1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/Utils.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 37 #define DEBUG_TYPE "legalizer" 38 39 using namespace llvm; 40 using namespace LegalizeActions; 41 using namespace MIPatternMatch; 42 43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 44 /// 45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 46 /// with any leftover piece as type \p LeftoverTy 47 /// 48 /// Returns -1 in the first element of the pair if the breakdown is not 49 /// satisfiable. 50 static std::pair<int, int> 51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 52 assert(!LeftoverTy.isValid() && "this is an out argument"); 53 54 unsigned Size = OrigTy.getSizeInBits(); 55 unsigned NarrowSize = NarrowTy.getSizeInBits(); 56 unsigned NumParts = Size / NarrowSize; 57 unsigned LeftoverSize = Size - NumParts * NarrowSize; 58 assert(Size > NarrowSize); 59 60 if (LeftoverSize == 0) 61 return {NumParts, 0}; 62 63 if (NarrowTy.isVector()) { 64 unsigned EltSize = OrigTy.getScalarSizeInBits(); 65 if (LeftoverSize % EltSize != 0) 66 return {-1, -1}; 67 LeftoverTy = LLT::scalarOrVector( 68 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 69 } else { 70 LeftoverTy = LLT::scalar(LeftoverSize); 71 } 72 73 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 74 return std::make_pair(NumParts, NumLeftover); 75 } 76 77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 78 79 if (!Ty.isScalar()) 80 return nullptr; 81 82 switch (Ty.getSizeInBits()) { 83 case 16: 84 return Type::getHalfTy(Ctx); 85 case 32: 86 return Type::getFloatTy(Ctx); 87 case 64: 88 return Type::getDoubleTy(Ctx); 89 case 80: 90 return Type::getX86_FP80Ty(Ctx); 91 case 128: 92 return Type::getFP128Ty(Ctx); 93 default: 94 return nullptr; 95 } 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &Builder) 101 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 102 LI(*MF.getSubtarget().getLegalizerInfo()), 103 TLI(*MF.getSubtarget().getTargetLowering()) { } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &B) 108 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 109 TLI(*MF.getSubtarget().getTargetLowering()) { } 110 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 113 LostDebugLocObserver &LocObserver) { 114 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 115 116 MIRBuilder.setInstrAndDebugLoc(MI); 117 118 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 119 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 120 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 121 auto Step = LI.getAction(MI, MRI); 122 switch (Step.Action) { 123 case Legal: 124 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 125 return AlreadyLegal; 126 case Libcall: 127 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 128 return libcall(MI, LocObserver); 129 case NarrowScalar: 130 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 131 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 132 case WidenScalar: 133 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 134 return widenScalar(MI, Step.TypeIdx, Step.NewType); 135 case Bitcast: 136 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 137 return bitcast(MI, Step.TypeIdx, Step.NewType); 138 case Lower: 139 LLVM_DEBUG(dbgs() << ".. Lower\n"); 140 return lower(MI, Step.TypeIdx, Step.NewType); 141 case FewerElements: 142 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 143 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case MoreElements: 145 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 146 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 147 case Custom: 148 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 149 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 150 default: 151 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 152 return UnableToLegalize; 153 } 154 } 155 156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 157 SmallVectorImpl<Register> &VRegs) { 158 for (int i = 0; i < NumParts; ++i) 159 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 160 MIRBuilder.buildUnmerge(VRegs, Reg); 161 } 162 163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 164 LLT MainTy, LLT &LeftoverTy, 165 SmallVectorImpl<Register> &VRegs, 166 SmallVectorImpl<Register> &LeftoverRegs) { 167 assert(!LeftoverTy.isValid() && "this is an out argument"); 168 169 unsigned RegSize = RegTy.getSizeInBits(); 170 unsigned MainSize = MainTy.getSizeInBits(); 171 unsigned NumParts = RegSize / MainSize; 172 unsigned LeftoverSize = RegSize - NumParts * MainSize; 173 174 // Use an unmerge when possible. 175 if (LeftoverSize == 0) { 176 for (unsigned I = 0; I < NumParts; ++I) 177 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 178 MIRBuilder.buildUnmerge(VRegs, Reg); 179 return true; 180 } 181 182 // Perform irregular split. Leftover is last element of RegPieces. 183 if (MainTy.isVector()) { 184 SmallVector<Register, 8> RegPieces; 185 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 186 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 187 VRegs.push_back(RegPieces[i]); 188 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 189 LeftoverTy = MRI.getType(LeftoverRegs[0]); 190 return true; 191 } 192 193 LeftoverTy = LLT::scalar(LeftoverSize); 194 // For irregular sizes, extract the individual parts. 195 for (unsigned I = 0; I != NumParts; ++I) { 196 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 197 VRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 199 } 200 201 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 202 Offset += LeftoverSize) { 203 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 204 LeftoverRegs.push_back(NewReg); 205 MIRBuilder.buildExtract(NewReg, Reg, Offset); 206 } 207 208 return true; 209 } 210 211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 212 SmallVectorImpl<Register> &VRegs) { 213 LLT RegTy = MRI.getType(Reg); 214 assert(RegTy.isVector() && "Expected a vector type"); 215 216 LLT EltTy = RegTy.getElementType(); 217 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 218 unsigned RegNumElts = RegTy.getNumElements(); 219 unsigned LeftoverNumElts = RegNumElts % NumElts; 220 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 221 222 // Perfect split without leftover 223 if (LeftoverNumElts == 0) 224 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 225 226 // Irregular split. Provide direct access to all elements for artifact 227 // combiner using unmerge to elements. Then build vectors with NumElts 228 // elements. Remaining element(s) will be (used to build vector) Leftover. 229 SmallVector<Register, 8> Elts; 230 extractParts(Reg, EltTy, RegNumElts, Elts); 231 232 unsigned Offset = 0; 233 // Requested sub-vectors of NarrowTy. 234 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 235 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 236 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 237 } 238 239 // Leftover element(s). 240 if (LeftoverNumElts == 1) { 241 VRegs.push_back(Elts[Offset]); 242 } else { 243 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 244 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 245 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 246 } 247 } 248 249 void LegalizerHelper::insertParts(Register DstReg, 250 LLT ResultTy, LLT PartTy, 251 ArrayRef<Register> PartRegs, 252 LLT LeftoverTy, 253 ArrayRef<Register> LeftoverRegs) { 254 if (!LeftoverTy.isValid()) { 255 assert(LeftoverRegs.empty()); 256 257 if (!ResultTy.isVector()) { 258 MIRBuilder.buildMerge(DstReg, PartRegs); 259 return; 260 } 261 262 if (PartTy.isVector()) 263 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 264 else 265 MIRBuilder.buildBuildVector(DstReg, PartRegs); 266 return; 267 } 268 269 // Merge sub-vectors with different number of elements and insert into DstReg. 270 if (ResultTy.isVector()) { 271 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 272 SmallVector<Register, 8> AllRegs; 273 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 274 AllRegs.push_back(Reg); 275 return mergeMixedSubvectors(DstReg, AllRegs); 276 } 277 278 SmallVector<Register> GCDRegs; 279 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 280 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 281 extractGCDType(GCDRegs, GCDTy, PartReg); 282 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 283 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 284 } 285 286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 287 Register Reg) { 288 LLT Ty = MRI.getType(Reg); 289 SmallVector<Register, 8> RegElts; 290 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 291 Elts.append(RegElts); 292 } 293 294 /// Merge \p PartRegs with different types into \p DstReg. 295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 296 ArrayRef<Register> PartRegs) { 297 SmallVector<Register, 8> AllElts; 298 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 299 appendVectorElts(AllElts, PartRegs[i]); 300 301 Register Leftover = PartRegs[PartRegs.size() - 1]; 302 if (MRI.getType(Leftover).isScalar()) 303 AllElts.push_back(Leftover); 304 else 305 appendVectorElts(AllElts, Leftover); 306 307 MIRBuilder.buildMerge(DstReg, AllElts); 308 } 309 310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 312 const MachineInstr &MI) { 313 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 314 315 const int StartIdx = Regs.size(); 316 const int NumResults = MI.getNumOperands() - 1; 317 Regs.resize(Regs.size() + NumResults); 318 for (int I = 0; I != NumResults; ++I) 319 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 320 } 321 322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 323 LLT GCDTy, Register SrcReg) { 324 LLT SrcTy = MRI.getType(SrcReg); 325 if (SrcTy == GCDTy) { 326 // If the source already evenly divides the result type, we don't need to do 327 // anything. 328 Parts.push_back(SrcReg); 329 } else { 330 // Need to split into common type sized pieces. 331 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 332 getUnmergeResults(Parts, *Unmerge); 333 } 334 } 335 336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 337 LLT NarrowTy, Register SrcReg) { 338 LLT SrcTy = MRI.getType(SrcReg); 339 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 340 extractGCDType(Parts, GCDTy, SrcReg); 341 return GCDTy; 342 } 343 344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 345 SmallVectorImpl<Register> &VRegs, 346 unsigned PadStrategy) { 347 LLT LCMTy = getLCMType(DstTy, NarrowTy); 348 349 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 350 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 351 int NumOrigSrc = VRegs.size(); 352 353 Register PadReg; 354 355 // Get a value we can use to pad the source value if the sources won't evenly 356 // cover the result type. 357 if (NumOrigSrc < NumParts * NumSubParts) { 358 if (PadStrategy == TargetOpcode::G_ZEXT) 359 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 360 else if (PadStrategy == TargetOpcode::G_ANYEXT) 361 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 362 else { 363 assert(PadStrategy == TargetOpcode::G_SEXT); 364 365 // Shift the sign bit of the low register through the high register. 366 auto ShiftAmt = 367 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 368 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 369 } 370 } 371 372 // Registers for the final merge to be produced. 373 SmallVector<Register, 4> Remerge(NumParts); 374 375 // Registers needed for intermediate merges, which will be merged into a 376 // source for Remerge. 377 SmallVector<Register, 4> SubMerge(NumSubParts); 378 379 // Once we've fully read off the end of the original source bits, we can reuse 380 // the same high bits for remaining padding elements. 381 Register AllPadReg; 382 383 // Build merges to the LCM type to cover the original result type. 384 for (int I = 0; I != NumParts; ++I) { 385 bool AllMergePartsArePadding = true; 386 387 // Build the requested merges to the requested type. 388 for (int J = 0; J != NumSubParts; ++J) { 389 int Idx = I * NumSubParts + J; 390 if (Idx >= NumOrigSrc) { 391 SubMerge[J] = PadReg; 392 continue; 393 } 394 395 SubMerge[J] = VRegs[Idx]; 396 397 // There are meaningful bits here we can't reuse later. 398 AllMergePartsArePadding = false; 399 } 400 401 // If we've filled up a complete piece with padding bits, we can directly 402 // emit the natural sized constant if applicable, rather than a merge of 403 // smaller constants. 404 if (AllMergePartsArePadding && !AllPadReg) { 405 if (PadStrategy == TargetOpcode::G_ANYEXT) 406 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 407 else if (PadStrategy == TargetOpcode::G_ZEXT) 408 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 409 410 // If this is a sign extension, we can't materialize a trivial constant 411 // with the right type and have to produce a merge. 412 } 413 414 if (AllPadReg) { 415 // Avoid creating additional instructions if we're just adding additional 416 // copies of padding bits. 417 Remerge[I] = AllPadReg; 418 continue; 419 } 420 421 if (NumSubParts == 1) 422 Remerge[I] = SubMerge[0]; 423 else 424 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 425 426 // In the sign extend padding case, re-use the first all-signbit merge. 427 if (AllMergePartsArePadding && !AllPadReg) 428 AllPadReg = Remerge[I]; 429 } 430 431 VRegs = std::move(Remerge); 432 return LCMTy; 433 } 434 435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 436 ArrayRef<Register> RemergeRegs) { 437 LLT DstTy = MRI.getType(DstReg); 438 439 // Create the merge to the widened source, and extract the relevant bits into 440 // the result. 441 442 if (DstTy == LCMTy) { 443 MIRBuilder.buildMerge(DstReg, RemergeRegs); 444 return; 445 } 446 447 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 448 if (DstTy.isScalar() && LCMTy.isScalar()) { 449 MIRBuilder.buildTrunc(DstReg, Remerge); 450 return; 451 } 452 453 if (LCMTy.isVector()) { 454 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 455 SmallVector<Register, 8> UnmergeDefs(NumDefs); 456 UnmergeDefs[0] = DstReg; 457 for (unsigned I = 1; I != NumDefs; ++I) 458 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 459 460 MIRBuilder.buildUnmerge(UnmergeDefs, 461 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 462 return; 463 } 464 465 llvm_unreachable("unhandled case"); 466 } 467 468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 469 #define RTLIBCASE_INT(LibcallPrefix) \ 470 do { \ 471 switch (Size) { \ 472 case 32: \ 473 return RTLIB::LibcallPrefix##32; \ 474 case 64: \ 475 return RTLIB::LibcallPrefix##64; \ 476 case 128: \ 477 return RTLIB::LibcallPrefix##128; \ 478 default: \ 479 llvm_unreachable("unexpected size"); \ 480 } \ 481 } while (0) 482 483 #define RTLIBCASE(LibcallPrefix) \ 484 do { \ 485 switch (Size) { \ 486 case 32: \ 487 return RTLIB::LibcallPrefix##32; \ 488 case 64: \ 489 return RTLIB::LibcallPrefix##64; \ 490 case 80: \ 491 return RTLIB::LibcallPrefix##80; \ 492 case 128: \ 493 return RTLIB::LibcallPrefix##128; \ 494 default: \ 495 llvm_unreachable("unexpected size"); \ 496 } \ 497 } while (0) 498 499 switch (Opcode) { 500 case TargetOpcode::G_SDIV: 501 RTLIBCASE_INT(SDIV_I); 502 case TargetOpcode::G_UDIV: 503 RTLIBCASE_INT(UDIV_I); 504 case TargetOpcode::G_SREM: 505 RTLIBCASE_INT(SREM_I); 506 case TargetOpcode::G_UREM: 507 RTLIBCASE_INT(UREM_I); 508 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 509 RTLIBCASE_INT(CTLZ_I); 510 case TargetOpcode::G_FADD: 511 RTLIBCASE(ADD_F); 512 case TargetOpcode::G_FSUB: 513 RTLIBCASE(SUB_F); 514 case TargetOpcode::G_FMUL: 515 RTLIBCASE(MUL_F); 516 case TargetOpcode::G_FDIV: 517 RTLIBCASE(DIV_F); 518 case TargetOpcode::G_FEXP: 519 RTLIBCASE(EXP_F); 520 case TargetOpcode::G_FEXP2: 521 RTLIBCASE(EXP2_F); 522 case TargetOpcode::G_FREM: 523 RTLIBCASE(REM_F); 524 case TargetOpcode::G_FPOW: 525 RTLIBCASE(POW_F); 526 case TargetOpcode::G_FMA: 527 RTLIBCASE(FMA_F); 528 case TargetOpcode::G_FSIN: 529 RTLIBCASE(SIN_F); 530 case TargetOpcode::G_FCOS: 531 RTLIBCASE(COS_F); 532 case TargetOpcode::G_FLOG10: 533 RTLIBCASE(LOG10_F); 534 case TargetOpcode::G_FLOG: 535 RTLIBCASE(LOG_F); 536 case TargetOpcode::G_FLOG2: 537 RTLIBCASE(LOG2_F); 538 case TargetOpcode::G_FCEIL: 539 RTLIBCASE(CEIL_F); 540 case TargetOpcode::G_FFLOOR: 541 RTLIBCASE(FLOOR_F); 542 case TargetOpcode::G_FMINNUM: 543 RTLIBCASE(FMIN_F); 544 case TargetOpcode::G_FMAXNUM: 545 RTLIBCASE(FMAX_F); 546 case TargetOpcode::G_FSQRT: 547 RTLIBCASE(SQRT_F); 548 case TargetOpcode::G_FRINT: 549 RTLIBCASE(RINT_F); 550 case TargetOpcode::G_FNEARBYINT: 551 RTLIBCASE(NEARBYINT_F); 552 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 553 RTLIBCASE(ROUNDEVEN_F); 554 } 555 llvm_unreachable("Unknown libcall function"); 556 } 557 558 /// True if an instruction is in tail position in its caller. Intended for 559 /// legalizing libcalls as tail calls when possible. 560 static bool isLibCallInTailPosition(MachineInstr &MI, 561 const TargetInstrInfo &TII, 562 MachineRegisterInfo &MRI) { 563 MachineBasicBlock &MBB = *MI.getParent(); 564 const Function &F = MBB.getParent()->getFunction(); 565 566 // Conservatively require the attributes of the call to match those of 567 // the return. Ignore NoAlias and NonNull because they don't affect the 568 // call sequence. 569 AttributeList CallerAttrs = F.getAttributes(); 570 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 571 .removeAttribute(Attribute::NoAlias) 572 .removeAttribute(Attribute::NonNull) 573 .hasAttributes()) 574 return false; 575 576 // It's not safe to eliminate the sign / zero extension of the return value. 577 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 578 CallerAttrs.hasRetAttr(Attribute::SExt)) 579 return false; 580 581 // Only tail call if the following instruction is a standard return or if we 582 // have a `thisreturn` callee, and a sequence like: 583 // 584 // G_MEMCPY %0, %1, %2 585 // $x0 = COPY %0 586 // RET_ReallyLR implicit $x0 587 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 588 if (Next != MBB.instr_end() && Next->isCopy()) { 589 switch (MI.getOpcode()) { 590 default: 591 llvm_unreachable("unsupported opcode"); 592 case TargetOpcode::G_BZERO: 593 return false; 594 case TargetOpcode::G_MEMCPY: 595 case TargetOpcode::G_MEMMOVE: 596 case TargetOpcode::G_MEMSET: 597 break; 598 } 599 600 Register VReg = MI.getOperand(0).getReg(); 601 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 602 return false; 603 604 Register PReg = Next->getOperand(0).getReg(); 605 if (!PReg.isPhysical()) 606 return false; 607 608 auto Ret = next_nodbg(Next, MBB.instr_end()); 609 if (Ret == MBB.instr_end() || !Ret->isReturn()) 610 return false; 611 612 if (Ret->getNumImplicitOperands() != 1) 613 return false; 614 615 if (PReg != Ret->getOperand(0).getReg()) 616 return false; 617 618 // Skip over the COPY that we just validated. 619 Next = Ret; 620 } 621 622 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 623 return false; 624 625 return true; 626 } 627 628 LegalizerHelper::LegalizeResult 629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 630 const CallLowering::ArgInfo &Result, 631 ArrayRef<CallLowering::ArgInfo> Args, 632 const CallingConv::ID CC) { 633 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 634 635 CallLowering::CallLoweringInfo Info; 636 Info.CallConv = CC; 637 Info.Callee = MachineOperand::CreateES(Name); 638 Info.OrigRet = Result; 639 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 640 if (!CLI.lowerCall(MIRBuilder, Info)) 641 return LegalizerHelper::UnableToLegalize; 642 643 return LegalizerHelper::Legalized; 644 } 645 646 LegalizerHelper::LegalizeResult 647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 648 const CallLowering::ArgInfo &Result, 649 ArrayRef<CallLowering::ArgInfo> Args) { 650 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 651 const char *Name = TLI.getLibcallName(Libcall); 652 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 653 return createLibcall(MIRBuilder, Name, Result, Args, CC); 654 } 655 656 // Useful for libcalls where all operands have the same type. 657 static LegalizerHelper::LegalizeResult 658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 659 Type *OpType) { 660 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 661 662 // FIXME: What does the original arg index mean here? 663 SmallVector<CallLowering::ArgInfo, 3> Args; 664 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 665 Args.push_back({MO.getReg(), OpType, 0}); 666 return createLibcall(MIRBuilder, Libcall, 667 {MI.getOperand(0).getReg(), OpType, 0}, Args); 668 } 669 670 LegalizerHelper::LegalizeResult 671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 672 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 SmallVector<CallLowering::ArgInfo, 3> Args; 676 // Add all the args, except for the last which is an imm denoting 'tail'. 677 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 678 Register Reg = MI.getOperand(i).getReg(); 679 680 // Need derive an IR type for call lowering. 681 LLT OpLLT = MRI.getType(Reg); 682 Type *OpTy = nullptr; 683 if (OpLLT.isPointer()) 684 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 685 else 686 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 687 Args.push_back({Reg, OpTy, 0}); 688 } 689 690 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 691 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 692 RTLIB::Libcall RTLibcall; 693 unsigned Opc = MI.getOpcode(); 694 switch (Opc) { 695 case TargetOpcode::G_BZERO: 696 RTLibcall = RTLIB::BZERO; 697 break; 698 case TargetOpcode::G_MEMCPY: 699 RTLibcall = RTLIB::MEMCPY; 700 Args[0].Flags[0].setReturned(); 701 break; 702 case TargetOpcode::G_MEMMOVE: 703 RTLibcall = RTLIB::MEMMOVE; 704 Args[0].Flags[0].setReturned(); 705 break; 706 case TargetOpcode::G_MEMSET: 707 RTLibcall = RTLIB::MEMSET; 708 Args[0].Flags[0].setReturned(); 709 break; 710 default: 711 llvm_unreachable("unsupported opcode"); 712 } 713 const char *Name = TLI.getLibcallName(RTLibcall); 714 715 // Unsupported libcall on the target. 716 if (!Name) { 717 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 718 << MIRBuilder.getTII().getName(Opc) << "\n"); 719 return LegalizerHelper::UnableToLegalize; 720 } 721 722 CallLowering::CallLoweringInfo Info; 723 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 724 Info.Callee = MachineOperand::CreateES(Name); 725 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 726 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 727 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 728 729 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 730 if (!CLI.lowerCall(MIRBuilder, Info)) 731 return LegalizerHelper::UnableToLegalize; 732 733 if (Info.LoweredTailCall) { 734 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 735 736 // Check debug locations before removing the return. 737 LocObserver.checkpoint(true); 738 739 // We must have a return following the call (or debug insts) to get past 740 // isLibCallInTailPosition. 741 do { 742 MachineInstr *Next = MI.getNextNode(); 743 assert(Next && 744 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 745 "Expected instr following MI to be return or debug inst?"); 746 // We lowered a tail call, so the call is now the return from the block. 747 // Delete the old return. 748 Next->eraseFromParent(); 749 } while (MI.getNextNode()); 750 751 // We expect to lose the debug location from the return. 752 LocObserver.checkpoint(false); 753 } 754 755 return LegalizerHelper::Legalized; 756 } 757 758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 759 Type *FromType) { 760 auto ToMVT = MVT::getVT(ToType); 761 auto FromMVT = MVT::getVT(FromType); 762 763 switch (Opcode) { 764 case TargetOpcode::G_FPEXT: 765 return RTLIB::getFPEXT(FromMVT, ToMVT); 766 case TargetOpcode::G_FPTRUNC: 767 return RTLIB::getFPROUND(FromMVT, ToMVT); 768 case TargetOpcode::G_FPTOSI: 769 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 770 case TargetOpcode::G_FPTOUI: 771 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 772 case TargetOpcode::G_SITOFP: 773 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 774 case TargetOpcode::G_UITOFP: 775 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 776 } 777 llvm_unreachable("Unsupported libcall function"); 778 } 779 780 static LegalizerHelper::LegalizeResult 781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 782 Type *FromType) { 783 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 784 return createLibcall(MIRBuilder, Libcall, 785 {MI.getOperand(0).getReg(), ToType, 0}, 786 {{MI.getOperand(1).getReg(), FromType, 0}}); 787 } 788 789 LegalizerHelper::LegalizeResult 790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 791 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 792 unsigned Size = LLTy.getSizeInBits(); 793 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 794 795 switch (MI.getOpcode()) { 796 default: 797 return UnableToLegalize; 798 case TargetOpcode::G_SDIV: 799 case TargetOpcode::G_UDIV: 800 case TargetOpcode::G_SREM: 801 case TargetOpcode::G_UREM: 802 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 803 Type *HLTy = IntegerType::get(Ctx, Size); 804 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 805 if (Status != Legalized) 806 return Status; 807 break; 808 } 809 case TargetOpcode::G_FADD: 810 case TargetOpcode::G_FSUB: 811 case TargetOpcode::G_FMUL: 812 case TargetOpcode::G_FDIV: 813 case TargetOpcode::G_FMA: 814 case TargetOpcode::G_FPOW: 815 case TargetOpcode::G_FREM: 816 case TargetOpcode::G_FCOS: 817 case TargetOpcode::G_FSIN: 818 case TargetOpcode::G_FLOG10: 819 case TargetOpcode::G_FLOG: 820 case TargetOpcode::G_FLOG2: 821 case TargetOpcode::G_FEXP: 822 case TargetOpcode::G_FEXP2: 823 case TargetOpcode::G_FCEIL: 824 case TargetOpcode::G_FFLOOR: 825 case TargetOpcode::G_FMINNUM: 826 case TargetOpcode::G_FMAXNUM: 827 case TargetOpcode::G_FSQRT: 828 case TargetOpcode::G_FRINT: 829 case TargetOpcode::G_FNEARBYINT: 830 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 831 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 832 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 833 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 834 return UnableToLegalize; 835 } 836 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 837 if (Status != Legalized) 838 return Status; 839 break; 840 } 841 case TargetOpcode::G_FPEXT: 842 case TargetOpcode::G_FPTRUNC: { 843 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 844 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 845 if (!FromTy || !ToTy) 846 return UnableToLegalize; 847 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 848 if (Status != Legalized) 849 return Status; 850 break; 851 } 852 case TargetOpcode::G_FPTOSI: 853 case TargetOpcode::G_FPTOUI: { 854 // FIXME: Support other types 855 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 856 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 857 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 858 return UnableToLegalize; 859 LegalizeResult Status = conversionLibcall( 860 MI, MIRBuilder, 861 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 862 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 863 if (Status != Legalized) 864 return Status; 865 break; 866 } 867 case TargetOpcode::G_SITOFP: 868 case TargetOpcode::G_UITOFP: { 869 // FIXME: Support other types 870 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 871 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 872 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 873 return UnableToLegalize; 874 LegalizeResult Status = conversionLibcall( 875 MI, MIRBuilder, 876 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 877 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 878 if (Status != Legalized) 879 return Status; 880 break; 881 } 882 case TargetOpcode::G_BZERO: 883 case TargetOpcode::G_MEMCPY: 884 case TargetOpcode::G_MEMMOVE: 885 case TargetOpcode::G_MEMSET: { 886 LegalizeResult Result = 887 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 888 if (Result != Legalized) 889 return Result; 890 MI.eraseFromParent(); 891 return Result; 892 } 893 } 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 900 unsigned TypeIdx, 901 LLT NarrowTy) { 902 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 903 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 904 905 switch (MI.getOpcode()) { 906 default: 907 return UnableToLegalize; 908 case TargetOpcode::G_IMPLICIT_DEF: { 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 912 // If SizeOp0 is not an exact multiple of NarrowSize, emit 913 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 914 // FIXME: Although this would also be legal for the general case, it causes 915 // a lot of regressions in the emitted code (superfluous COPYs, artifact 916 // combines not being hit). This seems to be a problem related to the 917 // artifact combiner. 918 if (SizeOp0 % NarrowSize != 0) { 919 LLT ImplicitTy = NarrowTy; 920 if (DstTy.isVector()) 921 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 922 923 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 924 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 930 int NumParts = SizeOp0 / NarrowSize; 931 932 SmallVector<Register, 2> DstRegs; 933 for (int i = 0; i < NumParts; ++i) 934 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 935 936 if (DstTy.isVector()) 937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 938 else 939 MIRBuilder.buildMerge(DstReg, DstRegs); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 case TargetOpcode::G_CONSTANT: { 944 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 945 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 946 unsigned TotalSize = Ty.getSizeInBits(); 947 unsigned NarrowSize = NarrowTy.getSizeInBits(); 948 int NumParts = TotalSize / NarrowSize; 949 950 SmallVector<Register, 4> PartRegs; 951 for (int I = 0; I != NumParts; ++I) { 952 unsigned Offset = I * NarrowSize; 953 auto K = MIRBuilder.buildConstant(NarrowTy, 954 Val.lshr(Offset).trunc(NarrowSize)); 955 PartRegs.push_back(K.getReg(0)); 956 } 957 958 LLT LeftoverTy; 959 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 960 SmallVector<Register, 1> LeftoverRegs; 961 if (LeftoverBits != 0) { 962 LeftoverTy = LLT::scalar(LeftoverBits); 963 auto K = MIRBuilder.buildConstant( 964 LeftoverTy, 965 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 966 LeftoverRegs.push_back(K.getReg(0)); 967 } 968 969 insertParts(MI.getOperand(0).getReg(), 970 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 971 972 MI.eraseFromParent(); 973 return Legalized; 974 } 975 case TargetOpcode::G_SEXT: 976 case TargetOpcode::G_ZEXT: 977 case TargetOpcode::G_ANYEXT: 978 return narrowScalarExt(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_TRUNC: { 980 if (TypeIdx != 1) 981 return UnableToLegalize; 982 983 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 984 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 985 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 986 return UnableToLegalize; 987 } 988 989 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 990 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 case TargetOpcode::G_FREEZE: { 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1000 // Should widen scalar first 1001 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1002 return UnableToLegalize; 1003 1004 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1005 SmallVector<Register, 8> Parts; 1006 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1007 Parts.push_back( 1008 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1009 } 1010 1011 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1012 MI.eraseFromParent(); 1013 return Legalized; 1014 } 1015 case TargetOpcode::G_ADD: 1016 case TargetOpcode::G_SUB: 1017 case TargetOpcode::G_SADDO: 1018 case TargetOpcode::G_SSUBO: 1019 case TargetOpcode::G_SADDE: 1020 case TargetOpcode::G_SSUBE: 1021 case TargetOpcode::G_UADDO: 1022 case TargetOpcode::G_USUBO: 1023 case TargetOpcode::G_UADDE: 1024 case TargetOpcode::G_USUBE: 1025 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_MUL: 1027 case TargetOpcode::G_UMULH: 1028 return narrowScalarMul(MI, NarrowTy); 1029 case TargetOpcode::G_EXTRACT: 1030 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1031 case TargetOpcode::G_INSERT: 1032 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_LOAD: { 1034 auto &LoadMI = cast<GLoad>(MI); 1035 Register DstReg = LoadMI.getDstReg(); 1036 LLT DstTy = MRI.getType(DstReg); 1037 if (DstTy.isVector()) 1038 return UnableToLegalize; 1039 1040 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1041 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1042 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1043 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1044 LoadMI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 1048 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1049 } 1050 case TargetOpcode::G_ZEXTLOAD: 1051 case TargetOpcode::G_SEXTLOAD: { 1052 auto &LoadMI = cast<GExtLoad>(MI); 1053 Register DstReg = LoadMI.getDstReg(); 1054 Register PtrReg = LoadMI.getPointerReg(); 1055 1056 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1057 auto &MMO = LoadMI.getMMO(); 1058 unsigned MemSize = MMO.getSizeInBits(); 1059 1060 if (MemSize == NarrowSize) { 1061 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1062 } else if (MemSize < NarrowSize) { 1063 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1064 } else if (MemSize > NarrowSize) { 1065 // FIXME: Need to split the load. 1066 return UnableToLegalize; 1067 } 1068 1069 if (isa<GZExtLoad>(LoadMI)) 1070 MIRBuilder.buildZExt(DstReg, TmpReg); 1071 else 1072 MIRBuilder.buildSExt(DstReg, TmpReg); 1073 1074 LoadMI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_STORE: { 1078 auto &StoreMI = cast<GStore>(MI); 1079 1080 Register SrcReg = StoreMI.getValueReg(); 1081 LLT SrcTy = MRI.getType(SrcReg); 1082 if (SrcTy.isVector()) 1083 return UnableToLegalize; 1084 1085 int NumParts = SizeOp0 / NarrowSize; 1086 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1087 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1088 if (SrcTy.isVector() && LeftoverBits != 0) 1089 return UnableToLegalize; 1090 1091 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1092 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1093 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1094 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1095 StoreMI.eraseFromParent(); 1096 return Legalized; 1097 } 1098 1099 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1100 } 1101 case TargetOpcode::G_SELECT: 1102 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1103 case TargetOpcode::G_AND: 1104 case TargetOpcode::G_OR: 1105 case TargetOpcode::G_XOR: { 1106 // Legalize bitwise operation: 1107 // A = BinOp<Ty> B, C 1108 // into: 1109 // B1, ..., BN = G_UNMERGE_VALUES B 1110 // C1, ..., CN = G_UNMERGE_VALUES C 1111 // A1 = BinOp<Ty/N> B1, C2 1112 // ... 