1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 368 369 CallLowering::CallLoweringInfo Info; 370 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 371 Info.Callee = MachineOperand::CreateES(Name); 372 Info.OrigRet = Result; 373 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 374 if (!CLI.lowerCall(MIRBuilder, Info)) 375 return LegalizerHelper::UnableToLegalize; 376 377 return LegalizerHelper::Legalized; 378 } 379 380 // Useful for libcalls where all operands have the same type. 381 static LegalizerHelper::LegalizeResult 382 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 383 Type *OpType) { 384 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 385 386 SmallVector<CallLowering::ArgInfo, 3> Args; 387 for (unsigned i = 1; i < MI.getNumOperands(); i++) 388 Args.push_back({MI.getOperand(i).getReg(), OpType}); 389 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 390 Args); 391 } 392 393 LegalizerHelper::LegalizeResult 394 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 395 MachineInstr &MI) { 396 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 397 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 398 399 SmallVector<CallLowering::ArgInfo, 3> Args; 400 for (unsigned i = 1; i < MI.getNumOperands(); i++) { 401 Register Reg = MI.getOperand(i).getReg(); 402 403 // Need derive an IR type for call lowering. 404 LLT OpLLT = MRI.getType(Reg); 405 Type *OpTy = nullptr; 406 if (OpLLT.isPointer()) 407 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 408 else 409 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 410 Args.push_back({Reg, OpTy}); 411 } 412 413 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 414 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 415 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 416 RTLIB::Libcall RTLibcall; 417 switch (ID) { 418 case Intrinsic::memcpy: 419 RTLibcall = RTLIB::MEMCPY; 420 break; 421 case Intrinsic::memset: 422 RTLibcall = RTLIB::MEMSET; 423 break; 424 case Intrinsic::memmove: 425 RTLibcall = RTLIB::MEMMOVE; 426 break; 427 default: 428 return LegalizerHelper::UnableToLegalize; 429 } 430 const char *Name = TLI.getLibcallName(RTLibcall); 431 432 MIRBuilder.setInstr(MI); 433 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 434 435 CallLowering::CallLoweringInfo Info; 436 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 437 Info.Callee = MachineOperand::CreateES(Name); 438 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 439 Info.IsTailCall = isLibCallInTailPosition(MI); 440 441 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 442 if (!CLI.lowerCall(MIRBuilder, Info)) 443 return LegalizerHelper::UnableToLegalize; 444 445 if (Info.LoweredTailCall) { 446 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 447 // We must have a return following the call to get past 448 // isLibCallInTailPosition. 449 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 450 "Expected instr following MI to be a return?"); 451 452 // We lowered a tail call, so the call is now the return from the block. 453 // Delete the old return. 454 MI.getNextNode()->eraseFromParent(); 455 } 456 457 return LegalizerHelper::Legalized; 458 } 459 460 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 461 Type *FromType) { 462 auto ToMVT = MVT::getVT(ToType); 463 auto FromMVT = MVT::getVT(FromType); 464 465 switch (Opcode) { 466 case TargetOpcode::G_FPEXT: 467 return RTLIB::getFPEXT(FromMVT, ToMVT); 468 case TargetOpcode::G_FPTRUNC: 469 return RTLIB::getFPROUND(FromMVT, ToMVT); 470 case TargetOpcode::G_FPTOSI: 471 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 472 case TargetOpcode::G_FPTOUI: 473 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 474 case TargetOpcode::G_SITOFP: 475 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 476 case TargetOpcode::G_UITOFP: 477 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 478 } 479 llvm_unreachable("Unsupported libcall function"); 480 } 481 482 static LegalizerHelper::LegalizeResult 483 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 484 Type *FromType) { 485 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 486 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 487 {{MI.getOperand(1).getReg(), FromType}}); 488 } 489 490 LegalizerHelper::LegalizeResult 491 LegalizerHelper::libcall(MachineInstr &MI) { 492 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 493 unsigned Size = LLTy.getSizeInBits(); 494 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 495 496 MIRBuilder.setInstr(MI); 497 498 switch (MI.getOpcode()) { 499 default: 500 return UnableToLegalize; 501 case TargetOpcode::G_SDIV: 502 case TargetOpcode::G_UDIV: 503 case TargetOpcode::G_SREM: 504 case TargetOpcode::G_UREM: 505 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 506 Type *HLTy = IntegerType::get(Ctx, Size); 507 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 508 if (Status != Legalized) 509 return Status; 510 break; 511 } 512 case TargetOpcode::G_FADD: 513 case TargetOpcode::G_FSUB: 514 case TargetOpcode::G_FMUL: 515 case TargetOpcode::G_FDIV: 516 case TargetOpcode::G_FMA: 517 case TargetOpcode::G_FPOW: 518 case TargetOpcode::G_FREM: 519 case TargetOpcode::G_FCOS: 520 case TargetOpcode::G_FSIN: 521 case TargetOpcode::G_FLOG10: 522 case TargetOpcode::G_FLOG: 523 case TargetOpcode::G_FLOG2: 524 case TargetOpcode::G_FEXP: 525 case TargetOpcode::G_FEXP2: 526 case TargetOpcode::G_FCEIL: 527 case TargetOpcode::G_FFLOOR: { 528 if (Size > 64) { 529 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 530 return UnableToLegalize; 531 } 532 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 533 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 534 if (Status != Legalized) 535 return Status; 536 break; 537 } 538 case TargetOpcode::G_FPEXT: { 539 // FIXME: Support other floating point types (half, fp128 etc) 540 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 541 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 542 if (ToSize != 64 || FromSize != 32) 543 return UnableToLegalize; 544 LegalizeResult Status = conversionLibcall( 545 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 546 if (Status != Legalized) 547 return Status; 548 break; 549 } 550 case TargetOpcode::G_FPTRUNC: { 551 // FIXME: Support other floating point types (half, fp128 etc) 552 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 553 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 554 if (ToSize != 32 || FromSize != 64) 555 return UnableToLegalize; 556 LegalizeResult Status = conversionLibcall( 557 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 558 if (Status != Legalized) 559 return Status; 560 break; 561 } 562 case TargetOpcode::G_FPTOSI: 563 case TargetOpcode::G_FPTOUI: { 564 // FIXME: Support other types 565 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 566 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 567 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 568 return UnableToLegalize; 569 LegalizeResult Status = conversionLibcall( 570 MI, MIRBuilder, 571 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 572 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 573 if (Status != Legalized) 574 return Status; 575 break; 576 } 577 case TargetOpcode::G_SITOFP: 578 case TargetOpcode::G_UITOFP: { 579 // FIXME: Support other types 580 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 581 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 582 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 583 return UnableToLegalize; 584 LegalizeResult Status = conversionLibcall( 585 MI, MIRBuilder, 586 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 587 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 588 if (Status != Legalized) 589 return Status; 590 break; 591 } 592 } 593 594 MI.eraseFromParent(); 595 return Legalized; 596 } 597 598 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 599 unsigned TypeIdx, 600 LLT NarrowTy) { 601 MIRBuilder.setInstr(MI); 602 603 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 604 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 605 606 switch (MI.getOpcode()) { 607 default: 608 return UnableToLegalize; 609 case TargetOpcode::G_IMPLICIT_DEF: { 610 // FIXME: add support for when SizeOp0 isn't an exact multiple of 611 // NarrowSize. 612 if (SizeOp0 % NarrowSize != 0) 613 return UnableToLegalize; 614 int NumParts = SizeOp0 / NarrowSize; 615 616 SmallVector<Register, 2> DstRegs; 617 for (int i = 0; i < NumParts; ++i) 618 DstRegs.push_back( 619 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 620 621 Register DstReg = MI.getOperand(0).getReg(); 622 if(MRI.getType(DstReg).isVector()) 623 MIRBuilder.buildBuildVector(DstReg, DstRegs); 624 else 625 MIRBuilder.buildMerge(DstReg, DstRegs); 626 MI.eraseFromParent(); 627 return Legalized; 628 } 629 case TargetOpcode::G_CONSTANT: { 630 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 631 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 632 unsigned TotalSize = Ty.getSizeInBits(); 633 unsigned NarrowSize = NarrowTy.getSizeInBits(); 634 int NumParts = TotalSize / NarrowSize; 635 636 SmallVector<Register, 4> PartRegs; 637 for (int I = 0; I != NumParts; ++I) { 638 unsigned Offset = I * NarrowSize; 639 auto K = MIRBuilder.buildConstant(NarrowTy, 640 Val.lshr(Offset).trunc(NarrowSize)); 641 PartRegs.push_back(K.getReg(0)); 642 } 643 644 LLT LeftoverTy; 645 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 646 SmallVector<Register, 1> LeftoverRegs; 647 if (LeftoverBits != 0) { 648 LeftoverTy = LLT::scalar(LeftoverBits); 649 auto K = MIRBuilder.buildConstant( 650 LeftoverTy, 651 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 652 LeftoverRegs.push_back(K.getReg(0)); 653 } 654 655 insertParts(MI.getOperand(0).getReg(), 656 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 657 658 MI.eraseFromParent(); 659 return Legalized; 660 } 661 case TargetOpcode::G_SEXT: { 662 if (TypeIdx != 0) 663 return UnableToLegalize; 664 665 Register SrcReg = MI.getOperand(1).getReg(); 666 LLT SrcTy = MRI.getType(SrcReg); 667 668 // FIXME: support the general case where the requested NarrowTy may not be 669 // the same as the source type. E.g. s128 = sext(s32) 670 if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || 671 SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { 672 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 673 return UnableToLegalize; 674 } 675 676 // Shift the sign bit of the low register through the high register. 677 auto ShiftAmt = 678 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 679 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 680 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 681 MI.eraseFromParent(); 682 return Legalized; 683 } 684 case TargetOpcode::G_ZEXT: { 685 if (TypeIdx != 0) 686 return UnableToLegalize; 687 688 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 689 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 690 if (SizeOp0 % SizeOp1 != 0) 691 return UnableToLegalize; 692 693 // Generate a merge where the bottom bits are taken from the source, and 694 // zero everything else. 695 Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 696 unsigned NumParts = SizeOp0 / SizeOp1; 697 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; 698 for (unsigned Part = 1; Part < NumParts; ++Part) 699 Srcs.push_back(ZeroReg); 700 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 701 MI.eraseFromParent(); 702 return Legalized; 703 } 704 case TargetOpcode::G_TRUNC: { 705 if (TypeIdx != 1) 706 return UnableToLegalize; 707 708 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 709 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 710 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 711 return UnableToLegalize; 712 } 713 714 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 715 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 716 MI.eraseFromParent(); 717 return Legalized; 718 } 719 720 case TargetOpcode::G_ADD: { 721 // FIXME: add support for when SizeOp0 isn't an exact multiple of 722 // NarrowSize. 723 if (SizeOp0 % NarrowSize != 0) 724 return UnableToLegalize; 725 // Expand in terms of carry-setting/consuming G_ADDE instructions. 726 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 727 728 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 729 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 730 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 731 732 Register CarryIn; 733 for (int i = 0; i < NumParts; ++i) { 734 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 735 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 736 737 if (i == 0) 738 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 739 else { 740 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 741 Src2Regs[i], CarryIn); 742 } 743 744 DstRegs.push_back(DstReg); 745 CarryIn = CarryOut; 746 } 747 Register DstReg = MI.getOperand(0).getReg(); 748 if(MRI.getType(DstReg).isVector()) 749 MIRBuilder.buildBuildVector(DstReg, DstRegs); 750 else 751 MIRBuilder.buildMerge(DstReg, DstRegs); 752 MI.eraseFromParent(); 753 return Legalized; 754 } 755 case TargetOpcode::G_SUB: { 756 // FIXME: add support for when SizeOp0 isn't an exact multiple of 757 // NarrowSize. 758 if (SizeOp0 % NarrowSize != 0) 759 return UnableToLegalize; 760 761 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 762 763 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 764 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 765 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 766 767 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 768 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 769 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 770 {Src1Regs[0], Src2Regs[0]}); 771 DstRegs.push_back(DstReg); 772 Register BorrowIn = BorrowOut; 773 for (int i = 1; i < NumParts; ++i) { 774 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 775 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 776 777 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 778 {Src1Regs[i], Src2Regs[i], BorrowIn}); 779 780 DstRegs.push_back(DstReg); 781 BorrowIn = BorrowOut; 782 } 783 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 784 MI.eraseFromParent(); 785 return Legalized; 786 } 787 case TargetOpcode::G_MUL: 788 case TargetOpcode::G_UMULH: 789 return narrowScalarMul(MI, NarrowTy); 790 case TargetOpcode::G_EXTRACT: 791 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 792 case TargetOpcode::G_INSERT: 793 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 794 case TargetOpcode::G_LOAD: { 795 const auto &MMO = **MI.memoperands_begin(); 796 Register DstReg = MI.getOperand(0).getReg(); 797 LLT DstTy = MRI.getType(DstReg); 798 if (DstTy.isVector()) 799 return UnableToLegalize; 800 801 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 802 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 803 auto &MMO = **MI.memoperands_begin(); 804 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 805 MIRBuilder.buildAnyExt(DstReg, TmpReg); 806 MI.eraseFromParent(); 807 return Legalized; 808 } 809 810 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 811 } 812 case TargetOpcode::G_ZEXTLOAD: 813 case TargetOpcode::G_SEXTLOAD: { 814 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 815 Register DstReg = MI.getOperand(0).getReg(); 816 Register PtrReg = MI.getOperand(1).getReg(); 817 818 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 819 auto &MMO = **MI.memoperands_begin(); 820 if (MMO.getSizeInBits() == NarrowSize) { 821 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 822 } else { 823 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 824 : TargetOpcode::G_SEXTLOAD; 825 MIRBuilder.buildInstr(ExtLoad) 826 .addDef(TmpReg) 827 .addUse(PtrReg) 828 .addMemOperand(&MMO); 829 } 830 831 if (ZExt) 832 MIRBuilder.buildZExt(DstReg, TmpReg); 833 else 834 MIRBuilder.buildSExt(DstReg, TmpReg); 835 836 MI.eraseFromParent(); 837 return Legalized; 838 } 839 case TargetOpcode::G_STORE: { 840 const auto &MMO = **MI.memoperands_begin(); 841 842 Register SrcReg = MI.getOperand(0).getReg(); 843 LLT SrcTy = MRI.getType(SrcReg); 844 if (SrcTy.isVector()) 845 return UnableToLegalize; 846 847 int NumParts = SizeOp0 / NarrowSize; 848 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 849 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 850 if (SrcTy.isVector() && LeftoverBits != 0) 851 return UnableToLegalize; 852 853 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 854 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 855 auto &MMO = **MI.memoperands_begin(); 856 MIRBuilder.buildTrunc(TmpReg, SrcReg); 857 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 858 MI.eraseFromParent(); 859 return Legalized; 860 } 861 862 return reduceLoadStoreWidth(MI, 0, NarrowTy); 863 } 864 case TargetOpcode::G_SELECT: 865 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 866 case TargetOpcode::G_AND: 867 case TargetOpcode::G_OR: 868 case TargetOpcode::G_XOR: { 869 // Legalize bitwise operation: 870 // A = BinOp<Ty> B, C 871 // into: 872 // B1, ..., BN = G_UNMERGE_VALUES B 873 // C1, ..., CN = G_UNMERGE_VALUES C 874 // A1 = BinOp<Ty/N> B1, C2 875 // ... 