1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 MachineBasicBlock &MBB = *MI.getParent(); 466 const Function &F = MBB.getParent()->getFunction(); 467 468 // Conservatively require the attributes of the call to match those of 469 // the return. Ignore NoAlias and NonNull because they don't affect the 470 // call sequence. 471 AttributeList CallerAttrs = F.getAttributes(); 472 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 473 .removeAttribute(Attribute::NoAlias) 474 .removeAttribute(Attribute::NonNull) 475 .hasAttributes()) 476 return false; 477 478 // It's not safe to eliminate the sign / zero extension of the return value. 479 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 480 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 481 return false; 482 483 // Only tail call if the following instruction is a standard return. 484 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 switch (MI.getOpcode()) { 640 default: 641 return UnableToLegalize; 642 case TargetOpcode::G_SDIV: 643 case TargetOpcode::G_UDIV: 644 case TargetOpcode::G_SREM: 645 case TargetOpcode::G_UREM: 646 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 647 Type *HLTy = IntegerType::get(Ctx, Size); 648 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 649 if (Status != Legalized) 650 return Status; 651 break; 652 } 653 case TargetOpcode::G_FADD: 654 case TargetOpcode::G_FSUB: 655 case TargetOpcode::G_FMUL: 656 case TargetOpcode::G_FDIV: 657 case TargetOpcode::G_FMA: 658 case TargetOpcode::G_FPOW: 659 case TargetOpcode::G_FREM: 660 case TargetOpcode::G_FCOS: 661 case TargetOpcode::G_FSIN: 662 case TargetOpcode::G_FLOG10: 663 case TargetOpcode::G_FLOG: 664 case TargetOpcode::G_FLOG2: 665 case TargetOpcode::G_FEXP: 666 case TargetOpcode::G_FEXP2: 667 case TargetOpcode::G_FCEIL: 668 case TargetOpcode::G_FFLOOR: 669 case TargetOpcode::G_FMINNUM: 670 case TargetOpcode::G_FMAXNUM: 671 case TargetOpcode::G_FSQRT: 672 case TargetOpcode::G_FRINT: 673 case TargetOpcode::G_FNEARBYINT: { 674 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 675 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 676 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 677 return UnableToLegalize; 678 } 679 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 680 if (Status != Legalized) 681 return Status; 682 break; 683 } 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: { 686 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 687 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 688 if (!FromTy || !ToTy) 689 return UnableToLegalize; 690 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 691 if (Status != Legalized) 692 return Status; 693 break; 694 } 695 case TargetOpcode::G_FPTOSI: 696 case TargetOpcode::G_FPTOUI: { 697 // FIXME: Support other types 698 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 700 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 701 return UnableToLegalize; 702 LegalizeResult Status = conversionLibcall( 703 MI, MIRBuilder, 704 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 705 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_SITOFP: 711 case TargetOpcode::G_UITOFP: { 712 // FIXME: Support other types 713 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 714 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 715 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 716 return UnableToLegalize; 717 LegalizeResult Status = conversionLibcall( 718 MI, MIRBuilder, 719 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 720 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 721 if (Status != Legalized) 722 return Status; 723 break; 724 } 725 } 726 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 732 unsigned TypeIdx, 733 LLT NarrowTy) { 734 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 735 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 736 737 switch (MI.getOpcode()) { 738 default: 739 return UnableToLegalize; 740 case TargetOpcode::G_IMPLICIT_DEF: { 741 Register DstReg = MI.getOperand(0).getReg(); 742 LLT DstTy = MRI.getType(DstReg); 743 744 // If SizeOp0 is not an exact multiple of NarrowSize, emit 745 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 746 // FIXME: Although this would also be legal for the general case, it causes 747 // a lot of regressions in the emitted code (superfluous COPYs, artifact 748 // combines not being hit). This seems to be a problem related to the 749 // artifact combiner. 750 if (SizeOp0 % NarrowSize != 0) { 751 LLT ImplicitTy = NarrowTy; 752 if (DstTy.isVector()) 753 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 754 755 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 756 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 757 758 MI.eraseFromParent(); 759 return Legalized; 760 } 761 762 int NumParts = SizeOp0 / NarrowSize; 763 764 SmallVector<Register, 2> DstRegs; 765 for (int i = 0; i < NumParts; ++i) 766 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 767 768 if (DstTy.isVector()) 769 MIRBuilder.buildBuildVector(DstReg, DstRegs); 770 else 771 MIRBuilder.buildMerge(DstReg, DstRegs); 772 MI.eraseFromParent(); 773 return Legalized; 774 } 775 case TargetOpcode::G_CONSTANT: { 776 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 777 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 778 unsigned TotalSize = Ty.getSizeInBits(); 779 unsigned NarrowSize = NarrowTy.getSizeInBits(); 780 int NumParts = TotalSize / NarrowSize; 781 782 SmallVector<Register, 4> PartRegs; 783 for (int I = 0; I != NumParts; ++I) { 784 unsigned Offset = I * NarrowSize; 785 auto K = MIRBuilder.buildConstant(NarrowTy, 786 Val.lshr(Offset).trunc(NarrowSize)); 787 PartRegs.push_back(K.getReg(0)); 788 } 789 790 LLT LeftoverTy; 791 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 792 SmallVector<Register, 1> LeftoverRegs; 793 if (LeftoverBits != 0) { 794 LeftoverTy = LLT::scalar(LeftoverBits); 795 auto K = MIRBuilder.buildConstant( 796 LeftoverTy, 797 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 798 LeftoverRegs.push_back(K.getReg(0)); 799 } 800 801 insertParts(MI.getOperand(0).getReg(), 802 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 803 804 MI.eraseFromParent(); 805 return Legalized; 806 } 807 case TargetOpcode::G_SEXT: 808 case TargetOpcode::G_ZEXT: 809 case TargetOpcode::G_ANYEXT: 810 return narrowScalarExt(MI, TypeIdx, NarrowTy); 811 case TargetOpcode::G_TRUNC: { 812 if (TypeIdx != 1) 813 return UnableToLegalize; 814 815 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 816 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 817 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 818 return UnableToLegalize; 819 } 820 821 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 822 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 827 case TargetOpcode::G_FREEZE: 828 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 829 830 case TargetOpcode::G_ADD: { 831 // FIXME: add support for when SizeOp0 isn't an exact multiple of 832 // NarrowSize. 833 if (SizeOp0 % NarrowSize != 0) 834 return UnableToLegalize; 835 // Expand in terms of carry-setting/consuming G_ADDE instructions. 836 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 837 838 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 839 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 840 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 841 842 Register CarryIn; 843 for (int i = 0; i < NumParts; ++i) { 844 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 845 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 846 847 if (i == 0) 848 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 849 else { 850 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 851 Src2Regs[i], CarryIn); 852 } 853 854 DstRegs.push_back(DstReg); 855 CarryIn = CarryOut; 856 } 857 Register DstReg = MI.getOperand(0).getReg(); 858 if(MRI.getType(DstReg).isVector()) 859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 860 else 861 MIRBuilder.buildMerge(DstReg, DstRegs); 862 MI.eraseFromParent(); 863 return Legalized; 864 } 865 case TargetOpcode::G_SUB: { 866 // FIXME: add support for when SizeOp0 isn't an exact multiple of 867 // NarrowSize. 868 if (SizeOp0 % NarrowSize != 0) 869 return UnableToLegalize; 870 871 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 872 873 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 874 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 875 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 876 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 880 {Src1Regs[0], Src2Regs[0]}); 881 DstRegs.push_back(DstReg); 882 Register BorrowIn = BorrowOut; 883 for (int i = 1; i < NumParts; ++i) { 884 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 885 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 886 887 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 888 {Src1Regs[i], Src2Regs[i], BorrowIn}); 889 890 DstRegs.push_back(DstReg); 891 BorrowIn = BorrowOut; 892 } 893 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 894 MI.eraseFromParent(); 895 return Legalized; 896 } 897 case TargetOpcode::G_MUL: 898 case TargetOpcode::G_UMULH: 899 return narrowScalarMul(MI, NarrowTy); 900 case TargetOpcode::G_EXTRACT: 901 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_INSERT: 903 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 904 case TargetOpcode::G_LOAD: { 905 const auto &MMO = **MI.memoperands_begin(); 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 if (DstTy.isVector()) 909 return UnableToLegalize; 910 911 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 912 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 913 auto &MMO = **MI.memoperands_begin(); 914 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 915 MIRBuilder.buildAnyExt(DstReg, TmpReg); 916 MI.eraseFromParent(); 917 return Legalized; 918 } 919 920 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 921 } 922 case TargetOpcode::G_ZEXTLOAD: 923 case TargetOpcode::G_SEXTLOAD: { 924 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 925 Register DstReg = MI.getOperand(0).getReg(); 926 Register PtrReg = MI.getOperand(1).getReg(); 927 928 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 929 auto &MMO = **MI.memoperands_begin(); 930 if (MMO.getSizeInBits() == NarrowSize) { 931 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 932 } else { 933 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 934 } 935 936 if (ZExt) 937 MIRBuilder.buildZExt(DstReg, TmpReg); 938 else 939 MIRBuilder.buildSExt(DstReg, TmpReg); 940 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 case TargetOpcode::G_STORE: { 945 const auto &MMO = **MI.memoperands_begin(); 946 947 Register SrcReg = MI.getOperand(0).getReg(); 948 LLT SrcTy = MRI.getType(SrcReg); 949 if (SrcTy.isVector()) 950 return UnableToLegalize; 951 952 int NumParts = SizeOp0 / NarrowSize; 953 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 954 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 955 if (SrcTy.isVector() && LeftoverBits != 0) 956 return UnableToLegalize; 957 958 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 959 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 960 auto &MMO = **MI.memoperands_begin(); 961 MIRBuilder.buildTrunc(TmpReg, SrcReg); 962 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 963 MI.eraseFromParent(); 964 return Legalized; 965 } 966 967 return reduceLoadStoreWidth(MI, 0, NarrowTy); 968 } 969 case TargetOpcode::G_SELECT: 970 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 971 case TargetOpcode::G_AND: 972 case TargetOpcode::G_OR: 973 case TargetOpcode::G_XOR: { 974 // Legalize bitwise operation: 975 // A = BinOp<Ty> B, C 976 // into: 977 // B1, ..., BN = G_UNMERGE_VALUES B 978 // C1, ..., CN = G_UNMERGE_VALUES C 979 // A1 = BinOp<Ty/N> B1, C2 980 // ... 981 // AN = BinOp<Ty/N> BN, CN 982 // A = G_MERGE_VALUES A1, ..., AN 983 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 984 } 985 case TargetOpcode::G_SHL: 986 case TargetOpcode::G_LSHR: 987 case TargetOpcode::G_ASHR: 988 return narrowScalarShift(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_CTLZ: 990 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTTZ: 992 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 993 case TargetOpcode::G_CTPOP: 994 if (TypeIdx == 1) 995 switch (MI.getOpcode()) { 996 case TargetOpcode::G_CTLZ: 997 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 998 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1002 case TargetOpcode::G_CTPOP: 1003 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1004 default: 1005 return UnableToLegalize; 1006 } 1007 1008 Observer.changingInstr(MI); 1009 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 case TargetOpcode::G_INTTOPTR: 1013 if (TypeIdx != 1) 1014 return UnableToLegalize; 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarSrc(MI, NarrowTy, 1); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_PTRTOINT: 1021 if (TypeIdx != 0) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PHI: { 1029 unsigned NumParts = SizeOp0 / NarrowSize; 1030 SmallVector<Register, 2> DstRegs(NumParts); 1031 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1032 Observer.changingInstr(MI); 1033 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1034 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1035 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1036 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1037 SrcRegs[i / 2]); 1038 } 1039 MachineBasicBlock &MBB = *MI.getParent(); 1040 MIRBuilder.setInsertPt(MBB, MI); 1041 for (unsigned i = 0; i < NumParts; ++i) { 1042 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1043 MachineInstrBuilder MIB = 1044 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1045 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1046 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1047 } 1048 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1049 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1050 Observer.changedInstr(MI); 1051 MI.eraseFromParent(); 1052 return Legalized; 1053 } 1054 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1055 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1056 if (TypeIdx != 2) 1057 return UnableToLegalize; 1058 1059 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1060 Observer.changingInstr(MI); 1061 narrowScalarSrc(MI, NarrowTy, OpIdx); 1062 Observer.changedInstr(MI); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ICMP: { 1066 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1067 if (NarrowSize * 2 != SrcSize) 1068 return UnableToLegalize; 1069 1070 Observer.changingInstr(MI); 1071 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1072 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1073 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1074 1075 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1078 1079 CmpInst::Predicate Pred = 1080 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1081 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1082 1083 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1084 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1085 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1086 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1087 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1088 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1089 } else { 1090 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpHEQ = 1092 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1094 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1095 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1096 } 1097 Observer.changedInstr(MI); 1098 MI.eraseFromParent(); 1099 return Legalized; 1100 } 1101 case TargetOpcode::G_SEXT_INREG: { 1102 if (TypeIdx != 0) 1103 return UnableToLegalize; 1104 1105 int64_t SizeInBits = MI.getOperand(2).getImm(); 1106 1107 // So long as the new type has more bits than the bits we're extending we 1108 // don't need to break it apart. 1109 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1110 Observer.changingInstr(MI); 1111 // We don't lose any non-extension bits by truncating the src and 1112 // sign-extending the dst. 1113 MachineOperand &MO1 = MI.getOperand(1); 1114 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1115 MO1.setReg(TruncMIB.getReg(0)); 1116 1117 MachineOperand &MO2 = MI.getOperand(0); 1118 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1119 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1120 MIRBuilder.buildSExt(MO2, DstExt); 1121 MO2.setReg(DstExt); 1122 Observer.changedInstr(MI); 1123 return Legalized; 1124 } 1125 1126 // Break it apart. Components below the extension point are unmodified. The 1127 // component containing the extension point becomes a narrower SEXT_INREG. 1128 // Components above it are ashr'd from the component containing the 1129 // extension point. 1130 if (SizeOp0 % NarrowSize != 0) 1131 return UnableToLegalize; 1132 int NumParts = SizeOp0 / NarrowSize; 1133 1134 // List the registers where the destination will be scattered. 1135 SmallVector<Register, 2> DstRegs; 1136 // List the registers where the source will be split. 1137 SmallVector<Register, 2> SrcRegs; 1138 1139 // Create all the temporary registers. 1140 for (int i = 0; i < NumParts; ++i) { 1141 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1142 1143 SrcRegs.push_back(SrcReg); 1144 } 1145 1146 // Explode the big arguments into smaller chunks. 1147 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1148 1149 Register AshrCstReg = 1150 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1151 .getReg(0); 1152 Register FullExtensionReg = 0; 1153 Register PartialExtensionReg = 0; 1154 1155 // Do the operation on each small part. 1156 for (int i = 0; i < NumParts; ++i) { 1157 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1158 DstRegs.push_back(SrcRegs[i]); 1159 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1160 assert(PartialExtensionReg && 1161 "Expected to visit partial extension before full"); 1162 if (FullExtensionReg) { 1163 DstRegs.push_back(FullExtensionReg); 1164 continue; 1165 } 1166 DstRegs.push_back( 1167 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1168 .getReg(0)); 1169 FullExtensionReg = DstRegs.back(); 1170 } else { 1171 DstRegs.push_back( 1172 MIRBuilder 1173 .buildInstr( 1174 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1175 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1176 .getReg(0)); 1177 PartialExtensionReg = DstRegs.back(); 1178 } 1179 } 1180 1181 // Gather the destination registers into the final destination. 