1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   MachineBasicBlock &MBB = *MI.getParent();
466   const Function &F = MBB.getParent()->getFunction();
467 
468   // Conservatively require the attributes of the call to match those of
469   // the return. Ignore NoAlias and NonNull because they don't affect the
470   // call sequence.
471   AttributeList CallerAttrs = F.getAttributes();
472   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
473           .removeAttribute(Attribute::NoAlias)
474           .removeAttribute(Attribute::NonNull)
475           .hasAttributes())
476     return false;
477 
478   // It's not safe to eliminate the sign / zero extension of the return value.
479   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
480       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
481     return false;
482 
483   // Only tail call if the following instruction is a standard return.
484   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
485   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
486   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
487     return false;
488 
489   return true;
490 }
491 
492 LegalizerHelper::LegalizeResult
493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
494                     const CallLowering::ArgInfo &Result,
495                     ArrayRef<CallLowering::ArgInfo> Args,
496                     const CallingConv::ID CC) {
497   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
498 
499   CallLowering::CallLoweringInfo Info;
500   Info.CallConv = CC;
501   Info.Callee = MachineOperand::CreateES(Name);
502   Info.OrigRet = Result;
503   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
504   if (!CLI.lowerCall(MIRBuilder, Info))
505     return LegalizerHelper::UnableToLegalize;
506 
507   return LegalizerHelper::Legalized;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args) {
514   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
515   const char *Name = TLI.getLibcallName(Libcall);
516   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
517   return createLibcall(MIRBuilder, Name, Result, Args, CC);
518 }
519 
520 // Useful for libcalls where all operands have the same type.
521 static LegalizerHelper::LegalizeResult
522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
523               Type *OpType) {
524   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
525 
526   SmallVector<CallLowering::ArgInfo, 3> Args;
527   for (unsigned i = 1; i < MI.getNumOperands(); i++)
528     Args.push_back({MI.getOperand(i).getReg(), OpType});
529   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
530                        Args);
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
535                        MachineInstr &MI) {
536   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
537   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
538 
539   SmallVector<CallLowering::ArgInfo, 3> Args;
540   // Add all the args, except for the last which is an imm denoting 'tail'.
541   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
542     Register Reg = MI.getOperand(i).getReg();
543 
544     // Need derive an IR type for call lowering.
545     LLT OpLLT = MRI.getType(Reg);
546     Type *OpTy = nullptr;
547     if (OpLLT.isPointer())
548       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
549     else
550       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
551     Args.push_back({Reg, OpTy});
552   }
553 
554   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
555   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
556   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
557   RTLIB::Libcall RTLibcall;
558   switch (ID) {
559   case Intrinsic::memcpy:
560     RTLibcall = RTLIB::MEMCPY;
561     break;
562   case Intrinsic::memset:
563     RTLibcall = RTLIB::MEMSET;
564     break;
565   case Intrinsic::memmove:
566     RTLibcall = RTLIB::MEMMOVE;
567     break;
568   default:
569     return LegalizerHelper::UnableToLegalize;
570   }
571   const char *Name = TLI.getLibcallName(RTLibcall);
572 
573   MIRBuilder.setInstrAndDebugLoc(MI);
574 
575   CallLowering::CallLoweringInfo Info;
576   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
577   Info.Callee = MachineOperand::CreateES(Name);
578   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
579   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
580                     isLibCallInTailPosition(MI);
581 
582   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
583   if (!CLI.lowerCall(MIRBuilder, Info))
584     return LegalizerHelper::UnableToLegalize;
585 
586   if (Info.LoweredTailCall) {
587     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
588     // We must have a return following the call (or debug insts) to get past
589     // isLibCallInTailPosition.
590     do {
591       MachineInstr *Next = MI.getNextNode();
592       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
593              "Expected instr following MI to be return or debug inst?");
594       // We lowered a tail call, so the call is now the return from the block.
595       // Delete the old return.