1113 // AN = BinOp<Ty/N> BN, CN 1114 // A = G_MERGE_VALUES A1, ..., AN 1115 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1116 } 1117 case TargetOpcode::G_SHL: 1118 case TargetOpcode::G_LSHR: 1119 case TargetOpcode::G_ASHR: 1120 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1123 case TargetOpcode::G_CTTZ: 1124 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1125 case TargetOpcode::G_CTPOP: 1126 if (TypeIdx == 1) 1127 switch (MI.getOpcode()) { 1128 case TargetOpcode::G_CTLZ: 1129 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1130 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTTZ: 1132 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1133 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1134 case TargetOpcode::G_CTPOP: 1135 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1136 default: 1137 return UnableToLegalize; 1138 } 1139 1140 Observer.changingInstr(MI); 1141 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1142 Observer.changedInstr(MI); 1143 return Legalized; 1144 case TargetOpcode::G_INTTOPTR: 1145 if (TypeIdx != 1) 1146 return UnableToLegalize; 1147 1148 Observer.changingInstr(MI); 1149 narrowScalarSrc(MI, NarrowTy, 1); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 case TargetOpcode::G_PTRTOINT: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 1156 Observer.changingInstr(MI); 1157 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1158 Observer.changedInstr(MI); 1159 return Legalized; 1160 case TargetOpcode::G_PHI: { 1161 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1162 // NarrowSize. 1163 if (SizeOp0 % NarrowSize != 0) 1164 return UnableToLegalize; 1165 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 SmallVector<Register, 2> DstRegs(NumParts); 1168 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1169 Observer.changingInstr(MI); 1170 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1171 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1172 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1173 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1174 SrcRegs[i / 2]); 1175 } 1176 MachineBasicBlock &MBB = *MI.getParent(); 1177 MIRBuilder.setInsertPt(MBB, MI); 1178 for (unsigned i = 0; i < NumParts; ++i) { 1179 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1180 MachineInstrBuilder MIB = 1181 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1182 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1183 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1184 } 1185 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1192 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1193 if (TypeIdx != 2) 1194 return UnableToLegalize; 1195 1196 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1197 Observer.changingInstr(MI); 1198 narrowScalarSrc(MI, NarrowTy, OpIdx); 1199 Observer.changedInstr(MI); 1200 return Legalized; 1201 } 1202 case TargetOpcode::G_ICMP: { 1203 Register LHS = MI.getOperand(2).getReg(); 1204 LLT SrcTy = MRI.getType(LHS); 1205 uint64_t SrcSize = SrcTy.getSizeInBits(); 1206 CmpInst::Predicate Pred = 1207 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1208 1209 // TODO: Handle the non-equality case for weird sizes. 1210 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1211 return UnableToLegalize; 1212 1213 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1214 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1215 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1216 LHSLeftoverRegs)) 1217 return UnableToLegalize; 1218 1219 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1220 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1221 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1222 RHSPartRegs, RHSLeftoverRegs)) 1223 return UnableToLegalize; 1224 1225 // We now have the LHS and RHS of the compare split into narrow-type 1226 // registers, plus potentially some leftover type. 1227 Register Dst = MI.getOperand(0).getReg(); 1228 LLT ResTy = MRI.getType(Dst); 1229 if (ICmpInst::isEquality(Pred)) { 1230 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1231 // them together. For each equal part, the result should be all 0s. For 1232 // each non-equal part, we'll get at least one 1. 1233 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1234 SmallVector<Register, 4> Xors; 1235 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1236 auto LHS = std::get<0>(LHSAndRHS); 1237 auto RHS = std::get<1>(LHSAndRHS); 1238 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1239 Xors.push_back(Xor); 1240 } 1241 1242 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1243 // to the desired narrow type so that we can OR them together later. 1244 SmallVector<Register, 4> WidenedXors; 1245 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1246 auto LHS = std::get<0>(LHSAndRHS); 1247 auto RHS = std::get<1>(LHSAndRHS); 1248 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1249 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1250 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1251 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1252 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1253 } 1254 1255 // Now, for each part we broke up, we know if they are equal/not equal 1256 // based off the G_XOR. We can OR these all together and compare against 1257 // 0 to get the result. 1258 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1259 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1260 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1261 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1262 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1263 } else { 1264 // TODO: Handle non-power-of-two types. 1265 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1266 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1267 Register LHSL = LHSPartRegs[0]; 1268 Register LHSH = LHSPartRegs[1]; 1269 Register RHSL = RHSPartRegs[0]; 1270 Register RHSH = RHSPartRegs[1]; 1271 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1272 MachineInstrBuilder CmpHEQ = 1273 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1274 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1275 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1276 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1277 } 1278 MI.eraseFromParent(); 1279 return Legalized; 1280 } 1281 case TargetOpcode::G_SEXT_INREG: { 1282 if (TypeIdx != 0) 1283 return UnableToLegalize; 1284 1285 int64_t SizeInBits = MI.getOperand(2).getImm(); 1286 1287 // So long as the new type has more bits than the bits we're extending we 1288 // don't need to break it apart. 1289 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1290 Observer.changingInstr(MI); 1291 // We don't lose any non-extension bits by truncating the src and 1292 // sign-extending the dst. 1293 MachineOperand &MO1 = MI.getOperand(1); 1294 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1295 MO1.setReg(TruncMIB.getReg(0)); 1296 1297 MachineOperand &MO2 = MI.getOperand(0); 1298 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildSExt(MO2, DstExt); 1301 MO2.setReg(DstExt); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 // Break it apart. Components below the extension point are unmodified. The 1307 // component containing the extension point becomes a narrower SEXT_INREG. 1308 // Components above it are ashr'd from the component containing the 1309 // extension point. 1310 if (SizeOp0 % NarrowSize != 0) 1311 return UnableToLegalize; 1312 int NumParts = SizeOp0 / NarrowSize; 1313 1314 // List the registers where the destination will be scattered. 1315 SmallVector<Register, 2> DstRegs; 1316 // List the registers where the source will be split. 1317 SmallVector<Register, 2> SrcRegs; 1318 1319 // Create all the temporary registers. 1320 for (int i = 0; i < NumParts; ++i) { 1321 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1322 1323 SrcRegs.push_back(SrcReg); 1324 } 1325 1326 // Explode the big arguments into smaller chunks. 1327 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1328 1329 Register AshrCstReg = 1330 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1331 .getReg(0); 1332 Register FullExtensionReg = 0; 1333 Register PartialExtensionReg = 0; 1334 1335 // Do the operation on each small part. 1336 for (int i = 0; i < NumParts; ++i) { 1337 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1338 DstRegs.push_back(SrcRegs[i]); 1339 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1340 assert(PartialExtensionReg && 1341 "Expected to visit partial extension before full"); 1342 if (FullExtensionReg) { 1343 DstRegs.push_back(FullExtensionReg); 1344 continue; 1345 } 1346 DstRegs.push_back( 1347 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1348 .getReg(0)); 1349 FullExtensionReg = DstRegs.back(); 1350 } else { 1351 DstRegs.push_back( 1352 MIRBuilder 1353 .buildInstr( 1354 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1355 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1356 .getReg(0)); 1357 PartialExtensionReg = DstRegs.back(); 1358 } 1359 } 1360 1361 // Gather the destination registers into the final destination. 1362 Register DstReg = MI.getOperand(0).getReg(); 1363 MIRBuilder.buildMerge(DstReg, DstRegs); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 case TargetOpcode::G_BSWAP: 1368 case TargetOpcode::G_BITREVERSE: { 1369 if (SizeOp0 % NarrowSize != 0) 1370 return UnableToLegalize; 1371 1372 Observer.changingInstr(MI); 1373 SmallVector<Register, 2> SrcRegs, DstRegs; 1374 unsigned NumParts = SizeOp0 / NarrowSize; 1375 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1376 1377 for (unsigned i = 0; i < NumParts; ++i) { 1378 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1379 {SrcRegs[NumParts - 1 - i]}); 1380 DstRegs.push_back(DstPart.getReg(0)); 1381 } 1382 1383 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1384 1385 Observer.changedInstr(MI); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 case TargetOpcode::G_PTR_ADD: 1390 case TargetOpcode::G_PTRMASK: { 1391 if (TypeIdx != 1) 1392 return UnableToLegalize; 1393 Observer.changingInstr(MI); 1394 narrowScalarSrc(MI, NarrowTy, 2); 1395 Observer.changedInstr(MI); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FPTOUI: 1399 case TargetOpcode::G_FPTOSI: 1400 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1401 case TargetOpcode::G_FPEXT: 1402 if (TypeIdx != 0) 1403 return UnableToLegalize; 1404 Observer.changingInstr(MI); 1405 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1406 Observer.changedInstr(MI); 1407 return Legalized; 1408 } 1409 } 1410 1411 Register LegalizerHelper::coerceToScalar(Register Val) { 1412 LLT Ty = MRI.getType(Val); 1413 if (Ty.isScalar()) 1414 return Val; 1415 1416 const DataLayout &DL = MIRBuilder.getDataLayout(); 1417 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1418 if (Ty.isPointer()) { 1419 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1420 return Register(); 1421 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1422 } 1423 1424 Register NewVal = Val; 1425 1426 assert(Ty.isVector()); 1427 LLT EltTy = Ty.getElementType(); 1428 if (EltTy.isPointer()) 1429 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1430 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1431 } 1432 1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1434 unsigned OpIdx, unsigned ExtOpcode) { 1435 MachineOperand &MO = MI.getOperand(OpIdx); 1436 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1437 MO.setReg(ExtB.getReg(0)); 1438 } 1439 1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1441 unsigned OpIdx) { 1442 MachineOperand &MO = MI.getOperand(OpIdx); 1443 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1444 MO.setReg(ExtB.getReg(0)); 1445 } 1446 1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1448 unsigned OpIdx, unsigned TruncOpcode) { 1449 MachineOperand &MO = MI.getOperand(OpIdx); 1450 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1451 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1452 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1453 MO.setReg(DstExt); 1454 } 1455 1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1457 unsigned OpIdx, unsigned ExtOpcode) { 1458 MachineOperand &MO = MI.getOperand(OpIdx); 1459 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1460 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1461 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1462 MO.setReg(DstTrunc); 1463 } 1464 1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1466 unsigned OpIdx) { 1467 MachineOperand &MO = MI.getOperand(OpIdx); 1468 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1469 Register Dst = MO.getReg(); 1470 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1471 MO.setReg(DstExt); 1472 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1473 } 1474 1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1476 unsigned OpIdx) { 1477 MachineOperand &MO = MI.getOperand(OpIdx); 1478 SmallVector<Register, 8> Regs; 1479 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1480 } 1481 1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1483 MachineOperand &Op = MI.getOperand(OpIdx); 1484 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1485 } 1486 1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1488 MachineOperand &MO = MI.getOperand(OpIdx); 1489 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1490 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1491 MIRBuilder.buildBitcast(MO, CastDst); 1492 MO.setReg(CastDst); 1493 } 1494 1495 LegalizerHelper::LegalizeResult 1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1497 LLT WideTy) { 1498 if (TypeIdx != 1) 1499 return UnableToLegalize; 1500 1501 Register DstReg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(DstReg); 1503 if (DstTy.isVector()) 1504 return UnableToLegalize; 1505 1506 Register Src1 = MI.getOperand(1).getReg(); 1507 LLT SrcTy = MRI.getType(Src1); 1508 const int DstSize = DstTy.getSizeInBits(); 1509 const int SrcSize = SrcTy.getSizeInBits(); 1510 const int WideSize = WideTy.getSizeInBits(); 1511 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1512 1513 unsigned NumOps = MI.getNumOperands(); 1514 unsigned NumSrc = MI.getNumOperands() - 1; 1515 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1516 1517 if (WideSize >= DstSize) { 1518 // Directly pack the bits in the target type. 1519 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1520 1521 for (unsigned I = 2; I != NumOps; ++I) { 1522 const unsigned Offset = (I - 1) * PartSize; 1523 1524 Register SrcReg = MI.getOperand(I).getReg(); 1525 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1526 1527 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1528 1529 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1530 MRI.createGenericVirtualRegister(WideTy); 1531 1532 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1533 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1534 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1535 ResultReg = NextResult; 1536 } 1537 1538 if (WideSize > DstSize) 1539 MIRBuilder.buildTrunc(DstReg, ResultReg); 1540 else if (DstTy.isPointer()) 1541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 1547 // Unmerge the original values to the GCD type, and recombine to the next 1548 // multiple greater than the original type. 1549 // 1550 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1551 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1552 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1553 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1554 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1555 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1556 // %12:_(s12) = G_MERGE_VALUES %10, %11 1557 // 1558 // Padding with undef if necessary: 1559 // 1560 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1561 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1562 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1563 // %7:_(s2) = G_IMPLICIT_DEF 1564 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1565 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1566 // %10:_(s12) = G_MERGE_VALUES %8, %9 1567 1568 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1569 LLT GCDTy = LLT::scalar(GCD); 1570 1571 SmallVector<Register, 8> Parts; 1572 SmallVector<Register, 8> NewMergeRegs; 1573 SmallVector<Register, 8> Unmerges; 1574 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1575 1576 // Decompose the original operands if they don't evenly divide. 1577 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1578 Register SrcReg = MO.getReg(); 1579 if (GCD == SrcSize) { 1580 Unmerges.push_back(SrcReg); 1581 } else { 1582 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1583 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1584 Unmerges.push_back(Unmerge.getReg(J)); 1585 } 1586 } 1587 1588 // Pad with undef to the next size that is a multiple of the requested size. 1589 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1590 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1591 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1592 Unmerges.push_back(UndefReg); 1593 } 1594 1595 const int PartsPerGCD = WideSize / GCD; 1596 1597 // Build merges of each piece. 1598 ArrayRef<Register> Slicer(Unmerges); 1599 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1600 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1601 NewMergeRegs.push_back(Merge.getReg(0)); 1602 } 1603 1604 // A truncate may be necessary if the requested type doesn't evenly divide the 1605 // original result type. 1606 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1607 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1608 } else { 1609 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1610 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1611 } 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1618 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1619 LLT OrigTy = MRI.getType(OrigReg); 1620 LLT LCMTy = getLCMType(WideTy, OrigTy); 1621 1622 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1623 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1624 1625 Register UnmergeSrc = WideReg; 1626 1627 // Create a merge to the LCM type, padding with undef 1628 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1629 // => 1630 // %1:_(<4 x s32>) = G_FOO 1631 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1632 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1633 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1634 if (NumMergeParts > 1) { 1635 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1636 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1637 MergeParts[0] = WideReg; 1638 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1639 } 1640 1641 // Unmerge to the original register and pad with dead defs. 1642 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1643 UnmergeResults[0] = OrigReg; 1644 for (int I = 1; I != NumUnmergeParts; ++I) 1645 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1646 1647 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1648 return WideReg; 1649 } 1650 1651 LegalizerHelper::LegalizeResult 1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1653 LLT WideTy) { 1654 if (TypeIdx != 0) 1655 return UnableToLegalize; 1656 1657 int NumDst = MI.getNumOperands() - 1; 1658 Register SrcReg = MI.getOperand(NumDst).getReg(); 1659 LLT SrcTy = MRI.getType(SrcReg); 1660 if (SrcTy.isVector()) 1661 return UnableToLegalize; 1662 1663 Register Dst0Reg = MI.getOperand(0).getReg(); 1664 LLT DstTy = MRI.getType(Dst0Reg); 1665 if (!DstTy.isScalar()) 1666 return UnableToLegalize; 1667 1668 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1669 if (SrcTy.isPointer()) { 1670 const DataLayout &DL = MIRBuilder.getDataLayout(); 1671 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1672 LLVM_DEBUG( 1673 dbgs() << "Not casting non-integral address space integer\n"); 1674 return UnableToLegalize; 1675 } 1676 1677 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1678 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1679 } 1680 1681 // Widen SrcTy to WideTy. This does not affect the result, but since the 1682 // user requested this size, it is probably better handled than SrcTy and 1683 // should reduce the total number of legalization artifacts. 1684 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1685 SrcTy = WideTy; 1686 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1687 } 1688 1689 // Theres no unmerge type to target. Directly extract the bits from the 1690 // source type 1691 unsigned DstSize = DstTy.getSizeInBits(); 1692 1693 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1694 for (int I = 1; I != NumDst; ++I) { 1695 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1696 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1697 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1698 } 1699 1700 MI.eraseFromParent(); 1701 return Legalized; 1702 } 1703 1704 // Extend the source to a wider type. 1705 LLT LCMTy = getLCMType(SrcTy, WideTy); 1706 1707 Register WideSrc = SrcReg; 1708 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1709 // TODO: If this is an integral address space, cast to integer and anyext. 1710 if (SrcTy.isPointer()) { 1711 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1712 return UnableToLegalize; 1713 } 1714 1715 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1716 } 1717 1718 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1719 1720 // Create a sequence of unmerges and merges to the original results. Since we 1721 // may have widened the source, we will need to pad the results with dead defs 1722 // to cover the source register. 1723 // e.g. widen s48 to s64: 1724 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1725 // 1726 // => 1727 // %4:_(s192) = G_ANYEXT %0:_(s96) 1728 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1729 // ; unpack to GCD type, with extra dead defs 1730 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1731 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1732 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1733 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1734 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1735 const LLT GCDTy = getGCDType(WideTy, DstTy); 1736 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1737 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1738 1739 // Directly unmerge to the destination without going through a GCD type 1740 // if possible 1741 if (PartsPerRemerge == 1) { 1742 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1743 1744 for (int I = 0; I != NumUnmerge; ++I) { 1745 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1746 1747 for (int J = 0; J != PartsPerUnmerge; ++J) { 1748 int Idx = I * PartsPerUnmerge + J; 1749 if (Idx < NumDst) 1750 MIB.addDef(MI.getOperand(Idx).getReg()); 1751 else { 1752 // Create dead def for excess components. 1753 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1754 } 1755 } 1756 1757 MIB.addUse(Unmerge.getReg(I)); 1758 } 1759 } else { 1760 SmallVector<Register, 16> Parts; 1761 for (int J = 0; J != NumUnmerge; ++J) 1762 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1763 1764 SmallVector<Register, 8> RemergeParts; 1765 for (int I = 0; I != NumDst; ++I) { 1766 for (int J = 0; J < PartsPerRemerge; ++J) { 1767 const int Idx = I * PartsPerRemerge + J; 1768 RemergeParts.emplace_back(Parts[Idx]); 1769 } 1770 1771 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1772 RemergeParts.clear(); 1773 } 1774 } 1775 1776 MI.eraseFromParent(); 1777 return Legalized; 1778 } 1779 1780 LegalizerHelper::LegalizeResult 1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1782 LLT WideTy) { 1783 Register DstReg = MI.getOperand(0).getReg(); 1784 Register SrcReg = MI.getOperand(1).getReg(); 1785 LLT SrcTy = MRI.getType(SrcReg); 1786 1787 LLT DstTy = MRI.getType(DstReg); 1788 unsigned Offset = MI.getOperand(2).getImm(); 1789 1790 if (TypeIdx == 0) { 1791 if (SrcTy.isVector() || DstTy.isVector()) 1792 return UnableToLegalize; 1793 1794 SrcOp Src(SrcReg); 1795 if (SrcTy.isPointer()) { 1796 // Extracts from pointers can be handled only if they are really just 1797 // simple integers. 1798 const DataLayout &DL = MIRBuilder.getDataLayout(); 1799 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1800 return UnableToLegalize; 1801 1802 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1803 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1804 SrcTy = SrcAsIntTy; 1805 } 1806 1807 if (DstTy.isPointer()) 1808 return UnableToLegalize; 1809 1810 if (Offset == 0) { 1811 // Avoid a shift in the degenerate case. 1812 MIRBuilder.buildTrunc(DstReg, 1813 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1814 MI.eraseFromParent(); 1815 return Legalized; 1816 } 1817 1818 // Do a shift in the source type. 1819 LLT ShiftTy = SrcTy; 1820 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1821 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1822 ShiftTy = WideTy; 1823 } 1824 1825 auto LShr = MIRBuilder.buildLShr( 1826 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1827 MIRBuilder.buildTrunc(DstReg, LShr); 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 1832 if (SrcTy.isScalar()) { 1833 Observer.changingInstr(MI); 1834 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1835 Observer.changedInstr(MI); 1836 return Legalized; 1837 } 1838 1839 if (!SrcTy.isVector()) 1840 return UnableToLegalize; 1841 1842 if (DstTy != SrcTy.getElementType()) 1843 return UnableToLegalize; 1844 1845 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1846 return UnableToLegalize; 1847 1848 Observer.changingInstr(MI); 1849 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1850 1851 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1852 Offset); 1853 widenScalarDst(MI, WideTy.getScalarType(), 0); 1854 Observer.changedInstr(MI); 1855 return Legalized; 1856 } 1857 1858 LegalizerHelper::LegalizeResult 1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1860 LLT WideTy) { 1861 if (TypeIdx != 0 || WideTy.isVector()) 1862 return UnableToLegalize; 1863 Observer.changingInstr(MI); 1864 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1865 widenScalarDst(MI, WideTy); 1866 Observer.changedInstr(MI); 1867 return Legalized; 1868 } 1869 1870 LegalizerHelper::LegalizeResult 1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1872 LLT WideTy) { 1873 if (TypeIdx == 1) 1874 return UnableToLegalize; // TODO 1875 1876 unsigned Opcode; 1877 unsigned ExtOpcode; 1878 Optional<Register> CarryIn = None; 1879 switch (MI.getOpcode()) { 1880 default: 1881 llvm_unreachable("Unexpected opcode!"); 1882 case TargetOpcode::G_SADDO: 1883 Opcode = TargetOpcode::G_ADD; 1884 ExtOpcode = TargetOpcode::G_SEXT; 1885 break; 1886 case TargetOpcode::G_SSUBO: 1887 Opcode = TargetOpcode::G_SUB; 1888 ExtOpcode = TargetOpcode::G_SEXT; 1889 break; 1890 case TargetOpcode::G_UADDO: 1891 Opcode = TargetOpcode::G_ADD; 1892 ExtOpcode = TargetOpcode::G_ZEXT; 1893 break; 1894 case TargetOpcode::G_USUBO: 1895 Opcode = TargetOpcode::G_SUB; 1896 ExtOpcode = TargetOpcode::G_ZEXT; 1897 break; 1898 case TargetOpcode::G_SADDE: 1899 Opcode = TargetOpcode::G_UADDE; 1900 ExtOpcode = TargetOpcode::G_SEXT; 1901 CarryIn = MI.getOperand(4).getReg(); 1902 break; 1903 case TargetOpcode::G_SSUBE: 1904 Opcode = TargetOpcode::G_USUBE; 1905 ExtOpcode = TargetOpcode::G_SEXT; 1906 CarryIn = MI.getOperand(4).getReg(); 1907 break; 1908 case TargetOpcode::G_UADDE: 1909 Opcode = TargetOpcode::G_UADDE; 1910 ExtOpcode = TargetOpcode::G_ZEXT; 1911 CarryIn = MI.getOperand(4).getReg(); 1912 break; 1913 case TargetOpcode::G_USUBE: 1914 Opcode = TargetOpcode::G_USUBE; 1915 ExtOpcode = TargetOpcode::G_ZEXT; 1916 CarryIn = MI.getOperand(4).getReg(); 1917 break; 1918 } 1919 1920 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1921 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1922 // Do the arithmetic in the larger type. 1923 Register NewOp; 1924 if (CarryIn) { 1925 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1926 NewOp = MIRBuilder 1927 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1928 {LHSExt, RHSExt, *CarryIn}) 1929 .getReg(0); 1930 } else { 1931 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1932 } 1933 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1934 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1935 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1936 // There is no overflow if the ExtOp is the same as NewOp. 1937 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1938 // Now trunc the NewOp to the original result. 1939 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1940 MI.eraseFromParent(); 1941 return Legalized; 1942 } 1943 1944 LegalizerHelper::LegalizeResult 1945 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1946 LLT WideTy) { 1947 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1948 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1949 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1950 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1951 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1952 // We can convert this to: 1953 // 1. Any extend iN to iM 1954 // 2. SHL by M-N 1955 // 3. [US][ADD|SUB|SHL]SAT 1956 // 4. L/ASHR by M-N 1957 // 1958 // It may be more efficient to lower this to a min and a max operation in 1959 // the higher precision arithmetic if the promoted operation isn't legal, 1960 // but this decision is up to the target's lowering request. 1961 Register DstReg = MI.getOperand(0).getReg(); 1962 1963 unsigned NewBits = WideTy.getScalarSizeInBits(); 1964 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1965 1966 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1967 // must not left shift the RHS to preserve the shift amount. 1968 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1969 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1970 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1971 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1972 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1973 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1974 1975 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1976 {ShiftL, ShiftR}, MI.getFlags()); 1977 1978 // Use a shift that will preserve the number of sign bits when the trunc is 1979 // folded away. 1980 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1981 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1982 1983 MIRBuilder.buildTrunc(DstReg, Result); 1984 MI.eraseFromParent(); 1985 return Legalized; 1986 } 1987 1988 LegalizerHelper::LegalizeResult 1989 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1990 LLT WideTy) { 1991 if (TypeIdx == 1) 1992 return UnableToLegalize; 1993 1994 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1995 Register Result = MI.getOperand(0).getReg(); 1996 Register OriginalOverflow = MI.getOperand(1).getReg(); 1997 Register LHS = MI.getOperand(2).getReg(); 1998 Register RHS = MI.getOperand(3).getReg(); 1999 LLT SrcTy = MRI.getType(LHS); 2000 LLT OverflowTy = MRI.getType(OriginalOverflow); 2001 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2002 2003 // To determine if the result overflowed in the larger type, we extend the 2004 // input to the larger type, do the multiply (checking if it overflows), 2005 // then also check the high bits of the result to see if overflow happened 2006 // there. 2007 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2008 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2009 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2010 2011 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 2012 {LeftOperand, RightOperand}); 2013 auto Mul = Mulo->getOperand(0); 2014 MIRBuilder.buildTrunc(Result, Mul); 2015 2016 MachineInstrBuilder ExtResult; 2017 // Overflow occurred if it occurred in the larger type, or if the high part 2018 // of the result does not zero/sign-extend the low part. Check this second 2019 // possibility first. 2020 if (IsSigned) { 2021 // For signed, overflow occurred when the high part does not sign-extend 2022 // the low part. 2023 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2024 } else { 2025 // Unsigned overflow occurred when the high part does not zero-extend the 2026 // low part. 2027 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2028 } 2029 2030 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2031 // so we don't need to check the overflow result of larger type Mulo. 2032 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2033 auto Overflow = 2034 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2035 // Finally check if the multiplication in the larger type itself overflowed. 