1182 Register DstReg = MI.getOperand(0).getReg(); 1183 MIRBuilder.buildMerge(DstReg, DstRegs); 1184 MI.eraseFromParent(); 1185 return Legalized; 1186 } 1187 case TargetOpcode::G_BSWAP: 1188 case TargetOpcode::G_BITREVERSE: { 1189 if (SizeOp0 % NarrowSize != 0) 1190 return UnableToLegalize; 1191 1192 Observer.changingInstr(MI); 1193 SmallVector<Register, 2> SrcRegs, DstRegs; 1194 unsigned NumParts = SizeOp0 / NarrowSize; 1195 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1196 1197 for (unsigned i = 0; i < NumParts; ++i) { 1198 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1199 {SrcRegs[NumParts - 1 - i]}); 1200 DstRegs.push_back(DstPart.getReg(0)); 1201 } 1202 1203 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1204 1205 Observer.changedInstr(MI); 1206 MI.eraseFromParent(); 1207 return Legalized; 1208 } 1209 case TargetOpcode::G_PTRMASK: { 1210 if (TypeIdx != 1) 1211 return UnableToLegalize; 1212 Observer.changingInstr(MI); 1213 narrowScalarSrc(MI, NarrowTy, 2); 1214 Observer.changedInstr(MI); 1215 return Legalized; 1216 } 1217 } 1218 } 1219 1220 Register LegalizerHelper::coerceToScalar(Register Val) { 1221 LLT Ty = MRI.getType(Val); 1222 if (Ty.isScalar()) 1223 return Val; 1224 1225 const DataLayout &DL = MIRBuilder.getDataLayout(); 1226 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1227 if (Ty.isPointer()) { 1228 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1229 return Register(); 1230 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1231 } 1232 1233 Register NewVal = Val; 1234 1235 assert(Ty.isVector()); 1236 LLT EltTy = Ty.getElementType(); 1237 if (EltTy.isPointer()) 1238 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1239 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1240 } 1241 1242 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1243 unsigned OpIdx, unsigned ExtOpcode) { 1244 MachineOperand &MO = MI.getOperand(OpIdx); 1245 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1246 MO.setReg(ExtB.getReg(0)); 1247 } 1248 1249 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1250 unsigned OpIdx) { 1251 MachineOperand &MO = MI.getOperand(OpIdx); 1252 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1253 MO.setReg(ExtB.getReg(0)); 1254 } 1255 1256 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1257 unsigned OpIdx, unsigned TruncOpcode) { 1258 MachineOperand &MO = MI.getOperand(OpIdx); 1259 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1260 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1261 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1262 MO.setReg(DstExt); 1263 } 1264 1265 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1266 unsigned OpIdx, unsigned ExtOpcode) { 1267 MachineOperand &MO = MI.getOperand(OpIdx); 1268 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1269 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1270 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1271 MO.setReg(DstTrunc); 1272 } 1273 1274 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1275 unsigned OpIdx) { 1276 MachineOperand &MO = MI.getOperand(OpIdx); 1277 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1278 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1279 MIRBuilder.buildExtract(MO, DstExt, 0); 1280 MO.setReg(DstExt); 1281 } 1282 1283 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1284 unsigned OpIdx) { 1285 MachineOperand &MO = MI.getOperand(OpIdx); 1286 1287 LLT OldTy = MRI.getType(MO.getReg()); 1288 unsigned OldElts = OldTy.getNumElements(); 1289 unsigned NewElts = MoreTy.getNumElements(); 1290 1291 unsigned NumParts = NewElts / OldElts; 1292 1293 // Use concat_vectors if the result is a multiple of the number of elements. 1294 if (NumParts * OldElts == NewElts) { 1295 SmallVector<Register, 8> Parts; 1296 Parts.push_back(MO.getReg()); 1297 1298 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1299 for (unsigned I = 1; I != NumParts; ++I) 1300 Parts.push_back(ImpDef); 1301 1302 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1303 MO.setReg(Concat.getReg(0)); 1304 return; 1305 } 1306 1307 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1308 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1309 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1310 MO.setReg(MoreReg); 1311 } 1312 1313 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1314 MachineOperand &Op = MI.getOperand(OpIdx); 1315 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1316 } 1317 1318 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildBitcast(MO, CastDst); 1323 MO.setReg(CastDst); 1324 } 1325 1326 LegalizerHelper::LegalizeResult 1327 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1328 LLT WideTy) { 1329 if (TypeIdx != 1) 1330 return UnableToLegalize; 1331 1332 Register DstReg = MI.getOperand(0).getReg(); 1333 LLT DstTy = MRI.getType(DstReg); 1334 if (DstTy.isVector()) 1335 return UnableToLegalize; 1336 1337 Register Src1 = MI.getOperand(1).getReg(); 1338 LLT SrcTy = MRI.getType(Src1); 1339 const int DstSize = DstTy.getSizeInBits(); 1340 const int SrcSize = SrcTy.getSizeInBits(); 1341 const int WideSize = WideTy.getSizeInBits(); 1342 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1343 1344 unsigned NumOps = MI.getNumOperands(); 1345 unsigned NumSrc = MI.getNumOperands() - 1; 1346 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1347 1348 if (WideSize >= DstSize) { 1349 // Directly pack the bits in the target type. 1350 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1351 1352 for (unsigned I = 2; I != NumOps; ++I) { 1353 const unsigned Offset = (I - 1) * PartSize; 1354 1355 Register SrcReg = MI.getOperand(I).getReg(); 1356 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1357 1358 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1359 1360 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1361 MRI.createGenericVirtualRegister(WideTy); 1362 1363 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1364 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1365 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1366 ResultReg = NextResult; 1367 } 1368 1369 if (WideSize > DstSize) 1370 MIRBuilder.buildTrunc(DstReg, ResultReg); 1371 else if (DstTy.isPointer()) 1372 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1373 1374 MI.eraseFromParent(); 1375 return Legalized; 1376 } 1377 1378 // Unmerge the original values to the GCD type, and recombine to the next 1379 // multiple greater than the original type. 1380 // 1381 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1382 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1383 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1384 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1385 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1386 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1387 // %12:_(s12) = G_MERGE_VALUES %10, %11 1388 // 1389 // Padding with undef if necessary: 1390 // 1391 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1392 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1393 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1394 // %7:_(s2) = G_IMPLICIT_DEF 1395 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1396 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1397 // %10:_(s12) = G_MERGE_VALUES %8, %9 1398 1399 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1400 LLT GCDTy = LLT::scalar(GCD); 1401 1402 SmallVector<Register, 8> Parts; 1403 SmallVector<Register, 8> NewMergeRegs; 1404 SmallVector<Register, 8> Unmerges; 1405 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1406 1407 // Decompose the original operands if they don't evenly divide. 1408 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1409 Register SrcReg = MI.getOperand(I).getReg(); 1410 if (GCD == SrcSize) { 1411 Unmerges.push_back(SrcReg); 1412 } else { 1413 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1414 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1415 Unmerges.push_back(Unmerge.getReg(J)); 1416 } 1417 } 1418 1419 // Pad with undef to the next size that is a multiple of the requested size. 1420 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1421 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1422 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1423 Unmerges.push_back(UndefReg); 1424 } 1425 1426 const int PartsPerGCD = WideSize / GCD; 1427 1428 // Build merges of each piece. 1429 ArrayRef<Register> Slicer(Unmerges); 1430 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1431 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1432 NewMergeRegs.push_back(Merge.getReg(0)); 1433 } 1434 1435 // A truncate may be necessary if the requested type doesn't evenly divide the 1436 // original result type. 1437 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1438 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1439 } else { 1440 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1441 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1442 } 1443 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 1448 LegalizerHelper::LegalizeResult 1449 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1450 LLT WideTy) { 1451 if (TypeIdx != 0) 1452 return UnableToLegalize; 1453 1454 int NumDst = MI.getNumOperands() - 1; 1455 Register SrcReg = MI.getOperand(NumDst).getReg(); 1456 LLT SrcTy = MRI.getType(SrcReg); 1457 if (SrcTy.isVector()) 1458 return UnableToLegalize; 1459 1460 Register Dst0Reg = MI.getOperand(0).getReg(); 1461 LLT DstTy = MRI.getType(Dst0Reg); 1462 if (!DstTy.isScalar()) 1463 return UnableToLegalize; 1464 1465 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1466 if (SrcTy.isPointer()) { 1467 const DataLayout &DL = MIRBuilder.getDataLayout(); 1468 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1469 LLVM_DEBUG( 1470 dbgs() << "Not casting non-integral address space integer\n"); 1471 return UnableToLegalize; 1472 } 1473 1474 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1475 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1476 } 1477 1478 // Widen SrcTy to WideTy. This does not affect the result, but since the 1479 // user requested this size, it is probably better handled than SrcTy and 1480 // should reduce the total number of legalization artifacts 1481 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1482 SrcTy = WideTy; 1483 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1484 } 1485 1486 // Theres no unmerge type to target. Directly extract the bits from the 1487 // source type 1488 unsigned DstSize = DstTy.getSizeInBits(); 1489 1490 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1491 for (int I = 1; I != NumDst; ++I) { 1492 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1493 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1494 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1495 } 1496 1497 MI.eraseFromParent(); 1498 return Legalized; 1499 } 1500 1501 // Extend the source to a wider type. 1502 LLT LCMTy = getLCMType(SrcTy, WideTy); 1503 1504 Register WideSrc = SrcReg; 1505 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1506 // TODO: If this is an integral address space, cast to integer and anyext. 1507 if (SrcTy.isPointer()) { 1508 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1509 return UnableToLegalize; 1510 } 1511 1512 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1513 } 1514 1515 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1516 1517 // Create a sequence of unmerges to the original results. since we may have 1518 // widened the source, we will need to pad the results with dead defs to cover 1519 // the source register. 1520 // e.g. widen s16 to s32: 1521 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1522 // 1523 // => 1524 // %4:_(s64) = G_ANYEXT %0:_(s48) 1525 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1526 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1527 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1528 1529 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1530 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1531 1532 for (int I = 0; I != NumUnmerge; ++I) { 1533 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1534 1535 for (int J = 0; J != PartsPerUnmerge; ++J) { 1536 int Idx = I * PartsPerUnmerge + J; 1537 if (Idx < NumDst) 1538 MIB.addDef(MI.getOperand(Idx).getReg()); 1539 else { 1540 // Create dead def for excess components. 1541 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1542 } 1543 } 1544 1545 MIB.addUse(Unmerge.getReg(I)); 1546 } 1547 1548 MI.eraseFromParent(); 1549 return Legalized; 1550 } 1551 1552 LegalizerHelper::LegalizeResult 1553 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1554 LLT WideTy) { 1555 Register DstReg = MI.getOperand(0).getReg(); 1556 Register SrcReg = MI.getOperand(1).getReg(); 1557 LLT SrcTy = MRI.getType(SrcReg); 1558 1559 LLT DstTy = MRI.getType(DstReg); 1560 unsigned Offset = MI.getOperand(2).getImm(); 1561 1562 if (TypeIdx == 0) { 1563 if (SrcTy.isVector() || DstTy.isVector()) 1564 return UnableToLegalize; 1565 1566 SrcOp Src(SrcReg); 1567 if (SrcTy.isPointer()) { 1568 // Extracts from pointers can be handled only if they are really just 1569 // simple integers. 1570 const DataLayout &DL = MIRBuilder.getDataLayout(); 1571 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1572 return UnableToLegalize; 1573 1574 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1575 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1576 SrcTy = SrcAsIntTy; 1577 } 1578 1579 if (DstTy.isPointer()) 1580 return UnableToLegalize; 1581 1582 if (Offset == 0) { 1583 // Avoid a shift in the degenerate case. 1584 MIRBuilder.buildTrunc(DstReg, 1585 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1586 MI.eraseFromParent(); 1587 return Legalized; 1588 } 1589 1590 // Do a shift in the source type. 1591 LLT ShiftTy = SrcTy; 1592 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1593 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1594 ShiftTy = WideTy; 1595 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1596 return UnableToLegalize; 1597 1598 auto LShr = MIRBuilder.buildLShr( 1599 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1600 MIRBuilder.buildTrunc(DstReg, LShr); 1601 MI.eraseFromParent(); 1602 return Legalized; 1603 } 1604 1605 if (SrcTy.isScalar()) { 1606 Observer.changingInstr(MI); 1607 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1608 Observer.changedInstr(MI); 1609 return Legalized; 1610 } 1611 1612 if (!SrcTy.isVector()) 1613 return UnableToLegalize; 1614 1615 if (DstTy != SrcTy.getElementType()) 1616 return UnableToLegalize; 1617 1618 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1619 return UnableToLegalize; 1620 1621 Observer.changingInstr(MI); 1622 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1623 1624 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1625 Offset); 1626 widenScalarDst(MI, WideTy.getScalarType(), 0); 1627 Observer.changedInstr(MI); 1628 return Legalized; 1629 } 1630 1631 LegalizerHelper::LegalizeResult 1632 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1633 LLT WideTy) { 1634 if (TypeIdx != 0) 1635 return UnableToLegalize; 1636 Observer.changingInstr(MI); 1637 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1638 widenScalarDst(MI, WideTy); 1639 Observer.changedInstr(MI); 1640 return Legalized; 1641 } 1642 1643 LegalizerHelper::LegalizeResult 1644 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1645 switch (MI.getOpcode()) { 1646 default: 1647 return UnableToLegalize; 1648 case TargetOpcode::G_EXTRACT: 1649 return widenScalarExtract(MI, TypeIdx, WideTy); 1650 case TargetOpcode::G_INSERT: 1651 return widenScalarInsert(MI, TypeIdx, WideTy); 1652 case TargetOpcode::G_MERGE_VALUES: 1653 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1654 case TargetOpcode::G_UNMERGE_VALUES: 1655 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1656 case TargetOpcode::G_UADDO: 1657 case TargetOpcode::G_USUBO: { 1658 if (TypeIdx == 1) 1659 return UnableToLegalize; // TODO 1660 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1661 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1662 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1663 ? TargetOpcode::G_ADD 1664 : TargetOpcode::G_SUB; 1665 // Do the arithmetic in the larger type. 1666 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1667 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1668 APInt Mask = 1669 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1670 auto AndOp = MIRBuilder.buildAnd( 1671 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1672 // There is no overflow if the AndOp is the same as NewOp. 1673 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1674 // Now trunc the NewOp to the original result. 1675 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1676 MI.eraseFromParent(); 1677 return Legalized; 1678 } 1679 case TargetOpcode::G_CTTZ: 1680 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1681 case TargetOpcode::G_CTLZ: 1682 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1683 case TargetOpcode::G_CTPOP: { 1684 if (TypeIdx == 0) { 1685 Observer.changingInstr(MI); 1686 widenScalarDst(MI, WideTy, 0); 1687 Observer.changedInstr(MI); 1688 return Legalized; 1689 } 1690 1691 Register SrcReg = MI.getOperand(1).getReg(); 1692 1693 // First ZEXT the input. 1694 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1695 LLT CurTy = MRI.getType(SrcReg); 1696 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1697 // The count is the same in the larger type except if the original 1698 // value was zero. This can be handled by setting the bit just off 1699 // the top of the original type. 1700 auto TopBit = 1701 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1702 MIBSrc = MIRBuilder.buildOr( 1703 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1704 } 1705 1706 // Perform the operation at the larger size. 1707 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1708 // This is already the correct result for CTPOP and CTTZs 1709 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1710 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1711 // The correct result is NewOp - (Difference in widety and current ty). 1712 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1713 MIBNewOp = MIRBuilder.buildSub( 1714 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1715 } 1716 1717 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 case TargetOpcode::G_BSWAP: { 1722 Observer.changingInstr(MI); 1723 Register DstReg = MI.getOperand(0).getReg(); 1724 1725 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1726 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1727 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1728 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1729 1730 MI.getOperand(0).setReg(DstExt); 1731 1732 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1733 1734 LLT Ty = MRI.getType(DstReg); 1735 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1736 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1737 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1738 1739 MIRBuilder.buildTrunc(DstReg, ShrReg); 1740 Observer.changedInstr(MI); 1741 return Legalized; 1742 } 1743 case TargetOpcode::G_BITREVERSE: { 1744 Observer.changingInstr(MI); 1745 1746 Register DstReg = MI.getOperand(0).getReg(); 1747 LLT Ty = MRI.getType(DstReg); 1748 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1749 1750 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1752 MI.getOperand(0).setReg(DstExt); 1753 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1754 1755 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1756 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1757 MIRBuilder.buildTrunc(DstReg, Shift); 1758 Observer.changedInstr(MI); 1759 return Legalized; 1760 } 1761 case TargetOpcode::G_FREEZE: 1762 Observer.changingInstr(MI); 1763 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1764 widenScalarDst(MI, WideTy); 1765 Observer.changedInstr(MI); 1766 return Legalized; 1767 1768 case TargetOpcode::G_ADD: 1769 case TargetOpcode::G_AND: 1770 case TargetOpcode::G_MUL: 1771 case TargetOpcode::G_OR: 1772 case TargetOpcode::G_XOR: 1773 case TargetOpcode::G_SUB: 1774 // Perform operation at larger width (any extension is fines here, high bits 1775 // don't affect the result) and then truncate the result back to the 1776 // original type. 1777 Observer.changingInstr(MI); 1778 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1779 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1780 widenScalarDst(MI, WideTy); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 1784 case TargetOpcode::G_SHL: 1785 Observer.changingInstr(MI); 1786 1787 if (TypeIdx == 0) { 1788 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1789 widenScalarDst(MI, WideTy); 1790 } else { 1791 assert(TypeIdx == 1); 1792 // The "number of bits to shift" operand must preserve its value as an 1793 // unsigned integer: 1794 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1795 } 1796 1797 Observer.changedInstr(MI); 1798 return Legalized; 1799 1800 case TargetOpcode::G_SDIV: 1801 case TargetOpcode::G_SREM: 1802 case TargetOpcode::G_SMIN: 1803 case TargetOpcode::G_SMAX: 1804 Observer.changingInstr(MI); 1805 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1806 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1807 widenScalarDst(MI, WideTy); 1808 Observer.changedInstr(MI); 1809 return Legalized; 1810 1811 case TargetOpcode::G_ASHR: 1812 case TargetOpcode::G_LSHR: 1813 Observer.changingInstr(MI); 1814 1815 if (TypeIdx == 0) { 1816 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1817 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1818 1819 widenScalarSrc(MI, WideTy, 1, CvtOp); 1820 widenScalarDst(MI, WideTy); 1821 } else { 1822 assert(TypeIdx == 1); 1823 // The "number of bits to shift" operand must preserve its value as an 1824 // unsigned integer: 1825 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1826 } 1827 1828 Observer.changedInstr(MI); 1829 return Legalized; 1830 case TargetOpcode::G_UDIV: 1831 case TargetOpcode::G_UREM: 1832 case TargetOpcode::G_UMIN: 1833 case TargetOpcode::G_UMAX: 1834 Observer.changingInstr(MI); 1835 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1836 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1837 widenScalarDst(MI, WideTy); 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 1841 case TargetOpcode::G_SELECT: 1842 Observer.changingInstr(MI); 1843 if (TypeIdx == 0) { 1844 // Perform operation at larger width (any extension is fine here, high 1845 // bits don't affect the result) and then truncate the result back to the 1846 // original type. 1847 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1848 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1849 widenScalarDst(MI, WideTy); 1850 } else { 1851 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1852 // Explicit extension is required here since high bits affect the result. 