();
2542     Register LHS = MI.getOperand(2).getReg();
2543     Register RHS = MI.getOperand(3).getReg();
2544 
2545     MIRBuilder.buildAdd(Res, LHS, RHS);
2546     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2547 
2548     MI.eraseFromParent();
2549     return Legalized;
2550   }
2551   case G_UADDE: {
2552     Register Res = MI.getOperand(0).getReg();
2553     Register CarryOut = MI.getOperand(1).getReg();
2554     Register LHS = MI.getOperand(2).getReg();
2555     Register RHS = MI.getOperand(3).getReg();
2556     Register CarryIn = MI.getOperand(4).getReg();
2557     LLT Ty = MRI.getType(Res);
2558 
2559     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2560     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2561     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2562     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2563 
2564     MI.eraseFromParent();
2565     return Legalized;
2566   }
2567   case G_USUBO: {
2568     Register Res = MI.getOperand(0).getReg();
2569     Register BorrowOut = MI.getOperand(1).getReg();
2570     Register LHS = MI.getOperand(2).getReg();
2571     Register RHS = MI.getOperand(3).getReg();
2572 
2573     MIRBuilder.buildSub(Res, LHS, RHS);
2574     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2575 
2576     MI.eraseFromParent();
2577     return Legalized;
2578   }
2579   case G_USUBE: {
2580     Register Res = MI.getOperand(0).getReg();
2581     Register BorrowOut = MI.getOperand(1).getReg();
2582     Register LHS = MI.getOperand(2).getReg();
2583     Register RHS = MI.getOperand(3).getReg();
2584     Register BorrowIn = MI.getOperand(4).getReg();
2585     const LLT CondTy = MRI.getType(BorrowOut);
2586     const LLT Ty = MRI.getType(Res);
2587 
2588     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2589     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2590     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2591 
2592     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2593     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2594     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2595 
2596     MI.eraseFromParent();
2597     return Legalized;
2598   }
2599   case G_UITOFP:
2600     return lowerUITOFP(MI, TypeIdx, Ty);
2601   case G_SITOFP:
2602     return lowerSITOFP(MI, TypeIdx, Ty);
2603   case G_FPTOUI:
2604     return lowerFPTOUI(MI, TypeIdx, Ty);
2605   case G_FPTOSI:
2606     return lowerFPTOSI(MI);
2607   case G_FPTRUNC:
2608     return lowerFPTRUNC(MI, TypeIdx, Ty);
2609   case G_SMIN:
2610   case G_SMAX:
2611   case G_UMIN:
2612   case G_UMAX:
2613     return lowerMinMax(MI, TypeIdx, Ty);
2614   case G_FCOPYSIGN:
2615     return lowerFCopySign(MI, TypeIdx, Ty);
2616   case G_FMINNUM:
2617   case G_FMAXNUM:
2618     return lowerFMinNumMaxNum(MI);
2619   case G_MERGE_VALUES:
2620     return lowerMergeValues(MI);
2621   case G_UNMERGE_VALUES:
2622     return lowerUnmergeValues(MI);
2623   case TargetOpcode::G_SEXT_INREG: {
2624     assert(MI.getOperand(2).isImm() && "Expected immediate");
2625     int64_t SizeInBits = MI.getOperand(2).getImm();
2626 
2627     Register DstReg = MI.getOperand(0).getReg();
2628     Register SrcReg = MI.getOperand(1).getReg();
2629     LLT DstTy = MRI.getType(DstReg);
2630     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2631 
2632     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2633     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2634     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2635     MI.eraseFromParent();
2636     return Legalized;
2637   }
2638   case G_SHUFFLE_VECTOR:
2639     return lowerShuffleVector(MI);
2640   case G_DYN_STACKALLOC:
2641     return lowerDynStackAlloc(MI);
2642   case G_EXTRACT:
2643     return lowerExtract(MI);
2644   case G_INSERT:
2645     return lowerInsert(MI);
2646   case G_BSWAP:
2647     return lowerBswap(MI);
2648   case G_BITREVERSE:
2649     return lowerBitreverse(MI);
2650   case G_READ_REGISTER:
2651   case G_WRITE_REGISTER:
2652     return lowerReadWriteRegister(MI);
2653   }
2654 }
2655 
2656 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2657     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2658   SmallVector<Register, 2> DstRegs;
2659 
2660   unsigned NarrowSize = NarrowTy.getSizeInBits();
2661   Register DstReg = MI.getOperand(0).getReg();
2662   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2663   int NumParts = Size / NarrowSize;
2664   // FIXME: Don't know how to handle the situation where the small vectors
2665   // aren't all the same size yet.
2666   if (Size % NarrowSize != 0)
2667     return UnableToLegalize;
2668 
2669   for (int i = 0; i < NumParts; ++i) {
2670     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2671     MIRBuilder.buildUndef(TmpReg);
2672     DstRegs.push_back(TmpReg);
2673   }
2674 
2675   if (NarrowTy.isVector())
2676     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2677   else
2678     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2679 
2680   MI.eraseFromParent();
2681   return Legalized;
2682 }
2683 
2684 // Handle splitting vector operations which need to have the same number of
2685 // elements in each type index, but each type index may have a different element
2686 // type.
2687 //
2688 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2689 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2690 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2691 //
2692 // Also handles some irregular breakdown cases, e.g.
2693 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2694 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2695 //             s64 = G_SHL s64, s32
2696 LegalizerHelper::LegalizeResult
2697 LegalizerHelper::fewerElementsVectorMultiEltType(
2698   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2699   if (TypeIdx != 0)
2700     return UnableToLegalize;
2701 
2702   const LLT NarrowTy0 = NarrowTyArg;
2703   const unsigned NewNumElts =
2704       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2705 
2706   const Register DstReg = MI.getOperand(0).getReg();
2707   LLT DstTy = MRI.getType(DstReg);
2708   LLT LeftoverTy0;
2709 
2710   // All of the operands need to have the same number of elements, so if we can
2711   // determine a type breakdown for the result type, we can for all of the
2712   // source types.
2713   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2714   if (NumParts < 0)
2715     return UnableToLegalize;
2716 
2717   SmallVector<MachineInstrBuilder, 4> NewInsts;
2718 
2719   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2720   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2721 
2722   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2723     Register SrcReg = MI.getOperand(I).getReg();
2724     LLT SrcTyI = MRI.getType(SrcReg);
2725     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2726     LLT LeftoverTyI;
2727 
2728     // Split this operand into the requested typed registers, and any leftover
2729     // required to reproduce the original type.
2730     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2731                       LeftoverRegs))
2732       return UnableToLegalize;
2733 
2734     if (I == 1) {
2735       // For the first operand, create an instruction for each part and setup
2736       // the result.
2737       for (Register PartReg : PartRegs) {
2738         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2739         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2740                                .addDef(PartDstReg)
2741                                .addUse(PartReg));
2742         DstRegs.push_back(PartDstReg);
2743       }
2744 
2745       for (Register LeftoverReg : LeftoverRegs) {
2746         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2747         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2748                                .addDef(PartDstReg)
2749                                .addUse(LeftoverReg));
2750         LeftoverDstRegs.push_back(PartDstReg);
2751       }
2752     } else {
2753       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2754 
2755       // Add the newly created operand splits to the existing instructions. The
2756       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2757       // pieces.
2758       unsigned InstCount = 0;
2759       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2760         NewInsts[InstCount++].addUse(PartRegs[J]);
2761       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2762         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2763     }
2764 
2765     PartRegs.clear();
2766     LeftoverRegs.clear();
2767   }
2768 
2769   // Insert the newly built operations and rebuild the result register.
2770   for (auto &MIB : NewInsts)
2771     MIRBuilder.insertInstr(MIB);
2772 
2773   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2774 
2775   MI.eraseFromParent();
2776   return Legalized;
2777 }
2778 
2779 LegalizerHelper::LegalizeResult
2780 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2781                                           LLT NarrowTy) {
2782   if (TypeIdx != 0)
2783     return UnableToLegalize;
2784 
2785   Register DstReg = MI.getOperand(0).getReg();
2786   Register SrcReg = MI.getOperand(1).getReg();
2787   LLT DstTy = MRI.getType(DstReg);
2788   LLT SrcTy = MRI.getType(SrcReg);
2789 
2790   LLT NarrowTy0 = NarrowTy;
2791   LLT NarrowTy1;
2792   unsigned NumParts;
2793 
2794   if (NarrowTy.isVector()) {
2795     // Uneven breakdown not handled.
2796     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2797     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2798       return UnableToLegalize;
2799 
2800     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2801   } else {
2802     NumParts = DstTy.getNumElements();
2803     NarrowTy1 = SrcTy.getElementType();
2804   }
2805 
2806   SmallVector<Register, 4> SrcRegs, DstRegs;
2807   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2808 
2809   for (unsigned I = 0; I < NumParts; ++I) {
2810     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2811     MachineInstr *NewInst =
2812         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2813 
2814     NewInst->setFlags(MI.getFlags());
2815     DstRegs.push_back(DstReg);
2816   }
2817 
2818   if (NarrowTy.isVector())
2819     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2820   else
2821     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2822 
2823   MI.eraseFromParent();
2824   return Legalized;
2825 }
2826 
2827 LegalizerHelper::LegalizeResult
2828 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2829                                         LLT NarrowTy) {
2830   Register DstReg = MI.getOperand(0).getReg();
2831   Register Src0Reg = MI.getOperand(2).getReg();
2832   LLT DstTy = MRI.getType(DstReg);
2833   LLT SrcTy = MRI.getType(Src0Reg);
2834 
2835   unsigned NumParts;
2836   LLT NarrowTy0, NarrowTy1;
2837 
2838   if (TypeIdx == 0) {
2839     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2840     unsigned OldElts = DstTy.getNumElements();
2841 
2842     NarrowTy0 = NarrowTy;
2843     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2844     NarrowTy1 = NarrowTy.isVector() ?
2845       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2846       SrcTy.getElementType();
2847 
2848   } else {
2849     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2850     unsigned OldElts = SrcTy.getNumElements();
2851 
2852     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2853       NarrowTy.getNumElements();
2854     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2855                             DstTy.getScalarSizeInBits());
2856     NarrowTy1 = NarrowTy;
2857   }
2858 
2859   // FIXME: Don't know how to handle the situation where the small vectors
2860   // aren't all the same size yet.