876 // AN = BinOp<Ty/N> BN, CN 877 // A = G_MERGE_VALUES A1, ..., AN 878 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 879 } 880 case TargetOpcode::G_SHL: 881 case TargetOpcode::G_LSHR: 882 case TargetOpcode::G_ASHR: 883 return narrowScalarShift(MI, TypeIdx, NarrowTy); 884 case TargetOpcode::G_CTLZ: 885 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 886 case TargetOpcode::G_CTTZ: 887 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 888 case TargetOpcode::G_CTPOP: 889 if (TypeIdx != 0) 890 return UnableToLegalize; // TODO 891 892 Observer.changingInstr(MI); 893 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 894 Observer.changedInstr(MI); 895 return Legalized; 896 case TargetOpcode::G_INTTOPTR: 897 if (TypeIdx != 1) 898 return UnableToLegalize; 899 900 Observer.changingInstr(MI); 901 narrowScalarSrc(MI, NarrowTy, 1); 902 Observer.changedInstr(MI); 903 return Legalized; 904 case TargetOpcode::G_PTRTOINT: 905 if (TypeIdx != 0) 906 return UnableToLegalize; 907 908 Observer.changingInstr(MI); 909 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 910 Observer.changedInstr(MI); 911 return Legalized; 912 case TargetOpcode::G_PHI: { 913 unsigned NumParts = SizeOp0 / NarrowSize; 914 SmallVector<Register, 2> DstRegs; 915 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 916 DstRegs.resize(NumParts); 917 SrcRegs.resize(MI.getNumOperands() / 2); 918 Observer.changingInstr(MI); 919 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 920 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 921 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 922 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 923 SrcRegs[i / 2]); 924 } 925 MachineBasicBlock &MBB = *MI.getParent(); 926 MIRBuilder.setInsertPt(MBB, MI); 927 for (unsigned i = 0; i < NumParts; ++i) { 928 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 929 MachineInstrBuilder MIB = 930 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 931 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 932 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 933 } 934 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 935 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 936 Observer.changedInstr(MI); 937 MI.eraseFromParent(); 938 return Legalized; 939 } 940 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 941 case TargetOpcode::G_INSERT_VECTOR_ELT: { 942 if (TypeIdx != 2) 943 return UnableToLegalize; 944 945 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 946 Observer.changingInstr(MI); 947 narrowScalarSrc(MI, NarrowTy, OpIdx); 948 Observer.changedInstr(MI); 949 return Legalized; 950 } 951 case TargetOpcode::G_ICMP: { 952 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 953 if (NarrowSize * 2 != SrcSize) 954 return UnableToLegalize; 955 956 Observer.changingInstr(MI); 957 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 958 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 959 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 960 961 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 962 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 963 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 964 965 CmpInst::Predicate Pred = 966 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 967 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 968 969 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 970 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 971 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 972 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 973 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 974 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 975 } else { 976 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 977 MachineInstrBuilder CmpHEQ = 978 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 979 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 980 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 981 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 982 } 983 Observer.changedInstr(MI); 984 MI.eraseFromParent(); 985 return Legalized; 986 } 987 case TargetOpcode::G_SEXT_INREG: { 988 if (TypeIdx != 0) 989 return UnableToLegalize; 990 991 if (!MI.getOperand(2).isImm()) 992 return UnableToLegalize; 993 int64_t SizeInBits = MI.getOperand(2).getImm(); 994 995 // So long as the new type has more bits than the bits we're extending we 996 // don't need to break it apart. 997 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 998 Observer.changingInstr(MI); 999 // We don't lose any non-extension bits by truncating the src and 1000 // sign-extending the dst. 1001 MachineOperand &MO1 = MI.getOperand(1); 1002 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 1003 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1004 1005 MachineOperand &MO2 = MI.getOperand(0); 1006 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1007 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1008 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 1009 MO2.setReg(DstExt); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 } 1013 1014 // Break it apart. Components below the extension point are unmodified. The 1015 // component containing the extension point becomes a narrower SEXT_INREG. 1016 // Components above it are ashr'd from the component containing the 1017 // extension point. 1018 if (SizeOp0 % NarrowSize != 0) 1019 return UnableToLegalize; 1020 int NumParts = SizeOp0 / NarrowSize; 1021 1022 // List the registers where the destination will be scattered. 1023 SmallVector<Register, 2> DstRegs; 1024 // List the registers where the source will be split. 1025 SmallVector<Register, 2> SrcRegs; 1026 1027 // Create all the temporary registers. 1028 for (int i = 0; i < NumParts; ++i) { 1029 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1030 1031 SrcRegs.push_back(SrcReg); 1032 } 1033 1034 // Explode the big arguments into smaller chunks. 1035 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1036 1037 Register AshrCstReg = 1038 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1039 ->getOperand(0) 1040 .getReg(); 1041 Register FullExtensionReg = 0; 1042 Register PartialExtensionReg = 0; 1043 1044 // Do the operation on each small part. 1045 for (int i = 0; i < NumParts; ++i) { 1046 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1047 DstRegs.push_back(SrcRegs[i]); 1048 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1049 assert(PartialExtensionReg && 1050 "Expected to visit partial extension before full"); 1051 if (FullExtensionReg) { 1052 DstRegs.push_back(FullExtensionReg); 1053 continue; 1054 } 1055 DstRegs.push_back(MIRBuilder 1056 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1057 {PartialExtensionReg, AshrCstReg}) 1058 ->getOperand(0) 1059 .getReg()); 1060 FullExtensionReg = DstRegs.back(); 1061 } else { 1062 DstRegs.push_back( 1063 MIRBuilder 1064 .buildInstr( 1065 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1066 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1067 ->getOperand(0) 1068 .getReg()); 1069 PartialExtensionReg = DstRegs.back(); 1070 } 1071 } 1072 1073 // Gather the destination registers into the final destination. 1074 Register DstReg = MI.getOperand(0).getReg(); 1075 MIRBuilder.buildMerge(DstReg, DstRegs); 1076 MI.eraseFromParent(); 1077 return Legalized; 1078 } 1079 } 1080 } 1081 1082 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1083 unsigned OpIdx, unsigned ExtOpcode) { 1084 MachineOperand &MO = MI.getOperand(OpIdx); 1085 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1086 MO.setReg(ExtB->getOperand(0).getReg()); 1087 } 1088 1089 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1090 unsigned OpIdx) { 1091 MachineOperand &MO = MI.getOperand(OpIdx); 1092 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1093 {MO.getReg()}); 1094 MO.setReg(ExtB->getOperand(0).getReg()); 1095 } 1096 1097 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1098 unsigned OpIdx, unsigned TruncOpcode) { 1099 MachineOperand &MO = MI.getOperand(OpIdx); 1100 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1101 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1102 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1103 MO.setReg(DstExt); 1104 } 1105 1106 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1107 unsigned OpIdx, unsigned ExtOpcode) { 1108 MachineOperand &MO = MI.getOperand(OpIdx); 1109 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1110 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1111 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1112 MO.setReg(DstTrunc); 1113 } 1114 1115 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1116 unsigned OpIdx) { 1117 MachineOperand &MO = MI.getOperand(OpIdx); 1118 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1119 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1120 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1121 MO.setReg(DstExt); 1122 } 1123 1124 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1125 unsigned OpIdx) { 1126 MachineOperand &MO = MI.getOperand(OpIdx); 1127 1128 LLT OldTy = MRI.getType(MO.getReg()); 1129 unsigned OldElts = OldTy.getNumElements(); 1130 unsigned NewElts = MoreTy.getNumElements(); 1131 1132 unsigned NumParts = NewElts / OldElts; 1133 1134 // Use concat_vectors if the result is a multiple of the number of elements. 1135 if (NumParts * OldElts == NewElts) { 1136 SmallVector<Register, 8> Parts; 1137 Parts.push_back(MO.getReg()); 1138 1139 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1140 for (unsigned I = 1; I != NumParts; ++I) 1141 Parts.push_back(ImpDef); 1142 1143 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1144 MO.setReg(Concat.getReg(0)); 1145 return; 1146 } 1147 1148 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1149 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1150 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1151 MO.setReg(MoreReg); 1152 } 1153 1154 LegalizerHelper::LegalizeResult 1155 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1156 LLT WideTy) { 1157 if (TypeIdx != 1) 1158 return UnableToLegalize; 1159 1160 Register DstReg = MI.getOperand(0).getReg(); 1161 LLT DstTy = MRI.getType(DstReg); 1162 if (DstTy.isVector()) 1163 return UnableToLegalize; 1164 1165 Register Src1 = MI.getOperand(1).getReg(); 1166 LLT SrcTy = MRI.getType(Src1); 1167 const int DstSize = DstTy.getSizeInBits(); 1168 const int SrcSize = SrcTy.getSizeInBits(); 1169 const int WideSize = WideTy.getSizeInBits(); 1170 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1171 1172 unsigned NumOps = MI.getNumOperands(); 1173 unsigned NumSrc = MI.getNumOperands() - 1; 1174 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1175 1176 if (WideSize >= DstSize) { 1177 // Directly pack the bits in the target type. 1178 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1179 1180 for (unsigned I = 2; I != NumOps; ++I) { 1181 const unsigned Offset = (I - 1) * PartSize; 1182 1183 Register SrcReg = MI.getOperand(I).getReg(); 1184 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1185 1186 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1187 1188 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1189 MRI.createGenericVirtualRegister(WideTy); 1190 1191 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1192 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1193 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1194 ResultReg = NextResult; 1195 } 1196 1197 if (WideSize > DstSize) 1198 MIRBuilder.buildTrunc(DstReg, ResultReg); 1199 else if (DstTy.isPointer()) 1200 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1201 1202 MI.eraseFromParent(); 1203 return Legalized; 1204 } 1205 1206 // Unmerge the original values to the GCD type, and recombine to the next 1207 // multiple greater than the original type. 1208 // 1209 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1210 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1211 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1212 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1213 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1214 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1215 // %12:_(s12) = G_MERGE_VALUES %10, %11 1216 // 1217 // Padding with undef if necessary: 1218 // 1219 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1220 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1221 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1222 // %7:_(s2) = G_IMPLICIT_DEF 1223 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1224 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1225 // %10:_(s12) = G_MERGE_VALUES %8, %9 1226 1227 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1228 LLT GCDTy = LLT::scalar(GCD); 1229 1230 SmallVector<Register, 8> Parts; 1231 SmallVector<Register, 8> NewMergeRegs; 1232 SmallVector<Register, 8> Unmerges; 1233 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1234 1235 // Decompose the original operands if they don't evenly divide. 1236 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1237 Register SrcReg = MI.getOperand(I).getReg(); 1238 if (GCD == SrcSize) { 1239 Unmerges.push_back(SrcReg); 1240 } else { 1241 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1242 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1243 Unmerges.push_back(Unmerge.getReg(J)); 1244 } 1245 } 1246 1247 // Pad with undef to the next size that is a multiple of the requested size. 1248 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1249 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1250 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1251 Unmerges.push_back(UndefReg); 1252 } 1253 1254 const int PartsPerGCD = WideSize / GCD; 1255 1256 // Build merges of each piece. 