1853 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1854 } 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_FPTOSI: 1859 case TargetOpcode::G_FPTOUI: 1860 Observer.changingInstr(MI); 1861 1862 if (TypeIdx == 0) 1863 widenScalarDst(MI, WideTy); 1864 else 1865 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1866 1867 Observer.changedInstr(MI); 1868 return Legalized; 1869 case TargetOpcode::G_SITOFP: 1870 if (TypeIdx != 1) 1871 return UnableToLegalize; 1872 Observer.changingInstr(MI); 1873 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1874 Observer.changedInstr(MI); 1875 return Legalized; 1876 1877 case TargetOpcode::G_UITOFP: 1878 if (TypeIdx != 1) 1879 return UnableToLegalize; 1880 Observer.changingInstr(MI); 1881 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 1885 case TargetOpcode::G_LOAD: 1886 case TargetOpcode::G_SEXTLOAD: 1887 case TargetOpcode::G_ZEXTLOAD: 1888 Observer.changingInstr(MI); 1889 widenScalarDst(MI, WideTy); 1890 Observer.changedInstr(MI); 1891 return Legalized; 1892 1893 case TargetOpcode::G_STORE: { 1894 if (TypeIdx != 0) 1895 return UnableToLegalize; 1896 1897 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1898 if (!isPowerOf2_32(Ty.getSizeInBits())) 1899 return UnableToLegalize; 1900 1901 Observer.changingInstr(MI); 1902 1903 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1904 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1905 widenScalarSrc(MI, WideTy, 0, ExtType); 1906 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_CONSTANT: { 1911 MachineOperand &SrcMO = MI.getOperand(1); 1912 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1913 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1914 MRI.getType(MI.getOperand(0).getReg())); 1915 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1916 ExtOpc == TargetOpcode::G_ANYEXT) && 1917 "Illegal Extend"); 1918 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1919 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1920 ? SrcVal.sext(WideTy.getSizeInBits()) 1921 : SrcVal.zext(WideTy.getSizeInBits()); 1922 Observer.changingInstr(MI); 1923 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1924 1925 widenScalarDst(MI, WideTy); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 case TargetOpcode::G_FCONSTANT: { 1930 MachineOperand &SrcMO = MI.getOperand(1); 1931 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1932 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1933 bool LosesInfo; 1934 switch (WideTy.getSizeInBits()) { 1935 case 32: 1936 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1937 &LosesInfo); 1938 break; 1939 case 64: 1940 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1941 &LosesInfo); 1942 break; 1943 default: 1944 return UnableToLegalize; 1945 } 1946 1947 assert(!LosesInfo && "extend should always be lossless"); 1948 1949 Observer.changingInstr(MI); 1950 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1951 1952 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1953 Observer.changedInstr(MI); 1954 return Legalized; 1955 } 1956 case TargetOpcode::G_IMPLICIT_DEF: { 1957 Observer.changingInstr(MI); 1958 widenScalarDst(MI, WideTy); 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 } 1962 case TargetOpcode::G_BRCOND: 1963 Observer.changingInstr(MI); 1964 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1965 Observer.changedInstr(MI); 1966 return Legalized; 1967 1968 case TargetOpcode::G_FCMP: 1969 Observer.changingInstr(MI); 1970 if (TypeIdx == 0) 1971 widenScalarDst(MI, WideTy); 1972 else { 1973 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1974 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1975 } 1976 Observer.changedInstr(MI); 1977 return Legalized; 1978 1979 case TargetOpcode::G_ICMP: 1980 Observer.changingInstr(MI); 1981 if (TypeIdx == 0) 1982 widenScalarDst(MI, WideTy); 1983 else { 1984 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1985 MI.getOperand(1).getPredicate())) 1986 ? TargetOpcode::G_SEXT 1987 : TargetOpcode::G_ZEXT; 1988 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1989 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1990 } 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 1994 case TargetOpcode::G_PTR_ADD: 1995 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1996 Observer.changingInstr(MI); 1997 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1998 Observer.changedInstr(MI); 1999 return Legalized; 2000 2001 case TargetOpcode::G_PHI: { 2002 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2003 2004 Observer.changingInstr(MI); 2005 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2006 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2007 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2008 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2009 } 2010 2011 MachineBasicBlock &MBB = *MI.getParent(); 2012 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2013 widenScalarDst(MI, WideTy); 2014 Observer.changedInstr(MI); 2015 return Legalized; 2016 } 2017 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2018 if (TypeIdx == 0) { 2019 Register VecReg = MI.getOperand(1).getReg(); 2020 LLT VecTy = MRI.getType(VecReg); 2021 Observer.changingInstr(MI); 2022 2023 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2024 WideTy.getSizeInBits()), 2025 1, TargetOpcode::G_SEXT); 2026 2027 widenScalarDst(MI, WideTy, 0); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 } 2031 2032 if (TypeIdx != 2) 2033 return UnableToLegalize; 2034 Observer.changingInstr(MI); 2035 // TODO: Probably should be zext 2036 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2037 Observer.changedInstr(MI); 2038 return Legalized; 2039 } 2040 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2041 if (TypeIdx == 1) { 2042 Observer.changingInstr(MI); 2043 2044 Register VecReg = MI.getOperand(1).getReg(); 2045 LLT VecTy = MRI.getType(VecReg); 2046 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2047 2048 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2049 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2050 widenScalarDst(MI, WideVecTy, 0); 2051 Observer.changedInstr(MI); 2052 return Legalized; 2053 } 2054 2055 if (TypeIdx == 2) { 2056 Observer.changingInstr(MI); 2057 // TODO: Probably should be zext 2058 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2059 Observer.changedInstr(MI); 2060 return Legalized; 2061 } 2062 2063 return UnableToLegalize; 2064 } 2065 case TargetOpcode::G_FADD: 2066 case TargetOpcode::G_FMUL: 2067 case TargetOpcode::G_FSUB: 2068 case TargetOpcode::G_FMA: 2069 case TargetOpcode::G_FMAD: 2070 case TargetOpcode::G_FNEG: 2071 case TargetOpcode::G_FABS: 2072 case TargetOpcode::G_FCANONICALIZE: 2073 case TargetOpcode::G_FMINNUM: 2074 case TargetOpcode::G_FMAXNUM: 2075 case TargetOpcode::G_FMINNUM_IEEE: 2076 case TargetOpcode::G_FMAXNUM_IEEE: 2077 case TargetOpcode::G_FMINIMUM: 2078 case TargetOpcode::G_FMAXIMUM: 2079 case TargetOpcode::G_FDIV: 2080 case TargetOpcode::G_FREM: 2081 case TargetOpcode::G_FCEIL: 2082 case TargetOpcode::G_FFLOOR: 2083 case TargetOpcode::G_FCOS: 2084 case TargetOpcode::G_FSIN: 2085 case TargetOpcode::G_FLOG10: 2086 case TargetOpcode::G_FLOG: 2087 case TargetOpcode::G_FLOG2: 2088 case TargetOpcode::G_FRINT: 2089 case TargetOpcode::G_FNEARBYINT: 2090 case TargetOpcode::G_FSQRT: 2091 case TargetOpcode::G_FEXP: 2092 case TargetOpcode::G_FEXP2: 2093 case TargetOpcode::G_FPOW: 2094 case TargetOpcode::G_INTRINSIC_TRUNC: 2095 case TargetOpcode::G_INTRINSIC_ROUND: 2096 assert(TypeIdx == 0); 2097 Observer.changingInstr(MI); 2098 2099 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2100 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2101 2102 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2103 Observer.changedInstr(MI); 2104 return Legalized; 2105 case TargetOpcode::G_INTTOPTR: 2106 if (TypeIdx != 1) 2107 return UnableToLegalize; 2108 2109 Observer.changingInstr(MI); 2110 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2111 Observer.changedInstr(MI); 2112 return Legalized; 2113 case TargetOpcode::G_PTRTOINT: 2114 if (TypeIdx != 0) 2115 return UnableToLegalize; 2116 2117 Observer.changingInstr(MI); 2118 widenScalarDst(MI, WideTy, 0); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 case TargetOpcode::G_BUILD_VECTOR: { 2122 Observer.changingInstr(MI); 2123 2124 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2125 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2126 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2127 2128 // Avoid changing the result vector type if the source element type was 2129 // requested. 2130 if (TypeIdx == 1) { 2131 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2132 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2133 } else { 2134 widenScalarDst(MI, WideTy, 0); 2135 } 2136 2137 Observer.changedInstr(MI); 2138 return Legalized; 2139 } 2140 case TargetOpcode::G_SEXT_INREG: 2141 if (TypeIdx != 0) 2142 return UnableToLegalize; 2143 2144 Observer.changingInstr(MI); 2145 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2146 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2147 Observer.changedInstr(MI); 2148 return Legalized; 2149 case TargetOpcode::G_PTRMASK: { 2150 if (TypeIdx != 1) 2151 return UnableToLegalize; 2152 Observer.changingInstr(MI); 2153 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2154 Observer.changedInstr(MI); 2155 return Legalized; 2156 } 2157 } 2158 } 2159 2160 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2161 MachineIRBuilder &B, Register Src, LLT Ty) { 2162 auto Unmerge = B.buildUnmerge(Ty, Src); 2163 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2164 Pieces.push_back(Unmerge.getReg(I)); 2165 } 2166 2167 LegalizerHelper::LegalizeResult 2168 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2169 Register Dst = MI.getOperand(0).getReg(); 2170 Register Src = MI.getOperand(1).getReg(); 2171 LLT DstTy = MRI.getType(Dst); 2172 LLT SrcTy = MRI.getType(Src); 2173 2174 if (SrcTy.isVector()) { 2175 LLT SrcEltTy = SrcTy.getElementType(); 2176 SmallVector<Register, 8> SrcRegs; 2177 2178 if (DstTy.isVector()) { 2179 int NumDstElt = DstTy.getNumElements(); 2180 int NumSrcElt = SrcTy.getNumElements(); 2181 2182 LLT DstEltTy = DstTy.getElementType(); 2183 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2184 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2185 2186 // If there's an element size mismatch, insert intermediate casts to match 2187 // the result element type. 2188 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2189 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2190 // 2191 // => 2192 // 2193 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2194 // %3:_(<2 x s8>) = G_BITCAST %2 2195 // %4:_(<2 x s8>) = G_BITCAST %3 2196 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2197 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2198 SrcPartTy = SrcEltTy; 2199 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2200 // 2201 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2202 // 2203 // => 2204 // 2205 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2206 // %3:_(s16) = G_BITCAST %2 2207 // %4:_(s16) = G_BITCAST %3 2208 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2209 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2210 DstCastTy = DstEltTy; 2211 } 2212 2213 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2214 for (Register &SrcReg : SrcRegs) 2215 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2216 } else 2217 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2218 2219 MIRBuilder.buildMerge(Dst, SrcRegs); 2220 MI.eraseFromParent(); 2221 return Legalized; 2222 } 2223 2224 if (DstTy.isVector()) { 2225 SmallVector<Register, 8> SrcRegs; 2226 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2227 MIRBuilder.buildMerge(Dst, SrcRegs); 2228 MI.eraseFromParent(); 2229 return Legalized; 2230 } 2231 2232 return UnableToLegalize; 2233 } 2234 2235 LegalizerHelper::LegalizeResult 2236 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2237 switch (MI.getOpcode()) { 2238 case TargetOpcode::G_LOAD: { 2239 if (TypeIdx != 0) 2240 return UnableToLegalize; 2241 2242 Observer.changingInstr(MI); 2243 bitcastDst(MI, CastTy, 0); 2244 Observer.changedInstr(MI); 2245 return Legalized; 2246 } 2247 case TargetOpcode::G_STORE: { 2248 if (TypeIdx != 0) 2249 return UnableToLegalize; 2250 2251 Observer.changingInstr(MI); 2252 bitcastSrc(MI, CastTy, 0); 2253 Observer.changedInstr(MI); 2254 return Legalized; 2255 } 2256 case TargetOpcode::G_SELECT: { 2257 if (TypeIdx != 0) 2258 return UnableToLegalize; 2259 2260 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2261 LLVM_DEBUG( 2262 dbgs() << "bitcast action not implemented for vector select\n"); 2263 return UnableToLegalize; 2264 } 2265 2266 Observer.changingInstr(MI); 2267 bitcastSrc(MI, CastTy, 2); 2268 bitcastSrc(MI, CastTy, 3); 2269 bitcastDst(MI, CastTy, 0); 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 } 2273 case TargetOpcode::G_AND: 2274 case TargetOpcode::G_OR: 2275 case TargetOpcode::G_XOR: { 2276 Observer.changingInstr(MI); 2277 bitcastSrc(MI, CastTy, 1); 2278 bitcastSrc(MI, CastTy, 2); 2279 bitcastDst(MI, CastTy, 0); 2280 Observer.changedInstr(MI); 2281 return Legalized; 2282 } 2283 default: 2284 return UnableToLegalize; 2285 } 2286 } 2287 2288 LegalizerHelper::LegalizeResult 2289 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2290 using namespace TargetOpcode; 2291 2292 switch(MI.getOpcode()) { 2293 default: 2294 return UnableToLegalize; 2295 case TargetOpcode::G_BITCAST: 2296 return lowerBitcast(MI); 2297 case TargetOpcode::G_SREM: 2298 case TargetOpcode::G_UREM: { 2299 auto Quot = 2300 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2301 {MI.getOperand(1), MI.getOperand(2)}); 2302 2303 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2304 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2305 MI.eraseFromParent(); 2306 return Legalized; 2307 } 2308 case TargetOpcode::G_SADDO: 2309 case TargetOpcode::G_SSUBO: 2310 return lowerSADDO_SSUBO(MI); 2311 case TargetOpcode::G_SMULO: 2312 case TargetOpcode::G_UMULO: { 2313 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2314 // result. 2315 Register Res = MI.getOperand(0).getReg(); 2316 Register Overflow = MI.getOperand(1).getReg(); 2317 Register LHS = MI.getOperand(2).getReg(); 2318 Register RHS = MI.getOperand(3).getReg(); 2319 2320 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2321 ? TargetOpcode::G_SMULH 2322 : TargetOpcode::G_UMULH; 2323 2324 Observer.changingInstr(MI); 2325 const auto &TII = MIRBuilder.getTII(); 2326 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2327 MI.RemoveOperand(1); 2328 Observer.changedInstr(MI); 2329 2330 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2331 2332 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2333 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2334 2335 // For *signed* multiply, overflow is detected by checking: 2336 // (hi != (lo >> bitwidth-1)) 2337 if (Opcode == TargetOpcode::G_SMULH) { 2338 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2339 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2340 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2341 } else { 2342 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2343 } 2344 return Legalized; 2345 } 2346 case TargetOpcode::G_FNEG: { 2347 // TODO: Handle vector types once we are able to 2348 // represent them. 2349 if (Ty.isVector()) 2350 return UnableToLegalize; 2351 Register Res = MI.getOperand(0).getReg(); 2352 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2353 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2354 if (!ZeroTy) 2355 return UnableToLegalize; 2356 ConstantFP &ZeroForNegation = 2357 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2358 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2359 Register SubByReg = MI.getOperand(1).getReg(); 2360 Register ZeroReg = Zero.getReg(0); 2361 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2362 MI.eraseFromParent(); 2363 return Legalized; 2364 } 2365 case TargetOpcode::G_FSUB: { 2366 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2367 // First, check if G_FNEG is marked as Lower. If so, we may 2368 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2369 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2370 return UnableToLegalize; 2371 Register Res = MI.getOperand(0).getReg(); 2372 Register LHS = MI.getOperand(1).getReg(); 2373 Register RHS = MI.getOperand(2).getReg(); 2374 Register Neg = MRI.createGenericVirtualRegister(Ty); 2375 MIRBuilder.buildFNeg(Neg, RHS); 2376 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2377 MI.eraseFromParent(); 2378 return Legalized; 2379 } 2380 case TargetOpcode::G_FMAD: 2381 return lowerFMad(MI); 2382 case TargetOpcode::G_FFLOOR: 2383 return lowerFFloor(MI); 2384 case TargetOpcode::G_INTRINSIC_ROUND: 2385 return lowerIntrinsicRound(MI); 2386 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2387 Register OldValRes = MI.getOperand(0).getReg(); 2388 Register SuccessRes = MI.getOperand(1).getReg(); 2389 Register Addr = MI.getOperand(2).getReg(); 2390 Register CmpVal = MI.getOperand(3).getReg(); 2391 Register NewVal = MI.getOperand(4).getReg(); 2392 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2393 **MI.memoperands_begin()); 2394 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2395 MI.eraseFromParent(); 2396 return Legalized; 2397 } 2398 case TargetOpcode::G_LOAD: 2399 case TargetOpcode::G_SEXTLOAD: 2400 case TargetOpcode::G_ZEXTLOAD: { 2401 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2402 Register DstReg = MI.getOperand(0).getReg(); 2403 Register PtrReg = MI.getOperand(1).getReg(); 2404 LLT DstTy = MRI.getType(DstReg); 2405 auto &MMO = **MI.memoperands_begin(); 2406 2407 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2408 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2409 // This load needs splitting into power of 2 sized loads. 2410 if (DstTy.isVector()) 2411 return UnableToLegalize; 2412 if (isPowerOf2_32(DstTy.getSizeInBits())) 2413 return UnableToLegalize; // Don't know what we're being asked to do. 2414 2415 // Our strategy here is to generate anyextending loads for the smaller 2416 // types up to next power-2 result type, and then combine the two larger 2417 // result values together, before truncating back down to the non-pow-2 2418 // type. 2419 // E.g. v1 = i24 load => 2420 // v2 = i32 zextload (2 byte) 2421 // v3 = i32 load (1 byte) 2422 // v4 = i32 shl v3, 16 2423 // v5 = i32 or v4, v2 2424 // v1 = i24 trunc v5 2425 // By doing this we generate the correct truncate which should get 2426 // combined away as an artifact with a matching extend. 