1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #define DEBUG_TYPE "legalizer"
38 
39 using namespace llvm;
40 using namespace LegalizeActions;
41 using namespace MIPatternMatch;
42 
43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
44 ///
45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
46 /// with any leftover piece as type \p LeftoverTy
47 ///
48 /// Returns -1 in the first element of the pair if the breakdown is not
49 /// satisfiable.
50 static std::pair<int, int>
51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
52   assert(!LeftoverTy.isValid() && "this is an out argument");
53 
54   unsigned Size = OrigTy.getSizeInBits();
55   unsigned NarrowSize = NarrowTy.getSizeInBits();
56   unsigned NumParts = Size / NarrowSize;
57   unsigned LeftoverSize = Size - NumParts * NarrowSize;
58   assert(Size > NarrowSize);
59 
60   if (LeftoverSize == 0)
61     return {NumParts, 0};
62 
63   if (NarrowTy.isVector()) {
64     unsigned EltSize = OrigTy.getScalarSizeInBits();
65     if (LeftoverSize % EltSize != 0)
66       return {-1, -1};
67     LeftoverTy = LLT::scalarOrVector(
68         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
69   } else {
70     LeftoverTy = LLT::scalar(LeftoverSize);
71   }
72 
73   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
74   return std::make_pair(NumParts, NumLeftover);
75 }
76 
77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
78 
79   if (!Ty.isScalar())
80     return nullptr;
81 
82   switch (Ty.getSizeInBits()) {
83   case 16:
84     return Type::getHalfTy(Ctx);
85   case 32:
86     return Type::getFloatTy(Ctx);
87   case 64:
88     return Type::getDoubleTy(Ctx);
89   case 80:
90     return Type::getX86_FP80Ty(Ctx);
91   case 128:
92     return Type::getFP128Ty(Ctx);
93   default:
94     return nullptr;
95   }
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &Builder)
101     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
102       LI(*MF.getSubtarget().getLegalizerInfo()),
103       TLI(*MF.getSubtarget().getTargetLowering()) { }
104 
105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
106                                  GISelChangeObserver &Observer,
107                                  MachineIRBuilder &B)
108   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
109     TLI(*MF.getSubtarget().getTargetLowering()) { }
110 
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
113                                    LostDebugLocObserver &LocObserver) {
114   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
115 
116   MIRBuilder.setInstrAndDebugLoc(MI);
117 
118   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
119       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
120     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
121   auto Step = LI.getAction(MI, MRI);
122   switch (Step.Action) {
123   case Legal:
124     LLVM_DEBUG(dbgs() << ".. Already legal\n");
125     return AlreadyLegal;
126   case Libcall:
127     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
128     return libcall(MI, LocObserver);
129   case NarrowScalar:
130     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
131     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
132   case WidenScalar:
133     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
134     return widenScalar(MI, Step.TypeIdx, Step.NewType);
135   case Bitcast:
136     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
137     return bitcast(MI, Step.TypeIdx, Step.NewType);
138   case Lower:
139     LLVM_DEBUG(dbgs() << ".. Lower\n");
140     return lower(MI, Step.TypeIdx, Step.NewType);
141   case FewerElements:
142     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
143     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
144   case MoreElements:
145     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
146     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
147   case Custom:
148     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
149     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
150   default:
151     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
152     return UnableToLegalize;
153   }
154 }
155 
156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
157                                    SmallVectorImpl<Register> &VRegs) {
158   for (int i = 0; i < NumParts; ++i)
159     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
160   MIRBuilder.buildUnmerge(VRegs, Reg);
161 }
162 
163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
164                                    LLT MainTy, LLT &LeftoverTy,
165                                    SmallVectorImpl<Register> &VRegs,
166                                    SmallVectorImpl<Register> &LeftoverRegs) {
167   assert(!LeftoverTy.isValid() && "this is an out argument");
168 
169   unsigned RegSize = RegTy.getSizeInBits();
170   unsigned MainSize = MainTy.getSizeInBits();
171   unsigned NumParts = RegSize / MainSize;
172   unsigned LeftoverSize = RegSize - NumParts * MainSize;
173 
174   // Use an unmerge when possible.
175   if (LeftoverSize == 0) {
176     for (unsigned I = 0; I < NumParts; ++I)
177       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
178     MIRBuilder.buildUnmerge(VRegs, Reg);
179     return true;
180   }
181 
182   // Perform irregular split. Leftover is last element of RegPieces.
183   if (MainTy.isVector()) {
184     SmallVector<Register, 8> RegPieces;
185     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
186     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
187       VRegs.push_back(RegPieces[i]);
188     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
189     LeftoverTy = MRI.getType(LeftoverRegs[0]);
190     return true;
191   }
192 
193   LeftoverTy = LLT::scalar(LeftoverSize);
194   // For irregular sizes, extract the individual parts.
195   for (unsigned I = 0; I != NumParts; ++I) {
196     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
197     VRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
199   }
200 
201   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
202        Offset += LeftoverSize) {
203     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
204     LeftoverRegs.push_back(NewReg);
205     MIRBuilder.buildExtract(NewReg, Reg, Offset);
206   }
207 
208   return true;
209 }
210 
211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
212                                          SmallVectorImpl<Register> &VRegs) {
213   LLT RegTy = MRI.getType(Reg);
214   assert(RegTy.isVector() && "Expected a vector type");
215 
216   LLT EltTy = RegTy.getElementType();
217   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
218   unsigned RegNumElts = RegTy.getNumElements();
219   unsigned LeftoverNumElts = RegNumElts % NumElts;
220   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
221 
222   // Perfect split without leftover
223   if (LeftoverNumElts == 0)
224     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
225 
226   // Irregular split. Provide direct access to all elements for artifact
227   // combiner using unmerge to elements. Then build vectors with NumElts
228   // elements. Remaining element(s) will be (used to build vector) Leftover.
229   SmallVector<Register, 8> Elts;
230   extractParts(Reg, EltTy, RegNumElts, Elts);
231 
232   unsigned Offset = 0;
233   // Requested sub-vectors of NarrowTy.
234   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
235     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
236     VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
237   }
238 
239   // Leftover element(s).
240   if (LeftoverNumElts == 1) {
241     VRegs.push_back(Elts[Offset]);
242   } else {
243     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
244     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
245     VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
246   }
247 }
248 
249 void LegalizerHelper::insertParts(Register DstReg,
250                                   LLT ResultTy, LLT PartTy,
251                                   ArrayRef<Register> PartRegs,
252                                   LLT LeftoverTy,
253                                   ArrayRef<Register> LeftoverRegs) {
254   if (!LeftoverTy.isValid()) {
255     assert(LeftoverRegs.empty());
256 
257     if (!ResultTy.isVector()) {
258       MIRBuilder.buildMerge(DstReg, PartRegs);
259       return;
260     }
261 
262     if (PartTy.isVector())
263       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
264     else
265       MIRBuilder.buildBuildVector(DstReg, PartRegs);
266     return;
267   }
268 
269   // Merge sub-vectors with different number of elements and insert into DstReg.
270   if (ResultTy.isVector()) {
271     assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
272     SmallVector<Register, 8> AllRegs;
273     for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
274       AllRegs.push_back(Reg);
275     return mergeMixedSubvectors(DstReg, AllRegs);
276   }
277 
278   SmallVector<Register> GCDRegs;
279   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
280   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
281     extractGCDType(GCDRegs, GCDTy, PartReg);
282   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
283   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
284 }
285 
286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
287                                        Register Reg) {
288   LLT Ty = MRI.getType(Reg);
289   SmallVector<Register, 8> RegElts;
290   extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
291   Elts.append(RegElts);
292 }
293 
294 /// Merge \p PartRegs with different types into \p DstReg.
295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
296                                            ArrayRef<Register> PartRegs) {
297   SmallVector<Register, 8> AllElts;
298   for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
299     appendVectorElts(AllElts, PartRegs[i]);
300 
301   Register Leftover = PartRegs[PartRegs.size() - 1];
302   if (MRI.getType(Leftover).isScalar())
303     AllElts.push_back(Leftover);
304   else
305     appendVectorElts(AllElts, Leftover);
306 
307   MIRBuilder.buildMerge(DstReg, AllElts);
308 }
309 
310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
312                               const MachineInstr &MI) {
313   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
314 
315   const int StartIdx = Regs.size();
316   const int NumResults = MI.getNumOperands() - 1;
317   Regs.resize(Regs.size() + NumResults);
318   for (int I = 0; I != NumResults; ++I)
319     Regs[StartIdx + I] = MI.getOperand(I).getReg();
320 }
321 
322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
323                                      LLT GCDTy, Register SrcReg) {
324   LLT SrcTy = MRI.getType(SrcReg);
325   if (SrcTy == GCDTy) {
326     // If the source already evenly divides the result type, we don't need to do
327     // anything.
328     Parts.push_back(SrcReg);
329   } else {
330     // Need to split into common type sized pieces.
331     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
332     getUnmergeResults(Parts, *Unmerge);
333   }
334 }
335 
336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
337                                     LLT NarrowTy, Register SrcReg) {
338   LLT SrcTy = MRI.getType(SrcReg);
339   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
340   extractGCDType(Parts, GCDTy, SrcReg);
341   return GCDTy;
342 }
343 
344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
345                                          SmallVectorImpl<Register> &VRegs,
346                                          unsigned PadStrategy) {
347   LLT LCMTy = getLCMType(DstTy, NarrowTy);
348 
349   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
350   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
351   int NumOrigSrc = VRegs.size();
352 
353   Register PadReg;
354 
355   // Get a value we can use to pad the source value if the sources won't evenly
356   // cover the result type.
357   if (NumOrigSrc < NumParts * NumSubParts) {
358     if (PadStrategy == TargetOpcode::G_ZEXT)
359       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
360     else if (PadStrategy == TargetOpcode::G_ANYEXT)
361       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
362     else {
363       assert(PadStrategy == TargetOpcode::G_SEXT);
364 
365       // Shift the sign bit of the low register through the high register.
366       auto ShiftAmt =
367         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
368       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
369     }
370   }
371 
372   // Registers for the final merge to be produced.
373   SmallVector<Register, 4> Remerge(NumParts);
374 
375   // Registers needed for intermediate merges, which will be merged into a
376   // source for Remerge.
377   SmallVector<Register, 4> SubMerge(NumSubParts);
378 
379   // Once we've fully read off the end of the original source bits, we can reuse
380   // the same high bits for remaining padding elements.
381   Register AllPadReg;
382 
383   // Build merges to the LCM type to cover the original result type.
384   for (int I = 0; I != NumParts; ++I) {
385     bool AllMergePartsArePadding = true;
386 
387     // Build the requested merges to the requested type.
388     for (int J = 0; J != NumSubParts; ++J) {
389       int Idx = I * NumSubParts + J;
390       if (Idx >= NumOrigSrc) {
391         SubMerge[J] = PadReg;
392         continue;
393       }
394 
395       SubMerge[J] = VRegs[Idx];
396 
397       // There are meaningful bits here we can't reuse later.
398       AllMergePartsArePadding = false;
399     }
400 
401     // If we've filled up a complete piece with padding bits, we can directly
402     // emit the natural sized constant if applicable, rather than a merge of
403     // smaller constants.
404     if (AllMergePartsArePadding && !AllPadReg) {
405       if (PadStrategy == TargetOpcode::G_ANYEXT)
406         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
407       else if (PadStrategy == TargetOpcode::G_ZEXT)
408         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
409 
410       // If this is a sign extension, we can't materialize a trivial constant
411       // with the right type and have to produce a merge.
412     }
413 
414     if (AllPadReg) {
415       // Avoid creating additional instructions if we're just adding additional
416       // copies of padding bits.
417       Remerge[I] = AllPadReg;
418       continue;
419     }
420 
421     if (NumSubParts == 1)
422       Remerge[I] = SubMerge[0];
423     else
424       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
425 
426     // In the sign extend padding case, re-use the first all-signbit merge.
427     if (AllMergePartsArePadding && !AllPadReg)
428       AllPadReg = Remerge[I];
429   }
430 
431   VRegs = std::move(Remerge);
432   return LCMTy;
433 }
434 
435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
436                                                ArrayRef<Register> RemergeRegs) {
437   LLT DstTy = MRI.getType(DstReg);
438 
439   // Create the merge to the widened source, and extract the relevant bits into
440   // the result.
441 
442   if (DstTy == LCMTy) {
443     MIRBuilder.buildMerge(DstReg, RemergeRegs);
444     return;
445   }
446 
447   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
448   if (DstTy.isScalar() && LCMTy.isScalar()) {
449     MIRBuilder.buildTrunc(DstReg, Remerge);
450     return;
451   }
452 
453   if (LCMTy.isVector()) {
454     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
455     SmallVector<Register, 8> UnmergeDefs(NumDefs);
456     UnmergeDefs[0] = DstReg;
457     for (unsigned I = 1; I != NumDefs; ++I)
458       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
459 
460     MIRBuilder.buildUnmerge(UnmergeDefs,
461                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
462     return;
463   }
464 
465   llvm_unreachable("unhandled case");
466 }
467 
468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
469 #define RTLIBCASE_INT(LibcallPrefix)                                           \
470   do {                                                                         \
471     switch (Size) {                                                            \
472     case 32:                                                                   \
473       return RTLIB::LibcallPrefix##32;                                         \
474     case 64:                                                                   \
475       return RTLIB::LibcallPrefix##64;                                         \
476     case 128:                                                                  \
477       return RTLIB::LibcallPrefix##128;                                        \
478     default:                                                                   \
479       llvm_unreachable("unexpected size");                                     \
480     }                                                                          \
481   } while (0)
482 
483 #define RTLIBCASE(LibcallPrefix)                                               \
484   do {                                                                         \
485     switch (Size) {                                                            \
486     case 32:                                                                   \
487       return RTLIB::LibcallPrefix##32;                                         \
488     case 64:                                                                   \
489       return RTLIB::LibcallPrefix##64;                                         \
490     case 80:                                                                   \
491       return RTLIB::LibcallPrefix##80;                                         \
492     case 128:                                                                  \
493       return RTLIB::LibcallPrefix##128;                                        \
494     default:                                                                   \
495       llvm_unreachable("unexpected size");                                     \
496     }                                                                          \
497   } while (0)
498 
499   switch (Opcode) {
500   case TargetOpcode::G_SDIV:
501     RTLIBCASE_INT(SDIV_I);
502   case TargetOpcode::G_UDIV:
503     RTLIBCASE_INT(UDIV_I);
504   case TargetOpcode::G_SREM:
505     RTLIBCASE_INT(SREM_I);
506   case TargetOpcode::G_UREM:
507     RTLIBCASE_INT(UREM_I);
508   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
509     RTLIBCASE_INT(CTLZ_I);
510   case TargetOpcode::G_FADD:
511     RTLIBCASE(ADD_F);
512   case TargetOpcode::G_FSUB:
513     RTLIBCASE(SUB_F);
514   case TargetOpcode::G_FMUL:
515     RTLIBCASE(MUL_F);
516   case TargetOpcode::G_FDIV:
517     RTLIBCASE(DIV_F);
518   case TargetOpcode::G_FEXP:
519     RTLIBCASE(EXP_F);
520   case TargetOpcode::G_FEXP2:
521     RTLIBCASE(EXP2_F);
522   case TargetOpcode::G_FREM:
523     RTLIBCASE(REM_F);
524   case TargetOpcode::G_FPOW:
525     RTLIBCASE(POW_F);
526   case TargetOpcode::G_FMA:
527     RTLIBCASE(FMA_F);
528   case TargetOpcode::G_FSIN:
529     RTLIBCASE(SIN_F);
530   case TargetOpcode::G_FCOS:
531     RTLIBCASE(COS_F);
532   case TargetOpcode::G_FLOG10:
533     RTLIBCASE(LOG10_F);
534   case TargetOpcode::G_FLOG:
535     RTLIBCASE(LOG_F);
536   case TargetOpcode::G_FLOG2:
537     RTLIBCASE(LOG2_F);
538   case TargetOpcode::G_FCEIL:
539     RTLIBCASE(CEIL_F);
540   case TargetOpcode::G_FFLOOR:
541     RTLIBCASE(FLOOR_F);
542   case TargetOpcode::G_FMINNUM:
543     RTLIBCASE(FMIN_F);
544   case TargetOpcode::G_FMAXNUM:
545     RTLIBCASE(FMAX_F);
546   case TargetOpcode::G_FSQRT:
547     RTLIBCASE(SQRT_F);
548   case TargetOpcode::G_FRINT:
549     RTLIBCASE(RINT_F);
550   case TargetOpcode::G_FNEARBYINT:
551     RTLIBCASE(NEARBYINT_F);
552   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
553     RTLIBCASE(ROUNDEVEN_F);
554   }
555   llvm_unreachable("Unknown libcall function");
556 }
557 
558 /// True if an instruction is in tail position in its caller. Intended for
559 /// legalizing libcalls as tail calls when possible.
560 static bool isLibCallInTailPosition(MachineInstr &MI,
561                                     const TargetInstrInfo &TII,
562                                     MachineRegisterInfo &MRI) {
563   MachineBasicBlock &MBB = *MI.getParent();
564   const Function &F = MBB.getParent()->getFunction();
565 
566   // Conservatively require the attributes of the call to match those of
567   // the return. Ignore NoAlias and NonNull because they don't affect the
568   // call sequence.
569   AttributeList CallerAttrs = F.getAttributes();
570   if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
571           .removeAttribute(Attribute::NoAlias)
572           .removeAttribute(Attribute::NonNull)
573           .hasAttributes())
574     return false;
575 
576   // It's not safe to eliminate the sign / zero extension of the return value.
577   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
578       CallerAttrs.hasRetAttr(Attribute::SExt))
579     return false;
580 
581   // Only tail call if the following instruction is a standard return or if we
582   // have a `thisreturn` callee, and a sequence like:
583   //
584   //   G_MEMCPY %0, %1, %2
585   //   $x0 = COPY %0
586   //   RET_ReallyLR implicit $x0
587   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
588   if (Next != MBB.instr_end() && Next->isCopy()) {
589     switch (MI.getOpcode()) {
590     default:
591       llvm_unreachable("unsupported opcode");
592     case TargetOpcode::G_BZERO:
593       return false;
594     case TargetOpcode::G_MEMCPY:
595     case TargetOpcode::G_MEMMOVE:
596     case TargetOpcode::G_MEMSET:
597       break;
598     }
599 
600     Register VReg = MI.getOperand(0).getReg();
601     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
602       return false;
603 
604     Register PReg = Next->getOperand(0).getReg();
605     if (!PReg.isPhysical())
606       return false;
607 
608     auto Ret = next_nodbg(Next, MBB.instr_end());
609     if (Ret == MBB.instr_end() || !Ret->isReturn())
610       return false;
611 
612     if (Ret->getNumImplicitOperands() != 1)
613       return false;
614 
615     if (PReg != Ret->getOperand(0).getReg())
616       return false;
617 
618     // Skip over the COPY that we just validated.
619     Next = Ret;
620   }
621 
622   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
623     return false;
624 
625   return true;
626 }
627 
628 LegalizerHelper::LegalizeResult
629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
630                     const CallLowering::ArgInfo &Result,
631                     ArrayRef<CallLowering::ArgInfo> Args,
632                     const CallingConv::ID CC) {
633   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
634 
635   CallLowering::CallLoweringInfo Info;
636   Info.CallConv = CC;
637   Info.Callee = MachineOperand::CreateES(Name);
638   Info.OrigRet = Result;
639   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
640   if (!CLI.lowerCall(MIRBuilder, Info))
641     return LegalizerHelper::UnableToLegalize;
642 
643   return LegalizerHelper::Legalized;
644 }
645 
646 LegalizerHelper::LegalizeResult
647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
648                     const CallLowering::ArgInfo &Result,
649                     ArrayRef<CallLowering::ArgInfo> Args) {
650   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
651   const char *Name = TLI.getLibcallName(Libcall);
652   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
653   return createLibcall(MIRBuilder, Name, Result, Args, CC);
654 }
655 
656 // Useful for libcalls where all operands have the same type.
657 static LegalizerHelper::LegalizeResult
658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
659               Type *OpType) {
660   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
661 
662   // FIXME: What does the original arg index mean here?
663   SmallVector<CallLowering::ArgInfo, 3> Args;
664   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
665     Args.push_back({MO.getReg(), OpType, 0});
666   return createLibcall(MIRBuilder, Libcall,
667                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
668 }
669 
670 LegalizerHelper::LegalizeResult
671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
672                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   SmallVector<CallLowering::ArgInfo, 3> Args;
676   // Add all the args, except for the last which is an imm denoting 'tail'.
677   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
678     Register Reg = MI.getOperand(i).getReg();
679 
680     // Need derive an IR type for call lowering.
681     LLT OpLLT = MRI.getType(Reg);
682     Type *OpTy = nullptr;
683     if (OpLLT.isPointer())
684       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
685     else
686       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
687     Args.push_back({Reg, OpTy, 0});
688   }
689 
690   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
691   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
692   RTLIB::Libcall RTLibcall;
693   unsigned Opc = MI.getOpcode();
694   switch (Opc) {
695   case TargetOpcode::G_BZERO:
696     RTLibcall = RTLIB::BZERO;
697     break;
698   case TargetOpcode::G_MEMCPY:
699     RTLibcall = RTLIB::MEMCPY;
700     Args[0].Flags[0].setReturned();
701     break;
702   case TargetOpcode::G_MEMMOVE:
703     RTLibcall = RTLIB::MEMMOVE;
704     Args[0].Flags[0].setReturned();
705     break;
706   case TargetOpcode::G_MEMSET:
707     RTLibcall = RTLIB::MEMSET;
708     Args[0].Flags[0].setReturned();
709     break;
710   default:
711     llvm_unreachable("unsupported opcode");
712   }
713   const char *Name = TLI.getLibcallName(RTLibcall);
714 
715   // Unsupported libcall on the target.
716   if (!Name) {
717     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
718                       << MIRBuilder.getTII().getName(Opc) << "\n");
719     return LegalizerHelper::UnableToLegalize;
720   }
721 
722   CallLowering::CallLoweringInfo Info;
723   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
724   Info.Callee = MachineOperand::CreateES(Name);
725   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
726   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
727                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
728 
729   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
730   if (!CLI.lowerCall(MIRBuilder, Info))
731     return LegalizerHelper::UnableToLegalize;
732 
733   if (Info.LoweredTailCall) {
734     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
735 
736     // Check debug locations before removing the return.
737     LocObserver.checkpoint(true);
738 
739     // We must have a return following the call (or debug insts) to get past
740     // isLibCallInTailPosition.
741     do {
742       MachineInstr *Next = MI.getNextNode();
743       assert(Next &&
744              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
745              "Expected instr following MI to be return or debug inst?");
746       // We lowered a tail call, so the call is now the return from the block.
747       // Delete the old return.
748       Next->eraseFromParent();
749     } while (MI.getNextNode());
750 
751     // We expect to lose the debug location from the return.
752     LocObserver.checkpoint(false);
753   }
754 
755   return LegalizerHelper::Legalized;
756 }
757 
758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
759                                        Type *FromType) {
760   auto ToMVT = MVT::getVT(ToType);
761   auto FromMVT = MVT::getVT(FromType);
762 
763   switch (Opcode) {
764   case TargetOpcode::G_FPEXT:
765     return RTLIB::getFPEXT(FromMVT, ToMVT);
766   case TargetOpcode::G_FPTRUNC:
767     return RTLIB::getFPROUND(FromMVT, ToMVT);
768   case TargetOpcode::G_FPTOSI:
769     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
770   case TargetOpcode::G_FPTOUI:
771     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
772   case TargetOpcode::G_SITOFP:
773     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
774   case TargetOpcode::G_UITOFP:
775     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
776   }
777   llvm_unreachable("Unsupported libcall function");
778 }
779 
780 static LegalizerHelper::LegalizeResult
781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
782                   Type *FromType) {
783   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
784   return createLibcall(MIRBuilder, Libcall,
785                        {MI.getOperand(0).getReg(), ToType, 0},
786                        {{MI.getOperand(1).getReg(), FromType, 0}});
787 }
788 
789 LegalizerHelper::LegalizeResult
790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
791   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
792   unsigned Size = LLTy.getSizeInBits();
793   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
794 
795   switch (MI.getOpcode()) {
796   default:
797     return UnableToLegalize;
798   case TargetOpcode::G_SDIV:
799   case TargetOpcode::G_UDIV:
800   case TargetOpcode::G_SREM:
801   case TargetOpcode::G_UREM:
802   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
803     Type *HLTy = IntegerType::get(Ctx, Size);
804     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
805     if (Status != Legalized)
806       return Status;
807     break;
808   }
809   case TargetOpcode::G_FADD:
810   case TargetOpcode::G_FSUB:
811   case TargetOpcode::G_FMUL:
812   case TargetOpcode::G_FDIV:
813   case TargetOpcode::G_FMA:
814   case TargetOpcode::G_FPOW:
815   case TargetOpcode::G_FREM:
816   case TargetOpcode::G_FCOS:
817   case TargetOpcode::G_FSIN:
818   case TargetOpcode::G_FLOG10:
819   case TargetOpcode::G_FLOG:
820   case TargetOpcode::G_FLOG2:
821   case TargetOpcode::G_FEXP:
822   case TargetOpcode::G_FEXP2:
823   case TargetOpcode::G_FCEIL:
824   case TargetOpcode::G_FFLOOR:
825   case TargetOpcode::G_FMINNUM:
826   case TargetOpcode::G_FMAXNUM:
827   case TargetOpcode::G_FSQRT:
828   case TargetOpcode::G_FRINT:
829   case TargetOpcode::G_FNEARBYINT:
830   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
831     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
832     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
833       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
834       return UnableToLegalize;
835     }
836     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
837     if (Status != Legalized)
838       return Status;
839     break;
840   }
841   case TargetOpcode::G_FPEXT:
842   case TargetOpcode::G_FPTRUNC: {
843     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
844     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
845     if (!FromTy || !ToTy)
846       return UnableToLegalize;
847     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
848     if (Status != Legalized)
849       return Status;
850     break;
851   }
852   case TargetOpcode::G_FPTOSI:
853   case TargetOpcode::G_FPTOUI: {
854     // FIXME: Support other types
855     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
856     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
857     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
858       return UnableToLegalize;
859     LegalizeResult Status = conversionLibcall(
860         MI, MIRBuilder,
861         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
862         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
863     if (Status != Legalized)
864       return Status;
865     break;
866   }
867   case TargetOpcode::G_SITOFP:
868   case TargetOpcode::G_UITOFP: {
869     // FIXME: Support other types
870     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
871     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
872     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
873       return UnableToLegalize;
874     LegalizeResult Status = conversionLibcall(
875         MI, MIRBuilder,
876         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
877         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
878     if (Status != Legalized)
879       return Status;
880     break;
881   }
882   case TargetOpcode::G_BZERO:
883   case TargetOpcode::G_MEMCPY:
884   case TargetOpcode::G_MEMMOVE:
885   case TargetOpcode::G_MEMSET: {
886     LegalizeResult Result =
887         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
888     if (Result != Legalized)
889       return Result;
890     MI.eraseFromParent();
891     return Result;
892   }
893   }
894 
895   MI.eraseFromParent();
896   return Legalized;
897 }
898 
899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
900                                                               unsigned TypeIdx,
901                                                               LLT NarrowTy) {
902   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
903   uint64_t NarrowSize = NarrowTy.getSizeInBits();
904 
905   switch (MI.getOpcode()) {
906   default:
907     return UnableToLegalize;
908   case TargetOpcode::G_IMPLICIT_DEF: {
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911 
912     // If SizeOp0 is not an exact multiple of NarrowSize, emit
913     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
914     // FIXME: Although this would also be legal for the general case, it causes
915     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
916     //  combines not being hit). This seems to be a problem related to the
917     //  artifact combiner.
918     if (SizeOp0 % NarrowSize != 0) {
919       LLT ImplicitTy = NarrowTy;
920       if (DstTy.isVector())
921         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
922 
923       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
924       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
925 
926       MI.eraseFromParent();
927       return Legalized;
928     }
929 
930     int NumParts = SizeOp0 / NarrowSize;
931 
932     SmallVector<Register, 2> DstRegs;
933     for (int i = 0; i < NumParts; ++i)
934       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
935 
936     if (DstTy.isVector())
937       MIRBuilder.buildBuildVector(DstReg, DstRegs);
938     else
939       MIRBuilder.buildMerge(DstReg, DstRegs);
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_CONSTANT: {
944     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
945     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
946     unsigned TotalSize = Ty.getSizeInBits();
947     unsigned NarrowSize = NarrowTy.getSizeInBits();
948     int NumParts = TotalSize / NarrowSize;
949 
950     SmallVector<Register, 4> PartRegs;
951     for (int I = 0; I != NumParts; ++I) {
952       unsigned Offset = I * NarrowSize;
953       auto K = MIRBuilder.buildConstant(NarrowTy,
954                                         Val.lshr(Offset).trunc(NarrowSize));
955       PartRegs.push_back(K.getReg(0));
956     }
957 
958     LLT LeftoverTy;
959     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
960     SmallVector<Register, 1> LeftoverRegs;
961     if (LeftoverBits != 0) {
962       LeftoverTy = LLT::scalar(LeftoverBits);
963       auto K = MIRBuilder.buildConstant(
964         LeftoverTy,
965         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
966       LeftoverRegs.push_back(K.getReg(0));
967     }
968 
969     insertParts(MI.getOperand(0).getReg(),
970                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
971 
972     MI.eraseFromParent();
973     return Legalized;
974   }
975   case TargetOpcode::G_SEXT:
976   case TargetOpcode::G_ZEXT:
977   case TargetOpcode::G_ANYEXT:
978     return narrowScalarExt(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_TRUNC: {
980     if (TypeIdx != 1)
981       return UnableToLegalize;
982 
983     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
984     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
985       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
986       return UnableToLegalize;
987     }
988 
989     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
990     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
991     MI.eraseFromParent();
992     return Legalized;
993   }
994 
995   case TargetOpcode::G_FREEZE: {
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1000     // Should widen scalar first
1001     if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1002       return UnableToLegalize;
1003 
1004     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1005     SmallVector<Register, 8> Parts;
1006     for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1007       Parts.push_back(
1008           MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1009     }
1010 
1011     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1012     MI.eraseFromParent();
1013     return Legalized;
1014   }
1015   case TargetOpcode::G_ADD:
1016   case TargetOpcode::G_SUB:
1017   case TargetOpcode::G_SADDO:
1018   case TargetOpcode::G_SSUBO:
1019   case TargetOpcode::G_SADDE:
1020   case TargetOpcode::G_SSUBE:
1021   case TargetOpcode::G_UADDO:
1022   case TargetOpcode::G_USUBO:
1023   case TargetOpcode::G_UADDE:
1024   case TargetOpcode::G_USUBE:
1025     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_MUL:
1027   case TargetOpcode::G_UMULH:
1028     return narrowScalarMul(MI, NarrowTy);
1029   case TargetOpcode::G_EXTRACT:
1030     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1031   case TargetOpcode::G_INSERT:
1032     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1033   case TargetOpcode::G_LOAD: {
1034     auto &LoadMI = cast<GLoad>(MI);
1035     Register DstReg = LoadMI.getDstReg();
1036     LLT DstTy = MRI.getType(DstReg);
1037     if (DstTy.isVector())
1038       return UnableToLegalize;
1039 
1040     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1041       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1042       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1043       MIRBuilder.buildAnyExt(DstReg, TmpReg);
1044       LoadMI.eraseFromParent();
1045       return Legalized;
1046     }
1047 
1048     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1049   }
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     auto &LoadMI = cast<GExtLoad>(MI);
1053     Register DstReg = LoadMI.getDstReg();
1054     Register PtrReg = LoadMI.getPointerReg();
1055 
1056     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1057     auto &MMO = LoadMI.getMMO();
1058     unsigned MemSize = MMO.getSizeInBits();
1059 
1060     if (MemSize == NarrowSize) {
1061       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1062     } else if (MemSize < NarrowSize) {
1063       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1064     } else if (MemSize > NarrowSize) {
1065       // FIXME: Need to split the load.