2036 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2037 } else { 2038 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2039 } 2040 MI.eraseFromParent(); 2041 return Legalized; 2042 } 2043 2044 LegalizerHelper::LegalizeResult 2045 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2046 switch (MI.getOpcode()) { 2047 default: 2048 return UnableToLegalize; 2049 case TargetOpcode::G_ATOMICRMW_XCHG: 2050 case TargetOpcode::G_ATOMICRMW_ADD: 2051 case TargetOpcode::G_ATOMICRMW_SUB: 2052 case TargetOpcode::G_ATOMICRMW_AND: 2053 case TargetOpcode::G_ATOMICRMW_OR: 2054 case TargetOpcode::G_ATOMICRMW_XOR: 2055 case TargetOpcode::G_ATOMICRMW_MIN: 2056 case TargetOpcode::G_ATOMICRMW_MAX: 2057 case TargetOpcode::G_ATOMICRMW_UMIN: 2058 case TargetOpcode::G_ATOMICRMW_UMAX: 2059 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2060 Observer.changingInstr(MI); 2061 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2062 widenScalarDst(MI, WideTy, 0); 2063 Observer.changedInstr(MI); 2064 return Legalized; 2065 case TargetOpcode::G_ATOMIC_CMPXCHG: 2066 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2067 Observer.changingInstr(MI); 2068 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2069 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2070 widenScalarDst(MI, WideTy, 0); 2071 Observer.changedInstr(MI); 2072 return Legalized; 2073 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2074 if (TypeIdx == 0) { 2075 Observer.changingInstr(MI); 2076 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2077 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2078 widenScalarDst(MI, WideTy, 0); 2079 Observer.changedInstr(MI); 2080 return Legalized; 2081 } 2082 assert(TypeIdx == 1 && 2083 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2084 Observer.changingInstr(MI); 2085 widenScalarDst(MI, WideTy, 1); 2086 Observer.changedInstr(MI); 2087 return Legalized; 2088 case TargetOpcode::G_EXTRACT: 2089 return widenScalarExtract(MI, TypeIdx, WideTy); 2090 case TargetOpcode::G_INSERT: 2091 return widenScalarInsert(MI, TypeIdx, WideTy); 2092 case TargetOpcode::G_MERGE_VALUES: 2093 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2094 case TargetOpcode::G_UNMERGE_VALUES: 2095 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2096 case TargetOpcode::G_SADDO: 2097 case TargetOpcode::G_SSUBO: 2098 case TargetOpcode::G_UADDO: 2099 case TargetOpcode::G_USUBO: 2100 case TargetOpcode::G_SADDE: 2101 case TargetOpcode::G_SSUBE: 2102 case TargetOpcode::G_UADDE: 2103 case TargetOpcode::G_USUBE: 2104 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2105 case TargetOpcode::G_UMULO: 2106 case TargetOpcode::G_SMULO: 2107 return widenScalarMulo(MI, TypeIdx, WideTy); 2108 case TargetOpcode::G_SADDSAT: 2109 case TargetOpcode::G_SSUBSAT: 2110 case TargetOpcode::G_SSHLSAT: 2111 case TargetOpcode::G_UADDSAT: 2112 case TargetOpcode::G_USUBSAT: 2113 case TargetOpcode::G_USHLSAT: 2114 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2115 case TargetOpcode::G_CTTZ: 2116 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2117 case TargetOpcode::G_CTLZ: 2118 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2119 case TargetOpcode::G_CTPOP: { 2120 if (TypeIdx == 0) { 2121 Observer.changingInstr(MI); 2122 widenScalarDst(MI, WideTy, 0); 2123 Observer.changedInstr(MI); 2124 return Legalized; 2125 } 2126 2127 Register SrcReg = MI.getOperand(1).getReg(); 2128 2129 // First extend the input. 2130 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2131 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2132 ? TargetOpcode::G_ANYEXT 2133 : TargetOpcode::G_ZEXT; 2134 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2135 LLT CurTy = MRI.getType(SrcReg); 2136 unsigned NewOpc = MI.getOpcode(); 2137 if (NewOpc == TargetOpcode::G_CTTZ) { 2138 // The count is the same in the larger type except if the original 2139 // value was zero. This can be handled by setting the bit just off 2140 // the top of the original type. 2141 auto TopBit = 2142 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2143 MIBSrc = MIRBuilder.buildOr( 2144 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2145 // Now we know the operand is non-zero, use the more relaxed opcode. 2146 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2147 } 2148 2149 // Perform the operation at the larger size. 2150 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2151 // This is already the correct result for CTPOP and CTTZs 2152 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2153 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2154 // The correct result is NewOp - (Difference in widety and current ty). 2155 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2156 MIBNewOp = MIRBuilder.buildSub( 2157 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2158 } 2159 2160 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2161 MI.eraseFromParent(); 2162 return Legalized; 2163 } 2164 case TargetOpcode::G_BSWAP: { 2165 Observer.changingInstr(MI); 2166 Register DstReg = MI.getOperand(0).getReg(); 2167 2168 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2169 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2170 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2171 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2172 2173 MI.getOperand(0).setReg(DstExt); 2174 2175 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2176 2177 LLT Ty = MRI.getType(DstReg); 2178 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2179 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2180 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2181 2182 MIRBuilder.buildTrunc(DstReg, ShrReg); 2183 Observer.changedInstr(MI); 2184 return Legalized; 2185 } 2186 case TargetOpcode::G_BITREVERSE: { 2187 Observer.changingInstr(MI); 2188 2189 Register DstReg = MI.getOperand(0).getReg(); 2190 LLT Ty = MRI.getType(DstReg); 2191 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2192 2193 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2194 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2195 MI.getOperand(0).setReg(DstExt); 2196 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2197 2198 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2199 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2200 MIRBuilder.buildTrunc(DstReg, Shift); 2201 Observer.changedInstr(MI); 2202 return Legalized; 2203 } 2204 case TargetOpcode::G_FREEZE: 2205 Observer.changingInstr(MI); 2206 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2207 widenScalarDst(MI, WideTy); 2208 Observer.changedInstr(MI); 2209 return Legalized; 2210 2211 case TargetOpcode::G_ABS: 2212 Observer.changingInstr(MI); 2213 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2214 widenScalarDst(MI, WideTy); 2215 Observer.changedInstr(MI); 2216 return Legalized; 2217 2218 case TargetOpcode::G_ADD: 2219 case TargetOpcode::G_AND: 2220 case TargetOpcode::G_MUL: 2221 case TargetOpcode::G_OR: 2222 case TargetOpcode::G_XOR: 2223 case TargetOpcode::G_SUB: 2224 // Perform operation at larger width (any extension is fines here, high bits 2225 // don't affect the result) and then truncate the result back to the 2226 // original type. 2227 Observer.changingInstr(MI); 2228 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2229 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2230 widenScalarDst(MI, WideTy); 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 2234 case TargetOpcode::G_SBFX: 2235 case TargetOpcode::G_UBFX: 2236 Observer.changingInstr(MI); 2237 2238 if (TypeIdx == 0) { 2239 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2240 widenScalarDst(MI, WideTy); 2241 } else { 2242 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2243 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2244 } 2245 2246 Observer.changedInstr(MI); 2247 return Legalized; 2248 2249 case TargetOpcode::G_SHL: 2250 Observer.changingInstr(MI); 2251 2252 if (TypeIdx == 0) { 2253 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2254 widenScalarDst(MI, WideTy); 2255 } else { 2256 assert(TypeIdx == 1); 2257 // The "number of bits to shift" operand must preserve its value as an 2258 // unsigned integer: 2259 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2260 } 2261 2262 Observer.changedInstr(MI); 2263 return Legalized; 2264 2265 case TargetOpcode::G_SDIV: 2266 case TargetOpcode::G_SREM: 2267 case TargetOpcode::G_SMIN: 2268 case TargetOpcode::G_SMAX: 2269 Observer.changingInstr(MI); 2270 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2271 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2272 widenScalarDst(MI, WideTy); 2273 Observer.changedInstr(MI); 2274 return Legalized; 2275 2276 case TargetOpcode::G_SDIVREM: 2277 Observer.changingInstr(MI); 2278 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2279 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2280 widenScalarDst(MI, WideTy); 2281 widenScalarDst(MI, WideTy, 1); 2282 Observer.changedInstr(MI); 2283 return Legalized; 2284 2285 case TargetOpcode::G_ASHR: 2286 case TargetOpcode::G_LSHR: 2287 Observer.changingInstr(MI); 2288 2289 if (TypeIdx == 0) { 2290 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2291 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2292 2293 widenScalarSrc(MI, WideTy, 1, CvtOp); 2294 widenScalarDst(MI, WideTy); 2295 } else { 2296 assert(TypeIdx == 1); 2297 // The "number of bits to shift" operand must preserve its value as an 2298 // unsigned integer: 2299 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2300 } 2301 2302 Observer.changedInstr(MI); 2303 return Legalized; 2304 case TargetOpcode::G_UDIV: 2305 case TargetOpcode::G_UREM: 2306 case TargetOpcode::G_UMIN: 2307 case TargetOpcode::G_UMAX: 2308 Observer.changingInstr(MI); 2309 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2310 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2311 widenScalarDst(MI, WideTy); 2312 Observer.changedInstr(MI); 2313 return Legalized; 2314 2315 case TargetOpcode::G_UDIVREM: 2316 Observer.changingInstr(MI); 2317 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2318 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2319 widenScalarDst(MI, WideTy); 2320 widenScalarDst(MI, WideTy, 1); 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 2324 case TargetOpcode::G_SELECT: 2325 Observer.changingInstr(MI); 2326 if (TypeIdx == 0) { 2327 // Perform operation at larger width (any extension is fine here, high 2328 // bits don't affect the result) and then truncate the result back to the 2329 // original type. 2330 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2331 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2332 widenScalarDst(MI, WideTy); 2333 } else { 2334 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2335 // Explicit extension is required here since high bits affect the result. 2336 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2337 } 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 2341 case TargetOpcode::G_FPTOSI: 2342 case TargetOpcode::G_FPTOUI: 2343 Observer.changingInstr(MI); 2344 2345 if (TypeIdx == 0) 2346 widenScalarDst(MI, WideTy); 2347 else 2348 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2349 2350 Observer.changedInstr(MI); 2351 return Legalized; 2352 case TargetOpcode::G_SITOFP: 2353 Observer.changingInstr(MI); 2354 2355 if (TypeIdx == 0) 2356 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2357 else 2358 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2359 2360 Observer.changedInstr(MI); 2361 return Legalized; 2362 case TargetOpcode::G_UITOFP: 2363 Observer.changingInstr(MI); 2364 2365 if (TypeIdx == 0) 2366 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2367 else 2368 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2369 2370 Observer.changedInstr(MI); 2371 return Legalized; 2372 case TargetOpcode::G_LOAD: 2373 case TargetOpcode::G_SEXTLOAD: 2374 case TargetOpcode::G_ZEXTLOAD: 2375 Observer.changingInstr(MI); 2376 widenScalarDst(MI, WideTy); 2377 Observer.changedInstr(MI); 2378 return Legalized; 2379 2380 case TargetOpcode::G_STORE: { 2381 if (TypeIdx != 0) 2382 return UnableToLegalize; 2383 2384 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2385 if (!Ty.isScalar()) 2386 return UnableToLegalize; 2387 2388 Observer.changingInstr(MI); 2389 2390 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2391 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2392 widenScalarSrc(MI, WideTy, 0, ExtType); 2393 2394 Observer.changedInstr(MI); 2395 return Legalized; 2396 } 2397 case TargetOpcode::G_CONSTANT: { 2398 MachineOperand &SrcMO = MI.getOperand(1); 2399 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2400 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2401 MRI.getType(MI.getOperand(0).getReg())); 2402 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2403 ExtOpc == TargetOpcode::G_ANYEXT) && 2404 "Illegal Extend"); 2405 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2406 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2407 ? SrcVal.sext(WideTy.getSizeInBits()) 2408 : SrcVal.zext(WideTy.getSizeInBits()); 2409 Observer.changingInstr(MI); 2410 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2411 2412 widenScalarDst(MI, WideTy); 2413 Observer.changedInstr(MI); 2414 return Legalized; 2415 } 2416 case TargetOpcode::G_FCONSTANT: { 2417 MachineOperand &SrcMO = MI.getOperand(1); 2418 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2419 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2420 bool LosesInfo; 2421 switch (WideTy.getSizeInBits()) { 2422 case 32: 2423 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2424 &LosesInfo); 2425 break; 2426 case 64: 2427 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2428 &LosesInfo); 2429 break; 2430 default: 2431 return UnableToLegalize; 2432 } 2433 2434 assert(!LosesInfo && "extend should always be lossless"); 2435 2436 Observer.changingInstr(MI); 2437 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2438 2439 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2440 Observer.changedInstr(MI); 2441 return Legalized; 2442 } 2443 case TargetOpcode::G_IMPLICIT_DEF: { 2444 Observer.changingInstr(MI); 2445 widenScalarDst(MI, WideTy); 2446 Observer.changedInstr(MI); 2447 return Legalized; 2448 } 2449 case TargetOpcode::G_BRCOND: 2450 Observer.changingInstr(MI); 2451 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2452 Observer.changedInstr(MI); 2453 return Legalized; 2454 2455 case TargetOpcode::G_FCMP: 2456 Observer.changingInstr(MI); 2457 if (TypeIdx == 0) 2458 widenScalarDst(MI, WideTy); 2459 else { 2460 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2461 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2462 } 2463 Observer.changedInstr(MI); 2464 return Legalized; 2465 2466 case TargetOpcode::G_ICMP: 2467 Observer.changingInstr(MI); 2468 if (TypeIdx == 0) 2469 widenScalarDst(MI, WideTy); 2470 else { 2471 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2472 MI.getOperand(1).getPredicate())) 2473 ? TargetOpcode::G_SEXT 2474 : TargetOpcode::G_ZEXT; 2475 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2476 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2477 } 2478 Observer.changedInstr(MI); 2479 return Legalized; 2480 2481 case TargetOpcode::G_PTR_ADD: 2482 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2483 Observer.changingInstr(MI); 2484 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2485 Observer.changedInstr(MI); 2486 return Legalized; 2487 2488 case TargetOpcode::G_PHI: { 2489 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2490 2491 Observer.changingInstr(MI); 2492 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2493 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2494 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2495 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2496 } 2497 2498 MachineBasicBlock &MBB = *MI.getParent(); 2499 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2500 widenScalarDst(MI, WideTy); 2501 Observer.changedInstr(MI); 2502 return Legalized; 2503 } 2504 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2505 if (TypeIdx == 0) { 2506 Register VecReg = MI.getOperand(1).getReg(); 2507 LLT VecTy = MRI.getType(VecReg); 2508 Observer.changingInstr(MI); 2509 2510 widenScalarSrc( 2511 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2512 TargetOpcode::G_ANYEXT); 2513 2514 widenScalarDst(MI, WideTy, 0); 2515 Observer.changedInstr(MI); 2516 return Legalized; 2517 } 2518 2519 if (TypeIdx != 2) 2520 return UnableToLegalize; 2521 Observer.changingInstr(MI); 2522 // TODO: Probably should be zext 2523 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2524 Observer.changedInstr(MI); 2525 return Legalized; 2526 } 2527 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2528 if (TypeIdx == 1) { 2529 Observer.changingInstr(MI); 2530 2531 Register VecReg = MI.getOperand(1).getReg(); 2532 LLT VecTy = MRI.getType(VecReg); 2533 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2534 2535 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2536 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2537 widenScalarDst(MI, WideVecTy, 0); 2538 Observer.changedInstr(MI); 2539 return Legalized; 2540 } 2541 2542 if (TypeIdx == 2) { 2543 Observer.changingInstr(MI); 2544 // TODO: Probably should be zext 2545 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2546 Observer.changedInstr(MI); 2547 return Legalized; 2548 } 2549 2550 return UnableToLegalize; 2551 } 2552 case TargetOpcode::G_FADD: 2553 case TargetOpcode::G_FMUL: 2554 case TargetOpcode::G_FSUB: 2555 case TargetOpcode::G_FMA: 2556 case TargetOpcode::G_FMAD: 2557 case TargetOpcode::G_FNEG: 2558 case TargetOpcode::G_FABS: 2559 case TargetOpcode::G_FCANONICALIZE: 2560 case TargetOpcode::G_FMINNUM: 2561 case TargetOpcode::G_FMAXNUM: 2562 case TargetOpcode::G_FMINNUM_IEEE: 2563 case TargetOpcode::G_FMAXNUM_IEEE: 2564 case TargetOpcode::G_FMINIMUM: 2565 case TargetOpcode::G_FMAXIMUM: 2566 case TargetOpcode::G_FDIV: 2567 case TargetOpcode::G_FREM: 2568 case TargetOpcode::G_FCEIL: 2569 case TargetOpcode::G_FFLOOR: 2570 case TargetOpcode::G_FCOS: 2571 case TargetOpcode::G_FSIN: 2572 case TargetOpcode::G_FLOG10: 2573 case TargetOpcode::G_FLOG: 2574 case TargetOpcode::G_FLOG2: 2575 case TargetOpcode::G_FRINT: 2576 case TargetOpcode::G_FNEARBYINT: 2577 case TargetOpcode::G_FSQRT: 2578 case TargetOpcode::G_FEXP: 2579 case TargetOpcode::G_FEXP2: 2580 case TargetOpcode::G_FPOW: 2581 case TargetOpcode::G_INTRINSIC_TRUNC: 2582 case TargetOpcode::G_INTRINSIC_ROUND: 2583 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2584 assert(TypeIdx == 0); 2585 Observer.changingInstr(MI); 2586 2587 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2588 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2589 2590 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2591 Observer.changedInstr(MI); 2592 return Legalized; 2593 case TargetOpcode::G_FPOWI: { 2594 if (TypeIdx != 0) 2595 return UnableToLegalize; 2596 Observer.changingInstr(MI); 2597 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2598 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2599 Observer.changedInstr(MI); 2600 return Legalized; 2601 } 2602 case TargetOpcode::G_INTTOPTR: 2603 if (TypeIdx != 1) 2604 return UnableToLegalize; 2605 2606 Observer.changingInstr(MI); 2607 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2608 Observer.changedInstr(MI); 2609 return Legalized; 2610 case TargetOpcode::G_PTRTOINT: 2611 if (TypeIdx != 0) 2612 return UnableToLegalize; 2613 2614 Observer.changingInstr(MI); 2615 widenScalarDst(MI, WideTy, 0); 2616 Observer.changedInstr(MI); 2617 return Legalized; 2618 case TargetOpcode::G_BUILD_VECTOR: { 2619 Observer.changingInstr(MI); 2620 2621 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2622 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2623 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2624 2625 // Avoid changing the result vector type if the source element type was 2626 // requested. 2627 if (TypeIdx == 1) { 2628 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2629 } else { 2630 widenScalarDst(MI, WideTy, 0); 2631 } 2632 2633 Observer.changedInstr(MI); 2634 return Legalized; 2635 } 2636 case TargetOpcode::G_SEXT_INREG: 2637 if (TypeIdx != 0) 2638 return UnableToLegalize; 2639 2640 Observer.changingInstr(MI); 2641 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2642 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2643 Observer.changedInstr(MI); 2644 return Legalized; 2645 case TargetOpcode::G_PTRMASK: { 2646 if (TypeIdx != 1) 2647 return UnableToLegalize; 2648 Observer.changingInstr(MI); 2649 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2650 Observer.changedInstr(MI); 2651 return Legalized; 2652 } 2653 } 2654 } 2655 2656 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2657 MachineIRBuilder &B, Register Src, LLT Ty) { 2658 auto Unmerge = B.buildUnmerge(Ty, Src); 2659 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2660 Pieces.push_back(Unmerge.getReg(I)); 2661 } 2662 2663 LegalizerHelper::LegalizeResult 2664 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2665 Register Dst = MI.getOperand(0).getReg(); 2666 Register Src = MI.getOperand(1).getReg(); 2667 LLT DstTy = MRI.getType(Dst); 2668 LLT SrcTy = MRI.getType(Src); 2669 2670 if (SrcTy.isVector()) { 2671 LLT SrcEltTy = SrcTy.getElementType(); 2672 SmallVector<Register, 8> SrcRegs; 2673 2674 if (DstTy.isVector()) { 2675 int NumDstElt = DstTy.getNumElements(); 2676 int NumSrcElt = SrcTy.getNumElements(); 2677 2678 LLT DstEltTy = DstTy.getElementType(); 2679 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2680 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2681 2682 // If there's an element size mismatch, insert intermediate casts to match 2683 // the result element type. 2684 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2685 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2686 // 2687 // => 2688 // 2689 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2690 // %3:_(<2 x s8>) = G_BITCAST %2 2691 // %4:_(<2 x s8>) = G_BITCAST %3 2692 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2693 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2694 SrcPartTy = SrcEltTy; 2695 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2696 // 2697 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2698 // 2699 // => 2700 // 2701 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2702 // %3:_(s16) = G_BITCAST %2 2703 // %4:_(s16) = G_BITCAST %3 2704 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2705 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2706 DstCastTy = DstEltTy; 2707 } 2708 2709 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2710 for (Register &SrcReg : SrcRegs) 2711 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2712 } else 2713 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2714 2715 MIRBuilder.buildMerge(Dst, SrcRegs); 2716 MI.eraseFromParent(); 2717 return Legalized; 2718 } 2719 2720 if (DstTy.isVector()) { 2721 SmallVector<Register, 8> SrcRegs; 2722 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2723 MIRBuilder.buildMerge(Dst, SrcRegs); 2724 MI.eraseFromParent(); 2725 return Legalized; 2726 } 2727 2728 return UnableToLegalize; 2729 } 2730 2731 /// Figure out the bit offset into a register when coercing a vector index for 2732 /// the wide element type. This is only for the case when promoting vector to 2733 /// one with larger elements. 2734 // 2735 /// 2736 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2737 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2738 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2739 Register Idx, 2740 unsigned NewEltSize, 2741 unsigned OldEltSize) { 2742 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2743 LLT IdxTy = B.getMRI()->getType(Idx); 2744 2745 // Now figure out the amount we need to shift to get the target bits. 2746 auto OffsetMask = B.buildConstant( 2747 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2748 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2749 return B.buildShl(IdxTy, OffsetIdx, 2750 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2751 } 2752 2753 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2754 /// is casting to a vector with a smaller element size, perform multiple element 2755 /// extracts and merge the results. If this is coercing to a vector with larger 2756 /// elements, index the bitcasted vector and extract the target element with bit 2757 /// operations. This is intended to force the indexing in the native register 2758 /// size for architectures that can dynamically index the register file. 2759 LegalizerHelper::LegalizeResult 2760 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2761 LLT CastTy) { 2762 if (TypeIdx != 1) 2763 return UnableToLegalize; 2764 2765 Register Dst = MI.getOperand(0).getReg(); 2766 Register SrcVec = MI.getOperand(1).getReg(); 2767 Register Idx = MI.getOperand(2).getReg(); 2768 LLT SrcVecTy = MRI.getType(SrcVec); 2769 LLT IdxTy = MRI.getType(Idx); 2770 2771 LLT SrcEltTy = SrcVecTy.getElementType(); 2772 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2773 unsigned OldNumElts = SrcVecTy.getNumElements(); 2774 2775 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2776 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2777 2778 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2779 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2780 if (NewNumElts > OldNumElts) { 2781 // Decreasing the vector element size 2782 // 2783 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2784 // => 2785 // v4i32:castx = bitcast x:v2i64 2786 // 2787 // i64 = bitcast 2788 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2789 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2790 // 2791 if (NewNumElts % OldNumElts != 0) 2792 return UnableToLegalize; 2793 2794 // Type of the intermediate result vector. 2795 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2796 LLT MidTy = 2797 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2798 2799 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2800 2801 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2802 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2803 2804 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2805 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2806 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2807 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2808 NewOps[I] = Elt.getReg(0); 2809 } 2810 2811 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2812 MIRBuilder.buildBitcast(Dst, NewVec); 2813 MI.eraseFromParent(); 2814 return Legalized; 2815 } 2816 2817 if (NewNumElts < OldNumElts) { 2818 if (NewEltSize % OldEltSize != 0) 2819 return UnableToLegalize; 2820 2821 // This only depends on powers of 2 because we use bit tricks to figure out 2822 // the bit offset we need to shift to get the target element. A general 2823 // expansion could emit division/multiply. 2824 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2825 return UnableToLegalize; 2826 2827 // Increasing the vector element size. 2828 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2829 // 2830 // => 2831 // 2832 // %cast = G_BITCAST %vec 2833 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2834 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2835 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2836 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2837 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2838 // %elt = G_TRUNC %elt_bits 2839 2840 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2841 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2842 2843 // Divide to get the index in the wider element type. 2844 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2845 2846 Register WideElt = CastVec; 2847 if (CastTy.isVector()) { 2848 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2849 ScaledIdx).getReg(0); 2850 } 2851 2852 // Compute the bit offset into the register of the target element. 2853 Register OffsetBits = getBitcastWiderVectorElementOffset( 2854 MIRBuilder, Idx, NewEltSize, OldEltSize); 2855 2856 // Shift the wide element to get the target element. 2857 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2858 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2859 MI.eraseFromParent(); 2860 return Legalized; 2861 } 2862 2863 return UnableToLegalize; 2864 } 2865 2866 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2867 /// TargetReg, while preserving other bits in \p TargetReg. 2868 /// 2869 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2870 static Register buildBitFieldInsert(MachineIRBuilder &B, 2871 Register TargetReg, Register InsertReg, 2872 Register OffsetBits) { 2873 LLT TargetTy = B.getMRI()->getType(TargetReg); 2874 LLT InsertTy = B.getMRI()->getType(InsertReg); 2875 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2876 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2877 2878 // Produce a bitmask of the value to insert 2879 auto EltMask = B.buildConstant( 2880 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2881 InsertTy.getSizeInBits())); 2882 // Shift it into position 2883 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2884 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2885 2886 // Clear out the bits in the wide element 2887 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2888 2889 // The value to insert has all zeros already, so stick it into the masked 2890 // wide element. 2891 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2892 } 2893 2894 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2895 /// is increasing the element size, perform the indexing in the target element 2896 /// type, and use bit operations to insert at the element position. This is 2897 /// intended for architectures that can dynamically index the register file and 2898 /// want to force indexing in the native register size. 2899 LegalizerHelper::LegalizeResult 2900 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2901 LLT CastTy) { 2902 if (TypeIdx != 0) 2903 return UnableToLegalize; 2904 2905 Register Dst = MI.getOperand(0).getReg(); 2906 Register SrcVec = MI.getOperand(1).getReg(); 2907 Register Val = MI.getOperand(2).getReg(); 2908 Register Idx = MI.getOperand(3).getReg(); 2909 2910 LLT VecTy = MRI.getType(Dst); 2911 LLT IdxTy = MRI.getType(Idx); 2912 2913 LLT VecEltTy = VecTy.getElementType(); 2914 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2915 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2916 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2917 2918 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2919 unsigned OldNumElts = VecTy.getNumElements(); 2920 2921 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2922 if (NewNumElts < OldNumElts) { 2923 if (NewEltSize % OldEltSize != 0) 2924 return UnableToLegalize; 2925 2926 // This only depends on powers of 2 because we use bit tricks to figure out 2927 // the bit offset we need to shift to get the target element. A general 2928 // expansion could emit division/multiply. 2929 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2930 return UnableToLegalize; 2931 2932 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2933 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2934 2935 // Divide to get the index in the wider element type. 2936 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2937 2938 Register ExtractedElt = CastVec; 2939 if (CastTy.isVector()) { 2940 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2941 ScaledIdx).getReg(0); 2942 } 2943 2944 // Compute the bit offset into the register of the target element. 2945 Register OffsetBits = getBitcastWiderVectorElementOffset( 2946 MIRBuilder, Idx, NewEltSize, OldEltSize); 2947 2948 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2949 Val, OffsetBits); 2950 if (CastTy.isVector()) { 2951 InsertedElt = MIRBuilder.buildInsertVectorElement( 2952 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2953 } 2954 2955 MIRBuilder.buildBitcast(Dst, InsertedElt); 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 2960 return UnableToLegalize; 2961 } 2962 2963 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2964 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2965 Register DstReg = LoadMI.getDstReg(); 2966 Register PtrReg = LoadMI.getPointerReg(); 2967 LLT DstTy = MRI.getType(DstReg); 2968 MachineMemOperand &MMO = LoadMI.getMMO(); 2969 LLT MemTy = MMO.getMemoryType(); 2970 MachineFunction &MF = MIRBuilder.getMF(); 2971 2972 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2973 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2974 2975 if (MemSizeInBits != MemStoreSizeInBits) { 2976 if (MemTy.isVector()) 2977 return UnableToLegalize; 2978 2979 // Promote to a byte-sized load if not loading an integral number of 2980 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2981 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2982 MachineMemOperand *NewMMO = 2983 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2984 2985 Register LoadReg = DstReg; 2986 LLT LoadTy = DstTy; 2987 2988 // If this wasn't already an extending load, we need to widen the result 2989 // register to avoid creating a load with a narrower result than the source. 2990 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2991 LoadTy = WideMemTy; 2992 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2993 } 2994 2995 if (isa<GSExtLoad>(LoadMI)) { 2996 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2997 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2998 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2999 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3000 // The extra bits are guaranteed to be zero, since we stored them that 3001 // way. A zext load from Wide thus automatically gives zext from MemVT. 3002 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3003 } else { 3004 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3005 } 3006 3007 if (DstTy != LoadTy) 3008 MIRBuilder.buildTrunc(DstReg, LoadReg); 3009 3010 LoadMI.eraseFromParent(); 3011 return Legalized; 3012 } 3013 3014 // Big endian lowering not implemented. 3015 if (MIRBuilder.getDataLayout().isBigEndian()) 3016 return UnableToLegalize; 3017 3018 // This load needs splitting into power of 2 sized loads. 3019 // 3020 // Our strategy here is to generate anyextending loads for the smaller 3021 // types up to next power-2 result type, and then combine the two larger 3022 // result values together, before truncating back down to the non-pow-2 3023 // type. 3024 // E.g. v1 = i24 load => 3025 // v2 = i32 zextload (2 byte) 3026 // v3 = i32 load (1 byte) 3027 // v4 = i32 shl v3, 16 3028 // v5 = i32 or v4, v2 3029 // v1 = i24 trunc v5 3030 // By doing this we generate the correct truncate which should get 3031 // combined away as an artifact with a matching extend. 3032 3033 uint64_t LargeSplitSize, SmallSplitSize; 3034 3035 if (!isPowerOf2_32(MemSizeInBits)) { 3036 // This load needs splitting into power of 2 sized loads. 