2861   if (NarrowTy1.isVector() &&
2862       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2863     return UnableToLegalize;
2864 
2865   CmpInst::Predicate Pred
2866     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2867 
2868   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2869   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2870   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2871 
2872   for (unsigned I = 0; I < NumParts; ++I) {
2873     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2874     DstRegs.push_back(DstReg);
2875 
2876     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2877       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2878     else {
2879       MachineInstr *NewCmp
2880         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2881       NewCmp->setFlags(MI.getFlags());
2882     }
2883   }
2884 
2885   if (NarrowTy1.isVector())
2886     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2887   else
2888     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2889 
2890   MI.eraseFromParent();
2891   return Legalized;
2892 }
2893 
2894 LegalizerHelper::LegalizeResult
2895 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2896                                            LLT NarrowTy) {
2897   Register DstReg = MI.getOperand(0).getReg();
2898   Register CondReg = MI.getOperand(1).getReg();
2899 
2900   unsigned NumParts = 0;
2901   LLT NarrowTy0, NarrowTy1;
2902 
2903   LLT DstTy = MRI.getType(DstReg);
2904   LLT CondTy = MRI.getType(CondReg);
2905   unsigned Size = DstTy.getSizeInBits();
2906 
2907   assert(TypeIdx == 0 || CondTy.isVector());
2908 
2909   if (TypeIdx == 0) {
2910     NarrowTy0 = NarrowTy;
2911     NarrowTy1 = CondTy;
2912 
2913     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2914     // FIXME: Don't know how to handle the situation where the small vectors
2915     // aren't all the same size yet.
2916     if (Size % NarrowSize != 0)
2917       return UnableToLegalize;
2918 
2919     NumParts = Size / NarrowSize;
2920 
2921     // Need to break down the condition type
2922     if (CondTy.isVector()) {
2923       if (CondTy.getNumElements() == NumParts)
2924         NarrowTy1 = CondTy.getElementType();
2925       else
2926         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2927                                 CondTy.getScalarSizeInBits());
2928     }
2929   } else {
2930     NumParts = CondTy.getNumElements();
2931     if (NarrowTy.isVector()) {
2932       // TODO: Handle uneven breakdown.
2933       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2934         return UnableToLegalize;
2935 
2936       return UnableToLegalize;
2937     } else {
2938       NarrowTy0 = DstTy.getElementType();
2939       NarrowTy1 = NarrowTy;
2940     }
2941   }
2942 
2943   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2944   if (CondTy.isVector())
2945     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2946 
2947   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2948   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2949 
2950   for (unsigned i = 0; i < NumParts; ++i) {
2951     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2952     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2953                            Src1Regs[i], Src2Regs[i]);
2954     DstRegs.push_back(DstReg);
2955   }
2956 
2957   if (NarrowTy0.isVector())
2958     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2959   else
2960     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2961 
2962   MI.eraseFromParent();
2963   return Legalized;
2964 }
2965 
2966 LegalizerHelper::LegalizeResult
2967 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2968                                         LLT NarrowTy) {
2969   const Register DstReg = MI.getOperand(0).getReg();
2970   LLT PhiTy = MRI.getType(DstReg);
2971   LLT LeftoverTy;
2972 
2973   // All of the operands need to have the same number of elements, so if we can
2974   // determine a type breakdown for the result type, we can for all of the
2975   // source types.
2976   int NumParts, NumLeftover;
2977   std::tie(NumParts, NumLeftover)
2978     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2979   if (NumParts < 0)
2980     return UnableToLegalize;
2981 
2982   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2983   SmallVector<MachineInstrBuilder, 4> NewInsts;
2984 
2985   const int TotalNumParts = NumParts + NumLeftover;
2986 
2987   // Insert the new phis in the result block first.
2988   for (int I = 0; I != TotalNumParts; ++I) {
2989     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2990     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2991     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2992                        .addDef(PartDstReg));
2993     if (I < NumParts)
2994       DstRegs.push_back(PartDstReg);
2995     else
2996       LeftoverDstRegs.push_back(PartDstReg);
2997   }
2998 
2999   MachineBasicBlock *MBB = MI.getParent();
3000   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3001   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3002 
3003   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3004 
3005   // Insert code to extract the incoming values in each predecessor block.
3006   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3007     PartRegs.clear();
3008     LeftoverRegs.clear();
3009 
3010     Register SrcReg = MI.getOperand(I).getReg();
3011     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3012     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3013 
3014     LLT Unused;
3015     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3016                       LeftoverRegs))
3017       return UnableToLegalize;
3018 
3019     // Add the newly created operand splits to the existing instructions. The
3020     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3021     // pieces.
3022     for (int J = 0; J != TotalNumParts; ++J) {
3023       MachineInstrBuilder MIB = NewInsts[J];
3024       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3025       MIB.addMBB(&OpMBB);
3026     }
3027   }
3028 
3029   MI.eraseFromParent();
3030   return Legalized;
3031 }
3032 
3033 LegalizerHelper::LegalizeResult
3034 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3035                                                   unsigned TypeIdx,
3036                                                   LLT NarrowTy) {
3037   if (TypeIdx != 1)
3038     return UnableToLegalize;
3039 
3040   const int NumDst = MI.getNumOperands() - 1;
3041   const Register SrcReg = MI.getOperand(NumDst).getReg();
3042   LLT SrcTy = MRI.getType(SrcReg);
3043 
3044   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3045 
3046   // TODO: Create sequence of extracts.
3047   if (DstTy == NarrowTy)
3048     return UnableToLegalize;
3049 
3050   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3051   if (DstTy == GCDTy) {
3052     // This would just be a copy of the same unmerge.
3053     // TODO: Create extracts, pad with undef and create intermediate merges.
3054     return UnableToLegalize;
3055   }
3056 
3057   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3058   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3059   const int PartsPerUnmerge = NumDst / NumUnmerge;
3060 
3061   for (int I = 0; I != NumUnmerge; ++I) {
3062     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3063 
3064     for (int J = 0; J != PartsPerUnmerge; ++J)
3065       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3066     MIB.addUse(Unmerge.getReg(I));
3067   }
3068 
3069   MI.eraseFromParent();
3070   return Legalized;
3071 }
3072 
3073 LegalizerHelper::LegalizeResult
3074 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3075                                                 unsigned TypeIdx,
3076                                                 LLT NarrowTy) {
3077   assert(TypeIdx == 0 && "not a vector type index");
3078   Register DstReg = MI.getOperand(0).getReg();
3079   LLT DstTy = MRI.getType(DstReg);
3080   LLT SrcTy = DstTy.getElementType();
3081 
3082   int DstNumElts = DstTy.getNumElements();
3083   int NarrowNumElts = NarrowTy.getNumElements();
3084   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3085   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3086 
3087   SmallVector<Register, 8> ConcatOps;
3088   SmallVector<Register, 8> SubBuildVector;
3089 
3090   Register UndefReg;
3091   if (WidenedDstTy != DstTy)
3092     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3093 
3094   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3095   // necessary.
3096   //
3097   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3098   //   -> <2 x s16>
3099   //
3100   // %4:_(s16) = G_IMPLICIT_DEF
3101   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3102   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3103   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3104   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3105   for (int I = 0; I != NumConcat; ++I) {
3106     for (int J = 0; J != NarrowNumElts; ++J) {
3107       int SrcIdx = NarrowNumElts * I + J;
3108 
3109       if (SrcIdx < DstNumElts) {
3110         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3111         SubBuildVector.push_back(SrcReg);
3112       } else
3113         SubBuildVector.push_back(UndefReg);
3114     }
3115 
3116     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3117     ConcatOps.push_back(BuildVec.getReg(0));
3118     SubBuildVector.clear();
3119   }
3120 
3121   if (DstTy == WidenedDstTy)
3122     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3123   else {
3124     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3125     MIRBuilder.buildExtract(DstReg, Concat, 0);
3126   }
3127 
3128   MI.eraseFromParent();
3129   return Legalized;
3130 }
3131 
3132 LegalizerHelper::LegalizeResult
3133 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3134                                       LLT NarrowTy) {
3135   // FIXME: Don't know how to handle secondary types yet.
3136   if (TypeIdx != 0)
3137     return UnableToLegalize;
3138 
3139   MachineMemOperand *MMO = *MI.memoperands_begin();
3140 
3141   // This implementation doesn't work for atomics. Give up instead of doing
3142   // something invalid.
3143   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3144       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3145     return UnableToLegalize;
3146 
3147   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3148   Register ValReg = MI.getOperand(0).getReg();
3149   Register AddrReg = MI.getOperand(1).getReg();
3150   LLT ValTy = MRI.getType(ValReg);
3151 
3152   // FIXME: Do we need a distinct NarrowMemory legalize action?
3153   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3154     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3155     return UnableToLegalize;
3156   }
3157 
3158   int NumParts = -1;
3159   int NumLeftover = -1;
3160   LLT LeftoverTy;
3161   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3162   if (IsLoad) {
3163     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3164   } else {
3165     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3166                      NarrowLeftoverRegs)) {
3167       NumParts = NarrowRegs.size();
3168       NumLeftover = NarrowLeftoverRegs.size();
3169     }
3170   }
3171 
3172   if (NumParts == -1)
3173     return UnableToLegalize;
3174 
3175   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3176 
3177   unsigned TotalSize = ValTy.getSizeInBits();
3178 
3179   // Split the load/store into PartTy sized pieces starting at Offset. If this
3180   // is a load, return the new registers in ValRegs. For a store, each elements
3181   // of ValRegs should be PartTy. Returns the next offset that needs to be
3182   // handled.
3183   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3184                              unsigned Offset) -> unsigned {
3185     MachineFunction &MF = MIRBuilder.getMF();
3186     unsigned PartSize = PartTy.getSizeInBits();
3187     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3188          Offset += PartSize, ++Idx) {
3189       unsigned ByteSize = PartSize / 8;
3190       unsigned ByteOffset = Offset / 8;
3191       Register NewAddrReg;
3192 
3193       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3194 
3195       MachineMemOperand *NewMMO =
3196         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3197 
3198       if (IsLoad) {
3199         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3200         ValRegs.push_back(Dst);
3201         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3202       } else {
3203         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3204       }
3205     }
3206 
3207     return Offset;
3208   };
3209 
3210   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3211 
3212   // Handle the rest of the register if this isn't an even type breakdown.