1066       return UnableToLegalize;
1067     }
1068 
1069     if (isa<GZExtLoad>(LoadMI))
1070       MIRBuilder.buildZExt(DstReg, TmpReg);
1071     else
1072       MIRBuilder.buildSExt(DstReg, TmpReg);
1073 
1074     LoadMI.eraseFromParent();
1075     return Legalized;
1076   }
1077   case TargetOpcode::G_STORE: {
1078     auto &StoreMI = cast<GStore>(MI);
1079 
1080     Register SrcReg = StoreMI.getValueReg();
1081     LLT SrcTy = MRI.getType(SrcReg);
1082     if (SrcTy.isVector())
1083       return UnableToLegalize;
1084 
1085     int NumParts = SizeOp0 / NarrowSize;
1086     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1087     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1088     if (SrcTy.isVector() && LeftoverBits != 0)
1089       return UnableToLegalize;
1090 
1091     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1092       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1094       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1095       StoreMI.eraseFromParent();
1096       return Legalized;
1097     }
1098 
1099     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1100   }
1101   case TargetOpcode::G_SELECT:
1102     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1103   case TargetOpcode::G_AND:
1104   case TargetOpcode::G_OR:
1105   case TargetOpcode::G_XOR: {
1106     // Legalize bitwise operation:
1107     // A = BinOp<Ty> B, C
1108     // into:
1109     // B1, ..., BN = G_UNMERGE_VALUES B
1110     // C1, ..., CN = G_UNMERGE_VALUES C
1111     // A1 = BinOp<Ty/N> B1, C2
1112     // ...
1113     // AN = BinOp<Ty/N> BN, CN
1114     // A = G_MERGE_VALUES A1, ..., AN
1115     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1116   }
1117   case TargetOpcode::G_SHL:
1118   case TargetOpcode::G_LSHR:
1119   case TargetOpcode::G_ASHR:
1120     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1121   case TargetOpcode::G_CTLZ:
1122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1123   case TargetOpcode::G_CTTZ:
1124   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1125   case TargetOpcode::G_CTPOP:
1126     if (TypeIdx == 1)
1127       switch (MI.getOpcode()) {
1128       case TargetOpcode::G_CTLZ:
1129       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1130         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1131       case TargetOpcode::G_CTTZ:
1132       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1133         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1134       case TargetOpcode::G_CTPOP:
1135         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1136       default:
1137         return UnableToLegalize;
1138       }
1139 
1140     Observer.changingInstr(MI);
1141     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1142     Observer.changedInstr(MI);
1143     return Legalized;
1144   case TargetOpcode::G_INTTOPTR:
1145     if (TypeIdx != 1)
1146       return UnableToLegalize;
1147 
1148     Observer.changingInstr(MI);
1149     narrowScalarSrc(MI, NarrowTy, 1);
1150     Observer.changedInstr(MI);
1151     return Legalized;
1152   case TargetOpcode::G_PTRTOINT:
1153     if (TypeIdx != 0)
1154       return UnableToLegalize;
1155 
1156     Observer.changingInstr(MI);
1157     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1158     Observer.changedInstr(MI);
1159     return Legalized;
1160   case TargetOpcode::G_PHI: {
1161     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1162     // NarrowSize.
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     unsigned NumParts = SizeOp0 / NarrowSize;
1167     SmallVector<Register, 2> DstRegs(NumParts);
1168     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1169     Observer.changingInstr(MI);
1170     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1171       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1172       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1173       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1174                    SrcRegs[i / 2]);
1175     }
1176     MachineBasicBlock &MBB = *MI.getParent();
1177     MIRBuilder.setInsertPt(MBB, MI);
1178     for (unsigned i = 0; i < NumParts; ++i) {
1179       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1180       MachineInstrBuilder MIB =
1181           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1182       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1183         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1184     }
1185     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1192   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1193     if (TypeIdx != 2)
1194       return UnableToLegalize;
1195 
1196     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1197     Observer.changingInstr(MI);
1198     narrowScalarSrc(MI, NarrowTy, OpIdx);
1199     Observer.changedInstr(MI);
1200     return Legalized;
1201   }
1202   case TargetOpcode::G_ICMP: {
1203     Register LHS = MI.getOperand(2).getReg();
1204     LLT SrcTy = MRI.getType(LHS);
1205     uint64_t SrcSize = SrcTy.getSizeInBits();
1206     CmpInst::Predicate Pred =
1207         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1208 
1209     // TODO: Handle the non-equality case for weird sizes.
1210     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1211       return UnableToLegalize;
1212 
1213     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1214     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1215     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1216                       LHSLeftoverRegs))
1217       return UnableToLegalize;
1218 
1219     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1220     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1221     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1222                       RHSPartRegs, RHSLeftoverRegs))
1223       return UnableToLegalize;
1224 
1225     // We now have the LHS and RHS of the compare split into narrow-type
1226     // registers, plus potentially some leftover type.
1227     Register Dst = MI.getOperand(0).getReg();
1228     LLT ResTy = MRI.getType(Dst);
1229     if (ICmpInst::isEquality(Pred)) {
1230       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1231       // them together. For each equal part, the result should be all 0s. For
1232       // each non-equal part, we'll get at least one 1.
1233       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1234       SmallVector<Register, 4> Xors;
1235       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1236         auto LHS = std::get<0>(LHSAndRHS);
1237         auto RHS = std::get<1>(LHSAndRHS);
1238         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1239         Xors.push_back(Xor);
1240       }
1241 
1242       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1243       // to the desired narrow type so that we can OR them together later.
1244       SmallVector<Register, 4> WidenedXors;
1245       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1246         auto LHS = std::get<0>(LHSAndRHS);
1247         auto RHS = std::get<1>(LHSAndRHS);
1248         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1249         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1250         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1251                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1252         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1253       }
1254 
1255       // Now, for each part we broke up, we know if they are equal/not equal
1256       // based off the G_XOR. We can OR these all together and compare against
1257       // 0 to get the result.
1258       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1259       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1260       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1261         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1262       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1263     } else {
1264       // TODO: Handle non-power-of-two types.
1265       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1266       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1267       Register LHSL = LHSPartRegs[0];
1268       Register LHSH = LHSPartRegs[1];
1269       Register RHSL = RHSPartRegs[0];
1270       Register RHSH = RHSPartRegs[1];
1271       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1272       MachineInstrBuilder CmpHEQ =
1273           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1274       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1275           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1276       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1277     }
1278     MI.eraseFromParent();
1279     return Legalized;
1280   }
1281   case TargetOpcode::G_SEXT_INREG: {
1282     if (TypeIdx != 0)
1283       return UnableToLegalize;
1284 
1285     int64_t SizeInBits = MI.getOperand(2).getImm();
1286 
1287     // So long as the new type has more bits than the bits we're extending we
1288     // don't need to break it apart.
1289     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1290       Observer.changingInstr(MI);
1291       // We don't lose any non-extension bits by truncating the src and
1292       // sign-extending the dst.
1293       MachineOperand &MO1 = MI.getOperand(1);
1294       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1295       MO1.setReg(TruncMIB.getReg(0));
1296 
1297       MachineOperand &MO2 = MI.getOperand(0);
1298       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1299       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300       MIRBuilder.buildSExt(MO2, DstExt);
1301       MO2.setReg(DstExt);
1302       Observer.changedInstr(MI);
1303       return Legalized;
1304     }
1305 
1306     // Break it apart. Components below the extension point are unmodified. The
1307     // component containing the extension point becomes a narrower SEXT_INREG.
1308     // Components above it are ashr'd from the component containing the
1309     // extension point.
1310     if (SizeOp0 % NarrowSize != 0)
1311       return UnableToLegalize;
1312     int NumParts = SizeOp0 / NarrowSize;
1313 
1314     // List the registers where the destination will be scattered.
1315     SmallVector<Register, 2> DstRegs;
1316     // List the registers where the source will be split.
1317     SmallVector<Register, 2> SrcRegs;
1318 
1319     // Create all the temporary registers.
1320     for (int i = 0; i < NumParts; ++i) {
1321       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 
1323       SrcRegs.push_back(SrcReg);
1324     }
1325 
1326     // Explode the big arguments into smaller chunks.
1327     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1328 
1329     Register AshrCstReg =
1330         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1331             .getReg(0);
1332     Register FullExtensionReg = 0;
1333     Register PartialExtensionReg = 0;
1334 
1335     // Do the operation on each small part.
1336     for (int i = 0; i < NumParts; ++i) {
1337       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1338         DstRegs.push_back(SrcRegs[i]);
1339       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1340         assert(PartialExtensionReg &&
1341                "Expected to visit partial extension before full");
1342         if (FullExtensionReg) {
1343           DstRegs.push_back(FullExtensionReg);
1344           continue;
1345         }
1346         DstRegs.push_back(
1347             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1348                 .getReg(0));
1349         FullExtensionReg = DstRegs.back();
1350       } else {
1351         DstRegs.push_back(
1352             MIRBuilder
1353                 .buildInstr(
1354                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1355                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1356                 .getReg(0));
1357         PartialExtensionReg = DstRegs.back();
1358       }
1359     }
1360 
1361     // Gather the destination registers into the final destination.
1362     Register DstReg = MI.getOperand(0).getReg();
1363     MIRBuilder.buildMerge(DstReg, DstRegs);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367   case TargetOpcode::G_BSWAP:
1368   case TargetOpcode::G_BITREVERSE: {
1369     if (SizeOp0 % NarrowSize != 0)
1370       return UnableToLegalize;
1371 
1372     Observer.changingInstr(MI);
1373     SmallVector<Register, 2> SrcRegs, DstRegs;
1374     unsigned NumParts = SizeOp0 / NarrowSize;
1375     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1376 
1377     for (unsigned i = 0; i < NumParts; ++i) {
1378       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1379                                            {SrcRegs[NumParts - 1 - i]});
1380       DstRegs.push_back(DstPart.getReg(0));
1381     }
1382 
1383     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1384 
1385     Observer.changedInstr(MI);
1386     MI.eraseFromParent();
1387     return Legalized;
1388   }
1389   case TargetOpcode::G_PTR_ADD:
1390   case TargetOpcode::G_PTRMASK: {
1391     if (TypeIdx != 1)
1392       return UnableToLegalize;
1393     Observer.changingInstr(MI);
1394     narrowScalarSrc(MI, NarrowTy, 2);
1395     Observer.changedInstr(MI);
1396     return Legalized;
1397   }
1398   case TargetOpcode::G_FPTOUI:
1399   case TargetOpcode::G_FPTOSI:
1400     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1401   case TargetOpcode::G_FPEXT:
1402     if (TypeIdx != 0)
1403       return UnableToLegalize;
1404     Observer.changingInstr(MI);
1405     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1406     Observer.changedInstr(MI);
1407     return Legalized;
1408   }
1409 }
1410 
1411 Register LegalizerHelper::coerceToScalar(Register Val) {
1412   LLT Ty = MRI.getType(Val);
1413   if (Ty.isScalar())
1414     return Val;
1415 
1416   const DataLayout &DL = MIRBuilder.getDataLayout();
1417   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1418   if (Ty.isPointer()) {
1419     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1420       return Register();
1421     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1422   }
1423 
1424   Register NewVal = Val;
1425 
1426   assert(Ty.isVector());
1427   LLT EltTy = Ty.getElementType();
1428   if (EltTy.isPointer())
1429     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1430   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1431 }
1432 
1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1434                                      unsigned OpIdx, unsigned ExtOpcode) {
1435   MachineOperand &MO = MI.getOperand(OpIdx);
1436   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1437   MO.setReg(ExtB.getReg(0));
1438 }
1439 
1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1441                                       unsigned OpIdx) {
1442   MachineOperand &MO = MI.getOperand(OpIdx);
1443   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1444   MO.setReg(ExtB.getReg(0));
1445 }
1446 
1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1448                                      unsigned OpIdx, unsigned TruncOpcode) {
1449   MachineOperand &MO = MI.getOperand(OpIdx);
1450   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1451   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1452   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1453   MO.setReg(DstExt);
1454 }
1455 
1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1457                                       unsigned OpIdx, unsigned ExtOpcode) {
1458   MachineOperand &MO = MI.getOperand(OpIdx);
1459   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1460   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1461   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1462   MO.setReg(DstTrunc);
1463 }
1464 
1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1466                                             unsigned OpIdx) {
1467   MachineOperand &MO = MI.getOperand(OpIdx);
1468   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1469   Register Dst = MO.getReg();
1470   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1471   MO.setReg(DstExt);
1472   MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1473 }
1474 
1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1476                                             unsigned OpIdx) {
1477   MachineOperand &MO = MI.getOperand(OpIdx);
1478   SmallVector<Register, 8> Regs;
1479   MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1480 }
1481 
1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1483   MachineOperand &Op = MI.getOperand(OpIdx);
1484   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1485 }
1486 
1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1488   MachineOperand &MO = MI.getOperand(OpIdx);
1489   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1490   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1491   MIRBuilder.buildBitcast(MO, CastDst);
1492   MO.setReg(CastDst);
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                         LLT WideTy) {
1498   if (TypeIdx != 1)
1499     return UnableToLegalize;
1500 
1501   Register DstReg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(DstReg);
1503   if (DstTy.isVector())
1504     return UnableToLegalize;
1505 
1506   Register Src1 = MI.getOperand(1).getReg();
1507   LLT SrcTy = MRI.getType(Src1);
1508   const int DstSize = DstTy.getSizeInBits();
1509   const int SrcSize = SrcTy.getSizeInBits();
1510   const int WideSize = WideTy.getSizeInBits();
1511   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1512 
1513   unsigned NumOps = MI.getNumOperands();
1514   unsigned NumSrc = MI.getNumOperands() - 1;
1515   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1516 
1517   if (WideSize >= DstSize) {
1518     // Directly pack the bits in the target type.
1519     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1520 
1521     for (unsigned I = 2; I != NumOps; ++I) {
1522       const unsigned Offset = (I - 1) * PartSize;
1523 
1524       Register SrcReg = MI.getOperand(I).getReg();
1525       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1526 
1527       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1528 
1529       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1530         MRI.createGenericVirtualRegister(WideTy);
1531 
1532       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1533       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1534       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1535       ResultReg = NextResult;
1536     }
1537 
1538     if (WideSize > DstSize)
1539       MIRBuilder.buildTrunc(DstReg, ResultReg);
1540     else if (DstTy.isPointer())
1541       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1542 
1543     MI.eraseFromParent();
1544     return Legalized;
1545   }
1546 
1547   // Unmerge the original values to the GCD type, and recombine to the next
1548   // multiple greater than the original type.
1549   //
1550   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1551   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1552   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1553   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1554   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1555   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1556   // %12:_(s12) = G_MERGE_VALUES %10, %11
1557   //
1558   // Padding with undef if necessary:
1559   //
1560   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1561   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1562   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1563   // %7:_(s2) = G_IMPLICIT_DEF
1564   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1565   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1566   // %10:_(s12) = G_MERGE_VALUES %8, %9
1567 
1568   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1569   LLT GCDTy = LLT::scalar(GCD);
1570 
1571   SmallVector<Register, 8> Parts;
1572   SmallVector<Register, 8> NewMergeRegs;
1573   SmallVector<Register, 8> Unmerges;
1574   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1575 
1576   // Decompose the original operands if they don't evenly divide.
1577   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1578     Register SrcReg = MO.getReg();
1579     if (GCD == SrcSize) {
1580       Unmerges.push_back(SrcReg);
1581     } else {
1582       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1583       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1584         Unmerges.push_back(Unmerge.getReg(J));
1585     }
1586   }
1587 
1588   // Pad with undef to the next size that is a multiple of the requested size.
1589   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1590     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1591     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1592       Unmerges.push_back(UndefReg);
1593   }
1594 
1595   const int PartsPerGCD = WideSize / GCD;
1596 
1597   // Build merges of each piece.
1598   ArrayRef<Register> Slicer(Unmerges);
1599   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1600     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1601     NewMergeRegs.push_back(Merge.getReg(0));
1602   }
1603 
1604   // A truncate may be necessary if the requested type doesn't evenly divide the
1605   // original result type.
1606   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1607     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1608   } else {
1609     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1610     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1611   }
1612 
1613   MI.eraseFromParent();
1614   return Legalized;
1615 }
1616 
1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1618   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1619   LLT OrigTy = MRI.getType(OrigReg);
1620   LLT LCMTy = getLCMType(WideTy, OrigTy);
1621 
1622   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1623   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1624 
1625   Register UnmergeSrc = WideReg;
1626 
1627   // Create a merge to the LCM type, padding with undef
1628   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1629   // =>
1630   // %1:_(<4 x s32>) = G_FOO
1631   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1632   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1633   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1634   if (NumMergeParts > 1) {
1635     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1636     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1637     MergeParts[0] = WideReg;
1638     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1639   }
1640 
1641   // Unmerge to the original register and pad with dead defs.
1642   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1643   UnmergeResults[0] = OrigReg;
1644   for (int I = 1; I != NumUnmergeParts; ++I)
1645     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1646 
1647   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1648   return WideReg;
1649 }
1650 
1651 LegalizerHelper::LegalizeResult
1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1653                                           LLT WideTy) {
1654   if (TypeIdx != 0)
1655     return UnableToLegalize;
1656 
1657   int NumDst = MI.getNumOperands() - 1;
1658   Register SrcReg = MI.getOperand(NumDst).getReg();
1659   LLT SrcTy = MRI.getType(SrcReg);
1660   if (SrcTy.isVector())
1661     return UnableToLegalize;
1662 
1663   Register Dst0Reg = MI.getOperand(0).getReg();
1664   LLT DstTy = MRI.getType(Dst0Reg);
1665   if (!DstTy.isScalar())
1666     return UnableToLegalize;
1667 
1668   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1669     if (SrcTy.isPointer()) {
1670       const DataLayout &DL = MIRBuilder.getDataLayout();
1671       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1672         LLVM_DEBUG(
1673             dbgs() << "Not casting non-integral address space integer\n");
1674         return UnableToLegalize;
1675       }
1676 
1677       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1678       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1679     }
1680 
1681     // Widen SrcTy to WideTy. This does not affect the result, but since the
1682     // user requested this size, it is probably better handled than SrcTy and
1683     // should reduce the total number of legalization artifacts.
1684     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1685       SrcTy = WideTy;
1686       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1687     }
1688 
1689     // Theres no unmerge type to target. Directly extract the bits from the
1690     // source type
1691     unsigned DstSize = DstTy.getSizeInBits();
1692 
1693     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1694     for (int I = 1; I != NumDst; ++I) {
1695       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1696       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1697       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1698     }
1699 
1700     MI.eraseFromParent();
1701     return Legalized;
1702   }
1703 
1704   // Extend the source to a wider type.
1705   LLT LCMTy = getLCMType(SrcTy, WideTy);
1706 
1707   Register WideSrc = SrcReg;
1708   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1709     // TODO: If this is an integral address space, cast to integer and anyext.
1710     if (SrcTy.isPointer()) {
1711       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1712       return UnableToLegalize;
1713     }
1714 
1715     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1716   }
1717 
1718   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1719 
1720   // Create a sequence of unmerges and merges to the original results. Since we
1721   // may have widened the source, we will need to pad the results with dead defs
1722   // to cover the source register.
1723   // e.g. widen s48 to s64:
1724   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1725   //
1726   // =>
1727   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1728   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1729   //  ; unpack to GCD type, with extra dead defs
1730   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1731   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1732   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1733   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1734   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1735   const LLT GCDTy = getGCDType(WideTy, DstTy);
1736   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1737   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1738 
1739   // Directly unmerge to the destination without going through a GCD type
1740   // if possible
1741   if (PartsPerRemerge == 1) {
1742     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1743 
1744     for (int I = 0; I != NumUnmerge; ++I) {
1745       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1746 
1747       for (int J = 0; J != PartsPerUnmerge; ++J) {
1748         int Idx = I * PartsPerUnmerge + J;
1749         if (Idx < NumDst)
1750           MIB.addDef(MI.getOperand(Idx).getReg());
1751         else {
1752           // Create dead def for excess components.
1753           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1754         }
1755       }
1756 
1757       MIB.addUse(Unmerge.getReg(I));
1758     }
1759   } else {
1760     SmallVector<Register, 16> Parts;
1761     for (int J = 0; J != NumUnmerge; ++J)
1762       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1763 
1764     SmallVector<Register, 8> RemergeParts;
1765     for (int I = 0; I != NumDst; ++I) {
1766       for (int J = 0; J < PartsPerRemerge; ++J) {
1767         const int Idx = I * PartsPerRemerge + J;
1768         RemergeParts.emplace_back(Parts[Idx]);
1769       }
1770 
1771       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1772       RemergeParts.clear();
1773     }
1774   }
1775 
1776   MI.eraseFromParent();
1777   return Legalized;
1778 }
1779 
1780 LegalizerHelper::LegalizeResult
1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1782                                     LLT WideTy) {
1783   Register DstReg = MI.getOperand(0).getReg();
1784   Register SrcReg = MI.getOperand(1).getReg();
1785   LLT SrcTy = MRI.getType(SrcReg);
1786 
1787   LLT DstTy = MRI.getType(DstReg);
1788   unsigned Offset = MI.getOperand(2).getImm();
1789 
1790   if (TypeIdx == 0) {
1791     if (SrcTy.isVector() || DstTy.isVector())
1792       return UnableToLegalize;
1793 
1794     SrcOp Src(SrcReg);
1795     if (SrcTy.isPointer()) {
1796       // Extracts from pointers can be handled only if they are really just
1797       // simple integers.
1798       const DataLayout &DL = MIRBuilder.getDataLayout();
1799       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1800         return UnableToLegalize;
1801 
1802       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1803       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1804       SrcTy = SrcAsIntTy;
1805     }
1806 
1807     if (DstTy.isPointer())
1808       return UnableToLegalize;
1809 
1810     if (Offset == 0) {
1811       // Avoid a shift in the degenerate case.
1812       MIRBuilder.buildTrunc(DstReg,
1813                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1814       MI.eraseFromParent();
1815       return Legalized;
1816     }
1817 
1818     // Do a shift in the source type.
1819     LLT ShiftTy = SrcTy;
1820     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1821       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1822       ShiftTy = WideTy;
1823     }
1824 
1825     auto LShr = MIRBuilder.buildLShr(
1826       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1827     MIRBuilder.buildTrunc(DstReg, LShr);
1828     MI.eraseFromParent();
1829     return Legalized;
1830   }
1831 
1832   if (SrcTy.isScalar()) {
1833     Observer.changingInstr(MI);
1834     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1835     Observer.changedInstr(MI);
1836     return Legalized;
1837   }
1838 
1839   if (!SrcTy.isVector())
1840     return UnableToLegalize;
1841 
1842   if (DstTy != SrcTy.getElementType())
1843     return UnableToLegalize;
1844 
1845   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1846     return UnableToLegalize;
1847 
1848   Observer.changingInstr(MI);
1849   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1850 
1851   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1852                           Offset);
1853   widenScalarDst(MI, WideTy.getScalarType(), 0);
1854   Observer.changedInstr(MI);
1855   return Legalized;
1856 }
1857 
1858 LegalizerHelper::LegalizeResult
1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1860                                    LLT WideTy) {
1861   if (TypeIdx != 0 || WideTy.isVector())
1862     return UnableToLegalize;
1863   Observer.changingInstr(MI);
1864   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1865   widenScalarDst(MI, WideTy);
1866   Observer.changedInstr(MI);
1867   return Legalized;
1868 }
1869 
1870 LegalizerHelper::LegalizeResult
1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1872                                            LLT WideTy) {
1873   if (TypeIdx == 1)
1874     return UnableToLegalize; // TODO
1875 
1876   unsigned Opcode;
1877   unsigned ExtOpcode;
1878   Optional<Register> CarryIn = None;
1879   switch (MI.getOpcode()) {
1880   default:
1881     llvm_unreachable("Unexpected opcode!");
1882   case TargetOpcode::G_SADDO:
1883     Opcode = TargetOpcode::G_ADD;
1884     ExtOpcode = TargetOpcode::G_SEXT;
1885     break;
1886   case TargetOpcode::G_SSUBO:
1887     Opcode = TargetOpcode::G_SUB;
1888     ExtOpcode = TargetOpcode::G_SEXT;
1889     break;
1890   case TargetOpcode::G_UADDO:
1891     Opcode = TargetOpcode::G_ADD;
1892     ExtOpcode = TargetOpcode::G_ZEXT;
1893     break;
1894   case TargetOpcode::G_USUBO:
1895     Opcode = TargetOpcode::G_SUB;
1896     ExtOpcode = TargetOpcode::G_ZEXT;
1897     break;
1898   case TargetOpcode::G_SADDE:
1899     Opcode = TargetOpcode::G_UADDE;
1900     ExtOpcode = TargetOpcode::G_SEXT;
1901     CarryIn = MI.getOperand(4).getReg();
1902     break;
1903   case TargetOpcode::G_SSUBE:
1904     Opcode = TargetOpcode::G_USUBE;
1905     ExtOpcode = TargetOpcode::G_SEXT;
1906     CarryIn = MI.getOperand(4).getReg();
1907     break;
1908   case TargetOpcode::G_UADDE:
1909     Opcode = TargetOpcode::G_UADDE;
1910     ExtOpcode = TargetOpcode::G_ZEXT;
1911     CarryIn = MI.getOperand(4).getReg();
1912     break;
1913   case TargetOpcode::G_USUBE:
1914     Opcode = TargetOpcode::G_USUBE;
1915     ExtOpcode = TargetOpcode::G_ZEXT;
1916     CarryIn = MI.getOperand(4).getReg();
1917     break;
1918   }
1919 
1920   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1921   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1922   // Do the arithmetic in the larger type.
1923   Register NewOp;
1924   if (CarryIn) {
1925     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1926     NewOp = MIRBuilder
1927                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1928                             {LHSExt, RHSExt, *CarryIn})
1929                 .getReg(0);
1930   } else {
1931     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1932   }
1933   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1934   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1935   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1936   // There is no overflow if the ExtOp is the same as NewOp.
1937   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1938   // Now trunc the NewOp to the original result.
1939   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1940   MI.eraseFromParent();
1941   return Legalized;
1942 }
1943 
1944 LegalizerHelper::LegalizeResult
1945 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1946                                          LLT WideTy) {
1947   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1948                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1949                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1950   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1951                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1952   // We can convert this to:
1953   //   1. Any extend iN to iM
1954   //   2. SHL by M-N
1955   //   3. [US][ADD|SUB|SHL]SAT
1956   //   4. L/ASHR by M-N
1957   //
1958   // It may be more efficient to lower this to a min and a max operation in
1959   // the higher precision arithmetic if the promoted operation isn't legal,
1960   // but this decision is up to the target's lowering request.
1961   Register DstReg = MI.getOperand(0).getReg();
1962 
1963   unsigned NewBits = WideTy.getScalarSizeInBits();
1964   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1965 
1966   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1967   // must not left shift the RHS to preserve the shift amount.
1968   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1969   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1970                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1971   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1972   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1973   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1974 
1975   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1976                                         {ShiftL, ShiftR}, MI.getFlags());
1977 
1978   // Use a shift that will preserve the number of sign bits when the trunc is
1979   // folded away.
1980   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1981                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1982 
1983   MIRBuilder.buildTrunc(DstReg, Result);
1984   MI.eraseFromParent();
1985   return Legalized;
1986 }
1987 
1988 LegalizerHelper::LegalizeResult
1989 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1990                                  LLT WideTy) {
1991   if (TypeIdx == 1)
1992     return UnableToLegalize;
1993 
1994   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1995   Register Result = MI.getOperand(0).getReg();
1996   Register OriginalOverflow = MI.getOperand(1).getReg();
1997   Register LHS = MI.getOperand(2).getReg();
1998   Register RHS = MI.getOperand(3).getReg();
1999   LLT SrcTy = MRI.getType(LHS);
2000   LLT OverflowTy = MRI.getType(OriginalOverflow);
2001   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2002 
2003   // To determine if the result overflowed in the larger type, we extend the
2004   // input to the larger type, do the multiply (checking if it overflows),
2005   // then also check the high bits of the result to see if overflow happened
2006   // there.