1257 ArrayRef<Register> Slicer(Unmerges); 1258 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1259 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1260 NewMergeRegs.push_back(Merge.getReg(0)); 1261 } 1262 1263 // A truncate may be necessary if the requested type doesn't evenly divide the 1264 // original result type. 1265 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1266 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1267 } else { 1268 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1269 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1270 } 1271 1272 MI.eraseFromParent(); 1273 return Legalized; 1274 } 1275 1276 LegalizerHelper::LegalizeResult 1277 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1278 LLT WideTy) { 1279 if (TypeIdx != 0) 1280 return UnableToLegalize; 1281 1282 unsigned NumDst = MI.getNumOperands() - 1; 1283 Register SrcReg = MI.getOperand(NumDst).getReg(); 1284 LLT SrcTy = MRI.getType(SrcReg); 1285 if (!SrcTy.isScalar()) 1286 return UnableToLegalize; 1287 1288 Register Dst0Reg = MI.getOperand(0).getReg(); 1289 LLT DstTy = MRI.getType(Dst0Reg); 1290 if (!DstTy.isScalar()) 1291 return UnableToLegalize; 1292 1293 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1294 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1295 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1296 1297 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1298 1299 for (unsigned I = 1; I != NumDst; ++I) { 1300 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1301 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1302 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1303 } 1304 1305 Observer.changingInstr(MI); 1306 1307 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1308 for (unsigned I = 0; I != NumDst; ++I) 1309 widenScalarDst(MI, WideTy, I); 1310 1311 Observer.changedInstr(MI); 1312 1313 return Legalized; 1314 } 1315 1316 LegalizerHelper::LegalizeResult 1317 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1318 LLT WideTy) { 1319 Register DstReg = MI.getOperand(0).getReg(); 1320 Register SrcReg = MI.getOperand(1).getReg(); 1321 LLT SrcTy = MRI.getType(SrcReg); 1322 1323 LLT DstTy = MRI.getType(DstReg); 1324 unsigned Offset = MI.getOperand(2).getImm(); 1325 1326 if (TypeIdx == 0) { 1327 if (SrcTy.isVector() || DstTy.isVector()) 1328 return UnableToLegalize; 1329 1330 SrcOp Src(SrcReg); 1331 if (SrcTy.isPointer()) { 1332 // Extracts from pointers can be handled only if they are really just 1333 // simple integers. 1334 const DataLayout &DL = MIRBuilder.getDataLayout(); 1335 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1336 return UnableToLegalize; 1337 1338 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1339 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1340 SrcTy = SrcAsIntTy; 1341 } 1342 1343 if (DstTy.isPointer()) 1344 return UnableToLegalize; 1345 1346 if (Offset == 0) { 1347 // Avoid a shift in the degenerate case. 1348 MIRBuilder.buildTrunc(DstReg, 1349 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1350 MI.eraseFromParent(); 1351 return Legalized; 1352 } 1353 1354 // Do a shift in the source type. 1355 LLT ShiftTy = SrcTy; 1356 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1357 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1358 ShiftTy = WideTy; 1359 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1360 return UnableToLegalize; 1361 1362 auto LShr = MIRBuilder.buildLShr( 1363 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1364 MIRBuilder.buildTrunc(DstReg, LShr); 1365 MI.eraseFromParent(); 1366 return Legalized; 1367 } 1368 1369 if (SrcTy.isScalar()) { 1370 Observer.changingInstr(MI); 1371 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1372 Observer.changedInstr(MI); 1373 return Legalized; 1374 } 1375 1376 if (!SrcTy.isVector()) 1377 return UnableToLegalize; 1378 1379 if (DstTy != SrcTy.getElementType()) 1380 return UnableToLegalize; 1381 1382 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1383 return UnableToLegalize; 1384 1385 Observer.changingInstr(MI); 1386 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1387 1388 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1389 Offset); 1390 widenScalarDst(MI, WideTy.getScalarType(), 0); 1391 Observer.changedInstr(MI); 1392 return Legalized; 1393 } 1394 1395 LegalizerHelper::LegalizeResult 1396 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1397 LLT WideTy) { 1398 if (TypeIdx != 0) 1399 return UnableToLegalize; 1400 Observer.changingInstr(MI); 1401 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1402 widenScalarDst(MI, WideTy); 1403 Observer.changedInstr(MI); 1404 return Legalized; 1405 } 1406 1407 LegalizerHelper::LegalizeResult 1408 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1409 MIRBuilder.setInstr(MI); 1410 1411 switch (MI.getOpcode()) { 1412 default: 1413 return UnableToLegalize; 1414 case TargetOpcode::G_EXTRACT: 1415 return widenScalarExtract(MI, TypeIdx, WideTy); 1416 case TargetOpcode::G_INSERT: 1417 return widenScalarInsert(MI, TypeIdx, WideTy); 1418 case TargetOpcode::G_MERGE_VALUES: 1419 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1420 case TargetOpcode::G_UNMERGE_VALUES: 1421 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1422 case TargetOpcode::G_UADDO: 1423 case TargetOpcode::G_USUBO: { 1424 if (TypeIdx == 1) 1425 return UnableToLegalize; // TODO 1426 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1427 {MI.getOperand(2).getReg()}); 1428 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1429 {MI.getOperand(3).getReg()}); 1430 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1431 ? TargetOpcode::G_ADD 1432 : TargetOpcode::G_SUB; 1433 // Do the arithmetic in the larger type. 1434 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1435 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1436 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1437 auto AndOp = MIRBuilder.buildInstr( 1438 TargetOpcode::G_AND, {WideTy}, 1439 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1440 // There is no overflow if the AndOp is the same as NewOp. 1441 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1442 AndOp); 1443 // Now trunc the NewOp to the original result. 1444 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1445 MI.eraseFromParent(); 1446 return Legalized; 1447 } 1448 case TargetOpcode::G_CTTZ: 1449 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1450 case TargetOpcode::G_CTLZ: 1451 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1452 case TargetOpcode::G_CTPOP: { 1453 if (TypeIdx == 0) { 1454 Observer.changingInstr(MI); 1455 widenScalarDst(MI, WideTy, 0); 1456 Observer.changedInstr(MI); 1457 return Legalized; 1458 } 1459 1460 Register SrcReg = MI.getOperand(1).getReg(); 1461 1462 // First ZEXT the input. 1463 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1464 LLT CurTy = MRI.getType(SrcReg); 1465 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1466 // The count is the same in the larger type except if the original 1467 // value was zero. This can be handled by setting the bit just off 1468 // the top of the original type. 1469 auto TopBit = 1470 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1471 MIBSrc = MIRBuilder.buildOr( 1472 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1473 } 1474 1475 // Perform the operation at the larger size. 1476 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1477 // This is already the correct result for CTPOP and CTTZs 1478 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1479 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1480 // The correct result is NewOp - (Difference in widety and current ty). 1481 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1482 MIBNewOp = MIRBuilder.buildInstr( 1483 TargetOpcode::G_SUB, {WideTy}, 1484 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1485 } 1486 1487 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1488 MI.eraseFromParent(); 1489 return Legalized; 1490 } 1491 case TargetOpcode::G_BSWAP: { 1492 Observer.changingInstr(MI); 1493 Register DstReg = MI.getOperand(0).getReg(); 1494 1495 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1496 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1497 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1498 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1499 1500 MI.getOperand(0).setReg(DstExt); 1501 1502 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1503 1504 LLT Ty = MRI.getType(DstReg); 1505 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1506 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1507 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1508 .addDef(ShrReg) 1509 .addUse(DstExt) 1510 .addUse(ShiftAmtReg); 1511 1512 MIRBuilder.buildTrunc(DstReg, ShrReg); 1513 Observer.changedInstr(MI); 1514 return Legalized; 1515 } 1516 case TargetOpcode::G_BITREVERSE: { 1517 Observer.changingInstr(MI); 1518 1519 Register DstReg = MI.getOperand(0).getReg(); 1520 LLT Ty = MRI.getType(DstReg); 1521 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1522 1523 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1524 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1525 MI.getOperand(0).setReg(DstExt); 1526 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1527 1528 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1529 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1530 MIRBuilder.buildTrunc(DstReg, Shift); 1531 Observer.changedInstr(MI); 1532 return Legalized; 1533 } 1534 case TargetOpcode::G_ADD: 1535 case TargetOpcode::G_AND: 1536 case TargetOpcode::G_MUL: 1537 case TargetOpcode::G_OR: 1538 case TargetOpcode::G_XOR: 1539 case TargetOpcode::G_SUB: 1540 // Perform operation at larger width (any extension is fines here, high bits 1541 // don't affect the result) and then truncate the result back to the 1542 // original type. 1543 Observer.changingInstr(MI); 1544 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1545 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1546 widenScalarDst(MI, WideTy); 1547 Observer.changedInstr(MI); 1548 return Legalized; 1549 1550 case TargetOpcode::G_SHL: 1551 Observer.changingInstr(MI); 1552 1553 if (TypeIdx == 0) { 1554 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1555 widenScalarDst(MI, WideTy); 1556 } else { 1557 assert(TypeIdx == 1); 1558 // The "number of bits to shift" operand must preserve its value as an 1559 // unsigned integer: 1560 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1561 } 1562 1563 Observer.changedInstr(MI); 1564 return Legalized; 1565 1566 case TargetOpcode::G_SDIV: 1567 case TargetOpcode::G_SREM: 1568 case TargetOpcode::G_SMIN: 1569 case TargetOpcode::G_SMAX: 1570 Observer.changingInstr(MI); 1571 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1572 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1573 widenScalarDst(MI, WideTy); 1574 Observer.changedInstr(MI); 1575 return Legalized; 1576 1577 case TargetOpcode::G_ASHR: 1578 case TargetOpcode::G_LSHR: 1579 Observer.changingInstr(MI); 1580 1581 if (TypeIdx == 0) { 1582 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1583 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1584 1585 widenScalarSrc(MI, WideTy, 1, CvtOp); 1586 widenScalarDst(MI, WideTy); 1587 } else { 1588 assert(TypeIdx == 1); 1589 // The "number of bits to shift" operand must preserve its value as an 1590 // unsigned integer: 1591 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1592 } 1593 1594 Observer.changedInstr(MI); 1595 return Legalized; 1596 case TargetOpcode::G_UDIV: 1597 case TargetOpcode::G_UREM: 1598 case TargetOpcode::G_UMIN: 1599 case TargetOpcode::G_UMAX: 1600 Observer.changingInstr(MI); 1601 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1602 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1603 widenScalarDst(MI, WideTy); 1604 Observer.changedInstr(MI); 1605 return Legalized; 1606 1607 case TargetOpcode::G_SELECT: 1608 Observer.changingInstr(MI); 1609 if (TypeIdx == 0) { 1610 // Perform operation at larger width (any extension is fine here, high 1611 // bits don't affect the result) and then truncate the result back to the 1612 // original type. 1613 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1614 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1615 widenScalarDst(MI, WideTy); 1616 } else { 1617 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1618 // Explicit extension is required here since high bits affect the result. 1619 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1620 } 1621 Observer.changedInstr(MI); 1622 return Legalized; 1623 1624 case TargetOpcode::G_FPTOSI: 1625 case TargetOpcode::G_FPTOUI: 1626 if (TypeIdx != 0) 1627 return UnableToLegalize; 1628 Observer.changingInstr(MI); 1629 widenScalarDst(MI, WideTy); 1630 Observer.changedInstr(MI); 1631 return Legalized; 1632 1633 case TargetOpcode::G_SITOFP: 1634 if (TypeIdx != 1) 1635 return UnableToLegalize; 1636 Observer.changingInstr(MI); 1637 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1638 Observer.changedInstr(MI); 1639 return Legalized; 1640 1641 case TargetOpcode::G_UITOFP: 1642 if (TypeIdx != 1) 1643 return UnableToLegalize; 1644 Observer.changingInstr(MI); 1645 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1646 Observer.changedInstr(MI); 1647 return Legalized; 1648 1649 case TargetOpcode::G_LOAD: 1650 case TargetOpcode::G_SEXTLOAD: 1651 case TargetOpcode::G_ZEXTLOAD: 1652 Observer.changingInstr(MI); 1653 widenScalarDst(MI, WideTy); 1654 Observer.changedInstr(MI); 1655 return Legalized; 1656 1657 case TargetOpcode::G_STORE: { 1658 if (TypeIdx != 0) 1659 return UnableToLegalize; 1660 1661 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1662 if (!isPowerOf2_32(Ty.getSizeInBits())) 1663 return UnableToLegalize; 1664 1665 Observer.changingInstr(MI); 1666 1667 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1668 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1669 widenScalarSrc(MI, WideTy, 0, ExtType); 1670 1671 Observer.changedInstr(MI); 1672 return Legalized; 1673 } 1674 case TargetOpcode::G_CONSTANT: { 1675 MachineOperand &SrcMO = MI.getOperand(1); 1676 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1677 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1678 Observer.changingInstr(MI); 1679 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1680 1681 widenScalarDst(MI, WideTy); 1682 Observer.changedInstr(MI); 1683 return Legalized; 1684 } 1685 case TargetOpcode::G_FCONSTANT: { 1686 MachineOperand &SrcMO = MI.getOperand(1); 1687 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1688 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1689 bool LosesInfo; 1690 switch (WideTy.getSizeInBits()) { 1691 case 32: 1692 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1693 &LosesInfo); 1694 break; 1695 case 64: 1696 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1697 &LosesInfo); 1698 break; 1699 default: 1700 return UnableToLegalize; 1701 } 1702 1703 assert(!LosesInfo && "extend should always be lossless"); 1704 1705 Observer.changingInstr(MI); 1706 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1707 1708 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1709 Observer.changedInstr(MI); 1710 return Legalized; 1711 } 1712 case TargetOpcode::G_IMPLICIT_DEF: { 1713 Observer.changingInstr(MI); 1714 widenScalarDst(MI, WideTy); 1715 Observer.changedInstr(MI); 1716 return Legalized; 1717 } 1718 case TargetOpcode::G_BRCOND: 1719 Observer.changingInstr(MI); 1720 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1721 Observer.changedInstr(MI); 1722 return Legalized; 1723 1724 case TargetOpcode::G_FCMP: 1725 Observer.changingInstr(MI); 1726 if (TypeIdx == 0) 1727 widenScalarDst(MI, WideTy); 1728 else { 1729 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1730 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1731 } 1732 Observer.changedInstr(MI); 1733 return Legalized; 1734 1735 case TargetOpcode::G_ICMP: 1736 Observer.changingInstr(MI); 1737 if (TypeIdx == 0) 1738 widenScalarDst(MI, WideTy); 1739 else { 1740 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1741 MI.getOperand(1).getPredicate())) 1742 ? TargetOpcode::G_SEXT 1743 : TargetOpcode::G_ZEXT; 1744 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1745 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1746 } 1747 Observer.changedInstr(MI); 1748 return Legalized; 1749 1750 case TargetOpcode::G_GEP: 1751 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1752 Observer.changingInstr(MI); 1753 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1754 Observer.changedInstr(MI); 1755 return Legalized; 1756 1757 case TargetOpcode::G_PHI: { 1758 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1759 1760 Observer.changingInstr(MI); 1761 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1762 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1763 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1764 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1765 } 1766 1767 MachineBasicBlock &MBB = *MI.getParent(); 1768 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1769 widenScalarDst(MI, WideTy); 