2427 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2428 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2429 2430 MachineFunction &MF = MIRBuilder.getMF(); 2431 MachineMemOperand *LargeMMO = 2432 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2433 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2434 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2435 2436 LLT PtrTy = MRI.getType(PtrReg); 2437 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2438 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2439 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2440 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2441 auto LargeLoad = MIRBuilder.buildLoadInstr( 2442 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2443 2444 auto OffsetCst = MIRBuilder.buildConstant( 2445 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2446 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2447 auto SmallPtr = 2448 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2449 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2450 *SmallMMO); 2451 2452 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2453 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2454 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2455 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2456 MI.eraseFromParent(); 2457 return Legalized; 2458 } 2459 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2460 MI.eraseFromParent(); 2461 return Legalized; 2462 } 2463 2464 if (DstTy.isScalar()) { 2465 Register TmpReg = 2466 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2467 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2468 switch (MI.getOpcode()) { 2469 default: 2470 llvm_unreachable("Unexpected opcode"); 2471 case TargetOpcode::G_LOAD: 2472 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2473 break; 2474 case TargetOpcode::G_SEXTLOAD: 2475 MIRBuilder.buildSExt(DstReg, TmpReg); 2476 break; 2477 case TargetOpcode::G_ZEXTLOAD: 2478 MIRBuilder.buildZExt(DstReg, TmpReg); 2479 break; 2480 } 2481 MI.eraseFromParent(); 2482 return Legalized; 2483 } 2484 2485 return UnableToLegalize; 2486 } 2487 case TargetOpcode::G_STORE: { 2488 // Lower a non-power of 2 store into multiple pow-2 stores. 2489 // E.g. split an i24 store into an i16 store + i8 store. 2490 // We do this by first extending the stored value to the next largest power 2491 // of 2 type, and then using truncating stores to store the components. 2492 // By doing this, likewise with G_LOAD, generate an extend that can be 2493 // artifact-combined away instead of leaving behind extracts. 2494 Register SrcReg = MI.getOperand(0).getReg(); 2495 Register PtrReg = MI.getOperand(1).getReg(); 2496 LLT SrcTy = MRI.getType(SrcReg); 2497 MachineMemOperand &MMO = **MI.memoperands_begin(); 2498 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2499 return UnableToLegalize; 2500 if (SrcTy.isVector()) 2501 return UnableToLegalize; 2502 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2503 return UnableToLegalize; // Don't know what we're being asked to do. 2504 2505 // Extend to the next pow-2. 2506 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2507 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2508 2509 // Obtain the smaller value by shifting away the larger value. 2510 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2511 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2512 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2513 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2514 2515 // Generate the PtrAdd and truncating stores. 2516 LLT PtrTy = MRI.getType(PtrReg); 2517 auto OffsetCst = MIRBuilder.buildConstant( 2518 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2519 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2520 auto SmallPtr = 2521 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2522 2523 MachineFunction &MF = MIRBuilder.getMF(); 2524 MachineMemOperand *LargeMMO = 2525 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2526 MachineMemOperand *SmallMMO = 2527 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2528 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2529 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2530 MI.eraseFromParent(); 2531 return Legalized; 2532 } 2533 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2534 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2535 case TargetOpcode::G_CTLZ: 2536 case TargetOpcode::G_CTTZ: 2537 case TargetOpcode::G_CTPOP: 2538 return lowerBitCount(MI, TypeIdx, Ty); 2539 case G_UADDO: { 2540 Register Res = MI.getOperand(0).getReg(); 2541 Register CarryOut = MI.getOperand(1).getReg(); 2542 Register LHS = MI.getOperand(2).getReg(); 2543 Register RHS = MI.getOperand(3).getReg(); 2544 2545 MIRBuilder.buildAdd(Res, LHS, RHS); 2546 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2547 2548 MI.eraseFromParent(); 2549 return Legalized; 2550 } 2551 case G_UADDE: { 2552 Register Res = MI.getOperand(0).getReg(); 2553 Register CarryOut = MI.getOperand(1).getReg(); 2554 Register LHS = MI.getOperand(2).getReg(); 2555 Register RHS = MI.getOperand(3).getReg(); 2556 Register CarryIn = MI.getOperand(4).getReg(); 2557 LLT Ty = MRI.getType(Res); 2558 2559 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2560 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2561 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2562 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2563 2564 MI.eraseFromParent(); 2565 return Legalized; 2566 } 2567 case G_USUBO: { 2568 Register Res = MI.getOperand(0).getReg(); 2569 Register BorrowOut = MI.getOperand(1).getReg(); 2570 Register LHS = MI.getOperand(2).getReg(); 2571 Register RHS = MI.getOperand(3).getReg(); 2572 2573 MIRBuilder.buildSub(Res, LHS, RHS); 2574 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2575 2576 MI.eraseFromParent(); 2577 return Legalized; 2578 } 2579 case G_USUBE: { 2580 Register Res = MI.getOperand(0).getReg(); 2581 Register BorrowOut = MI.getOperand(1).getReg(); 2582 Register LHS = MI.getOperand(2).getReg(); 2583 Register RHS = MI.getOperand(3).getReg(); 2584 Register BorrowIn = MI.getOperand(4).getReg(); 2585 const LLT CondTy = MRI.getType(BorrowOut); 2586 const LLT Ty = MRI.getType(Res); 2587 2588 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2589 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2590 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2591 2592 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2593 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2594 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2595 2596 MI.eraseFromParent(); 2597 return Legalized; 2598 } 2599 case G_UITOFP: 2600 return lowerUITOFP(MI, TypeIdx, Ty); 2601 case G_SITOFP: 2602 return lowerSITOFP(MI, TypeIdx, Ty); 2603 case G_FPTOUI: 2604 return lowerFPTOUI(MI, TypeIdx, Ty); 2605 case G_FPTOSI: 2606 return lowerFPTOSI(MI); 2607 case G_FPTRUNC: 2608 return lowerFPTRUNC(MI, TypeIdx, Ty); 2609 case G_SMIN: 2610 case G_SMAX: 2611 case G_UMIN: 2612 case G_UMAX: 2613 return lowerMinMax(MI, TypeIdx, Ty); 2614 case G_FCOPYSIGN: 2615 return lowerFCopySign(MI, TypeIdx, Ty); 2616 case G_FMINNUM: 2617 case G_FMAXNUM: 2618 return lowerFMinNumMaxNum(MI); 2619 case G_MERGE_VALUES: 2620 return lowerMergeValues(MI); 2621 case G_UNMERGE_VALUES: 2622 return lowerUnmergeValues(MI); 2623 case TargetOpcode::G_SEXT_INREG: { 2624 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2625 int64_t SizeInBits = MI.getOperand(2).getImm(); 2626 2627 Register DstReg = MI.getOperand(0).getReg(); 2628 Register SrcReg = MI.getOperand(1).getReg(); 2629 LLT DstTy = MRI.getType(DstReg); 2630 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2631 2632 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2633 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2634 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2635 MI.eraseFromParent(); 2636 return Legalized; 2637 } 2638 case G_SHUFFLE_VECTOR: 2639 return lowerShuffleVector(MI); 2640 case G_DYN_STACKALLOC: 2641 return lowerDynStackAlloc(MI); 2642 case G_EXTRACT: 2643 return lowerExtract(MI); 2644 case G_INSERT: 2645 return lowerInsert(MI); 2646 case G_BSWAP: 2647 return lowerBswap(MI); 2648 case G_BITREVERSE: 2649 return lowerBitreverse(MI); 2650 case G_READ_REGISTER: 2651 case G_WRITE_REGISTER: 2652 return lowerReadWriteRegister(MI); 2653 } 2654 } 2655 2656 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2657 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2658 SmallVector<Register, 2> DstRegs; 2659 2660 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2661 Register DstReg = MI.getOperand(0).getReg(); 2662 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2663 int NumParts = Size / NarrowSize; 2664 // FIXME: Don't know how to handle the situation where the small vectors 2665 // aren't all the same size yet. 2666 if (Size % NarrowSize != 0) 2667 return UnableToLegalize; 2668 2669 for (int i = 0; i < NumParts; ++i) { 2670 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2671 MIRBuilder.buildUndef(TmpReg); 2672 DstRegs.push_back(TmpReg); 2673 } 2674 2675 if (NarrowTy.isVector()) 2676 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2677 else 2678 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2679 2680 MI.eraseFromParent(); 2681 return Legalized; 2682 } 2683 2684 // Handle splitting vector operations which need to have the same number of 2685 // elements in each type index, but each type index may have a different element 2686 // type. 2687 // 2688 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2689 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2690 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2691 // 2692 // Also handles some irregular breakdown cases, e.g. 2693 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2694 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2695 // s64 = G_SHL s64, s32 2696 LegalizerHelper::LegalizeResult 2697 LegalizerHelper::fewerElementsVectorMultiEltType( 2698 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2699 if (TypeIdx != 0) 2700 return UnableToLegalize; 2701 2702 const LLT NarrowTy0 = NarrowTyArg; 2703 const unsigned NewNumElts = 2704 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2705 2706 const Register DstReg = MI.getOperand(0).getReg(); 2707 LLT DstTy = MRI.getType(DstReg); 2708 LLT LeftoverTy0; 2709 2710 // All of the operands need to have the same number of elements, so if we can 2711 // determine a type breakdown for the result type, we can for all of the 2712 // source types. 2713 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2714 if (NumParts < 0) 2715 return UnableToLegalize; 2716 2717 SmallVector<MachineInstrBuilder, 4> NewInsts; 2718 2719 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2720 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2721 2722 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2723 Register SrcReg = MI.getOperand(I).getReg(); 2724 LLT SrcTyI = MRI.getType(SrcReg); 2725 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2726 LLT LeftoverTyI; 2727 2728 // Split this operand into the requested typed registers, and any leftover 2729 // required to reproduce the original type. 2730 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2731 LeftoverRegs)) 2732 return UnableToLegalize; 2733 2734 if (I == 1) { 2735 // For the first operand, create an instruction for each part and setup 2736 // the result. 2737 for (Register PartReg : PartRegs) { 2738 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2739 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2740 .addDef(PartDstReg) 2741 .addUse(PartReg)); 2742 DstRegs.push_back(PartDstReg); 2743 } 2744 2745 for (Register LeftoverReg : LeftoverRegs) { 2746 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2747 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2748 .addDef(PartDstReg) 2749 .addUse(LeftoverReg)); 2750 LeftoverDstRegs.push_back(PartDstReg); 2751 } 2752 } else { 2753 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2754 2755 // Add the newly created operand splits to the existing instructions. The 2756 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2757 // pieces. 2758 unsigned InstCount = 0; 2759 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2760 NewInsts[InstCount++].addUse(PartRegs[J]); 2761 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2762 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2763 } 2764 2765 PartRegs.clear(); 2766 LeftoverRegs.clear(); 2767 } 2768 2769 // Insert the newly built operations and rebuild the result register. 2770 for (auto &MIB : NewInsts) 2771 MIRBuilder.insertInstr(MIB); 2772 2773 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2774 2775 MI.eraseFromParent(); 2776 return Legalized; 2777 } 2778 2779 LegalizerHelper::LegalizeResult 2780 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2781 LLT NarrowTy) { 2782 if (TypeIdx != 0) 2783 return UnableToLegalize; 2784 2785 Register DstReg = MI.getOperand(0).getReg(); 2786 Register SrcReg = MI.getOperand(1).getReg(); 2787 LLT DstTy = MRI.getType(DstReg); 2788 LLT SrcTy = MRI.getType(SrcReg); 2789 2790 LLT NarrowTy0 = NarrowTy; 2791 LLT NarrowTy1; 2792 unsigned NumParts; 2793 2794 if (NarrowTy.isVector()) { 2795 // Uneven breakdown not handled. 2796 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2797 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2798 return UnableToLegalize; 2799 2800 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2801 } else { 2802 NumParts = DstTy.getNumElements(); 2803 NarrowTy1 = SrcTy.getElementType(); 2804 } 2805 2806 SmallVector<Register, 4> SrcRegs, DstRegs; 2807 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2808 2809 for (unsigned I = 0; I < NumParts; ++I) { 2810 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2811 MachineInstr *NewInst = 2812 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2813 2814 NewInst->setFlags(MI.getFlags()); 2815 DstRegs.push_back(DstReg); 2816 } 2817 2818 if (NarrowTy.isVector()) 2819 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2820 else 2821 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2822 2823 MI.eraseFromParent(); 2824 return Legalized; 2825 } 2826 2827 LegalizerHelper::LegalizeResult 2828 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2829 LLT NarrowTy) { 2830 Register DstReg = MI.getOperand(0).getReg(); 2831 Register Src0Reg = MI.getOperand(2).getReg(); 2832 LLT DstTy = MRI.getType(DstReg); 2833 LLT SrcTy = MRI.getType(Src0Reg); 2834 2835 unsigned NumParts; 2836 LLT NarrowTy0, NarrowTy1; 2837 2838 if (TypeIdx == 0) { 2839 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2840 unsigned OldElts = DstTy.getNumElements(); 2841 2842 NarrowTy0 = NarrowTy; 2843 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2844 NarrowTy1 = NarrowTy.isVector() ? 2845 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2846 SrcTy.getElementType(); 2847 2848 } else { 2849 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2850 unsigned OldElts = SrcTy.getNumElements(); 2851 2852 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2853 NarrowTy.getNumElements(); 2854 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2855 DstTy.getScalarSizeInBits()); 2856 NarrowTy1 = NarrowTy; 2857 } 2858 2859 // FIXME: Don't know how to handle the situation where the small vectors 2860 // aren't all the same size yet. 2861 if (NarrowTy1.isVector() && 2862 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2863 return UnableToLegalize; 2864 2865 CmpInst::Predicate Pred 2866 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2867 2868 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2869 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2870 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2871 2872 for (unsigned I = 0; I < NumParts; ++I) { 2873 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2874 DstRegs.push_back(DstReg); 2875 2876 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2877 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2878 else { 2879 MachineInstr *NewCmp 2880 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2881 NewCmp->setFlags(MI.getFlags()); 2882 } 2883 } 2884 2885 if (NarrowTy1.isVector()) 2886 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2887 else 2888 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2889 2890 MI.eraseFromParent(); 2891 return Legalized; 2892 } 2893 2894 LegalizerHelper::LegalizeResult 2895 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2896 LLT NarrowTy) { 2897 Register DstReg = MI.getOperand(0).getReg(); 2898 Register CondReg = MI.getOperand(1).getReg(); 2899 2900 unsigned NumParts = 0; 2901 LLT NarrowTy0, NarrowTy1; 2902 2903 LLT DstTy = MRI.getType(DstReg); 2904 LLT CondTy = MRI.getType(CondReg); 2905 unsigned Size = DstTy.getSizeInBits(); 2906 2907 assert(TypeIdx == 0 || CondTy.isVector()); 2908 2909 if (TypeIdx == 0) { 2910 NarrowTy0 = NarrowTy; 2911 NarrowTy1 = CondTy; 2912 2913 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2914 // FIXME: Don't know how to handle the situation where the small vectors 2915 // aren't all the same size yet. 2916 if (Size % NarrowSize != 0) 2917 return UnableToLegalize; 2918 2919 NumParts = Size / NarrowSize; 2920 2921 // Need to break down the condition type 2922 if (CondTy.isVector()) { 2923 if (CondTy.getNumElements() == NumParts) 2924 NarrowTy1 = CondTy.getElementType(); 2925 else 2926 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2927 CondTy.getScalarSizeInBits()); 2928 } 2929 } else { 2930 NumParts = CondTy.getNumElements(); 2931 if (NarrowTy.isVector()) { 2932 // TODO: Handle uneven breakdown. 2933 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2934 return UnableToLegalize; 2935 2936 return UnableToLegalize; 2937 } else { 2938 NarrowTy0 = DstTy.getElementType(); 2939 NarrowTy1 = NarrowTy; 2940 } 2941 } 2942 2943 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2944 if (CondTy.isVector()) 2945 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2946 2947 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2948 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2949 2950 for (unsigned i = 0; i < NumParts; ++i) { 2951 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2952 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2953 Src1Regs[i], Src2Regs[i]); 2954 DstRegs.push_back(DstReg); 2955 } 2956 2957 if (NarrowTy0.isVector()) 2958 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2959 else 2960 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2961 2962 MI.eraseFromParent(); 2963 return Legalized; 2964 } 2965 2966 LegalizerHelper::LegalizeResult 2967 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2968 LLT NarrowTy) { 2969 const Register DstReg = MI.getOperand(0).getReg(); 2970 LLT PhiTy = MRI.getType(DstReg); 2971 LLT LeftoverTy; 2972 2973 // All of the operands need to have the same number of elements, so if we can 2974 // determine a type breakdown for the result type, we can for all of the 2975 // source types. 2976 int NumParts, NumLeftover; 2977 std::tie(NumParts, NumLeftover) 2978 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2979 if (NumParts < 0) 2980 return UnableToLegalize; 2981 2982 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2983 SmallVector<MachineInstrBuilder, 4> NewInsts; 2984 2985 const int TotalNumParts = NumParts + NumLeftover; 2986 2987 // Insert the new phis in the result block first. 2988 for (int I = 0; I != TotalNumParts; ++I) { 2989 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2990 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2991 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2992 .addDef(PartDstReg)); 2993 if (I < NumParts) 2994 DstRegs.push_back(PartDstReg); 2995 else 2996 LeftoverDstRegs.push_back(PartDstReg); 2997 } 2998 2999 MachineBasicBlock *MBB = MI.getParent(); 3000 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3001 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3002 3003 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3004 3005 // Insert code to extract the incoming values in each predecessor block. 3006 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3007 PartRegs.clear(); 3008 LeftoverRegs.clear(); 3009 3010 Register SrcReg = MI.getOperand(I).getReg(); 3011 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3012 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3013 3014 LLT Unused; 3015 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3016 LeftoverRegs)) 3017 return UnableToLegalize; 3018 3019 // Add the newly created operand splits to the existing instructions. The 3020 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3021 // pieces. 