2007   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2008   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2009   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2010 
2011   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
2012                                     {LeftOperand, RightOperand});
2013   auto Mul = Mulo->getOperand(0);
2014   MIRBuilder.buildTrunc(Result, Mul);
2015 
2016   MachineInstrBuilder ExtResult;
2017   // Overflow occurred if it occurred in the larger type, or if the high part
2018   // of the result does not zero/sign-extend the low part.  Check this second
2019   // possibility first.
2020   if (IsSigned) {
2021     // For signed, overflow occurred when the high part does not sign-extend
2022     // the low part.
2023     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2024   } else {
2025     // Unsigned overflow occurred when the high part does not zero-extend the
2026     // low part.
2027     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2028   }
2029 
2030   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2031   // so we don't need to check the overflow result of larger type Mulo.
2032   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2033     auto Overflow =
2034         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2035     // Finally check if the multiplication in the larger type itself overflowed.
2036     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2037   } else {
2038     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2039   }
2040   MI.eraseFromParent();
2041   return Legalized;
2042 }
2043 
2044 LegalizerHelper::LegalizeResult
2045 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2046   switch (MI.getOpcode()) {
2047   default:
2048     return UnableToLegalize;
2049   case TargetOpcode::G_ATOMICRMW_XCHG:
2050   case TargetOpcode::G_ATOMICRMW_ADD:
2051   case TargetOpcode::G_ATOMICRMW_SUB:
2052   case TargetOpcode::G_ATOMICRMW_AND:
2053   case TargetOpcode::G_ATOMICRMW_OR:
2054   case TargetOpcode::G_ATOMICRMW_XOR:
2055   case TargetOpcode::G_ATOMICRMW_MIN:
2056   case TargetOpcode::G_ATOMICRMW_MAX:
2057   case TargetOpcode::G_ATOMICRMW_UMIN:
2058   case TargetOpcode::G_ATOMICRMW_UMAX:
2059     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2060     Observer.changingInstr(MI);
2061     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2062     widenScalarDst(MI, WideTy, 0);
2063     Observer.changedInstr(MI);
2064     return Legalized;
2065   case TargetOpcode::G_ATOMIC_CMPXCHG:
2066     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2067     Observer.changingInstr(MI);
2068     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2069     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2070     widenScalarDst(MI, WideTy, 0);
2071     Observer.changedInstr(MI);
2072     return Legalized;
2073   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2074     if (TypeIdx == 0) {
2075       Observer.changingInstr(MI);
2076       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2077       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2078       widenScalarDst(MI, WideTy, 0);
2079       Observer.changedInstr(MI);
2080       return Legalized;
2081     }
2082     assert(TypeIdx == 1 &&
2083            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2084     Observer.changingInstr(MI);
2085     widenScalarDst(MI, WideTy, 1);
2086     Observer.changedInstr(MI);
2087     return Legalized;
2088   case TargetOpcode::G_EXTRACT:
2089     return widenScalarExtract(MI, TypeIdx, WideTy);
2090   case TargetOpcode::G_INSERT:
2091     return widenScalarInsert(MI, TypeIdx, WideTy);
2092   case TargetOpcode::G_MERGE_VALUES:
2093     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2094   case TargetOpcode::G_UNMERGE_VALUES:
2095     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2096   case TargetOpcode::G_SADDO:
2097   case TargetOpcode::G_SSUBO:
2098   case TargetOpcode::G_UADDO:
2099   case TargetOpcode::G_USUBO:
2100   case TargetOpcode::G_SADDE:
2101   case TargetOpcode::G_SSUBE:
2102   case TargetOpcode::G_UADDE:
2103   case TargetOpcode::G_USUBE:
2104     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2105   case TargetOpcode::G_UMULO:
2106   case TargetOpcode::G_SMULO:
2107     return widenScalarMulo(MI, TypeIdx, WideTy);
2108   case TargetOpcode::G_SADDSAT:
2109   case TargetOpcode::G_SSUBSAT:
2110   case TargetOpcode::G_SSHLSAT:
2111   case TargetOpcode::G_UADDSAT:
2112   case TargetOpcode::G_USUBSAT:
2113   case TargetOpcode::G_USHLSAT:
2114     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2115   case TargetOpcode::G_CTTZ:
2116   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2117   case TargetOpcode::G_CTLZ:
2118   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2119   case TargetOpcode::G_CTPOP: {
2120     if (TypeIdx == 0) {
2121       Observer.changingInstr(MI);
2122       widenScalarDst(MI, WideTy, 0);
2123       Observer.changedInstr(MI);
2124       return Legalized;
2125     }
2126 
2127     Register SrcReg = MI.getOperand(1).getReg();
2128 
2129     // First extend the input.
2130     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2131                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2132                           ? TargetOpcode::G_ANYEXT
2133                           : TargetOpcode::G_ZEXT;
2134     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2135     LLT CurTy = MRI.getType(SrcReg);
2136     unsigned NewOpc = MI.getOpcode();
2137     if (NewOpc == TargetOpcode::G_CTTZ) {
2138       // The count is the same in the larger type except if the original
2139       // value was zero.  This can be handled by setting the bit just off
2140       // the top of the original type.
2141       auto TopBit =
2142           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2143       MIBSrc = MIRBuilder.buildOr(
2144         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2145       // Now we know the operand is non-zero, use the more relaxed opcode.
2146       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2147     }
2148 
2149     // Perform the operation at the larger size.
2150     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2151     // This is already the correct result for CTPOP and CTTZs
2152     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2153         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2154       // The correct result is NewOp - (Difference in widety and current ty).
2155       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2156       MIBNewOp = MIRBuilder.buildSub(
2157           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2158     }
2159 
2160     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2161     MI.eraseFromParent();
2162     return Legalized;
2163   }
2164   case TargetOpcode::G_BSWAP: {
2165     Observer.changingInstr(MI);
2166     Register DstReg = MI.getOperand(0).getReg();
2167 
2168     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2169     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2170     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2171     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2172 
2173     MI.getOperand(0).setReg(DstExt);
2174 
2175     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2176 
2177     LLT Ty = MRI.getType(DstReg);
2178     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2179     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2180     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2181 
2182     MIRBuilder.buildTrunc(DstReg, ShrReg);
2183     Observer.changedInstr(MI);
2184     return Legalized;
2185   }
2186   case TargetOpcode::G_BITREVERSE: {
2187     Observer.changingInstr(MI);
2188 
2189     Register DstReg = MI.getOperand(0).getReg();
2190     LLT Ty = MRI.getType(DstReg);
2191     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2192 
2193     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2194     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2195     MI.getOperand(0).setReg(DstExt);
2196     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2197 
2198     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2199     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2200     MIRBuilder.buildTrunc(DstReg, Shift);
2201     Observer.changedInstr(MI);
2202     return Legalized;
2203   }
2204   case TargetOpcode::G_FREEZE:
2205     Observer.changingInstr(MI);
2206     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2207     widenScalarDst(MI, WideTy);
2208     Observer.changedInstr(MI);
2209     return Legalized;
2210 
2211   case TargetOpcode::G_ABS:
2212     Observer.changingInstr(MI);
2213     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2214     widenScalarDst(MI, WideTy);
2215     Observer.changedInstr(MI);
2216     return Legalized;
2217 
2218   case TargetOpcode::G_ADD:
2219   case TargetOpcode::G_AND:
2220   case TargetOpcode::G_MUL:
2221   case TargetOpcode::G_OR:
2222   case TargetOpcode::G_XOR:
2223   case TargetOpcode::G_SUB:
2224     // Perform operation at larger width (any extension is fines here, high bits
2225     // don't affect the result) and then truncate the result back to the
2226     // original type.
2227     Observer.changingInstr(MI);
2228     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2229     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2230     widenScalarDst(MI, WideTy);
2231     Observer.changedInstr(MI);
2232     return Legalized;
2233 
2234   case TargetOpcode::G_SBFX:
2235   case TargetOpcode::G_UBFX:
2236     Observer.changingInstr(MI);
2237 
2238     if (TypeIdx == 0) {
2239       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2240       widenScalarDst(MI, WideTy);
2241     } else {
2242       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2243       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2244     }
2245 
2246     Observer.changedInstr(MI);
2247     return Legalized;
2248 
2249   case TargetOpcode::G_SHL:
2250     Observer.changingInstr(MI);
2251 
2252     if (TypeIdx == 0) {
2253       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2254       widenScalarDst(MI, WideTy);
2255     } else {
2256       assert(TypeIdx == 1);
2257       // The "number of bits to shift" operand must preserve its value as an
2258       // unsigned integer:
2259       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2260     }
2261 
2262     Observer.changedInstr(MI);
2263     return Legalized;
2264 
2265   case TargetOpcode::G_SDIV:
2266   case TargetOpcode::G_SREM:
2267   case TargetOpcode::G_SMIN:
2268   case TargetOpcode::G_SMAX:
2269     Observer.changingInstr(MI);
2270     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2271     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2272     widenScalarDst(MI, WideTy);
2273     Observer.changedInstr(MI);
2274     return Legalized;
2275 
2276   case TargetOpcode::G_SDIVREM:
2277     Observer.changingInstr(MI);
2278     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2279     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2280     widenScalarDst(MI, WideTy);
2281     widenScalarDst(MI, WideTy, 1);
2282     Observer.changedInstr(MI);
2283     return Legalized;
2284 
2285   case TargetOpcode::G_ASHR:
2286   case TargetOpcode::G_LSHR:
2287     Observer.changingInstr(MI);
2288 
2289     if (TypeIdx == 0) {
2290       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2291         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2292 
2293       widenScalarSrc(MI, WideTy, 1, CvtOp);
2294       widenScalarDst(MI, WideTy);
2295     } else {
2296       assert(TypeIdx == 1);
2297       // The "number of bits to shift" operand must preserve its value as an
2298       // unsigned integer:
2299       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2300     }
2301 
2302     Observer.changedInstr(MI);
2303     return Legalized;
2304   case TargetOpcode::G_UDIV:
2305   case TargetOpcode::G_UREM:
2306   case TargetOpcode::G_UMIN:
2307   case TargetOpcode::G_UMAX:
2308     Observer.changingInstr(MI);
2309     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2310     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2311     widenScalarDst(MI, WideTy);
2312     Observer.changedInstr(MI);
2313     return Legalized;
2314 
2315   case TargetOpcode::G_UDIVREM:
2316     Observer.changingInstr(MI);
2317     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2318     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2319     widenScalarDst(MI, WideTy);
2320     widenScalarDst(MI, WideTy, 1);
2321     Observer.changedInstr(MI);
2322     return Legalized;
2323 
2324   case TargetOpcode::G_SELECT:
2325     Observer.changingInstr(MI);
2326     if (TypeIdx == 0) {
2327       // Perform operation at larger width (any extension is fine here, high
2328       // bits don't affect the result) and then truncate the result back to the
2329       // original type.
2330       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2331       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2332       widenScalarDst(MI, WideTy);
2333     } else {
2334       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2335       // Explicit extension is required here since high bits affect the result.
2336       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2337     }
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340 
2341   case TargetOpcode::G_FPTOSI:
2342   case TargetOpcode::G_FPTOUI:
2343     Observer.changingInstr(MI);
2344 
2345     if (TypeIdx == 0)
2346       widenScalarDst(MI, WideTy);
2347     else
2348       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2349 
2350     Observer.changedInstr(MI);
2351     return Legalized;
2352   case TargetOpcode::G_SITOFP:
2353     Observer.changingInstr(MI);
2354 
2355     if (TypeIdx == 0)
2356       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2357     else
2358       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2359 
2360     Observer.changedInstr(MI);
2361     return Legalized;
2362   case TargetOpcode::G_UITOFP:
2363     Observer.changingInstr(MI);
2364 
2365     if (TypeIdx == 0)
2366       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2367     else
2368       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2369 
2370     Observer.changedInstr(MI);
2371     return Legalized;
2372   case TargetOpcode::G_LOAD:
2373   case TargetOpcode::G_SEXTLOAD:
2374   case TargetOpcode::G_ZEXTLOAD:
2375     Observer.changingInstr(MI);
2376     widenScalarDst(MI, WideTy);
2377     Observer.changedInstr(MI);
2378     return Legalized;
2379 
2380   case TargetOpcode::G_STORE: {
2381     if (TypeIdx != 0)
2382       return UnableToLegalize;
2383 
2384     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2385     if (!Ty.isScalar())
2386       return UnableToLegalize;
2387 
2388     Observer.changingInstr(MI);
2389 
2390     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2391       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2392     widenScalarSrc(MI, WideTy, 0, ExtType);
2393 
2394     Observer.changedInstr(MI);
2395     return Legalized;
2396   }
2397   case TargetOpcode::G_CONSTANT: {
2398     MachineOperand &SrcMO = MI.getOperand(1);
2399     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2400     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2401         MRI.getType(MI.getOperand(0).getReg()));
2402     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2403             ExtOpc == TargetOpcode::G_ANYEXT) &&
2404            "Illegal Extend");
2405     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2406     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2407                            ? SrcVal.sext(WideTy.getSizeInBits())
2408                            : SrcVal.zext(WideTy.getSizeInBits());
2409     Observer.changingInstr(MI);
2410     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2411 
2412     widenScalarDst(MI, WideTy);
2413     Observer.changedInstr(MI);
2414     return Legalized;
2415   }
2416   case TargetOpcode::G_FCONSTANT: {
2417     MachineOperand &SrcMO = MI.getOperand(1);
2418     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2419     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2420     bool LosesInfo;
2421     switch (WideTy.getSizeInBits()) {
2422     case 32:
2423       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2424                   &LosesInfo);
2425       break;
2426     case 64:
2427       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2428                   &LosesInfo);
2429       break;
2430     default:
2431       return UnableToLegalize;
2432     }
2433 
2434     assert(!LosesInfo && "extend should always be lossless");
2435 
2436     Observer.changingInstr(MI);
2437     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2438 
2439     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2440     Observer.changedInstr(MI);
2441     return Legalized;
2442   }
2443   case TargetOpcode::G_IMPLICIT_DEF: {
2444     Observer.changingInstr(MI);
2445     widenScalarDst(MI, WideTy);
2446     Observer.changedInstr(MI);
2447     return Legalized;
2448   }
2449   case TargetOpcode::G_BRCOND:
2450     Observer.changingInstr(MI);
2451     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2452     Observer.changedInstr(MI);
2453     return Legalized;
2454 
2455   case TargetOpcode::G_FCMP:
2456     Observer.changingInstr(MI);
2457     if (TypeIdx == 0)
2458       widenScalarDst(MI, WideTy);
2459     else {
2460       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2461       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2462     }
2463     Observer.changedInstr(MI);
2464     return Legalized;
2465 
2466   case TargetOpcode::G_ICMP:
2467     Observer.changingInstr(MI);
2468     if (TypeIdx == 0)
2469       widenScalarDst(MI, WideTy);
2470     else {
2471       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2472                                MI.getOperand(1).getPredicate()))
2473                                ? TargetOpcode::G_SEXT
2474                                : TargetOpcode::G_ZEXT;
2475       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2476       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2477     }
2478     Observer.changedInstr(MI);
2479     return Legalized;
2480 
2481   case TargetOpcode::G_PTR_ADD:
2482     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2483     Observer.changingInstr(MI);
2484     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2485     Observer.changedInstr(MI);
2486     return Legalized;
2487 
2488   case TargetOpcode::G_PHI: {
2489     assert(TypeIdx == 0 && "Expecting only Idx 0");
2490 
2491     Observer.changingInstr(MI);
2492     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2493       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2494       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2495       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2496     }
2497 
2498     MachineBasicBlock &MBB = *MI.getParent();
2499     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2500     widenScalarDst(MI, WideTy);
2501     Observer.changedInstr(MI);
2502     return Legalized;
2503   }
2504   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2505     if (TypeIdx == 0) {
2506       Register VecReg = MI.getOperand(1).getReg();
2507       LLT VecTy = MRI.getType(VecReg);
2508       Observer.changingInstr(MI);
2509 
2510       widenScalarSrc(
2511           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2512           TargetOpcode::G_ANYEXT);
2513 
2514       widenScalarDst(MI, WideTy, 0);
2515       Observer.changedInstr(MI);
2516       return Legalized;
2517     }
2518 
2519     if (TypeIdx != 2)
2520       return UnableToLegalize;
2521     Observer.changingInstr(MI);
2522     // TODO: Probably should be zext
2523     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2524     Observer.changedInstr(MI);
2525     return Legalized;
2526   }
2527   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2528     if (TypeIdx == 1) {
2529       Observer.changingInstr(MI);
2530 
2531       Register VecReg = MI.getOperand(1).getReg();
2532       LLT VecTy = MRI.getType(VecReg);
2533       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2534 
2535       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2536       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2537       widenScalarDst(MI, WideVecTy, 0);
2538       Observer.changedInstr(MI);
2539       return Legalized;
2540     }
2541 
2542     if (TypeIdx == 2) {
2543       Observer.changingInstr(MI);
2544       // TODO: Probably should be zext
2545       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2546       Observer.changedInstr(MI);
2547       return Legalized;
2548     }
2549 
2550     return UnableToLegalize;
2551   }
2552   case TargetOpcode::G_FADD:
2553   case TargetOpcode::G_FMUL:
2554   case TargetOpcode::G_FSUB:
2555   case TargetOpcode::G_FMA:
2556   case TargetOpcode::G_FMAD:
2557   case TargetOpcode::G_FNEG:
2558   case TargetOpcode::G_FABS:
2559   case TargetOpcode::G_FCANONICALIZE:
2560   case TargetOpcode::G_FMINNUM:
2561   case TargetOpcode::G_FMAXNUM:
2562   case TargetOpcode::G_FMINNUM_IEEE:
2563   case TargetOpcode::G_FMAXNUM_IEEE:
2564   case TargetOpcode::G_FMINIMUM:
2565   case TargetOpcode::G_FMAXIMUM:
2566   case TargetOpcode::G_FDIV:
2567   case TargetOpcode::G_FREM:
2568   case TargetOpcode::G_FCEIL:
2569   case TargetOpcode::G_FFLOOR:
2570   case TargetOpcode::G_FCOS:
2571   case TargetOpcode::G_FSIN:
2572   case TargetOpcode::G_FLOG10:
2573   case TargetOpcode::G_FLOG:
2574   case TargetOpcode::G_FLOG2:
2575   case TargetOpcode::G_FRINT:
2576   case TargetOpcode::G_FNEARBYINT:
2577   case TargetOpcode::G_FSQRT:
2578   case TargetOpcode::G_FEXP:
2579   case TargetOpcode::G_FEXP2:
2580   case TargetOpcode::G_FPOW:
2581   case TargetOpcode::G_INTRINSIC_TRUNC:
2582   case TargetOpcode::G_INTRINSIC_ROUND:
2583   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2584     assert(TypeIdx == 0);
2585     Observer.changingInstr(MI);
2586 
2587     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2588       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2589 
2590     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2591     Observer.changedInstr(MI);
2592     return Legalized;
2593   case TargetOpcode::G_FPOWI: {
2594     if (TypeIdx != 0)
2595       return UnableToLegalize;
2596     Observer.changingInstr(MI);
2597     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2598     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2599     Observer.changedInstr(MI);
2600     return Legalized;
2601   }
2602   case TargetOpcode::G_INTTOPTR:
2603     if (TypeIdx != 1)
2604       return UnableToLegalize;
2605 
2606     Observer.changingInstr(MI);
2607     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2608     Observer.changedInstr(MI);
2609     return Legalized;
2610   case TargetOpcode::G_PTRTOINT:
2611     if (TypeIdx != 0)
2612       return UnableToLegalize;
2613 
2614     Observer.changingInstr(MI);
2615     widenScalarDst(MI, WideTy, 0);
2616     Observer.changedInstr(MI);
2617     return Legalized;
2618   case TargetOpcode::G_BUILD_VECTOR: {
2619     Observer.changingInstr(MI);
2620 
2621     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2622     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2623       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2624 
2625     // Avoid changing the result vector type if the source element type was
2626     // requested.
2627     if (TypeIdx == 1) {
2628       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2629     } else {
2630       widenScalarDst(MI, WideTy, 0);
2631     }
2632 
2633     Observer.changedInstr(MI);
2634     return Legalized;
2635   }
2636   case TargetOpcode::G_SEXT_INREG:
2637     if (TypeIdx != 0)
2638       return UnableToLegalize;
2639 
2640     Observer.changingInstr(MI);
2641     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2642     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2643     Observer.changedInstr(MI);
2644     return Legalized;
2645   case TargetOpcode::G_PTRMASK: {
2646     if (TypeIdx != 1)
2647       return UnableToLegalize;
2648     Observer.changingInstr(MI);
2649     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2650     Observer.changedInstr(MI);
2651     return Legalized;
2652   }
2653   }
2654 }
2655 
2656 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2657                              MachineIRBuilder &B, Register Src, LLT Ty) {
2658   auto Unmerge = B.buildUnmerge(Ty, Src);
2659   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2660     Pieces.push_back(Unmerge.getReg(I));
2661 }
2662 
2663 LegalizerHelper::LegalizeResult
2664 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2665   Register Dst = MI.getOperand(0).getReg();
2666   Register Src = MI.getOperand(1).getReg();
2667   LLT DstTy = MRI.getType(Dst);
2668   LLT SrcTy = MRI.getType(Src);
2669 
2670   if (SrcTy.isVector()) {
2671     LLT SrcEltTy = SrcTy.getElementType();
2672     SmallVector<Register, 8> SrcRegs;
2673 
2674     if (DstTy.isVector()) {
2675       int NumDstElt = DstTy.getNumElements();
2676       int NumSrcElt = SrcTy.getNumElements();
2677 
2678       LLT DstEltTy = DstTy.getElementType();
2679       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2680       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2681 
2682       // If there's an element size mismatch, insert intermediate casts to match
2683       // the result element type.
2684       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2685         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2686         //
2687         // =>
2688         //
2689         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2690         // %3:_(<2 x s8>) = G_BITCAST %2
2691         // %4:_(<2 x s8>) = G_BITCAST %3
2692         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2693         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2694         SrcPartTy = SrcEltTy;
2695       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2696         //
2697         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2698         //
2699         // =>
2700         //
2701         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2702         // %3:_(s16) = G_BITCAST %2
2703         // %4:_(s16) = G_BITCAST %3
2704         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2705         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2706         DstCastTy = DstEltTy;
2707       }
2708 
2709       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2710       for (Register &SrcReg : SrcRegs)
2711         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2712     } else
2713       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2714 
2715     MIRBuilder.buildMerge(Dst, SrcRegs);
2716     MI.eraseFromParent();
2717     return Legalized;
2718   }
2719 
2720   if (DstTy.isVector()) {
2721     SmallVector<Register, 8> SrcRegs;
2722     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2723     MIRBuilder.buildMerge(Dst, SrcRegs);
2724     MI.eraseFromParent();
2725     return Legalized;
2726   }
2727 
2728   return UnableToLegalize;
2729 }
2730 
2731 /// Figure out the bit offset into a register when coercing a vector index for
2732 /// the wide element type. This is only for the case when promoting vector to
2733 /// one with larger elements.
2734 //
2735 ///
2736 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2737 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2738 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2739                                                    Register Idx,
2740                                                    unsigned NewEltSize,
2741                                                    unsigned OldEltSize) {
2742   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2743   LLT IdxTy = B.getMRI()->getType(Idx);
2744 
2745   // Now figure out the amount we need to shift to get the target bits.
2746   auto OffsetMask = B.buildConstant(
2747       IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2748   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2749   return B.buildShl(IdxTy, OffsetIdx,
2750                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2751 }
2752 
2753 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2754 /// is casting to a vector with a smaller element size, perform multiple element
2755 /// extracts and merge the results. If this is coercing to a vector with larger
2756 /// elements, index the bitcasted vector and extract the target element with bit
2757 /// operations. This is intended to force the indexing in the native register
2758 /// size for architectures that can dynamically index the register file.
2759 LegalizerHelper::LegalizeResult
2760 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2761                                          LLT CastTy) {
2762   if (TypeIdx != 1)
2763     return UnableToLegalize;
2764 
2765   Register Dst = MI.getOperand(0).getReg();
2766   Register SrcVec = MI.getOperand(1).getReg();
2767   Register Idx = MI.getOperand(2).getReg();
2768   LLT SrcVecTy = MRI.getType(SrcVec);
2769   LLT IdxTy = MRI.getType(Idx);
2770 
2771   LLT SrcEltTy = SrcVecTy.getElementType();
2772   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2773   unsigned OldNumElts = SrcVecTy.getNumElements();
2774 
2775   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2776   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2777 
2778   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2779   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2780   if (NewNumElts > OldNumElts) {
2781     // Decreasing the vector element size
2782     //
2783     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2784     //  =>
2785     //  v4i32:castx = bitcast x:v2i64
2786     //
2787     // i64 = bitcast
2788     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2789     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2790     //
2791     if (NewNumElts % OldNumElts != 0)
2792       return UnableToLegalize;
2793 
2794     // Type of the intermediate result vector.
2795     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2796     LLT MidTy =
2797         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2798 
2799     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2800 
2801     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2802     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2803 
2804     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2805       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2806       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2807       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2808       NewOps[I] = Elt.getReg(0);
2809     }
2810 
2811     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2812     MIRBuilder.buildBitcast(Dst, NewVec);
2813     MI.eraseFromParent();
2814     return Legalized;
2815   }
2816 
2817   if (NewNumElts < OldNumElts) {
2818     if (NewEltSize % OldEltSize != 0)
2819       return UnableToLegalize;
2820 
2821     // This only depends on powers of 2 because we use bit tricks to figure out
2822     // the bit offset we need to shift to get the target element. A general
2823     // expansion could emit division/multiply.
2824     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2825       return UnableToLegalize;
2826 
2827     // Increasing the vector element size.
2828     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2829     //
2830     //   =>
2831     //
2832     // %cast = G_BITCAST %vec
2833     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2834     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2835     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2836     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2837     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2838     // %elt = G_TRUNC %elt_bits
2839 
2840     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2841     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2842 
2843     // Divide to get the index in the wider element type.
2844     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2845 
2846     Register WideElt = CastVec;
2847     if (CastTy.isVector()) {
2848       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2849                                                      ScaledIdx).getReg(0);
2850     }
2851 
2852     // Compute the bit offset into the register of the target element.
2853     Register OffsetBits = getBitcastWiderVectorElementOffset(
2854       MIRBuilder, Idx, NewEltSize, OldEltSize);
2855 
2856     // Shift the wide element to get the target element.
2857     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2858     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2859     MI.eraseFromParent();
2860     return Legalized;
2861   }
2862 
2863   return UnableToLegalize;
2864 }
2865 
2866 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2867 /// TargetReg, while preserving other bits in \p TargetReg.
2868 ///
2869 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2870 static Register buildBitFieldInsert(MachineIRBuilder &B,
2871                                     Register TargetReg, Register InsertReg,
2872                                     Register OffsetBits) {
2873   LLT TargetTy = B.getMRI()->getType(TargetReg);
2874   LLT InsertTy = B.getMRI()->getType(InsertReg);
2875   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2876   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2877 
2878   // Produce a bitmask of the value to insert
2879   auto EltMask = B.buildConstant(
2880     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2881                                    InsertTy.getSizeInBits()));
2882   // Shift it into position
2883   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2884   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2885 
2886   // Clear out the bits in the wide element
2887   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2888 
2889   // The value to insert has all zeros already, so stick it into the masked
2890   // wide element.
2891   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2892 }
2893 
2894 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2895 /// is increasing the element size, perform the indexing in the target element
2896 /// type, and use bit operations to insert at the element position. This is
2897 /// intended for architectures that can dynamically index the register file and
2898 /// want to force indexing in the native register size.
2899 LegalizerHelper::LegalizeResult
2900 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2901                                         LLT CastTy) {
2902   if (TypeIdx != 0)
2903     return UnableToLegalize;
2904 
2905   Register Dst = MI.getOperand(0).getReg();
2906   Register SrcVec = MI.getOperand(1).getReg();
2907   Register Val = MI.getOperand(2).getReg();
2908   Register Idx = MI.getOperand(3).getReg();
2909 
2910   LLT VecTy = MRI.getType(Dst);
2911   LLT IdxTy = MRI.getType(Idx);
2912 
2913   LLT VecEltTy = VecTy.getElementType();
2914   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2915   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2916   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2917 
2918   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2919   unsigned OldNumElts = VecTy.getNumElements();
2920 
2921   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2922   if (NewNumElts < OldNumElts) {
2923     if (NewEltSize % OldEltSize != 0)
2924       return UnableToLegalize;
2925 
2926     // This only depends on powers of 2 because we use bit tricks to figure out
2927     // the bit offset we need to shift to get the target element. A general
2928     // expansion could emit division/multiply.
2929     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2930       return UnableToLegalize;
2931 
2932     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2933     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2934 
2935     // Divide to get the index in the wider element type.
2936     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2937 
2938     Register ExtractedElt = CastVec;
2939     if (CastTy.isVector()) {
2940       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2941                                                           ScaledIdx).getReg(0);
2942     }
2943 
2944     // Compute the bit offset into the register of the target element.
2945     Register OffsetBits = getBitcastWiderVectorElementOffset(
2946       MIRBuilder, Idx, NewEltSize, OldEltSize);
2947 
2948     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2949                                                Val, OffsetBits);
2950     if (CastTy.isVector()) {
2951       InsertedElt = MIRBuilder.buildInsertVectorElement(
2952         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2953     }
2954 
2955     MIRBuilder.buildBitcast(Dst, InsertedElt);
2956     MI.eraseFromParent();
2957     return Legalized;
2958   }
2959 
2960   return UnableToLegalize;
2961 }
2962 
2963 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2964   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2965   Register DstReg = LoadMI.getDstReg();
2966   Register PtrReg = LoadMI.getPointerReg();
2967   LLT DstTy = MRI.getType(DstReg);
2968   MachineMemOperand &MMO = LoadMI.getMMO();
2969   LLT MemTy = MMO.getMemoryType();
2970   MachineFunction &MF = MIRBuilder.getMF();
2971 
2972   unsigned MemSizeInBits = MemTy.getSizeInBits();
2973   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2974 
2975   if (MemSizeInBits != MemStoreSizeInBits) {
2976     if (MemTy.isVector())
2977       return UnableToLegalize;
2978 
2979     // Promote to a byte-sized load if not loading an integral number of
2980     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2981     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2982     MachineMemOperand *NewMMO =
2983         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2984 
2985     Register LoadReg = DstReg;
2986     LLT LoadTy = DstTy;
2987 
2988     // If this wasn't already an extending load, we need to widen the result
2989     // register to avoid creating a load with a narrower result than the source.