3213   if (LeftoverTy.isValid())
3214     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3215 
3216   if (IsLoad) {
3217     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3218                 LeftoverTy, NarrowLeftoverRegs);
3219   }
3220 
3221   MI.eraseFromParent();
3222   return Legalized;
3223 }
3224 
3225 LegalizerHelper::LegalizeResult
3226 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3227                                       LLT NarrowTy) {
3228   assert(TypeIdx == 0 && "only one type index expected");
3229 
3230   const unsigned Opc = MI.getOpcode();
3231   const int NumOps = MI.getNumOperands() - 1;
3232   const Register DstReg = MI.getOperand(0).getReg();
3233   const unsigned Flags = MI.getFlags();
3234   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3235   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3236 
3237   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3238 
3239   // First of all check whether we are narrowing (changing the element type)
3240   // or reducing the vector elements
3241   const LLT DstTy = MRI.getType(DstReg);
3242   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3243 
3244   SmallVector<Register, 8> ExtractedRegs[3];
3245   SmallVector<Register, 8> Parts;
3246 
3247   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3248 
3249   // Break down all the sources into NarrowTy pieces we can operate on. This may
3250   // involve creating merges to a wider type, padded with undef.
3251   for (int I = 0; I != NumOps; ++I) {
3252     Register SrcReg = MI.getOperand(I + 1).getReg();
3253     LLT SrcTy = MRI.getType(SrcReg);
3254 
3255     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3256     // For fewerElements, this is a smaller vector with the same element type.
3257     LLT OpNarrowTy;
3258     if (IsNarrow) {
3259       OpNarrowTy = NarrowScalarTy;
3260 
3261       // In case of narrowing, we need to cast vectors to scalars for this to
3262       // work properly
3263       // FIXME: Can we do without the bitcast here if we're narrowing?
3264       if (SrcTy.isVector()) {
3265         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3266         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3267       }
3268     } else {
3269       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3270     }
3271 
3272     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3273 
3274     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3275     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3276                         TargetOpcode::G_ANYEXT);
3277   }
3278 
3279   SmallVector<Register, 8> ResultRegs;
3280 
3281   // Input operands for each sub-instruction.
3282   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3283 
3284   int NumParts = ExtractedRegs[0].size();
3285   const unsigned DstSize = DstTy.getSizeInBits();
3286   const LLT DstScalarTy = LLT::scalar(DstSize);
3287 
3288   // Narrowing needs to use scalar types
3289   LLT DstLCMTy, NarrowDstTy;
3290   if (IsNarrow) {
3291     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3292     NarrowDstTy = NarrowScalarTy;
3293   } else {
3294     DstLCMTy = getLCMType(DstTy, NarrowTy);
3295     NarrowDstTy = NarrowTy;
3296   }
3297 
3298   // We widened the source registers to satisfy merge/unmerge size
3299   // constraints. We'll have some extra fully undef parts.
3300   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3301 
3302   for (int I = 0; I != NumRealParts; ++I) {
3303     // Emit this instruction on each of the split pieces.
3304     for (int J = 0; J != NumOps; ++J)
3305       InputRegs[J] = ExtractedRegs[J][I];
3306 
3307     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3308     ResultRegs.push_back(Inst.getReg(0));
3309   }
3310 
3311   // Fill out the widened result with undef instead of creating instructions
3312   // with undef inputs.
3313   int NumUndefParts = NumParts - NumRealParts;
3314   if (NumUndefParts != 0)
3315     ResultRegs.append(NumUndefParts,
3316                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3317 
3318   // Extract the possibly padded result. Use a scratch register if we need to do
3319   // a final bitcast, otherwise use the original result register.
3320   Register MergeDstReg;
3321   if (IsNarrow && DstTy.isVector())
3322     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3323   else
3324     MergeDstReg = DstReg;
3325 
3326   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3327 
3328   // Recast to vector if we narrowed a vector
3329   if (IsNarrow && DstTy.isVector())
3330     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3331 
3332   MI.eraseFromParent();
3333   return Legalized;
3334 }
3335 
3336 LegalizerHelper::LegalizeResult
3337 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3338                                               LLT NarrowTy) {
3339   Register DstReg = MI.getOperand(0).getReg();
3340   Register SrcReg = MI.getOperand(1).getReg();
3341   int64_t Imm = MI.getOperand(2).getImm();
3342 
3343   LLT DstTy = MRI.getType(DstReg);
3344 
3345   SmallVector<Register, 8> Parts;
3346   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3347   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3348 
3349   for (Register &R : Parts)
3350     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3351 
3352   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3353 
3354   MI.eraseFromParent();
3355   return Legalized;
3356 }
3357 
3358 LegalizerHelper::LegalizeResult
3359 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3360                                      LLT NarrowTy) {
3361   using namespace TargetOpcode;
3362 
3363   switch (MI.getOpcode()) {
3364   case G_IMPLICIT_DEF:
3365     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3366   case G_TRUNC:
3367   case G_AND:
3368   case G_OR:
3369   case G_XOR:
3370   case G_ADD:
3371   case G_SUB:
3372   case G_MUL:
3373   case G_SMULH:
3374   case G_UMULH:
3375   case G_FADD:
3376   case G_FMUL:
3377   case G_FSUB:
3378   case G_FNEG:
3379   case G_FABS:
3380   case G_FCANONICALIZE:
3381   case G_FDIV:
3382   case G_FREM:
3383   case G_FMA:
3384   case G_FMAD:
3385   case G_FPOW:
3386   case G_FEXP:
3387   case G_FEXP2:
3388   case G_FLOG:
3389   case G_FLOG2:
3390   case G_FLOG10:
3391   case G_FNEARBYINT:
3392   case G_FCEIL:
3393   case G_FFLOOR:
3394   case G_FRINT:
3395   case G_INTRINSIC_ROUND:
3396   case G_INTRINSIC_TRUNC:
3397   case G_FCOS:
3398   case G_FSIN:
3399   case G_FSQRT:
3400   case G_BSWAP:
3401   case G_BITREVERSE:
3402   case G_SDIV:
3403   case G_UDIV:
3404   case G_SREM:
3405   case G_UREM:
3406   case G_SMIN:
3407   case G_SMAX:
3408   case G_UMIN:
3409   case G_UMAX:
3410   case G_FMINNUM:
3411   case G_FMAXNUM:
3412   case G_FMINNUM_IEEE:
3413   case G_FMAXNUM_IEEE:
3414   case G_FMINIMUM:
3415   case G_FMAXIMUM:
3416   case G_FSHL:
3417   case G_FSHR:
3418   case G_FREEZE:
3419     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3420   case G_SHL:
3421   case G_LSHR:
3422   case G_ASHR:
3423   case G_CTLZ:
3424   case G_CTLZ_ZERO_UNDEF:
3425   case G_CTTZ:
3426   case G_CTTZ_ZERO_UNDEF:
3427   case G_CTPOP:
3428   case G_FCOPYSIGN:
3429     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3430   case G_ZEXT:
3431   case G_SEXT:
3432   case G_ANYEXT:
3433   case G_FPEXT:
3434   case G_FPTRUNC:
3435   case G_SITOFP:
3436   case G_UITOFP:
3437   case G_FPTOSI:
3438   case G_FPTOUI:
3439   case G_INTTOPTR:
3440   case G_PTRTOINT:
3441   case G_ADDRSPACE_CAST:
3442     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3443   case G_ICMP:
3444   case G_FCMP:
3445     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3446   case G_SELECT:
3447     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3448   case G_PHI:
3449     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3450   case G_UNMERGE_VALUES:
3451     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3452   case G_BUILD_VECTOR:
3453     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3454   case G_LOAD:
3455   case G_STORE:
3456     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3457   case G_SEXT_INREG:
3458     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3459   default:
3460     return UnableToLegalize;
3461   }
3462 }
3463 
3464 LegalizerHelper::LegalizeResult
3465 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3466                                              const LLT HalfTy, const LLT AmtTy) {
3467 
3468   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3469   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3470   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3471 
3472   if (Amt.isNullValue()) {
3473     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3474     MI.eraseFromParent();
3475     return Legalized;
3476   }
3477 
3478   LLT NVT = HalfTy;
3479   unsigned NVTBits = HalfTy.getSizeInBits();
3480   unsigned VTBits = 2 * NVTBits;
3481 
3482   SrcOp Lo(Register(0)), Hi(Register(0));
3483   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3484     if (Amt.ugt(VTBits)) {
3485       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3486     } else if (Amt.ugt(NVTBits)) {
3487       Lo = MIRBuilder.buildConstant(NVT, 0);
3488       Hi = MIRBuilder.buildShl(NVT, InL,
3489                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3490     } else if (Amt == NVTBits) {
3491       Lo = MIRBuilder.buildConstant(NVT, 0);
3492       Hi = InL;
3493     } else {
3494       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3495       auto OrLHS =
3496           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3497       auto OrRHS = MIRBuilder.buildLShr(
3498           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3499       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3500     }
3501   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3502     if (Amt.ugt(VTBits)) {
3503       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3504     } else if (Amt.ugt(NVTBits)) {
3505       Lo = MIRBuilder.buildLShr(NVT, InH,
3506                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3507       Hi = MIRBuilder.buildConstant(NVT, 0);
3508     } else if (Amt == NVTBits) {
3509       Lo = InH;
3510       Hi = MIRBuilder.buildConstant(NVT, 0);
3511     } else {
3512       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3513 
3514       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3515       auto OrRHS = MIRBuilder.buildShl(
3516           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3517 
3518       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3519       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3520     }
3521   } else {
3522     if (Amt.ugt(VTBits)) {
3523       Hi = Lo = MIRBuilder.buildAShr(
3524           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3525     } else if (Amt.ugt(NVTBits)) {
3526       Lo = MIRBuilder.buildAShr(NVT, InH,
3527                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3528       Hi = MIRBuilder.buildAShr(NVT, InH,
3529                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3530     } else if (Amt == NVTBits) {
3531       Lo = InH;
3532       Hi = MIRBuilder.buildAShr(NVT, InH,
3533                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3534     } else {
3535       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3536 
3537       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3538       auto OrRHS = MIRBuilder.buildShl(
3539           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3540 
3541       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3542       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3543     }
3544   }
3545 
3546   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3547   MI.eraseFromParent();
3548 
3549   return Legalized;
3550 }
3551 
3552 // TODO: Optimize if constant shift amount.