596       Next->eraseFromParent();
597     } while (MI.getNextNode());
598   }
599 
600   return LegalizerHelper::Legalized;
601 }
602 
603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
604                                        Type *FromType) {
605   auto ToMVT = MVT::getVT(ToType);
606   auto FromMVT = MVT::getVT(FromType);
607 
608   switch (Opcode) {
609   case TargetOpcode::G_FPEXT:
610     return RTLIB::getFPEXT(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTRUNC:
612     return RTLIB::getFPROUND(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOSI:
614     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
615   case TargetOpcode::G_FPTOUI:
616     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
617   case TargetOpcode::G_SITOFP:
618     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
619   case TargetOpcode::G_UITOFP:
620     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
621   }
622   llvm_unreachable("Unsupported libcall function");
623 }
624 
625 static LegalizerHelper::LegalizeResult
626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
627                   Type *FromType) {
628   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
629   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
630                        {{MI.getOperand(1).getReg(), FromType}});
631 }
632 
633 LegalizerHelper::LegalizeResult
634 LegalizerHelper::libcall(MachineInstr &MI) {
635   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
636   unsigned Size = LLTy.getSizeInBits();
637   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
638 
639   MIRBuilder.setInstrAndDebugLoc(MI);
640 
641   switch (MI.getOpcode()) {
642   default:
643     return UnableToLegalize;
644   case TargetOpcode::G_SDIV:
645   case TargetOpcode::G_UDIV:
646   case TargetOpcode::G_SREM:
647   case TargetOpcode::G_UREM:
648   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
649     Type *HLTy = IntegerType::get(Ctx, Size);
650     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
651     if (Status != Legalized)
652       return Status;
653     break;
654   }
655   case TargetOpcode::G_FADD:
656   case TargetOpcode::G_FSUB:
657   case TargetOpcode::G_FMUL:
658   case TargetOpcode::G_FDIV:
659   case TargetOpcode::G_FMA:
660   case TargetOpcode::G_FPOW:
661   case TargetOpcode::G_FREM:
662   case TargetOpcode::G_FCOS:
663   case TargetOpcode::G_FSIN:
664   case TargetOpcode::G_FLOG10:
665   case TargetOpcode::G_FLOG:
666   case TargetOpcode::G_FLOG2:
667   case TargetOpcode::G_FEXP:
668   case TargetOpcode::G_FEXP2:
669   case TargetOpcode::G_FCEIL:
670   case TargetOpcode::G_FFLOOR:
671   case TargetOpcode::G_FMINNUM:
672   case TargetOpcode::G_FMAXNUM:
673   case TargetOpcode::G_FSQRT:
674   case TargetOpcode::G_FRINT:
675   case TargetOpcode::G_FNEARBYINT: {
676     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
677     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
678       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
679       return UnableToLegalize;
680     }
681     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
682     if (Status != Legalized)
683       return Status;
684     break;
685   }
686   case TargetOpcode::G_FPEXT:
687   case TargetOpcode::G_FPTRUNC: {
688     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
689     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
690     if (!FromTy || !ToTy)
691       return UnableToLegalize;
692     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
693     if (Status != Legalized)
694       return Status;
695     break;
696   }
697   case TargetOpcode::G_FPTOSI:
698   case TargetOpcode::G_FPTOUI: {
699     // FIXME: Support other types
700     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
701     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
702     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
703       return UnableToLegalize;
704     LegalizeResult Status = conversionLibcall(
705         MI, MIRBuilder,
706         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
707         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
708     if (Status != Legalized)
709       return Status;
710     break;
711   }
712   case TargetOpcode::G_SITOFP:
713   case TargetOpcode::G_UITOFP: {
714     // FIXME: Support other types
715     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
716     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
717     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(
720         MI, MIRBuilder,
721         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
722         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
723     if (Status != Legalized)
724       return Status;
725     break;
726   }
727   }
728 
729   MI.eraseFromParent();
730   return Legalized;
731 }
732 
733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
734                                                               unsigned TypeIdx,
735                                                               LLT NarrowTy) {
736   MIRBuilder.setInstrAndDebugLoc(MI);
737 
738   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
739   uint64_t NarrowSize = NarrowTy.getSizeInBits();
740 
741   switch (MI.getOpcode()) {
742   default:
743     return UnableToLegalize;
744   case TargetOpcode::G_IMPLICIT_DEF: {
745     Register DstReg = MI.getOperand(0).getReg();
746     LLT DstTy = MRI.getType(DstReg);
747 
748     // If SizeOp0 is not an exact multiple of NarrowSize, emit
749     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
750     // FIXME: Although this would also be legal for the general case, it causes
751     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
752     //  combines not being hit). This seems to be a problem related to the
753     //  artifact combiner.