2990     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2991       LoadTy = WideMemTy;
2992       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2993     }
2994 
2995     if (isa<GSExtLoad>(LoadMI)) {
2996       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2997       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2998     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2999       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3000       // The extra bits are guaranteed to be zero, since we stored them that
3001       // way.  A zext load from Wide thus automatically gives zext from MemVT.
3002       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3003     } else {
3004       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3005     }
3006 
3007     if (DstTy != LoadTy)
3008       MIRBuilder.buildTrunc(DstReg, LoadReg);
3009 
3010     LoadMI.eraseFromParent();
3011     return Legalized;
3012   }
3013 
3014   // Big endian lowering not implemented.
3015   if (MIRBuilder.getDataLayout().isBigEndian())
3016     return UnableToLegalize;
3017 
3018   // This load needs splitting into power of 2 sized loads.
3019   //
3020   // Our strategy here is to generate anyextending loads for the smaller
3021   // types up to next power-2 result type, and then combine the two larger
3022   // result values together, before truncating back down to the non-pow-2
3023   // type.
3024   // E.g. v1 = i24 load =>
3025   // v2 = i32 zextload (2 byte)
3026   // v3 = i32 load (1 byte)
3027   // v4 = i32 shl v3, 16
3028   // v5 = i32 or v4, v2
3029   // v1 = i24 trunc v5
3030   // By doing this we generate the correct truncate which should get
3031   // combined away as an artifact with a matching extend.
3032 
3033   uint64_t LargeSplitSize, SmallSplitSize;
3034 
3035   if (!isPowerOf2_32(MemSizeInBits)) {
3036     // This load needs splitting into power of 2 sized loads.
3037     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3038     SmallSplitSize = MemSizeInBits - LargeSplitSize;
3039   } else {
3040     // This is already a power of 2, but we still need to split this in half.
3041     //
3042     // Assume we're being asked to decompose an unaligned load.
3043     // TODO: If this requires multiple splits, handle them all at once.
3044     auto &Ctx = MF.getFunction().getContext();
3045     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3046       return UnableToLegalize;
3047 
3048     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3049   }
3050 
3051   if (MemTy.isVector()) {
3052     // TODO: Handle vector extloads
3053     if (MemTy != DstTy)
3054       return UnableToLegalize;
3055 
3056     // TODO: We can do better than scalarizing the vector and at least split it
3057     // in half.
3058     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3059   }
3060 
3061   MachineMemOperand *LargeMMO =
3062       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3063   MachineMemOperand *SmallMMO =
3064       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3065 
3066   LLT PtrTy = MRI.getType(PtrReg);
3067   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3068   LLT AnyExtTy = LLT::scalar(AnyExtSize);
3069   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3070                                              PtrReg, *LargeMMO);
3071 
3072   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3073                                             LargeSplitSize / 8);
3074   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3075   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3076   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3077                                              SmallPtr, *SmallMMO);
3078 
3079   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3080   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3081 
3082   if (AnyExtTy == DstTy)
3083     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3084   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3085     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3086     MIRBuilder.buildTrunc(DstReg, {Or});
3087   } else {
3088     assert(DstTy.isPointer() && "expected pointer");
3089     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3090 
3091     // FIXME: We currently consider this to be illegal for non-integral address
3092     // spaces, but we need still need a way to reinterpret the bits.
3093     MIRBuilder.buildIntToPtr(DstReg, Or);
3094   }
3095 
3096   LoadMI.eraseFromParent();
3097   return Legalized;
3098 }
3099 
3100 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3101   // Lower a non-power of 2 store into multiple pow-2 stores.
3102   // E.g. split an i24 store into an i16 store + i8 store.
3103   // We do this by first extending the stored value to the next largest power
3104   // of 2 type, and then using truncating stores to store the components.
3105   // By doing this, likewise with G_LOAD, generate an extend that can be
3106   // artifact-combined away instead of leaving behind extracts.
3107   Register SrcReg = StoreMI.getValueReg();
3108   Register PtrReg = StoreMI.getPointerReg();
3109   LLT SrcTy = MRI.getType(SrcReg);
3110   MachineFunction &MF = MIRBuilder.getMF();
3111   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3112   LLT MemTy = MMO.getMemoryType();
3113 
3114   unsigned StoreWidth = MemTy.getSizeInBits();
3115   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3116 
3117   if (StoreWidth != StoreSizeInBits) {
3118     if (SrcTy.isVector())
3119       return UnableToLegalize;
3120 
3121     // Promote to a byte-sized store with upper bits zero if not
3122     // storing an integral number of bytes.  For example, promote
3123     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3124     LLT WideTy = LLT::scalar(StoreSizeInBits);
3125 
3126     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3127       // Avoid creating a store with a narrower source than result.
3128       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3129       SrcTy = WideTy;
3130     }
3131 
3132     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3133 
3134     MachineMemOperand *NewMMO =
3135         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3136     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3137     StoreMI.eraseFromParent();
3138     return Legalized;
3139   }
3140 
3141   if (MemTy.isVector()) {
3142     // TODO: Handle vector trunc stores
3143     if (MemTy != SrcTy)
3144       return UnableToLegalize;
3145 
3146     // TODO: We can do better than scalarizing the vector and at least split it
3147     // in half.
3148     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3149   }
3150 
3151   unsigned MemSizeInBits = MemTy.getSizeInBits();
3152   uint64_t LargeSplitSize, SmallSplitSize;
3153 
3154   if (!isPowerOf2_32(MemSizeInBits)) {
3155     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3156     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3157   } else {
3158     auto &Ctx = MF.getFunction().getContext();
3159     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3160       return UnableToLegalize; // Don't know what we're being asked to do.
3161 
3162     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3163   }
3164 
3165   // Extend to the next pow-2. If this store was itself the result of lowering,
3166   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3167   // that's wider than the stored size.
3168   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3169   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3170 
3171   if (SrcTy.isPointer()) {
3172     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3173     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3174   }
3175 
3176   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3177 
3178   // Obtain the smaller value by shifting away the larger value.
3179   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3180   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3181 
3182   // Generate the PtrAdd and truncating stores.
3183   LLT PtrTy = MRI.getType(PtrReg);
3184   auto OffsetCst = MIRBuilder.buildConstant(
3185     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3186   auto SmallPtr =
3187     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3188 
3189   MachineMemOperand *LargeMMO =
3190     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3191   MachineMemOperand *SmallMMO =
3192     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3193   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3194   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3195   StoreMI.eraseFromParent();
3196   return Legalized;
3197 }
3198 
3199 LegalizerHelper::LegalizeResult
3200 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3201   switch (MI.getOpcode()) {
3202   case TargetOpcode::G_LOAD: {
3203     if (TypeIdx != 0)
3204       return UnableToLegalize;
3205     MachineMemOperand &MMO = **MI.memoperands_begin();
3206 
3207     // Not sure how to interpret a bitcast of an extending load.
3208     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3209       return UnableToLegalize;
3210 
3211     Observer.changingInstr(MI);
3212     bitcastDst(MI, CastTy, 0);
3213     MMO.setType(CastTy);
3214     Observer.changedInstr(MI);
3215     return Legalized;
3216   }
3217   case TargetOpcode::G_STORE: {
3218     if (TypeIdx != 0)
3219       return UnableToLegalize;
3220 
3221     MachineMemOperand &MMO = **MI.memoperands_begin();
3222 
3223     // Not sure how to interpret a bitcast of a truncating store.
3224     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3225       return UnableToLegalize;
3226 
3227     Observer.changingInstr(MI);
3228     bitcastSrc(MI, CastTy, 0);
3229     MMO.setType(CastTy);
3230     Observer.changedInstr(MI);
3231     return Legalized;
3232   }
3233   case TargetOpcode::G_SELECT: {
3234     if (TypeIdx != 0)
3235       return UnableToLegalize;
3236 
3237     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3238       LLVM_DEBUG(
3239           dbgs() << "bitcast action not implemented for vector select\n");
3240       return UnableToLegalize;
3241     }
3242 
3243     Observer.changingInstr(MI);
3244     bitcastSrc(MI, CastTy, 2);
3245     bitcastSrc(MI, CastTy, 3);
3246     bitcastDst(MI, CastTy, 0);
3247     Observer.changedInstr(MI);
3248     return Legalized;
3249   }
3250   case TargetOpcode::G_AND:
3251   case TargetOpcode::G_OR:
3252   case TargetOpcode::G_XOR: {
3253     Observer.changingInstr(MI);
3254     bitcastSrc(MI, CastTy, 1);
3255     bitcastSrc(MI, CastTy, 2);
3256     bitcastDst(MI, CastTy, 0);
3257     Observer.changedInstr(MI);
3258     return Legalized;
3259   }
3260   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3261     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3262   case TargetOpcode::G_INSERT_VECTOR_ELT:
3263     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3264   default:
3265     return UnableToLegalize;
3266   }
3267 }
3268 
3269 // Legalize an instruction by changing the opcode in place.
3270 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3271     Observer.changingInstr(MI);
3272     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3273     Observer.changedInstr(MI);
3274 }
3275 
3276 LegalizerHelper::LegalizeResult
3277 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3278   using namespace TargetOpcode;
3279 
3280   switch(MI.getOpcode()) {
3281   default:
3282     return UnableToLegalize;
3283   case TargetOpcode::G_BITCAST:
3284     return lowerBitcast(MI);
3285   case TargetOpcode::G_SREM:
3286   case TargetOpcode::G_UREM: {
3287     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3288     auto Quot =
3289         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3290                               {MI.getOperand(1), MI.getOperand(2)});
3291 
3292     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3293     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3294     MI.eraseFromParent();
3295     return Legalized;
3296   }
3297   case TargetOpcode::G_SADDO:
3298   case TargetOpcode::G_SSUBO:
3299     return lowerSADDO_SSUBO(MI);
3300   case TargetOpcode::G_UMULH:
3301   case TargetOpcode::G_SMULH:
3302     return lowerSMULH_UMULH(MI);
3303   case TargetOpcode::G_SMULO:
3304   case TargetOpcode::G_UMULO: {
3305     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3306     // result.
3307     Register Res = MI.getOperand(0).getReg();
3308     Register Overflow = MI.getOperand(1).getReg();
3309     Register LHS = MI.getOperand(2).getReg();
3310     Register RHS = MI.getOperand(3).getReg();
3311     LLT Ty = MRI.getType(Res);
3312 
3313     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3314                           ? TargetOpcode::G_SMULH
3315                           : TargetOpcode::G_UMULH;
3316 
3317     Observer.changingInstr(MI);
3318     const auto &TII = MIRBuilder.getTII();
3319     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3320     MI.removeOperand(1);
3321     Observer.changedInstr(MI);
3322 
3323     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3324     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3325 
3326     // Move insert point forward so we can use the Res register if needed.
3327     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3328 
3329     // For *signed* multiply, overflow is detected by checking:
3330     // (hi != (lo >> bitwidth-1))
3331     if (Opcode == TargetOpcode::G_SMULH) {
3332       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3333       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3334       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3335     } else {
3336       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3337     }
3338     return Legalized;
3339   }
3340   case TargetOpcode::G_FNEG: {
3341     Register Res = MI.getOperand(0).getReg();
3342     LLT Ty = MRI.getType(Res);
3343 
3344     // TODO: Handle vector types once we are able to
3345     // represent them.
3346     if (Ty.isVector())
3347       return UnableToLegalize;
3348     auto SignMask =
3349         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3350     Register SubByReg = MI.getOperand(1).getReg();
3351     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3352     MI.eraseFromParent();
3353     return Legalized;
3354   }
3355   case TargetOpcode::G_FSUB: {
3356     Register Res = MI.getOperand(0).getReg();
3357     LLT Ty = MRI.getType(Res);
3358 
3359     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3360     // First, check if G_FNEG is marked as Lower. If so, we may
3361     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3362     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3363       return UnableToLegalize;
3364     Register LHS = MI.getOperand(1).getReg();
3365     Register RHS = MI.getOperand(2).getReg();
3366     Register Neg = MRI.createGenericVirtualRegister(Ty);
3367     MIRBuilder.buildFNeg(Neg, RHS);
3368     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3369     MI.eraseFromParent();
3370     return Legalized;
3371   }
3372   case TargetOpcode::G_FMAD:
3373     return lowerFMad(MI);
3374   case TargetOpcode::G_FFLOOR:
3375     return lowerFFloor(MI);
3376   case TargetOpcode::G_INTRINSIC_ROUND:
3377     return lowerIntrinsicRound(MI);
3378   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3379     // Since round even is the assumed rounding mode for unconstrained FP
3380     // operations, rint and roundeven are the same operation.
3381     changeOpcode(MI, TargetOpcode::G_FRINT);
3382     return Legalized;
3383   }
3384   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3385     Register OldValRes = MI.getOperand(0).getReg();
3386     Register SuccessRes = MI.getOperand(1).getReg();
3387     Register Addr = MI.getOperand(2).getReg();
3388     Register CmpVal = MI.getOperand(3).getReg();
3389     Register NewVal = MI.getOperand(4).getReg();
3390     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3391                                   **MI.memoperands_begin());
3392     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3393     MI.eraseFromParent();
3394     return Legalized;
3395   }
3396   case TargetOpcode::G_LOAD:
3397   case TargetOpcode::G_SEXTLOAD:
3398   case TargetOpcode::G_ZEXTLOAD:
3399     return lowerLoad(cast<GAnyLoad>(MI));
3400   case TargetOpcode::G_STORE:
3401     return lowerStore(cast<GStore>(MI));
3402   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3403   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3404   case TargetOpcode::G_CTLZ:
3405   case TargetOpcode::G_CTTZ:
3406   case TargetOpcode::G_CTPOP:
3407     return lowerBitCount(MI);
3408   case G_UADDO: {
3409     Register Res = MI.getOperand(0).getReg();
3410     Register CarryOut = MI.getOperand(1).getReg();
3411     Register LHS = MI.getOperand(2).getReg();
3412     Register RHS = MI.getOperand(3).getReg();
3413 
3414     MIRBuilder.buildAdd(Res, LHS, RHS);
3415     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3416 
3417     MI.eraseFromParent();
3418     return Legalized;
3419   }
3420   case G_UADDE: {
3421     Register Res = MI.getOperand(0).getReg();
3422     Register CarryOut = MI.getOperand(1).getReg();
3423     Register LHS = MI.getOperand(2).getReg();
3424     Register RHS = MI.getOperand(3).getReg();
3425     Register CarryIn = MI.getOperand(4).getReg();
3426     LLT Ty = MRI.getType(Res);
3427 
3428     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3429     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3430     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3431     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3432 
3433     MI.eraseFromParent();
3434     return Legalized;
3435   }
3436   case G_USUBO: {
3437     Register Res = MI.getOperand(0).getReg();
3438     Register BorrowOut = MI.getOperand(1).getReg();
3439     Register LHS = MI.getOperand(2).getReg();
3440     Register RHS = MI.getOperand(3).getReg();
3441 
3442     MIRBuilder.buildSub(Res, LHS, RHS);
3443     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3444 
3445     MI.eraseFromParent();
3446     return Legalized;
3447   }
3448   case G_USUBE: {
3449     Register Res = MI.getOperand(0).getReg();
3450     Register BorrowOut = MI.getOperand(1).getReg();
3451     Register LHS = MI.getOperand(2).getReg();
3452     Register RHS = MI.getOperand(3).getReg();
3453     Register BorrowIn = MI.getOperand(4).getReg();
3454     const LLT CondTy = MRI.getType(BorrowOut);
3455     const LLT Ty = MRI.getType(Res);
3456 
3457     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3458     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3459     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3460 
3461     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3462     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3463     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3464 
3465     MI.eraseFromParent();
3466     return Legalized;
3467   }
3468   case G_UITOFP:
3469     return lowerUITOFP(MI);
3470   case G_SITOFP:
3471     return lowerSITOFP(MI);
3472   case G_FPTOUI:
3473     return lowerFPTOUI(MI);
3474   case G_FPTOSI:
3475     return lowerFPTOSI(MI);
3476   case G_FPTRUNC:
3477     return lowerFPTRUNC(MI);
3478   case G_FPOWI:
3479     return lowerFPOWI(MI);
3480   case G_SMIN:
3481   case G_SMAX:
3482   case G_UMIN:
3483   case G_UMAX:
3484     return lowerMinMax(MI);
3485   case G_FCOPYSIGN:
3486     return lowerFCopySign(MI);
3487   case G_FMINNUM:
3488   case G_FMAXNUM:
3489     return lowerFMinNumMaxNum(MI);
3490   case G_MERGE_VALUES:
3491     return lowerMergeValues(MI);
3492   case G_UNMERGE_VALUES:
3493     return lowerUnmergeValues(MI);
3494   case TargetOpcode::G_SEXT_INREG: {
3495     assert(MI.getOperand(2).isImm() && "Expected immediate");
3496     int64_t SizeInBits = MI.getOperand(2).getImm();
3497 
3498     Register DstReg = MI.getOperand(0).getReg();
3499     Register SrcReg = MI.getOperand(1).getReg();
3500     LLT DstTy = MRI.getType(DstReg);
3501     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3502 
3503     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3504     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3505     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3506     MI.eraseFromParent();
3507     return Legalized;
3508   }
3509   case G_EXTRACT_VECTOR_ELT:
3510   case G_INSERT_VECTOR_ELT:
3511     return lowerExtractInsertVectorElt(MI);
3512   case G_SHUFFLE_VECTOR:
3513     return lowerShuffleVector(MI);
3514   case G_DYN_STACKALLOC:
3515     return lowerDynStackAlloc(MI);
3516   case G_EXTRACT:
3517     return lowerExtract(MI);
3518   case G_INSERT:
3519     return lowerInsert(MI);
3520   case G_BSWAP:
3521     return lowerBswap(MI);
3522   case G_BITREVERSE:
3523     return lowerBitreverse(MI);
3524   case G_READ_REGISTER:
3525   case G_WRITE_REGISTER:
3526     return lowerReadWriteRegister(MI);
3527   case G_UADDSAT:
3528   case G_USUBSAT: {
3529     // Try to make a reasonable guess about which lowering strategy to use. The
3530     // target can override this with custom lowering and calling the
3531     // implementation functions.
3532     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3533     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3534       return lowerAddSubSatToMinMax(MI);
3535     return lowerAddSubSatToAddoSubo(MI);
3536   }
3537   case G_SADDSAT:
3538   case G_SSUBSAT: {
3539     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3540 
3541     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3542     // since it's a shorter expansion. However, we would need to figure out the
3543     // preferred boolean type for the carry out for the query.
3544     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3545       return lowerAddSubSatToMinMax(MI);
3546     return lowerAddSubSatToAddoSubo(MI);
3547   }
3548   case G_SSHLSAT:
3549   case G_USHLSAT:
3550     return lowerShlSat(MI);
3551   case G_ABS:
3552     return lowerAbsToAddXor(MI);
3553   case G_SELECT:
3554     return lowerSelect(MI);
3555   case G_SDIVREM:
3556   case G_UDIVREM:
3557     return lowerDIVREM(MI);
3558   case G_FSHL:
3559   case G_FSHR:
3560     return lowerFunnelShift(MI);
3561   case G_ROTL:
3562   case G_ROTR:
3563     return lowerRotate(MI);
3564   case G_MEMSET:
3565   case G_MEMCPY:
3566   case G_MEMMOVE:
3567     return lowerMemCpyFamily(MI);
3568   case G_MEMCPY_INLINE:
3569     return lowerMemcpyInline(MI);
3570   GISEL_VECREDUCE_CASES_NONSEQ
3571     return lowerVectorReduction(MI);
3572   }
3573 }
3574 
3575 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3576                                                   Align MinAlign) const {
3577   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3578   // datalayout for the preferred alignment. Also there should be a target hook
3579   // for this to allow targets to reduce the alignment and ignore the
3580   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3581   // the type.
3582   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3583 }
3584 
3585 MachineInstrBuilder
3586 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3587                                       MachinePointerInfo &PtrInfo) {
3588   MachineFunction &MF = MIRBuilder.getMF();
3589   const DataLayout &DL = MIRBuilder.getDataLayout();
3590   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3591 
3592   unsigned AddrSpace = DL.getAllocaAddrSpace();
3593   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3594 
3595   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3596   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3597 }
3598 
3599 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3600                                         LLT VecTy) {
3601   int64_t IdxVal;
3602   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3603     return IdxReg;
3604 
3605   LLT IdxTy = B.getMRI()->getType(IdxReg);
3606   unsigned NElts = VecTy.getNumElements();
3607   if (isPowerOf2_32(NElts)) {
3608     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3609     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3610   }
3611 
3612   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3613       .getReg(0);
3614 }
3615 
3616 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3617                                                   Register Index) {
3618   LLT EltTy = VecTy.getElementType();
3619 
3620   // Calculate the element offset and add it to the pointer.
3621   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3622   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3623          "Converting bits to bytes lost precision");
3624 
3625   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3626 
3627   LLT IdxTy = MRI.getType(Index);
3628   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3629                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3630 
3631   LLT PtrTy = MRI.getType(VecPtr);
3632   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3633 }
3634 
3635 #ifndef NDEBUG
3636 /// Check that all vector operands have same number of elements. Other operands
3637 /// should be listed in NonVecOp.
3638 static bool hasSameNumEltsOnAllVectorOperands(
3639     GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3640     std::initializer_list<unsigned> NonVecOpIndices) {
3641   if (MI.getNumMemOperands() != 0)
3642     return false;
3643 
3644   LLT VecTy = MRI.getType(MI.getReg(0));
3645   if (!VecTy.isVector())
3646     return false;
3647   unsigned NumElts = VecTy.getNumElements();
3648 
3649   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3650     MachineOperand &Op = MI.getOperand(OpIdx);
3651     if (!Op.isReg()) {
3652       if (!is_contained(NonVecOpIndices, OpIdx))
3653         return false;
3654       continue;
3655     }
3656 
3657     LLT Ty = MRI.getType(Op.getReg());
3658     if (!Ty.isVector()) {
3659       if (!is_contained(NonVecOpIndices, OpIdx))
3660         return false;
3661       continue;
3662     }
3663 
3664     if (Ty.getNumElements() != NumElts)
3665       return false;
3666   }
3667 
3668   return true;
3669 }
3670 #endif
3671 
3672 /// Fill \p DstOps with DstOps that have same number of elements combined as
3673 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3674 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3675 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3676 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3677                        unsigned NumElts) {
3678   LLT LeftoverTy;
3679   assert(Ty.isVector() && "Expected vector type");
3680   LLT EltTy = Ty.getElementType();
3681   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3682   int NumParts, NumLeftover;
3683   std::tie(NumParts, NumLeftover) =
3684       getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3685 
3686   assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3687   for (int i = 0; i < NumParts; ++i) {
3688     DstOps.push_back(NarrowTy);
3689   }
3690 
3691   if (LeftoverTy.isValid()) {
3692     assert(NumLeftover == 1 && "expected exactly one leftover");
3693     DstOps.push_back(LeftoverTy);
3694   }
3695 }
3696 
3697 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3698 /// made from \p Op depending on operand type.
3699 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3700                            MachineOperand &Op) {
3701   for (unsigned i = 0; i < N; ++i) {
3702     if (Op.isReg())
3703       Ops.push_back(Op.getReg());
3704     else if (Op.isImm())
3705       Ops.push_back(Op.getImm());
3706     else if (Op.isPredicate())
3707       Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3708     else
3709       llvm_unreachable("Unsupported type");
3710   }
3711 }
3712 
3713 // Handle splitting vector operations which need to have the same number of
3714 // elements in each type index, but each type index may have a different element
3715 // type.
3716 //
3717 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3718 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3719 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3720 //
3721 // Also handles some irregular breakdown cases, e.g.
3722 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3723 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3724 //             s64 = G_SHL s64, s32
3725 LegalizerHelper::LegalizeResult
3726 LegalizerHelper::fewerElementsVectorMultiEltType(
3727     GenericMachineInstr &MI, unsigned NumElts,
3728     std::initializer_list<unsigned> NonVecOpIndices) {
3729   assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3730          "Non-compatible opcode or not specified non-vector operands");
3731   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3732 
3733   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3734   unsigned NumDefs = MI.getNumDefs();
3735 
3736   // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3737   // Build instructions with DstOps to use instruction found by CSE directly.
3738   // CSE copies found instruction into given vreg when building with vreg dest.
3739   SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3740   // Output registers will be taken from created instructions.
3741   SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3742   for (unsigned i = 0; i < NumDefs; ++i) {
3743     makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3744   }
3745 
3746   // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3747   // Operands listed in NonVecOpIndices will be used as is without splitting;
3748   // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3749   // scalar condition (op 1), immediate in sext_inreg (op 2).
3750   SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3751   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3752        ++UseIdx, ++UseNo) {
3753     if (is_contained(NonVecOpIndices, UseIdx)) {
3754       broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3755                      MI.getOperand(UseIdx));
3756     } else {
3757       SmallVector<Register, 8> SplitPieces;
3758       extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3759       for (auto Reg : SplitPieces)
3760         InputOpsPieces[UseNo].push_back(Reg);
3761     }
3762   }
3763 
3764   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3765 
3766   // Take i-th piece of each input operand split and build sub-vector/scalar
3767   // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3768   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3769     SmallVector<DstOp, 2> Defs;
3770     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3771       Defs.push_back(OutputOpsPieces[DstNo][i]);
3772 
3773     SmallVector<SrcOp, 3> Uses;
3774     for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3775       Uses.push_back(InputOpsPieces[InputNo][i]);
3776 
3777     auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3778     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3779       OutputRegs[DstNo].push_back(I.getReg(DstNo));
3780   }
3781 
3782   // Merge small outputs into MI's output for each def operand.
3783   if (NumLeftovers) {
3784     for (unsigned i = 0; i < NumDefs; ++i)
3785       mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3786   } else {
3787     for (unsigned i = 0; i < NumDefs; ++i)
3788       MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3789   }
3790 
3791   MI.eraseFromParent();
3792   return Legalized;
3793 }
3794 
3795 LegalizerHelper::LegalizeResult
3796 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3797                                         unsigned NumElts) {
3798   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3799 
3800   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3801   unsigned NumDefs = MI.getNumDefs();
3802 
3803   SmallVector<DstOp, 8> OutputOpsPieces;
3804   SmallVector<Register, 8> OutputRegs;
3805   makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3806 
3807   // Instructions that perform register split will be inserted in basic block
3808   // where register is defined (basic block is in the next operand).
3809   SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3810   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3811        UseIdx += 2, ++UseNo) {
3812     MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3813     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3814     extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3815   }
3816 
3817   // Build PHIs with fewer elements.
3818   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3819   MIRBuilder.setInsertPt(*MI.getParent(), MI);
3820   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3821     auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3822     Phi.addDef(
3823         MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3824     OutputRegs.push_back(Phi.getReg(0));
3825 
3826     for (unsigned j = 0; j < NumInputs / 2; ++j) {
3827       Phi.addUse(InputOpsPieces[j][i]);
3828       Phi.add(MI.getOperand(1 + j * 2 + 1));
3829     }
3830   }
3831 
3832   // Merge small outputs into MI's def.
3833   if (NumLeftovers) {
3834     mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3835   } else {
3836     MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3837   }
3838 
3839   MI.eraseFromParent();
3840   return Legalized;
3841 }
3842 
3843 LegalizerHelper::LegalizeResult
3844 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3845                                                   unsigned TypeIdx,
3846                                                   LLT NarrowTy) {
3847   const int NumDst = MI.getNumOperands() - 1;
3848   const Register SrcReg = MI.getOperand(NumDst).getReg();
3849   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3850   LLT SrcTy = MRI.getType(SrcReg);
3851 
3852   if (TypeIdx != 1 || NarrowTy == DstTy)
3853     return UnableToLegalize;
3854 
3855   // Requires compatible types. Otherwise SrcReg should have been defined by
3856   // merge-like instruction that would get artifact combined. Most likely
3857   // instruction that defines SrcReg has to perform more/fewer elements
3858   // legalization compatible with NarrowTy.
3859   assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3860   assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3861 
3862   if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3863       (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3864     return UnableToLegalize;
3865 
3866   // This is most likely DstTy (smaller then register size) packed in SrcTy
3867   // (larger then register size) and since unmerge was not combined it will be
3868   // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3869   // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3870 
3871   // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3872   //
3873   // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3874   // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3875   // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3876   auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3877   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3878   const int PartsPerUnmerge = NumDst / NumUnmerge;
3879 
3880   for (int I = 0; I != NumUnmerge; ++I) {
3881     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3882 
3883     for (int J = 0; J != PartsPerUnmerge; ++J)
3884       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3885     MIB.addUse(Unmerge.getReg(I));
3886   }
3887 
3888   MI.eraseFromParent();
3889   return Legalized;
3890 }
3891 
3892 LegalizerHelper::LegalizeResult
3893 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3894                                           LLT NarrowTy) {
3895   Register DstReg = MI.getOperand(0).getReg();
3896   LLT DstTy = MRI.getType(DstReg);
3897   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3898   // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3899   // that should have been artifact combined. Most likely instruction that uses
3900   // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3901   assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3902   assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3903   if (NarrowTy == SrcTy)
3904     return UnableToLegalize;
3905 
3906   // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3907   // is for old mir tests. Since the changes to more/fewer elements it should no
3908   // longer be possible to generate MIR like this when starting from llvm-ir
3909   // because LCMTy approach was replaced with merge/unmerge to vector elements.