1770 Observer.changedInstr(MI); 1771 return Legalized; 1772 } 1773 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1774 if (TypeIdx == 0) { 1775 Register VecReg = MI.getOperand(1).getReg(); 1776 LLT VecTy = MRI.getType(VecReg); 1777 Observer.changingInstr(MI); 1778 1779 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1780 WideTy.getSizeInBits()), 1781 1, TargetOpcode::G_SEXT); 1782 1783 widenScalarDst(MI, WideTy, 0); 1784 Observer.changedInstr(MI); 1785 return Legalized; 1786 } 1787 1788 if (TypeIdx != 2) 1789 return UnableToLegalize; 1790 Observer.changingInstr(MI); 1791 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1792 Observer.changedInstr(MI); 1793 return Legalized; 1794 } 1795 case TargetOpcode::G_FADD: 1796 case TargetOpcode::G_FMUL: 1797 case TargetOpcode::G_FSUB: 1798 case TargetOpcode::G_FMA: 1799 case TargetOpcode::G_FMAD: 1800 case TargetOpcode::G_FNEG: 1801 case TargetOpcode::G_FABS: 1802 case TargetOpcode::G_FCANONICALIZE: 1803 case TargetOpcode::G_FMINNUM: 1804 case TargetOpcode::G_FMAXNUM: 1805 case TargetOpcode::G_FMINNUM_IEEE: 1806 case TargetOpcode::G_FMAXNUM_IEEE: 1807 case TargetOpcode::G_FMINIMUM: 1808 case TargetOpcode::G_FMAXIMUM: 1809 case TargetOpcode::G_FDIV: 1810 case TargetOpcode::G_FREM: 1811 case TargetOpcode::G_FCEIL: 1812 case TargetOpcode::G_FFLOOR: 1813 case TargetOpcode::G_FCOS: 1814 case TargetOpcode::G_FSIN: 1815 case TargetOpcode::G_FLOG10: 1816 case TargetOpcode::G_FLOG: 1817 case TargetOpcode::G_FLOG2: 1818 case TargetOpcode::G_FRINT: 1819 case TargetOpcode::G_FNEARBYINT: 1820 case TargetOpcode::G_FSQRT: 1821 case TargetOpcode::G_FEXP: 1822 case TargetOpcode::G_FEXP2: 1823 case TargetOpcode::G_FPOW: 1824 case TargetOpcode::G_INTRINSIC_TRUNC: 1825 case TargetOpcode::G_INTRINSIC_ROUND: 1826 assert(TypeIdx == 0); 1827 Observer.changingInstr(MI); 1828 1829 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1830 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1831 1832 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1833 Observer.changedInstr(MI); 1834 return Legalized; 1835 case TargetOpcode::G_INTTOPTR: 1836 if (TypeIdx != 1) 1837 return UnableToLegalize; 1838 1839 Observer.changingInstr(MI); 1840 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1841 Observer.changedInstr(MI); 1842 return Legalized; 1843 case TargetOpcode::G_PTRTOINT: 1844 if (TypeIdx != 0) 1845 return UnableToLegalize; 1846 1847 Observer.changingInstr(MI); 1848 widenScalarDst(MI, WideTy, 0); 1849 Observer.changedInstr(MI); 1850 return Legalized; 1851 case TargetOpcode::G_BUILD_VECTOR: { 1852 Observer.changingInstr(MI); 1853 1854 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1855 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1856 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1857 1858 // Avoid changing the result vector type if the source element type was 1859 // requested. 1860 if (TypeIdx == 1) { 1861 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1862 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1863 } else { 1864 widenScalarDst(MI, WideTy, 0); 1865 } 1866 1867 Observer.changedInstr(MI); 1868 return Legalized; 1869 } 1870 case TargetOpcode::G_SEXT_INREG: 1871 if (TypeIdx != 0) 1872 return UnableToLegalize; 1873 1874 Observer.changingInstr(MI); 1875 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1876 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1877 Observer.changedInstr(MI); 1878 return Legalized; 1879 } 1880 } 1881 1882 LegalizerHelper::LegalizeResult 1883 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1884 using namespace TargetOpcode; 1885 MIRBuilder.setInstr(MI); 1886 1887 switch(MI.getOpcode()) { 1888 default: 1889 return UnableToLegalize; 1890 case TargetOpcode::G_SREM: 1891 case TargetOpcode::G_UREM: { 1892 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1893 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1894 .addDef(QuotReg) 1895 .addUse(MI.getOperand(1).getReg()) 1896 .addUse(MI.getOperand(2).getReg()); 1897 1898 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1899 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1900 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1901 ProdReg); 1902 MI.eraseFromParent(); 1903 return Legalized; 1904 } 1905 case TargetOpcode::G_SMULO: 1906 case TargetOpcode::G_UMULO: { 1907 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1908 // result. 1909 Register Res = MI.getOperand(0).getReg(); 1910 Register Overflow = MI.getOperand(1).getReg(); 1911 Register LHS = MI.getOperand(2).getReg(); 1912 Register RHS = MI.getOperand(3).getReg(); 1913 1914 MIRBuilder.buildMul(Res, LHS, RHS); 1915 1916 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1917 ? TargetOpcode::G_SMULH 1918 : TargetOpcode::G_UMULH; 1919 1920 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1921 MIRBuilder.buildInstr(Opcode) 1922 .addDef(HiPart) 1923 .addUse(LHS) 1924 .addUse(RHS); 1925 1926 Register Zero = MRI.createGenericVirtualRegister(Ty); 1927 MIRBuilder.buildConstant(Zero, 0); 1928 1929 // For *signed* multiply, overflow is detected by checking: 1930 // (hi != (lo >> bitwidth-1)) 1931 if (Opcode == TargetOpcode::G_SMULH) { 1932 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1933 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1934 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1935 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1936 .addDef(Shifted) 1937 .addUse(Res) 1938 .addUse(ShiftAmt); 1939 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1940 } else { 1941 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1942 } 1943 MI.eraseFromParent(); 1944 return Legalized; 1945 } 1946 case TargetOpcode::G_FNEG: { 1947 // TODO: Handle vector types once we are able to 1948 // represent them. 1949 if (Ty.isVector()) 1950 return UnableToLegalize; 1951 Register Res = MI.getOperand(0).getReg(); 1952 Type *ZeroTy; 1953 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1954 switch (Ty.getSizeInBits()) { 1955 case 16: 1956 ZeroTy = Type::getHalfTy(Ctx); 1957 break; 1958 case 32: 1959 ZeroTy = Type::getFloatTy(Ctx); 1960 break; 1961 case 64: 1962 ZeroTy = Type::getDoubleTy(Ctx); 1963 break; 1964 case 128: 1965 ZeroTy = Type::getFP128Ty(Ctx); 1966 break; 1967 default: 1968 llvm_unreachable("unexpected floating-point type"); 1969 } 1970 ConstantFP &ZeroForNegation = 1971 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1972 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1973 Register SubByReg = MI.getOperand(1).getReg(); 1974 Register ZeroReg = Zero->getOperand(0).getReg(); 1975 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1976 MI.getFlags()); 1977 MI.eraseFromParent(); 1978 return Legalized; 1979 } 1980 case TargetOpcode::G_FSUB: { 1981 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1982 // First, check if G_FNEG is marked as Lower. If so, we may 1983 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1984 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1985 return UnableToLegalize; 1986 Register Res = MI.getOperand(0).getReg(); 1987 Register LHS = MI.getOperand(1).getReg(); 1988 Register RHS = MI.getOperand(2).getReg(); 1989 Register Neg = MRI.createGenericVirtualRegister(Ty); 1990 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1991 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1992 MI.eraseFromParent(); 1993 return Legalized; 1994 } 1995 case TargetOpcode::G_FMAD: 1996 return lowerFMad(MI); 1997 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1998 Register OldValRes = MI.getOperand(0).getReg(); 1999 Register SuccessRes = MI.getOperand(1).getReg(); 2000 Register Addr = MI.getOperand(2).getReg(); 2001 Register CmpVal = MI.getOperand(3).getReg(); 2002 Register NewVal = MI.getOperand(4).getReg(); 2003 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2004 **MI.memoperands_begin()); 2005 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2006 MI.eraseFromParent(); 2007 return Legalized; 2008 } 2009 case TargetOpcode::G_LOAD: 2010 case TargetOpcode::G_SEXTLOAD: 2011 case TargetOpcode::G_ZEXTLOAD: { 2012 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2013 Register DstReg = MI.getOperand(0).getReg(); 2014 Register PtrReg = MI.getOperand(1).getReg(); 2015 LLT DstTy = MRI.getType(DstReg); 2016 auto &MMO = **MI.memoperands_begin(); 2017 2018 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2019 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2020 // This load needs splitting into power of 2 sized loads. 2021 if (DstTy.isVector()) 2022 return UnableToLegalize; 2023 if (isPowerOf2_32(DstTy.getSizeInBits())) 2024 return UnableToLegalize; // Don't know what we're being asked to do. 2025 2026 // Our strategy here is to generate anyextending loads for the smaller 2027 // types up to next power-2 result type, and then combine the two larger 2028 // result values together, before truncating back down to the non-pow-2 2029 // type. 2030 // E.g. v1 = i24 load => 2031 // v2 = i32 load (2 byte) 2032 // v3 = i32 load (1 byte) 2033 // v4 = i32 shl v3, 16 2034 // v5 = i32 or v4, v2 2035 // v1 = i24 trunc v5 2036 // By doing this we generate the correct truncate which should get 2037 // combined away as an artifact with a matching extend. 2038 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2039 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2040 2041 MachineFunction &MF = MIRBuilder.getMF(); 2042 MachineMemOperand *LargeMMO = 2043 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2044 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2045 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2046 2047 LLT PtrTy = MRI.getType(PtrReg); 2048 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2049 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2050 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2051 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2052 auto LargeLoad = 2053 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2054 2055 auto OffsetCst = 2056 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2057 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2058 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2059 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2060 *SmallMMO); 2061 2062 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2063 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2064 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2065 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2066 MI.eraseFromParent(); 2067 return Legalized; 2068 } 2069 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2070 MI.eraseFromParent(); 2071 return Legalized; 2072 } 2073 2074 if (DstTy.isScalar()) { 2075 Register TmpReg = 2076 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2077 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2078 switch (MI.getOpcode()) { 2079 default: 2080 llvm_unreachable("Unexpected opcode"); 2081 case TargetOpcode::G_LOAD: 2082 MIRBuilder.buildAnyExt(DstReg, TmpReg); 2083 break; 2084 case TargetOpcode::G_SEXTLOAD: 2085 MIRBuilder.buildSExt(DstReg, TmpReg); 2086 break; 2087 case TargetOpcode::G_ZEXTLOAD: 2088 MIRBuilder.buildZExt(DstReg, TmpReg); 2089 break; 2090 } 2091 MI.eraseFromParent(); 2092 return Legalized; 2093 } 2094 2095 return UnableToLegalize; 2096 } 2097 case TargetOpcode::G_STORE: { 2098 // Lower a non-power of 2 store into multiple pow-2 stores. 2099 // E.g. split an i24 store into an i16 store + i8 store. 2100 // We do this by first extending the stored value to the next largest power 2101 // of 2 type, and then using truncating stores to store the components. 2102 // By doing this, likewise with G_LOAD, generate an extend that can be 2103 // artifact-combined away instead of leaving behind extracts. 2104 Register SrcReg = MI.getOperand(0).getReg(); 2105 Register PtrReg = MI.getOperand(1).getReg(); 2106 LLT SrcTy = MRI.getType(SrcReg); 2107 MachineMemOperand &MMO = **MI.memoperands_begin(); 2108 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2109 return UnableToLegalize; 2110 if (SrcTy.isVector()) 2111 return UnableToLegalize; 2112 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2113 return UnableToLegalize; // Don't know what we're being asked to do. 2114 2115 // Extend to the next pow-2. 2116 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2117 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2118 2119 // Obtain the smaller value by shifting away the larger value. 2120 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2121 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2122 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2123 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2124 2125 // Generate the GEP and truncating stores. 2126 LLT PtrTy = MRI.getType(PtrReg); 2127 auto OffsetCst = 2128 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2129 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2130 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2131 2132 MachineFunction &MF = MIRBuilder.getMF(); 2133 MachineMemOperand *LargeMMO = 2134 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2135 MachineMemOperand *SmallMMO = 2136 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2137 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2138 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2139 MI.eraseFromParent(); 2140 return Legalized; 2141 } 2142 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2143 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2144 case TargetOpcode::G_CTLZ: 2145 case TargetOpcode::G_CTTZ: 2146 case TargetOpcode::G_CTPOP: 2147 return lowerBitCount(MI, TypeIdx, Ty); 2148 case G_UADDO: { 2149 Register Res = MI.getOperand(0).getReg(); 2150 Register CarryOut = MI.getOperand(1).getReg(); 2151 Register LHS = MI.getOperand(2).getReg(); 2152 Register RHS = MI.getOperand(3).getReg(); 2153 2154 MIRBuilder.buildAdd(Res, LHS, RHS); 2155 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2156 2157 MI.eraseFromParent(); 2158 return Legalized; 2159 } 2160 case G_UADDE: { 2161 Register Res = MI.getOperand(0).getReg(); 2162 Register CarryOut = MI.getOperand(1).getReg(); 2163 Register LHS = MI.getOperand(2).getReg(); 2164 Register RHS = MI.getOperand(3).getReg(); 2165 Register CarryIn = MI.getOperand(4).getReg(); 2166 2167 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2168 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2169 2170 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2171 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2172 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2173 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2174 2175 MI.eraseFromParent(); 2176 return Legalized; 2177 } 2178 case G_USUBO: { 2179 Register Res = MI.getOperand(0).getReg(); 2180 Register BorrowOut = MI.getOperand(1).getReg(); 2181 Register LHS = MI.getOperand(2).getReg(); 2182 Register RHS = MI.getOperand(3).getReg(); 2183 2184 MIRBuilder.buildSub(Res, LHS, RHS); 2185 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2186 2187 MI.eraseFromParent(); 2188 return Legalized; 2189 } 2190 case G_USUBE: { 2191 Register Res = MI.getOperand(0).getReg(); 2192 Register BorrowOut = MI.getOperand(1).getReg(); 2193 Register LHS = MI.getOperand(2).getReg(); 2194 Register RHS = MI.getOperand(3).getReg(); 2195 Register BorrowIn = MI.getOperand(4).getReg(); 2196 2197 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2198 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2199 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2200 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2201 2202 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2203 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2204 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2205 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2206 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2207 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2208 2209 MI.eraseFromParent(); 2210 return Legalized; 2211 } 2212 case G_UITOFP: 2213 return