3037 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3038 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3039 } else { 3040 // This is already a power of 2, but we still need to split this in half. 3041 // 3042 // Assume we're being asked to decompose an unaligned load. 3043 // TODO: If this requires multiple splits, handle them all at once. 3044 auto &Ctx = MF.getFunction().getContext(); 3045 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3046 return UnableToLegalize; 3047 3048 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3049 } 3050 3051 if (MemTy.isVector()) { 3052 // TODO: Handle vector extloads 3053 if (MemTy != DstTy) 3054 return UnableToLegalize; 3055 3056 // TODO: We can do better than scalarizing the vector and at least split it 3057 // in half. 3058 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3059 } 3060 3061 MachineMemOperand *LargeMMO = 3062 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3063 MachineMemOperand *SmallMMO = 3064 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3065 3066 LLT PtrTy = MRI.getType(PtrReg); 3067 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3068 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3069 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3070 PtrReg, *LargeMMO); 3071 3072 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3073 LargeSplitSize / 8); 3074 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3075 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3076 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3077 SmallPtr, *SmallMMO); 3078 3079 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3080 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3081 3082 if (AnyExtTy == DstTy) 3083 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3084 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3085 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3086 MIRBuilder.buildTrunc(DstReg, {Or}); 3087 } else { 3088 assert(DstTy.isPointer() && "expected pointer"); 3089 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3090 3091 // FIXME: We currently consider this to be illegal for non-integral address 3092 // spaces, but we need still need a way to reinterpret the bits. 3093 MIRBuilder.buildIntToPtr(DstReg, Or); 3094 } 3095 3096 LoadMI.eraseFromParent(); 3097 return Legalized; 3098 } 3099 3100 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3101 // Lower a non-power of 2 store into multiple pow-2 stores. 3102 // E.g. split an i24 store into an i16 store + i8 store. 3103 // We do this by first extending the stored value to the next largest power 3104 // of 2 type, and then using truncating stores to store the components. 3105 // By doing this, likewise with G_LOAD, generate an extend that can be 3106 // artifact-combined away instead of leaving behind extracts. 3107 Register SrcReg = StoreMI.getValueReg(); 3108 Register PtrReg = StoreMI.getPointerReg(); 3109 LLT SrcTy = MRI.getType(SrcReg); 3110 MachineFunction &MF = MIRBuilder.getMF(); 3111 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3112 LLT MemTy = MMO.getMemoryType(); 3113 3114 unsigned StoreWidth = MemTy.getSizeInBits(); 3115 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3116 3117 if (StoreWidth != StoreSizeInBits) { 3118 if (SrcTy.isVector()) 3119 return UnableToLegalize; 3120 3121 // Promote to a byte-sized store with upper bits zero if not 3122 // storing an integral number of bytes. For example, promote 3123 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3124 LLT WideTy = LLT::scalar(StoreSizeInBits); 3125 3126 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3127 // Avoid creating a store with a narrower source than result. 3128 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3129 SrcTy = WideTy; 3130 } 3131 3132 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3133 3134 MachineMemOperand *NewMMO = 3135 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3136 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3137 StoreMI.eraseFromParent(); 3138 return Legalized; 3139 } 3140 3141 if (MemTy.isVector()) { 3142 // TODO: Handle vector trunc stores 3143 if (MemTy != SrcTy) 3144 return UnableToLegalize; 3145 3146 // TODO: We can do better than scalarizing the vector and at least split it 3147 // in half. 3148 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3149 } 3150 3151 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3152 uint64_t LargeSplitSize, SmallSplitSize; 3153 3154 if (!isPowerOf2_32(MemSizeInBits)) { 3155 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3156 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3157 } else { 3158 auto &Ctx = MF.getFunction().getContext(); 3159 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3160 return UnableToLegalize; // Don't know what we're being asked to do. 3161 3162 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3163 } 3164 3165 // Extend to the next pow-2. If this store was itself the result of lowering, 3166 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3167 // that's wider than the stored size. 3168 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3169 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3170 3171 if (SrcTy.isPointer()) { 3172 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3173 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3174 } 3175 3176 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3177 3178 // Obtain the smaller value by shifting away the larger value. 3179 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3180 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3181 3182 // Generate the PtrAdd and truncating stores. 3183 LLT PtrTy = MRI.getType(PtrReg); 3184 auto OffsetCst = MIRBuilder.buildConstant( 3185 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3186 auto SmallPtr = 3187 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3188 3189 MachineMemOperand *LargeMMO = 3190 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3191 MachineMemOperand *SmallMMO = 3192 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3193 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3194 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3195 StoreMI.eraseFromParent(); 3196 return Legalized; 3197 } 3198 3199 LegalizerHelper::LegalizeResult 3200 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3201 switch (MI.getOpcode()) { 3202 case TargetOpcode::G_LOAD: { 3203 if (TypeIdx != 0) 3204 return UnableToLegalize; 3205 MachineMemOperand &MMO = **MI.memoperands_begin(); 3206 3207 // Not sure how to interpret a bitcast of an extending load. 3208 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3209 return UnableToLegalize; 3210 3211 Observer.changingInstr(MI); 3212 bitcastDst(MI, CastTy, 0); 3213 MMO.setType(CastTy); 3214 Observer.changedInstr(MI); 3215 return Legalized; 3216 } 3217 case TargetOpcode::G_STORE: { 3218 if (TypeIdx != 0) 3219 return UnableToLegalize; 3220 3221 MachineMemOperand &MMO = **MI.memoperands_begin(); 3222 3223 // Not sure how to interpret a bitcast of a truncating store. 3224 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3225 return UnableToLegalize; 3226 3227 Observer.changingInstr(MI); 3228 bitcastSrc(MI, CastTy, 0); 3229 MMO.setType(CastTy); 3230 Observer.changedInstr(MI); 3231 return Legalized; 3232 } 3233 case TargetOpcode::G_SELECT: { 3234 if (TypeIdx != 0) 3235 return UnableToLegalize; 3236 3237 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3238 LLVM_DEBUG( 3239 dbgs() << "bitcast action not implemented for vector select\n"); 3240 return UnableToLegalize; 3241 } 3242 3243 Observer.changingInstr(MI); 3244 bitcastSrc(MI, CastTy, 2); 3245 bitcastSrc(MI, CastTy, 3); 3246 bitcastDst(MI, CastTy, 0); 3247 Observer.changedInstr(MI); 3248 return Legalized; 3249 } 3250 case TargetOpcode::G_AND: 3251 case TargetOpcode::G_OR: 3252 case TargetOpcode::G_XOR: { 3253 Observer.changingInstr(MI); 3254 bitcastSrc(MI, CastTy, 1); 3255 bitcastSrc(MI, CastTy, 2); 3256 bitcastDst(MI, CastTy, 0); 3257 Observer.changedInstr(MI); 3258 return Legalized; 3259 } 3260 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3261 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3262 case TargetOpcode::G_INSERT_VECTOR_ELT: 3263 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3264 default: 3265 return UnableToLegalize; 3266 } 3267 } 3268 3269 // Legalize an instruction by changing the opcode in place. 3270 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3271 Observer.changingInstr(MI); 3272 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3273 Observer.changedInstr(MI); 3274 } 3275 3276 LegalizerHelper::LegalizeResult 3277 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3278 using namespace TargetOpcode; 3279 3280 switch(MI.getOpcode()) { 3281 default: 3282 return UnableToLegalize; 3283 case TargetOpcode::G_BITCAST: 3284 return lowerBitcast(MI); 3285 case TargetOpcode::G_SREM: 3286 case TargetOpcode::G_UREM: { 3287 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3288 auto Quot = 3289 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3290 {MI.getOperand(1), MI.getOperand(2)}); 3291 3292 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3293 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3294 MI.eraseFromParent(); 3295 return Legalized; 3296 } 3297 case TargetOpcode::G_SADDO: 3298 case TargetOpcode::G_SSUBO: 3299 return lowerSADDO_SSUBO(MI); 3300 case TargetOpcode::G_UMULH: 3301 case TargetOpcode::G_SMULH: 3302 return lowerSMULH_UMULH(MI); 3303 case TargetOpcode::G_SMULO: 3304 case TargetOpcode::G_UMULO: { 3305 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3306 // result. 3307 Register Res = MI.getOperand(0).getReg(); 3308 Register Overflow = MI.getOperand(1).getReg(); 3309 Register LHS = MI.getOperand(2).getReg(); 3310 Register RHS = MI.getOperand(3).getReg(); 3311 LLT Ty = MRI.getType(Res); 3312 3313 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3314 ? TargetOpcode::G_SMULH 3315 : TargetOpcode::G_UMULH; 3316 3317 Observer.changingInstr(MI); 3318 const auto &TII = MIRBuilder.getTII(); 3319 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3320 MI.removeOperand(1); 3321 Observer.changedInstr(MI); 3322 3323 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3324 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3325 3326 // Move insert point forward so we can use the Res register if needed. 3327 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3328 3329 // For *signed* multiply, overflow is detected by checking: 3330 // (hi != (lo >> bitwidth-1)) 3331 if (Opcode == TargetOpcode::G_SMULH) { 3332 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3333 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3334 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3335 } else { 3336 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3337 } 3338 return Legalized; 3339 } 3340 case TargetOpcode::G_FNEG: { 3341 Register Res = MI.getOperand(0).getReg(); 3342 LLT Ty = MRI.getType(Res); 3343 3344 // TODO: Handle vector types once we are able to 3345 // represent them. 3346 if (Ty.isVector()) 3347 return UnableToLegalize; 3348 auto SignMask = 3349 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3350 Register SubByReg = MI.getOperand(1).getReg(); 3351 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3352 MI.eraseFromParent(); 3353 return Legalized; 3354 } 3355 case TargetOpcode::G_FSUB: { 3356 Register Res = MI.getOperand(0).getReg(); 3357 LLT Ty = MRI.getType(Res); 3358 3359 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3360 // First, check if G_FNEG is marked as Lower. If so, we may 3361 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3362 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3363 return UnableToLegalize; 3364 Register LHS = MI.getOperand(1).getReg(); 3365 Register RHS = MI.getOperand(2).getReg(); 3366 Register Neg = MRI.createGenericVirtualRegister(Ty); 3367 MIRBuilder.buildFNeg(Neg, RHS); 3368 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3369 MI.eraseFromParent(); 3370 return Legalized; 3371 } 3372 case TargetOpcode::G_FMAD: 3373 return lowerFMad(MI); 3374 case TargetOpcode::G_FFLOOR: 3375 return lowerFFloor(MI); 3376 case TargetOpcode::G_INTRINSIC_ROUND: 3377 return lowerIntrinsicRound(MI); 3378 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3379 // Since round even is the assumed rounding mode for unconstrained FP 3380 // operations, rint and roundeven are the same operation. 3381 changeOpcode(MI, TargetOpcode::G_FRINT); 3382 return Legalized; 3383 } 3384 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3385 Register OldValRes = MI.getOperand(0).getReg(); 3386 Register SuccessRes = MI.getOperand(1).getReg(); 3387 Register Addr = MI.getOperand(2).getReg(); 3388 Register CmpVal = MI.getOperand(3).getReg(); 3389 Register NewVal = MI.getOperand(4).getReg(); 3390 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3391 **MI.memoperands_begin()); 3392 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3393 MI.eraseFromParent(); 3394 return Legalized; 3395 } 3396 case TargetOpcode::G_LOAD: 3397 case TargetOpcode::G_SEXTLOAD: 3398 case TargetOpcode::G_ZEXTLOAD: 3399 return lowerLoad(cast<GAnyLoad>(MI)); 3400 case TargetOpcode::G_STORE: 3401 return lowerStore(cast<GStore>(MI)); 3402 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3403 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3404 case TargetOpcode::G_CTLZ: 3405 case TargetOpcode::G_CTTZ: 3406 case TargetOpcode::G_CTPOP: 3407 return lowerBitCount(MI); 3408 case G_UADDO: { 3409 Register Res = MI.getOperand(0).getReg(); 3410 Register CarryOut = MI.getOperand(1).getReg(); 3411 Register LHS = MI.getOperand(2).getReg(); 3412 Register RHS = MI.getOperand(3).getReg(); 3413 3414 MIRBuilder.buildAdd(Res, LHS, RHS); 3415 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3416 3417 MI.eraseFromParent(); 3418 return Legalized; 3419 } 3420 case G_UADDE: { 3421 Register Res = MI.getOperand(0).getReg(); 3422 Register CarryOut = MI.getOperand(1).getReg(); 3423 Register LHS = MI.getOperand(2).getReg(); 3424 Register RHS = MI.getOperand(3).getReg(); 3425 Register CarryIn = MI.getOperand(4).getReg(); 3426 LLT Ty = MRI.getType(Res); 3427 3428 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3429 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3430 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3431 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3432 3433 MI.eraseFromParent(); 3434 return Legalized; 3435 } 3436 case G_USUBO: { 3437 Register Res = MI.getOperand(0).getReg(); 3438 Register BorrowOut = MI.getOperand(1).getReg(); 3439 Register LHS = MI.getOperand(2).getReg(); 3440 Register RHS = MI.getOperand(3).getReg(); 3441 3442 MIRBuilder.buildSub(Res, LHS, RHS); 3443 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3444 3445 MI.eraseFromParent(); 3446 return Legalized; 3447 } 3448 case G_USUBE: { 3449 Register Res = MI.getOperand(0).getReg(); 3450 Register BorrowOut = MI.getOperand(1).getReg(); 3451 Register LHS = MI.getOperand(2).getReg(); 3452 Register RHS = MI.getOperand(3).getReg(); 3453 Register BorrowIn = MI.getOperand(4).getReg(); 3454 const LLT CondTy = MRI.getType(BorrowOut); 3455 const LLT Ty = MRI.getType(Res); 3456 3457 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3458 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3459 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3460 3461 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3462 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3463 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3464 3465 MI.eraseFromParent(); 3466 return Legalized; 3467 } 3468 case G_UITOFP: 3469 return lowerUITOFP(MI); 3470 case G_SITOFP: 3471 return lowerSITOFP(MI); 3472 case G_FPTOUI: 3473 return lowerFPTOUI(MI); 3474 case G_FPTOSI: 3475 return lowerFPTOSI(MI); 3476 case G_FPTRUNC: 3477 return lowerFPTRUNC(MI); 3478 case G_FPOWI: 3479 return lowerFPOWI(MI); 3480 case G_SMIN: 3481 case G_SMAX: 3482 case G_UMIN: 3483 case G_UMAX: 3484 return lowerMinMax(MI); 3485 case G_FCOPYSIGN: 3486 return lowerFCopySign(MI); 3487 case G_FMINNUM: 3488 case G_FMAXNUM: 3489 return lowerFMinNumMaxNum(MI); 3490 case G_MERGE_VALUES: 3491 return lowerMergeValues(MI); 3492 case G_UNMERGE_VALUES: 3493 return lowerUnmergeValues(MI); 3494 case TargetOpcode::G_SEXT_INREG: { 3495 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3496 int64_t SizeInBits = MI.getOperand(2).getImm(); 3497 3498 Register DstReg = MI.getOperand(0).getReg(); 3499 Register SrcReg = MI.getOperand(1).getReg(); 3500 LLT DstTy = MRI.getType(DstReg); 3501 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3502 3503 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3504 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3505 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3506 MI.eraseFromParent(); 3507 return Legalized; 3508 } 3509 case G_EXTRACT_VECTOR_ELT: 3510 case G_INSERT_VECTOR_ELT: 3511 return lowerExtractInsertVectorElt(MI); 3512 case G_SHUFFLE_VECTOR: 3513 return lowerShuffleVector(MI); 3514 case G_DYN_STACKALLOC: 3515 return lowerDynStackAlloc(MI); 3516 case G_EXTRACT: 3517 return lowerExtract(MI); 3518 case G_INSERT: 3519 return lowerInsert(MI); 3520 case G_BSWAP: 3521 return lowerBswap(MI); 3522 case G_BITREVERSE: 3523 return lowerBitreverse(MI); 3524 case G_READ_REGISTER: 3525 case G_WRITE_REGISTER: 3526 return lowerReadWriteRegister(MI); 3527 case G_UADDSAT: 3528 case G_USUBSAT: { 3529 // Try to make a reasonable guess about which lowering strategy to use. The 3530 // target can override this with custom lowering and calling the 3531 // implementation functions. 3532 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3533 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3534 return lowerAddSubSatToMinMax(MI); 3535 return lowerAddSubSatToAddoSubo(MI); 3536 } 3537 case G_SADDSAT: 3538 case G_SSUBSAT: { 3539 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3540 3541 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3542 // since it's a shorter expansion. However, we would need to figure out the 3543 // preferred boolean type for the carry out for the query. 3544 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3545 return lowerAddSubSatToMinMax(MI); 3546 return lowerAddSubSatToAddoSubo(MI); 3547 } 3548 case G_SSHLSAT: 3549 case G_USHLSAT: 3550 return lowerShlSat(MI); 3551 case G_ABS: 3552 return lowerAbsToAddXor(MI); 3553 case G_SELECT: 3554 return lowerSelect(MI); 3555 case G_SDIVREM: 3556 case G_UDIVREM: 3557 return lowerDIVREM(MI); 3558 case G_FSHL: 3559 case G_FSHR: 3560 return lowerFunnelShift(MI); 3561 case G_ROTL: 3562 case G_ROTR: 3563 return lowerRotate(MI); 3564 case G_MEMSET: 3565 case G_MEMCPY: 3566 case G_MEMMOVE: 3567 return lowerMemCpyFamily(MI); 3568 case G_MEMCPY_INLINE: 3569 return lowerMemcpyInline(MI); 3570 GISEL_VECREDUCE_CASES_NONSEQ 3571 return lowerVectorReduction(MI); 3572 } 3573 } 3574 3575 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3576 Align MinAlign) const { 3577 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3578 // datalayout for the preferred alignment. Also there should be a target hook 3579 // for this to allow targets to reduce the alignment and ignore the 3580 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3581 // the type. 3582 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3583 } 3584 3585 MachineInstrBuilder 3586 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3587 MachinePointerInfo &PtrInfo) { 3588 MachineFunction &MF = MIRBuilder.getMF(); 3589 const DataLayout &DL = MIRBuilder.getDataLayout(); 3590 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3591 3592 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3593 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3594 3595 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3596 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3597 } 3598 3599 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3600 LLT VecTy) { 3601 int64_t IdxVal; 3602 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3603 return IdxReg; 3604 3605 LLT IdxTy = B.getMRI()->getType(IdxReg); 3606 unsigned NElts = VecTy.getNumElements(); 3607 if (isPowerOf2_32(NElts)) { 3608 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3609 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3610 } 3611 3612 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3613 .getReg(0); 3614 } 3615 3616 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3617 Register Index) { 3618 LLT EltTy = VecTy.getElementType(); 3619 3620 // Calculate the element offset and add it to the pointer. 3621 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3622 assert(EltSize * 8 == EltTy.getSizeInBits() && 3623 "Converting bits to bytes lost precision"); 3624 3625 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3626 3627 LLT IdxTy = MRI.getType(Index); 3628 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3629 MIRBuilder.buildConstant(IdxTy, EltSize)); 3630 3631 LLT PtrTy = MRI.getType(VecPtr); 3632 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3633 } 3634 3635 #ifndef NDEBUG 3636 /// Check that all vector operands have same number of elements. Other operands 3637 /// should be listed in NonVecOp. 3638 static bool hasSameNumEltsOnAllVectorOperands( 3639 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3640 std::initializer_list<unsigned> NonVecOpIndices) { 3641 if (MI.getNumMemOperands() != 0) 3642 return false; 3643 3644 LLT VecTy = MRI.getType(MI.getReg(0)); 3645 if (!VecTy.isVector()) 3646 return false; 3647 unsigned NumElts = VecTy.getNumElements(); 3648 3649 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3650 MachineOperand &Op = MI.getOperand(OpIdx); 3651 if (!Op.isReg()) { 3652 if (!is_contained(NonVecOpIndices, OpIdx)) 3653 return false; 3654 continue; 3655 } 3656 3657 LLT Ty = MRI.getType(Op.getReg()); 3658 if (!Ty.isVector()) { 3659 if (!is_contained(NonVecOpIndices, OpIdx)) 3660 return false; 3661 continue; 3662 } 3663 3664 if (Ty.getNumElements() != NumElts) 3665 return false; 3666 } 3667 3668 return true; 3669 } 3670 #endif 3671 3672 /// Fill \p DstOps with DstOps that have same number of elements combined as 3673 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3674 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3675 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3676 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3677 unsigned NumElts) { 3678 LLT LeftoverTy; 3679 assert(Ty.isVector() && "Expected vector type"); 3680 LLT EltTy = Ty.getElementType(); 3681 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3682 int NumParts, NumLeftover; 3683 std::tie(NumParts, NumLeftover) = 3684 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3685 3686 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3687 for (int i = 0; i < NumParts; ++i) { 3688 DstOps.push_back(NarrowTy); 3689 } 3690 3691 if (LeftoverTy.isValid()) { 3692 assert(NumLeftover == 1 && "expected exactly one leftover"); 3693 DstOps.push_back(LeftoverTy); 3694 } 3695 } 3696 3697 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3698 /// made from \p Op depending on operand type. 3699 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3700 MachineOperand &Op) { 3701 for (unsigned i = 0; i < N; ++i) { 3702 if (Op.isReg()) 3703 Ops.push_back(Op.getReg()); 3704 else if (Op.isImm()) 3705 Ops.push_back(Op.getImm()); 3706 else if (Op.isPredicate()) 3707 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3708 else 3709 llvm_unreachable("Unsupported type"); 3710 } 3711 } 3712 3713 // Handle splitting vector operations which need to have the same number of 3714 // elements in each type index, but each type index may have a different element 3715 // type. 3716 // 3717 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3718 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3719 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3720 // 3721 // Also handles some irregular breakdown cases, e.g. 3722 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3723 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3724 // s64 = G_SHL s64, s32 3725 LegalizerHelper::LegalizeResult 3726 LegalizerHelper::fewerElementsVectorMultiEltType( 3727 GenericMachineInstr &MI, unsigned NumElts, 3728 std::initializer_list<unsigned> NonVecOpIndices) { 3729 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3730 "Non-compatible opcode or not specified non-vector operands"); 3731 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3732 3733 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3734 unsigned NumDefs = MI.getNumDefs(); 3735 3736 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3737 // Build instructions with DstOps to use instruction found by CSE directly. 3738 // CSE copies found instruction into given vreg when building with vreg dest. 3739 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3740 // Output registers will be taken from created instructions. 3741 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3742 for (unsigned i = 0; i < NumDefs; ++i) { 3743 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3744 } 3745 3746 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3747 // Operands listed in NonVecOpIndices will be used as is without splitting; 3748 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3749 // scalar condition (op 1), immediate in sext_inreg (op 2). 3750 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3751 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3752 ++UseIdx, ++UseNo) { 3753 if (is_contained(NonVecOpIndices, UseIdx)) { 3754 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3755 MI.getOperand(UseIdx)); 3756 } else { 3757 SmallVector<Register, 8> SplitPieces; 3758 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3759 for (auto Reg : SplitPieces) 3760 InputOpsPieces[UseNo].push_back(Reg); 3761 } 3762 } 3763 3764 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3765 3766 // Take i-th piece of each input operand split and build sub-vector/scalar 3767 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3768 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3769 SmallVector<DstOp, 2> Defs; 3770 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3771 Defs.push_back(OutputOpsPieces[DstNo][i]); 3772 3773 SmallVector<SrcOp, 3> Uses; 3774 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3775 Uses.push_back(InputOpsPieces[InputNo][i]); 3776 3777 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3778 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3779 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3780 } 3781 3782 // Merge small outputs into MI's output for each def operand. 3783 if (NumLeftovers) { 3784 for (unsigned i = 0; i < NumDefs; ++i) 3785 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3786 } else { 3787 for (unsigned i = 0; i < NumDefs; ++i) 3788 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3789 } 3790 3791 MI.eraseFromParent(); 3792 return Legalized; 3793 } 3794 3795 LegalizerHelper::LegalizeResult 3796 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3797 unsigned NumElts) { 3798 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3799 3800 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3801 unsigned NumDefs = MI.getNumDefs(); 3802 3803 SmallVector<DstOp, 8> OutputOpsPieces; 3804 SmallVector<Register, 8> OutputRegs; 3805 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3806 3807 // Instructions that perform register split will be inserted in basic block 3808 // where register is defined (basic block is in the next operand). 3809 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3810 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3811 UseIdx += 2, ++UseNo) { 3812 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3813 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3814 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3815 } 3816 3817 // Build PHIs with fewer elements. 3818 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3819 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3820 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3821 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3822 Phi.addDef( 3823 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3824 OutputRegs.push_back(Phi.getReg(0)); 3825 3826 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3827 Phi.addUse(InputOpsPieces[j][i]); 3828 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3829 } 3830 } 3831 3832 // Merge small outputs into MI's def. 3833 if (NumLeftovers) { 3834 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3835 } else { 3836 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3837 } 3838 3839 MI.eraseFromParent(); 3840 return Legalized; 3841 } 3842 3843 LegalizerHelper::LegalizeResult 3844 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3845 unsigned TypeIdx, 3846 LLT NarrowTy) { 3847 const int NumDst = MI.getNumOperands() - 1; 3848 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3849 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3850 LLT SrcTy = MRI.getType(SrcReg); 3851 3852 if (TypeIdx != 1 || NarrowTy == DstTy) 3853 return UnableToLegalize; 3854 3855 // Requires compatible types. Otherwise SrcReg should have been defined by 3856 // merge-like instruction that would get artifact combined. Most likely 3857 // instruction that defines SrcReg has to perform more/fewer elements 3858 // legalization compatible with NarrowTy. 3859 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3860 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3861 3862 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3863 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3864 return UnableToLegalize; 3865 3866 // This is most likely DstTy (smaller then register size) packed in SrcTy 3867 // (larger then register size) and since unmerge was not combined it will be 3868 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3869 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3870 3871 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3872 // 3873 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3874 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3875 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3876 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3877 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3878 const int PartsPerUnmerge = NumDst / NumUnmerge; 3879 3880 for (int I = 0; I != NumUnmerge; ++I) { 3881 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3882 3883 for (int J = 0; J != PartsPerUnmerge; ++J) 3884 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3885 MIB.addUse(Unmerge.getReg(I)); 3886 } 3887 3888 MI.eraseFromParent(); 3889 return Legalized; 3890 } 3891 3892 LegalizerHelper::LegalizeResult 3893 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3894 LLT NarrowTy) { 3895 Register DstReg = MI.getOperand(0).getReg(); 3896 LLT DstTy = MRI.getType(DstReg); 3897 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3898 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3899 // that should have been artifact combined. Most likely instruction that uses 3900 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3901 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3902 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3903 if (NarrowTy == SrcTy) 3904 return UnableToLegalize; 3905 3906 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3907 // is for old mir tests. Since the changes to more/fewer elements it should no 3908 // longer be possible to generate MIR like this when starting from llvm-ir 3909 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3910 if (TypeIdx == 1) { 3911 assert(SrcTy.isVector() && "Expected vector types"); 3912 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3913 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3914 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3915 return UnableToLegalize; 3916 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3917 // 3918 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3919 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3920 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3921 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3922 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3923 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3924 3925 SmallVector<Register, 8> Elts; 3926 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3927 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3928 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3929 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3930 Elts.push_back(Unmerge.getReg(j)); 3931 } 3932 3933 SmallVector<Register, 8> NarrowTyElts; 3934 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3935 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3936 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3937 ++i, Offset += NumNarrowTyElts) { 3938 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3939 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3940 } 3941 3942 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3943 MI.eraseFromParent(); 3944 return Legalized; 3945 } 3946 3947 assert(TypeIdx == 0 && "Bad type index"); 3948 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3949 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3950 return UnableToLegalize; 3951 3952 // This is most likely SrcTy (smaller then register size) packed in DstTy 3953 // (larger then register size) and since merge was not combined it will be 3954 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3955 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3956 3957 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3958 // 3959 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3960 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3961 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3962 SmallVector<Register, 8> NarrowTyElts; 3963 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3964 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3965 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3966 for (unsigned i = 0; i < NumParts; ++i) { 3967 SmallVector<Register, 8> Sources; 3968 for (unsigned j = 0; j < NumElts; ++j) 3969 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3970 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3971 } 3972 3973 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3974 MI.eraseFromParent(); 3975 return Legalized; 3976 } 3977 3978 LegalizerHelper::LegalizeResult 3979 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3980 unsigned TypeIdx, 3981 LLT NarrowVecTy) { 3982 Register DstReg = MI.getOperand(0).getReg(); 3983 Register SrcVec = MI.getOperand(1).getReg(); 3984 Register InsertVal; 3985 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3986 3987 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3988 if (IsInsert) 3989 InsertVal = MI.getOperand(2).getReg(); 3990 3991 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3992 3993 // TODO: Handle total scalarization case. 3994 if (!NarrowVecTy.isVector()) 3995 return UnableToLegalize; 3996 3997 LLT VecTy = MRI.getType(SrcVec); 3998 3999 // If the index is a constant, we can really break this down as you would 4000 // expect, and index into the target size pieces. 