3910   if (TypeIdx == 1) {
3911     assert(SrcTy.isVector() && "Expected vector types");
3912     assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3913     if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3914         (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3915       return UnableToLegalize;
3916     // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3917     //
3918     // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3919     // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3920     // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3921     // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3922     // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3923     // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3924 
3925     SmallVector<Register, 8> Elts;
3926     LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3927     for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3928       auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3929       for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3930         Elts.push_back(Unmerge.getReg(j));
3931     }
3932 
3933     SmallVector<Register, 8> NarrowTyElts;
3934     unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3935     unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3936     for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3937          ++i, Offset += NumNarrowTyElts) {
3938       ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3939       NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3940     }
3941 
3942     MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3943     MI.eraseFromParent();
3944     return Legalized;
3945   }
3946 
3947   assert(TypeIdx == 0 && "Bad type index");
3948   if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3949       (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3950     return UnableToLegalize;
3951 
3952   // This is most likely SrcTy (smaller then register size) packed in DstTy
3953   // (larger then register size) and since merge was not combined it will be
3954   // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3955   // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3956 
3957   // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3958   //
3959   // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3960   // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3961   // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3962   SmallVector<Register, 8> NarrowTyElts;
3963   unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3964   unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3965   unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3966   for (unsigned i = 0; i < NumParts; ++i) {
3967     SmallVector<Register, 8> Sources;
3968     for (unsigned j = 0; j < NumElts; ++j)
3969       Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3970     NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3971   }
3972 
3973   MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3974   MI.eraseFromParent();
3975   return Legalized;
3976 }
3977 
3978 LegalizerHelper::LegalizeResult
3979 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3980                                                            unsigned TypeIdx,
3981                                                            LLT NarrowVecTy) {
3982   Register DstReg = MI.getOperand(0).getReg();
3983   Register SrcVec = MI.getOperand(1).getReg();
3984   Register InsertVal;
3985   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3986 
3987   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3988   if (IsInsert)
3989     InsertVal = MI.getOperand(2).getReg();
3990 
3991   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3992 
3993   // TODO: Handle total scalarization case.
3994   if (!NarrowVecTy.isVector())
3995     return UnableToLegalize;
3996 
3997   LLT VecTy = MRI.getType(SrcVec);
3998 
3999   // If the index is a constant, we can really break this down as you would
4000   // expect, and index into the target size pieces.
4001   int64_t IdxVal;
4002   auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4003   if (MaybeCst) {
4004     IdxVal = MaybeCst->Value.getSExtValue();
4005     // Avoid out of bounds indexing the pieces.
4006     if (IdxVal >= VecTy.getNumElements()) {
4007       MIRBuilder.buildUndef(DstReg);
4008       MI.eraseFromParent();
4009       return Legalized;
4010     }
4011 
4012     SmallVector<Register, 8> VecParts;
4013     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4014 
4015     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4016     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4017                                     TargetOpcode::G_ANYEXT);
4018 
4019     unsigned NewNumElts = NarrowVecTy.getNumElements();
4020 
4021     LLT IdxTy = MRI.getType(Idx);
4022     int64_t PartIdx = IdxVal / NewNumElts;
4023     auto NewIdx =
4024         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4025 
4026     if (IsInsert) {
4027       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4028 
4029       // Use the adjusted index to insert into one of the subvectors.
4030       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4031           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4032       VecParts[PartIdx] = InsertPart.getReg(0);
4033 
4034       // Recombine the inserted subvector with the others to reform the result
4035       // vector.
4036       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4037     } else {
4038       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4039     }
4040 
4041     MI.eraseFromParent();
4042     return Legalized;
4043   }
4044 
4045   // With a variable index, we can't perform the operation in a smaller type, so
4046   // we're forced to expand this.
4047   //
4048   // TODO: We could emit a chain of compare/select to figure out which piece to
4049   // index.
4050   return lowerExtractInsertVectorElt(MI);
4051 }
4052 
4053 LegalizerHelper::LegalizeResult
4054 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4055                                       LLT NarrowTy) {
4056   // FIXME: Don't know how to handle secondary types yet.
4057   if (TypeIdx != 0)
4058     return UnableToLegalize;
4059 
4060   // This implementation doesn't work for atomics. Give up instead of doing
4061   // something invalid.
4062   if (LdStMI.isAtomic())
4063     return UnableToLegalize;
4064 
4065   bool IsLoad = isa<GLoad>(LdStMI);
4066   Register ValReg = LdStMI.getReg(0);
4067   Register AddrReg = LdStMI.getPointerReg();
4068   LLT ValTy = MRI.getType(ValReg);
4069 
4070   // FIXME: Do we need a distinct NarrowMemory legalize action?
4071   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4072     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4073     return UnableToLegalize;
4074   }
4075 
4076   int NumParts = -1;
4077   int NumLeftover = -1;
4078   LLT LeftoverTy;
4079   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4080   if (IsLoad) {
4081     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4082   } else {
4083     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4084                      NarrowLeftoverRegs)) {
4085       NumParts = NarrowRegs.size();
4086       NumLeftover = NarrowLeftoverRegs.size();
4087     }
4088   }
4089 
4090   if (NumParts == -1)
4091     return UnableToLegalize;
4092 
4093   LLT PtrTy = MRI.getType(AddrReg);
4094   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4095 
4096   unsigned TotalSize = ValTy.getSizeInBits();
4097 
4098   // Split the load/store into PartTy sized pieces starting at Offset. If this
4099   // is a load, return the new registers in ValRegs. For a store, each elements
4100   // of ValRegs should be PartTy. Returns the next offset that needs to be
4101   // handled.
4102   bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4103   auto MMO = LdStMI.getMMO();
4104   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4105                              unsigned NumParts, unsigned Offset) -> unsigned {
4106     MachineFunction &MF = MIRBuilder.getMF();
4107     unsigned PartSize = PartTy.getSizeInBits();
4108     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4109          ++Idx) {
4110       unsigned ByteOffset = Offset / 8;
4111       Register NewAddrReg;
4112 
4113       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4114 
4115       MachineMemOperand *NewMMO =
4116           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4117 
4118       if (IsLoad) {
4119         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4120         ValRegs.push_back(Dst);
4121         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4122       } else {
4123         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4124       }
4125       Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4126     }
4127 
4128     return Offset;
4129   };
4130 
4131   unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4132   unsigned HandledOffset =
4133       splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4134 
4135   // Handle the rest of the register if this isn't an even type breakdown.
4136   if (LeftoverTy.isValid())
4137     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4138 
4139   if (IsLoad) {
4140     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4141                 LeftoverTy, NarrowLeftoverRegs);
4142   }
4143 
4144   LdStMI.eraseFromParent();
4145   return Legalized;
4146 }
4147 
4148 LegalizerHelper::LegalizeResult
4149 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4150                                      LLT NarrowTy) {
4151   using namespace TargetOpcode;
4152   GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4153   unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4154 
4155   switch (MI.getOpcode()) {
4156   case G_IMPLICIT_DEF:
4157   case G_TRUNC:
4158   case G_AND:
4159   case G_OR:
4160   case G_XOR:
4161   case G_ADD:
4162   case G_SUB:
4163   case G_MUL:
4164   case G_PTR_ADD:
4165   case G_SMULH:
4166   case G_UMULH:
4167   case G_FADD:
4168   case G_FMUL:
4169   case G_FSUB:
4170   case G_FNEG:
4171   case G_FABS:
4172   case G_FCANONICALIZE:
4173   case G_FDIV:
4174   case G_FREM:
4175   case G_FMA:
4176   case G_FMAD:
4177   case G_FPOW:
4178   case G_FEXP:
4179   case G_FEXP2:
4180   case G_FLOG:
4181   case G_FLOG2:
4182   case G_FLOG10:
4183   case G_FNEARBYINT:
4184   case G_FCEIL:
4185   case G_FFLOOR:
4186   case G_FRINT:
4187   case G_INTRINSIC_ROUND:
4188   case G_INTRINSIC_ROUNDEVEN:
4189   case G_INTRINSIC_TRUNC:
4190   case G_FCOS:
4191   case G_FSIN:
4192   case G_FSQRT:
4193   case G_BSWAP:
4194   case G_BITREVERSE:
4195   case G_SDIV:
4196   case G_UDIV:
4197   case G_SREM:
4198   case G_UREM:
4199   case G_SDIVREM:
4200   case G_UDIVREM:
4201   case G_SMIN:
4202   case G_SMAX:
4203   case G_UMIN:
4204   case G_UMAX:
4205   case G_ABS:
4206   case G_FMINNUM:
4207   case G_FMAXNUM:
4208   case G_FMINNUM_IEEE:
4209   case G_FMAXNUM_IEEE:
4210   case G_FMINIMUM:
4211   case G_FMAXIMUM:
4212   case G_FSHL:
4213   case G_FSHR:
4214   case G_ROTL:
4215   case G_ROTR:
4216   case G_FREEZE:
4217   case G_SADDSAT:
4218   case G_SSUBSAT:
4219   case G_UADDSAT:
4220   case G_USUBSAT:
4221   case G_UMULO:
4222   case G_SMULO:
4223   case G_SHL:
4224   case G_LSHR:
4225   case G_ASHR:
4226   case G_SSHLSAT:
4227   case G_USHLSAT:
4228   case G_CTLZ:
4229   case G_CTLZ_ZERO_UNDEF:
4230   case G_CTTZ:
4231   case G_CTTZ_ZERO_UNDEF:
4232   case G_CTPOP:
4233   case G_FCOPYSIGN:
4234   case G_ZEXT:
4235   case G_SEXT:
4236   case G_ANYEXT:
4237   case G_FPEXT:
4238   case G_FPTRUNC:
4239   case G_SITOFP:
4240   case G_UITOFP:
4241   case G_FPTOSI:
4242   case G_FPTOUI:
4243   case G_INTTOPTR:
4244   case G_PTRTOINT:
4245   case G_ADDRSPACE_CAST:
4246   case G_UADDO:
4247   case G_USUBO:
4248   case G_UADDE:
4249   case G_USUBE:
4250   case G_SADDO:
4251   case G_SSUBO:
4252   case G_SADDE:
4253   case G_SSUBE:
4254     return fewerElementsVectorMultiEltType(GMI, NumElts);
4255   case G_ICMP:
4256   case G_FCMP:
4257     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4258   case G_SELECT:
4259     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4260       return fewerElementsVectorMultiEltType(GMI, NumElts);
4261     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4262   case G_PHI:
4263     return fewerElementsVectorPhi(GMI, NumElts);
4264   case G_UNMERGE_VALUES:
4265     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4266   case G_BUILD_VECTOR:
4267     assert(TypeIdx == 0 && "not a vector type index");
4268     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4269   case G_CONCAT_VECTORS:
4270     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4271       return UnableToLegalize;
4272     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4273   case G_EXTRACT_VECTOR_ELT:
4274   case G_INSERT_VECTOR_ELT:
4275     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4276   case G_LOAD:
4277   case G_STORE:
4278     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4279   case G_SEXT_INREG:
4280     return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4281   GISEL_VECREDUCE_CASES_NONSEQ
4282     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4283   case G_SHUFFLE_VECTOR:
4284     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4285   default:
4286     return UnableToLegalize;
4287   }
4288 }
4289 
4290 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4291     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4292   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4293   if (TypeIdx != 0)
4294     return UnableToLegalize;
4295 
4296   Register DstReg = MI.getOperand(0).getReg();
4297   Register Src1Reg = MI.getOperand(1).getReg();
4298   Register Src2Reg = MI.getOperand(2).getReg();
4299   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4300   LLT DstTy = MRI.getType(DstReg);
4301   LLT Src1Ty = MRI.getType(Src1Reg);
4302   LLT Src2Ty = MRI.getType(Src2Reg);
4303   // The shuffle should be canonicalized by now.
4304   if (DstTy != Src1Ty)
4305     return UnableToLegalize;
4306   if (DstTy != Src2Ty)
4307     return UnableToLegalize;
4308 
4309   if (!isPowerOf2_32(DstTy.getNumElements()))
4310     return UnableToLegalize;
4311 
4312   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4313   // Further legalization attempts will be needed to do split further.
4314   NarrowTy =
4315       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4316   unsigned NewElts = NarrowTy.getNumElements();
4317 
4318   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4319   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4320   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4321   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4322                         SplitSrc2Regs[1]};
4323 
4324   Register Hi, Lo;
4325 
4326   // If Lo or Hi uses elements from at most two of the four input vectors, then
4327   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4328   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4329   SmallVector<int, 16> Ops;
4330   for (unsigned High = 0; High < 2; ++High) {
4331     Register &Output = High ? Hi : Lo;
4332 
4333     // Build a shuffle mask for the output, discovering on the fly which
4334     // input vectors to use as shuffle operands (recorded in InputUsed).
4335     // If building a suitable shuffle vector proves too hard, then bail
4336     // out with useBuildVector set.
4337     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4338     unsigned FirstMaskIdx = High * NewElts;
4339     bool UseBuildVector = false;
4340     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4341       // The mask element.  This indexes into the input.
4342       int Idx = Mask[FirstMaskIdx + MaskOffset];
4343 
4344       // The input vector this mask element indexes into.
4345       unsigned Input = (unsigned)Idx / NewElts;
4346 
4347       if (Input >= array_lengthof(Inputs)) {
4348         // The mask element does not index into any input vector.
4349         Ops.push_back(-1);
4350         continue;
4351       }
4352 
4353       // Turn the index into an offset from the start of the input vector.
4354       Idx -= Input * NewElts;
4355 
4356       // Find or create a shuffle vector operand to hold this input.
4357       unsigned OpNo;
4358       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4359         if (InputUsed[OpNo] == Input) {
4360           // This input vector is already an operand.
4361           break;
4362         } else if (InputUsed[OpNo] == -1U) {
4363           // Create a new operand for this input vector.
4364           InputUsed[OpNo] = Input;
4365           break;
4366         }
4367       }
4368 
4369       if (OpNo >= array_lengthof(InputUsed)) {
4370         // More than two input vectors used!  Give up on trying to create a
4371         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4372         UseBuildVector = true;
4373         break;
4374       }
4375 
4376       // Add the mask index for the new shuffle vector.
4377       Ops.push_back(Idx + OpNo * NewElts);
4378     }
4379 
4380     if (UseBuildVector) {
4381       LLT EltTy = NarrowTy.getElementType();
4382       SmallVector<Register, 16> SVOps;
4383 
4384       // Extract the input elements by hand.
4385       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4386         // The mask element.  This indexes into the input.
4387         int Idx = Mask[FirstMaskIdx + MaskOffset];
4388 
4389         // The input vector this mask element indexes into.
4390         unsigned Input = (unsigned)Idx / NewElts;
4391 
4392         if (Input >= array_lengthof(Inputs)) {
4393           // The mask element is "undef" or indexes off the end of the input.
4394           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4395           continue;
4396         }
4397 
4398         // Turn the index into an offset from the start of the input vector.
4399         Idx -= Input * NewElts;
4400 
4401         // Extract the vector element by hand.
4402         SVOps.push_back(MIRBuilder
4403                             .buildExtractVectorElement(
4404                                 EltTy, Inputs[Input],
4405                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4406                             .getReg(0));
4407       }
4408 
4409       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4410       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4411     } else if (InputUsed[0] == -1U) {
4412       // No input vectors were used! The result is undefined.
4413       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4414     } else {
4415       Register Op0 = Inputs[InputUsed[0]];
4416       // If only one input was used, use an undefined vector for the other.
4417       Register Op1 = InputUsed[1] == -1U
4418                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4419                          : Inputs[InputUsed[1]];
4420       // At least one input vector was used. Create a new shuffle vector.
4421       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4422     }
4423 
4424     Ops.clear();
4425   }
4426 
4427   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4428   MI.eraseFromParent();
4429   return Legalized;
4430 }
4431 
4432 static unsigned getScalarOpcForReduction(unsigned Opc) {
4433   unsigned ScalarOpc;
4434   switch (Opc) {
4435   case TargetOpcode::G_VECREDUCE_FADD:
4436     ScalarOpc = TargetOpcode::G_FADD;
4437     break;
4438   case TargetOpcode::G_VECREDUCE_FMUL:
4439     ScalarOpc = TargetOpcode::G_FMUL;
4440     break;
4441   case TargetOpcode::G_VECREDUCE_FMAX:
4442     ScalarOpc = TargetOpcode::G_FMAXNUM;
4443     break;
4444   case TargetOpcode::G_VECREDUCE_FMIN:
4445     ScalarOpc = TargetOpcode::G_FMINNUM;
4446     break;
4447   case TargetOpcode::G_VECREDUCE_ADD:
4448     ScalarOpc = TargetOpcode::G_ADD;
4449     break;
4450   case TargetOpcode::G_VECREDUCE_MUL:
4451     ScalarOpc = TargetOpcode::G_MUL;
4452     break;
4453   case TargetOpcode::G_VECREDUCE_AND:
4454     ScalarOpc = TargetOpcode::G_AND;
4455     break;
4456   case TargetOpcode::G_VECREDUCE_OR:
4457     ScalarOpc = TargetOpcode::G_OR;
4458     break;
4459   case TargetOpcode::G_VECREDUCE_XOR:
4460     ScalarOpc = TargetOpcode::G_XOR;
4461     break;
4462   case TargetOpcode::G_VECREDUCE_SMAX:
4463     ScalarOpc = TargetOpcode::G_SMAX;
4464     break;
4465   case TargetOpcode::G_VECREDUCE_SMIN:
4466     ScalarOpc = TargetOpcode::G_SMIN;
4467     break;
4468   case TargetOpcode::G_VECREDUCE_UMAX:
4469     ScalarOpc = TargetOpcode::G_UMAX;
4470     break;
4471   case TargetOpcode::G_VECREDUCE_UMIN:
4472     ScalarOpc = TargetOpcode::G_UMIN;
4473     break;
4474   default:
4475     llvm_unreachable("Unhandled reduction");
4476   }
4477   return ScalarOpc;
4478 }
4479 
4480 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4481     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4482   unsigned Opc = MI.getOpcode();
4483   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4484          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4485          "Sequential reductions not expected");
4486 
4487   if (TypeIdx != 1)
4488     return UnableToLegalize;
4489 
4490   // The semantics of the normal non-sequential reductions allow us to freely
4491   // re-associate the operation.
4492   Register SrcReg = MI.getOperand(1).getReg();
4493   LLT SrcTy = MRI.getType(SrcReg);
4494   Register DstReg = MI.getOperand(0).getReg();
4495   LLT DstTy = MRI.getType(DstReg);
4496 
4497   if (NarrowTy.isVector() &&
4498       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4499     return UnableToLegalize;
4500 
4501   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4502   SmallVector<Register> SplitSrcs;
4503   // If NarrowTy is a scalar then we're being asked to scalarize.
4504   const unsigned NumParts =
4505       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4506                           : SrcTy.getNumElements();
4507 
4508   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4509   if (NarrowTy.isScalar()) {
4510     if (DstTy != NarrowTy)
4511       return UnableToLegalize; // FIXME: handle implicit extensions.
4512 
4513     if (isPowerOf2_32(NumParts)) {
4514       // Generate a tree of scalar operations to reduce the critical path.
4515       SmallVector<Register> PartialResults;
4516       unsigned NumPartsLeft = NumParts;
4517       while (NumPartsLeft > 1) {
4518         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4519           PartialResults.emplace_back(
4520               MIRBuilder
4521                   .buildInstr(ScalarOpc, {NarrowTy},
4522                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4523                   .getReg(0));
4524         }
4525         SplitSrcs = PartialResults;
4526         PartialResults.clear();
4527         NumPartsLeft = SplitSrcs.size();
4528       }
4529       assert(SplitSrcs.size() == 1);
4530       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4531       MI.eraseFromParent();
4532       return Legalized;
4533     }
4534     // If we can't generate a tree, then just do sequential operations.
4535     Register Acc = SplitSrcs[0];
4536     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4537       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4538                 .getReg(0);
4539     MIRBuilder.buildCopy(DstReg, Acc);
4540     MI.eraseFromParent();
4541     return Legalized;
4542   }
4543   SmallVector<Register> PartialReductions;
4544   for (unsigned Part = 0; Part < NumParts; ++Part) {
4545     PartialReductions.push_back(
4546         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4547   }
4548 
4549 
4550   // If the types involved are powers of 2, we can generate intermediate vector
4551   // ops, before generating a final reduction operation.
4552   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4553       isPowerOf2_32(NarrowTy.getNumElements())) {
4554     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4555   }
4556 
4557   Register Acc = PartialReductions[0];
4558   for (unsigned Part = 1; Part < NumParts; ++Part) {
4559     if (Part == NumParts - 1) {
4560       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4561                             {Acc, PartialReductions[Part]});
4562     } else {
4563       Acc = MIRBuilder
4564                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4565                 .getReg(0);
4566     }
4567   }
4568   MI.eraseFromParent();
4569   return Legalized;
4570 }
4571 
4572 LegalizerHelper::LegalizeResult
4573 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4574                                         LLT SrcTy, LLT NarrowTy,
4575                                         unsigned ScalarOpc) {
4576   SmallVector<Register> SplitSrcs;
4577   // Split the sources into NarrowTy size pieces.
4578   extractParts(SrcReg, NarrowTy,
4579                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4580   // We're going to do a tree reduction using vector operations until we have
4581   // one NarrowTy size value left.
4582   while (SplitSrcs.size() > 1) {
4583     SmallVector<Register> PartialRdxs;
4584     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4585       Register LHS = SplitSrcs[Idx];
4586       Register RHS = SplitSrcs[Idx + 1];
4587       // Create the intermediate vector op.
4588       Register Res =
4589           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4590       PartialRdxs.push_back(Res);
4591     }
4592     SplitSrcs = std::move(PartialRdxs);
4593   }
4594   // Finally generate the requested NarrowTy based reduction.
4595   Observer.changingInstr(MI);
4596   MI.getOperand(1).setReg(SplitSrcs[0]);
4597   Observer.changedInstr(MI);
4598   return Legalized;
4599 }
4600 
4601 LegalizerHelper::LegalizeResult
4602 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4603                                              const LLT HalfTy, const LLT AmtTy) {
4604 
4605   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4606   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4607   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4608 
4609   if (Amt.isZero()) {
4610     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4611     MI.eraseFromParent();
4612     return Legalized;
4613   }
4614 
4615   LLT NVT = HalfTy;
4616   unsigned NVTBits = HalfTy.getSizeInBits();
4617   unsigned VTBits = 2 * NVTBits;
4618 
4619   SrcOp Lo(Register(0)), Hi(Register(0));
4620   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4621     if (Amt.ugt(VTBits)) {
4622       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4623     } else if (Amt.ugt(NVTBits)) {
4624       Lo = MIRBuilder.buildConstant(NVT, 0);
4625       Hi = MIRBuilder.buildShl(NVT, InL,
4626                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4627     } else if (Amt == NVTBits) {
4628       Lo = MIRBuilder.buildConstant(NVT, 0);
4629       Hi = InL;
4630     } else {
4631       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4632       auto OrLHS =
4633           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4634       auto OrRHS = MIRBuilder.buildLShr(
4635           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4636       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4637     }
4638   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4639     if (Amt.ugt(VTBits)) {
4640       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4641     } else if (Amt.ugt(NVTBits)) {
4642       Lo = MIRBuilder.buildLShr(NVT, InH,
4643                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4644       Hi = MIRBuilder.buildConstant(NVT, 0);
4645     } else if (Amt == NVTBits) {
4646       Lo = InH;
4647       Hi = MIRBuilder.buildConstant(NVT, 0);
4648     } else {
4649       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4650 
4651       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4652       auto OrRHS = MIRBuilder.buildShl(
4653           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4654 
4655       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4656       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4657     }
4658   } else {
4659     if (Amt.ugt(VTBits)) {
4660       Hi = Lo = MIRBuilder.buildAShr(
4661           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4662     } else if (Amt.ugt(NVTBits)) {
4663       Lo = MIRBuilder.buildAShr(NVT, InH,
4664                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4665       Hi = MIRBuilder.buildAShr(NVT, InH,
4666                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4667     } else if (Amt == NVTBits) {
4668       Lo = InH;
4669       Hi = MIRBuilder.buildAShr(NVT, InH,
4670                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4671     } else {
4672       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4673 
4674       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4675       auto OrRHS = MIRBuilder.buildShl(
4676           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4677 
4678       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4679       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4680     }
4681   }
4682 
4683   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4684   MI.eraseFromParent();
4685 
4686   return Legalized;
4687 }
4688 
4689 // TODO: Optimize if constant shift amount.
4690 LegalizerHelper::LegalizeResult
4691 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4692                                    LLT RequestedTy) {
4693   if (TypeIdx == 1) {
4694     Observer.changingInstr(MI);
4695     narrowScalarSrc(MI, RequestedTy, 2);
4696     Observer.changedInstr(MI);
4697     return Legalized;
4698   }
4699 
4700   Register DstReg = MI.getOperand(0).getReg();
4701   LLT DstTy = MRI.getType(DstReg);
4702   if (DstTy.isVector())
4703     return UnableToLegalize;
4704 
4705   Register Amt = MI.getOperand(2).getReg();
4706   LLT ShiftAmtTy = MRI.getType(Amt);
4707   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4708   if (DstEltSize % 2 != 0)
4709     return UnableToLegalize;
4710 
4711   // Ignore the input type. We can only go to exactly half the size of the
4712   // input. If that isn't small enough, the resulting pieces will be further
4713   // legalized.
4714   const unsigned NewBitSize = DstEltSize / 2;
4715   const LLT HalfTy = LLT::scalar(NewBitSize);
4716   const LLT CondTy = LLT::scalar(1);
4717 
4718   if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4719     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4720                                        ShiftAmtTy);
4721   }
4722 
4723   // TODO: Expand with known bits.
4724 
4725   // Handle the fully general expansion by an unknown amount.
4726   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4727 
4728   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4729   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4730   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4731 
4732   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4733   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4734 
4735   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4736   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4737   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4738 
4739   Register ResultRegs[2];
4740   switch (MI.getOpcode()) {
4741   case TargetOpcode::G_SHL: {
4742     // Short: ShAmt < NewBitSize
4743     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4744 
4745     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4746     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4747     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4748 
4749     // Long: ShAmt >= NewBitSize
4750     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4751     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4752 
4753     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4754     auto Hi = MIRBuilder.buildSelect(
4755         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4756 
4757     ResultRegs[0] = Lo.getReg(0);
4758     ResultRegs[1] = Hi.getReg(0);
4759     break;
4760   }
4761   case TargetOpcode::G_LSHR:
4762   case TargetOpcode::G_ASHR: {
4763     // Short: ShAmt < NewBitSize
4764     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4765 
4766     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4767     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4768     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4769 
4770     // Long: ShAmt >= NewBitSize
4771     MachineInstrBuilder HiL;
4772     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4773       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4774     } else {
4775       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4776       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4777     }
4778     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4779                                      {InH, AmtExcess});     // Lo from Hi part.