lowerUITOFP(MI, TypeIdx, Ty); 2214 case G_SITOFP: 2215 return lowerSITOFP(MI, TypeIdx, Ty); 2216 case G_FPTOUI: 2217 return lowerFPTOUI(MI, TypeIdx, Ty); 2218 case G_SMIN: 2219 case G_SMAX: 2220 case G_UMIN: 2221 case G_UMAX: 2222 return lowerMinMax(MI, TypeIdx, Ty); 2223 case G_FCOPYSIGN: 2224 return lowerFCopySign(MI, TypeIdx, Ty); 2225 case G_FMINNUM: 2226 case G_FMAXNUM: 2227 return lowerFMinNumMaxNum(MI); 2228 case G_UNMERGE_VALUES: 2229 return lowerUnmergeValues(MI); 2230 case TargetOpcode::G_SEXT_INREG: { 2231 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2232 int64_t SizeInBits = MI.getOperand(2).getImm(); 2233 2234 Register DstReg = MI.getOperand(0).getReg(); 2235 Register SrcReg = MI.getOperand(1).getReg(); 2236 LLT DstTy = MRI.getType(DstReg); 2237 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2238 2239 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2240 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2241 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2242 MI.eraseFromParent(); 2243 return Legalized; 2244 } 2245 case G_SHUFFLE_VECTOR: 2246 return lowerShuffleVector(MI); 2247 case G_DYN_STACKALLOC: 2248 return lowerDynStackAlloc(MI); 2249 } 2250 } 2251 2252 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2253 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2254 SmallVector<Register, 2> DstRegs; 2255 2256 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2257 Register DstReg = MI.getOperand(0).getReg(); 2258 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2259 int NumParts = Size / NarrowSize; 2260 // FIXME: Don't know how to handle the situation where the small vectors 2261 // aren't all the same size yet. 2262 if (Size % NarrowSize != 0) 2263 return UnableToLegalize; 2264 2265 for (int i = 0; i < NumParts; ++i) { 2266 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2267 MIRBuilder.buildUndef(TmpReg); 2268 DstRegs.push_back(TmpReg); 2269 } 2270 2271 if (NarrowTy.isVector()) 2272 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2273 else 2274 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2275 2276 MI.eraseFromParent(); 2277 return Legalized; 2278 } 2279 2280 LegalizerHelper::LegalizeResult 2281 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2282 LLT NarrowTy) { 2283 const unsigned Opc = MI.getOpcode(); 2284 const unsigned NumOps = MI.getNumOperands() - 1; 2285 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2286 const Register DstReg = MI.getOperand(0).getReg(); 2287 const unsigned Flags = MI.getFlags(); 2288 const LLT DstTy = MRI.getType(DstReg); 2289 const unsigned Size = DstTy.getSizeInBits(); 2290 const int NumParts = Size / NarrowSize; 2291 const LLT EltTy = DstTy.getElementType(); 2292 const unsigned EltSize = EltTy.getSizeInBits(); 2293 const unsigned BitsForNumParts = NarrowSize * NumParts; 2294 2295 // Check if we have any leftovers. If we do, then only handle the case where 2296 // the leftover is one element. 2297 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2298 return UnableToLegalize; 2299 2300 if (BitsForNumParts != Size) { 2301 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2302 MIRBuilder.buildUndef(AccumDstReg); 2303 2304 // Handle the pieces which evenly divide into the requested type with 2305 // extract/op/insert sequence. 2306 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2307 SmallVector<SrcOp, 4> SrcOps; 2308 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2309 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2310 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2311 SrcOps.push_back(PartOpReg); 2312 } 2313 2314 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2315 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2316 2317 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2318 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2319 AccumDstReg = PartInsertReg; 2320 } 2321 2322 // Handle the remaining element sized leftover piece. 2323 SmallVector<SrcOp, 4> SrcOps; 2324 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2325 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2326 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2327 BitsForNumParts); 2328 SrcOps.push_back(PartOpReg); 2329 } 2330 2331 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2332 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2333 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2334 MI.eraseFromParent(); 2335 2336 return Legalized; 2337 } 2338 2339 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2340 2341 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2342 2343 if (NumOps >= 2) 2344 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2345 2346 if (NumOps >= 3) 2347 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2348 2349 for (int i = 0; i < NumParts; ++i) { 2350 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2351 2352 if (NumOps == 1) 2353 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2354 else if (NumOps == 2) { 2355 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2356 } else if (NumOps == 3) { 2357 MIRBuilder.buildInstr(Opc, {DstReg}, 2358 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2359 } 2360 2361 DstRegs.push_back(DstReg); 2362 } 2363 2364 if (NarrowTy.isVector()) 2365 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2366 else 2367 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2368 2369 MI.eraseFromParent(); 2370 return Legalized; 2371 } 2372 2373 // Handle splitting vector operations which need to have the same number of 2374 // elements in each type index, but each type index may have a different element 2375 // type. 2376 // 2377 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2378 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2379 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2380 // 2381 // Also handles some irregular breakdown cases, e.g. 2382 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2383 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2384 // s64 = G_SHL s64, s32 2385 LegalizerHelper::LegalizeResult 2386 LegalizerHelper::fewerElementsVectorMultiEltType( 2387 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2388 if (TypeIdx != 0) 2389 return UnableToLegalize; 2390 2391 const LLT NarrowTy0 = NarrowTyArg; 2392 const unsigned NewNumElts = 2393 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2394 2395 const Register DstReg = MI.getOperand(0).getReg(); 2396 LLT DstTy = MRI.getType(DstReg); 2397 LLT LeftoverTy0; 2398 2399 // All of the operands need to have the same number of elements, so if we can 2400 // determine a type breakdown for the result type, we can for all of the 2401 // source types. 2402 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2403 if (NumParts < 0) 2404 return UnableToLegalize; 2405 2406 SmallVector<MachineInstrBuilder, 4> NewInsts; 2407 2408 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2409 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2410 2411 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2412 LLT LeftoverTy; 2413 Register SrcReg = MI.getOperand(I).getReg(); 2414 LLT SrcTyI = MRI.getType(SrcReg); 2415 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2416 LLT LeftoverTyI; 2417 2418 // Split this operand into the requested typed registers, and any leftover 2419 // required to reproduce the original type. 2420 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2421 LeftoverRegs)) 2422 return UnableToLegalize; 2423 2424 if (I == 1) { 2425 // For the first operand, create an instruction for each part and setup 2426 // the result. 2427 for (Register PartReg : PartRegs) { 2428 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2429 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2430 .addDef(PartDstReg) 2431 .addUse(PartReg)); 2432 DstRegs.push_back(PartDstReg); 2433 } 2434 2435 for (Register LeftoverReg : LeftoverRegs) { 2436 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2437 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2438 .addDef(PartDstReg) 2439 .addUse(LeftoverReg)); 2440 LeftoverDstRegs.push_back(PartDstReg); 2441 } 2442 } else { 2443 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2444 2445 // Add the newly created operand splits to the existing instructions. The 2446 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2447 // pieces. 2448 unsigned InstCount = 0; 2449 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2450 NewInsts[InstCount++].addUse(PartRegs[J]); 2451 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2452 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2453 } 2454 2455 PartRegs.clear(); 2456 LeftoverRegs.clear(); 2457 } 2458 2459 // Insert the newly built operations and rebuild the result register. 2460 for (auto &MIB : NewInsts) 2461 MIRBuilder.insertInstr(MIB); 2462 2463 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2464 2465 MI.eraseFromParent(); 2466 return Legalized; 2467 } 2468 2469 LegalizerHelper::LegalizeResult 2470 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2471 LLT NarrowTy) { 2472 if (TypeIdx != 0) 2473 return UnableToLegalize; 2474 2475 Register DstReg = MI.getOperand(0).getReg(); 2476 Register SrcReg = MI.getOperand(1).getReg(); 2477 LLT DstTy = MRI.getType(DstReg); 2478 LLT SrcTy = MRI.getType(SrcReg); 2479 2480 LLT NarrowTy0 = NarrowTy; 2481 LLT NarrowTy1; 2482 unsigned NumParts; 2483 2484 if (NarrowTy.isVector()) { 2485 // Uneven breakdown not handled. 2486 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2487 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2488 return UnableToLegalize; 2489 2490 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2491 } else { 2492 NumParts = DstTy.getNumElements(); 2493 NarrowTy1 = SrcTy.getElementType(); 2494 } 2495 2496 SmallVector<Register, 4> SrcRegs, DstRegs; 2497 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2498 2499 for (unsigned I = 0; I < NumParts; ++I) { 2500 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2501 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2502 .addDef(DstReg) 2503 .addUse(SrcRegs[I]); 2504 2505 NewInst->setFlags(MI.getFlags()); 2506 DstRegs.push_back(DstReg); 2507 } 2508 2509 if (NarrowTy.isVector()) 2510 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2511 else 2512 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2513 2514 MI.eraseFromParent(); 2515 return Legalized; 2516 } 2517 2518 LegalizerHelper::LegalizeResult 2519 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2520 LLT NarrowTy) { 2521 Register DstReg = MI.getOperand(0).getReg(); 2522 Register Src0Reg = MI.getOperand(2).getReg(); 2523 LLT DstTy = MRI.getType(DstReg); 2524 LLT SrcTy = MRI.getType(Src0Reg); 2525 2526 unsigned NumParts; 2527 LLT NarrowTy0, NarrowTy1; 2528 2529 if (TypeIdx == 0) { 2530 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2531 unsigned OldElts = DstTy.getNumElements(); 2532 2533 NarrowTy0 = NarrowTy; 2534 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2535 NarrowTy1 = NarrowTy.isVector() ? 2536 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2537 SrcTy.getElementType(); 2538 2539 } else { 2540 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2541 unsigned OldElts = SrcTy.getNumElements(); 2542 2543 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2544 NarrowTy.getNumElements(); 2545 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2546 DstTy.getScalarSizeInBits()); 2547 NarrowTy1 = NarrowTy; 2548 } 2549 2550 // FIXME: Don't know how to handle the situation where the small vectors 2551 // aren't all the same size yet. 2552 if (NarrowTy1.isVector() && 2553 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2554 return UnableToLegalize; 2555 2556 CmpInst::Predicate Pred 2557 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2558 2559 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2560 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2561 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2562 2563 for (unsigned I = 0; I < NumParts; ++I) { 2564 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2565 DstRegs.push_back(DstReg); 2566 2567 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2568 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2569 else { 2570 MachineInstr *NewCmp 2571 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2572 NewCmp->setFlags(MI.getFlags()); 2573 } 2574 } 2575 2576 if (NarrowTy1.isVector()) 2577 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2578 else 2579 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2580 2581 MI.eraseFromParent(); 2582 return Legalized; 2583 } 2584 2585 LegalizerHelper::LegalizeResult 2586 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2587 LLT NarrowTy) { 2588 Register DstReg = MI.getOperand(0).getReg(); 2589 Register CondReg = MI.getOperand(1).getReg(); 2590 2591 unsigned NumParts = 0; 2592 LLT NarrowTy0, NarrowTy1; 2593 2594 LLT DstTy = MRI.getType(DstReg); 2595 LLT CondTy = MRI.getType(CondReg); 2596 unsigned Size = DstTy.getSizeInBits(); 2597 2598 assert(TypeIdx == 0 || CondTy.isVector()); 2599 2600 if (TypeIdx == 0) { 2601 NarrowTy0 = NarrowTy; 2602 NarrowTy1 = CondTy; 2603 2604 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2605 // FIXME: Don't know how to handle the situation where the small vectors 2606 // aren't all the same size yet. 2607 if (Size % NarrowSize != 0) 2608 return UnableToLegalize; 2609 2610 NumParts = Size / NarrowSize; 2611 2612 // Need to break down the condition type 2613 if (CondTy.isVector()) { 2614 if (CondTy.getNumElements() == NumParts) 2615 NarrowTy1 = CondTy.getElementType(); 2616 else 2617 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2618 CondTy.getScalarSizeInBits()); 2619 } 2620 } else { 2621 NumParts = CondTy.getNumElements(); 2622 if (NarrowTy.isVector()) { 2623 // TODO: Handle uneven breakdown. 2624 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2625 return UnableToLegalize; 2626 2627 return UnableToLegalize; 2628 } else { 2629 NarrowTy0 = DstTy.getElementType(); 2630 NarrowTy1 = NarrowTy; 2631 } 2632 } 2633 2634 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2635 if (CondTy.isVector()) 2636 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2637 2638 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2639 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2640 2641 for (unsigned i = 0; i < NumParts; ++i) { 2642 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2643 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2644 Src1Regs[i], Src2Regs[i]); 2645 DstRegs.push_back(DstReg); 2646 } 2647 2648 if (NarrowTy0.isVector()) 2649 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2650 else 2651 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2652 2653 MI.eraseFromParent(); 2654 return Legalized; 2655 } 2656 2657 LegalizerHelper::LegalizeResult 2658 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2659 LLT NarrowTy) { 2660 const Register DstReg = MI.getOperand(0).getReg(); 2661 LLT PhiTy = MRI.getType(DstReg); 2662 LLT LeftoverTy; 2663 2664 // All of the operands need to have the same number of elements, so if we can 2665 // determine a type breakdown for the result type, we can for all of the 2666 // source types. 2667 int NumParts, NumLeftover; 2668 std::tie(NumParts, NumLeftover) 2669 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2670 if (NumParts < 0) 2671 return UnableToLegalize; 2672 2673 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2674 SmallVector<MachineInstrBuilder, 4> NewInsts; 2675 2676 const int TotalNumParts = NumParts + NumLeftover; 2677 2678 // Insert the new phis in the result block first. 2679 for (int I = 0; I != TotalNumParts; ++I) { 2680 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2681 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2682 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2683 .addDef(PartDstReg)); 2684 if (I < NumParts) 2685 DstRegs.push_back(PartDstReg); 2686 else 2687 LeftoverDstRegs.push_back(PartDstReg); 2688 } 2689 2690 MachineBasicBlock *MBB = MI.getParent(); 2691 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2692 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2693 2694 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2695 2696 // Insert code to extract the incoming values in each predecessor block. 