4001 int64_t IdxVal; 4002 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4003 if (MaybeCst) { 4004 IdxVal = MaybeCst->Value.getSExtValue(); 4005 // Avoid out of bounds indexing the pieces. 4006 if (IdxVal >= VecTy.getNumElements()) { 4007 MIRBuilder.buildUndef(DstReg); 4008 MI.eraseFromParent(); 4009 return Legalized; 4010 } 4011 4012 SmallVector<Register, 8> VecParts; 4013 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4014 4015 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4016 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4017 TargetOpcode::G_ANYEXT); 4018 4019 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4020 4021 LLT IdxTy = MRI.getType(Idx); 4022 int64_t PartIdx = IdxVal / NewNumElts; 4023 auto NewIdx = 4024 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4025 4026 if (IsInsert) { 4027 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4028 4029 // Use the adjusted index to insert into one of the subvectors. 4030 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4031 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4032 VecParts[PartIdx] = InsertPart.getReg(0); 4033 4034 // Recombine the inserted subvector with the others to reform the result 4035 // vector. 4036 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4037 } else { 4038 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4039 } 4040 4041 MI.eraseFromParent(); 4042 return Legalized; 4043 } 4044 4045 // With a variable index, we can't perform the operation in a smaller type, so 4046 // we're forced to expand this. 4047 // 4048 // TODO: We could emit a chain of compare/select to figure out which piece to 4049 // index. 4050 return lowerExtractInsertVectorElt(MI); 4051 } 4052 4053 LegalizerHelper::LegalizeResult 4054 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4055 LLT NarrowTy) { 4056 // FIXME: Don't know how to handle secondary types yet. 4057 if (TypeIdx != 0) 4058 return UnableToLegalize; 4059 4060 // This implementation doesn't work for atomics. Give up instead of doing 4061 // something invalid. 4062 if (LdStMI.isAtomic()) 4063 return UnableToLegalize; 4064 4065 bool IsLoad = isa<GLoad>(LdStMI); 4066 Register ValReg = LdStMI.getReg(0); 4067 Register AddrReg = LdStMI.getPointerReg(); 4068 LLT ValTy = MRI.getType(ValReg); 4069 4070 // FIXME: Do we need a distinct NarrowMemory legalize action? 4071 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4072 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4073 return UnableToLegalize; 4074 } 4075 4076 int NumParts = -1; 4077 int NumLeftover = -1; 4078 LLT LeftoverTy; 4079 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4080 if (IsLoad) { 4081 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4082 } else { 4083 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4084 NarrowLeftoverRegs)) { 4085 NumParts = NarrowRegs.size(); 4086 NumLeftover = NarrowLeftoverRegs.size(); 4087 } 4088 } 4089 4090 if (NumParts == -1) 4091 return UnableToLegalize; 4092 4093 LLT PtrTy = MRI.getType(AddrReg); 4094 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4095 4096 unsigned TotalSize = ValTy.getSizeInBits(); 4097 4098 // Split the load/store into PartTy sized pieces starting at Offset. If this 4099 // is a load, return the new registers in ValRegs. For a store, each elements 4100 // of ValRegs should be PartTy. Returns the next offset that needs to be 4101 // handled. 4102 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4103 auto MMO = LdStMI.getMMO(); 4104 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4105 unsigned NumParts, unsigned Offset) -> unsigned { 4106 MachineFunction &MF = MIRBuilder.getMF(); 4107 unsigned PartSize = PartTy.getSizeInBits(); 4108 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4109 ++Idx) { 4110 unsigned ByteOffset = Offset / 8; 4111 Register NewAddrReg; 4112 4113 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4114 4115 MachineMemOperand *NewMMO = 4116 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4117 4118 if (IsLoad) { 4119 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4120 ValRegs.push_back(Dst); 4121 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4122 } else { 4123 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4124 } 4125 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4126 } 4127 4128 return Offset; 4129 }; 4130 4131 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4132 unsigned HandledOffset = 4133 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4134 4135 // Handle the rest of the register if this isn't an even type breakdown. 4136 if (LeftoverTy.isValid()) 4137 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4138 4139 if (IsLoad) { 4140 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4141 LeftoverTy, NarrowLeftoverRegs); 4142 } 4143 4144 LdStMI.eraseFromParent(); 4145 return Legalized; 4146 } 4147 4148 LegalizerHelper::LegalizeResult 4149 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4150 LLT NarrowTy) { 4151 using namespace TargetOpcode; 4152 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4153 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4154 4155 switch (MI.getOpcode()) { 4156 case G_IMPLICIT_DEF: 4157 case G_TRUNC: 4158 case G_AND: 4159 case G_OR: 4160 case G_XOR: 4161 case G_ADD: 4162 case G_SUB: 4163 case G_MUL: 4164 case G_PTR_ADD: 4165 case G_SMULH: 4166 case G_UMULH: 4167 case G_FADD: 4168 case G_FMUL: 4169 case G_FSUB: 4170 case G_FNEG: 4171 case G_FABS: 4172 case G_FCANONICALIZE: 4173 case G_FDIV: 4174 case G_FREM: 4175 case G_FMA: 4176 case G_FMAD: 4177 case G_FPOW: 4178 case G_FEXP: 4179 case G_FEXP2: 4180 case G_FLOG: 4181 case G_FLOG2: 4182 case G_FLOG10: 4183 case G_FNEARBYINT: 4184 case G_FCEIL: 4185 case G_FFLOOR: 4186 case G_FRINT: 4187 case G_INTRINSIC_ROUND: 4188 case G_INTRINSIC_ROUNDEVEN: 4189 case G_INTRINSIC_TRUNC: 4190 case G_FCOS: 4191 case G_FSIN: 4192 case G_FSQRT: 4193 case G_BSWAP: 4194 case G_BITREVERSE: 4195 case G_SDIV: 4196 case G_UDIV: 4197 case G_SREM: 4198 case G_UREM: 4199 case G_SDIVREM: 4200 case G_UDIVREM: 4201 case G_SMIN: 4202 case G_SMAX: 4203 case G_UMIN: 4204 case G_UMAX: 4205 case G_ABS: 4206 case G_FMINNUM: 4207 case G_FMAXNUM: 4208 case G_FMINNUM_IEEE: 4209 case G_FMAXNUM_IEEE: 4210 case G_FMINIMUM: 4211 case G_FMAXIMUM: 4212 case G_FSHL: 4213 case G_FSHR: 4214 case G_ROTL: 4215 case G_ROTR: 4216 case G_FREEZE: 4217 case G_SADDSAT: 4218 case G_SSUBSAT: 4219 case G_UADDSAT: 4220 case G_USUBSAT: 4221 case G_UMULO: 4222 case G_SMULO: 4223 case G_SHL: 4224 case G_LSHR: 4225 case G_ASHR: 4226 case G_SSHLSAT: 4227 case G_USHLSAT: 4228 case G_CTLZ: 4229 case G_CTLZ_ZERO_UNDEF: 4230 case G_CTTZ: 4231 case G_CTTZ_ZERO_UNDEF: 4232 case G_CTPOP: 4233 case G_FCOPYSIGN: 4234 case G_ZEXT: 4235 case G_SEXT: 4236 case G_ANYEXT: 4237 case G_FPEXT: 4238 case G_FPTRUNC: 4239 case G_SITOFP: 4240 case G_UITOFP: 4241 case G_FPTOSI: 4242 case G_FPTOUI: 4243 case G_INTTOPTR: 4244 case G_PTRTOINT: 4245 case G_ADDRSPACE_CAST: 4246 case G_UADDO: 4247 case G_USUBO: 4248 case G_UADDE: 4249 case G_USUBE: 4250 case G_SADDO: 4251 case G_SSUBO: 4252 case G_SADDE: 4253 case G_SSUBE: 4254 return fewerElementsVectorMultiEltType(GMI, NumElts); 4255 case G_ICMP: 4256 case G_FCMP: 4257 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4258 case G_SELECT: 4259 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4260 return fewerElementsVectorMultiEltType(GMI, NumElts); 4261 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4262 case G_PHI: 4263 return fewerElementsVectorPhi(GMI, NumElts); 4264 case G_UNMERGE_VALUES: 4265 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4266 case G_BUILD_VECTOR: 4267 assert(TypeIdx == 0 && "not a vector type index"); 4268 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4269 case G_CONCAT_VECTORS: 4270 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4271 return UnableToLegalize; 4272 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4273 case G_EXTRACT_VECTOR_ELT: 4274 case G_INSERT_VECTOR_ELT: 4275 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4276 case G_LOAD: 4277 case G_STORE: 4278 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4279 case G_SEXT_INREG: 4280 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4281 GISEL_VECREDUCE_CASES_NONSEQ 4282 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4283 case G_SHUFFLE_VECTOR: 4284 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4285 default: 4286 return UnableToLegalize; 4287 } 4288 } 4289 4290 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4291 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4292 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4293 if (TypeIdx != 0) 4294 return UnableToLegalize; 4295 4296 Register DstReg = MI.getOperand(0).getReg(); 4297 Register Src1Reg = MI.getOperand(1).getReg(); 4298 Register Src2Reg = MI.getOperand(2).getReg(); 4299 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4300 LLT DstTy = MRI.getType(DstReg); 4301 LLT Src1Ty = MRI.getType(Src1Reg); 4302 LLT Src2Ty = MRI.getType(Src2Reg); 4303 // The shuffle should be canonicalized by now. 4304 if (DstTy != Src1Ty) 4305 return UnableToLegalize; 4306 if (DstTy != Src2Ty) 4307 return UnableToLegalize; 4308 4309 if (!isPowerOf2_32(DstTy.getNumElements())) 4310 return UnableToLegalize; 4311 4312 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4313 // Further legalization attempts will be needed to do split further. 4314 NarrowTy = 4315 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4316 unsigned NewElts = NarrowTy.getNumElements(); 4317 4318 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4319 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4320 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4321 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4322 SplitSrc2Regs[1]}; 4323 4324 Register Hi, Lo; 4325 4326 // If Lo or Hi uses elements from at most two of the four input vectors, then 4327 // express it as a vector shuffle of those two inputs. Otherwise extract the 4328 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4329 SmallVector<int, 16> Ops; 4330 for (unsigned High = 0; High < 2; ++High) { 4331 Register &Output = High ? Hi : Lo; 4332 4333 // Build a shuffle mask for the output, discovering on the fly which 4334 // input vectors to use as shuffle operands (recorded in InputUsed). 4335 // If building a suitable shuffle vector proves too hard, then bail 4336 // out with useBuildVector set. 4337 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4338 unsigned FirstMaskIdx = High * NewElts; 4339 bool UseBuildVector = false; 4340 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4341 // The mask element. This indexes into the input. 4342 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4343 4344 // The input vector this mask element indexes into. 4345 unsigned Input = (unsigned)Idx / NewElts; 4346 4347 if (Input >= array_lengthof(Inputs)) { 4348 // The mask element does not index into any input vector. 4349 Ops.push_back(-1); 4350 continue; 4351 } 4352 4353 // Turn the index into an offset from the start of the input vector. 4354 Idx -= Input * NewElts; 4355 4356 // Find or create a shuffle vector operand to hold this input. 4357 unsigned OpNo; 4358 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4359 if (InputUsed[OpNo] == Input) { 4360 // This input vector is already an operand. 4361 break; 4362 } else if (InputUsed[OpNo] == -1U) { 4363 // Create a new operand for this input vector. 4364 InputUsed[OpNo] = Input; 4365 break; 4366 } 4367 } 4368 4369 if (OpNo >= array_lengthof(InputUsed)) { 4370 // More than two input vectors used! Give up on trying to create a 4371 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4372 UseBuildVector = true; 4373 break; 4374 } 4375 4376 // Add the mask index for the new shuffle vector. 4377 Ops.push_back(Idx + OpNo * NewElts); 4378 } 4379 4380 if (UseBuildVector) { 4381 LLT EltTy = NarrowTy.getElementType(); 4382 SmallVector<Register, 16> SVOps; 4383 4384 // Extract the input elements by hand. 4385 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4386 // The mask element. This indexes into the input. 4387 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4388 4389 // The input vector this mask element indexes into. 4390 unsigned Input = (unsigned)Idx / NewElts; 4391 4392 if (Input >= array_lengthof(Inputs)) { 4393 // The mask element is "undef" or indexes off the end of the input. 4394 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4395 continue; 4396 } 4397 4398 // Turn the index into an offset from the start of the input vector. 4399 Idx -= Input * NewElts; 4400 4401 // Extract the vector element by hand. 4402 SVOps.push_back(MIRBuilder 4403 .buildExtractVectorElement( 4404 EltTy, Inputs[Input], 4405 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4406 .getReg(0)); 4407 } 4408 4409 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4410 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4411 } else if (InputUsed[0] == -1U) { 4412 // No input vectors were used! The result is undefined. 4413 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4414 } else { 4415 Register Op0 = Inputs[InputUsed[0]]; 4416 // If only one input was used, use an undefined vector for the other. 4417 Register Op1 = InputUsed[1] == -1U 4418 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4419 : Inputs[InputUsed[1]]; 4420 // At least one input vector was used. Create a new shuffle vector. 4421 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4422 } 4423 4424 Ops.clear(); 4425 } 4426 4427 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4428 MI.eraseFromParent(); 4429 return Legalized; 4430 } 4431 4432 static unsigned getScalarOpcForReduction(unsigned Opc) { 4433 unsigned ScalarOpc; 4434 switch (Opc) { 4435 case TargetOpcode::G_VECREDUCE_FADD: 4436 ScalarOpc = TargetOpcode::G_FADD; 4437 break; 4438 case TargetOpcode::G_VECREDUCE_FMUL: 4439 ScalarOpc = TargetOpcode::G_FMUL; 4440 break; 4441 case TargetOpcode::G_VECREDUCE_FMAX: 4442 ScalarOpc = TargetOpcode::G_FMAXNUM; 4443 break; 4444 case TargetOpcode::G_VECREDUCE_FMIN: 4445 ScalarOpc = TargetOpcode::G_FMINNUM; 4446 break; 4447 case TargetOpcode::G_VECREDUCE_ADD: 4448 ScalarOpc = TargetOpcode::G_ADD; 4449 break; 4450 case TargetOpcode::G_VECREDUCE_MUL: 4451 ScalarOpc = TargetOpcode::G_MUL; 4452 break; 4453 case TargetOpcode::G_VECREDUCE_AND: 4454 ScalarOpc = TargetOpcode::G_AND; 4455 break; 4456 case TargetOpcode::G_VECREDUCE_OR: 4457 ScalarOpc = TargetOpcode::G_OR; 4458 break; 4459 case TargetOpcode::G_VECREDUCE_XOR: 4460 ScalarOpc = TargetOpcode::G_XOR; 4461 break; 4462 case TargetOpcode::G_VECREDUCE_SMAX: 4463 ScalarOpc = TargetOpcode::G_SMAX; 4464 break; 4465 case TargetOpcode::G_VECREDUCE_SMIN: 4466 ScalarOpc = TargetOpcode::G_SMIN; 4467 break; 4468 case TargetOpcode::G_VECREDUCE_UMAX: 4469 ScalarOpc = TargetOpcode::G_UMAX; 4470 break; 4471 case TargetOpcode::G_VECREDUCE_UMIN: 4472 ScalarOpc = TargetOpcode::G_UMIN; 4473 break; 4474 default: 4475 llvm_unreachable("Unhandled reduction"); 4476 } 4477 return ScalarOpc; 4478 } 4479 4480 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4481 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4482 unsigned Opc = MI.getOpcode(); 4483 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4484 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4485 "Sequential reductions not expected"); 4486 4487 if (TypeIdx != 1) 4488 return UnableToLegalize; 4489 4490 // The semantics of the normal non-sequential reductions allow us to freely 4491 // re-associate the operation. 4492 Register SrcReg = MI.getOperand(1).getReg(); 4493 LLT SrcTy = MRI.getType(SrcReg); 4494 Register DstReg = MI.getOperand(0).getReg(); 4495 LLT DstTy = MRI.getType(DstReg); 4496 4497 if (NarrowTy.isVector() && 4498 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4499 return UnableToLegalize; 4500 4501 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4502 SmallVector<Register> SplitSrcs; 4503 // If NarrowTy is a scalar then we're being asked to scalarize. 4504 const unsigned NumParts = 4505 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4506 : SrcTy.getNumElements(); 4507 4508 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4509 if (NarrowTy.isScalar()) { 4510 if (DstTy != NarrowTy) 4511 return UnableToLegalize; // FIXME: handle implicit extensions. 4512 4513 if (isPowerOf2_32(NumParts)) { 4514 // Generate a tree of scalar operations to reduce the critical path. 4515 SmallVector<Register> PartialResults; 4516 unsigned NumPartsLeft = NumParts; 4517 while (NumPartsLeft > 1) { 4518 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4519 PartialResults.emplace_back( 4520 MIRBuilder 4521 .buildInstr(ScalarOpc, {NarrowTy}, 4522 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4523 .getReg(0)); 4524 } 4525 SplitSrcs = PartialResults; 4526 PartialResults.clear(); 4527 NumPartsLeft = SplitSrcs.size(); 4528 } 4529 assert(SplitSrcs.size() == 1); 4530 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4531 MI.eraseFromParent(); 4532 return Legalized; 4533 } 4534 // If we can't generate a tree, then just do sequential operations. 4535 Register Acc = SplitSrcs[0]; 4536 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4537 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4538 .getReg(0); 4539 MIRBuilder.buildCopy(DstReg, Acc); 4540 MI.eraseFromParent(); 4541 return Legalized; 4542 } 4543 SmallVector<Register> PartialReductions; 4544 for (unsigned Part = 0; Part < NumParts; ++Part) { 4545 PartialReductions.push_back( 4546 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4547 } 4548 4549 4550 // If the types involved are powers of 2, we can generate intermediate vector 4551 // ops, before generating a final reduction operation. 4552 if (isPowerOf2_32(SrcTy.getNumElements()) && 4553 isPowerOf2_32(NarrowTy.getNumElements())) { 4554 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4555 } 4556 4557 Register Acc = PartialReductions[0]; 4558 for (unsigned Part = 1; Part < NumParts; ++Part) { 4559 if (Part == NumParts - 1) { 4560 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4561 {Acc, PartialReductions[Part]}); 4562 } else { 4563 Acc = MIRBuilder 4564 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4565 .getReg(0); 4566 } 4567 } 4568 MI.eraseFromParent(); 4569 return Legalized; 4570 } 4571 4572 LegalizerHelper::LegalizeResult 4573 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4574 LLT SrcTy, LLT NarrowTy, 4575 unsigned ScalarOpc) { 4576 SmallVector<Register> SplitSrcs; 4577 // Split the sources into NarrowTy size pieces. 4578 extractParts(SrcReg, NarrowTy, 4579 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4580 // We're going to do a tree reduction using vector operations until we have 4581 // one NarrowTy size value left. 4582 while (SplitSrcs.size() > 1) { 4583 SmallVector<Register> PartialRdxs; 4584 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4585 Register LHS = SplitSrcs[Idx]; 4586 Register RHS = SplitSrcs[Idx + 1]; 4587 // Create the intermediate vector op. 4588 Register Res = 4589 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4590 PartialRdxs.push_back(Res); 4591 } 4592 SplitSrcs = std::move(PartialRdxs); 4593 } 4594 // Finally generate the requested NarrowTy based reduction. 4595 Observer.changingInstr(MI); 4596 MI.getOperand(1).setReg(SplitSrcs[0]); 4597 Observer.changedInstr(MI); 4598 return Legalized; 4599 } 4600 4601 LegalizerHelper::LegalizeResult 4602 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4603 const LLT HalfTy, const LLT AmtTy) { 4604 4605 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4606 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4607 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4608 4609 if (Amt.isZero()) { 4610 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4611 MI.eraseFromParent(); 4612 return Legalized; 4613 } 4614 4615 LLT NVT = HalfTy; 4616 unsigned NVTBits = HalfTy.getSizeInBits(); 4617 unsigned VTBits = 2 * NVTBits; 4618 4619 SrcOp Lo(Register(0)), Hi(Register(0)); 4620 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4621 if (Amt.ugt(VTBits)) { 4622 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4623 } else if (Amt.ugt(NVTBits)) { 4624 Lo = MIRBuilder.buildConstant(NVT, 0); 4625 Hi = MIRBuilder.buildShl(NVT, InL, 4626 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4627 } else if (Amt == NVTBits) { 4628 Lo = MIRBuilder.buildConstant(NVT, 0); 4629 Hi = InL; 4630 } else { 4631 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4632 auto OrLHS = 4633 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4634 auto OrRHS = MIRBuilder.buildLShr( 4635 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4636 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4637 } 4638 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4639 if (Amt.ugt(VTBits)) { 4640 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4641 } else if (Amt.ugt(NVTBits)) { 4642 Lo = MIRBuilder.buildLShr(NVT, InH, 4643 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4644 Hi = MIRBuilder.buildConstant(NVT, 0); 4645 } else if (Amt == NVTBits) { 4646 Lo = InH; 4647 Hi = MIRBuilder.buildConstant(NVT, 0); 4648 } else { 4649 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4650 4651 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4652 auto OrRHS = MIRBuilder.buildShl( 4653 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4654 4655 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4656 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4657 } 4658 } else { 4659 if (Amt.ugt(VTBits)) { 4660 Hi = Lo = MIRBuilder.buildAShr( 4661 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4662 } else if (Amt.ugt(NVTBits)) { 4663 Lo = MIRBuilder.buildAShr(NVT, InH, 4664 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4665 Hi = MIRBuilder.buildAShr(NVT, InH, 4666 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4667 } else if (Amt == NVTBits) { 4668 Lo = InH; 4669 Hi = MIRBuilder.buildAShr(NVT, InH, 4670 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4671 } else { 4672 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4673 4674 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4675 auto OrRHS = MIRBuilder.buildShl( 4676 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4677 4678 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4679 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4680 } 4681 } 4682 4683 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4684 MI.eraseFromParent(); 4685 4686 return Legalized; 4687 } 4688 4689 // TODO: Optimize if constant shift amount. 4690 LegalizerHelper::LegalizeResult 4691 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4692 LLT RequestedTy) { 4693 if (TypeIdx == 1) { 4694 Observer.changingInstr(MI); 4695 narrowScalarSrc(MI, RequestedTy, 2); 4696 Observer.changedInstr(MI); 4697 return Legalized; 4698 } 4699 4700 Register DstReg = MI.getOperand(0).getReg(); 4701 LLT DstTy = MRI.getType(DstReg); 4702 if (DstTy.isVector()) 4703 return UnableToLegalize; 4704 4705 Register Amt = MI.getOperand(2).getReg(); 4706 LLT ShiftAmtTy = MRI.getType(Amt); 4707 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4708 if (DstEltSize % 2 != 0) 4709 return UnableToLegalize; 4710 4711 // Ignore the input type. We can only go to exactly half the size of the 4712 // input. If that isn't small enough, the resulting pieces will be further 4713 // legalized. 4714 const unsigned NewBitSize = DstEltSize / 2; 4715 const LLT HalfTy = LLT::scalar(NewBitSize); 4716 const LLT CondTy = LLT::scalar(1); 4717 4718 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4719 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4720 ShiftAmtTy); 4721 } 4722 4723 // TODO: Expand with known bits. 4724 4725 // Handle the fully general expansion by an unknown amount. 4726 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4727 4728 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4729 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4730 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4731 4732 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4733 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4734 4735 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4736 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4737 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4738 4739 Register ResultRegs[2]; 4740 switch (MI.getOpcode()) { 4741 case TargetOpcode::G_SHL: { 4742 // Short: ShAmt < NewBitSize 4743 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4744 4745 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4746 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4747 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4748 4749 // Long: ShAmt >= NewBitSize 4750 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4751 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4752 4753 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4754 auto Hi = MIRBuilder.buildSelect( 4755 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4756 4757 ResultRegs[0] = Lo.getReg(0); 4758 ResultRegs[1] = Hi.getReg(0); 4759 break; 4760 } 4761 case TargetOpcode::G_LSHR: 4762 case TargetOpcode::G_ASHR: { 4763 // Short: ShAmt < NewBitSize 4764 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4765 4766 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4767 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4768 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4769 4770 // Long: ShAmt >= NewBitSize 4771 MachineInstrBuilder HiL; 4772 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4773 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4774 } else { 4775 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4776 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4777 } 4778 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4779 {InH, AmtExcess}); // Lo from Hi part. 4780 4781 auto Lo = MIRBuilder.buildSelect( 4782 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4783 4784 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4785 4786 ResultRegs[0] = Lo.getReg(0); 4787 ResultRegs[1] = Hi.getReg(0); 4788 break; 4789 } 4790 default: 4791 llvm_unreachable("not a shift"); 4792 } 4793 4794 MIRBuilder.buildMerge(DstReg, ResultRegs); 4795 MI.eraseFromParent(); 4796 return Legalized; 4797 } 4798 4799 LegalizerHelper::LegalizeResult 4800 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4801 LLT MoreTy) { 4802 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4803 4804 Observer.changingInstr(MI); 4805 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4806 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4807 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4808 moreElementsVectorSrc(MI, MoreTy, I); 4809 } 4810 4811 MachineBasicBlock &MBB = *MI.getParent(); 4812 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4813 moreElementsVectorDst(MI, MoreTy, 0); 4814 Observer.changedInstr(MI); 4815 return Legalized; 4816 } 4817 4818 LegalizerHelper::LegalizeResult 4819 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4820 LLT MoreTy) { 4821 unsigned Opc = MI.getOpcode(); 4822 switch (Opc) { 4823 case TargetOpcode::G_IMPLICIT_DEF: 4824 case TargetOpcode::G_LOAD: { 4825 if (TypeIdx != 0) 4826 return UnableToLegalize; 4827 Observer.changingInstr(MI); 4828 moreElementsVectorDst(MI, MoreTy, 0); 4829 Observer.changedInstr(MI); 4830 return Legalized; 4831 } 4832 case TargetOpcode::G_STORE: 4833 if (TypeIdx != 0) 4834 return UnableToLegalize; 4835 Observer.changingInstr(MI); 4836 moreElementsVectorSrc(MI, MoreTy, 0); 4837 Observer.changedInstr(MI); 4838 return Legalized; 4839 case TargetOpcode::G_AND: 4840 case TargetOpcode::G_OR: 4841 case TargetOpcode::G_XOR: 4842 case TargetOpcode::G_ADD: 4843 case TargetOpcode::G_SUB: 4844 case TargetOpcode::G_MUL: 4845 case TargetOpcode::G_FADD: 4846 case TargetOpcode::G_FMUL: 4847 case TargetOpcode::G_UADDSAT: 4848 case TargetOpcode::G_USUBSAT: 4849 case TargetOpcode::G_SADDSAT: 4850 case TargetOpcode::G_SSUBSAT: 4851 case TargetOpcode::G_SMIN: 4852 case TargetOpcode::G_SMAX: 4853 case TargetOpcode::G_UMIN: 4854 case TargetOpcode::G_UMAX: 4855 case TargetOpcode::G_FMINNUM: 4856 case TargetOpcode::G_FMAXNUM: 4857 case TargetOpcode::G_FMINNUM_IEEE: 4858 case TargetOpcode::G_FMAXNUM_IEEE: 4859 case TargetOpcode::G_FMINIMUM: 4860 case TargetOpcode::G_FMAXIMUM: { 4861 Observer.changingInstr(MI); 4862 moreElementsVectorSrc(MI, MoreTy, 1); 4863 moreElementsVectorSrc(MI, MoreTy, 2); 4864 moreElementsVectorDst(MI, MoreTy, 0); 4865 Observer.changedInstr(MI); 4866 return Legalized; 4867 } 4868 case TargetOpcode::G_FMA: 4869 case TargetOpcode::G_FSHR: 4870 case TargetOpcode::G_FSHL: { 4871 Observer.changingInstr(MI); 4872 moreElementsVectorSrc(MI, MoreTy, 1); 4873 moreElementsVectorSrc(MI, MoreTy, 2); 4874 moreElementsVectorSrc(MI, MoreTy, 3); 4875 moreElementsVectorDst(MI, MoreTy, 0); 4876 Observer.changedInstr(MI); 4877 return Legalized; 4878 } 4879 case TargetOpcode::G_EXTRACT: 4880 if (TypeIdx != 1) 4881 return UnableToLegalize; 4882 Observer.changingInstr(MI); 4883 moreElementsVectorSrc(MI, MoreTy, 1); 4884 Observer.changedInstr(MI); 4885 return Legalized; 4886 case TargetOpcode::G_INSERT: 4887 case TargetOpcode::G_FREEZE: 4888 case TargetOpcode::G_FNEG: 4889 case TargetOpcode::G_FABS: 4890 case TargetOpcode::G_BSWAP: 4891 case TargetOpcode::G_FCANONICALIZE: 4892 case TargetOpcode::G_SEXT_INREG: 4893 if (TypeIdx != 0) 4894 return UnableToLegalize; 4895 Observer.changingInstr(MI); 4896 moreElementsVectorSrc(MI, MoreTy, 1); 4897 moreElementsVectorDst(MI, MoreTy, 0); 4898 Observer.changedInstr(MI); 4899 return Legalized; 4900 case TargetOpcode::G_SELECT: 4901 if (TypeIdx != 0) 4902 return UnableToLegalize; 4903 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4904 return UnableToLegalize; 4905 4906 Observer.changingInstr(MI); 4907 moreElementsVectorSrc(MI, MoreTy, 2); 4908 moreElementsVectorSrc(MI, MoreTy, 3); 4909 moreElementsVectorDst(MI, MoreTy, 0); 4910 Observer.changedInstr(MI); 4911 return Legalized; 4912 case TargetOpcode::G_UNMERGE_VALUES: 4913 return UnableToLegalize; 4914 case TargetOpcode::G_PHI: 4915 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4916 case TargetOpcode::G_SHUFFLE_VECTOR: 4917 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4918 case TargetOpcode::G_BUILD_VECTOR: { 4919 SmallVector<SrcOp, 8> Elts; 4920 for (auto Op : MI.uses()) { 4921 Elts.push_back(Op.getReg()); 4922 } 4923 4924 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4925 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4926 } 4927 4928 MIRBuilder.buildDeleteTrailingVectorElements( 4929 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4930 MI.eraseFromParent(); 4931 return Legalized; 4932 } 4933 case TargetOpcode::G_TRUNC: { 4934 Observer.changingInstr(MI); 4935 moreElementsVectorSrc(MI, MoreTy, 1); 4936 moreElementsVectorDst(MI, MoreTy, 0); 4937 Observer.changedInstr(MI); 4938 return Legalized; 4939 } 4940 default: 4941 return UnableToLegalize; 4942 } 4943 } 4944 4945 LegalizerHelper::LegalizeResult 4946 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4947 unsigned int TypeIdx, LLT MoreTy) { 4948 if (TypeIdx != 0) 4949 return UnableToLegalize; 4950 4951 Register DstReg = MI.getOperand(0).getReg(); 4952 Register Src1Reg = MI.getOperand(1).getReg(); 4953 Register Src2Reg = MI.getOperand(2).getReg(); 4954 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4955 LLT DstTy = MRI.getType(DstReg); 4956 LLT Src1Ty = MRI.getType(Src1Reg); 4957 LLT Src2Ty = MRI.getType(Src2Reg); 4958 unsigned NumElts = DstTy.getNumElements(); 4959 unsigned WidenNumElts = MoreTy.getNumElements(); 4960 4961 // Expect a canonicalized shuffle. 4962 if (DstTy != Src1Ty || DstTy != Src2Ty) 4963 return UnableToLegalize; 4964 4965 moreElementsVectorSrc(MI, MoreTy, 1); 4966 moreElementsVectorSrc(MI, MoreTy, 2); 4967 4968 // Adjust mask based on new input vector length. 4969 SmallVector<int, 16> NewMask; 4970 for (unsigned I = 0; I != NumElts; ++I) { 4971 int Idx = Mask[I]; 4972 if (Idx < static_cast<int>(NumElts)) 4973 NewMask.push_back(Idx); 4974 else 4975 NewMask.push_back(Idx - NumElts + WidenNumElts); 4976 } 4977 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4978 NewMask.push_back(-1); 4979 moreElementsVectorDst(MI, MoreTy, 0); 4980 MIRBuilder.setInstrAndDebugLoc(MI); 4981 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4982 MI.getOperand(1).getReg(), 4983 MI.getOperand(2).getReg(), NewMask); 4984 MI.eraseFromParent(); 4985 return Legalized; 4986 } 4987 4988 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4989 ArrayRef<Register> Src1Regs, 4990 ArrayRef<Register> Src2Regs, 4991 LLT NarrowTy) { 4992 MachineIRBuilder &B = MIRBuilder; 4993 unsigned SrcParts = Src1Regs.size(); 4994 unsigned DstParts = DstRegs.size(); 4995 4996 unsigned DstIdx = 0; // Low bits of the result. 4997 Register FactorSum = 4998 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4999 DstRegs[DstIdx] = FactorSum; 5000 5001 unsigned CarrySumPrevDstIdx; 5002 SmallVector<Register, 4> Factors; 5003 5004 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5005 // Collect low parts of muls for DstIdx. 5006 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5007 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5008 MachineInstrBuilder Mul = 5009 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5010 Factors.push_back(Mul.getReg(0)); 5011 } 5012 // Collect high parts of muls from previous DstIdx. 5013 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5014 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5015 MachineInstrBuilder Umulh = 5016 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5017 Factors.push_back(Umulh.getReg(0)); 5018 } 5019 // Add CarrySum from additions calculated for previous DstIdx. 5020 if (DstIdx != 1) { 5021 Factors.push_back(CarrySumPrevDstIdx); 5022 } 5023 5024 Register CarrySum; 5025 // Add all factors and accumulate all carries into CarrySum. 