4780 
4781     auto Lo = MIRBuilder.buildSelect(
4782         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4783 
4784     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4785 
4786     ResultRegs[0] = Lo.getReg(0);
4787     ResultRegs[1] = Hi.getReg(0);
4788     break;
4789   }
4790   default:
4791     llvm_unreachable("not a shift");
4792   }
4793 
4794   MIRBuilder.buildMerge(DstReg, ResultRegs);
4795   MI.eraseFromParent();
4796   return Legalized;
4797 }
4798 
4799 LegalizerHelper::LegalizeResult
4800 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4801                                        LLT MoreTy) {
4802   assert(TypeIdx == 0 && "Expecting only Idx 0");
4803 
4804   Observer.changingInstr(MI);
4805   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4806     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4807     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4808     moreElementsVectorSrc(MI, MoreTy, I);
4809   }
4810 
4811   MachineBasicBlock &MBB = *MI.getParent();
4812   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4813   moreElementsVectorDst(MI, MoreTy, 0);
4814   Observer.changedInstr(MI);
4815   return Legalized;
4816 }
4817 
4818 LegalizerHelper::LegalizeResult
4819 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4820                                     LLT MoreTy) {
4821   unsigned Opc = MI.getOpcode();
4822   switch (Opc) {
4823   case TargetOpcode::G_IMPLICIT_DEF:
4824   case TargetOpcode::G_LOAD: {
4825     if (TypeIdx != 0)
4826       return UnableToLegalize;
4827     Observer.changingInstr(MI);
4828     moreElementsVectorDst(MI, MoreTy, 0);
4829     Observer.changedInstr(MI);
4830     return Legalized;
4831   }
4832   case TargetOpcode::G_STORE:
4833     if (TypeIdx != 0)
4834       return UnableToLegalize;
4835     Observer.changingInstr(MI);
4836     moreElementsVectorSrc(MI, MoreTy, 0);
4837     Observer.changedInstr(MI);
4838     return Legalized;
4839   case TargetOpcode::G_AND:
4840   case TargetOpcode::G_OR:
4841   case TargetOpcode::G_XOR:
4842   case TargetOpcode::G_ADD:
4843   case TargetOpcode::G_SUB:
4844   case TargetOpcode::G_MUL:
4845   case TargetOpcode::G_FADD:
4846   case TargetOpcode::G_FMUL:
4847   case TargetOpcode::G_UADDSAT:
4848   case TargetOpcode::G_USUBSAT:
4849   case TargetOpcode::G_SADDSAT:
4850   case TargetOpcode::G_SSUBSAT:
4851   case TargetOpcode::G_SMIN:
4852   case TargetOpcode::G_SMAX:
4853   case TargetOpcode::G_UMIN:
4854   case TargetOpcode::G_UMAX:
4855   case TargetOpcode::G_FMINNUM:
4856   case TargetOpcode::G_FMAXNUM:
4857   case TargetOpcode::G_FMINNUM_IEEE:
4858   case TargetOpcode::G_FMAXNUM_IEEE:
4859   case TargetOpcode::G_FMINIMUM:
4860   case TargetOpcode::G_FMAXIMUM: {
4861     Observer.changingInstr(MI);
4862     moreElementsVectorSrc(MI, MoreTy, 1);
4863     moreElementsVectorSrc(MI, MoreTy, 2);
4864     moreElementsVectorDst(MI, MoreTy, 0);
4865     Observer.changedInstr(MI);
4866     return Legalized;
4867   }
4868   case TargetOpcode::G_FMA:
4869   case TargetOpcode::G_FSHR:
4870   case TargetOpcode::G_FSHL: {
4871     Observer.changingInstr(MI);
4872     moreElementsVectorSrc(MI, MoreTy, 1);
4873     moreElementsVectorSrc(MI, MoreTy, 2);
4874     moreElementsVectorSrc(MI, MoreTy, 3);
4875     moreElementsVectorDst(MI, MoreTy, 0);
4876     Observer.changedInstr(MI);
4877     return Legalized;
4878   }
4879   case TargetOpcode::G_EXTRACT:
4880     if (TypeIdx != 1)
4881       return UnableToLegalize;
4882     Observer.changingInstr(MI);
4883     moreElementsVectorSrc(MI, MoreTy, 1);
4884     Observer.changedInstr(MI);
4885     return Legalized;
4886   case TargetOpcode::G_INSERT:
4887   case TargetOpcode::G_FREEZE:
4888   case TargetOpcode::G_FNEG:
4889   case TargetOpcode::G_FABS:
4890   case TargetOpcode::G_BSWAP:
4891   case TargetOpcode::G_FCANONICALIZE:
4892   case TargetOpcode::G_SEXT_INREG:
4893     if (TypeIdx != 0)
4894       return UnableToLegalize;
4895     Observer.changingInstr(MI);
4896     moreElementsVectorSrc(MI, MoreTy, 1);
4897     moreElementsVectorDst(MI, MoreTy, 0);
4898     Observer.changedInstr(MI);
4899     return Legalized;
4900   case TargetOpcode::G_SELECT:
4901     if (TypeIdx != 0)
4902       return UnableToLegalize;
4903     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4904       return UnableToLegalize;
4905 
4906     Observer.changingInstr(MI);
4907     moreElementsVectorSrc(MI, MoreTy, 2);
4908     moreElementsVectorSrc(MI, MoreTy, 3);
4909     moreElementsVectorDst(MI, MoreTy, 0);
4910     Observer.changedInstr(MI);
4911     return Legalized;
4912   case TargetOpcode::G_UNMERGE_VALUES:
4913     return UnableToLegalize;
4914   case TargetOpcode::G_PHI:
4915     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4916   case TargetOpcode::G_SHUFFLE_VECTOR:
4917     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4918   case TargetOpcode::G_BUILD_VECTOR: {
4919     SmallVector<SrcOp, 8> Elts;
4920     for (auto Op : MI.uses()) {
4921       Elts.push_back(Op.getReg());
4922     }
4923 
4924     for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4925       Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4926     }
4927 
4928     MIRBuilder.buildDeleteTrailingVectorElements(
4929         MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4930     MI.eraseFromParent();
4931     return Legalized;
4932   }
4933   case TargetOpcode::G_TRUNC: {
4934     Observer.changingInstr(MI);
4935     moreElementsVectorSrc(MI, MoreTy, 1);
4936     moreElementsVectorDst(MI, MoreTy, 0);
4937     Observer.changedInstr(MI);
4938     return Legalized;
4939   }
4940   default:
4941     return UnableToLegalize;
4942   }
4943 }
4944 
4945 LegalizerHelper::LegalizeResult
4946 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4947                                            unsigned int TypeIdx, LLT MoreTy) {
4948   if (TypeIdx != 0)
4949     return UnableToLegalize;
4950 
4951   Register DstReg = MI.getOperand(0).getReg();
4952   Register Src1Reg = MI.getOperand(1).getReg();
4953   Register Src2Reg = MI.getOperand(2).getReg();
4954   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4955   LLT DstTy = MRI.getType(DstReg);
4956   LLT Src1Ty = MRI.getType(Src1Reg);
4957   LLT Src2Ty = MRI.getType(Src2Reg);
4958   unsigned NumElts = DstTy.getNumElements();
4959   unsigned WidenNumElts = MoreTy.getNumElements();
4960 
4961   // Expect a canonicalized shuffle.
4962   if (DstTy != Src1Ty || DstTy != Src2Ty)
4963     return UnableToLegalize;
4964 
4965   moreElementsVectorSrc(MI, MoreTy, 1);
4966   moreElementsVectorSrc(MI, MoreTy, 2);
4967 
4968   // Adjust mask based on new input vector length.
4969   SmallVector<int, 16> NewMask;
4970   for (unsigned I = 0; I != NumElts; ++I) {
4971     int Idx = Mask[I];
4972     if (Idx < static_cast<int>(NumElts))
4973       NewMask.push_back(Idx);
4974     else
4975       NewMask.push_back(Idx - NumElts + WidenNumElts);
4976   }
4977   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4978     NewMask.push_back(-1);
4979   moreElementsVectorDst(MI, MoreTy, 0);
4980   MIRBuilder.setInstrAndDebugLoc(MI);
4981   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4982                                 MI.getOperand(1).getReg(),
4983                                 MI.getOperand(2).getReg(), NewMask);
4984   MI.eraseFromParent();
4985   return Legalized;
4986 }
4987 
4988 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4989                                         ArrayRef<Register> Src1Regs,
4990                                         ArrayRef<Register> Src2Regs,
4991                                         LLT NarrowTy) {
4992   MachineIRBuilder &B = MIRBuilder;
4993   unsigned SrcParts = Src1Regs.size();
4994   unsigned DstParts = DstRegs.size();
4995 
4996   unsigned DstIdx = 0; // Low bits of the result.
4997   Register FactorSum =
4998       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4999   DstRegs[DstIdx] = FactorSum;
5000 
5001   unsigned CarrySumPrevDstIdx;
5002   SmallVector<Register, 4> Factors;
5003 
5004   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5005     // Collect low parts of muls for DstIdx.
5006     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5007          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5008       MachineInstrBuilder Mul =
5009           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5010       Factors.push_back(Mul.getReg(0));
5011     }
5012     // Collect high parts of muls from previous DstIdx.
5013     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5014          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5015       MachineInstrBuilder Umulh =
5016           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5017       Factors.push_back(Umulh.getReg(0));
5018     }
5019     // Add CarrySum from additions calculated for previous DstIdx.
5020     if (DstIdx != 1) {
5021       Factors.push_back(CarrySumPrevDstIdx);
5022     }
5023 
5024     Register CarrySum;
5025     // Add all factors and accumulate all carries into CarrySum.
5026     if (DstIdx != DstParts - 1) {
5027       MachineInstrBuilder Uaddo =
5028           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5029       FactorSum = Uaddo.getReg(0);
5030       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5031       for (unsigned i = 2; i < Factors.size(); ++i) {
5032         MachineInstrBuilder Uaddo =
5033             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5034         FactorSum = Uaddo.getReg(0);
5035         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5036         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5037       }
5038     } else {
5039       // Since value for the next index is not calculated, neither is CarrySum.
5040       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5041       for (unsigned i = 2; i < Factors.size(); ++i)
5042         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5043     }
5044 
5045     CarrySumPrevDstIdx = CarrySum;
5046     DstRegs[DstIdx] = FactorSum;
5047     Factors.clear();
5048   }
5049 }
5050 
5051 LegalizerHelper::LegalizeResult
5052 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5053                                     LLT NarrowTy) {
5054   if (TypeIdx != 0)
5055     return UnableToLegalize;
5056 
5057   Register DstReg = MI.getOperand(0).getReg();
5058   LLT DstType = MRI.getType(DstReg);
5059   // FIXME: add support for vector types
5060   if (DstType.isVector())
5061     return UnableToLegalize;
5062 
5063   unsigned Opcode = MI.getOpcode();
5064   unsigned OpO, OpE, OpF;
5065   switch (Opcode) {
5066   case TargetOpcode::G_SADDO:
5067   case TargetOpcode::G_SADDE:
5068   case TargetOpcode::G_UADDO:
5069   case TargetOpcode::G_UADDE:
5070   case TargetOpcode::G_ADD:
5071     OpO = TargetOpcode::G_UADDO;
5072     OpE = TargetOpcode::G_UADDE;
5073     OpF = TargetOpcode::G_UADDE;
5074     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5075       OpF = TargetOpcode::G_SADDE;
5076     break;
5077   case TargetOpcode::G_SSUBO:
5078   case TargetOpcode::G_SSUBE:
5079   case TargetOpcode::G_USUBO:
5080   case TargetOpcode::G_USUBE:
5081   case TargetOpcode::G_SUB:
5082     OpO = TargetOpcode::G_USUBO;
5083     OpE = TargetOpcode::G_USUBE;
5084     OpF = TargetOpcode::G_USUBE;
5085     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5086       OpF = TargetOpcode::G_SSUBE;
5087     break;
5088   default:
5089     llvm_unreachable("Unexpected add/sub opcode!");
5090   }
5091 
5092   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5093   unsigned NumDefs = MI.getNumExplicitDefs();
5094   Register Src1 = MI.getOperand(NumDefs).getReg();
5095   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5096   Register CarryDst, CarryIn;
5097   if (NumDefs == 2)
5098     CarryDst = MI.getOperand(1).getReg();
5099   if (MI.getNumOperands() == NumDefs + 3)
5100     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5101 
5102   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5103   LLT LeftoverTy, DummyTy;
5104   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5105   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5106   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5107 
5108   int NarrowParts = Src1Regs.size();
5109   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5110     Src1Regs.push_back(Src1Left[I]);
5111     Src2Regs.push_back(Src2Left[I]);
5112   }
5113   DstRegs.reserve(Src1Regs.size());
5114 
5115   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5116     Register DstReg =
5117         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5118     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5119     // Forward the final carry-out to the destination register
5120     if (i == e - 1 && CarryDst)
5121       CarryOut = CarryDst;
5122 
5123     if (!CarryIn) {
5124       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5125                             {Src1Regs[i], Src2Regs[i]});
5126     } else if (i == e - 1) {
5127       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5128                             {Src1Regs[i], Src2Regs[i], CarryIn});
5129     } else {
5130       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5131                             {Src1Regs[i], Src2Regs[i], CarryIn});
5132     }
5133 
5134     DstRegs.push_back(DstReg);
5135     CarryIn = CarryOut;
5136   }
5137   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5138               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5139               makeArrayRef(DstRegs).drop_front(NarrowParts));
5140 
5141   MI.eraseFromParent();
5142   return Legalized;
5143 }
5144 
5145 LegalizerHelper::LegalizeResult
5146 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5147   Register DstReg = MI.getOperand(0).getReg();
5148   Register Src1 = MI.getOperand(1).getReg();
5149   Register Src2 = MI.getOperand(2).getReg();
5150 
5151   LLT Ty = MRI.getType(DstReg);
5152   if (Ty.isVector())
5153     return UnableToLegalize;
5154 
5155   unsigned Size = Ty.getSizeInBits();
5156   unsigned NarrowSize = NarrowTy.getSizeInBits();
5157   if (Size % NarrowSize != 0)
5158     return UnableToLegalize;
5159 
5160   unsigned NumParts = Size / NarrowSize;
5161   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5162   unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5163 
5164   SmallVector<Register, 2> Src1Parts, Src2Parts;
5165   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5166   extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5167   extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5168   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5169 
5170   // Take only high half of registers if this is high mul.
5171   ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5172   MIRBuilder.buildMerge(DstReg, DstRegs);
5173   MI.eraseFromParent();
5174   return Legalized;
5175 }
5176 
5177 LegalizerHelper::LegalizeResult
5178 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5179                                    LLT NarrowTy) {
5180   if (TypeIdx != 0)
5181     return UnableToLegalize;
5182 
5183   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5184 
5185   Register Src = MI.getOperand(1).getReg();
5186   LLT SrcTy = MRI.getType(Src);
5187 
5188   // If all finite floats fit into the narrowed integer type, we can just swap
5189   // out the result type. This is practically only useful for conversions from
5190   // half to at least 16-bits, so just handle the one case.
5191   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5192       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5193     return UnableToLegalize;
5194 
5195   Observer.changingInstr(MI);
5196   narrowScalarDst(MI, NarrowTy, 0,
5197                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5198   Observer.changedInstr(MI);
5199   return Legalized;
5200 }
5201 
5202 LegalizerHelper::LegalizeResult
5203 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5204                                      LLT NarrowTy) {
5205   if (TypeIdx != 1)
5206     return UnableToLegalize;
5207 
5208   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5209 
5210   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5211   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5212   // NarrowSize.
5213   if (SizeOp1 % NarrowSize != 0)
5214     return UnableToLegalize;
5215   int NumParts = SizeOp1 / NarrowSize;
5216 
5217   SmallVector<Register, 2> SrcRegs, DstRegs;
5218   SmallVector<uint64_t, 2> Indexes;
5219   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5220 
5221   Register OpReg = MI.getOperand(0).getReg();
5222   uint64_t OpStart = MI.getOperand(2).getImm();
5223   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5224   for (int i = 0; i < NumParts; ++i) {
5225     unsigned SrcStart = i * NarrowSize;
5226 
5227     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5228       // No part of the extract uses this subregister, ignore it.
5229       continue;
5230     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5231       // The entire subregister is extracted, forward the value.
5232       DstRegs.push_back(SrcRegs[i]);
5233       continue;
5234     }
5235 
5236     // OpSegStart is where this destination segment would start in OpReg if it
5237     // extended infinitely in both directions.
5238     int64_t ExtractOffset;
5239     uint64_t SegSize;
5240     if (OpStart < SrcStart) {
5241       ExtractOffset = 0;
5242       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5243     } else {
5244       ExtractOffset = OpStart - SrcStart;
5245       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5246     }
5247 
5248     Register SegReg = SrcRegs[i];
5249     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5250       // A genuine extract is needed.
5251       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5252       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5253     }
5254 
5255     DstRegs.push_back(SegReg);
5256   }
5257 
5258   Register DstReg = MI.getOperand(0).getReg();
5259   if (MRI.getType(DstReg).isVector())
5260     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5261   else if (DstRegs.size() > 1)
5262     MIRBuilder.buildMerge(DstReg, DstRegs);
5263   else
5264     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5265   MI.eraseFromParent();
5266   return Legalized;
5267 }
5268 
5269 LegalizerHelper::LegalizeResult
5270 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5271                                     LLT NarrowTy) {
5272   // FIXME: Don't know how to handle secondary types yet.
5273   if (TypeIdx != 0)
5274     return UnableToLegalize;
5275 
5276   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5277   SmallVector<uint64_t, 2> Indexes;
5278   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5279   LLT LeftoverTy;
5280   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5281                LeftoverRegs);
5282 
5283   for (Register Reg : LeftoverRegs)
5284     SrcRegs.push_back(Reg);
5285 
5286   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5287   Register OpReg = MI.getOperand(2).getReg();
5288   uint64_t OpStart = MI.getOperand(3).getImm();
5289   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5290   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5291     unsigned DstStart = I * NarrowSize;
5292 
5293     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5294       // The entire subregister is defined by this insert, forward the new
5295       // value.
5296       DstRegs.push_back(OpReg);
5297       continue;
5298     }
5299 
5300     Register SrcReg = SrcRegs[I];
5301     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5302       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5303       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5304       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5305     }
5306 
5307     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5308       // No part of the insert affects this subregister, forward the original.
5309       DstRegs.push_back(SrcReg);
5310       continue;
5311     }
5312 
5313     // OpSegStart is where this destination segment would start in OpReg if it
5314     // extended infinitely in both directions.
5315     int64_t ExtractOffset, InsertOffset;
5316     uint64_t SegSize;
5317     if (OpStart < DstStart) {
5318       InsertOffset = 0;
5319       ExtractOffset = DstStart - OpStart;
5320       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5321     } else {
5322       InsertOffset = OpStart - DstStart;
5323       ExtractOffset = 0;
5324       SegSize =
5325         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5326     }
5327 
5328     Register SegReg = OpReg;
5329     if (ExtractOffset != 0 || SegSize != OpSize) {
5330       // A genuine extract is needed.
5331       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5332       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5333     }
5334 
5335     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5336     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5337     DstRegs.push_back(DstReg);
5338   }
5339 
5340   uint64_t WideSize = DstRegs.size() * NarrowSize;
5341   Register DstReg = MI.getOperand(0).getReg();
5342   if (WideSize > RegTy.getSizeInBits()) {
5343     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5344     MIRBuilder.buildMerge(MergeReg, DstRegs);
5345     MIRBuilder.buildTrunc(DstReg, MergeReg);
5346   } else
5347     MIRBuilder.buildMerge(DstReg, DstRegs);
5348 
5349   MI.eraseFromParent();
5350   return Legalized;
5351 }
5352 
5353 LegalizerHelper::LegalizeResult
5354 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5355                                    LLT NarrowTy) {
5356   Register DstReg = MI.getOperand(0).getReg();
5357   LLT DstTy = MRI.getType(DstReg);
5358 
5359   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5360 
5361   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5362   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5363   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5364   LLT LeftoverTy;
5365   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5366                     Src0Regs, Src0LeftoverRegs))
5367     return UnableToLegalize;
5368 
5369   LLT Unused;
5370   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5371                     Src1Regs, Src1LeftoverRegs))
5372     llvm_unreachable("inconsistent extractParts result");
5373 
5374   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5375     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5376                                         {Src0Regs[I], Src1Regs[I]});
5377     DstRegs.push_back(Inst.getReg(0));
5378   }
5379 
5380   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5381     auto Inst = MIRBuilder.buildInstr(
5382       MI.getOpcode(),
5383       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5384     DstLeftoverRegs.push_back(Inst.getReg(0));
5385   }
5386 
5387   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5388               LeftoverTy, DstLeftoverRegs);
5389 
5390   MI.eraseFromParent();
5391   return Legalized;
5392 }
5393 
5394 LegalizerHelper::LegalizeResult
5395 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5396                                  LLT NarrowTy) {
5397   if (TypeIdx != 0)
5398     return UnableToLegalize;
5399 
5400   Register DstReg = MI.getOperand(0).getReg();
5401   Register SrcReg = MI.getOperand(1).getReg();
5402 
5403   LLT DstTy = MRI.getType(DstReg);
5404   if (DstTy.isVector())
5405     return UnableToLegalize;
5406 
5407   SmallVector<Register, 8> Parts;
5408   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5409   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5410   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5411 
5412   MI.eraseFromParent();
5413   return Legalized;
5414 }
5415 
5416 LegalizerHelper::LegalizeResult
5417 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5418                                     LLT NarrowTy) {
5419   if (TypeIdx != 0)
5420     return UnableToLegalize;
5421 
5422   Register CondReg = MI.getOperand(1).getReg();
5423   LLT CondTy = MRI.getType(CondReg);
5424   if (CondTy.isVector()) // TODO: Handle vselect
5425     return UnableToLegalize;
5426 
5427   Register DstReg = MI.getOperand(0).getReg();
5428   LLT DstTy = MRI.getType(DstReg);
5429 
5430   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5431   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5432   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5433   LLT LeftoverTy;
5434   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5435                     Src1Regs, Src1LeftoverRegs))
5436     return UnableToLegalize;
5437 
5438   LLT Unused;
5439   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5440                     Src2Regs, Src2LeftoverRegs))
5441     llvm_unreachable("inconsistent extractParts result");
5442 
5443   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5444     auto Select = MIRBuilder.buildSelect(NarrowTy,
5445                                          CondReg, Src1Regs[I], Src2Regs[I]);
5446     DstRegs.push_back(Select.getReg(0));
5447   }
5448 
5449   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5450     auto Select = MIRBuilder.buildSelect(
5451       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5452     DstLeftoverRegs.push_back(Select.getReg(0));
5453   }
5454 
5455   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5456               LeftoverTy, DstLeftoverRegs);
5457 
5458   MI.eraseFromParent();
5459   return Legalized;
5460 }
5461 
5462 LegalizerHelper::LegalizeResult
5463 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5464                                   LLT NarrowTy) {
5465   if (TypeIdx != 1)
5466     return UnableToLegalize;
5467 
5468   Register DstReg = MI.getOperand(0).getReg();
5469   Register SrcReg = MI.getOperand(1).getReg();
5470   LLT DstTy = MRI.getType(DstReg);
5471   LLT SrcTy = MRI.getType(SrcReg);
5472   unsigned NarrowSize = NarrowTy.getSizeInBits();
5473 
5474   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5475     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5476 
5477     MachineIRBuilder &B = MIRBuilder;
5478     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5479     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5480     auto C_0 = B.buildConstant(NarrowTy, 0);
5481     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5482                                 UnmergeSrc.getReg(1), C_0);
5483     auto LoCTLZ = IsUndef ?
5484       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5485       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5486     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5487     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5488     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5489     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5490 
5491     MI.eraseFromParent();
5492     return Legalized;
5493   }
5494 
5495   return UnableToLegalize;
5496 }
5497 
5498 LegalizerHelper::LegalizeResult
5499 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5500                                   LLT NarrowTy) {
5501   if (TypeIdx != 1)
5502     return UnableToLegalize;
5503 
5504   Register DstReg = MI.getOperand(0).getReg();
5505   Register SrcReg = MI.getOperand(1).getReg();
5506   LLT DstTy = MRI.getType(DstReg);
5507   LLT SrcTy = MRI.getType(SrcReg);
5508   unsigned NarrowSize = NarrowTy.getSizeInBits();
5509 
5510   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5511     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5512 
5513     MachineIRBuilder &B = MIRBuilder;
5514     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5515     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5516     auto C_0 = B.buildConstant(NarrowTy, 0);
5517     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5518                                 UnmergeSrc.getReg(0), C_0);
5519     auto HiCTTZ = IsUndef ?
5520       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5521       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5522     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5523     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5524     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5525     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5526 
5527     MI.eraseFromParent();
5528     return Legalized;
5529   }
5530 
5531   return UnableToLegalize;
5532 }
5533 
5534 LegalizerHelper::LegalizeResult
5535 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5536                                    LLT NarrowTy) {
5537   if (TypeIdx != 1)
5538     return UnableToLegalize;
5539 
5540   Register DstReg = MI.getOperand(0).getReg();
5541   LLT DstTy = MRI.getType(DstReg);
5542   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5543   unsigned NarrowSize = NarrowTy.getSizeInBits();
5544 
5545   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5546     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5547 
5548     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5549     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5550     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5551 
5552     MI.eraseFromParent();
5553     return Legalized;
5554   }
5555 
5556   return UnableToLegalize;
5557 }
5558 
5559 LegalizerHelper::LegalizeResult
5560 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5561   unsigned Opc = MI.getOpcode();
5562   const auto &TII = MIRBuilder.getTII();
5563   auto isSupported = [this](const LegalityQuery &Q) {
5564     auto QAction = LI.getAction(Q).Action;
5565     return QAction == Legal || QAction == Libcall || QAction == Custom;
5566   };
5567   switch (Opc) {
5568   default:
5569     return UnableToLegalize;
5570   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5571     // This trivially expands to CTLZ.
5572     Observer.changingInstr(MI);
5573     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5574     Observer.changedInstr(MI);
5575     return Legalized;
5576   }
5577   case TargetOpcode::G_CTLZ: {
5578     Register DstReg = MI.getOperand(0).getReg();
5579     Register SrcReg = MI.getOperand(1).getReg();
5580     LLT DstTy = MRI.getType(DstReg);
5581     LLT SrcTy = MRI.getType(SrcReg);
5582     unsigned Len = SrcTy.getSizeInBits();
5583 
5584     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5585       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5586       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5587       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5588       auto ICmp = MIRBuilder.buildICmp(
5589           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5590       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5591       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5592       MI.eraseFromParent();
5593       return Legalized;
5594     }
5595     // for now, we do this:
5596     // NewLen = NextPowerOf2(Len);
5597     // x = x | (x >> 1);
5598     // x = x | (x >> 2);
5599     // ...
5600     // x = x | (x >>16);
5601     // x = x | (x >>32); // for 64-bit input
5602     // Upto NewLen/2
5603     // return Len - popcount(x);
5604     //
5605     // Ref: "Hacker's Delight" by Henry Warren
5606     Register Op = SrcReg;
5607     unsigned NewLen = PowerOf2Ceil(Len);
5608     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5609       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5610       auto MIBOp = MIRBuilder.buildOr(
5611           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5612       Op = MIBOp.getReg(0);
5613     }
5614     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5615     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5616                         MIBPop);
5617     MI.eraseFromParent();
5618     return Legalized;
5619   }
5620   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5621     // This trivially expands to CTTZ.
5622     Observer.changingInstr(MI);
5623     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5624     Observer.changedInstr(MI);
5625     return Legalized;
5626   }
5627   case TargetOpcode::G_CTTZ: {
5628     Register DstReg = MI.getOperand(0).getReg();
5629     Register SrcReg = MI.getOperand(1).getReg();
5630     LLT DstTy = MRI.getType(DstReg);
5631     LLT SrcTy = MRI.getType(SrcReg);
5632 
5633     unsigned Len = SrcTy.getSizeInBits();
5634     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5635       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5636       // zero.
5637       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5638       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5639       auto ICmp = MIRBuilder.buildICmp(
5640           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5641       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5642       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5643       MI.eraseFromParent();
5644       return Legalized;
5645     }
5646     // for now, we use: { return popcount(~x & (x - 1)); }
5647     // unless the target has ctlz but not ctpop, in which case we use:
5648     // { return 32 - nlz(~x & (x-1)); }
5649     // Ref: "Hacker's Delight" by Henry Warren
5650     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5651     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5652     auto MIBTmp = MIRBuilder.buildAnd(
5653         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5654     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5655         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5656       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5657       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5658                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5659       MI.eraseFromParent();
5660       return Legalized;
5661     }
5662     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5663     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5664     return Legalized;
5665   }
5666   case TargetOpcode::G_CTPOP: {
5667     Register SrcReg = MI.getOperand(1).getReg();
5668     LLT Ty = MRI.getType(SrcReg);
5669     unsigned Size = Ty.getSizeInBits();
5670     MachineIRBuilder &B = MIRBuilder;
5671 
5672     // Count set bits in blocks of 2 bits. Default approach would be
5673     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5674     // We use following formula instead:
5675     // B2Count = val - { (val >> 1) & 0x55555555 }
5676     // since it gives same result in blocks of 2 with one instruction less.
5677     auto C_1 = B.buildConstant(Ty, 1);
5678     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5679     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5680     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5681     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5682     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5683 
5684     // In order to get count in blocks of 4 add values from adjacent block of 2.
5685     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5686     auto C_2 = B.buildConstant(Ty, 2);
5687     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5688     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5689     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5690     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5691     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5692     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5693 
5694     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5695     // addition since count value sits in range {0,...,8} and 4 bits are enough
5696     // to hold such binary values. After addition high 4 bits still hold count
5697     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5698     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5699     auto C_4 = B.buildConstant(Ty, 4);
5700     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5701     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5702     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5703     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5704     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5705 
5706     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5707     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5708     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5709     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5710     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5711 
5712     // Shift count result from 8 high bits to low bits.
5713     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5714     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5715 
5716     MI.eraseFromParent();
5717     return Legalized;
5718   }
5719   }
5720 }
5721 
5722 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5723 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5724                                         Register Reg, unsigned BW) {
5725   return matchUnaryPredicate(
5726       MRI, Reg,
5727       [=](const Constant *C) {
5728         // Null constant here means an undef.
5729         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5730         return !CI || CI->getValue().urem(BW) != 0;
5731       },
5732       /*AllowUndefs*/ true);
5733 }
5734 
5735 LegalizerHelper::LegalizeResult
5736 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5737   Register Dst = MI.getOperand(0).getReg();
5738   Register X = MI.getOperand(1).getReg();
5739   Register Y = MI.getOperand(2).getReg();
5740   Register Z = MI.getOperand(3).getReg();
5741   LLT Ty = MRI.getType(Dst);
5742   LLT ShTy = MRI.getType(Z);
5743 
5744   unsigned BW = Ty.getScalarSizeInBits();
5745 
5746   if (!isPowerOf2_32(BW))
5747     return UnableToLegalize;
5748 
5749   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5750   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5751 
5752   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5753     // fshl X, Y, Z -> fshr X, Y, -Z
5754     // fshr X, Y, Z -> fshl X, Y, -Z
5755     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5756     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5757   } else {
5758     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5759     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5760     auto One = MIRBuilder.buildConstant(ShTy, 1);
5761     if (IsFSHL) {
5762       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5763       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5764     } else {
5765       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5766       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5767     }
5768 
5769     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5770   }
5771 
5772   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5773   MI.eraseFromParent();
5774   return Legalized;
5775 }
5776 
5777 LegalizerHelper::LegalizeResult
5778 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5779   Register Dst = MI.getOperand(0).getReg();
5780   Register X = MI.getOperand(1).getReg();
5781   Register Y = MI.getOperand(2).getReg();
5782   Register Z = MI.getOperand(3).getReg();
5783   LLT Ty = MRI.getType(Dst);
5784   LLT ShTy = MRI.getType(Z);
5785 
5786   const unsigned BW = Ty.getScalarSizeInBits();
5787   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5788 
5789   Register ShX, ShY;
5790   Register ShAmt, InvShAmt;
5791 
5792   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5793   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5794     // fshl: X << C | Y >> (BW - C)
5795     // fshr: X << (BW - C) | Y >> C
5796     // where C = Z % BW is not zero
5797     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5798     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5799     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5800     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5801     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5802   } else {
5803     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5804     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5805     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5806     if (isPowerOf2_32(BW)) {
5807       // Z % BW -> Z & (BW - 1)
5808       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5809       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5810       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5811       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5812     } else {
5813       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5814       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5815       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5816     }
5817 
5818     auto One = MIRBuilder.buildConstant(ShTy, 1);
5819     if (IsFSHL) {
5820       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5821       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5822       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5823     } else {
5824       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5825       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5826       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5827     }
5828   }
5829 
5830   MIRBuilder.buildOr(Dst, ShX, ShY);
5831   MI.eraseFromParent();
5832   return Legalized;
5833 }
5834 
5835 LegalizerHelper::LegalizeResult
5836 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5837   // These operations approximately do the following (while avoiding undefined
5838   // shifts by BW):
5839   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5840   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5841   Register Dst = MI.getOperand(0).getReg();
5842   LLT Ty = MRI.getType(Dst);
5843   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5844 
5845   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5846   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5847 
5848   // TODO: Use smarter heuristic that accounts for vector legalization.