3553 LegalizerHelper::LegalizeResult
3554 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3555                                    LLT RequestedTy) {
3556   if (TypeIdx == 1) {
3557     Observer.changingInstr(MI);
3558     narrowScalarSrc(MI, RequestedTy, 2);
3559     Observer.changedInstr(MI);
3560     return Legalized;
3561   }
3562 
3563   Register DstReg = MI.getOperand(0).getReg();
3564   LLT DstTy = MRI.getType(DstReg);
3565   if (DstTy.isVector())
3566     return UnableToLegalize;
3567 
3568   Register Amt = MI.getOperand(2).getReg();
3569   LLT ShiftAmtTy = MRI.getType(Amt);
3570   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3571   if (DstEltSize % 2 != 0)
3572     return UnableToLegalize;
3573 
3574   // Ignore the input type. We can only go to exactly half the size of the
3575   // input. If that isn't small enough, the resulting pieces will be further
3576   // legalized.
3577   const unsigned NewBitSize = DstEltSize / 2;
3578   const LLT HalfTy = LLT::scalar(NewBitSize);
3579   const LLT CondTy = LLT::scalar(1);
3580 
3581   if (const MachineInstr *KShiftAmt =
3582           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3583     return narrowScalarShiftByConstant(
3584         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3585   }
3586 
3587   // TODO: Expand with known bits.
3588 
3589   // Handle the fully general expansion by an unknown amount.
3590   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3591 
3592   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3593   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3594   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3595 
3596   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3597   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3598 
3599   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3600   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3601   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3602 
3603   Register ResultRegs[2];
3604   switch (MI.getOpcode()) {
3605   case TargetOpcode::G_SHL: {
3606     // Short: ShAmt < NewBitSize
3607     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3608 
3609     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3610     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3611     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3612 
3613     // Long: ShAmt >= NewBitSize
3614     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3615     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3616 
3617     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3618     auto Hi = MIRBuilder.buildSelect(
3619         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3620 
3621     ResultRegs[0] = Lo.getReg(0);
3622     ResultRegs[1] = Hi.getReg(0);
3623     break;
3624   }
3625   case TargetOpcode::G_LSHR:
3626   case TargetOpcode::G_ASHR: {
3627     // Short: ShAmt < NewBitSize
3628     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3629 
3630     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3631     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3632     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3633 
3634     // Long: ShAmt >= NewBitSize
3635     MachineInstrBuilder HiL;
3636     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3637       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3638     } else {
3639       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3640       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3641     }
3642     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3643                                      {InH, AmtExcess});     // Lo from Hi part.
3644 
3645     auto Lo = MIRBuilder.buildSelect(
3646         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3647 
3648     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3649 
3650     ResultRegs[0] = Lo.getReg(0);
3651     ResultRegs[1] = Hi.getReg(0);
3652     break;
3653   }
3654   default:
3655     llvm_unreachable("not a shift");
3656   }
3657 
3658   MIRBuilder.buildMerge(DstReg, ResultRegs);
3659   MI.eraseFromParent();
3660   return Legalized;
3661 }
3662 
3663 LegalizerHelper::LegalizeResult
3664 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3665                                        LLT MoreTy) {
3666   assert(TypeIdx == 0 && "Expecting only Idx 0");
3667 
3668   Observer.changingInstr(MI);
3669   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3670     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3671     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3672     moreElementsVectorSrc(MI, MoreTy, I);
3673   }
3674 
3675   MachineBasicBlock &MBB = *MI.getParent();
3676   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3677   moreElementsVectorDst(MI, MoreTy, 0);
3678   Observer.changedInstr(MI);
3679   return Legalized;
3680 }
3681 
3682 LegalizerHelper::LegalizeResult
3683 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3684                                     LLT MoreTy) {
3685   unsigned Opc = MI.getOpcode();
3686   switch (Opc) {
3687   case TargetOpcode::G_IMPLICIT_DEF:
3688   case TargetOpcode::G_LOAD: {
3689     if (TypeIdx != 0)
3690       return UnableToLegalize;
3691     Observer.changingInstr(MI);
3692     moreElementsVectorDst(MI, MoreTy, 0);
3693     Observer.changedInstr(MI);
3694     return Legalized;
3695   }
3696   case TargetOpcode::G_STORE:
3697     if (TypeIdx != 0)
3698       return UnableToLegalize;
3699     Observer.changingInstr(MI);
3700     moreElementsVectorSrc(MI, MoreTy, 0);
3701     Observer.changedInstr(MI);
3702     return Legalized;
3703   case TargetOpcode::G_AND:
3704   case TargetOpcode::G_OR:
3705   case TargetOpcode::G_XOR:
3706   case TargetOpcode::G_SMIN:
3707   case TargetOpcode::G_SMAX:
3708   case TargetOpcode::G_UMIN:
3709   case TargetOpcode::G_UMAX:
3710   case TargetOpcode::G_FMINNUM:
3711   case TargetOpcode::G_FMAXNUM:
3712   case TargetOpcode::G_FMINNUM_IEEE:
3713   case TargetOpcode::G_FMAXNUM_IEEE:
3714   case TargetOpcode::G_FMINIMUM:
3715   case TargetOpcode::G_FMAXIMUM: {
3716     Observer.changingInstr(MI);
3717     moreElementsVectorSrc(MI, MoreTy, 1);
3718     moreElementsVectorSrc(MI, MoreTy, 2);
3719     moreElementsVectorDst(MI, MoreTy, 0);
3720     Observer.changedInstr(MI);
3721     return Legalized;
3722   }
3723   case TargetOpcode::G_EXTRACT:
3724     if (TypeIdx != 1)
3725       return UnableToLegalize;
3726     Observer.changingInstr(MI);
3727     moreElementsVectorSrc(MI, MoreTy, 1);
3728     Observer.changedInstr(MI);
3729     return Legalized;
3730   case TargetOpcode::G_INSERT:
3731   case TargetOpcode::G_FREEZE:
3732     if (TypeIdx != 0)
3733       return UnableToLegalize;
3734     Observer.changingInstr(MI);
3735     moreElementsVectorSrc(MI, MoreTy, 1);
3736     moreElementsVectorDst(MI, MoreTy, 0);
3737     Observer.changedInstr(MI);
3738     return Legalized;
3739   case TargetOpcode::G_SELECT:
3740     if (TypeIdx != 0)
3741       return UnableToLegalize;
3742     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3743       return UnableToLegalize;
3744 
3745     Observer.changingInstr(MI);
3746     moreElementsVectorSrc(MI, MoreTy, 2);
3747     moreElementsVectorSrc(MI, MoreTy, 3);
3748     moreElementsVectorDst(MI, MoreTy, 0);
3749     Observer.changedInstr(MI);
3750     return Legalized;
3751   case TargetOpcode::G_UNMERGE_VALUES: {
3752     if (TypeIdx != 1)
3753       return UnableToLegalize;
3754 
3755     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3756     int NumDst = MI.getNumOperands() - 1;
3757     moreElementsVectorSrc(MI, MoreTy, NumDst);
3758 
3759     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3760     for (int I = 0; I != NumDst; ++I)
3761       MIB.addDef(MI.getOperand(I).getReg());
3762 
3763     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3764     for (int I = NumDst; I != NewNumDst; ++I)
3765       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3766 
3767     MIB.addUse(MI.getOperand(NumDst).getReg());
3768     MI.eraseFromParent();
3769     return Legalized;
3770   }
3771   case TargetOpcode::G_PHI:
3772     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3773   default:
3774     return UnableToLegalize;
3775   }
3776 }
3777 
3778 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3779                                         ArrayRef<Register> Src1Regs,
3780                                         ArrayRef<Register> Src2Regs,
3781                                         LLT NarrowTy) {
3782   MachineIRBuilder &B = MIRBuilder;
3783   unsigned SrcParts = Src1Regs.size();
3784   unsigned DstParts = DstRegs.size();
3785 
3786   unsigned DstIdx = 0; // Low bits of the result.
3787   Register FactorSum =
3788       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3789   DstRegs[DstIdx] = FactorSum;
3790 
3791   unsigned CarrySumPrevDstIdx;
3792   SmallVector<Register, 4> Factors;
3793 
3794   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3795     // Collect low parts of muls for DstIdx.
3796     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3797          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3798       MachineInstrBuilder Mul =
3799           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3800       Factors.push_back(Mul.getReg(0));
3801     }
3802     // Collect high parts of muls from previous DstIdx.
3803     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3804          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3805       MachineInstrBuilder Umulh =
3806           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3807       Factors.push_back(Umulh.getReg(0));
3808     }
3809     // Add CarrySum from additions calculated for previous DstIdx.
3810     if (DstIdx != 1) {
3811       Factors.push_back(CarrySumPrevDstIdx);
3812     }
3813 
3814     Register CarrySum;
3815     // Add all factors and accumulate all carries into CarrySum.
3816     if (DstIdx != DstParts - 1) {
3817       MachineInstrBuilder Uaddo =
3818           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3819       FactorSum = Uaddo.getReg(0);
3820       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3821       for (unsigned i = 2; i < Factors.size(); ++i) {
3822         MachineInstrBuilder Uaddo =
3823             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3824         FactorSum = Uaddo.getReg(0);
3825         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3826         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3827       }
3828     } else {
3829       // Since value for the next index is not calculated, neither is CarrySum.
3830       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3831       for (unsigned i = 2; i < Factors.size(); ++i)
3832         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3833     }
3834 
3835     CarrySumPrevDstIdx = CarrySum;
3836     DstRegs[DstIdx] = FactorSum;
3837     Factors.clear();
3838   }
3839 }
3840 
3841 LegalizerHelper::LegalizeResult
3842 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3843   Register DstReg = MI.getOperand(0).getReg();
3844   Register Src1 = MI.getOperand(1).getReg();
3845   Register Src2 = MI.getOperand(2).getReg();
3846 
3847   LLT Ty = MRI.getType(DstReg);
3848   if (Ty.isVector())
3849     return UnableToLegalize;
3850 
3851   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3852   unsigned DstSize = Ty.getSizeInBits();
3853   unsigned NarrowSize = NarrowTy.getSizeInBits();
3854   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3855     return UnableToLegalize;
3856 
3857   unsigned NumDstParts = DstSize / NarrowSize;
3858   unsigned NumSrcParts = SrcSize / NarrowSize;
3859   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3860   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3861 
3862   SmallVector<Register, 2> Src1Parts, Src2Parts;
3863   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3864   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3865   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3866   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3867 
3868   // Take only high half of registers if this is high mul.