3022 for (int J = 0; J != TotalNumParts; ++J) { 3023 MachineInstrBuilder MIB = NewInsts[J]; 3024 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3025 MIB.addMBB(&OpMBB); 3026 } 3027 } 3028 3029 MI.eraseFromParent(); 3030 return Legalized; 3031 } 3032 3033 LegalizerHelper::LegalizeResult 3034 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3035 unsigned TypeIdx, 3036 LLT NarrowTy) { 3037 if (TypeIdx != 1) 3038 return UnableToLegalize; 3039 3040 const int NumDst = MI.getNumOperands() - 1; 3041 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3042 LLT SrcTy = MRI.getType(SrcReg); 3043 3044 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3045 3046 // TODO: Create sequence of extracts. 3047 if (DstTy == NarrowTy) 3048 return UnableToLegalize; 3049 3050 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3051 if (DstTy == GCDTy) { 3052 // This would just be a copy of the same unmerge. 3053 // TODO: Create extracts, pad with undef and create intermediate merges. 3054 return UnableToLegalize; 3055 } 3056 3057 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3058 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3059 const int PartsPerUnmerge = NumDst / NumUnmerge; 3060 3061 for (int I = 0; I != NumUnmerge; ++I) { 3062 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3063 3064 for (int J = 0; J != PartsPerUnmerge; ++J) 3065 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3066 MIB.addUse(Unmerge.getReg(I)); 3067 } 3068 3069 MI.eraseFromParent(); 3070 return Legalized; 3071 } 3072 3073 LegalizerHelper::LegalizeResult 3074 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3075 unsigned TypeIdx, 3076 LLT NarrowTy) { 3077 assert(TypeIdx == 0 && "not a vector type index"); 3078 Register DstReg = MI.getOperand(0).getReg(); 3079 LLT DstTy = MRI.getType(DstReg); 3080 LLT SrcTy = DstTy.getElementType(); 3081 3082 int DstNumElts = DstTy.getNumElements(); 3083 int NarrowNumElts = NarrowTy.getNumElements(); 3084 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3085 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3086 3087 SmallVector<Register, 8> ConcatOps; 3088 SmallVector<Register, 8> SubBuildVector; 3089 3090 Register UndefReg; 3091 if (WidenedDstTy != DstTy) 3092 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3093 3094 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3095 // necessary. 3096 // 3097 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3098 // -> <2 x s16> 3099 // 3100 // %4:_(s16) = G_IMPLICIT_DEF 3101 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3102 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3103 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3104 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3105 for (int I = 0; I != NumConcat; ++I) { 3106 for (int J = 0; J != NarrowNumElts; ++J) { 3107 int SrcIdx = NarrowNumElts * I + J; 3108 3109 if (SrcIdx < DstNumElts) { 3110 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3111 SubBuildVector.push_back(SrcReg); 3112 } else 3113 SubBuildVector.push_back(UndefReg); 3114 } 3115 3116 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3117 ConcatOps.push_back(BuildVec.getReg(0)); 3118 SubBuildVector.clear(); 3119 } 3120 3121 if (DstTy == WidenedDstTy) 3122 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3123 else { 3124 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3125 MIRBuilder.buildExtract(DstReg, Concat, 0); 3126 } 3127 3128 MI.eraseFromParent(); 3129 return Legalized; 3130 } 3131 3132 LegalizerHelper::LegalizeResult 3133 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3134 LLT NarrowTy) { 3135 // FIXME: Don't know how to handle secondary types yet. 3136 if (TypeIdx != 0) 3137 return UnableToLegalize; 3138 3139 MachineMemOperand *MMO = *MI.memoperands_begin(); 3140 3141 // This implementation doesn't work for atomics. Give up instead of doing 3142 // something invalid. 3143 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3144 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3145 return UnableToLegalize; 3146 3147 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3148 Register ValReg = MI.getOperand(0).getReg(); 3149 Register AddrReg = MI.getOperand(1).getReg(); 3150 LLT ValTy = MRI.getType(ValReg); 3151 3152 // FIXME: Do we need a distinct NarrowMemory legalize action? 3153 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3154 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3155 return UnableToLegalize; 3156 } 3157 3158 int NumParts = -1; 3159 int NumLeftover = -1; 3160 LLT LeftoverTy; 3161 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3162 if (IsLoad) { 3163 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3164 } else { 3165 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3166 NarrowLeftoverRegs)) { 3167 NumParts = NarrowRegs.size(); 3168 NumLeftover = NarrowLeftoverRegs.size(); 3169 } 3170 } 3171 3172 if (NumParts == -1) 3173 return UnableToLegalize; 3174 3175 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3176 3177 unsigned TotalSize = ValTy.getSizeInBits(); 3178 3179 // Split the load/store into PartTy sized pieces starting at Offset. If this 3180 // is a load, return the new registers in ValRegs. For a store, each elements 3181 // of ValRegs should be PartTy. Returns the next offset that needs to be 3182 // handled. 3183 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3184 unsigned Offset) -> unsigned { 3185 MachineFunction &MF = MIRBuilder.getMF(); 3186 unsigned PartSize = PartTy.getSizeInBits(); 3187 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3188 Offset += PartSize, ++Idx) { 3189 unsigned ByteSize = PartSize / 8; 3190 unsigned ByteOffset = Offset / 8; 3191 Register NewAddrReg; 3192 3193 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3194 3195 MachineMemOperand *NewMMO = 3196 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3197 3198 if (IsLoad) { 3199 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3200 ValRegs.push_back(Dst); 3201 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3202 } else { 3203 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3204 } 3205 } 3206 3207 return Offset; 3208 }; 3209 3210 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3211 3212 // Handle the rest of the register if this isn't an even type breakdown. 3213 if (LeftoverTy.isValid()) 3214 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3215 3216 if (IsLoad) { 3217 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3218 LeftoverTy, NarrowLeftoverRegs); 3219 } 3220 3221 MI.eraseFromParent(); 3222 return Legalized; 3223 } 3224 3225 LegalizerHelper::LegalizeResult 3226 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3227 LLT NarrowTy) { 3228 assert(TypeIdx == 0 && "only one type index expected"); 3229 3230 const unsigned Opc = MI.getOpcode(); 3231 const int NumOps = MI.getNumOperands() - 1; 3232 const Register DstReg = MI.getOperand(0).getReg(); 3233 const unsigned Flags = MI.getFlags(); 3234 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3235 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3236 3237 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3238 3239 // First of all check whether we are narrowing (changing the element type) 3240 // or reducing the vector elements 3241 const LLT DstTy = MRI.getType(DstReg); 3242 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3243 3244 SmallVector<Register, 8> ExtractedRegs[3]; 3245 SmallVector<Register, 8> Parts; 3246 3247 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3248 3249 // Break down all the sources into NarrowTy pieces we can operate on. This may 3250 // involve creating merges to a wider type, padded with undef. 3251 for (int I = 0; I != NumOps; ++I) { 3252 Register SrcReg = MI.getOperand(I + 1).getReg(); 3253 LLT SrcTy = MRI.getType(SrcReg); 3254 3255 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3256 // For fewerElements, this is a smaller vector with the same element type. 3257 LLT OpNarrowTy; 3258 if (IsNarrow) { 3259 OpNarrowTy = NarrowScalarTy; 3260 3261 // In case of narrowing, we need to cast vectors to scalars for this to 3262 // work properly 3263 // FIXME: Can we do without the bitcast here if we're narrowing? 3264 if (SrcTy.isVector()) { 3265 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3266 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3267 } 3268 } else { 3269 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3270 } 3271 3272 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3273 3274 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3275 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3276 TargetOpcode::G_ANYEXT); 3277 } 3278 3279 SmallVector<Register, 8> ResultRegs; 3280 3281 // Input operands for each sub-instruction. 3282 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3283 3284 int NumParts = ExtractedRegs[0].size(); 3285 const unsigned DstSize = DstTy.getSizeInBits(); 3286 const LLT DstScalarTy = LLT::scalar(DstSize); 3287 3288 // Narrowing needs to use scalar types 3289 LLT DstLCMTy, NarrowDstTy; 3290 if (IsNarrow) { 3291 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3292 NarrowDstTy = NarrowScalarTy; 3293 } else { 3294 DstLCMTy = getLCMType(DstTy, NarrowTy); 3295 NarrowDstTy = NarrowTy; 3296 } 3297 3298 // We widened the source registers to satisfy merge/unmerge size 3299 // constraints. We'll have some extra fully undef parts. 3300 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3301 3302 for (int I = 0; I != NumRealParts; ++I) { 3303 // Emit this instruction on each of the split pieces. 3304 for (int J = 0; J != NumOps; ++J) 3305 InputRegs[J] = ExtractedRegs[J][I]; 3306 3307 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3308 ResultRegs.push_back(Inst.getReg(0)); 3309 } 3310 3311 // Fill out the widened result with undef instead of creating instructions 3312 // with undef inputs. 3313 int NumUndefParts = NumParts - NumRealParts; 3314 if (NumUndefParts != 0) 3315 ResultRegs.append(NumUndefParts, 3316 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3317 3318 // Extract the possibly padded result. Use a scratch register if we need to do 3319 // a final bitcast, otherwise use the original result register. 3320 Register MergeDstReg; 3321 if (IsNarrow && DstTy.isVector()) 3322 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3323 else 3324 MergeDstReg = DstReg; 3325 3326 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3327 3328 // Recast to vector if we narrowed a vector 3329 if (IsNarrow && DstTy.isVector()) 3330 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3331 3332 MI.eraseFromParent(); 3333 return Legalized; 3334 } 3335 3336 LegalizerHelper::LegalizeResult 3337 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3338 LLT NarrowTy) { 3339 Register DstReg = MI.getOperand(0).getReg(); 3340 Register SrcReg = MI.getOperand(1).getReg(); 3341 int64_t Imm = MI.getOperand(2).getImm(); 3342 3343 LLT DstTy = MRI.getType(DstReg); 3344 3345 SmallVector<Register, 8> Parts; 3346 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3347 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3348 3349 for (Register &R : Parts) 3350 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3351 3352 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3353 3354 MI.eraseFromParent(); 3355 return Legalized; 3356 } 3357 3358 LegalizerHelper::LegalizeResult 3359 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3360 LLT NarrowTy) { 3361 using namespace TargetOpcode; 3362 3363 switch (MI.getOpcode()) { 3364 case G_IMPLICIT_DEF: 3365 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3366 case G_TRUNC: 3367 case G_AND: 3368 case G_OR: 3369 case G_XOR: 3370 case G_ADD: 3371 case G_SUB: 3372 case G_MUL: 3373 case G_SMULH: 3374 case G_UMULH: 3375 case G_FADD: 3376 case G_FMUL: 3377 case G_FSUB: 3378 case G_FNEG: 3379 case G_FABS: 3380 case G_FCANONICALIZE: 3381 case G_FDIV: 3382 case G_FREM: 3383 case G_FMA: 3384 case G_FMAD: 3385 case G_FPOW: 3386 case G_FEXP: 3387 case G_FEXP2: 3388 case G_FLOG: 3389 case G_FLOG2: 3390 case G_FLOG10: 3391 case G_FNEARBYINT: 3392 case G_FCEIL: 3393 case G_FFLOOR: 3394 case G_FRINT: 3395 case G_INTRINSIC_ROUND: 3396 case G_INTRINSIC_TRUNC: 3397 case G_FCOS: 3398 case G_FSIN: 3399 case G_FSQRT: 3400 case G_BSWAP: 3401 case G_BITREVERSE: 3402 case G_SDIV: 3403 case G_UDIV: 3404 case G_SREM: 3405 case G_UREM: 3406 case G_SMIN: 3407 case G_SMAX: 3408 case G_UMIN: 3409 case G_UMAX: 3410 case G_FMINNUM: 3411 case G_FMAXNUM: 3412 case G_FMINNUM_IEEE: 3413 case G_FMAXNUM_IEEE: 3414 case G_FMINIMUM: 3415 case G_FMAXIMUM: 3416 case G_FSHL: 3417 case G_FSHR: 3418 case G_FREEZE: 3419 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3420 case G_SHL: 3421 case G_LSHR: 3422 case G_ASHR: 3423 case G_CTLZ: 3424 case G_CTLZ_ZERO_UNDEF: 3425 case G_CTTZ: 3426 case G_CTTZ_ZERO_UNDEF: 3427 case G_CTPOP: 3428 case G_FCOPYSIGN: 3429 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3430 case G_ZEXT: 3431 case G_SEXT: 3432 case G_ANYEXT: 3433 case G_FPEXT: 3434 case G_FPTRUNC: 3435 case G_SITOFP: 3436 case G_UITOFP: 3437 case G_FPTOSI: 3438 case G_FPTOUI: 3439 case G_INTTOPTR: 3440 case G_PTRTOINT: 3441 case G_ADDRSPACE_CAST: 3442 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3443 case G_ICMP: 3444 case G_FCMP: 3445 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3446 case G_SELECT: 3447 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3448 case G_PHI: 3449 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3450 case G_UNMERGE_VALUES: 3451 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3452 case G_BUILD_VECTOR: 3453 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3454 case G_LOAD: 3455 case G_STORE: 3456 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3457 case G_SEXT_INREG: 3458 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3459 default: 3460 return UnableToLegalize; 3461 } 3462 } 3463 3464 LegalizerHelper::LegalizeResult 3465 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3466 const LLT HalfTy, const LLT AmtTy) { 3467 3468 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3469 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3470 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3471 3472 if (Amt.isNullValue()) { 3473 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3474 MI.eraseFromParent(); 3475 return Legalized; 3476 } 3477 3478 LLT NVT = HalfTy; 3479 unsigned NVTBits = HalfTy.getSizeInBits(); 3480 unsigned VTBits = 2 * NVTBits; 3481 3482 SrcOp Lo(Register(0)), Hi(Register(0)); 3483 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3484 if (Amt.ugt(VTBits)) { 3485 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3486 } else if (Amt.ugt(NVTBits)) { 3487 Lo = MIRBuilder.buildConstant(NVT, 0); 3488 Hi = MIRBuilder.buildShl(NVT, InL, 3489 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3490 } else if (Amt == NVTBits) { 3491 Lo = MIRBuilder.buildConstant(NVT, 0); 3492 Hi = InL; 3493 } else { 3494 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3495 auto OrLHS = 3496 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3497 auto OrRHS = MIRBuilder.buildLShr( 3498 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3499 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3500 } 3501 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3502 if (Amt.ugt(VTBits)) { 3503 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3504 } else if (Amt.ugt(NVTBits)) { 3505 Lo = MIRBuilder.buildLShr(NVT, InH, 3506 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3507 Hi = MIRBuilder.buildConstant(NVT, 0); 3508 } else if (Amt == NVTBits) { 3509 Lo = InH; 3510 Hi = MIRBuilder.buildConstant(NVT, 0); 3511 } else { 3512 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3513 3514 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3515 auto OrRHS = MIRBuilder.buildShl( 3516 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3517 3518 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3519 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3520 } 3521 } else { 3522 if (Amt.ugt(VTBits)) { 3523 Hi = Lo = MIRBuilder.buildAShr( 3524 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3525 } else if (Amt.ugt(NVTBits)) { 3526 Lo = MIRBuilder.buildAShr(NVT, InH, 3527 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3528 Hi = MIRBuilder.buildAShr(NVT, InH, 3529 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3530 } else if (Amt == NVTBits) { 3531 Lo = InH; 3532 Hi = MIRBuilder.buildAShr(NVT, InH, 3533 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3534 } else { 3535 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3536 3537 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3538 auto OrRHS = MIRBuilder.buildShl( 3539 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3540 3541 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3542 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3543 } 3544 } 3545 3546 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3547 MI.eraseFromParent(); 3548 3549 return Legalized; 3550 } 3551 3552 // TODO: Optimize if constant shift amount. 3553 LegalizerHelper::LegalizeResult 3554 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3555 LLT RequestedTy) { 3556 if (TypeIdx == 1) { 3557 Observer.changingInstr(MI); 3558 narrowScalarSrc(MI, RequestedTy, 2); 3559 Observer.changedInstr(MI); 3560 return Legalized; 3561 } 3562 3563 Register DstReg = MI.getOperand(0).getReg(); 3564 LLT DstTy = MRI.getType(DstReg); 3565 if (DstTy.isVector()) 3566 return UnableToLegalize; 3567 3568 Register Amt = MI.getOperand(2).getReg(); 3569 LLT ShiftAmtTy = MRI.getType(Amt); 3570 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3571 if (DstEltSize % 2 != 0) 3572 return UnableToLegalize; 3573 3574 // Ignore the input type. We can only go to exactly half the size of the 3575 // input. If that isn't small enough, the resulting pieces will be further 3576 // legalized. 3577 const unsigned NewBitSize = DstEltSize / 2; 3578 const LLT HalfTy = LLT::scalar(NewBitSize); 3579 const LLT CondTy = LLT::scalar(1); 3580 3581 if (const MachineInstr *KShiftAmt = 3582 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3583 return narrowScalarShiftByConstant( 3584 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3585 } 3586 3587 // TODO: Expand with known bits. 3588 3589 // Handle the fully general expansion by an unknown amount. 