5849   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5850     return lowerFunnelShiftAsShifts(MI);
5851 
5852   // This only works for powers of 2, fallback to shifts if it fails.
5853   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5854   if (Result == UnableToLegalize)
5855     return lowerFunnelShiftAsShifts(MI);
5856   return Result;
5857 }
5858 
5859 LegalizerHelper::LegalizeResult
5860 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5861   Register Dst = MI.getOperand(0).getReg();
5862   Register Src = MI.getOperand(1).getReg();
5863   Register Amt = MI.getOperand(2).getReg();
5864   LLT AmtTy = MRI.getType(Amt);
5865   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5866   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5867   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5868   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5869   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5870   MI.eraseFromParent();
5871   return Legalized;
5872 }
5873 
5874 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5875   Register Dst = MI.getOperand(0).getReg();
5876   Register Src = MI.getOperand(1).getReg();
5877   Register Amt = MI.getOperand(2).getReg();
5878   LLT DstTy = MRI.getType(Dst);
5879   LLT SrcTy = MRI.getType(Src);
5880   LLT AmtTy = MRI.getType(Amt);
5881 
5882   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5883   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5884 
5885   MIRBuilder.setInstrAndDebugLoc(MI);
5886 
5887   // If a rotate in the other direction is supported, use it.
5888   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5889   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5890       isPowerOf2_32(EltSizeInBits))
5891     return lowerRotateWithReverseRotate(MI);
5892 
5893   // If a funnel shift is supported, use it.
5894   unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5895   unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5896   bool IsFShLegal = false;
5897   if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5898       LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5899     auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5900                                 Register R3) {
5901       MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5902       MI.eraseFromParent();
5903       return Legalized;
5904     };
5905     // If a funnel shift in the other direction is supported, use it.
5906     if (IsFShLegal) {
5907       return buildFunnelShift(FShOpc, Dst, Src, Amt);
5908     } else if (isPowerOf2_32(EltSizeInBits)) {
5909       Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5910       return buildFunnelShift(RevFsh, Dst, Src, Amt);
5911     }
5912   }
5913 
5914   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5915   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5916   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5917   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5918   Register ShVal;
5919   Register RevShiftVal;
5920   if (isPowerOf2_32(EltSizeInBits)) {
5921     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5922     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5923     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5924     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5925     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5926     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5927     RevShiftVal =
5928         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5929   } else {
5930     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5931     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5932     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5933     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5934     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5935     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5936     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5937     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5938     RevShiftVal =
5939         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5940   }
5941   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5942   MI.eraseFromParent();
5943   return Legalized;
5944 }
5945 
5946 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5947 // representation.
5948 LegalizerHelper::LegalizeResult
5949 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5950   Register Dst = MI.getOperand(0).getReg();
5951   Register Src = MI.getOperand(1).getReg();
5952   const LLT S64 = LLT::scalar(64);
5953   const LLT S32 = LLT::scalar(32);
5954   const LLT S1 = LLT::scalar(1);
5955 
5956   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5957 
5958   // unsigned cul2f(ulong u) {
5959   //   uint lz = clz(u);
5960   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5961   //   u = (u << lz) & 0x7fffffffffffffffUL;
5962   //   ulong t = u & 0xffffffffffUL;
5963   //   uint v = (e << 23) | (uint)(u >> 40);
5964   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5965   //   return as_float(v + r);
5966   // }
5967 
5968   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5969   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5970 
5971   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5972 
5973   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5974   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5975 
5976   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5977   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5978 
5979   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5980   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5981 
5982   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5983 
5984   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5985   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5986 
5987   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5988   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5989   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5990 
5991   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5992   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5993   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5994   auto One = MIRBuilder.buildConstant(S32, 1);
5995 
5996   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5997   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5998   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5999   MIRBuilder.buildAdd(Dst, V, R);
6000 
6001   MI.eraseFromParent();
6002   return Legalized;
6003 }
6004 
6005 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6006   Register Dst = MI.getOperand(0).getReg();
6007   Register Src = MI.getOperand(1).getReg();
6008   LLT DstTy = MRI.getType(Dst);
6009   LLT SrcTy = MRI.getType(Src);
6010 
6011   if (SrcTy == LLT::scalar(1)) {
6012     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6013     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6014     MIRBuilder.buildSelect(Dst, Src, True, False);
6015     MI.eraseFromParent();
6016     return Legalized;
6017   }
6018 
6019   if (SrcTy != LLT::scalar(64))
6020     return UnableToLegalize;
6021 
6022   if (DstTy == LLT::scalar(32)) {
6023     // TODO: SelectionDAG has several alternative expansions to port which may
6024     // be more reasonble depending on the available instructions. If a target
6025     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6026     // intermediate type, this is probably worse.
6027     return lowerU64ToF32BitOps(MI);
6028   }
6029 
6030   return UnableToLegalize;
6031 }
6032 
6033 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6034   Register Dst = MI.getOperand(0).getReg();
6035   Register Src = MI.getOperand(1).getReg();
6036   LLT DstTy = MRI.getType(Dst);
6037   LLT SrcTy = MRI.getType(Src);
6038 
6039   const LLT S64 = LLT::scalar(64);
6040   const LLT S32 = LLT::scalar(32);
6041   const LLT S1 = LLT::scalar(1);
6042 
6043   if (SrcTy == S1) {
6044     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6045     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6046     MIRBuilder.buildSelect(Dst, Src, True, False);
6047     MI.eraseFromParent();
6048     return Legalized;
6049   }
6050 
6051   if (SrcTy != S64)
6052     return UnableToLegalize;
6053 
6054   if (DstTy == S32) {
6055     // signed cl2f(long l) {
6056     //   long s = l >> 63;
6057     //   float r = cul2f((l + s) ^ s);
6058     //   return s ? -r : r;
6059     // }
6060     Register L = Src;
6061     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6062     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6063 
6064     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6065     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6066     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6067 
6068     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6069     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6070                                             MIRBuilder.buildConstant(S64, 0));
6071     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6072     MI.eraseFromParent();
6073     return Legalized;
6074   }
6075 
6076   return UnableToLegalize;
6077 }
6078 
6079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6080   Register Dst = MI.getOperand(0).getReg();
6081   Register Src = MI.getOperand(1).getReg();
6082   LLT DstTy = MRI.getType(Dst);
6083   LLT SrcTy = MRI.getType(Src);
6084   const LLT S64 = LLT::scalar(64);
6085   const LLT S32 = LLT::scalar(32);
6086 
6087   if (SrcTy != S64 && SrcTy != S32)
6088     return UnableToLegalize;
6089   if (DstTy != S32 && DstTy != S64)
6090     return UnableToLegalize;
6091 
6092   // FPTOSI gives same result as FPTOUI for positive signed integers.
6093   // FPTOUI needs to deal with fp values that convert to unsigned integers
6094   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6095 
6096   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6097   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6098                                                 : APFloat::IEEEdouble(),
6099                     APInt::getZero(SrcTy.getSizeInBits()));
6100   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6101 
6102   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6103 
6104   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6105   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6106   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6107   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6108   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6109   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6110   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6111 
6112   const LLT S1 = LLT::scalar(1);
6113 
6114   MachineInstrBuilder FCMP =
6115       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6116   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6117 
6118   MI.eraseFromParent();
6119   return Legalized;
6120 }
6121 
6122 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6123   Register Dst = MI.getOperand(0).getReg();
6124   Register Src = MI.getOperand(1).getReg();
6125   LLT DstTy = MRI.getType(Dst);
6126   LLT SrcTy = MRI.getType(Src);
6127   const LLT S64 = LLT::scalar(64);
6128   const LLT S32 = LLT::scalar(32);
6129 
6130   // FIXME: Only f32 to i64 conversions are supported.
6131   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6132     return UnableToLegalize;
6133 
6134   // Expand f32 -> i64 conversion
6135   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6136   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6137 
6138   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6139 
6140   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6141   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6142 
6143   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6144   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6145 
6146   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6147                                            APInt::getSignMask(SrcEltBits));
6148   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6149   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6150   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6151   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6152 
6153   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6154   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6155   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6156 
6157   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6158   R = MIRBuilder.buildZExt(DstTy, R);
6159 
6160   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6161   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6162   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6163   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6164 
6165   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6166   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6167 
6168   const LLT S1 = LLT::scalar(1);
6169   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6170                                     S1, Exponent, ExponentLoBit);
6171 
6172   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6173 
6174   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6175   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6176 
6177   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6178 
6179   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6180                                           S1, Exponent, ZeroSrcTy);
6181 
6182   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6183   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6184 
6185   MI.eraseFromParent();
6186   return Legalized;
6187 }
6188 
6189 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6190 LegalizerHelper::LegalizeResult
6191 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6192   Register Dst = MI.getOperand(0).getReg();
6193   Register Src = MI.getOperand(1).getReg();
6194 
6195   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6196     return UnableToLegalize;
6197 
6198   const unsigned ExpMask = 0x7ff;
6199   const unsigned ExpBiasf64 = 1023;
6200   const unsigned ExpBiasf16 = 15;
6201   const LLT S32 = LLT::scalar(32);
6202   const LLT S1 = LLT::scalar(1);
6203 
6204   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6205   Register U = Unmerge.getReg(0);
6206   Register UH = Unmerge.getReg(1);
6207 
6208   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6209   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6210 
6211   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6212   // add the f16 bias (15) to get the biased exponent for the f16 format.
6213   E = MIRBuilder.buildAdd(
6214     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6215 
6216   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6217   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6218 
6219   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6220                                        MIRBuilder.buildConstant(S32, 0x1ff));
6221   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6222 
6223   auto Zero = MIRBuilder.buildConstant(S32, 0);
6224   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6225   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6226   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6227 
6228   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6229   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6230   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6231   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6232 
6233   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6234   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6235 
6236   // N = M | (E << 12);
6237   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6238   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6239 
6240   // B = clamp(1-E, 0, 13);
6241   auto One = MIRBuilder.buildConstant(S32, 1);
6242   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6243   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6244   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6245 
6246   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6247                                        MIRBuilder.buildConstant(S32, 0x1000));
6248 
6249   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6250   auto D0 = MIRBuilder.buildShl(S32, D, B);
6251 
6252   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6253                                              D0, SigSetHigh);
6254   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6255   D = MIRBuilder.buildOr(S32, D, D1);
6256 
6257   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6258   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6259 
6260   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6261   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6262 
6263   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6264                                        MIRBuilder.buildConstant(S32, 3));
6265   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6266 
6267   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6268                                        MIRBuilder.buildConstant(S32, 5));
6269   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6270 
6271   V1 = MIRBuilder.buildOr(S32, V0, V1);
6272   V = MIRBuilder.buildAdd(S32, V, V1);
6273 
6274   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6275                                        E, MIRBuilder.buildConstant(S32, 30));
6276   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6277                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6278 
6279   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6280                                          E, MIRBuilder.buildConstant(S32, 1039));
6281   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6282 
6283   // Extract the sign bit.
6284   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6285   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6286 
6287   // Insert the sign bit
6288   V = MIRBuilder.buildOr(S32, Sign, V);
6289 
6290   MIRBuilder.buildTrunc(Dst, V);
6291   MI.eraseFromParent();
6292   return Legalized;
6293 }
6294 
6295 LegalizerHelper::LegalizeResult
6296 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6297   Register Dst = MI.getOperand(0).getReg();
6298   Register Src = MI.getOperand(1).getReg();
6299 
6300   LLT DstTy = MRI.getType(Dst);
6301   LLT SrcTy = MRI.getType(Src);
6302   const LLT S64 = LLT::scalar(64);
6303   const LLT S16 = LLT::scalar(16);
6304 
6305   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6306     return lowerFPTRUNC_F64_TO_F16(MI);
6307 
6308   return UnableToLegalize;
6309 }
6310 
6311 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6312 // multiplication tree.
6313 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6314   Register Dst = MI.getOperand(0).getReg();
6315   Register Src0 = MI.getOperand(1).getReg();
6316   Register Src1 = MI.getOperand(2).getReg();
6317   LLT Ty = MRI.getType(Dst);
6318 
6319   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6320   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6321   MI.eraseFromParent();
6322   return Legalized;
6323 }
6324 
6325 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6326   switch (Opc) {
6327   case TargetOpcode::G_SMIN:
6328     return CmpInst::ICMP_SLT;
6329   case TargetOpcode::G_SMAX:
6330     return CmpInst::ICMP_SGT;
6331   case TargetOpcode::G_UMIN:
6332     return CmpInst::ICMP_ULT;
6333   case TargetOpcode::G_UMAX:
6334     return CmpInst::ICMP_UGT;
6335   default:
6336     llvm_unreachable("not in integer min/max");
6337   }
6338 }
6339 
6340 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6341   Register Dst = MI.getOperand(0).getReg();
6342   Register Src0 = MI.getOperand(1).getReg();
6343   Register Src1 = MI.getOperand(2).getReg();
6344 
6345   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6346   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6347 
6348   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6349   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6350 
6351   MI.eraseFromParent();
6352   return Legalized;
6353 }
6354 
6355 LegalizerHelper::LegalizeResult
6356 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6357   Register Dst = MI.getOperand(0).getReg();
6358   Register Src0 = MI.getOperand(1).getReg();
6359   Register Src1 = MI.getOperand(2).getReg();
6360 
6361   const LLT Src0Ty = MRI.getType(Src0);
6362   const LLT Src1Ty = MRI.getType(Src1);
6363 
6364   const int Src0Size = Src0Ty.getScalarSizeInBits();
6365   const int Src1Size = Src1Ty.getScalarSizeInBits();
6366 
6367   auto SignBitMask = MIRBuilder.buildConstant(
6368     Src0Ty, APInt::getSignMask(Src0Size));
6369 
6370   auto NotSignBitMask = MIRBuilder.buildConstant(
6371     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6372 
6373   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6374   Register And1;
6375   if (Src0Ty == Src1Ty) {
6376     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6377   } else if (Src0Size > Src1Size) {
6378     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6379     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6380     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6381     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6382   } else {
6383     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6384     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6385     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6386     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6387   }
6388 
6389   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6390   // constants are a nan and -0.0, but the final result should preserve
6391   // everything.
6392   unsigned Flags = MI.getFlags();
6393   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6394 
6395   MI.eraseFromParent();
6396   return Legalized;
6397 }
6398 
6399 LegalizerHelper::LegalizeResult
6400 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6401   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6402     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6403 
6404   Register Dst = MI.getOperand(0).getReg();
6405   Register Src0 = MI.getOperand(1).getReg();
6406   Register Src1 = MI.getOperand(2).getReg();
6407   LLT Ty = MRI.getType(Dst);
6408 
6409   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6410     // Insert canonicalizes if it's possible we need to quiet to get correct
6411     // sNaN behavior.
6412 
6413     // Note this must be done here, and not as an optimization combine in the
6414     // absence of a dedicate quiet-snan instruction as we're using an
6415     // omni-purpose G_FCANONICALIZE.
6416     if (!isKnownNeverSNaN(Src0, MRI))
6417       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6418 
6419     if (!isKnownNeverSNaN(Src1, MRI))
6420       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6421   }
6422 
6423   // If there are no nans, it's safe to simply replace this with the non-IEEE
6424   // version.
6425   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6426   MI.eraseFromParent();
6427   return Legalized;
6428 }
6429 
6430 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6431   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6432   Register DstReg = MI.getOperand(0).getReg();
6433   LLT Ty = MRI.getType(DstReg);
6434   unsigned Flags = MI.getFlags();
6435 
6436   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6437                                   Flags);
6438   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6439   MI.eraseFromParent();
6440   return Legalized;
6441 }
6442 
6443 LegalizerHelper::LegalizeResult
6444 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6445   Register DstReg = MI.getOperand(0).getReg();
6446   Register X = MI.getOperand(1).getReg();
6447   const unsigned Flags = MI.getFlags();
6448   const LLT Ty = MRI.getType(DstReg);
6449   const LLT CondTy = Ty.changeElementSize(1);
6450 
6451   // round(x) =>
6452   //  t = trunc(x);
6453   //  d = fabs(x - t);
6454   //  o = copysign(1.0f, x);
6455   //  return t + (d >= 0.5 ? o : 0.0);
6456 
6457   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6458 
6459   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6460   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6461   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6462   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6463   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6464   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6465 
6466   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6467                                   Flags);
6468   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6469 
6470   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6471 
6472   MI.eraseFromParent();
6473   return Legalized;
6474 }
6475 
6476 LegalizerHelper::LegalizeResult
6477 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6478   Register DstReg = MI.getOperand(0).getReg();
6479   Register SrcReg = MI.getOperand(1).getReg();
6480   unsigned Flags = MI.getFlags();
6481   LLT Ty = MRI.getType(DstReg);
6482   const LLT CondTy = Ty.changeElementSize(1);
6483 
6484   // result = trunc(src);
6485   // if (src < 0.0 && src != result)
6486   //   result += -1.0.
6487 
6488   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6489   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6490 
6491   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6492                                   SrcReg, Zero, Flags);
6493   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6494                                       SrcReg, Trunc, Flags);
6495   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6496   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6497 
6498   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6499   MI.eraseFromParent();
6500   return Legalized;
6501 }
6502 
6503 LegalizerHelper::LegalizeResult
6504 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6505   const unsigned NumOps = MI.getNumOperands();
6506   Register DstReg = MI.getOperand(0).getReg();
6507   Register Src0Reg = MI.getOperand(1).getReg();
6508   LLT DstTy = MRI.getType(DstReg);
6509   LLT SrcTy = MRI.getType(Src0Reg);
6510   unsigned PartSize = SrcTy.getSizeInBits();
6511 
6512   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6513   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6514 
6515   for (unsigned I = 2; I != NumOps; ++I) {
6516     const unsigned Offset = (I - 1) * PartSize;
6517 
6518     Register SrcReg = MI.getOperand(I).getReg();
6519     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6520 
6521     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6522       MRI.createGenericVirtualRegister(WideTy);
6523 
6524     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6525     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6526     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6527     ResultReg = NextResult;
6528   }
6529 
6530   if (DstTy.isPointer()) {
6531     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6532           DstTy.getAddressSpace())) {
6533       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6534       return UnableToLegalize;
6535     }
6536 
6537     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6538   }
6539 
6540   MI.eraseFromParent();
6541   return Legalized;
6542 }
6543 
6544 LegalizerHelper::LegalizeResult
6545 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6546   const unsigned NumDst = MI.getNumOperands() - 1;
6547   Register SrcReg = MI.getOperand(NumDst).getReg();
6548   Register Dst0Reg = MI.getOperand(0).getReg();
6549   LLT DstTy = MRI.getType(Dst0Reg);
6550   if (DstTy.isPointer())
6551     return UnableToLegalize; // TODO
6552 
6553   SrcReg = coerceToScalar(SrcReg);
6554   if (!SrcReg)
6555     return UnableToLegalize;
6556 
6557   // Expand scalarizing unmerge as bitcast to integer and shift.
6558   LLT IntTy = MRI.getType(SrcReg);
6559 
6560   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6561 
6562   const unsigned DstSize = DstTy.getSizeInBits();
6563   unsigned Offset = DstSize;
6564   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6565     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6566     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6567     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6568   }
6569 
6570   MI.eraseFromParent();
6571   return Legalized;
6572 }
6573 
6574 /// Lower a vector extract or insert by writing the vector to a stack temporary
6575 /// and reloading the element or vector.
6576 ///
6577 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6578 ///  =>
6579 ///  %stack_temp = G_FRAME_INDEX
6580 ///  G_STORE %vec, %stack_temp
6581 ///  %idx = clamp(%idx, %vec.getNumElements())
6582 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6583 ///  %dst = G_LOAD %element_ptr
6584 LegalizerHelper::LegalizeResult
6585 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6586   Register DstReg = MI.getOperand(0).getReg();
6587   Register SrcVec = MI.getOperand(1).getReg();
6588   Register InsertVal;
6589   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6590     InsertVal = MI.getOperand(2).getReg();
6591 
6592   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6593 
6594   LLT VecTy = MRI.getType(SrcVec);
6595   LLT EltTy = VecTy.getElementType();
6596   unsigned NumElts = VecTy.getNumElements();
6597 
6598   int64_t IdxVal;
6599   if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6600     SmallVector<Register, 8> SrcRegs;
6601     extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6602 
6603     if (InsertVal) {
6604       SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6605       MIRBuilder.buildMerge(DstReg, SrcRegs);
6606     } else {
6607       MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6608     }
6609 
6610     MI.eraseFromParent();
6611     return Legalized;
6612   }
6613 
6614   if (!EltTy.isByteSized()) { // Not implemented.
6615     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6616     return UnableToLegalize;
6617   }
6618 
6619   unsigned EltBytes = EltTy.getSizeInBytes();
6620   Align VecAlign = getStackTemporaryAlignment(VecTy);
6621   Align EltAlign;
6622 
6623   MachinePointerInfo PtrInfo;
6624   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6625                                         VecAlign, PtrInfo);
6626   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6627 
6628   // Get the pointer to the element, and be sure not to hit undefined behavior
6629   // if the index is out of bounds.
6630   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6631 
6632   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6633     int64_t Offset = IdxVal * EltBytes;
6634     PtrInfo = PtrInfo.getWithOffset(Offset);
6635     EltAlign = commonAlignment(VecAlign, Offset);
6636   } else {
6637     // We lose information with a variable offset.
6638     EltAlign = getStackTemporaryAlignment(EltTy);
6639     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6640   }
6641 
6642   if (InsertVal) {
6643     // Write the inserted element
6644     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6645 
6646     // Reload the whole vector.
6647     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6648   } else {
6649     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6650   }
6651 
6652   MI.eraseFromParent();
6653   return Legalized;
6654 }
6655 
6656 LegalizerHelper::LegalizeResult
6657 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6658   Register DstReg = MI.getOperand(0).getReg();
6659   Register Src0Reg = MI.getOperand(1).getReg();
6660   Register Src1Reg = MI.getOperand(2).getReg();
6661   LLT Src0Ty = MRI.getType(Src0Reg);
6662   LLT DstTy = MRI.getType(DstReg);
6663   LLT IdxTy = LLT::scalar(32);
6664 
6665   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6666 
6667   if (DstTy.isScalar()) {
6668     if (Src0Ty.isVector())
6669       return UnableToLegalize;
6670 
6671     // This is just a SELECT.
6672     assert(Mask.size() == 1 && "Expected a single mask element");
6673     Register Val;
6674     if (Mask[0] < 0 || Mask[0] > 1)
6675       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6676     else
6677       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6678     MIRBuilder.buildCopy(DstReg, Val);
6679     MI.eraseFromParent();
6680     return Legalized;
6681   }
6682 
6683   Register Undef;
6684   SmallVector<Register, 32> BuildVec;
6685   LLT EltTy = DstTy.getElementType();
6686 
6687   for (int Idx : Mask) {
6688     if (Idx < 0) {
6689       if (!Undef.isValid())
6690         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6691       BuildVec.push_back(Undef);
6692       continue;
6693     }
6694 
6695     if (Src0Ty.isScalar()) {
6696       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6697     } else {
6698       int NumElts = Src0Ty.getNumElements();
6699       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6700       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6701       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6702       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6703       BuildVec.push_back(Extract.getReg(0));
6704     }
6705   }
6706 
6707   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6708   MI.eraseFromParent();
6709   return Legalized;
6710 }
6711 
6712 LegalizerHelper::LegalizeResult
6713 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6714   const auto &MF = *MI.getMF();
6715   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6716   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6717     return UnableToLegalize;
6718 
6719   Register Dst = MI.getOperand(0).getReg();
6720   Register AllocSize = MI.getOperand(1).getReg();
6721   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6722 
6723   LLT PtrTy = MRI.getType(Dst);
6724   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6725 
6726   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6727   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6728   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6729 
6730   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6731   // have to generate an extra instruction to negate the alloc and then use
6732   // G_PTR_ADD to add the negative offset.
6733   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6734   if (Alignment > Align(1)) {
6735     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6736     AlignMask.negate();
6737     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6738     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6739   }
6740 
6741   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6742   MIRBuilder.buildCopy(SPReg, SPTmp);
6743   MIRBuilder.buildCopy(Dst, SPTmp);
6744 
6745   MI.eraseFromParent();
6746   return Legalized;
6747 }
6748 
6749 LegalizerHelper::LegalizeResult
6750 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6751   Register Dst = MI.getOperand(0).getReg();
6752   Register Src = MI.getOperand(1).getReg();
6753   unsigned Offset = MI.getOperand(2).getImm();
6754 
6755   LLT DstTy = MRI.getType(Dst);
6756   LLT SrcTy = MRI.getType(Src);
6757 
6758   // Extract sub-vector or one element
6759   if (SrcTy.isVector()) {
6760     unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6761     unsigned DstSize = DstTy.getSizeInBits();
6762 
6763     if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6764         (Offset + DstSize <= SrcTy.getSizeInBits())) {
6765       // Unmerge and allow access to each Src element for the artifact combiner.
6766       auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6767 
6768       // Take element(s) we need to extract and copy it (merge them).
6769       SmallVector<Register, 8> SubVectorElts;
6770       for (unsigned Idx = Offset / SrcEltSize;
6771            Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6772         SubVectorElts.push_back(Unmerge.getReg(Idx));
6773       }
6774       if (SubVectorElts.size() == 1)
6775         MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6776       else
6777         MIRBuilder.buildMerge(Dst, SubVectorElts);
6778 
6779       MI.eraseFromParent();
6780       return Legalized;
6781     }
6782   }
6783 
6784   if (DstTy.isScalar() &&
6785       (SrcTy.isScalar() ||
6786        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6787     LLT SrcIntTy = SrcTy;
6788     if (!SrcTy.isScalar()) {
6789       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6790       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6791     }
6792 
6793     if (Offset == 0)
6794       MIRBuilder.buildTrunc(Dst, Src);
6795     else {
6796       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6797       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6798       MIRBuilder.buildTrunc(Dst, Shr);
6799     }
6800 
6801     MI.eraseFromParent();
6802     return Legalized;
6803   }
6804 
6805   return UnableToLegalize;
6806 }
6807 
6808 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6809   Register Dst = MI.getOperand(0).getReg();
6810   Register Src = MI.getOperand(1).getReg();
6811   Register InsertSrc = MI.getOperand(2).getReg();
6812   uint64_t Offset = MI.getOperand(3).getImm();
6813 
6814   LLT DstTy = MRI.getType(Src);
6815   LLT InsertTy = MRI.getType(InsertSrc);
6816 
6817   // Insert sub-vector or one element
6818   if (DstTy.isVector() && !InsertTy.isPointer()) {
6819     LLT EltTy = DstTy.getElementType();
6820     unsigned EltSize = EltTy.getSizeInBits();
6821     unsigned InsertSize = InsertTy.getSizeInBits();
6822 
6823     if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6824         (Offset + InsertSize <= DstTy.getSizeInBits())) {
6825       auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6826       SmallVector<Register, 8> DstElts;
6827       unsigned Idx = 0;
6828       // Elements from Src before insert start Offset
6829       for (; Idx < Offset / EltSize; ++Idx) {
6830         DstElts.push_back(UnmergeSrc.getReg(Idx));
6831       }
6832 
6833       // Replace elements in Src with elements from InsertSrc
6834       if (InsertTy.getSizeInBits() > EltSize) {
6835         auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6836         for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6837              ++Idx, ++i) {
6838           DstElts.push_back(UnmergeInsertSrc.getReg(i));
6839         }
6840       } else {
6841         DstElts.push_back(InsertSrc);
6842         ++Idx;
6843       }
6844 
6845       // Remaining elements from Src after insert
6846       for (; Idx < DstTy.getNumElements(); ++Idx) {
6847         DstElts.push_back(UnmergeSrc.getReg(Idx));
6848       }
6849 
6850       MIRBuilder.buildMerge(Dst, DstElts);
6851       MI.eraseFromParent();
6852       return Legalized;
6853     }
6854   }
6855 
6856   if (InsertTy.isVector() ||
6857       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6858     return UnableToLegalize;
6859 
6860   const DataLayout &DL = MIRBuilder.getDataLayout();
6861   if ((DstTy.isPointer() &&
6862        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6863       (InsertTy.isPointer() &&
6864        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6865     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6866     return UnableToLegalize;
6867   }
6868 
6869   LLT IntDstTy = DstTy;
6870 
6871   if (!DstTy.isScalar()) {
6872     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6873     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6874   }
6875 
6876   if (!InsertTy.isScalar()) {
6877     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6878     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6879   }
6880 
6881   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6882   if (Offset != 0) {
6883     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6884     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6885   }
6886 
6887   APInt MaskVal = APInt::getBitsSetWithWrap(
6888       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6889 
6890   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6891   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6892   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6893 
6894   MIRBuilder.buildCast(Dst, Or);
6895   MI.eraseFromParent();
6896   return Legalized;
6897 }
6898 
6899 LegalizerHelper::LegalizeResult
6900 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6901   Register Dst0 = MI.getOperand(0).getReg();
6902   Register Dst1 = MI.getOperand(1).getReg();
6903   Register LHS = MI.getOperand(2).getReg();
6904   Register RHS = MI.getOperand(3).getReg();
6905   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6906 
6907   LLT Ty = MRI.getType(Dst0);
6908   LLT BoolTy = MRI.getType(Dst1);
6909 
6910   if (IsAdd)
6911     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6912   else
6913     MIRBuilder.buildSub(Dst0, LHS, RHS);
6914 
6915   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6916 
6917   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6918 
6919   // For an addition, the result should be less than one of the operands (LHS)
6920   // if and only if the other operand (RHS) is negative, otherwise there will
6921   // be overflow.
6922   // For a subtraction, the result should be less than one of the operands
6923   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6924   // otherwise there will be overflow.