754     if (SizeOp0 % NarrowSize != 0) {
755       LLT ImplicitTy = NarrowTy;
756       if (DstTy.isVector())
757         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
758 
759       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
760       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
761 
762       MI.eraseFromParent();
763       return Legalized;
764     }
765 
766     int NumParts = SizeOp0 / NarrowSize;
767 
768     SmallVector<Register, 2> DstRegs;
769     for (int i = 0; i < NumParts; ++i)
770       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
771 
772     if (DstTy.isVector())
773       MIRBuilder.buildBuildVector(DstReg, DstRegs);
774     else
775       MIRBuilder.buildMerge(DstReg, DstRegs);
776     MI.eraseFromParent();
777     return Legalized;
778   }
779   case TargetOpcode::G_CONSTANT: {
780     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
781     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
782     unsigned TotalSize = Ty.getSizeInBits();
783     unsigned NarrowSize = NarrowTy.getSizeInBits();
784     int NumParts = TotalSize / NarrowSize;
785 
786     SmallVector<Register, 4> PartRegs;
787     for (int I = 0; I != NumParts; ++I) {
788       unsigned Offset = I * NarrowSize;
789       auto K = MIRBuilder.buildConstant(NarrowTy,
790                                         Val.lshr(Offset).trunc(NarrowSize));
791       PartRegs.push_back(K.getReg(0));
792     }
793 
794     LLT LeftoverTy;
795     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
796     SmallVector<Register, 1> LeftoverRegs;
797     if (LeftoverBits != 0) {
798       LeftoverTy = LLT::scalar(LeftoverBits);
799       auto K = MIRBuilder.buildConstant(
800         LeftoverTy,
801         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
802       LeftoverRegs.push_back(K.getReg(0));
803     }
804 
805     insertParts(MI.getOperand(0).getReg(),
806                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
807 
808     MI.eraseFromParent();
809     return Legalized;
810   }
811   case TargetOpcode::G_SEXT:
812   case TargetOpcode::G_ZEXT:
813   case TargetOpcode::G_ANYEXT:
814     return narrowScalarExt(MI, TypeIdx, NarrowTy);
815   case TargetOpcode::G_TRUNC: {
816     if (TypeIdx != 1)
817       return UnableToLegalize;
818 
819     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
820     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
821       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
822       return UnableToLegalize;
823     }
824 
825     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
826     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
827     MI.eraseFromParent();
828     return Legalized;
829   }
830 
831   case TargetOpcode::G_FREEZE:
832     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
833 
834   case TargetOpcode::G_ADD: {
835     // FIXME: add support for when SizeOp0 isn't an exact multiple of
836     // NarrowSize.
837     if (SizeOp0 % NarrowSize != 0)
838       return UnableToLegalize;
839     // Expand in terms of carry-setting/consuming G_ADDE instructions.
840     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
841 
842     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
843     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
844     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
845 
846     Register CarryIn;
847     for (int i = 0; i < NumParts; ++i) {
848       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
849       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
850 
851       if (i == 0)
852         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
853       else {
854         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
855                               Src2Regs[i], CarryIn);
856       }
857 
858       DstRegs.push_back(DstReg);
859       CarryIn = CarryOut;
860     }
861     Register DstReg = MI.getOperand(0).getReg();
862     if(MRI.getType(DstReg).isVector())
863       MIRBuilder.buildBuildVector(DstReg, DstRegs);
864     else
865       MIRBuilder.buildMerge(DstReg, DstRegs);
866     MI.eraseFromParent();
867     return Legalized;
868   }
869   case TargetOpcode::G_SUB: {
870     // FIXME: add support for when SizeOp0 isn't an exact multiple of
871     // NarrowSize.