3590 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3591 3592 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3593 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3594 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3595 3596 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3597 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3598 3599 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3600 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3601 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3602 3603 Register ResultRegs[2]; 3604 switch (MI.getOpcode()) { 3605 case TargetOpcode::G_SHL: { 3606 // Short: ShAmt < NewBitSize 3607 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3608 3609 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3610 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3611 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3612 3613 // Long: ShAmt >= NewBitSize 3614 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3615 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3616 3617 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3618 auto Hi = MIRBuilder.buildSelect( 3619 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3620 3621 ResultRegs[0] = Lo.getReg(0); 3622 ResultRegs[1] = Hi.getReg(0); 3623 break; 3624 } 3625 case TargetOpcode::G_LSHR: 3626 case TargetOpcode::G_ASHR: { 3627 // Short: ShAmt < NewBitSize 3628 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3629 3630 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3631 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3632 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3633 3634 // Long: ShAmt >= NewBitSize 3635 MachineInstrBuilder HiL; 3636 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3637 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3638 } else { 3639 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3640 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3641 } 3642 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3643 {InH, AmtExcess}); // Lo from Hi part. 3644 3645 auto Lo = MIRBuilder.buildSelect( 3646 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3647 3648 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3649 3650 ResultRegs[0] = Lo.getReg(0); 3651 ResultRegs[1] = Hi.getReg(0); 3652 break; 3653 } 3654 default: 3655 llvm_unreachable("not a shift"); 3656 } 3657 3658 MIRBuilder.buildMerge(DstReg, ResultRegs); 3659 MI.eraseFromParent(); 3660 return Legalized; 3661 } 3662 3663 LegalizerHelper::LegalizeResult 3664 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3665 LLT MoreTy) { 3666 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3667 3668 Observer.changingInstr(MI); 3669 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3670 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3671 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3672 moreElementsVectorSrc(MI, MoreTy, I); 3673 } 3674 3675 MachineBasicBlock &MBB = *MI.getParent(); 3676 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3677 moreElementsVectorDst(MI, MoreTy, 0); 3678 Observer.changedInstr(MI); 3679 return Legalized; 3680 } 3681 3682 LegalizerHelper::LegalizeResult 3683 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3684 LLT MoreTy) { 3685 unsigned Opc = MI.getOpcode(); 3686 switch (Opc) { 3687 case TargetOpcode::G_IMPLICIT_DEF: 3688 case TargetOpcode::G_LOAD: { 3689 if (TypeIdx != 0) 3690 return UnableToLegalize; 3691 Observer.changingInstr(MI); 3692 moreElementsVectorDst(MI, MoreTy, 0); 3693 Observer.changedInstr(MI); 3694 return Legalized; 3695 } 3696 case TargetOpcode::G_STORE: 3697 if (TypeIdx != 0) 3698 return UnableToLegalize; 3699 Observer.changingInstr(MI); 3700 moreElementsVectorSrc(MI, MoreTy, 0); 3701 Observer.changedInstr(MI); 3702 return Legalized; 3703 case TargetOpcode::G_AND: 3704 case TargetOpcode::G_OR: 3705 case TargetOpcode::G_XOR: 3706 case TargetOpcode::G_SMIN: 3707 case TargetOpcode::G_SMAX: 3708 case TargetOpcode::G_UMIN: 3709 case TargetOpcode::G_UMAX: 3710 case TargetOpcode::G_FMINNUM: 3711 case TargetOpcode::G_FMAXNUM: 3712 case TargetOpcode::G_FMINNUM_IEEE: 3713 case TargetOpcode::G_FMAXNUM_IEEE: 3714 case TargetOpcode::G_FMINIMUM: 3715 case TargetOpcode::G_FMAXIMUM: { 3716 Observer.changingInstr(MI); 3717 moreElementsVectorSrc(MI, MoreTy, 1); 3718 moreElementsVectorSrc(MI, MoreTy, 2); 3719 moreElementsVectorDst(MI, MoreTy, 0); 3720 Observer.changedInstr(MI); 3721 return Legalized; 3722 } 3723 case TargetOpcode::G_EXTRACT: 3724 if (TypeIdx != 1) 3725 return UnableToLegalize; 3726 Observer.changingInstr(MI); 3727 moreElementsVectorSrc(MI, MoreTy, 1); 3728 Observer.changedInstr(MI); 3729 return Legalized; 3730 case TargetOpcode::G_INSERT: 3731 case TargetOpcode::G_FREEZE: 3732 if (TypeIdx != 0) 3733 return UnableToLegalize; 3734 Observer.changingInstr(MI); 3735 moreElementsVectorSrc(MI, MoreTy, 1); 3736 moreElementsVectorDst(MI, MoreTy, 0); 3737 Observer.changedInstr(MI); 3738 return Legalized; 3739 case TargetOpcode::G_SELECT: 3740 if (TypeIdx != 0) 3741 return UnableToLegalize; 3742 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3743 return UnableToLegalize; 3744 3745 Observer.changingInstr(MI); 3746 moreElementsVectorSrc(MI, MoreTy, 2); 3747 moreElementsVectorSrc(MI, MoreTy, 3); 3748 moreElementsVectorDst(MI, MoreTy, 0); 3749 Observer.changedInstr(MI); 3750 return Legalized; 3751 case TargetOpcode::G_UNMERGE_VALUES: { 3752 if (TypeIdx != 1) 3753 return UnableToLegalize; 3754 3755 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3756 int NumDst = MI.getNumOperands() - 1; 3757 moreElementsVectorSrc(MI, MoreTy, NumDst); 3758 3759 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3760 for (int I = 0; I != NumDst; ++I) 3761 MIB.addDef(MI.getOperand(I).getReg()); 3762 3763 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3764 for (int I = NumDst; I != NewNumDst; ++I) 3765 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3766 3767 MIB.addUse(MI.getOperand(NumDst).getReg()); 3768 MI.eraseFromParent(); 3769 return Legalized; 3770 } 3771 case TargetOpcode::G_PHI: 3772 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3773 default: 3774 return UnableToLegalize; 3775 } 3776 } 3777 3778 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3779 ArrayRef<Register> Src1Regs, 3780 ArrayRef<Register> Src2Regs, 3781 LLT NarrowTy) { 3782 MachineIRBuilder &B = MIRBuilder; 3783 unsigned SrcParts = Src1Regs.size(); 3784 unsigned DstParts = DstRegs.size(); 3785 3786 unsigned DstIdx = 0; // Low bits of the result. 3787 Register FactorSum = 3788 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3789 DstRegs[DstIdx] = FactorSum; 3790 3791 unsigned CarrySumPrevDstIdx; 3792 SmallVector<Register, 4> Factors; 3793 3794 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3795 // Collect low parts of muls for DstIdx. 3796 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3797 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3798 MachineInstrBuilder Mul = 3799 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3800 Factors.push_back(Mul.getReg(0)); 3801 } 3802 // Collect high parts of muls from previous DstIdx. 3803 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3804 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3805 MachineInstrBuilder Umulh = 3806 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3807 Factors.push_back(Umulh.getReg(0)); 3808 } 3809 // Add CarrySum from additions calculated for previous DstIdx. 3810 if (DstIdx != 1) { 3811 Factors.push_back(CarrySumPrevDstIdx); 3812 } 3813 3814 Register CarrySum; 3815 // Add all factors and accumulate all carries into CarrySum. 3816 if (DstIdx != DstParts - 1) { 3817 MachineInstrBuilder Uaddo = 3818 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3819 FactorSum = Uaddo.getReg(0); 3820 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3821 for (unsigned i = 2; i < Factors.size(); ++i) { 3822 MachineInstrBuilder Uaddo = 3823 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3824 FactorSum = Uaddo.getReg(0); 3825 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3826 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3827 } 3828 } else { 3829 // Since value for the next index is not calculated, neither is CarrySum. 3830 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3831 for (unsigned i = 2; i < Factors.size(); ++i) 3832 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3833 } 3834 3835 CarrySumPrevDstIdx = CarrySum; 3836 DstRegs[DstIdx] = FactorSum; 3837 Factors.clear(); 3838 } 3839 } 3840 3841 LegalizerHelper::LegalizeResult 3842 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3843 Register DstReg = MI.getOperand(0).getReg(); 3844 Register Src1 = MI.getOperand(1).getReg(); 3845 Register Src2 = MI.getOperand(2).getReg(); 3846 3847 LLT Ty = MRI.getType(DstReg); 3848 if (Ty.isVector()) 3849 return UnableToLegalize; 3850 3851 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3852 unsigned DstSize = Ty.getSizeInBits(); 3853 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3854 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3855 return UnableToLegalize; 3856 3857 unsigned NumDstParts = DstSize / NarrowSize; 3858 unsigned NumSrcParts = SrcSize / NarrowSize; 3859 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3860 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3861 3862 SmallVector<Register, 2> Src1Parts, Src2Parts; 3863 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3864 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3865 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3866 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3867 3868 // Take only high half of registers if this is high mul. 3869 ArrayRef<Register> DstRegs( 3870 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3871 MIRBuilder.buildMerge(DstReg, DstRegs); 3872 MI.eraseFromParent(); 3873 return Legalized; 3874 } 3875 3876 LegalizerHelper::LegalizeResult 3877 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3878 LLT NarrowTy) { 3879 if (TypeIdx != 1) 3880 return UnableToLegalize; 3881 3882 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3883 3884 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3885 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3886 // NarrowSize. 3887 if (SizeOp1 % NarrowSize != 0) 3888 return UnableToLegalize; 3889 int NumParts = SizeOp1 / NarrowSize; 3890 3891 SmallVector<Register, 2> SrcRegs, DstRegs; 3892 SmallVector<uint64_t, 2> Indexes; 3893 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3894 3895 Register OpReg = MI.getOperand(0).getReg(); 3896 uint64_t OpStart = MI.getOperand(2).getImm(); 3897 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3898 for (int i = 0; i < NumParts; ++i) { 3899 unsigned SrcStart = i * NarrowSize; 3900 3901 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3902 // No part of the extract uses this subregister, ignore it. 3903 continue; 3904 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3905 // The entire subregister is extracted, forward the value. 3906 DstRegs.push_back(SrcRegs[i]); 3907 continue; 3908 } 3909 3910 // OpSegStart is where this destination segment would start in OpReg if it 3911 // extended infinitely in both directions. 3912 int64_t ExtractOffset; 3913 uint64_t SegSize; 3914 if (OpStart < SrcStart) { 3915 ExtractOffset = 0; 3916 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3917 } else { 3918 ExtractOffset = OpStart - SrcStart; 3919 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3920 } 3921 3922 Register SegReg = SrcRegs[i]; 3923 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3924 // A genuine extract is needed. 3925 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3926 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3927 } 3928 3929 DstRegs.push_back(SegReg); 3930 } 3931 3932 Register DstReg = MI.getOperand(0).getReg(); 3933 if (MRI.getType(DstReg).isVector()) 3934 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3935 else if (DstRegs.size() > 1) 3936 MIRBuilder.buildMerge(DstReg, DstRegs); 3937 else 3938 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3939 MI.eraseFromParent(); 3940 return Legalized; 3941 } 3942 3943 LegalizerHelper::LegalizeResult 3944 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3945 LLT NarrowTy) { 3946 // FIXME: Don't know how to handle secondary types yet. 3947 if (TypeIdx != 0) 3948 return UnableToLegalize; 3949 3950 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3951 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3952 3953 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3954 // NarrowSize. 3955 if (SizeOp0 % NarrowSize != 0) 3956 return UnableToLegalize; 3957 3958 int NumParts = SizeOp0 / NarrowSize; 3959 3960 SmallVector<Register, 2> SrcRegs, DstRegs; 3961 SmallVector<uint64_t, 2> Indexes; 3962 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3963 3964 Register OpReg = MI.getOperand(2).getReg(); 3965 uint64_t OpStart = MI.getOperand(3).getImm(); 3966 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3967 for (int i = 0; i < NumParts; ++i) { 3968 unsigned DstStart = i * NarrowSize; 3969 3970 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3971 // No part of the insert affects this subregister, forward the original. 3972 DstRegs.push_back(SrcRegs[i]); 3973 continue; 3974 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3975 // The entire subregister is defined by this insert, forward the new 3976 // value. 3977 DstRegs.push_back(OpReg); 3978 continue; 3979 } 3980 3981 // OpSegStart is where this destination segment would start in OpReg if it 3982 // extended infinitely in both directions. 3983 int64_t ExtractOffset, InsertOffset; 3984 uint64_t SegSize; 3985 if (OpStart < DstStart) { 3986 InsertOffset = 0; 3987 ExtractOffset = DstStart - OpStart; 3988 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3989 } else { 3990 InsertOffset = OpStart - DstStart; 3991 ExtractOffset = 0; 3992 SegSize = 3993 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3994 } 3995 3996 Register SegReg = OpReg; 3997 if (ExtractOffset != 0 || SegSize != OpSize) { 3998 // A genuine extract is needed. 3999 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4000 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4001 } 4002 4003 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4004 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4005 DstRegs.push_back(DstReg); 4006 } 4007 4008 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4009 Register DstReg = MI.getOperand(0).getReg(); 4010 if(MRI.getType(DstReg).isVector()) 4011 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4012 else 4013 MIRBuilder.buildMerge(DstReg, DstRegs); 4014 MI.eraseFromParent(); 4015 return Legalized; 4016 } 4017 4018 LegalizerHelper::LegalizeResult 4019 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4020 LLT NarrowTy) { 4021 Register DstReg = MI.getOperand(0).getReg(); 4022 LLT DstTy = MRI.getType(DstReg); 4023 4024 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4025 4026 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4027 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4028 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4029 LLT LeftoverTy; 4030 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4031 Src0Regs, Src0LeftoverRegs)) 4032 return UnableToLegalize; 4033 4034 LLT Unused; 4035 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4036 Src1Regs, Src1LeftoverRegs)) 4037 llvm_unreachable("inconsistent extractParts result"); 4038 4039 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4040 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4041 {Src0Regs[I], Src1Regs[I]}); 4042 DstRegs.push_back(Inst.getReg(0)); 4043 } 4044 4045 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4046 auto Inst = MIRBuilder.buildInstr( 4047 MI.getOpcode(), 4048 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4049 DstLeftoverRegs.push_back(Inst.getReg(0)); 4050 } 4051 4052 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4053 LeftoverTy, DstLeftoverRegs); 4054 4055 MI.eraseFromParent(); 4056 return Legalized; 4057 } 4058 4059 LegalizerHelper::LegalizeResult 4060 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4061 LLT NarrowTy) { 4062 if (TypeIdx != 0) 4063 return UnableToLegalize; 4064 4065 Register DstReg = MI.getOperand(0).getReg(); 4066 Register SrcReg = MI.getOperand(1).getReg(); 4067 4068 LLT DstTy = MRI.getType(DstReg); 4069 if (DstTy.isVector()) 4070 return UnableToLegalize; 4071 4072 SmallVector<Register, 8> Parts; 4073 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4074 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4075 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4076 4077 MI.eraseFromParent(); 4078 return Legalized; 4079 } 4080 4081 LegalizerHelper::LegalizeResult 4082 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4083 LLT NarrowTy) { 4084 if (TypeIdx != 0) 4085 return UnableToLegalize; 4086 4087 Register CondReg = MI.getOperand(1).getReg(); 4088 LLT CondTy = MRI.getType(CondReg); 4089 if (CondTy.isVector()) // TODO: Handle vselect 4090 return UnableToLegalize; 4091 4092 Register DstReg = MI.getOperand(0).getReg(); 4093 LLT DstTy = MRI.getType(DstReg); 4094 4095 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4096 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4097 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4098 LLT LeftoverTy; 4099 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4100 Src1Regs, Src1LeftoverRegs)) 4101 return UnableToLegalize; 4102 4103 LLT Unused; 4104 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4105 Src2Regs, Src2LeftoverRegs)) 4106 llvm_unreachable("inconsistent extractParts result"); 4107 4108 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4109 auto Select = MIRBuilder.buildSelect(NarrowTy, 4110 CondReg, Src1Regs[I], Src2Regs[I]); 4111 DstRegs.push_back(Select.getReg(0)); 4112 } 4113 4114 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4115 auto Select = MIRBuilder.buildSelect( 4116 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4117 DstLeftoverRegs.push_back(Select.getReg(0)); 4118 } 4119 4120 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4121 LeftoverTy, DstLeftoverRegs); 4122 4123 MI.eraseFromParent(); 4124 return Legalized; 4125 } 4126 4127 LegalizerHelper::LegalizeResult 4128 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4129 LLT NarrowTy) { 4130 if (TypeIdx != 1) 4131 return UnableToLegalize; 4132 4133 Register DstReg = MI.getOperand(0).getReg(); 4134 Register SrcReg = MI.getOperand(1).getReg(); 4135 LLT DstTy = MRI.getType(DstReg); 4136 LLT SrcTy = MRI.getType(SrcReg); 4137 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4138 4139 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4140 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4141 4142 MachineIRBuilder &B = MIRBuilder; 4143 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4144 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4145 auto C_0 = B.buildConstant(NarrowTy, 0); 4146 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4147 UnmergeSrc.getReg(1), C_0); 4148 auto LoCTLZ = IsUndef ? 4149 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4150 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4151 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4152 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4153 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4154 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4155 4156 MI.eraseFromParent(); 4157 return Legalized; 4158 } 4159 4160 return UnableToLegalize; 4161 } 4162 4163 LegalizerHelper::LegalizeResult 4164 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4165 LLT NarrowTy) { 4166 if (TypeIdx != 1) 4167 return UnableToLegalize; 4168 4169 Register DstReg = MI.getOperand(0).getReg(); 4170 Register SrcReg = MI.getOperand(1).getReg(); 4171 LLT DstTy = MRI.getType(DstReg); 4172 LLT SrcTy = MRI.getType(SrcReg); 4173 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4174 4175 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4176 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4177 4178 MachineIRBuilder &B = MIRBuilder; 4179 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4180 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4181 auto C_0 = B.buildConstant(NarrowTy, 0); 4182 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4183 UnmergeSrc.getReg(0), C_0); 4184 auto HiCTTZ = IsUndef ? 4185 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4186 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4187 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4188 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4189 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4190 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4191 4192 MI.eraseFromParent(); 4193 return Legalized; 4194 } 4195 4196 return UnableToLegalize; 4197 } 4198 4199 LegalizerHelper::LegalizeResult 4200 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4201 LLT NarrowTy) { 4202 if (TypeIdx != 1) 4203 return UnableToLegalize; 4204 4205 Register DstReg = MI.getOperand(0).getReg(); 4206 LLT DstTy = MRI.getType(DstReg); 4207 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4208 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4209 4210 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4211 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4212 4213 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4214 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4215 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4216 4217 MI.eraseFromParent(); 4218 return Legalized; 4219 } 4220 4221 return UnableToLegalize; 4222 } 4223 4224 LegalizerHelper::LegalizeResult 4225 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4226 unsigned Opc = MI.getOpcode(); 4227 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4228 auto isSupported = [this](const LegalityQuery &Q) { 4229 auto QAction = LI.getAction(Q).Action; 4230 return QAction == Legal || QAction == Libcall || QAction == Custom; 4231 }; 4232 switch (Opc) { 4233 default: 4234 return UnableToLegalize; 4235 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4236 // This trivially expands to CTLZ. 4237 Observer.changingInstr(MI); 4238 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4239 Observer.changedInstr(MI); 4240 return Legalized; 4241 } 4242 case TargetOpcode::G_CTLZ: { 4243 Register DstReg = MI.getOperand(0).getReg(); 4244 Register SrcReg = MI.getOperand(1).getReg(); 4245 LLT DstTy = MRI.getType(DstReg); 4246 LLT SrcTy = MRI.getType(SrcReg); 4247 unsigned Len = SrcTy.getSizeInBits(); 4248 4249 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4250 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4251 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4252 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4253 auto ICmp = MIRBuilder.buildICmp( 4254 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4255 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4256 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4257 MI.eraseFromParent(); 4258 return Legalized; 4259 } 4260 // for now, we do this: 4261 // NewLen = NextPowerOf2(Len); 4262 // x = x | (x >> 1); 4263 // x = x | (x >> 2); 4264 // ... 