6925   auto ResultLowerThanLHS =
6926       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6927   auto ConditionRHS = MIRBuilder.buildICmp(
6928       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6929 
6930   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6931   MI.eraseFromParent();
6932   return Legalized;
6933 }
6934 
6935 LegalizerHelper::LegalizeResult
6936 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6937   Register Res = MI.getOperand(0).getReg();
6938   Register LHS = MI.getOperand(1).getReg();
6939   Register RHS = MI.getOperand(2).getReg();
6940   LLT Ty = MRI.getType(Res);
6941   bool IsSigned;
6942   bool IsAdd;
6943   unsigned BaseOp;
6944   switch (MI.getOpcode()) {
6945   default:
6946     llvm_unreachable("unexpected addsat/subsat opcode");
6947   case TargetOpcode::G_UADDSAT:
6948     IsSigned = false;
6949     IsAdd = true;
6950     BaseOp = TargetOpcode::G_ADD;
6951     break;
6952   case TargetOpcode::G_SADDSAT:
6953     IsSigned = true;
6954     IsAdd = true;
6955     BaseOp = TargetOpcode::G_ADD;
6956     break;
6957   case TargetOpcode::G_USUBSAT:
6958     IsSigned = false;
6959     IsAdd = false;
6960     BaseOp = TargetOpcode::G_SUB;
6961     break;
6962   case TargetOpcode::G_SSUBSAT:
6963     IsSigned = true;
6964     IsAdd = false;
6965     BaseOp = TargetOpcode::G_SUB;
6966     break;
6967   }
6968 
6969   if (IsSigned) {
6970     // sadd.sat(a, b) ->
6971     //   hi = 0x7fffffff - smax(a, 0)
6972     //   lo = 0x80000000 - smin(a, 0)
6973     //   a + smin(smax(lo, b), hi)
6974     // ssub.sat(a, b) ->
6975     //   lo = smax(a, -1) - 0x7fffffff
6976     //   hi = smin(a, -1) - 0x80000000
6977     //   a - smin(smax(lo, b), hi)
6978     // TODO: AMDGPU can use a "median of 3" instruction here:
6979     //   a +/- med3(lo, b, hi)
6980     uint64_t NumBits = Ty.getScalarSizeInBits();
6981     auto MaxVal =
6982         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6983     auto MinVal =
6984         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6985     MachineInstrBuilder Hi, Lo;
6986     if (IsAdd) {
6987       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6988       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6989       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6990     } else {
6991       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6992       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6993                                MaxVal);
6994       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6995                                MinVal);
6996     }
6997     auto RHSClamped =
6998         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6999     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7000   } else {
7001     // uadd.sat(a, b) -> a + umin(~a, b)
7002     // usub.sat(a, b) -> a - umin(a, b)
7003     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7004     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7005     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7006   }
7007 
7008   MI.eraseFromParent();
7009   return Legalized;
7010 }
7011 
7012 LegalizerHelper::LegalizeResult
7013 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7014   Register Res = MI.getOperand(0).getReg();
7015   Register LHS = MI.getOperand(1).getReg();
7016   Register RHS = MI.getOperand(2).getReg();
7017   LLT Ty = MRI.getType(Res);
7018   LLT BoolTy = Ty.changeElementSize(1);
7019   bool IsSigned;
7020   bool IsAdd;
7021   unsigned OverflowOp;
7022   switch (MI.getOpcode()) {
7023   default:
7024     llvm_unreachable("unexpected addsat/subsat opcode");
7025   case TargetOpcode::G_UADDSAT:
7026     IsSigned = false;
7027     IsAdd = true;
7028     OverflowOp = TargetOpcode::G_UADDO;
7029     break;
7030   case TargetOpcode::G_SADDSAT:
7031     IsSigned = true;
7032     IsAdd = true;
7033     OverflowOp = TargetOpcode::G_SADDO;
7034     break;
7035   case TargetOpcode::G_USUBSAT:
7036     IsSigned = false;
7037     IsAdd = false;
7038     OverflowOp = TargetOpcode::G_USUBO;
7039     break;
7040   case TargetOpcode::G_SSUBSAT:
7041     IsSigned = true;
7042     IsAdd = false;
7043     OverflowOp = TargetOpcode::G_SSUBO;
7044     break;
7045   }
7046 
7047   auto OverflowRes =
7048       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7049   Register Tmp = OverflowRes.getReg(0);
7050   Register Ov = OverflowRes.getReg(1);
7051   MachineInstrBuilder Clamp;
7052   if (IsSigned) {
7053     // sadd.sat(a, b) ->
7054     //   {tmp, ov} = saddo(a, b)
7055     //   ov ? (tmp >>s 31) + 0x80000000 : r
7056     // ssub.sat(a, b) ->
7057     //   {tmp, ov} = ssubo(a, b)
7058     //   ov ? (tmp >>s 31) + 0x80000000 : r
7059     uint64_t NumBits = Ty.getScalarSizeInBits();
7060     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7061     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7062     auto MinVal =
7063         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7064     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7065   } else {
7066     // uadd.sat(a, b) ->
7067     //   {tmp, ov} = uaddo(a, b)
7068     //   ov ? 0xffffffff : tmp
7069     // usub.sat(a, b) ->
7070     //   {tmp, ov} = usubo(a, b)
7071     //   ov ? 0 : tmp
7072     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7073   }
7074   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7075 
7076   MI.eraseFromParent();
7077   return Legalized;
7078 }
7079 
7080 LegalizerHelper::LegalizeResult
7081 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7082   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7083           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7084          "Expected shlsat opcode!");
7085   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7086   Register Res = MI.getOperand(0).getReg();
7087   Register LHS = MI.getOperand(1).getReg();
7088   Register RHS = MI.getOperand(2).getReg();
7089   LLT Ty = MRI.getType(Res);
7090   LLT BoolTy = Ty.changeElementSize(1);
7091 
7092   unsigned BW = Ty.getScalarSizeInBits();
7093   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7094   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7095                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7096 
7097   MachineInstrBuilder SatVal;
7098   if (IsSigned) {
7099     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7100     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7101     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7102                                     MIRBuilder.buildConstant(Ty, 0));
7103     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7104   } else {
7105     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7106   }
7107   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7108   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7109 
7110   MI.eraseFromParent();
7111   return Legalized;
7112 }
7113 
7114 LegalizerHelper::LegalizeResult
7115 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7116   Register Dst = MI.getOperand(0).getReg();
7117   Register Src = MI.getOperand(1).getReg();
7118   const LLT Ty = MRI.getType(Src);
7119   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7120   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7121 
7122   // Swap most and least significant byte, set remaining bytes in Res to zero.
7123   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7124   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7125   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7126   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7127 
7128   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7129   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7130     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7131     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7132     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7133     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7134     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7135     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7136     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7137     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7138     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7139     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7140     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7141     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7142   }
7143   Res.getInstr()->getOperand(0).setReg(Dst);
7144 
7145   MI.eraseFromParent();
7146   return Legalized;
7147 }
7148 
7149 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7150 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7151                                  MachineInstrBuilder Src, APInt Mask) {
7152   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7153   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7154   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7155   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7156   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7157   return B.buildOr(Dst, LHS, RHS);
7158 }
7159 
7160 LegalizerHelper::LegalizeResult
7161 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7162   Register Dst = MI.getOperand(0).getReg();
7163   Register Src = MI.getOperand(1).getReg();
7164   const LLT Ty = MRI.getType(Src);
7165   unsigned Size = Ty.getSizeInBits();
7166 
7167   MachineInstrBuilder BSWAP =
7168       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7169 
7170   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7171   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7172   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7173   MachineInstrBuilder Swap4 =
7174       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7175 
7176   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7177   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7178   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7179   MachineInstrBuilder Swap2 =
7180       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7181 
7182   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7183   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7184   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7185   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7186 
7187   MI.eraseFromParent();
7188   return Legalized;
7189 }
7190 
7191 LegalizerHelper::LegalizeResult
7192 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7193   MachineFunction &MF = MIRBuilder.getMF();
7194 
7195   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7196   int NameOpIdx = IsRead ? 1 : 0;
7197   int ValRegIndex = IsRead ? 0 : 1;
7198 
7199   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7200   const LLT Ty = MRI.getType(ValReg);
7201   const MDString *RegStr = cast<MDString>(
7202     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7203 
7204   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7205   if (!PhysReg.isValid())
7206     return UnableToLegalize;
7207 
7208   if (IsRead)
7209     MIRBuilder.buildCopy(ValReg, PhysReg);
7210   else
7211     MIRBuilder.buildCopy(PhysReg, ValReg);
7212 
7213   MI.eraseFromParent();
7214   return Legalized;
7215 }
7216 
7217 LegalizerHelper::LegalizeResult
7218 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7219   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7220   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7221   Register Result = MI.getOperand(0).getReg();
7222   LLT OrigTy = MRI.getType(Result);
7223   auto SizeInBits = OrigTy.getScalarSizeInBits();
7224   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7225 
7226   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7227   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7228   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7229   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7230 
7231   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7232   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7233   MIRBuilder.buildTrunc(Result, Shifted);
7234 
7235   MI.eraseFromParent();
7236   return Legalized;
7237 }
7238 
7239 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7240   // Implement vector G_SELECT in terms of XOR, AND, OR.
7241   Register DstReg = MI.getOperand(0).getReg();
7242   Register MaskReg = MI.getOperand(1).getReg();
7243   Register Op1Reg = MI.getOperand(2).getReg();
7244   Register Op2Reg = MI.getOperand(3).getReg();
7245   LLT DstTy = MRI.getType(DstReg);
7246   LLT MaskTy = MRI.getType(MaskReg);
7247   LLT Op1Ty = MRI.getType(Op1Reg);
7248   if (!DstTy.isVector())
7249     return UnableToLegalize;
7250 
7251   // Vector selects can have a scalar predicate. If so, splat into a vector and
7252   // finish for later legalization attempts to try again.
7253   if (MaskTy.isScalar()) {
7254     Register MaskElt = MaskReg;
7255     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7256       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7257     // Generate a vector splat idiom to be pattern matched later.
7258     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7259     Observer.changingInstr(MI);
7260     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7261     Observer.changedInstr(MI);
7262     return Legalized;
7263   }
7264 
7265   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7266     return UnableToLegalize;
7267   }
7268 
7269   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7270   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7271   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7272   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7273   MI.eraseFromParent();
7274   return Legalized;
7275 }
7276 
7277 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7278   // Split DIVREM into individual instructions.
7279   unsigned Opcode = MI.getOpcode();
7280 
7281   MIRBuilder.buildInstr(
7282       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7283                                         : TargetOpcode::G_UDIV,
7284       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7285   MIRBuilder.buildInstr(
7286       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7287                                         : TargetOpcode::G_UREM,
7288       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7289   MI.eraseFromParent();
7290   return Legalized;
7291 }
7292 
7293 LegalizerHelper::LegalizeResult
7294 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7295   // Expand %res = G_ABS %a into:
7296   // %v1 = G_ASHR %a, scalar_size-1
7297   // %v2 = G_ADD %a, %v1
7298   // %res = G_XOR %v2, %v1
7299   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7300   Register OpReg = MI.getOperand(1).getReg();
7301   auto ShiftAmt =
7302       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7303   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7304   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7305   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7306   MI.eraseFromParent();
7307   return Legalized;
7308 }
7309 
7310 LegalizerHelper::LegalizeResult
7311 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7312   // Expand %res = G_ABS %a into:
7313   // %v1 = G_CONSTANT 0
7314   // %v2 = G_SUB %v1, %a
7315   // %res = G_SMAX %a, %v2
7316   Register SrcReg = MI.getOperand(1).getReg();
7317   LLT Ty = MRI.getType(SrcReg);
7318   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7319   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7320   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7321   MI.eraseFromParent();
7322   return Legalized;
7323 }
7324 
7325 LegalizerHelper::LegalizeResult
7326 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7327   Register SrcReg = MI.getOperand(1).getReg();
7328   LLT SrcTy = MRI.getType(SrcReg);
7329   LLT DstTy = MRI.getType(SrcReg);
7330 
7331   // The source could be a scalar if the IR type was <1 x sN>.
7332   if (SrcTy.isScalar()) {
7333     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7334       return UnableToLegalize; // FIXME: handle extension.
7335     // This can be just a plain copy.
7336     Observer.changingInstr(MI);
7337     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7338     Observer.changedInstr(MI);
7339     return Legalized;
7340   }
7341   return UnableToLegalize;;
7342 }
7343 
7344 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7345   // On Darwin, -Os means optimize for size without hurting performance, so
7346   // only really optimize for size when -Oz (MinSize) is used.
7347   if (MF.getTarget().getTargetTriple().isOSDarwin())
7348     return MF.getFunction().hasMinSize();
7349   return MF.getFunction().hasOptSize();
7350 }
7351 
7352 // Returns a list of types to use for memory op lowering in MemOps. A partial
7353 // port of findOptimalMemOpLowering in TargetLowering.
7354 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7355                                           unsigned Limit, const MemOp &Op,
7356                                           unsigned DstAS, unsigned SrcAS,
7357                                           const AttributeList &FuncAttributes,
7358                                           const TargetLowering &TLI) {
7359   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7360     return false;
7361 
7362   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7363 
7364   if (Ty == LLT()) {
7365     // Use the largest scalar type whose alignment constraints are satisfied.
7366     // We only need to check DstAlign here as SrcAlign is always greater or
7367     // equal to DstAlign (or zero).
7368     Ty = LLT::scalar(64);
7369     if (Op.isFixedDstAlign())
7370       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7371              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7372         Ty = LLT::scalar(Ty.getSizeInBytes());
7373     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7374     // FIXME: check for the largest legal type we can load/store to.
7375   }
7376 
7377   unsigned NumMemOps = 0;
7378   uint64_t Size = Op.size();
7379   while (Size) {
7380     unsigned TySize = Ty.getSizeInBytes();
7381     while (TySize > Size) {
7382       // For now, only use non-vector load / store's for the left-over pieces.
7383       LLT NewTy = Ty;
7384       // FIXME: check for mem op safety and legality of the types. Not all of
7385       // SDAGisms map cleanly to GISel concepts.
7386       if (NewTy.isVector())
7387         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7388       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7389       unsigned NewTySize = NewTy.getSizeInBytes();
7390       assert(NewTySize > 0 && "Could not find appropriate type");
7391 
7392       // If the new LLT cannot cover all of the remaining bits, then consider
7393       // issuing a (or a pair of) unaligned and overlapping load / store.
7394       bool Fast;
7395       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7396       MVT VT = getMVTForLLT(Ty);
7397       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7398           TLI.allowsMisalignedMemoryAccesses(
7399               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7400               MachineMemOperand::MONone, &Fast) &&
7401           Fast)
7402         TySize = Size;
7403       else {
7404         Ty = NewTy;
7405         TySize = NewTySize;
7406       }
7407     }
7408 
7409     if (++NumMemOps > Limit)
7410       return false;
7411 
7412     MemOps.push_back(Ty);
7413     Size -= TySize;
7414   }
7415 
7416   return true;
7417 }
7418 
7419 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7420   if (Ty.isVector())
7421     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7422                                 Ty.getNumElements());
7423   return IntegerType::get(C, Ty.getSizeInBits());
7424 }
7425 
7426 // Get a vectorized representation of the memset value operand, GISel edition.
7427 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7428   MachineRegisterInfo &MRI = *MIB.getMRI();
7429   unsigned NumBits = Ty.getScalarSizeInBits();
7430   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7431   if (!Ty.isVector() && ValVRegAndVal) {
7432     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
7433     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7434     return MIB.buildConstant(Ty, SplatVal).getReg(0);
7435   }
7436 
7437   // Extend the byte value to the larger type, and then multiply by a magic
7438   // value 0x010101... in order to replicate it across every byte.
7439   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7440   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7441     return MIB.buildConstant(Ty, 0).getReg(0);
7442   }
7443 
7444   LLT ExtType = Ty.getScalarType();
7445   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7446   if (NumBits > 8) {
7447     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7448     auto MagicMI = MIB.buildConstant(ExtType, Magic);
7449     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7450   }
7451 
7452   // For vector types create a G_BUILD_VECTOR.
7453   if (Ty.isVector())
7454     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7455 
7456   return Val;
7457 }
7458 
7459 LegalizerHelper::LegalizeResult
7460 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7461                              uint64_t KnownLen, Align Alignment,
7462                              bool IsVolatile) {
7463   auto &MF = *MI.getParent()->getParent();
7464   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7465   auto &DL = MF.getDataLayout();
7466   LLVMContext &C = MF.getFunction().getContext();
7467 
7468   assert(KnownLen != 0 && "Have a zero length memset length!");
7469 
7470   bool DstAlignCanChange = false;
7471   MachineFrameInfo &MFI = MF.getFrameInfo();
7472   bool OptSize = shouldLowerMemFuncForSize(MF);
7473 
7474   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7475   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7476     DstAlignCanChange = true;
7477 
7478   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7479   std::vector<LLT> MemOps;
7480 
7481   const auto &DstMMO = **MI.memoperands_begin();
7482   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7483 
7484   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7485   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7486 
7487   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7488                                      MemOp::Set(KnownLen, DstAlignCanChange,
7489                                                 Alignment,
7490                                                 /*IsZeroMemset=*/IsZeroVal,
7491                                                 /*IsVolatile=*/IsVolatile),
7492                                      DstPtrInfo.getAddrSpace(), ~0u,
7493                                      MF.getFunction().getAttributes(), TLI))
7494     return UnableToLegalize;
7495 
7496   if (DstAlignCanChange) {
7497     // Get an estimate of the type from the LLT.
7498     Type *IRTy = getTypeForLLT(MemOps[0], C);
7499     Align NewAlign = DL.getABITypeAlign(IRTy);
7500     if (NewAlign > Alignment) {
7501       Alignment = NewAlign;
7502       unsigned FI = FIDef->getOperand(1).getIndex();
7503       // Give the stack frame object a larger alignment if needed.
7504       if (MFI.getObjectAlign(FI) < Alignment)
7505         MFI.setObjectAlignment(FI, Alignment);
7506     }
7507   }
7508 
7509   MachineIRBuilder MIB(MI);
7510   // Find the largest store and generate the bit pattern for it.
7511   LLT LargestTy = MemOps[0];
7512   for (unsigned i = 1; i < MemOps.size(); i++)
7513     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7514       LargestTy = MemOps[i];
7515 
7516   // The memset stored value is always defined as an s8, so in order to make it
7517   // work with larger store types we need to repeat the bit pattern across the
7518   // wider type.
7519   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7520 
7521   if (!MemSetValue)
7522     return UnableToLegalize;
7523 
7524   // Generate the stores. For each store type in the list, we generate the
7525   // matching store of that type to the destination address.
7526   LLT PtrTy = MRI.getType(Dst);
7527   unsigned DstOff = 0;
7528   unsigned Size = KnownLen;
7529   for (unsigned I = 0; I < MemOps.size(); I++) {
7530     LLT Ty = MemOps[I];
7531     unsigned TySize = Ty.getSizeInBytes();
7532     if (TySize > Size) {
7533       // Issuing an unaligned load / store pair that overlaps with the previous
7534       // pair. Adjust the offset accordingly.
7535       assert(I == MemOps.size() - 1 && I != 0);
7536       DstOff -= TySize - Size;
7537     }
7538 
7539     // If this store is smaller than the largest store see whether we can get
7540     // the smaller value for free with a truncate.
7541     Register Value = MemSetValue;
7542     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7543       MVT VT = getMVTForLLT(Ty);
7544       MVT LargestVT = getMVTForLLT(LargestTy);
7545       if (!LargestTy.isVector() && !Ty.isVector() &&
7546           TLI.isTruncateFree(LargestVT, VT))
7547         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7548       else
7549         Value = getMemsetValue(Val, Ty, MIB);
7550       if (!Value)
7551         return UnableToLegalize;
7552     }
7553 
7554     auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7555 
7556     Register Ptr = Dst;
7557     if (DstOff != 0) {
7558       auto Offset =
7559           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7560       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7561     }
7562 
7563     MIB.buildStore(Value, Ptr, *StoreMMO);
7564     DstOff += Ty.getSizeInBytes();
7565     Size -= TySize;
7566   }
7567 
7568   MI.eraseFromParent();
7569   return Legalized;
7570 }
7571 
7572 LegalizerHelper::LegalizeResult
7573 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7574   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7575 
7576   Register Dst = MI.getOperand(0).getReg();
7577   Register Src = MI.getOperand(1).getReg();
7578   Register Len = MI.getOperand(2).getReg();
7579 
7580   const auto *MMOIt = MI.memoperands_begin();
7581   const MachineMemOperand *MemOp = *MMOIt;
7582   bool IsVolatile = MemOp->isVolatile();
7583 
7584   // See if this is a constant length copy
7585   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7586   // FIXME: support dynamically sized G_MEMCPY_INLINE
7587   assert(LenVRegAndVal.hasValue() &&
7588          "inline memcpy with dynamic size is not yet supported");
7589   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7590   if (KnownLen == 0) {
7591     MI.eraseFromParent();
7592     return Legalized;
7593   }
7594 
7595   const auto &DstMMO = **MI.memoperands_begin();
7596   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7597   Align DstAlign = DstMMO.getBaseAlign();
7598   Align SrcAlign = SrcMMO.getBaseAlign();
7599 
7600   return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7601                            IsVolatile);
7602 }
7603 
7604 LegalizerHelper::LegalizeResult
7605 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7606                                    uint64_t KnownLen, Align DstAlign,
7607                                    Align SrcAlign, bool IsVolatile) {
7608   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7609   return lowerMemcpy(MI, Dst, Src, KnownLen,
7610                      std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7611                      IsVolatile);
7612 }
7613 
7614 LegalizerHelper::LegalizeResult
7615 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7616                              uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7617                              Align SrcAlign, bool IsVolatile) {
7618   auto &MF = *MI.getParent()->getParent();
7619   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7620   auto &DL = MF.getDataLayout();
7621   LLVMContext &C = MF.getFunction().getContext();
7622 
7623   assert(KnownLen != 0 && "Have a zero length memcpy length!");
7624 
7625   bool DstAlignCanChange = false;
7626   MachineFrameInfo &MFI = MF.getFrameInfo();
7627   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7628 
7629   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7630   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7631     DstAlignCanChange = true;
7632 
7633   // FIXME: infer better src pointer alignment like SelectionDAG does here.
7634   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7635   // if the memcpy is in a tail call position.
7636 
7637   std::vector<LLT> MemOps;
7638 
7639   const auto &DstMMO = **MI.memoperands_begin();
7640   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7641   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7642   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7643 
7644   if (!findGISelOptimalMemOpLowering(
7645           MemOps, Limit,
7646           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7647                       IsVolatile),
7648           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7649           MF.getFunction().getAttributes(), TLI))
7650     return UnableToLegalize;
7651 
7652   if (DstAlignCanChange) {
7653     // Get an estimate of the type from the LLT.
7654     Type *IRTy = getTypeForLLT(MemOps[0], C);
7655     Align NewAlign = DL.getABITypeAlign(IRTy);
7656 
7657     // Don't promote to an alignment that would require dynamic stack
7658     // realignment.
7659     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7660     if (!TRI->hasStackRealignment(MF))
7661       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7662         NewAlign = NewAlign / 2;
7663 
7664     if (NewAlign > Alignment) {
7665       Alignment = NewAlign;
7666       unsigned FI = FIDef->getOperand(1).getIndex();
7667       // Give the stack frame object a larger alignment if needed.
7668       if (MFI.getObjectAlign(FI) < Alignment)
7669         MFI.setObjectAlignment(FI, Alignment);
7670     }
7671   }
7672 
7673   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7674 
7675   MachineIRBuilder MIB(MI);
7676   // Now we need to emit a pair of load and stores for each of the types we've
7677   // collected. I.e. for each type, generate a load from the source pointer of
7678   // that type width, and then generate a corresponding store to the dest buffer
7679   // of that value loaded. This can result in a sequence of loads and stores
7680   // mixed types, depending on what the target specifies as good types to use.
7681   unsigned CurrOffset = 0;
7682   unsigned Size = KnownLen;
7683   for (auto CopyTy : MemOps) {
7684     // Issuing an unaligned load / store pair  that overlaps with the previous
7685     // pair. Adjust the offset accordingly.
7686     if (CopyTy.getSizeInBytes() > Size)
7687       CurrOffset -= CopyTy.getSizeInBytes() - Size;
7688 
7689     // Construct MMOs for the accesses.
7690     auto *LoadMMO =
7691         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7692     auto *StoreMMO =
7693         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7694 
7695     // Create the load.
7696     Register LoadPtr = Src;
7697     Register Offset;
7698     if (CurrOffset != 0) {
7699       LLT SrcTy = MRI.getType(Src);
7700       Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7701                    .getReg(0);
7702       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7703     }
7704     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7705 
7706     // Create the store.
7707     Register StorePtr = Dst;
7708     if (CurrOffset != 0) {
7709       LLT DstTy = MRI.getType(Dst);
7710       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7711     }
7712     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7713     CurrOffset += CopyTy.getSizeInBytes();
7714     Size -= CopyTy.getSizeInBytes();
7715   }
7716 
7717   MI.eraseFromParent();
7718   return Legalized;
7719 }
7720 
7721 LegalizerHelper::LegalizeResult
7722 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7723                               uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7724                               bool IsVolatile) {
7725   auto &MF = *MI.getParent()->getParent();
7726   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7727   auto &DL = MF.getDataLayout();
7728   LLVMContext &C = MF.getFunction().getContext();
7729 
7730   assert(KnownLen != 0 && "Have a zero length memmove length!");
7731 
7732   bool DstAlignCanChange = false;
7733   MachineFrameInfo &MFI = MF.getFrameInfo();
7734   bool OptSize = shouldLowerMemFuncForSize(MF);
7735   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7736 
7737   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7738   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7739     DstAlignCanChange = true;
7740 
7741   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7742   std::vector<LLT> MemOps;
7743 
7744   const auto &DstMMO = **MI.memoperands_begin();
7745   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7746   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7747   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7748 
7749   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7750   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7751   // same thing here.
7752   if (!findGISelOptimalMemOpLowering(
7753           MemOps, Limit,
7754           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7755                       /*IsVolatile*/ true),
7756           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7757           MF.getFunction().getAttributes(), TLI))
7758     return UnableToLegalize;
7759 
7760   if (DstAlignCanChange) {
7761     // Get an estimate of the type from the LLT.
7762     Type *IRTy = getTypeForLLT(MemOps[0], C);
7763     Align NewAlign = DL.getABITypeAlign(IRTy);
7764 
7765     // Don't promote to an alignment that would require dynamic stack
7766     // realignment.
7767     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7768     if (!TRI->hasStackRealignment(MF))
7769       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7770         NewAlign = NewAlign / 2;
7771 
7772     if (NewAlign > Alignment) {
7773       Alignment = NewAlign;
7774       unsigned FI = FIDef->getOperand(1).getIndex();
7775       // Give the stack frame object a larger alignment if needed.
7776       if (MFI.getObjectAlign(FI) < Alignment)
7777         MFI.setObjectAlignment(FI, Alignment);
7778     }
7779   }
7780 
7781   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
7782 
7783   MachineIRBuilder MIB(MI);
7784   // Memmove requires that we perform the loads first before issuing the stores.
7785   // Apart from that, this loop is pretty much doing the same thing as the
7786   // memcpy codegen function.
7787   unsigned CurrOffset = 0;
7788   SmallVector<Register, 16> LoadVals;
7789   for (auto CopyTy : MemOps) {
7790     // Construct MMO for the load.
7791     auto *LoadMMO =
7792         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7793 
7794     // Create the load.
7795     Register LoadPtr = Src;
7796     if (CurrOffset != 0) {
7797       LLT SrcTy = MRI.getType(Src);
7798       auto Offset =
7799           MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7800       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7801     }
7802     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7803     CurrOffset += CopyTy.getSizeInBytes();
7804   }
7805 
7806   CurrOffset = 0;
7807   for (unsigned I = 0; I < MemOps.size(); ++I) {
7808     LLT CopyTy = MemOps[I];
7809     // Now store the values loaded.
7810     auto *StoreMMO =
7811         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7812 
7813     Register StorePtr = Dst;
7814     if (CurrOffset != 0) {
7815       LLT DstTy = MRI.getType(Dst);
7816       auto Offset =
7817           MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7818       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7819     }
7820     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7821     CurrOffset += CopyTy.getSizeInBytes();
7822   }
7823   MI.eraseFromParent();
7824   return Legalized;
7825 }
7826 
7827 LegalizerHelper::LegalizeResult
7828 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7829   const unsigned Opc = MI.getOpcode();
7830   // This combine is fairly complex so it's not written with a separate
7831   // matcher function.
7832   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
7833           Opc == TargetOpcode::G_MEMSET) &&
7834          "Expected memcpy like instruction");
7835 
7836   auto MMOIt = MI.memoperands_begin();
7837   const MachineMemOperand *MemOp = *MMOIt;
7838 
7839   Align DstAlign = MemOp->getBaseAlign();
7840   Align SrcAlign;
7841   Register Dst = MI.getOperand(0).getReg();
7842   Register Src = MI.getOperand(1).getReg();
7843   Register Len = MI.getOperand(2).getReg();
7844 
7845   if (Opc != TargetOpcode::G_MEMSET) {
7846     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
7847     MemOp = *(++MMOIt);
7848     SrcAlign = MemOp->getBaseAlign();
7849   }
7850 
7851   // See if this is a constant length copy
7852   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7853   if (!LenVRegAndVal)
7854     return UnableToLegalize;
7855   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7856 
7857   if (KnownLen == 0) {
7858     MI.eraseFromParent();
7859     return Legalized;
7860   }
7861 
7862   bool IsVolatile = MemOp->isVolatile();
7863   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7864     return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7865                              IsVolatile);
7866 
7867   // Don't try to optimize volatile.
7868   if (IsVolatile)
7869     return UnableToLegalize;
7870 
7871   if (MaxLen && KnownLen > MaxLen)
7872     return UnableToLegalize;
7873 
7874   if (Opc == TargetOpcode::G_MEMCPY) {
7875     auto &MF = *MI.getParent()->getParent();
7876     const auto &TLI = *MF.getSubtarget().getTargetLowering();
7877     bool OptSize = shouldLowerMemFuncForSize(MF);
7878     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7879     return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7880                        IsVolatile);
7881   }
7882   if (Opc == TargetOpcode::G_MEMMOVE)
7883     return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7884   if (Opc == TargetOpcode::G_MEMSET)
7885     return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7886   return UnableToLegalize;
7887 }
7888