2697 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2698 PartRegs.clear(); 2699 LeftoverRegs.clear(); 2700 2701 Register SrcReg = MI.getOperand(I).getReg(); 2702 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2703 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2704 2705 LLT Unused; 2706 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2707 LeftoverRegs)) 2708 return UnableToLegalize; 2709 2710 // Add the newly created operand splits to the existing instructions. The 2711 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2712 // pieces. 2713 for (int J = 0; J != TotalNumParts; ++J) { 2714 MachineInstrBuilder MIB = NewInsts[J]; 2715 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2716 MIB.addMBB(&OpMBB); 2717 } 2718 } 2719 2720 MI.eraseFromParent(); 2721 return Legalized; 2722 } 2723 2724 LegalizerHelper::LegalizeResult 2725 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2726 unsigned TypeIdx, 2727 LLT NarrowTy) { 2728 if (TypeIdx != 1) 2729 return UnableToLegalize; 2730 2731 const int NumDst = MI.getNumOperands() - 1; 2732 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2733 LLT SrcTy = MRI.getType(SrcReg); 2734 2735 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2736 2737 // TODO: Create sequence of extracts. 2738 if (DstTy == NarrowTy) 2739 return UnableToLegalize; 2740 2741 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2742 if (DstTy == GCDTy) { 2743 // This would just be a copy of the same unmerge. 2744 // TODO: Create extracts, pad with undef and create intermediate merges. 2745 return UnableToLegalize; 2746 } 2747 2748 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2749 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2750 const int PartsPerUnmerge = NumDst / NumUnmerge; 2751 2752 for (int I = 0; I != NumUnmerge; ++I) { 2753 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2754 2755 for (int J = 0; J != PartsPerUnmerge; ++J) 2756 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2757 MIB.addUse(Unmerge.getReg(I)); 2758 } 2759 2760 MI.eraseFromParent(); 2761 return Legalized; 2762 } 2763 2764 LegalizerHelper::LegalizeResult 2765 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2766 LLT NarrowTy) { 2767 // FIXME: Don't know how to handle secondary types yet. 2768 if (TypeIdx != 0) 2769 return UnableToLegalize; 2770 2771 MachineMemOperand *MMO = *MI.memoperands_begin(); 2772 2773 // This implementation doesn't work for atomics. Give up instead of doing 2774 // something invalid. 2775 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2776 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2777 return UnableToLegalize; 2778 2779 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2780 Register ValReg = MI.getOperand(0).getReg(); 2781 Register AddrReg = MI.getOperand(1).getReg(); 2782 LLT ValTy = MRI.getType(ValReg); 2783 2784 int NumParts = -1; 2785 int NumLeftover = -1; 2786 LLT LeftoverTy; 2787 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2788 if (IsLoad) { 2789 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2790 } else { 2791 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2792 NarrowLeftoverRegs)) { 2793 NumParts = NarrowRegs.size(); 2794 NumLeftover = NarrowLeftoverRegs.size(); 2795 } 2796 } 2797 2798 if (NumParts == -1) 2799 return UnableToLegalize; 2800 2801 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2802 2803 unsigned TotalSize = ValTy.getSizeInBits(); 2804 2805 // Split the load/store into PartTy sized pieces starting at Offset. If this 2806 // is a load, return the new registers in ValRegs. For a store, each elements 2807 // of ValRegs should be PartTy. Returns the next offset that needs to be 2808 // handled. 2809 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2810 unsigned Offset) -> unsigned { 2811 MachineFunction &MF = MIRBuilder.getMF(); 2812 unsigned PartSize = PartTy.getSizeInBits(); 2813 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2814 Offset += PartSize, ++Idx) { 2815 unsigned ByteSize = PartSize / 8; 2816 unsigned ByteOffset = Offset / 8; 2817 Register NewAddrReg; 2818 2819 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2820 2821 MachineMemOperand *NewMMO = 2822 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2823 2824 if (IsLoad) { 2825 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2826 ValRegs.push_back(Dst); 2827 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2828 } else { 2829 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2830 } 2831 } 2832 2833 return Offset; 2834 }; 2835 2836 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2837 2838 // Handle the rest of the register if this isn't an even type breakdown. 2839 if (LeftoverTy.isValid()) 2840 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2841 2842 if (IsLoad) { 2843 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2844 LeftoverTy, NarrowLeftoverRegs); 2845 } 2846 2847 MI.eraseFromParent(); 2848 return Legalized; 2849 } 2850 2851 LegalizerHelper::LegalizeResult 2852 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2853 LLT NarrowTy) { 2854 using namespace TargetOpcode; 2855 2856 MIRBuilder.setInstr(MI); 2857 switch (MI.getOpcode()) { 2858 case G_IMPLICIT_DEF: 2859 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2860 case G_AND: 2861 case G_OR: 2862 case G_XOR: 2863 case G_ADD: 2864 case G_SUB: 2865 case G_MUL: 2866 case G_SMULH: 2867 case G_UMULH: 2868 case G_FADD: 2869 case G_FMUL: 2870 case G_FSUB: 2871 case G_FNEG: 2872 case G_FABS: 2873 case G_FCANONICALIZE: 2874 case G_FDIV: 2875 case G_FREM: 2876 case G_FMA: 2877 case G_FMAD: 2878 case G_FPOW: 2879 case G_FEXP: 2880 case G_FEXP2: 2881 case G_FLOG: 2882 case G_FLOG2: 2883 case G_FLOG10: 2884 case G_FNEARBYINT: 2885 case G_FCEIL: 2886 case G_FFLOOR: 2887 case G_FRINT: 2888 case G_INTRINSIC_ROUND: 2889 case G_INTRINSIC_TRUNC: 2890 case G_FCOS: 2891 case G_FSIN: 2892 case G_FSQRT: 2893 case G_BSWAP: 2894 case G_BITREVERSE: 2895 case G_SDIV: 2896 case G_SMIN: 2897 case G_SMAX: 2898 case G_UMIN: 2899 case G_UMAX: 2900 case G_FMINNUM: 2901 case G_FMAXNUM: 2902 case G_FMINNUM_IEEE: 2903 case G_FMAXNUM_IEEE: 2904 case G_FMINIMUM: 2905 case G_FMAXIMUM: 2906 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2907 case G_SHL: 2908 case G_LSHR: 2909 case G_ASHR: 2910 case G_CTLZ: 2911 case G_CTLZ_ZERO_UNDEF: 2912 case G_CTTZ: 2913 case G_CTTZ_ZERO_UNDEF: 2914 case G_CTPOP: 2915 case G_FCOPYSIGN: 2916 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2917 case G_ZEXT: 2918 case G_SEXT: 2919 case G_ANYEXT: 2920 case G_FPEXT: 2921 case G_FPTRUNC: 2922 case G_SITOFP: 2923 case G_UITOFP: 2924 case G_FPTOSI: 2925 case G_FPTOUI: 2926 case G_INTTOPTR: 2927 case G_PTRTOINT: 2928 case G_ADDRSPACE_CAST: 2929 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2930 case G_ICMP: 2931 case G_FCMP: 2932 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2933 case G_SELECT: 2934 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2935 case G_PHI: 2936 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2937 case G_UNMERGE_VALUES: 2938 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 2939 case G_LOAD: 2940 case G_STORE: 2941 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2942 default: 2943 return UnableToLegalize; 2944 } 2945 } 2946 2947 LegalizerHelper::LegalizeResult 2948 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2949 const LLT HalfTy, const LLT AmtTy) { 2950 2951 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2952 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2953 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2954 2955 if (Amt.isNullValue()) { 2956 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2957 MI.eraseFromParent(); 2958 return Legalized; 2959 } 2960 2961 LLT NVT = HalfTy; 2962 unsigned NVTBits = HalfTy.getSizeInBits(); 2963 unsigned VTBits = 2 * NVTBits; 2964 2965 SrcOp Lo(Register(0)), Hi(Register(0)); 2966 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2967 if (Amt.ugt(VTBits)) { 2968 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2969 } else if (Amt.ugt(NVTBits)) { 2970 Lo = MIRBuilder.buildConstant(NVT, 0); 2971 Hi = MIRBuilder.buildShl(NVT, InL, 2972 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2973 } else if (Amt == NVTBits) { 2974 Lo = MIRBuilder.buildConstant(NVT, 0); 2975 Hi = InL; 2976 } else { 2977 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2978 auto OrLHS = 2979 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2980 auto OrRHS = MIRBuilder.buildLShr( 2981 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2982 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2983 } 2984 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2985 if (Amt.ugt(VTBits)) { 2986 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2987 } else if (Amt.ugt(NVTBits)) { 2988 Lo = MIRBuilder.buildLShr(NVT, InH, 2989 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2990 Hi = MIRBuilder.buildConstant(NVT, 0); 2991 } else if (Amt == NVTBits) { 2992 Lo = InH; 2993 Hi = MIRBuilder.buildConstant(NVT, 0); 2994 } else { 2995 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2996 2997 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2998 auto OrRHS = MIRBuilder.buildShl( 2999 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3000 3001 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3002 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3003 } 3004 } else { 3005 if (Amt.ugt(VTBits)) { 3006 Hi = Lo = MIRBuilder.buildAShr( 3007 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3008 } else if (Amt.ugt(NVTBits)) { 3009 Lo = MIRBuilder.buildAShr(NVT, InH, 3010 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3011 Hi = MIRBuilder.buildAShr(NVT, InH, 3012 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3013 } else if (Amt == NVTBits) { 3014 Lo = InH; 3015 Hi = MIRBuilder.buildAShr(NVT, InH, 3016 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3017 } else { 3018 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3019 3020 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3021 auto OrRHS = MIRBuilder.buildShl( 3022 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3023 3024 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3025 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3026 } 3027 } 3028 3029 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3030 MI.eraseFromParent(); 3031 3032 return Legalized; 3033 } 3034 3035 // TODO: Optimize if constant shift amount. 3036 LegalizerHelper::LegalizeResult 3037 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3038 LLT RequestedTy) { 3039 if (TypeIdx == 1) { 3040 Observer.changingInstr(MI); 3041 narrowScalarSrc(MI, RequestedTy, 2); 3042 Observer.changedInstr(MI); 3043 return Legalized; 3044 } 3045 3046 Register DstReg = MI.getOperand(0).getReg(); 3047 LLT DstTy = MRI.getType(DstReg); 3048 if (DstTy.isVector()) 3049 return UnableToLegalize; 3050 3051 Register Amt = MI.getOperand(2).getReg(); 3052 LLT ShiftAmtTy = MRI.getType(Amt); 3053 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3054 if (DstEltSize % 2 != 0) 3055 return UnableToLegalize; 3056 3057 // Ignore the input type. We can only go to exactly half the size of the 3058 // input. If that isn't small enough, the resulting pieces will be further 3059 // legalized. 3060 const unsigned NewBitSize = DstEltSize / 2; 3061 const LLT HalfTy = LLT::scalar(NewBitSize); 3062 const LLT CondTy = LLT::scalar(1); 3063 3064 if (const MachineInstr *KShiftAmt = 3065 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3066 return narrowScalarShiftByConstant( 3067 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3068 } 3069 3070 // TODO: Expand with known bits. 3071 3072 // Handle the fully general expansion by an unknown amount. 3073 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3074 3075 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3076 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3077 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3078 3079 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3080 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3081 3082 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3083 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3084 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3085 3086 Register ResultRegs[2]; 3087 switch (MI.getOpcode()) { 3088 case TargetOpcode::G_SHL: { 3089 // Short: ShAmt < NewBitSize 3090 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3091 3092 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3093 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3094 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3095 3096 // Long: ShAmt >= NewBitSize 3097 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3098 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3099 3100 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3101 auto Hi = MIRBuilder.buildSelect( 3102 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3103 3104 ResultRegs[0] = Lo.getReg(0); 3105 ResultRegs[1] = Hi.getReg(0); 3106 break; 3107 } 3108 case TargetOpcode::G_LSHR: 3109 case TargetOpcode::G_ASHR: { 3110 // Short: ShAmt < NewBitSize 3111 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3112 3113 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3114 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3115 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3116 3117 // Long: ShAmt >= NewBitSize 3118 MachineInstrBuilder HiL; 3119 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3120 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3121 } else { 3122 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3123 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3124 } 3125 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3126 {InH, AmtExcess}); // Lo from Hi part. 3127 3128 auto Lo = MIRBuilder.buildSelect( 3129 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3130 3131 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3132 3133 ResultRegs[0] = Lo.getReg(0); 3134 ResultRegs[1] = Hi.getReg(0); 3135 break; 3136 } 3137 default: 3138 llvm_unreachable("not a shift"); 3139 } 3140 3141 MIRBuilder.buildMerge(DstReg, ResultRegs); 3142 MI.eraseFromParent(); 3143 return Legalized; 3144 } 3145 3146 LegalizerHelper::LegalizeResult 3147 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3148 LLT MoreTy) { 3149 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3150 3151 Observer.changingInstr(MI); 3152 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3153 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3154 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3155 moreElementsVectorSrc(MI, MoreTy, I); 3156 } 3157 3158 MachineBasicBlock &MBB = *MI.getParent(); 3159 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3160 moreElementsVectorDst(MI, MoreTy, 0); 3161 Observer.changedInstr(MI); 3162 return Legalized; 3163 } 3164 3165 LegalizerHelper::LegalizeResult 3166 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3167 LLT MoreTy) { 3168 MIRBuilder.setInstr(MI); 3169 unsigned Opc = MI.getOpcode(); 3170 switch (Opc) { 3171 case TargetOpcode::G_IMPLICIT_DEF: 3172 case TargetOpcode::G_LOAD: { 3173 if (TypeIdx != 0) 3174 return UnableToLegalize; 3175 Observer.changingInstr(MI); 3176 moreElementsVectorDst(MI, MoreTy, 0); 3177 Observer.changedInstr(MI); 3178 return Legalized; 3179 } 3180 case TargetOpcode::G_STORE: 3181 if (TypeIdx != 0) 3182 return UnableToLegalize; 3183 Observer.changingInstr(MI); 3184 moreElementsVectorSrc(MI, MoreTy, 0); 3185 Observer.changedInstr(MI); 3186 return Legalized; 3187 case TargetOpcode::G_AND: 3188 case TargetOpcode::G_OR: 3189 case TargetOpcode::G_XOR: 3190 case TargetOpcode::G_SMIN: 3191 case TargetOpcode::G_SMAX: 3192 case TargetOpcode::G_UMIN: 3193 case TargetOpcode::G_UMAX: { 3194 Observer.changingInstr(MI); 3195 moreElementsVectorSrc(MI, MoreTy, 1); 3196 moreElementsVectorSrc(MI, MoreTy, 2); 3197 moreElementsVectorDst(MI, MoreTy, 0); 3198 Observer.changedInstr(MI); 3199 return Legalized; 3200 } 3201 case TargetOpcode::G_EXTRACT: 3202 if (TypeIdx != 1) 3203 return UnableToLegalize; 3204 Observer.changingInstr(MI); 3205 moreElementsVectorSrc(MI, MoreTy, 1); 3206 Observer.changedInstr(MI); 3207 return Legalized; 3208 case TargetOpcode::G_INSERT: 3209 if (TypeIdx != 0) 3210 return UnableToLegalize; 3211 Observer.changingInstr(MI); 3212 moreElementsVectorSrc(MI, MoreTy, 1); 3213 moreElementsVectorDst(MI, MoreTy, 0); 3214 Observer.changedInstr(MI); 3215 return Legalized; 3216 case TargetOpcode::G_SELECT: 3217 if (TypeIdx != 0) 3218 return UnableToLegalize; 3219 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3220 return UnableToLegalize; 3221 3222 Observer.changingInstr(MI); 3223 moreElementsVectorSrc(MI, MoreTy, 2); 3224 moreElementsVectorSrc(MI, MoreTy, 3); 3225 moreElementsVectorDst(MI, MoreTy, 0); 3226 Observer.changedInstr(MI); 3227 return Legalized; 3228 case TargetOpcode::G_UNMERGE_VALUES: { 3229 if (TypeIdx != 1) 3230 return UnableToLegalize; 3231 3232 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3233 int NumDst = MI.getNumOperands() - 1; 3234 moreElementsVectorSrc(MI, MoreTy, NumDst); 3235 3236 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3237 for (int I = 0; I != NumDst; ++I) 3238 MIB.addDef(MI.getOperand(I).getReg()); 3239 3240 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3241 for (int I = NumDst; I != NewNumDst; ++I) 3242 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3243 3244 MIB.addUse(MI.getOperand(NumDst).getReg()); 3245 MI.eraseFromParent(); 3246 return Legalized; 3247 } 3248 case TargetOpcode::G_PHI: 3249 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3250 default: 3251 return UnableToLegalize; 3252 } 3253 } 3254 3255 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3256 ArrayRef<Register> Src1Regs, 3257 ArrayRef<Register> Src2Regs, 3258 LLT NarrowTy) { 3259 MachineIRBuilder &B = MIRBuilder; 3260 unsigned SrcParts = Src1Regs.size(); 3261 unsigned DstParts = DstRegs.size(); 3262 3263 unsigned DstIdx = 0; // Low bits of the result. 