3869   ArrayRef<Register> DstRegs(
3870       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3871   MIRBuilder.buildMerge(DstReg, DstRegs);
3872   MI.eraseFromParent();
3873   return Legalized;
3874 }
3875 
3876 LegalizerHelper::LegalizeResult
3877 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3878                                      LLT NarrowTy) {
3879   if (TypeIdx != 1)
3880     return UnableToLegalize;
3881 
3882   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3883 
3884   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3885   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3886   // NarrowSize.
3887   if (SizeOp1 % NarrowSize != 0)
3888     return UnableToLegalize;
3889   int NumParts = SizeOp1 / NarrowSize;
3890 
3891   SmallVector<Register, 2> SrcRegs, DstRegs;
3892   SmallVector<uint64_t, 2> Indexes;
3893   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3894 
3895   Register OpReg = MI.getOperand(0).getReg();
3896   uint64_t OpStart = MI.getOperand(2).getImm();
3897   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3898   for (int i = 0; i < NumParts; ++i) {
3899     unsigned SrcStart = i * NarrowSize;
3900 
3901     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3902       // No part of the extract uses this subregister, ignore it.
3903       continue;
3904     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3905       // The entire subregister is extracted, forward the value.
3906       DstRegs.push_back(SrcRegs[i]);
3907       continue;
3908     }
3909 
3910     // OpSegStart is where this destination segment would start in OpReg if it
3911     // extended infinitely in both directions.
3912     int64_t ExtractOffset;
3913     uint64_t SegSize;
3914     if (OpStart < SrcStart) {
3915       ExtractOffset = 0;
3916       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3917     } else {
3918       ExtractOffset = OpStart - SrcStart;
3919       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3920     }
3921 
3922     Register SegReg = SrcRegs[i];
3923     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3924       // A genuine extract is needed.
3925       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3926       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3927     }
3928 
3929     DstRegs.push_back(SegReg);
3930   }
3931 
3932   Register DstReg = MI.getOperand(0).getReg();
3933   if (MRI.getType(DstReg).isVector())
3934     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3935   else if (DstRegs.size() > 1)
3936     MIRBuilder.buildMerge(DstReg, DstRegs);
3937   else
3938     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3939   MI.eraseFromParent();
3940   return Legalized;
3941 }
3942 
3943 LegalizerHelper::LegalizeResult
3944 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3945                                     LLT NarrowTy) {
3946   // FIXME: Don't know how to handle secondary types yet.
3947   if (TypeIdx != 0)
3948     return UnableToLegalize;
3949 
3950   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3951   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3952 
3953   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3954   // NarrowSize.
3955   if (SizeOp0 % NarrowSize != 0)
3956     return UnableToLegalize;
3957 
3958   int NumParts = SizeOp0 / NarrowSize;
3959 
3960   SmallVector<Register, 2> SrcRegs, DstRegs;
3961   SmallVector<uint64_t, 2> Indexes;
3962   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3963 
3964   Register OpReg = MI.getOperand(2).getReg();
3965   uint64_t OpStart = MI.getOperand(3).getImm();
3966   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3967   for (int i = 0; i < NumParts; ++i) {
3968     unsigned DstStart = i * NarrowSize;
3969 
3970     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3971       // No part of the insert affects this subregister, forward the original.
3972       DstRegs.push_back(SrcRegs[i]);
3973       continue;
3974     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3975       // The entire subregister is defined by this insert, forward the new
3976       // value.
3977       DstRegs.push_back(OpReg);
3978       continue;
3979     }
3980 
3981     // OpSegStart is where this destination segment would start in OpReg if it
3982     // extended infinitely in both directions.
3983     int64_t ExtractOffset, InsertOffset;
3984     uint64_t SegSize;
3985     if (OpStart < DstStart) {
3986       InsertOffset = 0;
3987       ExtractOffset = DstStart - OpStart;
3988       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3989     } else {
3990       InsertOffset = OpStart - DstStart;
3991       ExtractOffset = 0;
3992       SegSize =
3993         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3994     }
3995 
3996     Register SegReg = OpReg;
3997     if (ExtractOffset != 0 || SegSize != OpSize) {
3998       // A genuine extract is needed.
3999       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4000       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4001     }
4002 
4003     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4004     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4005     DstRegs.push_back(DstReg);
4006   }
4007 
4008   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4009   Register DstReg = MI.getOperand(0).getReg();
4010   if(MRI.getType(DstReg).isVector())
4011     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4012   else
4013     MIRBuilder.buildMerge(DstReg, DstRegs);
4014   MI.eraseFromParent();
4015   return Legalized;
4016 }
4017 
4018 LegalizerHelper::LegalizeResult
4019 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4020                                    LLT NarrowTy) {
4021   Register DstReg = MI.getOperand(0).getReg();
4022   LLT DstTy = MRI.getType(DstReg);
4023 
4024   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4025 
4026   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4027   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4028   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4029   LLT LeftoverTy;
4030   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4031                     Src0Regs, Src0LeftoverRegs))
4032     return UnableToLegalize;
4033 
4034   LLT Unused;
4035   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4036                     Src1Regs, Src1LeftoverRegs))
4037     llvm_unreachable("inconsistent extractParts result");
4038 
4039   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4040     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4041                                         {Src0Regs[I], Src1Regs[I]});
4042     DstRegs.push_back(Inst.getReg(0));
4043   }
4044 
4045   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4046     auto Inst = MIRBuilder.buildInstr(
4047       MI.getOpcode(),
4048       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4049     DstLeftoverRegs.push_back(Inst.getReg(0));
4050   }
4051 
4052   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4053               LeftoverTy, DstLeftoverRegs);
4054 
4055   MI.eraseFromParent();
4056   return Legalized;
4057 }
4058 
4059 LegalizerHelper::LegalizeResult
4060 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4061                                  LLT NarrowTy) {
4062   if (TypeIdx != 0)
4063     return UnableToLegalize;
4064 
4065   Register DstReg = MI.getOperand(0).getReg();
4066   Register SrcReg = MI.getOperand(1).getReg();
4067 
4068   LLT DstTy = MRI.getType(DstReg);
4069   if (DstTy.isVector())
4070     return UnableToLegalize;
4071 
4072   SmallVector<Register, 8> Parts;
4073   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4074   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4075   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4076 
4077   MI.eraseFromParent();
4078   return Legalized;
4079 }
4080 
4081 LegalizerHelper::LegalizeResult
4082 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4083                                     LLT NarrowTy) {
4084   if (TypeIdx != 0)
4085     return UnableToLegalize;
4086 
4087   Register CondReg = MI.getOperand(1).getReg();
4088   LLT CondTy = MRI.getType(CondReg);
4089   if (CondTy.isVector()) // TODO: Handle vselect
4090     return UnableToLegalize;
4091 
4092   Register DstReg = MI.getOperand(0).getReg();
4093   LLT DstTy = MRI.getType(DstReg);
4094 
4095   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4096   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4097   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4098   LLT LeftoverTy;
4099   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4100                     Src1Regs, Src1LeftoverRegs))
4101     return UnableToLegalize;
4102 
4103   LLT Unused;
4104   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4105                     Src2Regs, Src2LeftoverRegs))
4106     llvm_unreachable("inconsistent extractParts result");
4107 
4108   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4109     auto Select = MIRBuilder.buildSelect(NarrowTy,
4110                                          CondReg, Src1Regs[I], Src2Regs[I]);
4111     DstRegs.push_back(Select.getReg(0));
4112   }
4113 
4114   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4115     auto Select = MIRBuilder.buildSelect(
4116       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4117     DstLeftoverRegs.push_back(Select.getReg(0));
4118   }
4119 
4120   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4121               LeftoverTy, DstLeftoverRegs);
4122 
4123   MI.eraseFromParent();
4124   return Legalized;
4125 }
4126 
4127 LegalizerHelper::LegalizeResult
4128 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4129                                   LLT NarrowTy) {
4130   if (TypeIdx != 1)
4131     return UnableToLegalize;
4132 
4133   Register DstReg = MI.getOperand(0).getReg();
4134   Register SrcReg = MI.getOperand(1).getReg();
4135   LLT DstTy = MRI.getType(DstReg);
4136   LLT SrcTy = MRI.getType(SrcReg);
4137   unsigned NarrowSize = NarrowTy.getSizeInBits();
4138 
4139   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4140     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4141 
4142     MachineIRBuilder &B = MIRBuilder;
4143     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4144     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4145     auto C_0 = B.buildConstant(NarrowTy, 0);
4146     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4147                                 UnmergeSrc.getReg(1), C_0);
4148     auto LoCTLZ = IsUndef ?
4149       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4150       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4151     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4152     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4153     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4154     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4155 
4156     MI.eraseFromParent();
4157     return Legalized;
4158   }
4159 
4160   return UnableToLegalize;
4161 }
4162 
4163 LegalizerHelper::LegalizeResult
4164 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4165                                   LLT NarrowTy) {
4166   if (TypeIdx != 1)
4167     return UnableToLegalize;
4168 
4169   Register DstReg = MI.getOperand(0).getReg();
4170   Register SrcReg = MI.getOperand(1).getReg();
4171   LLT DstTy = MRI.getType(DstReg);
4172   LLT SrcTy = MRI.getType(SrcReg);
4173   unsigned NarrowSize = NarrowTy.getSizeInBits();
4174 
4175   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4176     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4177 
4178     MachineIRBuilder &B = MIRBuilder;
4179     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4180     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4181     auto C_0 = B.buildConstant(NarrowTy, 0);
4182     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4183                                 UnmergeSrc.getReg(0), C_0);
4184     auto HiCTTZ = IsUndef ?