4265 // x = x | (x >>16); 4266 // x = x | (x >>32); // for 64-bit input 4267 // Upto NewLen/2 4268 // return Len - popcount(x); 4269 // 4270 // Ref: "Hacker's Delight" by Henry Warren 4271 Register Op = SrcReg; 4272 unsigned NewLen = PowerOf2Ceil(Len); 4273 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4274 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4275 auto MIBOp = MIRBuilder.buildOr( 4276 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4277 Op = MIBOp.getReg(0); 4278 } 4279 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4280 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4281 MIBPop); 4282 MI.eraseFromParent(); 4283 return Legalized; 4284 } 4285 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4286 // This trivially expands to CTTZ. 4287 Observer.changingInstr(MI); 4288 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4289 Observer.changedInstr(MI); 4290 return Legalized; 4291 } 4292 case TargetOpcode::G_CTTZ: { 4293 Register DstReg = MI.getOperand(0).getReg(); 4294 Register SrcReg = MI.getOperand(1).getReg(); 4295 LLT DstTy = MRI.getType(DstReg); 4296 LLT SrcTy = MRI.getType(SrcReg); 4297 4298 unsigned Len = SrcTy.getSizeInBits(); 4299 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4300 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4301 // zero. 4302 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4303 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4304 auto ICmp = MIRBuilder.buildICmp( 4305 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4306 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4307 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4308 MI.eraseFromParent(); 4309 return Legalized; 4310 } 4311 // for now, we use: { return popcount(~x & (x - 1)); } 4312 // unless the target has ctlz but not ctpop, in which case we use: 4313 // { return 32 - nlz(~x & (x-1)); } 4314 // Ref: "Hacker's Delight" by Henry Warren 4315 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4316 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4317 auto MIBTmp = MIRBuilder.buildAnd( 4318 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4319 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4320 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4321 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4322 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4323 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4324 MI.eraseFromParent(); 4325 return Legalized; 4326 } 4327 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4328 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4329 return Legalized; 4330 } 4331 case TargetOpcode::G_CTPOP: { 4332 unsigned Size = Ty.getSizeInBits(); 4333 MachineIRBuilder &B = MIRBuilder; 4334 4335 // Count set bits in blocks of 2 bits. Default approach would be 4336 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4337 // We use following formula instead: 4338 // B2Count = val - { (val >> 1) & 0x55555555 } 4339 // since it gives same result in blocks of 2 with one instruction less. 4340 auto C_1 = B.buildConstant(Ty, 1); 4341 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4342 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4343 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4344 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4345 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4346 4347 // In order to get count in blocks of 4 add values from adjacent block of 2. 4348 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4349 auto C_2 = B.buildConstant(Ty, 2); 4350 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4351 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4352 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4353 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4354 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4355 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4356 4357 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4358 // addition since count value sits in range {0,...,8} and 4 bits are enough 4359 // to hold such binary values. After addition high 4 bits still hold count 4360 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4361 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4362 auto C_4 = B.buildConstant(Ty, 4); 4363 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4364 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4365 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4366 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4367 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4368 4369 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4370 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4371 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4372 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4373 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4374 4375 // Shift count result from 8 high bits to low bits. 4376 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4377 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4378 4379 MI.eraseFromParent(); 4380 return Legalized; 4381 } 4382 } 4383 } 4384 4385 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4386 // representation. 4387 LegalizerHelper::LegalizeResult 4388 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4389 Register Dst = MI.getOperand(0).getReg(); 4390 Register Src = MI.getOperand(1).getReg(); 4391 const LLT S64 = LLT::scalar(64); 4392 const LLT S32 = LLT::scalar(32); 4393 const LLT S1 = LLT::scalar(1); 4394 4395 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4396 4397 // unsigned cul2f(ulong u) { 4398 // uint lz = clz(u); 4399 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4400 // u = (u << lz) & 0x7fffffffffffffffUL; 4401 // ulong t = u & 0xffffffffffUL; 4402 // uint v = (e << 23) | (uint)(u >> 40); 4403 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4404 // return as_float(v + r); 4405 // } 4406 4407 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4408 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4409 4410 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4411 4412 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4413 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4414 4415 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4416 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4417 4418 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4419 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4420 4421 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4422 4423 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4424 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4425 4426 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4427 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4428 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4429 4430 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4431 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4432 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4433 auto One = MIRBuilder.buildConstant(S32, 1); 4434 4435 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4436 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4437 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4438 MIRBuilder.buildAdd(Dst, V, R); 4439 4440 MI.eraseFromParent(); 4441 return Legalized; 4442 } 4443 4444 LegalizerHelper::LegalizeResult 4445 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4446 Register Dst = MI.getOperand(0).getReg(); 4447 Register Src = MI.getOperand(1).getReg(); 4448 LLT DstTy = MRI.getType(Dst); 4449 LLT SrcTy = MRI.getType(Src); 4450 4451 if (SrcTy == LLT::scalar(1)) { 4452 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4453 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4454 MIRBuilder.buildSelect(Dst, Src, True, False); 4455 MI.eraseFromParent(); 4456 return Legalized; 4457 } 4458 4459 if (SrcTy != LLT::scalar(64)) 4460 return UnableToLegalize; 4461 4462 if (DstTy == LLT::scalar(32)) { 4463 // TODO: SelectionDAG has several alternative expansions to port which may 4464 // be more reasonble depending on the available instructions. If a target 4465 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4466 // intermediate type, this is probably worse. 4467 return lowerU64ToF32BitOps(MI); 4468 } 4469 4470 return UnableToLegalize; 4471 } 4472 4473 LegalizerHelper::LegalizeResult 4474 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4475 Register Dst = MI.getOperand(0).getReg(); 4476 Register Src = MI.getOperand(1).getReg(); 4477 LLT DstTy = MRI.getType(Dst); 4478 LLT SrcTy = MRI.getType(Src); 4479 4480 const LLT S64 = LLT::scalar(64); 4481 const LLT S32 = LLT::scalar(32); 4482 const LLT S1 = LLT::scalar(1); 4483 4484 if (SrcTy == S1) { 4485 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4486 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4487 MIRBuilder.buildSelect(Dst, Src, True, False); 4488 MI.eraseFromParent(); 4489 return Legalized; 4490 } 4491 4492 if (SrcTy != S64) 4493 return UnableToLegalize; 4494 4495 if (DstTy == S32) { 4496 // signed cl2f(long l) { 4497 // long s = l >> 63; 4498 // float r = cul2f((l + s) ^ s); 4499 // return s ? -r : r; 4500 // } 4501 Register L = Src; 4502 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4503 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4504 4505 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4506 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4507 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4508 4509 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4510 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4511 MIRBuilder.buildConstant(S64, 0)); 4512 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4513 MI.eraseFromParent(); 4514 return Legalized; 4515 } 4516 4517 return UnableToLegalize; 4518 } 4519 4520 LegalizerHelper::LegalizeResult 4521 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4522 Register Dst = MI.getOperand(0).getReg(); 4523 Register Src = MI.getOperand(1).getReg(); 4524 LLT DstTy = MRI.getType(Dst); 4525 LLT SrcTy = MRI.getType(Src); 4526 const LLT S64 = LLT::scalar(64); 4527 const LLT S32 = LLT::scalar(32); 4528 4529 if (SrcTy != S64 && SrcTy != S32) 4530 return UnableToLegalize; 4531 if (DstTy != S32 && DstTy != S64) 4532 return UnableToLegalize; 4533 4534 // FPTOSI gives same result as FPTOUI for positive signed integers. 4535 // FPTOUI needs to deal with fp values that convert to unsigned integers 4536 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4537 4538 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4539 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4540 : APFloat::IEEEdouble(), 4541 APInt::getNullValue(SrcTy.getSizeInBits())); 4542 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4543 4544 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4545 4546 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4547 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4548 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4549 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4550 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4551 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4552 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4553 4554 const LLT S1 = LLT::scalar(1); 4555 4556 MachineInstrBuilder FCMP = 4557 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4558 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4559 4560 MI.eraseFromParent(); 4561 return Legalized; 4562 } 4563 4564 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4565 Register Dst = MI.getOperand(0).getReg(); 4566 Register Src = MI.getOperand(1).getReg(); 4567 LLT DstTy = MRI.getType(Dst); 4568 LLT SrcTy = MRI.getType(Src); 4569 const LLT S64 = LLT::scalar(64); 4570 const LLT S32 = LLT::scalar(32); 4571 4572 // FIXME: Only f32 to i64 conversions are supported. 4573 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4574 return UnableToLegalize; 4575 4576 // Expand f32 -> i64 conversion 4577 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4578 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4579 4580 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4581 4582 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4583 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4584 4585 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4586 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4587 4588 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4589 APInt::getSignMask(SrcEltBits)); 4590 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4591 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4592 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4593 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4594 4595 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4596 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4597 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4598 4599 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4600 R = MIRBuilder.buildZExt(DstTy, R); 4601 4602 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4603 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4604 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4605 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4606 4607 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4608 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4609 4610 const LLT S1 = LLT::scalar(1); 4611 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4612 S1, Exponent, ExponentLoBit); 4613 4614 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4615 4616 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4617 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4618 4619 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4620 4621 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4622 S1, Exponent, ZeroSrcTy); 4623 4624 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4625 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4626 4627 MI.eraseFromParent(); 4628 return Legalized; 4629 } 4630 4631 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4632 LegalizerHelper::LegalizeResult 4633 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4634 Register Dst = MI.getOperand(0).getReg(); 4635 Register Src = MI.getOperand(1).getReg(); 4636 4637 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4638 return UnableToLegalize; 4639 4640 const unsigned ExpMask = 0x7ff; 4641 const unsigned ExpBiasf64 = 1023; 4642 const unsigned ExpBiasf16 = 15; 4643 const LLT S32 = LLT::scalar(32); 4644 const LLT S1 = LLT::scalar(1); 4645 4646 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4647 Register U = Unmerge.getReg(0); 4648 Register UH = Unmerge.getReg(1); 4649 4650 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4651 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4652 4653 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4654 // add the f16 bias (15) to get the biased exponent for the f16 format. 4655 E = MIRBuilder.buildAdd( 4656 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4657 4658 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4659 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4660 4661 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4662 MIRBuilder.buildConstant(S32, 0x1ff)); 4663 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4664 4665 auto Zero = MIRBuilder.buildConstant(S32, 0); 4666 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4667 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4668 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4669 4670 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4671 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4672 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4673 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4674 4675 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4676 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4677 4678 // N = M | (E << 12); 4679 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4680 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4681 4682 // B = clamp(1-E, 0, 13); 4683 auto One = MIRBuilder.buildConstant(S32, 1); 4684 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4685 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4686 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4687 4688 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4689 MIRBuilder.buildConstant(S32, 0x1000)); 4690 4691 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4692 auto D0 = MIRBuilder.buildShl(S32, D, B); 4693 4694 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4695 D0, SigSetHigh); 4696 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4697 D = MIRBuilder.buildOr(S32, D, D1); 4698 4699 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4700 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4701 4702 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4703 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4704 4705 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4706 MIRBuilder.buildConstant(S32, 3)); 4707 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4708 4709 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4710 MIRBuilder.buildConstant(S32, 5)); 4711 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4712 4713 V1 = MIRBuilder.buildOr(S32, V0, V1); 4714 V = MIRBuilder.buildAdd(S32, V, V1); 4715 4716 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4717 E, MIRBuilder.buildConstant(S32, 30)); 4718 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4719 MIRBuilder.buildConstant(S32, 0x7c00), V); 4720 4721 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4722 E, MIRBuilder.buildConstant(S32, 1039)); 4723 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4724 4725 // Extract the sign bit. 4726 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4727 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4728 4729 // Insert the sign bit 4730 V = MIRBuilder.buildOr(S32, Sign, V); 4731 4732 MIRBuilder.buildTrunc(Dst, V); 4733 MI.eraseFromParent(); 4734 return Legalized; 4735 } 4736 4737 LegalizerHelper::LegalizeResult 4738 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4739 Register Dst = MI.getOperand(0).getReg(); 4740 Register Src = MI.getOperand(1).getReg(); 4741 4742 LLT DstTy = MRI.getType(Dst); 4743 LLT SrcTy = MRI.getType(Src); 4744 const LLT S64 = LLT::scalar(64); 4745 const LLT S16 = LLT::scalar(16); 4746 4747 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4748 return lowerFPTRUNC_F64_TO_F16(MI); 4749 4750 return UnableToLegalize; 4751 } 4752 4753 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4754 switch (Opc) { 4755 case TargetOpcode::G_SMIN: 4756 return CmpInst::ICMP_SLT; 4757 case TargetOpcode::G_SMAX: 4758 return CmpInst::ICMP_SGT; 4759 case TargetOpcode::G_UMIN: 4760 return CmpInst::ICMP_ULT; 4761 case TargetOpcode::G_UMAX: 4762 return CmpInst::ICMP_UGT; 4763 default: 4764 llvm_unreachable("not in integer min/max"); 4765 } 4766 } 4767 4768 LegalizerHelper::LegalizeResult 4769 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4770 Register Dst = MI.getOperand(0).getReg(); 4771 Register Src0 = MI.getOperand(1).getReg(); 4772 Register Src1 = MI.getOperand(2).getReg(); 4773 4774 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4775 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4776 4777 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4778 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4779 4780 MI.eraseFromParent(); 4781 return Legalized; 4782 } 4783 4784 LegalizerHelper::LegalizeResult 4785 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4786 Register Dst = MI.getOperand(0).getReg(); 4787 Register Src0 = MI.getOperand(1).getReg(); 4788 Register Src1 = MI.getOperand(2).getReg(); 4789 4790 const LLT Src0Ty = MRI.getType(Src0); 4791 const LLT Src1Ty = MRI.getType(Src1); 4792 4793 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4794 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4795 4796 auto SignBitMask = MIRBuilder.buildConstant( 4797 Src0Ty, APInt::getSignMask(Src0Size)); 4798 4799 auto NotSignBitMask = MIRBuilder.buildConstant( 4800 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4801 4802 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4803 MachineInstr *Or; 4804 4805 if (Src0Ty == Src1Ty) { 4806 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4807 Or = MIRBuilder.buildOr(Dst, And0, And1); 4808 } else if (Src0Size > Src1Size) { 4809 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4810 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4811 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4812 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4813 Or = MIRBuilder.buildOr(Dst, And0, And1); 4814 } else { 4815 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4816 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4817 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4818 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4819 Or = MIRBuilder.buildOr(Dst, And0, And1); 4820 } 4821 4822 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4823 // constants are a nan and -0.0, but the final result should preserve 4824 // everything. 