5026 if (DstIdx != DstParts - 1) { 5027 MachineInstrBuilder Uaddo = 5028 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5029 FactorSum = Uaddo.getReg(0); 5030 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5031 for (unsigned i = 2; i < Factors.size(); ++i) { 5032 MachineInstrBuilder Uaddo = 5033 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5034 FactorSum = Uaddo.getReg(0); 5035 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5036 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5037 } 5038 } else { 5039 // Since value for the next index is not calculated, neither is CarrySum. 5040 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5041 for (unsigned i = 2; i < Factors.size(); ++i) 5042 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5043 } 5044 5045 CarrySumPrevDstIdx = CarrySum; 5046 DstRegs[DstIdx] = FactorSum; 5047 Factors.clear(); 5048 } 5049 } 5050 5051 LegalizerHelper::LegalizeResult 5052 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5053 LLT NarrowTy) { 5054 if (TypeIdx != 0) 5055 return UnableToLegalize; 5056 5057 Register DstReg = MI.getOperand(0).getReg(); 5058 LLT DstType = MRI.getType(DstReg); 5059 // FIXME: add support for vector types 5060 if (DstType.isVector()) 5061 return UnableToLegalize; 5062 5063 unsigned Opcode = MI.getOpcode(); 5064 unsigned OpO, OpE, OpF; 5065 switch (Opcode) { 5066 case TargetOpcode::G_SADDO: 5067 case TargetOpcode::G_SADDE: 5068 case TargetOpcode::G_UADDO: 5069 case TargetOpcode::G_UADDE: 5070 case TargetOpcode::G_ADD: 5071 OpO = TargetOpcode::G_UADDO; 5072 OpE = TargetOpcode::G_UADDE; 5073 OpF = TargetOpcode::G_UADDE; 5074 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5075 OpF = TargetOpcode::G_SADDE; 5076 break; 5077 case TargetOpcode::G_SSUBO: 5078 case TargetOpcode::G_SSUBE: 5079 case TargetOpcode::G_USUBO: 5080 case TargetOpcode::G_USUBE: 5081 case TargetOpcode::G_SUB: 5082 OpO = TargetOpcode::G_USUBO; 5083 OpE = TargetOpcode::G_USUBE; 5084 OpF = TargetOpcode::G_USUBE; 5085 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5086 OpF = TargetOpcode::G_SSUBE; 5087 break; 5088 default: 5089 llvm_unreachable("Unexpected add/sub opcode!"); 5090 } 5091 5092 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5093 unsigned NumDefs = MI.getNumExplicitDefs(); 5094 Register Src1 = MI.getOperand(NumDefs).getReg(); 5095 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5096 Register CarryDst, CarryIn; 5097 if (NumDefs == 2) 5098 CarryDst = MI.getOperand(1).getReg(); 5099 if (MI.getNumOperands() == NumDefs + 3) 5100 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5101 5102 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5103 LLT LeftoverTy, DummyTy; 5104 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5105 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5106 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5107 5108 int NarrowParts = Src1Regs.size(); 5109 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5110 Src1Regs.push_back(Src1Left[I]); 5111 Src2Regs.push_back(Src2Left[I]); 5112 } 5113 DstRegs.reserve(Src1Regs.size()); 5114 5115 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5116 Register DstReg = 5117 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5118 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5119 // Forward the final carry-out to the destination register 5120 if (i == e - 1 && CarryDst) 5121 CarryOut = CarryDst; 5122 5123 if (!CarryIn) { 5124 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5125 {Src1Regs[i], Src2Regs[i]}); 5126 } else if (i == e - 1) { 5127 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5128 {Src1Regs[i], Src2Regs[i], CarryIn}); 5129 } else { 5130 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5131 {Src1Regs[i], Src2Regs[i], CarryIn}); 5132 } 5133 5134 DstRegs.push_back(DstReg); 5135 CarryIn = CarryOut; 5136 } 5137 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5138 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5139 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5140 5141 MI.eraseFromParent(); 5142 return Legalized; 5143 } 5144 5145 LegalizerHelper::LegalizeResult 5146 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5147 Register DstReg = MI.getOperand(0).getReg(); 5148 Register Src1 = MI.getOperand(1).getReg(); 5149 Register Src2 = MI.getOperand(2).getReg(); 5150 5151 LLT Ty = MRI.getType(DstReg); 5152 if (Ty.isVector()) 5153 return UnableToLegalize; 5154 5155 unsigned Size = Ty.getSizeInBits(); 5156 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5157 if (Size % NarrowSize != 0) 5158 return UnableToLegalize; 5159 5160 unsigned NumParts = Size / NarrowSize; 5161 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5162 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5163 5164 SmallVector<Register, 2> Src1Parts, Src2Parts; 5165 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5166 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5167 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5168 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5169 5170 // Take only high half of registers if this is high mul. 5171 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5172 MIRBuilder.buildMerge(DstReg, DstRegs); 5173 MI.eraseFromParent(); 5174 return Legalized; 5175 } 5176 5177 LegalizerHelper::LegalizeResult 5178 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5179 LLT NarrowTy) { 5180 if (TypeIdx != 0) 5181 return UnableToLegalize; 5182 5183 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5184 5185 Register Src = MI.getOperand(1).getReg(); 5186 LLT SrcTy = MRI.getType(Src); 5187 5188 // If all finite floats fit into the narrowed integer type, we can just swap 5189 // out the result type. This is practically only useful for conversions from 5190 // half to at least 16-bits, so just handle the one case. 5191 if (SrcTy.getScalarType() != LLT::scalar(16) || 5192 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5193 return UnableToLegalize; 5194 5195 Observer.changingInstr(MI); 5196 narrowScalarDst(MI, NarrowTy, 0, 5197 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5198 Observer.changedInstr(MI); 5199 return Legalized; 5200 } 5201 5202 LegalizerHelper::LegalizeResult 5203 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5204 LLT NarrowTy) { 5205 if (TypeIdx != 1) 5206 return UnableToLegalize; 5207 5208 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5209 5210 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5211 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5212 // NarrowSize. 5213 if (SizeOp1 % NarrowSize != 0) 5214 return UnableToLegalize; 5215 int NumParts = SizeOp1 / NarrowSize; 5216 5217 SmallVector<Register, 2> SrcRegs, DstRegs; 5218 SmallVector<uint64_t, 2> Indexes; 5219 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5220 5221 Register OpReg = MI.getOperand(0).getReg(); 5222 uint64_t OpStart = MI.getOperand(2).getImm(); 5223 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5224 for (int i = 0; i < NumParts; ++i) { 5225 unsigned SrcStart = i * NarrowSize; 5226 5227 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5228 // No part of the extract uses this subregister, ignore it. 5229 continue; 5230 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5231 // The entire subregister is extracted, forward the value. 5232 DstRegs.push_back(SrcRegs[i]); 5233 continue; 5234 } 5235 5236 // OpSegStart is where this destination segment would start in OpReg if it 5237 // extended infinitely in both directions. 5238 int64_t ExtractOffset; 5239 uint64_t SegSize; 5240 if (OpStart < SrcStart) { 5241 ExtractOffset = 0; 5242 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5243 } else { 5244 ExtractOffset = OpStart - SrcStart; 5245 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5246 } 5247 5248 Register SegReg = SrcRegs[i]; 5249 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5250 // A genuine extract is needed. 5251 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5252 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5253 } 5254 5255 DstRegs.push_back(SegReg); 5256 } 5257 5258 Register DstReg = MI.getOperand(0).getReg(); 5259 if (MRI.getType(DstReg).isVector()) 5260 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5261 else if (DstRegs.size() > 1) 5262 MIRBuilder.buildMerge(DstReg, DstRegs); 5263 else 5264 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5265 MI.eraseFromParent(); 5266 return Legalized; 5267 } 5268 5269 LegalizerHelper::LegalizeResult 5270 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5271 LLT NarrowTy) { 5272 // FIXME: Don't know how to handle secondary types yet. 5273 if (TypeIdx != 0) 5274 return UnableToLegalize; 5275 5276 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5277 SmallVector<uint64_t, 2> Indexes; 5278 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5279 LLT LeftoverTy; 5280 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5281 LeftoverRegs); 5282 5283 for (Register Reg : LeftoverRegs) 5284 SrcRegs.push_back(Reg); 5285 5286 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5287 Register OpReg = MI.getOperand(2).getReg(); 5288 uint64_t OpStart = MI.getOperand(3).getImm(); 5289 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5290 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5291 unsigned DstStart = I * NarrowSize; 5292 5293 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5294 // The entire subregister is defined by this insert, forward the new 5295 // value. 5296 DstRegs.push_back(OpReg); 5297 continue; 5298 } 5299 5300 Register SrcReg = SrcRegs[I]; 5301 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5302 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5303 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5304 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5305 } 5306 5307 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5308 // No part of the insert affects this subregister, forward the original. 5309 DstRegs.push_back(SrcReg); 5310 continue; 5311 } 5312 5313 // OpSegStart is where this destination segment would start in OpReg if it 5314 // extended infinitely in both directions. 5315 int64_t ExtractOffset, InsertOffset; 5316 uint64_t SegSize; 5317 if (OpStart < DstStart) { 5318 InsertOffset = 0; 5319 ExtractOffset = DstStart - OpStart; 5320 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5321 } else { 5322 InsertOffset = OpStart - DstStart; 5323 ExtractOffset = 0; 5324 SegSize = 5325 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5326 } 5327 5328 Register SegReg = OpReg; 5329 if (ExtractOffset != 0 || SegSize != OpSize) { 5330 // A genuine extract is needed. 5331 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5332 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5333 } 5334 5335 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5336 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5337 DstRegs.push_back(DstReg); 5338 } 5339 5340 uint64_t WideSize = DstRegs.size() * NarrowSize; 5341 Register DstReg = MI.getOperand(0).getReg(); 5342 if (WideSize > RegTy.getSizeInBits()) { 5343 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5344 MIRBuilder.buildMerge(MergeReg, DstRegs); 5345 MIRBuilder.buildTrunc(DstReg, MergeReg); 5346 } else 5347 MIRBuilder.buildMerge(DstReg, DstRegs); 5348 5349 MI.eraseFromParent(); 5350 return Legalized; 5351 } 5352 5353 LegalizerHelper::LegalizeResult 5354 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5355 LLT NarrowTy) { 5356 Register DstReg = MI.getOperand(0).getReg(); 5357 LLT DstTy = MRI.getType(DstReg); 5358 5359 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5360 5361 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5362 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5363 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5364 LLT LeftoverTy; 5365 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5366 Src0Regs, Src0LeftoverRegs)) 5367 return UnableToLegalize; 5368 5369 LLT Unused; 5370 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5371 Src1Regs, Src1LeftoverRegs)) 5372 llvm_unreachable("inconsistent extractParts result"); 5373 5374 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5375 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5376 {Src0Regs[I], Src1Regs[I]}); 5377 DstRegs.push_back(Inst.getReg(0)); 5378 } 5379 5380 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5381 auto Inst = MIRBuilder.buildInstr( 5382 MI.getOpcode(), 5383 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5384 DstLeftoverRegs.push_back(Inst.getReg(0)); 5385 } 5386 5387 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5388 LeftoverTy, DstLeftoverRegs); 5389 5390 MI.eraseFromParent(); 5391 return Legalized; 5392 } 5393 5394 LegalizerHelper::LegalizeResult 5395 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5396 LLT NarrowTy) { 5397 if (TypeIdx != 0) 5398 return UnableToLegalize; 5399 5400 Register DstReg = MI.getOperand(0).getReg(); 5401 Register SrcReg = MI.getOperand(1).getReg(); 5402 5403 LLT DstTy = MRI.getType(DstReg); 5404 if (DstTy.isVector()) 5405 return UnableToLegalize; 5406 5407 SmallVector<Register, 8> Parts; 5408 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5409 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5410 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5411 5412 MI.eraseFromParent(); 5413 return Legalized; 5414 } 5415 5416 LegalizerHelper::LegalizeResult 5417 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5418 LLT NarrowTy) { 5419 if (TypeIdx != 0) 5420 return UnableToLegalize; 5421 5422 Register CondReg = MI.getOperand(1).getReg(); 5423 LLT CondTy = MRI.getType(CondReg); 5424 if (CondTy.isVector()) // TODO: Handle vselect 5425 return UnableToLegalize; 5426 5427 Register DstReg = MI.getOperand(0).getReg(); 5428 LLT DstTy = MRI.getType(DstReg); 5429 5430 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5431 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5432 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5433 LLT LeftoverTy; 5434 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5435 Src1Regs, Src1LeftoverRegs)) 5436 return UnableToLegalize; 5437 5438 LLT Unused; 5439 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5440 Src2Regs, Src2LeftoverRegs)) 5441 llvm_unreachable("inconsistent extractParts result"); 5442 5443 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5444 auto Select = MIRBuilder.buildSelect(NarrowTy, 5445 CondReg, Src1Regs[I], Src2Regs[I]); 5446 DstRegs.push_back(Select.getReg(0)); 5447 } 5448 5449 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5450 auto Select = MIRBuilder.buildSelect( 5451 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5452 DstLeftoverRegs.push_back(Select.getReg(0)); 5453 } 5454 5455 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5456 LeftoverTy, DstLeftoverRegs); 5457 5458 MI.eraseFromParent(); 5459 return Legalized; 5460 } 5461 5462 LegalizerHelper::LegalizeResult 5463 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5464 LLT NarrowTy) { 5465 if (TypeIdx != 1) 5466 return UnableToLegalize; 5467 5468 Register DstReg = MI.getOperand(0).getReg(); 5469 Register SrcReg = MI.getOperand(1).getReg(); 5470 LLT DstTy = MRI.getType(DstReg); 5471 LLT SrcTy = MRI.getType(SrcReg); 5472 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5473 5474 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5475 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5476 5477 MachineIRBuilder &B = MIRBuilder; 5478 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5479 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5480 auto C_0 = B.buildConstant(NarrowTy, 0); 5481 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5482 UnmergeSrc.getReg(1), C_0); 5483 auto LoCTLZ = IsUndef ? 5484 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5485 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5486 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5487 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5488 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5489 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5490 5491 MI.eraseFromParent(); 5492 return Legalized; 5493 } 5494 5495 return UnableToLegalize; 5496 } 5497 5498 LegalizerHelper::LegalizeResult 5499 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5500 LLT NarrowTy) { 5501 if (TypeIdx != 1) 5502 return UnableToLegalize; 5503 5504 Register DstReg = MI.getOperand(0).getReg(); 5505 Register SrcReg = MI.getOperand(1).getReg(); 5506 LLT DstTy = MRI.getType(DstReg); 5507 LLT SrcTy = MRI.getType(SrcReg); 5508 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5509 5510 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5511 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5512 5513 MachineIRBuilder &B = MIRBuilder; 5514 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5515 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5516 auto C_0 = B.buildConstant(NarrowTy, 0); 5517 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5518 UnmergeSrc.getReg(0), C_0); 5519 auto HiCTTZ = IsUndef ? 5520 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5521 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5522 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5523 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5524 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5525 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5526 5527 MI.eraseFromParent(); 5528 return Legalized; 5529 } 5530 5531 return UnableToLegalize; 5532 } 5533 5534 LegalizerHelper::LegalizeResult 5535 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5536 LLT NarrowTy) { 5537 if (TypeIdx != 1) 5538 return UnableToLegalize; 5539 5540 Register DstReg = MI.getOperand(0).getReg(); 5541 LLT DstTy = MRI.getType(DstReg); 5542 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5543 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5544 5545 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5546 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5547 5548 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5549 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5550 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5551 5552 MI.eraseFromParent(); 5553 return Legalized; 5554 } 5555 5556 return UnableToLegalize; 5557 } 5558 5559 LegalizerHelper::LegalizeResult 5560 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5561 unsigned Opc = MI.getOpcode(); 5562 const auto &TII = MIRBuilder.getTII(); 5563 auto isSupported = [this](const LegalityQuery &Q) { 5564 auto QAction = LI.getAction(Q).Action; 5565 return QAction == Legal || QAction == Libcall || QAction == Custom; 5566 }; 5567 switch (Opc) { 5568 default: 5569 return UnableToLegalize; 5570 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5571 // This trivially expands to CTLZ. 5572 Observer.changingInstr(MI); 5573 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5574 Observer.changedInstr(MI); 5575 return Legalized; 5576 } 5577 case TargetOpcode::G_CTLZ: { 5578 Register DstReg = MI.getOperand(0).getReg(); 5579 Register SrcReg = MI.getOperand(1).getReg(); 5580 LLT DstTy = MRI.getType(DstReg); 5581 LLT SrcTy = MRI.getType(SrcReg); 5582 unsigned Len = SrcTy.getSizeInBits(); 5583 5584 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5585 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5586 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5587 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5588 auto ICmp = MIRBuilder.buildICmp( 5589 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5590 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5591 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5592 MI.eraseFromParent(); 5593 return Legalized; 5594 } 5595 // for now, we do this: 5596 // NewLen = NextPowerOf2(Len); 5597 // x = x | (x >> 1); 5598 // x = x | (x >> 2); 5599 // ... 5600 // x = x | (x >>16); 5601 // x = x | (x >>32); // for 64-bit input 5602 // Upto NewLen/2 5603 // return Len - popcount(x); 5604 // 5605 // Ref: "Hacker's Delight" by Henry Warren 5606 Register Op = SrcReg; 5607 unsigned NewLen = PowerOf2Ceil(Len); 5608 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5609 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5610 auto MIBOp = MIRBuilder.buildOr( 5611 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5612 Op = MIBOp.getReg(0); 5613 } 5614 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5615 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5616 MIBPop); 5617 MI.eraseFromParent(); 5618 return Legalized; 5619 } 5620 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5621 // This trivially expands to CTTZ. 5622 Observer.changingInstr(MI); 5623 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5624 Observer.changedInstr(MI); 5625 return Legalized; 5626 } 5627 case TargetOpcode::G_CTTZ: { 5628 Register DstReg = MI.getOperand(0).getReg(); 5629 Register SrcReg = MI.getOperand(1).getReg(); 5630 LLT DstTy = MRI.getType(DstReg); 5631 LLT SrcTy = MRI.getType(SrcReg); 5632 5633 unsigned Len = SrcTy.getSizeInBits(); 5634 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5635 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5636 // zero. 5637 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5638 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5639 auto ICmp = MIRBuilder.buildICmp( 5640 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5641 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5642 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5643 MI.eraseFromParent(); 5644 return Legalized; 5645 } 5646 // for now, we use: { return popcount(~x & (x - 1)); } 5647 // unless the target has ctlz but not ctpop, in which case we use: 5648 // { return 32 - nlz(~x & (x-1)); } 5649 // Ref: "Hacker's Delight" by Henry Warren 5650 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5651 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5652 auto MIBTmp = MIRBuilder.buildAnd( 5653 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5654 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5655 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5656 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5657 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5658 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5659 MI.eraseFromParent(); 5660 return Legalized; 5661 } 5662 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5663 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5664 return Legalized; 5665 } 5666 case TargetOpcode::G_CTPOP: { 5667 Register SrcReg = MI.getOperand(1).getReg(); 5668 LLT Ty = MRI.getType(SrcReg); 5669 unsigned Size = Ty.getSizeInBits(); 5670 MachineIRBuilder &B = MIRBuilder; 5671 5672 // Count set bits in blocks of 2 bits. Default approach would be 5673 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5674 // We use following formula instead: 5675 // B2Count = val - { (val >> 1) & 0x55555555 } 5676 // since it gives same result in blocks of 2 with one instruction less. 5677 auto C_1 = B.buildConstant(Ty, 1); 5678 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5679 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5680 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5681 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5682 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5683 5684 // In order to get count in blocks of 4 add values from adjacent block of 2. 5685 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5686 auto C_2 = B.buildConstant(Ty, 2); 5687 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5688 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5689 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5690 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5691 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5692 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5693 5694 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5695 // addition since count value sits in range {0,...,8} and 4 bits are enough 5696 // to hold such binary values. After addition high 4 bits still hold count 5697 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5698 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5699 auto C_4 = B.buildConstant(Ty, 4); 5700 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5701 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5702 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5703 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5704 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5705 5706 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5707 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5708 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5709 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5710 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5711 5712 // Shift count result from 8 high bits to low bits. 5713 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5714 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5715 5716 MI.eraseFromParent(); 5717 return Legalized; 5718 } 5719 } 5720 } 5721 5722 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5723 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5724 Register Reg, unsigned BW) { 5725 return matchUnaryPredicate( 5726 MRI, Reg, 5727 [=](const Constant *C) { 5728 // Null constant here means an undef. 5729 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5730 return !CI || CI->getValue().urem(BW) != 0; 5731 }, 5732 /*AllowUndefs*/ true); 5733 } 5734 5735 LegalizerHelper::LegalizeResult 5736 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5737 Register Dst = MI.getOperand(0).getReg(); 5738 Register X = MI.getOperand(1).getReg(); 5739 Register Y = MI.getOperand(2).getReg(); 5740 Register Z = MI.getOperand(3).getReg(); 5741 LLT Ty = MRI.getType(Dst); 5742 LLT ShTy = MRI.getType(Z); 5743 5744 unsigned BW = Ty.getScalarSizeInBits(); 5745 5746 if (!isPowerOf2_32(BW)) 5747 return UnableToLegalize; 5748 5749 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5750 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5751 5752 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5753 // fshl X, Y, Z -> fshr X, Y, -Z 5754 // fshr X, Y, Z -> fshl X, Y, -Z 5755 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5756 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5757 } else { 5758 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5759 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5760 auto One = MIRBuilder.buildConstant(ShTy, 1); 5761 if (IsFSHL) { 5762 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5763 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5764 } else { 5765 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5766 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5767 } 5768 5769 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5770 } 5771 5772 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5773 MI.eraseFromParent(); 5774 return Legalized; 5775 } 5776 5777 LegalizerHelper::LegalizeResult 5778 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5779 Register Dst = MI.getOperand(0).getReg(); 5780 Register X = MI.getOperand(1).getReg(); 5781 Register Y = MI.getOperand(2).getReg(); 5782 Register Z = MI.getOperand(3).getReg(); 5783 LLT Ty = MRI.getType(Dst); 5784 LLT ShTy = MRI.getType(Z); 5785 5786 const unsigned BW = Ty.getScalarSizeInBits(); 5787 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5788 5789 Register ShX, ShY; 5790 Register ShAmt, InvShAmt; 5791 5792 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5793 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5794 // fshl: X << C | Y >> (BW - C) 5795 // fshr: X << (BW - C) | Y >> C 5796 // where C = Z % BW is not zero 5797 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5798 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5799 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5800 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5801 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5802 } else { 5803 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5804 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5805 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5806 if (isPowerOf2_32(BW)) { 5807 // Z % BW -> Z & (BW - 1) 5808 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5809 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5810 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5811 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5812 } else { 5813 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5814 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5815 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5816 } 5817 5818 auto One = MIRBuilder.buildConstant(ShTy, 1); 5819 if (IsFSHL) { 5820 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5821 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5822 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5823 } else { 5824 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5825 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5826 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5827 } 5828 } 5829 5830 MIRBuilder.buildOr(Dst, ShX, ShY); 5831 MI.eraseFromParent(); 5832 return Legalized; 5833 } 5834 5835 LegalizerHelper::LegalizeResult 5836 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5837 // These operations approximately do the following (while avoiding undefined 5838 // shifts by BW): 5839 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5840 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5841 Register Dst = MI.getOperand(0).getReg(); 5842 LLT Ty = MRI.getType(Dst); 5843 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5844 5845 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5846 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5847 5848 // TODO: Use smarter heuristic that accounts for vector legalization. 5849 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5850 return lowerFunnelShiftAsShifts(MI); 5851 5852 // This only works for powers of 2, fallback to shifts if it fails. 5853 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5854 if (Result == UnableToLegalize) 5855 return lowerFunnelShiftAsShifts(MI); 5856 return Result; 5857 } 5858 5859 LegalizerHelper::LegalizeResult 5860 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5861 Register Dst = MI.getOperand(0).getReg(); 5862 Register Src = MI.getOperand(1).getReg(); 5863 Register Amt = MI.getOperand(2).getReg(); 5864 LLT AmtTy = MRI.getType(Amt); 5865 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5866 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5867 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5868 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5869 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5870 MI.eraseFromParent(); 5871 return Legalized; 5872 } 5873 5874 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5875 Register Dst = MI.getOperand(0).getReg(); 5876 Register Src = MI.getOperand(1).getReg(); 5877 Register Amt = MI.getOperand(2).getReg(); 5878 LLT DstTy = MRI.getType(Dst); 5879 LLT SrcTy = MRI.getType(Src); 5880 LLT AmtTy = MRI.getType(Amt); 5881 5882 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5883 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5884 5885 MIRBuilder.setInstrAndDebugLoc(MI); 5886 5887 // If a rotate in the other direction is supported, use it. 5888 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5889 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5890 isPowerOf2_32(EltSizeInBits)) 5891 return lowerRotateWithReverseRotate(MI); 5892 5893 // If a funnel shift is supported, use it. 5894 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5895 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5896 bool IsFShLegal = false; 5897 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5898 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5899 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5900 Register R3) { 5901 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5902 MI.eraseFromParent(); 5903 return Legalized; 5904 }; 5905 // If a funnel shift in the other direction is supported, use it. 5906 if (IsFShLegal) { 5907 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5908 } else if (isPowerOf2_32(EltSizeInBits)) { 5909 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5910 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5911 } 5912 } 5913 5914 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5915 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5916 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5917 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5918 Register ShVal; 5919 Register RevShiftVal; 5920 if (isPowerOf2_32(EltSizeInBits)) { 5921 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5922 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5923 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5924 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5925 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5926 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5927 RevShiftVal = 5928 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5929 } else { 5930 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5931 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5932 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5933 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5934 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5935 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5936 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5937 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5938 RevShiftVal = 5939 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5940 } 5941 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5942 MI.eraseFromParent(); 5943 return Legalized; 5944 } 5945 5946 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5947 // representation. 