4185       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4186       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4187     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4188     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4189     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4190     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4191 
4192     MI.eraseFromParent();
4193     return Legalized;
4194   }
4195 
4196   return UnableToLegalize;
4197 }
4198 
4199 LegalizerHelper::LegalizeResult
4200 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4201                                    LLT NarrowTy) {
4202   if (TypeIdx != 1)
4203     return UnableToLegalize;
4204 
4205   Register DstReg = MI.getOperand(0).getReg();
4206   LLT DstTy = MRI.getType(DstReg);
4207   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4208   unsigned NarrowSize = NarrowTy.getSizeInBits();
4209 
4210   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4211     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4212 
4213     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4214     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4215     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4216 
4217     MI.eraseFromParent();
4218     return Legalized;
4219   }
4220 
4221   return UnableToLegalize;
4222 }
4223 
4224 LegalizerHelper::LegalizeResult
4225 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4226   unsigned Opc = MI.getOpcode();
4227   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4228   auto isSupported = [this](const LegalityQuery &Q) {
4229     auto QAction = LI.getAction(Q).Action;
4230     return QAction == Legal || QAction == Libcall || QAction == Custom;
4231   };
4232   switch (Opc) {
4233   default:
4234     return UnableToLegalize;
4235   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4236     // This trivially expands to CTLZ.
4237     Observer.changingInstr(MI);
4238     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4239     Observer.changedInstr(MI);
4240     return Legalized;
4241   }
4242   case TargetOpcode::G_CTLZ: {
4243     Register DstReg = MI.getOperand(0).getReg();
4244     Register SrcReg = MI.getOperand(1).getReg();
4245     LLT DstTy = MRI.getType(DstReg);
4246     LLT SrcTy = MRI.getType(SrcReg);
4247     unsigned Len = SrcTy.getSizeInBits();
4248 
4249     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4250       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4251       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4252       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4253       auto ICmp = MIRBuilder.buildICmp(
4254           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4255       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4256       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4257       MI.eraseFromParent();
4258       return Legalized;
4259     }
4260     // for now, we do this:
4261     // NewLen = NextPowerOf2(Len);
4262     // x = x | (x >> 1);
4263     // x = x | (x >> 2);
4264     // ...
4265     // x = x | (x >>16);
4266     // x = x | (x >>32); // for 64-bit input
4267     // Upto NewLen/2
4268     // return Len - popcount(x);
4269     //
4270     // Ref: "Hacker's Delight" by Henry Warren
4271     Register Op = SrcReg;
4272     unsigned NewLen = PowerOf2Ceil(Len);
4273     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4274       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4275       auto MIBOp = MIRBuilder.buildOr(
4276           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4277       Op = MIBOp.getReg(0);
4278     }
4279     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4280     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4281                         MIBPop);
4282     MI.eraseFromParent();
4283     return Legalized;
4284   }
4285   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4286     // This trivially expands to CTTZ.
4287     Observer.changingInstr(MI);
4288     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4289     Observer.changedInstr(MI);
4290     return Legalized;
4291   }
4292   case TargetOpcode::G_CTTZ: {
4293     Register DstReg = MI.getOperand(0).getReg();
4294     Register SrcReg = MI.getOperand(1).getReg();
4295     LLT DstTy = MRI.getType(DstReg);
4296     LLT SrcTy = MRI.getType(SrcReg);
4297 
4298     unsigned Len = SrcTy.getSizeInBits();
4299     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4300       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4301       // zero.
4302       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4303       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4304       auto ICmp = MIRBuilder.buildICmp(
4305           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4306       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4307       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4308       MI.eraseFromParent();
4309       return Legalized;
4310     }
4311     // for now, we use: { return popcount(~x & (x - 1)); }
4312     // unless the target has ctlz but not ctpop, in which case we use:
4313     // { return 32 - nlz(~x & (x-1)); }
4314     // Ref: "Hacker's Delight" by Henry Warren
4315     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4316     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4317     auto MIBTmp = MIRBuilder.buildAnd(
4318         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4319     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4320         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4321       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4322       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4323                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4324       MI.eraseFromParent();
4325       return Legalized;
4326     }
4327     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4328     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4329     return Legalized;
4330   }
4331   case TargetOpcode::G_CTPOP: {
4332     unsigned Size = Ty.getSizeInBits();
4333     MachineIRBuilder &B = MIRBuilder;
4334 
4335     // Count set bits in blocks of 2 bits. Default approach would be
4336     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4337     // We use following formula instead:
4338     // B2Count = val - { (val >> 1) & 0x55555555 }
4339     // since it gives same result in blocks of 2 with one instruction less.
4340     auto C_1 = B.buildConstant(Ty, 1);
4341     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4342     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4343     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4344     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4345     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4346 
4347     // In order to get count in blocks of 4 add values from adjacent block of 2.
4348     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4349     auto C_2 = B.buildConstant(Ty, 2);
4350     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4351     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4352     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4353     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4354     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4355     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4356 
4357     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4358     // addition since count value sits in range {0,...,8} and 4 bits are enough
4359     // to hold such binary values. After addition high 4 bits still hold count
4360     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4361     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4362     auto C_4 = B.buildConstant(Ty, 4);
4363     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4364     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4365     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4366     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4367     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4368 
4369     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4370     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4371     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4372     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4373     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4374 
4375     // Shift count result from 8 high bits to low bits.
4376     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4377     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4378 
4379     MI.eraseFromParent();
4380     return Legalized;
4381   }
4382   }
4383 }
4384 
4385 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4386 // representation.
4387 LegalizerHelper::LegalizeResult
4388 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4389   Register Dst = MI.getOperand(0).getReg();
4390   Register Src = MI.getOperand(1).getReg();
4391   const LLT S64 = LLT::scalar(64);
4392   const LLT S32 = LLT::scalar(32);
4393   const LLT S1 = LLT::scalar(1);
4394 
4395   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4396 
4397   // unsigned cul2f(ulong u) {
4398   //   uint lz = clz(u);
4399   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4400   //   u = (u << lz) & 0x7fffffffffffffffUL;
4401   //   ulong t = u & 0xffffffffffUL;
4402   //   uint v = (e << 23) | (uint)(u >> 40);
4403   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4404   //   return as_float(v + r);
4405   // }
4406 
4407   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4408   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4409 
4410   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4411 
4412   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4413   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4414 
4415   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4416   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4417 
4418   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4419   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4420 
4421   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4422 
4423   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4424   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4425 
4426   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4427   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4428   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4429 
4430   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4431   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4432   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4433   auto One = MIRBuilder.buildConstant(S32, 1);
4434 
4435   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4436   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4437   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4438   MIRBuilder.buildAdd(Dst, V, R);
4439 
4440   MI.eraseFromParent();
4441   return Legalized;
4442 }
4443 
4444 LegalizerHelper::LegalizeResult
4445 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4446   Register Dst = MI.getOperand(0).getReg();
4447   Register Src = MI.getOperand(1).getReg();
4448   LLT DstTy = MRI.getType(Dst);
4449   LLT SrcTy = MRI.getType(Src);
4450 
4451   if (SrcTy == LLT::scalar(1)) {
4452     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4453     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4454     MIRBuilder.buildSelect(Dst, Src, True, False);
4455     MI.eraseFromParent();
4456     return Legalized;
4457   }
4458 
4459   if (SrcTy != LLT::scalar(64))
4460     return UnableToLegalize;
4461 
4462   if (DstTy == LLT::scalar(32)) {
4463     // TODO: SelectionDAG has several alternative expansions to port which may
4464     // be more reasonble depending on the available instructions. If a target
4465     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4466     // intermediate type, this is probably worse.
4467     return lowerU64ToF32BitOps(MI);
4468   }
4469 
4470   return UnableToLegalize;
4471 }
4472 
4473 LegalizerHelper::LegalizeResult
4474 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4475   Register Dst = MI.getOperand(0).getReg();
4476   Register Src = MI.getOperand(1).getReg();
4477   LLT DstTy = MRI.getType(Dst);
4478   LLT SrcTy = MRI.getType(Src);
4479 
4480   const LLT S64 = LLT::scalar(64);
4481   const LLT S32 = LLT::scalar(32);
4482   const LLT S1 = LLT::scalar(1);
4483 
4484   if (SrcTy == S1) {
4485     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4486     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4487     MIRBuilder.buildSelect(Dst, Src, True, False);
4488     MI.eraseFromParent();
4489     return Legalized;
4490   }
4491 
4492   if (SrcTy != S64)
4493     return UnableToLegalize;
4494 
4495   if (DstTy == S32) {
4496     // signed cl2f(long l) {
4497     //   long s = l >> 63;
4498     //   float r = cul2f((l + s) ^ s);
4499     //   return s ? -r : r;
4500     // }
4501     Register L = Src;
4502     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4503     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4504 
4505     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4506     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4507     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4508 
4509     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4510     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4511                                             MIRBuilder.buildConstant(S64, 0));
4512     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4513     MI.eraseFromParent();
4514     return Legalized;
4515   }
4516 
4517   return UnableToLegalize;
4518 }
4519 
4520 LegalizerHelper::LegalizeResult
4521 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4522   Register Dst = MI.getOperand(0).getReg();
4523   Register Src = MI.getOperand(1).getReg();
4524   LLT DstTy = MRI.getType(Dst);
4525   LLT SrcTy = MRI.getType(Src);
4526   const LLT S64 = LLT::scalar(64);
4527   const LLT S32 = LLT::scalar(32);
4528 
4529   if (SrcTy != S64 && SrcTy != S32)
4530     return UnableToLegalize;
4531   if (DstTy != S32 && DstTy != S64)
4532     return UnableToLegalize;
4533 
4534   // FPTOSI gives same result as FPTOUI for positive signed integers.
4535   // FPTOUI needs to deal with fp values that convert to unsigned integers
4536   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4537 
4538   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4539   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4540                                                 : APFloat::IEEEdouble(),
4541                     APInt::getNullValue(SrcTy.getSizeInBits()));
4542   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4543 
4544   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4545 
4546   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4547   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4548   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4549   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4550   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4551   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4552   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4553 
4554   const LLT S1 = LLT::scalar(1);
4555 
4556   MachineInstrBuilder FCMP =
4557       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4558   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4559 
4560   MI.eraseFromParent();
4561   return Legalized;
4562 }
4563 
4564 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4565   Register Dst = MI.getOperand(0).getReg();
4566   Register Src = MI.getOperand(1).getReg();
4567   LLT DstTy = MRI.getType(Dst);
4568   LLT SrcTy = MRI.getType(Src);
4569   const LLT S64 = LLT::scalar(64);
4570   const LLT S32 = LLT::scalar(32);
4571 
4572   // FIXME: Only f32 to i64 conversions are supported.