3264 Register FactorSum = 3265 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3266 DstRegs[DstIdx] = FactorSum; 3267 3268 unsigned CarrySumPrevDstIdx; 3269 SmallVector<Register, 4> Factors; 3270 3271 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3272 // Collect low parts of muls for DstIdx. 3273 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3274 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3275 MachineInstrBuilder Mul = 3276 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3277 Factors.push_back(Mul.getReg(0)); 3278 } 3279 // Collect high parts of muls from previous DstIdx. 3280 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3281 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3282 MachineInstrBuilder Umulh = 3283 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3284 Factors.push_back(Umulh.getReg(0)); 3285 } 3286 // Add CarrySum from additons calculated for previous DstIdx. 3287 if (DstIdx != 1) { 3288 Factors.push_back(CarrySumPrevDstIdx); 3289 } 3290 3291 Register CarrySum; 3292 // Add all factors and accumulate all carries into CarrySum. 3293 if (DstIdx != DstParts - 1) { 3294 MachineInstrBuilder Uaddo = 3295 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3296 FactorSum = Uaddo.getReg(0); 3297 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3298 for (unsigned i = 2; i < Factors.size(); ++i) { 3299 MachineInstrBuilder Uaddo = 3300 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3301 FactorSum = Uaddo.getReg(0); 3302 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3303 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3304 } 3305 } else { 3306 // Since value for the next index is not calculated, neither is CarrySum. 3307 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3308 for (unsigned i = 2; i < Factors.size(); ++i) 3309 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3310 } 3311 3312 CarrySumPrevDstIdx = CarrySum; 3313 DstRegs[DstIdx] = FactorSum; 3314 Factors.clear(); 3315 } 3316 } 3317 3318 LegalizerHelper::LegalizeResult 3319 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3320 Register DstReg = MI.getOperand(0).getReg(); 3321 Register Src1 = MI.getOperand(1).getReg(); 3322 Register Src2 = MI.getOperand(2).getReg(); 3323 3324 LLT Ty = MRI.getType(DstReg); 3325 if (Ty.isVector()) 3326 return UnableToLegalize; 3327 3328 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3329 unsigned DstSize = Ty.getSizeInBits(); 3330 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3331 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3332 return UnableToLegalize; 3333 3334 unsigned NumDstParts = DstSize / NarrowSize; 3335 unsigned NumSrcParts = SrcSize / NarrowSize; 3336 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3337 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3338 3339 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3340 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3341 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3342 DstTmpRegs.resize(DstTmpParts); 3343 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3344 3345 // Take only high half of registers if this is high mul. 3346 ArrayRef<Register> DstRegs( 3347 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3348 MIRBuilder.buildMerge(DstReg, DstRegs); 3349 MI.eraseFromParent(); 3350 return Legalized; 3351 } 3352 3353 LegalizerHelper::LegalizeResult 3354 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3355 LLT NarrowTy) { 3356 if (TypeIdx != 1) 3357 return UnableToLegalize; 3358 3359 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3360 3361 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3362 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3363 // NarrowSize. 3364 if (SizeOp1 % NarrowSize != 0) 3365 return UnableToLegalize; 3366 int NumParts = SizeOp1 / NarrowSize; 3367 3368 SmallVector<Register, 2> SrcRegs, DstRegs; 3369 SmallVector<uint64_t, 2> Indexes; 3370 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3371 3372 Register OpReg = MI.getOperand(0).getReg(); 3373 uint64_t OpStart = MI.getOperand(2).getImm(); 3374 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3375 for (int i = 0; i < NumParts; ++i) { 3376 unsigned SrcStart = i * NarrowSize; 3377 3378 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3379 // No part of the extract uses this subregister, ignore it. 3380 continue; 3381 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3382 // The entire subregister is extracted, forward the value. 3383 DstRegs.push_back(SrcRegs[i]); 3384 continue; 3385 } 3386 3387 // OpSegStart is where this destination segment would start in OpReg if it 3388 // extended infinitely in both directions. 3389 int64_t ExtractOffset; 3390 uint64_t SegSize; 3391 if (OpStart < SrcStart) { 3392 ExtractOffset = 0; 3393 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3394 } else { 3395 ExtractOffset = OpStart - SrcStart; 3396 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3397 } 3398 3399 Register SegReg = SrcRegs[i]; 3400 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3401 // A genuine extract is needed. 3402 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3403 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3404 } 3405 3406 DstRegs.push_back(SegReg); 3407 } 3408 3409 Register DstReg = MI.getOperand(0).getReg(); 3410 if(MRI.getType(DstReg).isVector()) 3411 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3412 else 3413 MIRBuilder.buildMerge(DstReg, DstRegs); 3414 MI.eraseFromParent(); 3415 return Legalized; 3416 } 3417 3418 LegalizerHelper::LegalizeResult 3419 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3420 LLT NarrowTy) { 3421 // FIXME: Don't know how to handle secondary types yet. 3422 if (TypeIdx != 0) 3423 return UnableToLegalize; 3424 3425 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3426 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3427 3428 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3429 // NarrowSize. 3430 if (SizeOp0 % NarrowSize != 0) 3431 return UnableToLegalize; 3432 3433 int NumParts = SizeOp0 / NarrowSize; 3434 3435 SmallVector<Register, 2> SrcRegs, DstRegs; 3436 SmallVector<uint64_t, 2> Indexes; 3437 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3438 3439 Register OpReg = MI.getOperand(2).getReg(); 3440 uint64_t OpStart = MI.getOperand(3).getImm(); 3441 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3442 for (int i = 0; i < NumParts; ++i) { 3443 unsigned DstStart = i * NarrowSize; 3444 3445 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3446 // No part of the insert affects this subregister, forward the original. 3447 DstRegs.push_back(SrcRegs[i]); 3448 continue; 3449 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3450 // The entire subregister is defined by this insert, forward the new 3451 // value. 3452 DstRegs.push_back(OpReg); 3453 continue; 3454 } 3455 3456 // OpSegStart is where this destination segment would start in OpReg if it 3457 // extended infinitely in both directions. 3458 int64_t ExtractOffset, InsertOffset; 3459 uint64_t SegSize; 3460 if (OpStart < DstStart) { 3461 InsertOffset = 0; 3462 ExtractOffset = DstStart - OpStart; 3463 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3464 } else { 3465 InsertOffset = OpStart - DstStart; 3466 ExtractOffset = 0; 3467 SegSize = 3468 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3469 } 3470 3471 Register SegReg = OpReg; 3472 if (ExtractOffset != 0 || SegSize != OpSize) { 3473 // A genuine extract is needed. 3474 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3475 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3476 } 3477 3478 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3479 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3480 DstRegs.push_back(DstReg); 3481 } 3482 3483 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3484 Register DstReg = MI.getOperand(0).getReg(); 3485 if(MRI.getType(DstReg).isVector()) 3486 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3487 else 3488 MIRBuilder.buildMerge(DstReg, DstRegs); 3489 MI.eraseFromParent(); 3490 return Legalized; 3491 } 3492 3493 LegalizerHelper::LegalizeResult 3494 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3495 LLT NarrowTy) { 3496 Register DstReg = MI.getOperand(0).getReg(); 3497 LLT DstTy = MRI.getType(DstReg); 3498 3499 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3500 3501 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3502 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3503 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3504 LLT LeftoverTy; 3505 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3506 Src0Regs, Src0LeftoverRegs)) 3507 return UnableToLegalize; 3508 3509 LLT Unused; 3510 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3511 Src1Regs, Src1LeftoverRegs)) 3512 llvm_unreachable("inconsistent extractParts result"); 3513 3514 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3515 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3516 {Src0Regs[I], Src1Regs[I]}); 3517 DstRegs.push_back(Inst->getOperand(0).getReg()); 3518 } 3519 3520 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3521 auto Inst = MIRBuilder.buildInstr( 3522 MI.getOpcode(), 3523 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3524 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3525 } 3526 3527 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3528 LeftoverTy, DstLeftoverRegs); 3529 3530 MI.eraseFromParent(); 3531 return Legalized; 3532 } 3533 3534 LegalizerHelper::LegalizeResult 3535 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3536 LLT NarrowTy) { 3537 if (TypeIdx != 0) 3538 return UnableToLegalize; 3539 3540 Register CondReg = MI.getOperand(1).getReg(); 3541 LLT CondTy = MRI.getType(CondReg); 3542 if (CondTy.isVector()) // TODO: Handle vselect 3543 return UnableToLegalize; 3544 3545 Register DstReg = MI.getOperand(0).getReg(); 3546 LLT DstTy = MRI.getType(DstReg); 3547 3548 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3549 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3550 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3551 LLT LeftoverTy; 3552 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3553 Src1Regs, Src1LeftoverRegs)) 3554 return UnableToLegalize; 3555 3556 LLT Unused; 3557 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3558 Src2Regs, Src2LeftoverRegs)) 3559 llvm_unreachable("inconsistent extractParts result"); 3560 3561 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3562 auto Select = MIRBuilder.buildSelect(NarrowTy, 3563 CondReg, Src1Regs[I], Src2Regs[I]); 3564 DstRegs.push_back(Select->getOperand(0).getReg()); 3565 } 3566 3567 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3568 auto Select = MIRBuilder.buildSelect( 3569 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3570 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3571 } 3572 3573 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3574 LeftoverTy, DstLeftoverRegs); 3575 3576 MI.eraseFromParent(); 3577 return Legalized; 3578 } 3579 3580 LegalizerHelper::LegalizeResult 3581 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3582 unsigned Opc = MI.getOpcode(); 3583 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3584 auto isSupported = [this](const LegalityQuery &Q) { 3585 auto QAction = LI.getAction(Q).Action; 3586 return QAction == Legal || QAction == Libcall || QAction == Custom; 3587 }; 3588 switch (Opc) { 3589 default: 3590 return UnableToLegalize; 3591 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3592 // This trivially expands to CTLZ. 3593 Observer.changingInstr(MI); 3594 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3595 Observer.changedInstr(MI); 3596 return Legalized; 3597 } 3598 case TargetOpcode::G_CTLZ: { 3599 Register SrcReg = MI.getOperand(1).getReg(); 3600 unsigned Len = Ty.getSizeInBits(); 3601 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3602 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3603 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3604 {Ty}, {SrcReg}); 3605 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3606 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3607 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3608 SrcReg, MIBZero); 3609 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3610 MIBCtlzZU); 3611 MI.eraseFromParent(); 3612 return Legalized; 3613 } 3614 // for now, we do this: 3615 // NewLen = NextPowerOf2(Len); 3616 // x = x | (x >> 1); 3617 // x = x | (x >> 2); 3618 // ... 