4825 if (unsigned Flags = MI.getFlags()) 4826 Or->setFlags(Flags); 4827 4828 MI.eraseFromParent(); 4829 return Legalized; 4830 } 4831 4832 LegalizerHelper::LegalizeResult 4833 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4834 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4835 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4836 4837 Register Dst = MI.getOperand(0).getReg(); 4838 Register Src0 = MI.getOperand(1).getReg(); 4839 Register Src1 = MI.getOperand(2).getReg(); 4840 LLT Ty = MRI.getType(Dst); 4841 4842 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4843 // Insert canonicalizes if it's possible we need to quiet to get correct 4844 // sNaN behavior. 4845 4846 // Note this must be done here, and not as an optimization combine in the 4847 // absence of a dedicate quiet-snan instruction as we're using an 4848 // omni-purpose G_FCANONICALIZE. 4849 if (!isKnownNeverSNaN(Src0, MRI)) 4850 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4851 4852 if (!isKnownNeverSNaN(Src1, MRI)) 4853 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4854 } 4855 4856 // If there are no nans, it's safe to simply replace this with the non-IEEE 4857 // version. 4858 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4859 MI.eraseFromParent(); 4860 return Legalized; 4861 } 4862 4863 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4864 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4865 Register DstReg = MI.getOperand(0).getReg(); 4866 LLT Ty = MRI.getType(DstReg); 4867 unsigned Flags = MI.getFlags(); 4868 4869 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4870 Flags); 4871 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4872 MI.eraseFromParent(); 4873 return Legalized; 4874 } 4875 4876 LegalizerHelper::LegalizeResult 4877 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4878 Register DstReg = MI.getOperand(0).getReg(); 4879 Register X = MI.getOperand(1).getReg(); 4880 const unsigned Flags = MI.getFlags(); 4881 const LLT Ty = MRI.getType(DstReg); 4882 const LLT CondTy = Ty.changeElementSize(1); 4883 4884 // round(x) => 4885 // t = trunc(x); 4886 // d = fabs(x - t); 4887 // o = copysign(1.0f, x); 4888 // return t + (d >= 0.5 ? o : 0.0); 4889 4890 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4891 4892 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4893 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4894 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4895 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4896 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4897 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4898 4899 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4900 Flags); 4901 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4902 4903 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4904 4905 MI.eraseFromParent(); 4906 return Legalized; 4907 } 4908 4909 LegalizerHelper::LegalizeResult 4910 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4911 Register DstReg = MI.getOperand(0).getReg(); 4912 Register SrcReg = MI.getOperand(1).getReg(); 4913 unsigned Flags = MI.getFlags(); 4914 LLT Ty = MRI.getType(DstReg); 4915 const LLT CondTy = Ty.changeElementSize(1); 4916 4917 // result = trunc(src); 4918 // if (src < 0.0 && src != result) 4919 // result += -1.0. 4920 4921 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4922 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4923 4924 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4925 SrcReg, Zero, Flags); 4926 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4927 SrcReg, Trunc, Flags); 4928 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4929 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4930 4931 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4932 MI.eraseFromParent(); 4933 return Legalized; 4934 } 4935 4936 LegalizerHelper::LegalizeResult 4937 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4938 const unsigned NumOps = MI.getNumOperands(); 4939 Register DstReg = MI.getOperand(0).getReg(); 4940 Register Src0Reg = MI.getOperand(1).getReg(); 4941 LLT DstTy = MRI.getType(DstReg); 4942 LLT SrcTy = MRI.getType(Src0Reg); 4943 unsigned PartSize = SrcTy.getSizeInBits(); 4944 4945 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4946 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4947 4948 for (unsigned I = 2; I != NumOps; ++I) { 4949 const unsigned Offset = (I - 1) * PartSize; 4950 4951 Register SrcReg = MI.getOperand(I).getReg(); 4952 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4953 4954 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 4955 MRI.createGenericVirtualRegister(WideTy); 4956 4957 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 4958 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 4959 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 4960 ResultReg = NextResult; 4961 } 4962 4963 if (DstTy.isPointer()) { 4964 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 4965 DstTy.getAddressSpace())) { 4966 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 4967 return UnableToLegalize; 4968 } 4969 4970 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 4971 } 4972 4973 MI.eraseFromParent(); 4974 return Legalized; 4975 } 4976 4977 LegalizerHelper::LegalizeResult 4978 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4979 const unsigned NumDst = MI.getNumOperands() - 1; 4980 Register SrcReg = MI.getOperand(NumDst).getReg(); 4981 Register Dst0Reg = MI.getOperand(0).getReg(); 4982 LLT DstTy = MRI.getType(Dst0Reg); 4983 if (DstTy.isPointer()) 4984 return UnableToLegalize; // TODO 4985 4986 SrcReg = coerceToScalar(SrcReg); 4987 if (!SrcReg) 4988 return UnableToLegalize; 4989 4990 // Expand scalarizing unmerge as bitcast to integer and shift. 4991 LLT IntTy = MRI.getType(SrcReg); 4992 4993 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 4994 4995 const unsigned DstSize = DstTy.getSizeInBits(); 4996 unsigned Offset = DstSize; 4997 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4998 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4999 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5000 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5001 } 5002 5003 MI.eraseFromParent(); 5004 return Legalized; 5005 } 5006 5007 LegalizerHelper::LegalizeResult 5008 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5009 Register DstReg = MI.getOperand(0).getReg(); 5010 Register Src0Reg = MI.getOperand(1).getReg(); 5011 Register Src1Reg = MI.getOperand(2).getReg(); 5012 LLT Src0Ty = MRI.getType(Src0Reg); 5013 LLT DstTy = MRI.getType(DstReg); 5014 LLT IdxTy = LLT::scalar(32); 5015 5016 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5017 5018 if (DstTy.isScalar()) { 5019 if (Src0Ty.isVector()) 5020 return UnableToLegalize; 5021 5022 // This is just a SELECT. 5023 assert(Mask.size() == 1 && "Expected a single mask element"); 5024 Register Val; 5025 if (Mask[0] < 0 || Mask[0] > 1) 5026 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5027 else 5028 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5029 MIRBuilder.buildCopy(DstReg, Val); 5030 MI.eraseFromParent(); 5031 return Legalized; 5032 } 5033 5034 Register Undef; 5035 SmallVector<Register, 32> BuildVec; 5036 LLT EltTy = DstTy.getElementType(); 5037 5038 for (int Idx : Mask) { 5039 if (Idx < 0) { 5040 if (!Undef.isValid()) 5041 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5042 BuildVec.push_back(Undef); 5043 continue; 5044 } 5045 5046 if (Src0Ty.isScalar()) { 5047 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5048 } else { 5049 int NumElts = Src0Ty.getNumElements(); 5050 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5051 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5052 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5053 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5054 BuildVec.push_back(Extract.getReg(0)); 5055 } 5056 } 5057 5058 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5059 MI.eraseFromParent(); 5060 return Legalized; 5061 } 5062 5063 LegalizerHelper::LegalizeResult 5064 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5065 const auto &MF = *MI.getMF(); 5066 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5067 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5068 return UnableToLegalize; 5069 5070 Register Dst = MI.getOperand(0).getReg(); 5071 Register AllocSize = MI.getOperand(1).getReg(); 5072 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5073 5074 LLT PtrTy = MRI.getType(Dst); 5075 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5076 5077 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5078 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5079 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5080 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5081 5082 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5083 // have to generate an extra instruction to negate the alloc and then use 5084 // G_PTR_ADD to add the negative offset. 5085 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5086 if (Alignment > Align(1)) { 5087 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5088 AlignMask.negate(); 5089 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5090 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5091 } 5092 5093 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5094 MIRBuilder.buildCopy(SPReg, SPTmp); 5095 MIRBuilder.buildCopy(Dst, SPTmp); 5096 5097 MI.eraseFromParent(); 5098 return Legalized; 5099 } 5100 5101 LegalizerHelper::LegalizeResult 5102 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5103 Register Dst = MI.getOperand(0).getReg(); 5104 Register Src = MI.getOperand(1).getReg(); 5105 unsigned Offset = MI.getOperand(2).getImm(); 5106 5107 LLT DstTy = MRI.getType(Dst); 5108 LLT SrcTy = MRI.getType(Src); 5109 5110 if (DstTy.isScalar() && 5111 (SrcTy.isScalar() || 5112 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5113 LLT SrcIntTy = SrcTy; 5114 if (!SrcTy.isScalar()) { 5115 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5116 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5117 } 5118 5119 if (Offset == 0) 5120 MIRBuilder.buildTrunc(Dst, Src); 5121 else { 5122 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5123 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5124 MIRBuilder.buildTrunc(Dst, Shr); 5125 } 5126 5127 MI.eraseFromParent(); 5128 return Legalized; 5129 } 5130 5131 return UnableToLegalize; 5132 } 5133 5134 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5135 Register Dst = MI.getOperand(0).getReg(); 5136 Register Src = MI.getOperand(1).getReg(); 5137 Register InsertSrc = MI.getOperand(2).getReg(); 5138 uint64_t Offset = MI.getOperand(3).getImm(); 5139 5140 LLT DstTy = MRI.getType(Src); 5141 LLT InsertTy = MRI.getType(InsertSrc); 5142 5143 if (InsertTy.isVector() || 5144 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5145 return UnableToLegalize; 5146 5147 const DataLayout &DL = MIRBuilder.getDataLayout(); 5148 if ((DstTy.isPointer() && 5149 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5150 (InsertTy.isPointer() && 5151 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5152 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5153 return UnableToLegalize; 5154 } 5155 5156 LLT IntDstTy = DstTy; 5157 5158 if (!DstTy.isScalar()) { 5159 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5160 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5161 } 5162 5163 if (!InsertTy.isScalar()) { 5164 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5165 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5166 } 5167 5168 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5169 if (Offset != 0) { 5170 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5171 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5172 } 5173 5174 APInt MaskVal = APInt::getBitsSetWithWrap( 5175 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5176 5177 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5178 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5179 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5180 5181 MIRBuilder.buildCast(Dst, Or); 5182 MI.eraseFromParent(); 5183 return Legalized; 5184 } 5185 5186 LegalizerHelper::LegalizeResult 5187 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5188 Register Dst0 = MI.getOperand(0).getReg(); 5189 Register Dst1 = MI.getOperand(1).getReg(); 5190 Register LHS = MI.getOperand(2).getReg(); 5191 Register RHS = MI.getOperand(3).getReg(); 5192 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5193 5194 LLT Ty = MRI.getType(Dst0); 5195 LLT BoolTy = MRI.getType(Dst1); 5196 5197 if (IsAdd) 5198 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5199 else 5200 MIRBuilder.buildSub(Dst0, LHS, RHS); 5201 5202 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5203 5204 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5205 5206 // For an addition, the result should be less than one of the operands (LHS) 5207 // if and only if the other operand (RHS) is negative, otherwise there will 5208 // be overflow. 5209 // For a subtraction, the result should be less than one of the operands 5210 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5211 // otherwise there will be overflow. 5212 auto ResultLowerThanLHS = 5213 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5214 auto ConditionRHS = MIRBuilder.buildICmp( 5215 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5216 5217 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5218 MI.eraseFromParent(); 5219 return Legalized; 5220 } 5221 5222 LegalizerHelper::LegalizeResult 5223 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5224 Register Dst = MI.getOperand(0).getReg(); 5225 Register Src = MI.getOperand(1).getReg(); 5226 const LLT Ty = MRI.getType(Src); 5227 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5228 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5229 5230 // Swap most and least significant byte, set remaining bytes in Res to zero. 5231 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5232 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5233 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5234 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5235 5236 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5237 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5238 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5239 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5240 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5241 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5242 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5243 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5244 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5245 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5246 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5247 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5248 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5249 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5250 } 5251 Res.getInstr()->getOperand(0).setReg(Dst); 5252 5253 MI.eraseFromParent(); 5254 return Legalized; 5255 } 5256 5257 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5258 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5259 MachineInstrBuilder Src, APInt Mask) { 5260 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5261 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5262 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5263 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5264 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5265 return B.buildOr(Dst, LHS, RHS); 5266 } 5267 5268 LegalizerHelper::LegalizeResult 5269 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5270 Register Dst = MI.getOperand(0).getReg(); 5271 Register Src = MI.getOperand(1).getReg(); 5272 const LLT Ty = MRI.getType(Src); 5273 unsigned Size = Ty.getSizeInBits(); 5274 5275 MachineInstrBuilder BSWAP = 5276 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5277 5278 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5279 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5280 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5281 MachineInstrBuilder Swap4 = 5282 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5283 5284 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5285 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5286 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5287 MachineInstrBuilder Swap2 = 5288 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5289 5290 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5291 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5292 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5293 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5294 5295 MI.eraseFromParent(); 5296 return Legalized; 5297 } 5298 5299 LegalizerHelper::LegalizeResult 5300 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5301 MachineFunction &MF = MIRBuilder.getMF(); 5302 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5303 const TargetLowering *TLI = STI.getTargetLowering(); 5304 5305 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5306 int NameOpIdx = IsRead ? 1 : 0; 5307 int ValRegIndex = IsRead ? 0 : 1; 5308 5309 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5310 const LLT Ty = MRI.getType(ValReg); 5311 const MDString *RegStr = cast<MDString>( 5312 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5313 5314 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5315 if (!PhysReg.isValid()) 5316 return UnableToLegalize; 5317 5318 if (IsRead) 5319 MIRBuilder.buildCopy(ValReg, PhysReg); 5320 else 5321 MIRBuilder.buildCopy(PhysReg, ValReg); 5322 5323 MI.eraseFromParent(); 5324 return Legalized; 5325 } 5326