4573   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4574     return UnableToLegalize;
4575 
4576   // Expand f32 -> i64 conversion
4577   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4578   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4579 
4580   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4581 
4582   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4583   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4584 
4585   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4586   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4587 
4588   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4589                                            APInt::getSignMask(SrcEltBits));
4590   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4591   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4592   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4593   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4594 
4595   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4596   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4597   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4598 
4599   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4600   R = MIRBuilder.buildZExt(DstTy, R);
4601 
4602   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4603   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4604   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4605   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4606 
4607   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4608   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4609 
4610   const LLT S1 = LLT::scalar(1);
4611   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4612                                     S1, Exponent, ExponentLoBit);
4613 
4614   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4615 
4616   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4617   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4618 
4619   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4620 
4621   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4622                                           S1, Exponent, ZeroSrcTy);
4623 
4624   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4625   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4626 
4627   MI.eraseFromParent();
4628   return Legalized;
4629 }
4630 
4631 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4632 LegalizerHelper::LegalizeResult
4633 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4634   Register Dst = MI.getOperand(0).getReg();
4635   Register Src = MI.getOperand(1).getReg();
4636 
4637   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4638     return UnableToLegalize;
4639 
4640   const unsigned ExpMask = 0x7ff;
4641   const unsigned ExpBiasf64 = 1023;
4642   const unsigned ExpBiasf16 = 15;
4643   const LLT S32 = LLT::scalar(32);
4644   const LLT S1 = LLT::scalar(1);
4645 
4646   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4647   Register U = Unmerge.getReg(0);
4648   Register UH = Unmerge.getReg(1);
4649 
4650   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4651   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4652 
4653   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4654   // add the f16 bias (15) to get the biased exponent for the f16 format.
4655   E = MIRBuilder.buildAdd(
4656     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4657 
4658   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4659   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4660 
4661   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4662                                        MIRBuilder.buildConstant(S32, 0x1ff));
4663   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4664 
4665   auto Zero = MIRBuilder.buildConstant(S32, 0);
4666   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4667   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4668   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4669 
4670   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4671   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4672   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4673   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4674 
4675   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4676   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4677 
4678   // N = M | (E << 12);
4679   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4680   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4681 
4682   // B = clamp(1-E, 0, 13);
4683   auto One = MIRBuilder.buildConstant(S32, 1);
4684   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4685   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4686   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4687 
4688   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4689                                        MIRBuilder.buildConstant(S32, 0x1000));
4690 
4691   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4692   auto D0 = MIRBuilder.buildShl(S32, D, B);
4693 
4694   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4695                                              D0, SigSetHigh);
4696   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4697   D = MIRBuilder.buildOr(S32, D, D1);
4698 
4699   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4700   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4701 
4702   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4703   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4704 
4705   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4706                                        MIRBuilder.buildConstant(S32, 3));
4707   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4708 
4709   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4710                                        MIRBuilder.buildConstant(S32, 5));
4711   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4712 
4713   V1 = MIRBuilder.buildOr(S32, V0, V1);
4714   V = MIRBuilder.buildAdd(S32, V, V1);
4715 
4716   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4717                                        E, MIRBuilder.buildConstant(S32, 30));
4718   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4719                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4720 
4721   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4722                                          E, MIRBuilder.buildConstant(S32, 1039));
4723   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4724 
4725   // Extract the sign bit.
4726   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4727   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4728 
4729   // Insert the sign bit
4730   V = MIRBuilder.buildOr(S32, Sign, V);
4731 
4732   MIRBuilder.buildTrunc(Dst, V);
4733   MI.eraseFromParent();
4734   return Legalized;
4735 }
4736 
4737 LegalizerHelper::LegalizeResult
4738 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4739   Register Dst = MI.getOperand(0).getReg();
4740   Register Src = MI.getOperand(1).getReg();
4741 
4742   LLT DstTy = MRI.getType(Dst);
4743   LLT SrcTy = MRI.getType(Src);
4744   const LLT S64 = LLT::scalar(64);
4745   const LLT S16 = LLT::scalar(16);
4746 
4747   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4748     return lowerFPTRUNC_F64_TO_F16(MI);
4749 
4750   return UnableToLegalize;
4751 }
4752 
4753 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4754   switch (Opc) {
4755   case TargetOpcode::G_SMIN:
4756     return CmpInst::ICMP_SLT;
4757   case TargetOpcode::G_SMAX:
4758     return CmpInst::ICMP_SGT;
4759   case TargetOpcode::G_UMIN:
4760     return CmpInst::ICMP_ULT;
4761   case TargetOpcode::G_UMAX:
4762     return CmpInst::ICMP_UGT;
4763   default:
4764     llvm_unreachable("not in integer min/max");
4765   }
4766 }
4767 
4768 LegalizerHelper::LegalizeResult
4769 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4770   Register Dst = MI.getOperand(0).getReg();
4771   Register Src0 = MI.getOperand(1).getReg();
4772   Register Src1 = MI.getOperand(2).getReg();
4773 
4774   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4775   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4776 
4777   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4778   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4779 
4780   MI.eraseFromParent();
4781   return Legalized;
4782 }
4783 
4784 LegalizerHelper::LegalizeResult
4785 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4786   Register Dst = MI.getOperand(0).getReg();
4787   Register Src0 = MI.getOperand(1).getReg();
4788   Register Src1 = MI.getOperand(2).getReg();
4789 
4790   const LLT Src0Ty = MRI.getType(Src0);
4791   const LLT Src1Ty = MRI.getType(Src1);
4792 
4793   const int Src0Size = Src0Ty.getScalarSizeInBits();
4794   const int Src1Size = Src1Ty.getScalarSizeInBits();
4795 
4796   auto SignBitMask = MIRBuilder.buildConstant(
4797     Src0Ty, APInt::getSignMask(Src0Size));
4798 
4799   auto NotSignBitMask = MIRBuilder.buildConstant(
4800     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4801 
4802   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4803   MachineInstr *Or;
4804 
4805   if (Src0Ty == Src1Ty) {
4806     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4807     Or = MIRBuilder.buildOr(Dst, And0, And1);
4808   } else if (Src0Size > Src1Size) {
4809     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4810     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4811     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4812     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4813     Or = MIRBuilder.buildOr(Dst, And0, And1);
4814   } else {
4815     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4816     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4817     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4818     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4819     Or = MIRBuilder.buildOr(Dst, And0, And1);
4820   }
4821 
4822   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4823   // constants are a nan and -0.0, but the final result should preserve
4824   // everything.
4825   if (unsigned Flags = MI.getFlags())
4826     Or->setFlags(Flags);
4827 
4828   MI.eraseFromParent();
4829   return Legalized;
4830 }
4831 
4832 LegalizerHelper::LegalizeResult
4833 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4834   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4835     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4836 
4837   Register Dst = MI.getOperand(0).getReg();
4838   Register Src0 = MI.getOperand(1).getReg();
4839   Register Src1 = MI.getOperand(2).getReg();
4840   LLT Ty = MRI.getType(Dst);
4841 
4842   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4843     // Insert canonicalizes if it's possible we need to quiet to get correct
4844     // sNaN behavior.
4845 
4846     // Note this must be done here, and not as an optimization combine in the
4847     // absence of a dedicate quiet-snan instruction as we're using an
4848     // omni-purpose G_FCANONICALIZE.
4849     if (!isKnownNeverSNaN(Src0, MRI))
4850       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4851 
4852     if (!isKnownNeverSNaN(Src1, MRI))
4853       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4854   }
4855 
4856   // If there are no nans, it's safe to simply replace this with the non-IEEE
4857   // version.
4858   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4859   MI.eraseFromParent();
4860   return Legalized;
4861 }
4862 
4863 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4864   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4865   Register DstReg = MI.getOperand(0).getReg();
4866   LLT Ty = MRI.getType(DstReg);
4867   unsigned Flags = MI.getFlags();
4868 
4869   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4870                                   Flags);
4871   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4872   MI.eraseFromParent();
4873   return Legalized;
4874 }
4875 
4876 LegalizerHelper::LegalizeResult
4877 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4878   Register DstReg = MI.getOperand(0).getReg();
4879   Register X = MI.getOperand(1).getReg();
4880   const unsigned Flags = MI.getFlags();
4881   const LLT Ty = MRI.getType(DstReg);
4882   const LLT CondTy = Ty.changeElementSize(1);
4883 
4884   // round(x) =>
4885   //  t = trunc(x);
4886   //  d = fabs(x - t);
4887   //  o = copysign(1.0f, x);
4888   //  return t + (d >= 0.5 ? o : 0.0);
4889 
4890   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4891 
4892   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4893   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4894   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4895   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4896   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4897   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4898 
4899   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4900                                   Flags);
4901   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4902 
4903   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4904 
4905   MI.eraseFromParent();
4906   return Legalized;
4907 }
4908 
4909 LegalizerHelper::LegalizeResult
4910 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4911   Register DstReg = MI.getOperand(0).getReg();
4912   Register SrcReg = MI.getOperand(1).getReg();
4913   unsigned Flags = MI.getFlags();
4914   LLT Ty = MRI.getType(DstReg);
4915   const LLT CondTy = Ty.changeElementSize(1);
4916 
4917   // result = trunc(src);
4918   // if (src < 0.0 && src != result)
4919   //   result += -1.0.