872     if (SizeOp0 % NarrowSize != 0)
873       return UnableToLegalize;
874 
875     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
876 
877     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
878     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
879     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
880 
881     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
882     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
883     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
884                           {Src1Regs[0], Src2Regs[0]});
885     DstRegs.push_back(DstReg);
886     Register BorrowIn = BorrowOut;
887     for (int i = 1; i < NumParts; ++i) {
888       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
889       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
890 
891       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
892                             {Src1Regs[i], Src2Regs[i], BorrowIn});
893 
894       DstRegs.push_back(DstReg);
895       BorrowIn = BorrowOut;
896     }
897     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
898     MI.eraseFromParent();
899     return Legalized;
900   }
901   case TargetOpcode::G_MUL:
902   case TargetOpcode::G_UMULH:
903     return narrowScalarMul(MI, NarrowTy);
904   case TargetOpcode::G_EXTRACT:
905     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
906   case TargetOpcode::G_INSERT:
907     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
908   case TargetOpcode::G_LOAD: {
909     const auto &MMO = **MI.memoperands_begin();
910     Register DstReg = MI.getOperand(0).getReg();
911     LLT DstTy = MRI.getType(DstReg);
912     if (DstTy.isVector())
913       return UnableToLegalize;
914 
915     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
916       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
917       auto &MMO = **MI.memoperands_begin();
918       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
919       MIRBuilder.buildAnyExt(DstReg, TmpReg);
920       MI.eraseFromParent();
921       return Legalized;
922     }
923 
924     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
925   }
926   case TargetOpcode::G_ZEXTLOAD:
927   case TargetOpcode::G_SEXTLOAD: {
928     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
929     Register DstReg = MI.getOperand(0).getReg();
930     Register PtrReg = MI.getOperand(1).getReg();
931 
932     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
933     auto &MMO = **MI.memoperands_begin();
934     if (MMO.getSizeInBits() == NarrowSize) {
935       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
936     } else {
937       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
938     }
939 
940     if (ZExt)
941       MIRBuilder.buildZExt(DstReg, TmpReg);
942     else
943       MIRBuilder.buildSExt(DstReg, TmpReg);
944 
945     MI.eraseFromParent();
946     return Legalized;
947   }
948   case TargetOpcode::G_STORE: {
949     const auto &MMO = **MI.memoperands_begin();
950 
951     Register SrcReg = MI.getOperand(0).getReg();
952     LLT SrcTy = MRI.getType(SrcReg);
953     if (SrcTy.isVector())
954       return UnableToLegalize;
955 
956     int NumParts = SizeOp0 / NarrowSize;
957     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
958     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
959     if (SrcTy.isVector() && LeftoverBits != 0)
960       return UnableToLegalize;
961 
962     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
963       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
964       auto &MMO = **MI.memoperands_begin();
965       MIRBuilder.buildTrunc(TmpReg, SrcReg);
966       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
967       MI.eraseFromParent();
968       return Legalized;
969     }
970 
971     return reduceLoadStoreWidth(MI, 0, NarrowTy);
972   }
973   case TargetOpcode::G_SELECT:
974     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
975   case TargetOpcode::G_AND:
976   case TargetOpcode::G_OR:
977   case TargetOpcode::G_XOR: {
978     // Legalize bitwise operation:
979     // A = BinOp<Ty> B, C
980     // into:
981     // B1, ..., BN = G_UNMERGE_VALUES B
982     // C1, ..., CN = G_UNMERGE_VALUES C
983     // A1 = BinOp<Ty/N> B1, C2
984     // ...
985     // AN = BinOp<Ty/N> BN, CN
986     // A = G_MERGE_VALUES A1, ..., AN
987     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
988   }
989   case TargetOpcode::G_SHL:
990   case TargetOpcode::G_LSHR:
991   case TargetOpcode::G_ASHR:
992     return narrowScalarShift(MI, TypeIdx, NarrowTy);
993   case TargetOpcode::G_CTLZ:
994   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
995   case TargetOpcode::G_CTTZ:
996   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
997   case TargetOpcode::G_CTPOP:
998     if (TypeIdx == 1)
999       switch (MI.getOpcode()) {
1000       case TargetOpcode::G_CTLZ:
1001       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1002         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1003       case TargetOpcode::G_CTTZ:
1004       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1005         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1006       case TargetOpcode::G_CTPOP:
1007         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1008       default:
1009         return UnableToLegalize;
1010       }
1011 
1012     Observer.changingInstr(MI);
1013     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1014     Observer.changedInstr(MI);
1015     return Legalized;
1016   case TargetOpcode::G_INTTOPTR:
1017     if (TypeIdx != 1)
1018       return UnableToLegalize;
1019 
1020     Observer.changingInstr(MI);
1021     narrowScalarSrc(MI, NarrowTy, 1);
1022     Observer.changedInstr(MI);
1023     return Legalized;
1024   case TargetOpcode::G_PTRTOINT:
1025     if (TypeIdx != 0)
1026       return UnableToLegalize;
1027 
1028     Observer.changingInstr(MI);
1029     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1030     Observer.changedInstr(MI);
1031     return Legalized;
1032   case TargetOpcode::G_PHI: {
1033     unsigned NumParts = SizeOp0 / NarrowSize;
1034     SmallVector<Register, 2> DstRegs(NumParts);
1035     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1036     Observer.changingInstr(MI);