3619 // x = x | (x >>16); 3620 // x = x | (x >>32); // for 64-bit input 3621 // Upto NewLen/2 3622 // return Len - popcount(x); 3623 // 3624 // Ref: "Hacker's Delight" by Henry Warren 3625 Register Op = SrcReg; 3626 unsigned NewLen = PowerOf2Ceil(Len); 3627 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3628 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3629 auto MIBOp = MIRBuilder.buildInstr( 3630 TargetOpcode::G_OR, {Ty}, 3631 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3632 {Op, MIBShiftAmt})}); 3633 Op = MIBOp->getOperand(0).getReg(); 3634 } 3635 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3636 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3637 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3638 MI.eraseFromParent(); 3639 return Legalized; 3640 } 3641 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3642 // This trivially expands to CTTZ. 3643 Observer.changingInstr(MI); 3644 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3645 Observer.changedInstr(MI); 3646 return Legalized; 3647 } 3648 case TargetOpcode::G_CTTZ: { 3649 Register SrcReg = MI.getOperand(1).getReg(); 3650 unsigned Len = Ty.getSizeInBits(); 3651 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3652 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3653 // zero. 3654 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3655 {Ty}, {SrcReg}); 3656 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3657 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3658 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3659 SrcReg, MIBZero); 3660 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3661 MIBCttzZU); 3662 MI.eraseFromParent(); 3663 return Legalized; 3664 } 3665 // for now, we use: { return popcount(~x & (x - 1)); } 3666 // unless the target has ctlz but not ctpop, in which case we use: 3667 // { return 32 - nlz(~x & (x-1)); } 3668 // Ref: "Hacker's Delight" by Henry Warren 3669 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3670 auto MIBNot = 3671 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3672 auto MIBTmp = MIRBuilder.buildInstr( 3673 TargetOpcode::G_AND, {Ty}, 3674 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3675 {SrcReg, MIBCstNeg1})}); 3676 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3677 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3678 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3679 MIRBuilder.buildInstr( 3680 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3681 {MIBCstLen, 3682 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3683 MI.eraseFromParent(); 3684 return Legalized; 3685 } 3686 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3687 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3688 return Legalized; 3689 } 3690 } 3691 } 3692 3693 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3694 // representation. 3695 LegalizerHelper::LegalizeResult 3696 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3697 Register Dst = MI.getOperand(0).getReg(); 3698 Register Src = MI.getOperand(1).getReg(); 3699 const LLT S64 = LLT::scalar(64); 3700 const LLT S32 = LLT::scalar(32); 3701 const LLT S1 = LLT::scalar(1); 3702 3703 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3704 3705 // unsigned cul2f(ulong u) { 3706 // uint lz = clz(u); 3707 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3708 // u = (u << lz) & 0x7fffffffffffffffUL; 3709 // ulong t = u & 0xffffffffffUL; 3710 // uint v = (e << 23) | (uint)(u >> 40); 3711 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3712 // return as_float(v + r); 3713 // } 3714 3715 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3716 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3717 3718 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3719 3720 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3721 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3722 3723 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3724 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3725 3726 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3727 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3728 3729 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3730 3731 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3732 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3733 3734 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3735 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3736 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3737 3738 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3739 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3740 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3741 auto One = MIRBuilder.buildConstant(S32, 1); 3742 3743 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3744 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3745 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3746 MIRBuilder.buildAdd(Dst, V, R); 3747 3748 return Legalized; 3749 } 3750 3751 LegalizerHelper::LegalizeResult 3752 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3753 Register Dst = MI.getOperand(0).getReg(); 3754 Register Src = MI.getOperand(1).getReg(); 3755 LLT DstTy = MRI.getType(Dst); 3756 LLT SrcTy = MRI.getType(Src); 3757 3758 if (SrcTy != LLT::scalar(64)) 3759 return UnableToLegalize; 3760 3761 if (DstTy == LLT::scalar(32)) { 3762 // TODO: SelectionDAG has several alternative expansions to port which may 3763 // be more reasonble depending on the available instructions. If a target 3764 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3765 // intermediate type, this is probably worse. 3766 return lowerU64ToF32BitOps(MI); 3767 } 3768 3769 return UnableToLegalize; 3770 } 3771 3772 LegalizerHelper::LegalizeResult 3773 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3774 Register Dst = MI.getOperand(0).getReg(); 3775 Register Src = MI.getOperand(1).getReg(); 3776 LLT DstTy = MRI.getType(Dst); 3777 LLT SrcTy = MRI.getType(Src); 3778 3779 const LLT S64 = LLT::scalar(64); 3780 const LLT S32 = LLT::scalar(32); 3781 const LLT S1 = LLT::scalar(1); 3782 3783 if (SrcTy != S64) 3784 return UnableToLegalize; 3785 3786 if (DstTy == S32) { 3787 // signed cl2f(long l) { 3788 // long s = l >> 63; 3789 // float r = cul2f((l + s) ^ s); 3790 // return s ? -r : r; 3791 // } 3792 Register L = Src; 3793 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3794 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3795 3796 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3797 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3798 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3799 3800 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3801 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3802 MIRBuilder.buildConstant(S64, 0)); 3803 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3804 return Legalized; 3805 } 3806 3807 return UnableToLegalize; 3808 } 3809 3810 LegalizerHelper::LegalizeResult 3811 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3812 Register Dst = MI.getOperand(0).getReg(); 3813 Register Src = MI.getOperand(1).getReg(); 3814 LLT DstTy = MRI.getType(Dst); 3815 LLT SrcTy = MRI.getType(Src); 3816 const LLT S64 = LLT::scalar(64); 3817 const LLT S32 = LLT::scalar(32); 3818 3819 if (SrcTy != S64 && SrcTy != S32) 3820 return UnableToLegalize; 3821 if (DstTy != S32 && DstTy != S64) 3822 return UnableToLegalize; 3823 3824 // FPTOSI gives same result as FPTOUI for positive signed integers. 3825 // FPTOUI needs to deal with fp values that convert to unsigned integers 3826 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 3827 3828 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 3829 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 3830 : APFloat::IEEEdouble(), 3831 APInt::getNullValue(SrcTy.getSizeInBits())); 3832 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 3833 3834 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 3835 3836 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 3837 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 3838 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 3839 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 3840 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 3841 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 3842 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 3843 3844 MachineInstrBuilder FCMP = 3845 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); 3846 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 3847 3848 MI.eraseFromParent(); 3849 return Legalized; 3850 } 3851 3852 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3853 switch (Opc) { 3854 case TargetOpcode::G_SMIN: 3855 return CmpInst::ICMP_SLT; 3856 case TargetOpcode::G_SMAX: 3857 return CmpInst::ICMP_SGT; 3858 case TargetOpcode::G_UMIN: 3859 return CmpInst::ICMP_ULT; 3860 case TargetOpcode::G_UMAX: 3861 return CmpInst::ICMP_UGT; 3862 default: 3863 llvm_unreachable("not in integer min/max"); 3864 } 3865 } 3866 3867 LegalizerHelper::LegalizeResult 3868 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3869 Register Dst = MI.getOperand(0).getReg(); 3870 Register Src0 = MI.getOperand(1).getReg(); 3871 Register Src1 = MI.getOperand(2).getReg(); 3872 3873 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3874 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3875 3876 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3877 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3878 3879 MI.eraseFromParent(); 3880 return Legalized; 3881 } 3882 3883 LegalizerHelper::LegalizeResult 3884 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3885 Register Dst = MI.getOperand(0).getReg(); 3886 Register Src0 = MI.getOperand(1).getReg(); 3887 Register Src1 = MI.getOperand(2).getReg(); 3888 3889 const LLT Src0Ty = MRI.getType(Src0); 3890 const LLT Src1Ty = MRI.getType(Src1); 3891 3892 const int Src0Size = Src0Ty.getScalarSizeInBits(); 3893 const int Src1Size = Src1Ty.getScalarSizeInBits(); 3894 3895 auto SignBitMask = MIRBuilder.buildConstant( 3896 Src0Ty, APInt::getSignMask(Src0Size)); 3897 3898 auto NotSignBitMask = MIRBuilder.buildConstant( 3899 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 3900 3901 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 3902 MachineInstr *Or; 3903 3904 if (Src0Ty == Src1Ty) { 3905 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 3906 Or = MIRBuilder.buildOr(Dst, And0, And1); 3907 } else if (Src0Size > Src1Size) { 3908 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 3909 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 3910 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 3911 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 3912 Or = MIRBuilder.buildOr(Dst, And0, And1); 3913 } else { 3914 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 3915 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 3916 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 3917 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 3918 Or = MIRBuilder.buildOr(Dst, And0, And1); 3919 } 3920 3921 // Be careful about setting nsz/nnan/ninf on every instruction, since the 3922 // constants are a nan and -0.0, but the final result should preserve 3923 // everything. 3924 if (unsigned Flags = MI.getFlags()) 3925 Or->setFlags(Flags); 3926 3927 MI.eraseFromParent(); 3928 return Legalized; 3929 } 3930 3931 LegalizerHelper::LegalizeResult 3932 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 3933 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 3934 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 3935 3936 Register Dst = MI.getOperand(0).getReg(); 3937 Register Src0 = MI.getOperand(1).getReg(); 3938 Register Src1 = MI.getOperand(2).getReg(); 3939 LLT Ty = MRI.getType(Dst); 3940 3941 if (!MI.getFlag(MachineInstr::FmNoNans)) { 3942 // Insert canonicalizes if it's possible we need to quiet to get correct 3943 // sNaN behavior. 3944 3945 // Note this must be done here, and not as an optimization combine in the 3946 // absence of a dedicate quiet-snan instruction as we're using an 3947 // omni-purpose G_FCANONICALIZE. 3948 if (!isKnownNeverSNaN(Src0, MRI)) 3949 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 3950 3951 if (!isKnownNeverSNaN(Src1, MRI)) 3952 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 3953 } 3954 3955 // If there are no nans, it's safe to simply replace this with the non-IEEE 3956 // version. 3957 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 3958 MI.eraseFromParent(); 3959 return Legalized; 3960 } 3961 3962 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 3963 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 3964 Register DstReg = MI.getOperand(0).getReg(); 3965 LLT Ty = MRI.getType(DstReg); 3966 unsigned Flags = MI.getFlags(); 3967 3968 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 3969 Flags); 3970 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 LegalizerHelper::LegalizeResult 3976 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 3977 const unsigned NumDst = MI.getNumOperands() - 1; 3978 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3979 LLT SrcTy = MRI.getType(SrcReg); 3980 3981 Register Dst0Reg = MI.getOperand(0).getReg(); 3982 LLT DstTy = MRI.getType(Dst0Reg); 3983 3984 3985 // Expand scalarizing unmerge as bitcast to integer and shift. 3986 if (!DstTy.isVector() && SrcTy.isVector() && 3987 SrcTy.getElementType() == DstTy) { 3988 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 3989 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 3990 3991 MIRBuilder.buildTrunc(Dst0Reg, Cast); 3992 3993 const unsigned DstSize = DstTy.getSizeInBits(); 3994 unsigned Offset = DstSize; 3995 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 3996 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 3997 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 3998 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 3999 } 4000 4001 MI.eraseFromParent(); 4002 return Legalized; 4003 } 4004 4005 return UnableToLegalize; 4006 } 4007 4008 LegalizerHelper::LegalizeResult 4009 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4010 Register DstReg = MI.getOperand(0).getReg(); 4011 Register Src0Reg = MI.getOperand(1).getReg(); 4012 Register Src1Reg = MI.getOperand(2).getReg(); 4013 LLT Src0Ty = MRI.getType(Src0Reg); 4014 LLT DstTy = MRI.getType(DstReg); 4015 LLT IdxTy = LLT::scalar(32); 4016 4017 const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); 4018 4019 SmallVector<int, 32> Mask; 4020 ShuffleVectorInst::getShuffleMask(ShufMask, Mask); 4021 4022 if (DstTy.isScalar()) { 4023 if (Src0Ty.isVector()) 4024 return UnableToLegalize; 4025 4026 // This is just a SELECT. 4027 assert(Mask.size() == 1 && "Expected a single mask element"); 4028 Register Val; 4029 if (Mask[0] < 0 || Mask[0] > 1) 4030 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4031 else 4032 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4033 MIRBuilder.buildCopy(DstReg, Val); 4034 MI.eraseFromParent(); 4035 return Legalized; 4036 } 4037 4038 Register Undef; 4039 SmallVector<Register, 32> BuildVec; 4040 LLT EltTy = DstTy.getElementType(); 4041 4042 for (int Idx : Mask) { 4043 if (Idx < 0) { 4044 if (!Undef.isValid()) 4045 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4046 BuildVec.push_back(Undef); 4047 continue; 4048 } 4049 4050 if (Src0Ty.isScalar()) { 4051 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4052 } else { 4053 int NumElts = Src0Ty.getNumElements(); 4054 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4055 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4056 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4057 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4058 BuildVec.push_back(Extract.getReg(0)); 4059 } 4060 } 4061 4062 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4063 MI.eraseFromParent(); 4064 return Legalized; 4065 } 4066 4067 LegalizerHelper::LegalizeResult 4068 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4069 Register Dst = MI.getOperand(0).getReg(); 4070 Register AllocSize = MI.getOperand(1).getReg(); 4071 unsigned Align = MI.getOperand(2).getImm(); 4072 4073 const auto &MF = *MI.getMF(); 4074 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4075 4076 LLT PtrTy = MRI.getType(Dst); 4077 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4078 4079 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4080 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4081 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4082 4083 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4084 // have to generate an extra instruction to negate the alloc and then use 4085 // G_GEP to add the negative offset. 4086 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4087 if (Align) { 4088 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4089 AlignMask.negate(); 4090 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4091 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4092 } 4093 4094 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4095 MIRBuilder.buildCopy(SPReg, SPTmp); 4096 MIRBuilder.buildCopy(Dst, SPTmp); 4097 4098 MI.eraseFromParent(); 4099 return Legalized; 4100 } 4101