4920 
4921   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4922   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4923 
4924   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4925                                   SrcReg, Zero, Flags);
4926   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4927                                       SrcReg, Trunc, Flags);
4928   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4929   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4930 
4931   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4932   MI.eraseFromParent();
4933   return Legalized;
4934 }
4935 
4936 LegalizerHelper::LegalizeResult
4937 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
4938   const unsigned NumOps = MI.getNumOperands();
4939   Register DstReg = MI.getOperand(0).getReg();
4940   Register Src0Reg = MI.getOperand(1).getReg();
4941   LLT DstTy = MRI.getType(DstReg);
4942   LLT SrcTy = MRI.getType(Src0Reg);
4943   unsigned PartSize = SrcTy.getSizeInBits();
4944 
4945   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
4946   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
4947 
4948   for (unsigned I = 2; I != NumOps; ++I) {
4949     const unsigned Offset = (I - 1) * PartSize;
4950 
4951     Register SrcReg = MI.getOperand(I).getReg();
4952     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
4953 
4954     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
4955       MRI.createGenericVirtualRegister(WideTy);
4956 
4957     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
4958     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
4959     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
4960     ResultReg = NextResult;
4961   }
4962 
4963   if (DstTy.isPointer()) {
4964     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
4965           DstTy.getAddressSpace())) {
4966       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
4967       return UnableToLegalize;
4968     }
4969 
4970     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
4971   }
4972 
4973   MI.eraseFromParent();
4974   return Legalized;
4975 }
4976 
4977 LegalizerHelper::LegalizeResult
4978 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4979   const unsigned NumDst = MI.getNumOperands() - 1;
4980   Register SrcReg = MI.getOperand(NumDst).getReg();
4981   Register Dst0Reg = MI.getOperand(0).getReg();
4982   LLT DstTy = MRI.getType(Dst0Reg);
4983   if (DstTy.isPointer())
4984     return UnableToLegalize; // TODO
4985 
4986   SrcReg = coerceToScalar(SrcReg);
4987   if (!SrcReg)
4988     return UnableToLegalize;
4989 
4990   // Expand scalarizing unmerge as bitcast to integer and shift.
4991   LLT IntTy = MRI.getType(SrcReg);
4992 
4993   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
4994 
4995   const unsigned DstSize = DstTy.getSizeInBits();
4996   unsigned Offset = DstSize;
4997   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4998     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4999     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5000     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5001   }
5002 
5003   MI.eraseFromParent();
5004   return Legalized;
5005 }
5006 
5007 LegalizerHelper::LegalizeResult
5008 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5009   Register DstReg = MI.getOperand(0).getReg();
5010   Register Src0Reg = MI.getOperand(1).getReg();
5011   Register Src1Reg = MI.getOperand(2).getReg();
5012   LLT Src0Ty = MRI.getType(Src0Reg);
5013   LLT DstTy = MRI.getType(DstReg);
5014   LLT IdxTy = LLT::scalar(32);
5015 
5016   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5017 
5018   if (DstTy.isScalar()) {
5019     if (Src0Ty.isVector())
5020       return UnableToLegalize;
5021 
5022     // This is just a SELECT.
5023     assert(Mask.size() == 1 && "Expected a single mask element");
5024     Register Val;
5025     if (Mask[0] < 0 || Mask[0] > 1)
5026       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5027     else
5028       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5029     MIRBuilder.buildCopy(DstReg, Val);
5030     MI.eraseFromParent();
5031     return Legalized;
5032   }
5033 
5034   Register Undef;
5035   SmallVector<Register, 32> BuildVec;
5036   LLT EltTy = DstTy.getElementType();
5037 
5038   for (int Idx : Mask) {
5039     if (Idx < 0) {
5040       if (!Undef.isValid())
5041         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5042       BuildVec.push_back(Undef);
5043       continue;
5044     }
5045 
5046     if (Src0Ty.isScalar()) {
5047       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5048     } else {
5049       int NumElts = Src0Ty.getNumElements();
5050       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5051       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5052       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5053       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5054       BuildVec.push_back(Extract.getReg(0));
5055     }
5056   }
5057 
5058   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5059   MI.eraseFromParent();
5060   return Legalized;
5061 }
5062 
5063 LegalizerHelper::LegalizeResult
5064 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5065   const auto &MF = *MI.getMF();
5066   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5067   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5068     return UnableToLegalize;
5069 
5070   Register Dst = MI.getOperand(0).getReg();
5071   Register AllocSize = MI.getOperand(1).getReg();
5072   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5073 
5074   LLT PtrTy = MRI.getType(Dst);
5075   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5076 
5077   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5078   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5079   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5080   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5081 
5082   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5083   // have to generate an extra instruction to negate the alloc and then use
5084   // G_PTR_ADD to add the negative offset.
5085   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5086   if (Alignment > Align(1)) {
5087     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5088     AlignMask.negate();
5089     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5090     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5091   }
5092 
5093   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5094   MIRBuilder.buildCopy(SPReg, SPTmp);
5095   MIRBuilder.buildCopy(Dst, SPTmp);
5096 
5097   MI.eraseFromParent();
5098   return Legalized;
5099 }
5100 
5101 LegalizerHelper::LegalizeResult
5102 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5103   Register Dst = MI.getOperand(0).getReg();
5104   Register Src = MI.getOperand(1).getReg();
5105   unsigned Offset = MI.getOperand(2).getImm();
5106 
5107   LLT DstTy = MRI.getType(Dst);
5108   LLT SrcTy = MRI.getType(Src);
5109 
5110   if (DstTy.isScalar() &&
5111       (SrcTy.isScalar() ||
5112        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5113     LLT SrcIntTy = SrcTy;
5114     if (!SrcTy.isScalar()) {
5115       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5116       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5117     }
5118 
5119     if (Offset == 0)
5120       MIRBuilder.buildTrunc(Dst, Src);
5121     else {
5122       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5123       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5124       MIRBuilder.buildTrunc(Dst, Shr);
5125     }
5126 
5127     MI.eraseFromParent();
5128     return Legalized;
5129   }
5130 
5131   return UnableToLegalize;
5132 }
5133 
5134 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5135   Register Dst = MI.getOperand(0).getReg();
5136   Register Src = MI.getOperand(1).getReg();
5137   Register InsertSrc = MI.getOperand(2).getReg();
5138   uint64_t Offset = MI.getOperand(3).getImm();
5139 
5140   LLT DstTy = MRI.getType(Src);
5141   LLT InsertTy = MRI.getType(InsertSrc);
5142 
5143   if (InsertTy.isVector() ||
5144       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5145     return UnableToLegalize;
5146 
5147   const DataLayout &DL = MIRBuilder.getDataLayout();
5148   if ((DstTy.isPointer() &&
5149        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5150       (InsertTy.isPointer() &&
5151        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5152     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5153     return UnableToLegalize;
5154   }
5155 
5156   LLT IntDstTy = DstTy;
5157 
5158   if (!DstTy.isScalar()) {
5159     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5160     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5161   }
5162 
5163   if (!InsertTy.isScalar()) {
5164     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5165     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5166   }
5167 
5168   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5169   if (Offset != 0) {
5170     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5171     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5172   }
5173 
5174   APInt MaskVal = APInt::getBitsSetWithWrap(
5175       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5176 
5177   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5178   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5179   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5180 
5181   MIRBuilder.buildCast(Dst, Or);
5182   MI.eraseFromParent();
5183   return Legalized;
5184 }
5185 
5186 LegalizerHelper::LegalizeResult
5187 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5188   Register Dst0 = MI.getOperand(0).getReg();
5189   Register Dst1 = MI.getOperand(1).getReg();
5190   Register LHS = MI.getOperand(2).getReg();
5191   Register RHS = MI.getOperand(3).getReg();
5192   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5193 
5194   LLT Ty = MRI.getType(Dst0);
5195   LLT BoolTy = MRI.getType(Dst1);
5196 
5197   if (IsAdd)
5198     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5199   else
5200     MIRBuilder.buildSub(Dst0, LHS, RHS);
5201 
5202   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5203 
5204   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5205 
5206   // For an addition, the result should be less than one of the operands (LHS)
5207   // if and only if the other operand (RHS) is negative, otherwise there will
5208   // be overflow.
5209   // For a subtraction, the result should be less than one of the operands
5210   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5211   // otherwise there will be overflow.
5212   auto ResultLowerThanLHS =
5213       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5214   auto ConditionRHS = MIRBuilder.buildICmp(
5215       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5216 
5217   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5218   MI.eraseFromParent();
5219   return Legalized;
5220 }
5221 
5222 LegalizerHelper::LegalizeResult
5223 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5224   Register Dst = MI.getOperand(0).getReg();
5225   Register Src = MI.getOperand(1).getReg();
5226   const LLT Ty = MRI.getType(Src);
5227   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5228   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5229 
5230   // Swap most and least significant byte, set remaining bytes in Res to zero.
5231   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5232   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5233   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5234   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5235 
5236   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5237   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5238     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5239     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5240     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5241     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5242     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5243     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5244     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5245     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5246     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5247     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5248     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5249     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5250   }
5251   Res.getInstr()->getOperand(0).setReg(Dst);
5252 
5253   MI.eraseFromParent();
5254   return Legalized;
5255 }
5256 
5257 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5258 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5259                                  MachineInstrBuilder Src, APInt Mask) {
5260   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5261   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5262   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5263   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5264   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5265   return B.buildOr(Dst, LHS, RHS);
5266 }
5267 
5268 LegalizerHelper::LegalizeResult
5269 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5270   Register Dst = MI.getOperand(0).getReg();
5271   Register Src = MI.getOperand(1).getReg();
5272   const LLT Ty = MRI.getType(Src);
5273   unsigned Size = Ty.getSizeInBits();
5274 
5275   MachineInstrBuilder BSWAP =
5276       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5277 
5278   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5279   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5280   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5281   MachineInstrBuilder Swap4 =
5282       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5283 
5284   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5285   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5286   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5287   MachineInstrBuilder Swap2 =
5288       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5289 
5290   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5291   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5292   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5293   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5294 
5295   MI.eraseFromParent();
5296   return Legalized;
5297 }
5298 
5299 LegalizerHelper::LegalizeResult
5300 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5301   MachineFunction &MF = MIRBuilder.getMF();
5302   const TargetSubtargetInfo &STI = MF.getSubtarget();
5303   const TargetLowering *TLI = STI.getTargetLowering();
5304 
5305   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5306   int NameOpIdx = IsRead ? 1 : 0;
5307   int ValRegIndex = IsRead ? 0 : 1;
5308 
5309   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5310   const LLT Ty = MRI.getType(ValReg);
5311   const MDString *RegStr = cast<MDString>(
5312     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5313 
5314   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5315   if (!PhysReg.isValid())
5316     return UnableToLegalize;
5317 
5318   if (IsRead)
5319     MIRBuilder.buildCopy(ValReg, PhysReg);
5320   else
5321     MIRBuilder.buildCopy(PhysReg, ValReg);
5322 
5323   MI.eraseFromParent();
5324   return Legalized;
5325 }
5326