1037     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1038       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1039       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1040       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1041                    SrcRegs[i / 2]);
1042     }
1043     MachineBasicBlock &MBB = *MI.getParent();
1044     MIRBuilder.setInsertPt(MBB, MI);
1045     for (unsigned i = 0; i < NumParts; ++i) {
1046       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1047       MachineInstrBuilder MIB =
1048           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1049       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1050         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1051     }
1052     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1053     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1054     Observer.changedInstr(MI);
1055     MI.eraseFromParent();
1056     return Legalized;
1057   }
1058   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1059   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1060     if (TypeIdx != 2)
1061       return UnableToLegalize;
1062 
1063     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1064     Observer.changingInstr(MI);
1065     narrowScalarSrc(MI, NarrowTy, OpIdx);
1066     Observer.changedInstr(MI);
1067     return Legalized;
1068   }
1069   case TargetOpcode::G_ICMP: {
1070     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1071     if (NarrowSize * 2 != SrcSize)
1072       return UnableToLegalize;
1073 
1074     Observer.changingInstr(MI);
1075     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1078 
1079     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1080     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1081     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1082 
1083     CmpInst::Predicate Pred =
1084         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1085     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1086 
1087     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1088       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1089       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1090       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1091       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1092       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1093     } else {
1094       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1095       MachineInstrBuilder CmpHEQ =
1096           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1097       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1098           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1099       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1100     }
1101     Observer.changedInstr(MI);
1102     MI.eraseFromParent();
1103     return Legalized;
1104   }
1105   case TargetOpcode::G_SEXT_INREG: {
1106     if (TypeIdx != 0)
1107       return UnableToLegalize;
1108 
1109     int64_t SizeInBits = MI.getOperand(2).getImm();
1110 
1111     // So long as the new type has more bits than the bits we're extending we
1112     // don't need to break it apart.
1113     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1114       Observer.changingInstr(MI);
1115       // We don't lose any non-extension bits by truncating the src and
1116       // sign-extending the dst.
1117       MachineOperand &MO1 = MI.getOperand(1);
1118       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1119       MO1.setReg(TruncMIB.getReg(0));
1120 
1121       MachineOperand &MO2 = MI.getOperand(0);
1122       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1123       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1124       MIRBuilder.buildSExt(MO2, DstExt);
1125       MO2.setReg(DstExt);
1126       Observer.changedInstr(MI);
1127       return Legalized;
1128     }
1129 
1130     // Break it apart. Components below the extension point are unmodified. The
1131     // component containing the extension point becomes a narrower SEXT_INREG.
1132     // Components above it are ashr'd from the component containing the
1133     // extension point.
1134     if (SizeOp0 % NarrowSize != 0)
1135       return UnableToLegalize;
1136     int NumParts = SizeOp0 / NarrowSize;
1137 
1138     // List the registers where the destination will be scattered.
1139     SmallVector<Register, 2> DstRegs;
1140     // List the registers where the source will be split.
1141     SmallVector<Register, 2> SrcRegs;
1142 
1143     // Create all the temporary registers.
1144     for (int i = 0; i < NumParts; ++i) {
1145       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1146 
1147       SrcRegs.push_back(SrcReg);
1148     }
1149 
1150     // Explode the big arguments into smaller chunks.
1151     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1152 
1153     Register AshrCstReg =
1154         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1155             .getReg(0);
1156     Register FullExtensionReg = 0;
1157     Register PartialExtensionReg = 0;
1158 
1159     // Do the operation on each small part.
1160     for (int i = 0; i < NumParts; ++i) {
1161       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1162         DstRegs.push_back(SrcRegs[i]);
1163       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1164         assert(PartialExtensionReg &&
1165                "Expected to visit partial extension before full");
1166         if (FullExtensionReg) {
1167           DstRegs.push_back(FullExtensionReg);
1168           continue;
1169         }
1170         DstRegs.push_back(
1171             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1172                 .getReg(0));
1173         FullExtensionReg = DstRegs.back();
1174       } else {
1175         DstRegs.push_back(
1176             MIRBuilder
1177                 .buildInstr(
1178                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1179                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1180                 .getReg(0));
1181         PartialExtensionReg = DstRegs.back();
1182       }
1183     }
1184 
1185     // Gather the destination registers into the final destination.