5948 LegalizerHelper::LegalizeResult 5949 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5950 Register Dst = MI.getOperand(0).getReg(); 5951 Register Src = MI.getOperand(1).getReg(); 5952 const LLT S64 = LLT::scalar(64); 5953 const LLT S32 = LLT::scalar(32); 5954 const LLT S1 = LLT::scalar(1); 5955 5956 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5957 5958 // unsigned cul2f(ulong u) { 5959 // uint lz = clz(u); 5960 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5961 // u = (u << lz) & 0x7fffffffffffffffUL; 5962 // ulong t = u & 0xffffffffffUL; 5963 // uint v = (e << 23) | (uint)(u >> 40); 5964 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5965 // return as_float(v + r); 5966 // } 5967 5968 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5969 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5970 5971 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5972 5973 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5974 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5975 5976 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5977 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5978 5979 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5980 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5981 5982 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5983 5984 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5985 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5986 5987 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5988 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5989 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5990 5991 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5992 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5993 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5994 auto One = MIRBuilder.buildConstant(S32, 1); 5995 5996 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5997 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5998 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5999 MIRBuilder.buildAdd(Dst, V, R); 6000 6001 MI.eraseFromParent(); 6002 return Legalized; 6003 } 6004 6005 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6006 Register Dst = MI.getOperand(0).getReg(); 6007 Register Src = MI.getOperand(1).getReg(); 6008 LLT DstTy = MRI.getType(Dst); 6009 LLT SrcTy = MRI.getType(Src); 6010 6011 if (SrcTy == LLT::scalar(1)) { 6012 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6013 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6014 MIRBuilder.buildSelect(Dst, Src, True, False); 6015 MI.eraseFromParent(); 6016 return Legalized; 6017 } 6018 6019 if (SrcTy != LLT::scalar(64)) 6020 return UnableToLegalize; 6021 6022 if (DstTy == LLT::scalar(32)) { 6023 // TODO: SelectionDAG has several alternative expansions to port which may 6024 // be more reasonble depending on the available instructions. If a target 6025 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6026 // intermediate type, this is probably worse. 6027 return lowerU64ToF32BitOps(MI); 6028 } 6029 6030 return UnableToLegalize; 6031 } 6032 6033 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6034 Register Dst = MI.getOperand(0).getReg(); 6035 Register Src = MI.getOperand(1).getReg(); 6036 LLT DstTy = MRI.getType(Dst); 6037 LLT SrcTy = MRI.getType(Src); 6038 6039 const LLT S64 = LLT::scalar(64); 6040 const LLT S32 = LLT::scalar(32); 6041 const LLT S1 = LLT::scalar(1); 6042 6043 if (SrcTy == S1) { 6044 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6045 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6046 MIRBuilder.buildSelect(Dst, Src, True, False); 6047 MI.eraseFromParent(); 6048 return Legalized; 6049 } 6050 6051 if (SrcTy != S64) 6052 return UnableToLegalize; 6053 6054 if (DstTy == S32) { 6055 // signed cl2f(long l) { 6056 // long s = l >> 63; 6057 // float r = cul2f((l + s) ^ s); 6058 // return s ? -r : r; 6059 // } 6060 Register L = Src; 6061 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6062 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6063 6064 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6065 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6066 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6067 6068 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6069 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6070 MIRBuilder.buildConstant(S64, 0)); 6071 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6072 MI.eraseFromParent(); 6073 return Legalized; 6074 } 6075 6076 return UnableToLegalize; 6077 } 6078 6079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6080 Register Dst = MI.getOperand(0).getReg(); 6081 Register Src = MI.getOperand(1).getReg(); 6082 LLT DstTy = MRI.getType(Dst); 6083 LLT SrcTy = MRI.getType(Src); 6084 const LLT S64 = LLT::scalar(64); 6085 const LLT S32 = LLT::scalar(32); 6086 6087 if (SrcTy != S64 && SrcTy != S32) 6088 return UnableToLegalize; 6089 if (DstTy != S32 && DstTy != S64) 6090 return UnableToLegalize; 6091 6092 // FPTOSI gives same result as FPTOUI for positive signed integers. 6093 // FPTOUI needs to deal with fp values that convert to unsigned integers 6094 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6095 6096 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6097 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6098 : APFloat::IEEEdouble(), 6099 APInt::getZero(SrcTy.getSizeInBits())); 6100 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6101 6102 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6103 6104 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6105 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6106 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6107 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6108 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6109 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6110 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6111 6112 const LLT S1 = LLT::scalar(1); 6113 6114 MachineInstrBuilder FCMP = 6115 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6116 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6117 6118 MI.eraseFromParent(); 6119 return Legalized; 6120 } 6121 6122 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6123 Register Dst = MI.getOperand(0).getReg(); 6124 Register Src = MI.getOperand(1).getReg(); 6125 LLT DstTy = MRI.getType(Dst); 6126 LLT SrcTy = MRI.getType(Src); 6127 const LLT S64 = LLT::scalar(64); 6128 const LLT S32 = LLT::scalar(32); 6129 6130 // FIXME: Only f32 to i64 conversions are supported. 6131 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6132 return UnableToLegalize; 6133 6134 // Expand f32 -> i64 conversion 6135 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6136 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6137 6138 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6139 6140 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6141 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6142 6143 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6144 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6145 6146 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6147 APInt::getSignMask(SrcEltBits)); 6148 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6149 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6150 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6151 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6152 6153 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6154 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6155 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6156 6157 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6158 R = MIRBuilder.buildZExt(DstTy, R); 6159 6160 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6161 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6162 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6163 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6164 6165 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6166 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6167 6168 const LLT S1 = LLT::scalar(1); 6169 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6170 S1, Exponent, ExponentLoBit); 6171 6172 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6173 6174 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6175 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6176 6177 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6178 6179 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6180 S1, Exponent, ZeroSrcTy); 6181 6182 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6183 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6184 6185 MI.eraseFromParent(); 6186 return Legalized; 6187 } 6188 6189 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6190 LegalizerHelper::LegalizeResult 6191 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6192 Register Dst = MI.getOperand(0).getReg(); 6193 Register Src = MI.getOperand(1).getReg(); 6194 6195 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6196 return UnableToLegalize; 6197 6198 const unsigned ExpMask = 0x7ff; 6199 const unsigned ExpBiasf64 = 1023; 6200 const unsigned ExpBiasf16 = 15; 6201 const LLT S32 = LLT::scalar(32); 6202 const LLT S1 = LLT::scalar(1); 6203 6204 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6205 Register U = Unmerge.getReg(0); 6206 Register UH = Unmerge.getReg(1); 6207 6208 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6209 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6210 6211 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6212 // add the f16 bias (15) to get the biased exponent for the f16 format. 6213 E = MIRBuilder.buildAdd( 6214 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6215 6216 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6217 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6218 6219 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6220 MIRBuilder.buildConstant(S32, 0x1ff)); 6221 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6222 6223 auto Zero = MIRBuilder.buildConstant(S32, 0); 6224 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6225 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6226 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6227 6228 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6229 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6230 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6231 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6232 6233 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6234 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6235 6236 // N = M | (E << 12); 6237 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6238 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6239 6240 // B = clamp(1-E, 0, 13); 6241 auto One = MIRBuilder.buildConstant(S32, 1); 6242 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6243 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6244 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6245 6246 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6247 MIRBuilder.buildConstant(S32, 0x1000)); 6248 6249 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6250 auto D0 = MIRBuilder.buildShl(S32, D, B); 6251 6252 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6253 D0, SigSetHigh); 6254 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6255 D = MIRBuilder.buildOr(S32, D, D1); 6256 6257 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6258 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6259 6260 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6261 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6262 6263 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6264 MIRBuilder.buildConstant(S32, 3)); 6265 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6266 6267 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6268 MIRBuilder.buildConstant(S32, 5)); 6269 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6270 6271 V1 = MIRBuilder.buildOr(S32, V0, V1); 6272 V = MIRBuilder.buildAdd(S32, V, V1); 6273 6274 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6275 E, MIRBuilder.buildConstant(S32, 30)); 6276 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6277 MIRBuilder.buildConstant(S32, 0x7c00), V); 6278 6279 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6280 E, MIRBuilder.buildConstant(S32, 1039)); 6281 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6282 6283 // Extract the sign bit. 6284 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6285 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6286 6287 // Insert the sign bit 6288 V = MIRBuilder.buildOr(S32, Sign, V); 6289 6290 MIRBuilder.buildTrunc(Dst, V); 6291 MI.eraseFromParent(); 6292 return Legalized; 6293 } 6294 6295 LegalizerHelper::LegalizeResult 6296 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6297 Register Dst = MI.getOperand(0).getReg(); 6298 Register Src = MI.getOperand(1).getReg(); 6299 6300 LLT DstTy = MRI.getType(Dst); 6301 LLT SrcTy = MRI.getType(Src); 6302 const LLT S64 = LLT::scalar(64); 6303 const LLT S16 = LLT::scalar(16); 6304 6305 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6306 return lowerFPTRUNC_F64_TO_F16(MI); 6307 6308 return UnableToLegalize; 6309 } 6310 6311 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6312 // multiplication tree. 6313 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6314 Register Dst = MI.getOperand(0).getReg(); 6315 Register Src0 = MI.getOperand(1).getReg(); 6316 Register Src1 = MI.getOperand(2).getReg(); 6317 LLT Ty = MRI.getType(Dst); 6318 6319 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6320 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6321 MI.eraseFromParent(); 6322 return Legalized; 6323 } 6324 6325 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6326 switch (Opc) { 6327 case TargetOpcode::G_SMIN: 6328 return CmpInst::ICMP_SLT; 6329 case TargetOpcode::G_SMAX: 6330 return CmpInst::ICMP_SGT; 6331 case TargetOpcode::G_UMIN: 6332 return CmpInst::ICMP_ULT; 6333 case TargetOpcode::G_UMAX: 6334 return CmpInst::ICMP_UGT; 6335 default: 6336 llvm_unreachable("not in integer min/max"); 6337 } 6338 } 6339 6340 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6341 Register Dst = MI.getOperand(0).getReg(); 6342 Register Src0 = MI.getOperand(1).getReg(); 6343 Register Src1 = MI.getOperand(2).getReg(); 6344 6345 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6346 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6347 6348 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6349 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6350 6351 MI.eraseFromParent(); 6352 return Legalized; 6353 } 6354 6355 LegalizerHelper::LegalizeResult 6356 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6357 Register Dst = MI.getOperand(0).getReg(); 6358 Register Src0 = MI.getOperand(1).getReg(); 6359 Register Src1 = MI.getOperand(2).getReg(); 6360 6361 const LLT Src0Ty = MRI.getType(Src0); 6362 const LLT Src1Ty = MRI.getType(Src1); 6363 6364 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6365 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6366 6367 auto SignBitMask = MIRBuilder.buildConstant( 6368 Src0Ty, APInt::getSignMask(Src0Size)); 6369 6370 auto NotSignBitMask = MIRBuilder.buildConstant( 6371 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6372 6373 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6374 Register And1; 6375 if (Src0Ty == Src1Ty) { 6376 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6377 } else if (Src0Size > Src1Size) { 6378 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6379 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6380 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6381 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6382 } else { 6383 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6384 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6385 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6386 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6387 } 6388 6389 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6390 // constants are a nan and -0.0, but the final result should preserve 6391 // everything. 6392 unsigned Flags = MI.getFlags(); 6393 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6394 6395 MI.eraseFromParent(); 6396 return Legalized; 6397 } 6398 6399 LegalizerHelper::LegalizeResult 6400 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6401 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6402 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6403 6404 Register Dst = MI.getOperand(0).getReg(); 6405 Register Src0 = MI.getOperand(1).getReg(); 6406 Register Src1 = MI.getOperand(2).getReg(); 6407 LLT Ty = MRI.getType(Dst); 6408 6409 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6410 // Insert canonicalizes if it's possible we need to quiet to get correct 6411 // sNaN behavior. 6412 6413 // Note this must be done here, and not as an optimization combine in the 6414 // absence of a dedicate quiet-snan instruction as we're using an 6415 // omni-purpose G_FCANONICALIZE. 6416 if (!isKnownNeverSNaN(Src0, MRI)) 6417 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6418 6419 if (!isKnownNeverSNaN(Src1, MRI)) 6420 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6421 } 6422 6423 // If there are no nans, it's safe to simply replace this with the non-IEEE 6424 // version. 6425 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6426 MI.eraseFromParent(); 6427 return Legalized; 6428 } 6429 6430 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6431 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6432 Register DstReg = MI.getOperand(0).getReg(); 6433 LLT Ty = MRI.getType(DstReg); 6434 unsigned Flags = MI.getFlags(); 6435 6436 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6437 Flags); 6438 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6439 MI.eraseFromParent(); 6440 return Legalized; 6441 } 6442 6443 LegalizerHelper::LegalizeResult 6444 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6445 Register DstReg = MI.getOperand(0).getReg(); 6446 Register X = MI.getOperand(1).getReg(); 6447 const unsigned Flags = MI.getFlags(); 6448 const LLT Ty = MRI.getType(DstReg); 6449 const LLT CondTy = Ty.changeElementSize(1); 6450 6451 // round(x) => 6452 // t = trunc(x); 6453 // d = fabs(x - t); 6454 // o = copysign(1.0f, x); 6455 // return t + (d >= 0.5 ? o : 0.0); 6456 6457 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6458 6459 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6460 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6461 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6462 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6463 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6464 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6465 6466 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6467 Flags); 6468 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6469 6470 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6471 6472 MI.eraseFromParent(); 6473 return Legalized; 6474 } 6475 6476 LegalizerHelper::LegalizeResult 6477 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6478 Register DstReg = MI.getOperand(0).getReg(); 6479 Register SrcReg = MI.getOperand(1).getReg(); 6480 unsigned Flags = MI.getFlags(); 6481 LLT Ty = MRI.getType(DstReg); 6482 const LLT CondTy = Ty.changeElementSize(1); 6483 6484 // result = trunc(src); 6485 // if (src < 0.0 && src != result) 6486 // result += -1.0. 6487 6488 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6489 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6490 6491 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6492 SrcReg, Zero, Flags); 6493 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6494 SrcReg, Trunc, Flags); 6495 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6496 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6497 6498 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6499 MI.eraseFromParent(); 6500 return Legalized; 6501 } 6502 6503 LegalizerHelper::LegalizeResult 6504 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6505 const unsigned NumOps = MI.getNumOperands(); 6506 Register DstReg = MI.getOperand(0).getReg(); 6507 Register Src0Reg = MI.getOperand(1).getReg(); 6508 LLT DstTy = MRI.getType(DstReg); 6509 LLT SrcTy = MRI.getType(Src0Reg); 6510 unsigned PartSize = SrcTy.getSizeInBits(); 6511 6512 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6513 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6514 6515 for (unsigned I = 2; I != NumOps; ++I) { 6516 const unsigned Offset = (I - 1) * PartSize; 6517 6518 Register SrcReg = MI.getOperand(I).getReg(); 6519 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6520 6521 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6522 MRI.createGenericVirtualRegister(WideTy); 6523 6524 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6525 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6526 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6527 ResultReg = NextResult; 6528 } 6529 6530 if (DstTy.isPointer()) { 6531 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6532 DstTy.getAddressSpace())) { 6533 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6534 return UnableToLegalize; 6535 } 6536 6537 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6538 } 6539 6540 MI.eraseFromParent(); 6541 return Legalized; 6542 } 6543 6544 LegalizerHelper::LegalizeResult 6545 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6546 const unsigned NumDst = MI.getNumOperands() - 1; 6547 Register SrcReg = MI.getOperand(NumDst).getReg(); 6548 Register Dst0Reg = MI.getOperand(0).getReg(); 6549 LLT DstTy = MRI.getType(Dst0Reg); 6550 if (DstTy.isPointer()) 6551 return UnableToLegalize; // TODO 6552 6553 SrcReg = coerceToScalar(SrcReg); 6554 if (!SrcReg) 6555 return UnableToLegalize; 6556 6557 // Expand scalarizing unmerge as bitcast to integer and shift. 6558 LLT IntTy = MRI.getType(SrcReg); 6559 6560 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6561 6562 const unsigned DstSize = DstTy.getSizeInBits(); 6563 unsigned Offset = DstSize; 6564 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6565 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6566 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6567 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6568 } 6569 6570 MI.eraseFromParent(); 6571 return Legalized; 6572 } 6573 6574 /// Lower a vector extract or insert by writing the vector to a stack temporary 6575 /// and reloading the element or vector. 6576 /// 6577 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6578 /// => 6579 /// %stack_temp = G_FRAME_INDEX 6580 /// G_STORE %vec, %stack_temp 6581 /// %idx = clamp(%idx, %vec.getNumElements()) 6582 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6583 /// %dst = G_LOAD %element_ptr 6584 LegalizerHelper::LegalizeResult 6585 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6586 Register DstReg = MI.getOperand(0).getReg(); 6587 Register SrcVec = MI.getOperand(1).getReg(); 6588 Register InsertVal; 6589 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6590 InsertVal = MI.getOperand(2).getReg(); 6591 6592 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6593 6594 LLT VecTy = MRI.getType(SrcVec); 6595 LLT EltTy = VecTy.getElementType(); 6596 unsigned NumElts = VecTy.getNumElements(); 6597 6598 int64_t IdxVal; 6599 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6600 SmallVector<Register, 8> SrcRegs; 6601 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6602 6603 if (InsertVal) { 6604 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6605 MIRBuilder.buildMerge(DstReg, SrcRegs); 6606 } else { 6607 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6608 } 6609 6610 MI.eraseFromParent(); 6611 return Legalized; 6612 } 6613 6614 if (!EltTy.isByteSized()) { // Not implemented. 6615 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6616 return UnableToLegalize; 6617 } 6618 6619 unsigned EltBytes = EltTy.getSizeInBytes(); 6620 Align VecAlign = getStackTemporaryAlignment(VecTy); 6621 Align EltAlign; 6622 6623 MachinePointerInfo PtrInfo; 6624 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6625 VecAlign, PtrInfo); 6626 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6627 6628 // Get the pointer to the element, and be sure not to hit undefined behavior 6629 // if the index is out of bounds. 6630 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6631 6632 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6633 int64_t Offset = IdxVal * EltBytes; 6634 PtrInfo = PtrInfo.getWithOffset(Offset); 6635 EltAlign = commonAlignment(VecAlign, Offset); 6636 } else { 6637 // We lose information with a variable offset. 6638 EltAlign = getStackTemporaryAlignment(EltTy); 6639 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6640 } 6641 6642 if (InsertVal) { 6643 // Write the inserted element 6644 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6645 6646 // Reload the whole vector. 6647 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6648 } else { 6649 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6650 } 6651 6652 MI.eraseFromParent(); 6653 return Legalized; 6654 } 6655 6656 LegalizerHelper::LegalizeResult 6657 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6658 Register DstReg = MI.getOperand(0).getReg(); 6659 Register Src0Reg = MI.getOperand(1).getReg(); 6660 Register Src1Reg = MI.getOperand(2).getReg(); 6661 LLT Src0Ty = MRI.getType(Src0Reg); 6662 LLT DstTy = MRI.getType(DstReg); 6663 LLT IdxTy = LLT::scalar(32); 6664 6665 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6666 6667 if (DstTy.isScalar()) { 6668 if (Src0Ty.isVector()) 6669 return UnableToLegalize; 6670 6671 // This is just a SELECT. 6672 assert(Mask.size() == 1 && "Expected a single mask element"); 6673 Register Val; 6674 if (Mask[0] < 0 || Mask[0] > 1) 6675 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6676 else 6677 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6678 MIRBuilder.buildCopy(DstReg, Val); 6679 MI.eraseFromParent(); 6680 return Legalized; 6681 } 6682 6683 Register Undef; 6684 SmallVector<Register, 32> BuildVec; 6685 LLT EltTy = DstTy.getElementType(); 6686 6687 for (int Idx : Mask) { 6688 if (Idx < 0) { 6689 if (!Undef.isValid()) 6690 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6691 BuildVec.push_back(Undef); 6692 continue; 6693 } 6694 6695 if (Src0Ty.isScalar()) { 6696 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6697 } else { 6698 int NumElts = Src0Ty.getNumElements(); 6699 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6700 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6701 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6702 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6703 BuildVec.push_back(Extract.getReg(0)); 6704 } 6705 } 6706 6707 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6708 MI.eraseFromParent(); 6709 return Legalized; 6710 } 6711 6712 LegalizerHelper::LegalizeResult 6713 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6714 const auto &MF = *MI.getMF(); 6715 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6716 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6717 return UnableToLegalize; 6718 6719 Register Dst = MI.getOperand(0).getReg(); 6720 Register AllocSize = MI.getOperand(1).getReg(); 6721 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6722 6723 LLT PtrTy = MRI.getType(Dst); 6724 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6725 6726 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6727 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6728 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6729 6730 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6731 // have to generate an extra instruction to negate the alloc and then use 6732 // G_PTR_ADD to add the negative offset. 6733 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6734 if (Alignment > Align(1)) { 6735 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6736 AlignMask.negate(); 6737 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6738 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6739 } 6740 6741 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6742 MIRBuilder.buildCopy(SPReg, SPTmp); 6743 MIRBuilder.buildCopy(Dst, SPTmp); 6744 6745 MI.eraseFromParent(); 6746 return Legalized; 6747 } 6748 6749 LegalizerHelper::LegalizeResult 6750 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6751 Register Dst = MI.getOperand(0).getReg(); 6752 Register Src = MI.getOperand(1).getReg(); 6753 unsigned Offset = MI.getOperand(2).getImm(); 6754 6755 LLT DstTy = MRI.getType(Dst); 6756 LLT SrcTy = MRI.getType(Src); 6757 6758 // Extract sub-vector or one element 6759 if (SrcTy.isVector()) { 6760 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6761 unsigned DstSize = DstTy.getSizeInBits(); 6762 6763 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6764 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6765 // Unmerge and allow access to each Src element for the artifact combiner. 6766 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6767 6768 // Take element(s) we need to extract and copy it (merge them). 6769 SmallVector<Register, 8> SubVectorElts; 6770 for (unsigned Idx = Offset / SrcEltSize; 6771 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6772 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6773 } 6774 if (SubVectorElts.size() == 1) 6775 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6776 else 6777 MIRBuilder.buildMerge(Dst, SubVectorElts); 6778 6779 MI.eraseFromParent(); 6780 return Legalized; 6781 } 6782 } 6783 6784 if (DstTy.isScalar() && 6785 (SrcTy.isScalar() || 6786 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6787 LLT SrcIntTy = SrcTy; 6788 if (!SrcTy.isScalar()) { 6789 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6790 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6791 } 6792 6793 if (Offset == 0) 6794 MIRBuilder.buildTrunc(Dst, Src); 6795 else { 6796 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6797 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6798 MIRBuilder.buildTrunc(Dst, Shr); 6799 } 6800 6801 MI.eraseFromParent(); 6802 return Legalized; 6803 } 6804 6805 return UnableToLegalize; 6806 } 6807 6808 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6809 Register Dst = MI.getOperand(0).getReg(); 6810 Register Src = MI.getOperand(1).getReg(); 6811 Register InsertSrc = MI.getOperand(2).getReg(); 6812 uint64_t Offset = MI.getOperand(3).getImm(); 6813 6814 LLT DstTy = MRI.getType(Src); 6815 LLT InsertTy = MRI.getType(InsertSrc); 6816 6817 // Insert sub-vector or one element 6818 if (DstTy.isVector() && !InsertTy.isPointer()) { 6819 LLT EltTy = DstTy.getElementType(); 6820 unsigned EltSize = EltTy.getSizeInBits(); 6821 unsigned InsertSize = InsertTy.getSizeInBits(); 6822 6823 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6824 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6825 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6826 SmallVector<Register, 8> DstElts; 6827 unsigned Idx = 0; 6828 // Elements from Src before insert start Offset 6829 for (; Idx < Offset / EltSize; ++Idx) { 6830 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6831 } 6832 6833 // Replace elements in Src with elements from InsertSrc 6834 if (InsertTy.getSizeInBits() > EltSize) { 6835 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6836 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6837 ++Idx, ++i) { 6838 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6839 } 6840 } else { 6841 DstElts.push_back(InsertSrc); 6842 ++Idx; 6843 } 6844 6845 // Remaining elements from Src after insert 6846 for (; Idx < DstTy.getNumElements(); ++Idx) { 6847 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6848 } 6849 6850 MIRBuilder.buildMerge(Dst, DstElts); 6851 MI.eraseFromParent(); 6852 return Legalized; 6853 } 6854 } 6855 6856 if (InsertTy.isVector() || 6857 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6858 return UnableToLegalize; 6859 6860 const DataLayout &DL = MIRBuilder.getDataLayout(); 6861 if ((DstTy.isPointer() && 6862 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6863 (InsertTy.isPointer() && 6864 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6865 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6866 return UnableToLegalize; 6867 } 6868 6869 LLT IntDstTy = DstTy; 6870 6871 if (!DstTy.isScalar()) { 6872 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6873 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6874 } 6875 6876 if (!InsertTy.isScalar()) { 6877 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6878 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6879 } 6880 6881 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6882 if (Offset != 0) { 6883 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6884 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6885 } 6886 6887 APInt MaskVal = APInt::getBitsSetWithWrap( 6888 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6889 6890 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6891 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6892 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6893 6894 MIRBuilder.buildCast(Dst, Or); 6895 MI.eraseFromParent(); 6896 return Legalized; 6897 } 6898 6899 LegalizerHelper::LegalizeResult 6900 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6901 Register Dst0 = MI.getOperand(0).getReg(); 6902 Register Dst1 = MI.getOperand(1).getReg(); 6903 Register LHS = MI.getOperand(2).getReg(); 6904 Register RHS = MI.getOperand(3).getReg(); 6905 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6906 6907 LLT Ty = MRI.getType(Dst0); 6908 LLT BoolTy = MRI.getType(Dst1); 6909 6910 if (IsAdd) 6911 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6912 else 6913 MIRBuilder.buildSub(Dst0, LHS, RHS); 6914 6915 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6916 6917 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6918 6919 // For an addition, the result should be less than one of the operands (LHS) 6920 // if and only if the other operand (RHS) is negative, otherwise there will 6921 // be overflow. 6922 // For a subtraction, the result should be less than one of the operands 6923 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6924 // otherwise there will be overflow. 6925 auto ResultLowerThanLHS = 6926 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6927 auto ConditionRHS = MIRBuilder.buildICmp( 6928 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6929 6930 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6931 MI.eraseFromParent(); 6932 return Legalized; 6933 } 6934 6935 LegalizerHelper::LegalizeResult 6936 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6937 Register Res = MI.getOperand(0).getReg(); 6938 Register LHS = MI.getOperand(1).getReg(); 6939 Register RHS = MI.getOperand(2).getReg(); 6940 LLT Ty = MRI.getType(Res); 6941 bool IsSigned; 6942 bool IsAdd; 6943 unsigned BaseOp; 6944 switch (MI.getOpcode()) { 6945 default: 6946 llvm_unreachable("unexpected addsat/subsat opcode"); 6947 case TargetOpcode::G_UADDSAT: 6948 IsSigned = false; 6949 IsAdd = true; 6950 BaseOp = TargetOpcode::G_ADD; 6951 break; 6952 case TargetOpcode::G_SADDSAT: 6953 IsSigned = true; 6954 IsAdd = true; 6955 BaseOp = TargetOpcode::G_ADD; 6956 break; 6957 case TargetOpcode::G_USUBSAT: 6958 IsSigned = false; 6959 IsAdd = false; 6960 BaseOp = TargetOpcode::G_SUB; 6961 break; 6962 case TargetOpcode::G_SSUBSAT: 6963 IsSigned = true; 6964 IsAdd = false; 6965 BaseOp = TargetOpcode::G_SUB; 6966 break; 6967 } 6968 6969 if (IsSigned) { 6970 // sadd.sat(a, b) -> 6971 // hi = 0x7fffffff - smax(a, 0) 6972 // lo = 0x80000000 - smin(a, 0) 6973 // a + smin(smax(lo, b), hi) 6974 // ssub.sat(a, b) -> 6975 // lo = smax(a, -1) - 0x7fffffff 6976 // hi = smin(a, -1) - 0x80000000 6977 // a - smin(smax(lo, b), hi) 6978 // TODO: AMDGPU can use a "median of 3" instruction here: 6979 // a +/- med3(lo, b, hi) 6980 uint64_t NumBits = Ty.getScalarSizeInBits(); 6981 auto MaxVal = 6982 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6983 auto MinVal = 6984 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6985 MachineInstrBuilder Hi, Lo; 6986 if (IsAdd) { 6987 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6988 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6989 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6990 } else { 6991 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6992 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6993 MaxVal); 6994 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6995 MinVal); 6996 } 6997 auto RHSClamped = 6998 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6999 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7000 } else { 7001 // uadd.sat(a, b) -> a + umin(~a, b) 7002 // usub.sat(a, b) -> a - umin(a, b) 7003 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7004 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7005 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7006 } 7007 7008 MI.eraseFromParent(); 7009 return Legalized; 7010 } 7011 7012 LegalizerHelper::LegalizeResult 7013 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7014 Register Res = MI.getOperand(0).getReg(); 7015 Register LHS = MI.getOperand(1).getReg(); 7016 Register RHS = MI.getOperand(2).getReg(); 7017 LLT Ty = MRI.getType(Res); 7018 LLT BoolTy = Ty.changeElementSize(1); 7019 bool IsSigned; 7020 bool IsAdd; 7021 unsigned OverflowOp; 7022 switch (MI.getOpcode()) { 7023 default: 7024 llvm_unreachable("unexpected addsat/subsat opcode"); 7025 case TargetOpcode::G_UADDSAT: 7026 IsSigned = false; 7027 IsAdd = true; 7028 OverflowOp = TargetOpcode::G_UADDO; 7029 break; 7030 case TargetOpcode::G_SADDSAT: 7031 IsSigned = true; 7032 IsAdd = true; 7033 OverflowOp = TargetOpcode::G_SADDO; 7034 break; 7035 case TargetOpcode::G_USUBSAT: 7036 IsSigned = false; 7037 IsAdd = false; 7038 OverflowOp = TargetOpcode::G_USUBO; 7039 break; 7040 case TargetOpcode::G_SSUBSAT: 7041 IsSigned = true; 7042 IsAdd = false; 7043 OverflowOp = TargetOpcode::G_SSUBO; 7044 break; 7045 } 7046 7047 auto OverflowRes = 7048 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7049 Register Tmp = OverflowRes.getReg(0); 7050 Register Ov = OverflowRes.getReg(1); 7051 MachineInstrBuilder Clamp; 7052 if (IsSigned) { 7053 // sadd.sat(a, b) -> 7054 // {tmp, ov} = saddo(a, b) 7055 // ov ? (tmp >>s 31) + 0x80000000 : r 7056 // ssub.sat(a, b) -> 7057 // {tmp, ov} = ssubo(a, b) 7058 // ov ? (tmp >>s 31) + 0x80000000 : r 7059 uint64_t NumBits = Ty.getScalarSizeInBits(); 7060 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7061 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7062 auto MinVal = 7063 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7064 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7065 } else { 7066 // uadd.sat(a, b) -> 7067 // {tmp, ov} = uaddo(a, b) 7068 // ov ? 0xffffffff : tmp 7069 // usub.sat(a, b) -> 7070 // {tmp, ov} = usubo(a, b) 7071 // ov ? 0 : tmp 7072 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7073 } 7074 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7075 7076 MI.eraseFromParent(); 7077 return Legalized; 7078 } 7079 7080 LegalizerHelper::LegalizeResult 7081 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7082 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7083 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7084 "Expected shlsat opcode!"); 7085 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7086 Register Res = MI.getOperand(0).getReg(); 7087 Register LHS = MI.getOperand(1).getReg(); 7088 Register RHS = MI.getOperand(2).getReg(); 7089 LLT Ty = MRI.getType(Res); 7090 LLT BoolTy = Ty.changeElementSize(1); 7091 7092 unsigned BW = Ty.getScalarSizeInBits(); 7093 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7094 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7095 : MIRBuilder.buildLShr(Ty, Result, RHS); 7096 7097 MachineInstrBuilder SatVal; 7098 if (IsSigned) { 7099 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7100 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7101 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7102 MIRBuilder.buildConstant(Ty, 0)); 7103 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7104 } else { 7105 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7106 } 7107 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7108 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7109 7110 MI.eraseFromParent(); 7111 return Legalized; 7112 } 7113 7114 LegalizerHelper::LegalizeResult 7115 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7116 Register Dst = MI.getOperand(0).getReg(); 7117 Register Src = MI.getOperand(1).getReg(); 7118 const LLT Ty = MRI.getType(Src); 7119 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7120 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7121 7122 // Swap most and least significant byte, set remaining bytes in Res to zero. 7123 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7124 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7125 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7126 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7127 7128 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7129 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7130 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7131 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7132 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7133 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7134 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7135 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7136 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7137 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7138 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7139 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7140 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7141 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7142 } 7143 Res.getInstr()->getOperand(0).setReg(Dst); 7144 7145 MI.eraseFromParent(); 7146 return Legalized; 7147 } 7148 7149 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7150 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7151 MachineInstrBuilder Src, APInt Mask) { 7152 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7153 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7154 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7155 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7156 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7157 return B.buildOr(Dst, LHS, RHS); 7158 } 7159 7160 LegalizerHelper::LegalizeResult 7161 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7162 Register Dst = MI.getOperand(0).getReg(); 7163 Register Src = MI.getOperand(1).getReg(); 7164 const LLT Ty = MRI.getType(Src); 7165 unsigned Size = Ty.getSizeInBits(); 7166 7167 MachineInstrBuilder BSWAP = 7168 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7169 7170 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7171 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7172 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7173 MachineInstrBuilder Swap4 = 7174 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7175 7176 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7177 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7178 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7179 MachineInstrBuilder Swap2 = 7180 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7181 7182 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7183 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7184 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7185 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7186 7187 MI.eraseFromParent(); 7188 return Legalized; 7189 } 7190 7191 LegalizerHelper::LegalizeResult 7192 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7193 MachineFunction &MF = MIRBuilder.getMF(); 7194 7195 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7196 int NameOpIdx = IsRead ? 1 : 0; 7197 int ValRegIndex = IsRead ? 0 : 1; 7198 7199 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7200 const LLT Ty = MRI.getType(ValReg); 7201 const MDString *RegStr = cast<MDString>( 7202 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7203 7204 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7205 if (!PhysReg.isValid()) 7206 return UnableToLegalize; 7207 7208 if (IsRead) 7209 MIRBuilder.buildCopy(ValReg, PhysReg); 7210 else 7211 MIRBuilder.buildCopy(PhysReg, ValReg); 7212 7213 MI.eraseFromParent(); 7214 return Legalized; 7215 } 7216 7217 LegalizerHelper::LegalizeResult 7218 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7219 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7220 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7221 Register Result = MI.getOperand(0).getReg(); 7222 LLT OrigTy = MRI.getType(Result); 7223 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7224 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7225 7226 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7227 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7228 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7229 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7230 7231 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7232 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7233 MIRBuilder.buildTrunc(Result, Shifted); 7234 7235 MI.eraseFromParent(); 7236 return Legalized; 7237 } 7238 7239 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7240 // Implement vector G_SELECT in terms of XOR, AND, OR. 7241 Register DstReg = MI.getOperand(0).getReg(); 7242 Register MaskReg = MI.getOperand(1).getReg(); 7243 Register Op1Reg = MI.getOperand(2).getReg(); 7244 Register Op2Reg = MI.getOperand(3).getReg(); 7245 LLT DstTy = MRI.getType(DstReg); 7246 LLT MaskTy = MRI.getType(MaskReg); 7247 LLT Op1Ty = MRI.getType(Op1Reg); 7248 if (!DstTy.isVector()) 7249 return UnableToLegalize; 7250 7251 // Vector selects can have a scalar predicate. If so, splat into a vector and 7252 // finish for later legalization attempts to try again. 7253 if (MaskTy.isScalar()) { 7254 Register MaskElt = MaskReg; 7255 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7256 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7257 // Generate a vector splat idiom to be pattern matched later. 7258 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7259 Observer.changingInstr(MI); 7260 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7261 Observer.changedInstr(MI); 7262 return Legalized; 7263 } 7264 7265 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7266 return UnableToLegalize; 7267 } 7268 7269 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7270 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7271 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7272 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7273 MI.eraseFromParent(); 7274 return Legalized; 7275 } 7276 7277 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7278 // Split DIVREM into individual instructions. 7279 unsigned Opcode = MI.getOpcode(); 7280 7281 MIRBuilder.buildInstr( 7282 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7283 : TargetOpcode::G_UDIV, 7284 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7285 MIRBuilder.buildInstr( 7286 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7287 : TargetOpcode::G_UREM, 7288 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7289 MI.eraseFromParent(); 7290 return Legalized; 7291 } 7292 7293 LegalizerHelper::LegalizeResult 7294 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7295 // Expand %res = G_ABS %a into: 7296 // %v1 = G_ASHR %a, scalar_size-1 7297 // %v2 = G_ADD %a, %v1 7298 // %res = G_XOR %v2, %v1 7299 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7300 Register OpReg = MI.getOperand(1).getReg(); 7301 auto ShiftAmt = 7302 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7303 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7304 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7305 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7306 MI.eraseFromParent(); 7307 return Legalized; 7308 } 7309 7310 LegalizerHelper::LegalizeResult 7311 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7312 // Expand %res = G_ABS %a into: 7313 // %v1 = G_CONSTANT 0 7314 // %v2 = G_SUB %v1, %a 7315 // %res = G_SMAX %a, %v2 7316 Register SrcReg = MI.getOperand(1).getReg(); 7317 LLT Ty = MRI.getType(SrcReg); 7318 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7319 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7320 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7321 MI.eraseFromParent(); 7322 return Legalized; 7323 } 7324 7325 LegalizerHelper::LegalizeResult 7326 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7327 Register SrcReg = MI.getOperand(1).getReg(); 7328 LLT SrcTy = MRI.getType(SrcReg); 7329 LLT DstTy = MRI.getType(SrcReg); 7330 7331 // The source could be a scalar if the IR type was <1 x sN>. 7332 if (SrcTy.isScalar()) { 7333 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7334 return UnableToLegalize; // FIXME: handle extension. 7335 // This can be just a plain copy. 7336 Observer.changingInstr(MI); 7337 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7338 Observer.changedInstr(MI); 7339 return Legalized; 7340 } 7341 return UnableToLegalize;; 7342 } 7343 7344 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7345 // On Darwin, -Os means optimize for size without hurting performance, so 7346 // only really optimize for size when -Oz (MinSize) is used. 7347 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7348 return MF.getFunction().hasMinSize(); 7349 return MF.getFunction().hasOptSize(); 7350 } 7351 7352 // Returns a list of types to use for memory op lowering in MemOps. A partial 7353 // port of findOptimalMemOpLowering in TargetLowering. 7354 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7355 unsigned Limit, const MemOp &Op, 7356 unsigned DstAS, unsigned SrcAS, 7357 const AttributeList &FuncAttributes, 7358 const TargetLowering &TLI) { 7359 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7360 return false; 7361 7362 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7363 7364 if (Ty == LLT()) { 7365 // Use the largest scalar type whose alignment constraints are satisfied. 7366 // We only need to check DstAlign here as SrcAlign is always greater or 7367 // equal to DstAlign (or zero). 7368 Ty = LLT::scalar(64); 7369 if (Op.isFixedDstAlign()) 7370 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7371 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7372 Ty = LLT::scalar(Ty.getSizeInBytes()); 7373 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7374 // FIXME: check for the largest legal type we can load/store to. 7375 } 7376 7377 unsigned NumMemOps = 0; 7378 uint64_t Size = Op.size(); 7379 while (Size) { 7380 unsigned TySize = Ty.getSizeInBytes(); 7381 while (TySize > Size) { 7382 // For now, only use non-vector load / store's for the left-over pieces. 7383 LLT NewTy = Ty; 7384 // FIXME: check for mem op safety and legality of the types. Not all of 7385 // SDAGisms map cleanly to GISel concepts. 7386 if (NewTy.isVector()) 7387 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7388 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7389 unsigned NewTySize = NewTy.getSizeInBytes(); 7390 assert(NewTySize > 0 && "Could not find appropriate type"); 7391 7392 // If the new LLT cannot cover all of the remaining bits, then consider 7393 // issuing a (or a pair of) unaligned and overlapping load / store. 7394 bool Fast; 7395 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7396 MVT VT = getMVTForLLT(Ty); 7397 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7398 TLI.allowsMisalignedMemoryAccesses( 7399 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7400 MachineMemOperand::MONone, &Fast) && 7401 Fast) 7402 TySize = Size; 7403 else { 7404 Ty = NewTy; 7405 TySize = NewTySize; 7406 } 7407 } 7408 7409 if (++NumMemOps > Limit) 7410 return false; 7411 7412 MemOps.push_back(Ty); 7413 Size -= TySize; 7414 } 7415 7416 return true; 7417 } 7418 7419 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7420 if (Ty.isVector()) 7421 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7422 Ty.getNumElements()); 7423 return IntegerType::get(C, Ty.getSizeInBits()); 7424 } 7425 7426 // Get a vectorized representation of the memset value operand, GISel edition. 7427 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7428 MachineRegisterInfo &MRI = *MIB.getMRI(); 7429 unsigned NumBits = Ty.getScalarSizeInBits(); 7430 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7431 if (!Ty.isVector() && ValVRegAndVal) { 7432 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 7433 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7434 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7435 } 7436 7437 // Extend the byte value to the larger type, and then multiply by a magic 7438 // value 0x010101... in order to replicate it across every byte. 7439 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7440 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7441 return MIB.buildConstant(Ty, 0).getReg(0); 7442 } 7443 7444 LLT ExtType = Ty.getScalarType(); 7445 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7446 if (NumBits > 8) { 7447 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7448 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7449 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7450 } 7451 7452 // For vector types create a G_BUILD_VECTOR. 7453 if (Ty.isVector()) 7454 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7455 7456 return Val; 7457 } 7458 7459 LegalizerHelper::LegalizeResult 7460 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7461 uint64_t KnownLen, Align Alignment, 7462 bool IsVolatile) { 7463 auto &MF = *MI.getParent()->getParent(); 7464 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7465 auto &DL = MF.getDataLayout(); 7466 LLVMContext &C = MF.getFunction().getContext(); 7467 7468 assert(KnownLen != 0 && "Have a zero length memset length!"); 7469 7470 bool DstAlignCanChange = false; 7471 MachineFrameInfo &MFI = MF.getFrameInfo(); 7472 bool OptSize = shouldLowerMemFuncForSize(MF); 7473 7474 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7475 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7476 DstAlignCanChange = true; 7477 7478 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7479 std::vector<LLT> MemOps; 7480 7481 const auto &DstMMO = **MI.memoperands_begin(); 7482 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7483 7484 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7485 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7486 7487 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7488 MemOp::Set(KnownLen, DstAlignCanChange, 7489 Alignment, 7490 /*IsZeroMemset=*/IsZeroVal, 7491 /*IsVolatile=*/IsVolatile), 7492 DstPtrInfo.getAddrSpace(), ~0u, 7493 MF.getFunction().getAttributes(), TLI)) 7494 return UnableToLegalize; 7495 7496 if (DstAlignCanChange) { 7497 // Get an estimate of the type from the LLT. 7498 Type *IRTy = getTypeForLLT(MemOps[0], C); 7499 Align NewAlign = DL.getABITypeAlign(IRTy); 7500 if (NewAlign > Alignment) { 7501 Alignment = NewAlign; 7502 unsigned FI = FIDef->getOperand(1).getIndex(); 7503 // Give the stack frame object a larger alignment if needed. 7504 if (MFI.getObjectAlign(FI) < Alignment) 7505 MFI.setObjectAlignment(FI, Alignment); 7506 } 7507 } 7508 7509 MachineIRBuilder MIB(MI); 7510 // Find the largest store and generate the bit pattern for it. 7511 LLT LargestTy = MemOps[0]; 7512 for (unsigned i = 1; i < MemOps.size(); i++) 7513 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7514 LargestTy = MemOps[i]; 7515 7516 // The memset stored value is always defined as an s8, so in order to make it 7517 // work with larger store types we need to repeat the bit pattern across the 7518 // wider type. 7519 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7520 7521 if (!MemSetValue) 7522 return UnableToLegalize; 7523 7524 // Generate the stores. For each store type in the list, we generate the 7525 // matching store of that type to the destination address. 7526 LLT PtrTy = MRI.getType(Dst); 7527 unsigned DstOff = 0; 7528 unsigned Size = KnownLen; 7529 for (unsigned I = 0; I < MemOps.size(); I++) { 7530 LLT Ty = MemOps[I]; 7531 unsigned TySize = Ty.getSizeInBytes(); 7532 if (TySize > Size) { 7533 // Issuing an unaligned load / store pair that overlaps with the previous 7534 // pair. Adjust the offset accordingly. 7535 assert(I == MemOps.size() - 1 && I != 0); 7536 DstOff -= TySize - Size; 7537 } 7538 7539 // If this store is smaller than the largest store see whether we can get 7540 // the smaller value for free with a truncate. 7541 Register Value = MemSetValue; 7542 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7543 MVT VT = getMVTForLLT(Ty); 7544 MVT LargestVT = getMVTForLLT(LargestTy); 7545 if (!LargestTy.isVector() && !Ty.isVector() && 7546 TLI.isTruncateFree(LargestVT, VT)) 7547 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7548 else 7549 Value = getMemsetValue(Val, Ty, MIB); 7550 if (!Value) 7551 return UnableToLegalize; 7552 } 7553 7554 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7555 7556 Register Ptr = Dst; 7557 if (DstOff != 0) { 7558 auto Offset = 7559 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7560 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7561 } 7562 7563 MIB.buildStore(Value, Ptr, *StoreMMO); 7564 DstOff += Ty.getSizeInBytes(); 7565 Size -= TySize; 7566 } 7567 7568 MI.eraseFromParent(); 7569 return Legalized; 7570 } 7571 7572 LegalizerHelper::LegalizeResult 7573 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7574 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7575 7576 Register Dst = MI.getOperand(0).getReg(); 7577 Register Src = MI.getOperand(1).getReg(); 7578 Register Len = MI.getOperand(2).getReg(); 7579 7580 const auto *MMOIt = MI.memoperands_begin(); 7581 const MachineMemOperand *MemOp = *MMOIt; 7582 bool IsVolatile = MemOp->isVolatile(); 7583 7584 // See if this is a constant length copy 7585 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7586 // FIXME: support dynamically sized G_MEMCPY_INLINE 7587 assert(LenVRegAndVal.hasValue() && 7588 "inline memcpy with dynamic size is not yet supported"); 7589 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7590 if (KnownLen == 0) { 7591 MI.eraseFromParent(); 7592 return Legalized; 7593 } 7594 7595 const auto &DstMMO = **MI.memoperands_begin(); 7596 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7597 Align DstAlign = DstMMO.getBaseAlign(); 7598 Align SrcAlign = SrcMMO.getBaseAlign(); 7599 7600 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7601 IsVolatile); 7602 } 7603 7604 LegalizerHelper::LegalizeResult 7605 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7606 uint64_t KnownLen, Align DstAlign, 7607 Align SrcAlign, bool IsVolatile) { 7608 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7609 return lowerMemcpy(MI, Dst, Src, KnownLen, 7610 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7611 IsVolatile); 7612 } 7613 7614 LegalizerHelper::LegalizeResult 7615 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7616 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7617 Align SrcAlign, bool IsVolatile) { 7618 auto &MF = *MI.getParent()->getParent(); 7619 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7620 auto &DL = MF.getDataLayout(); 7621 LLVMContext &C = MF.getFunction().getContext(); 7622 7623 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7624 7625 bool DstAlignCanChange = false; 7626 MachineFrameInfo &MFI = MF.getFrameInfo(); 7627 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7628 7629 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7630 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7631 DstAlignCanChange = true; 7632 7633 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7634 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7635 // if the memcpy is in a tail call position. 7636 7637 std::vector<LLT> MemOps; 7638 7639 const auto &DstMMO = **MI.memoperands_begin(); 7640 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7641 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7642 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7643 7644 if (!findGISelOptimalMemOpLowering( 7645 MemOps, Limit, 7646 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7647 IsVolatile), 7648 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7649 MF.getFunction().getAttributes(), TLI)) 7650 return UnableToLegalize; 7651 7652 if (DstAlignCanChange) { 7653 // Get an estimate of the type from the LLT. 7654 Type *IRTy = getTypeForLLT(MemOps[0], C); 7655 Align NewAlign = DL.getABITypeAlign(IRTy); 7656 7657 // Don't promote to an alignment that would require dynamic stack 7658 // realignment. 7659 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7660 if (!TRI->hasStackRealignment(MF)) 7661 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7662 NewAlign = NewAlign / 2; 7663 7664 if (NewAlign > Alignment) { 7665 Alignment = NewAlign; 7666 unsigned FI = FIDef->getOperand(1).getIndex(); 7667 // Give the stack frame object a larger alignment if needed. 7668 if (MFI.getObjectAlign(FI) < Alignment) 7669 MFI.setObjectAlignment(FI, Alignment); 7670 } 7671 } 7672 7673 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7674 7675 MachineIRBuilder MIB(MI); 7676 // Now we need to emit a pair of load and stores for each of the types we've 7677 // collected. I.e. for each type, generate a load from the source pointer of 7678 // that type width, and then generate a corresponding store to the dest buffer 7679 // of that value loaded. This can result in a sequence of loads and stores 7680 // mixed types, depending on what the target specifies as good types to use. 7681 unsigned CurrOffset = 0; 7682 unsigned Size = KnownLen; 7683 for (auto CopyTy : MemOps) { 7684 // Issuing an unaligned load / store pair that overlaps with the previous 7685 // pair. Adjust the offset accordingly. 7686 if (CopyTy.getSizeInBytes() > Size) 7687 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7688 7689 // Construct MMOs for the accesses. 7690 auto *LoadMMO = 7691 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7692 auto *StoreMMO = 7693 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7694 7695 // Create the load. 7696 Register LoadPtr = Src; 7697 Register Offset; 7698 if (CurrOffset != 0) { 7699 LLT SrcTy = MRI.getType(Src); 7700 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7701 .getReg(0); 7702 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7703 } 7704 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7705 7706 // Create the store. 7707 Register StorePtr = Dst; 7708 if (CurrOffset != 0) { 7709 LLT DstTy = MRI.getType(Dst); 7710 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7711 } 7712 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7713 CurrOffset += CopyTy.getSizeInBytes(); 7714 Size -= CopyTy.getSizeInBytes(); 7715 } 7716 7717 MI.eraseFromParent(); 7718 return Legalized; 7719 } 7720 7721 LegalizerHelper::LegalizeResult 7722 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7723 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7724 bool IsVolatile) { 7725 auto &MF = *MI.getParent()->getParent(); 7726 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7727 auto &DL = MF.getDataLayout(); 7728 LLVMContext &C = MF.getFunction().getContext(); 7729 7730 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7731 7732 bool DstAlignCanChange = false; 7733 MachineFrameInfo &MFI = MF.getFrameInfo(); 7734 bool OptSize = shouldLowerMemFuncForSize(MF); 7735 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7736 7737 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7738 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7739 DstAlignCanChange = true; 7740 7741 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7742 std::vector<LLT> MemOps; 7743 7744 const auto &DstMMO = **MI.memoperands_begin(); 7745 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7746 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7747 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7748 7749 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7750 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7751 // same thing here. 7752 if (!findGISelOptimalMemOpLowering( 7753 MemOps, Limit, 7754 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7755 /*IsVolatile*/ true), 7756 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7757 MF.getFunction().getAttributes(), TLI)) 7758 return UnableToLegalize; 7759 7760 if (DstAlignCanChange) { 7761 // Get an estimate of the type from the LLT. 7762 Type *IRTy = getTypeForLLT(MemOps[0], C); 7763 Align NewAlign = DL.getABITypeAlign(IRTy); 7764 7765 // Don't promote to an alignment that would require dynamic stack 7766 // realignment. 7767 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7768 if (!TRI->hasStackRealignment(MF)) 7769 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7770 NewAlign = NewAlign / 2; 7771 7772 if (NewAlign > Alignment) { 7773 Alignment = NewAlign; 7774 unsigned FI = FIDef->getOperand(1).getIndex(); 7775 // Give the stack frame object a larger alignment if needed. 7776 if (MFI.getObjectAlign(FI) < Alignment) 7777 MFI.setObjectAlignment(FI, Alignment); 7778 } 7779 } 7780 7781 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7782 7783 MachineIRBuilder MIB(MI); 7784 // Memmove requires that we perform the loads first before issuing the stores. 7785 // Apart from that, this loop is pretty much doing the same thing as the 7786 // memcpy codegen function. 7787 unsigned CurrOffset = 0; 7788 SmallVector<Register, 16> LoadVals; 7789 for (auto CopyTy : MemOps) { 7790 // Construct MMO for the load. 7791 auto *LoadMMO = 7792 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7793 7794 // Create the load. 7795 Register LoadPtr = Src; 7796 if (CurrOffset != 0) { 7797 LLT SrcTy = MRI.getType(Src); 7798 auto Offset = 7799 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7800 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7801 } 7802 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7803 CurrOffset += CopyTy.getSizeInBytes(); 7804 } 7805 7806 CurrOffset = 0; 7807 for (unsigned I = 0; I < MemOps.size(); ++I) { 7808 LLT CopyTy = MemOps[I]; 7809 // Now store the values loaded. 7810 auto *StoreMMO = 7811 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7812 7813 Register StorePtr = Dst; 7814 if (CurrOffset != 0) { 7815 LLT DstTy = MRI.getType(Dst); 7816 auto Offset = 7817 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7818 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7819 } 7820 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7821 CurrOffset += CopyTy.getSizeInBytes(); 7822 } 7823 MI.eraseFromParent(); 7824 return Legalized; 7825 } 7826 7827 LegalizerHelper::LegalizeResult 7828 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7829 const unsigned Opc = MI.getOpcode(); 7830 // This combine is fairly complex so it's not written with a separate 7831 // matcher function. 7832 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7833 Opc == TargetOpcode::G_MEMSET) && 7834 "Expected memcpy like instruction"); 7835 7836 auto MMOIt = MI.memoperands_begin(); 7837 const MachineMemOperand *MemOp = *MMOIt; 7838 7839 Align DstAlign = MemOp->getBaseAlign(); 7840 Align SrcAlign; 7841 Register Dst = MI.getOperand(0).getReg(); 7842 Register Src = MI.getOperand(1).getReg(); 7843 Register Len = MI.getOperand(2).getReg(); 7844 7845 if (Opc != TargetOpcode::G_MEMSET) { 7846 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7847 MemOp = *(++MMOIt); 7848 SrcAlign = MemOp->getBaseAlign(); 7849 } 7850 7851 // See if this is a constant length copy 7852 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7853 if (!LenVRegAndVal) 7854 return UnableToLegalize; 7855 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7856 7857 if (KnownLen == 0) { 7858 MI.eraseFromParent(); 7859 return Legalized; 7860 } 7861 7862 bool IsVolatile = MemOp->isVolatile(); 7863 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7864 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7865 IsVolatile); 7866 7867 // Don't try to optimize volatile. 7868 if (IsVolatile) 7869 return UnableToLegalize; 7870 7871 if (MaxLen && KnownLen > MaxLen) 7872 return UnableToLegalize; 7873 7874 if (Opc == TargetOpcode::G_MEMCPY) { 7875 auto &MF = *MI.getParent()->getParent(); 7876 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7877 bool OptSize = shouldLowerMemFuncForSize(MF); 7878 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7879 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7880 IsVolatile); 7881 } 7882 if (Opc == TargetOpcode::G_MEMMOVE) 7883 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7884 if (Opc == TargetOpcode::G_MEMSET) 7885 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7886 return UnableToLegalize; 7887 } 7888