1186     Register DstReg = MI.getOperand(0).getReg();
1187     MIRBuilder.buildMerge(DstReg, DstRegs);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_BSWAP:
1192   case TargetOpcode::G_BITREVERSE: {
1193     if (SizeOp0 % NarrowSize != 0)
1194       return UnableToLegalize;
1195 
1196     Observer.changingInstr(MI);
1197     SmallVector<Register, 2> SrcRegs, DstRegs;
1198     unsigned NumParts = SizeOp0 / NarrowSize;
1199     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1200 
1201     for (unsigned i = 0; i < NumParts; ++i) {
1202       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1203                                            {SrcRegs[NumParts - 1 - i]});
1204       DstRegs.push_back(DstPart.getReg(0));
1205     }
1206 
1207     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1208 
1209     Observer.changedInstr(MI);
1210     MI.eraseFromParent();
1211     return Legalized;
1212   }
1213   case TargetOpcode::G_PTRMASK: {
1214     if (TypeIdx != 1)
1215       return UnableToLegalize;
1216     Observer.changingInstr(MI);
1217     narrowScalarSrc(MI, NarrowTy, 2);
1218     Observer.changedInstr(MI);
1219     return Legalized;
1220   }
1221   }
1222 }
1223 
1224 Register LegalizerHelper::coerceToScalar(Register Val) {
1225   LLT Ty = MRI.getType(Val);
1226   if (Ty.isScalar())
1227     return Val;
1228 
1229   const DataLayout &DL = MIRBuilder.getDataLayout();
1230   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1231   if (Ty.isPointer()) {
1232     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1233       return Register();
1234     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1235   }
1236 
1237   Register NewVal = Val;
1238 
1239   assert(Ty.isVector());
1240   LLT EltTy = Ty.getElementType();
1241   if (EltTy.isPointer())
1242     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1243   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1244 }
1245 
1246 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1247                                      unsigned OpIdx, unsigned ExtOpcode) {
1248   MachineOperand &MO = MI.getOperand(OpIdx);
1249   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1250   MO.setReg(ExtB.getReg(0));
1251 }
1252 
1253 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1254                                       unsigned OpIdx) {
1255   MachineOperand &MO = MI.getOperand(OpIdx);
1256   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1257   MO.setReg(ExtB.getReg(0));
1258 }
1259 
1260 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1261                                      unsigned OpIdx, unsigned TruncOpcode) {
1262   MachineOperand &MO = MI.getOperand(OpIdx);
1263   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1264   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1265   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1266   MO.setReg(DstExt);
1267 }
1268 
1269 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1270                                       unsigned OpIdx, unsigned ExtOpcode) {
1271   MachineOperand &MO = MI.getOperand(OpIdx);
1272   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1273   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1274   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1275   MO.setReg(DstTrunc);
1276 }
1277 
1278 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1279                                             unsigned OpIdx) {
1280   MachineOperand &MO = MI.getOperand(OpIdx);
1281   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1282   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1283   MIRBuilder.buildExtract(MO, DstExt, 0);
1284   MO.setReg(DstExt);
1285 }
1286 
1287 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1288                                             unsigned OpIdx) {
1289   MachineOperand &MO = MI.getOperand(OpIdx);
1290 
1291   LLT OldTy = MRI.getType(MO.getReg());
1292   unsigned OldElts = OldTy.getNumElements();
1293   unsigned NewElts = MoreTy.getNumElements();
1294 
1295   unsigned NumParts = NewElts / OldElts;
1296 
1297   // Use concat_vectors if the result is a multiple of the number of elements.
1298   if (NumParts * OldElts == NewElts) {
1299     SmallVector<Register, 8> Parts;
1300     Parts.push_back(MO.getReg());
1301 
1302     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1303     for (unsigned I = 1; I != NumParts; ++I)
1304       Parts.push_back(ImpDef);
1305 
1306     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1307     MO.setReg(Concat.getReg(0));
1308     return;
1309   }
1310 
1311   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1312   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1313   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1314   MO.setReg(MoreReg);
1315 }
1316 
1317 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1318   MachineOperand &Op = MI.getOperand(OpIdx);
1319   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1320 }
1321 
1322 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1323   MachineOperand &MO = MI.getOperand(OpIdx);
1324   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1325   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1326   MIRBuilder.buildBitcast(MO, CastDst);
1327   MO.setReg(CastDst);
1328 }
1329 
1330 LegalizerHelper::LegalizeResult
1331 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1332                                         LLT WideTy) {
1333   if (TypeIdx != 1)
1334     return UnableToLegalize;
1335 
1336   Register DstReg = MI.getOperand(0).getReg();
1337   LLT DstTy = MRI.getType(DstReg);
1338   if (DstTy.isVector())
1339     return UnableToLegalize;
1340 
1341   Register Src1 = MI.getOperand(1).getReg();
1342   LLT SrcTy = MRI.getType(Src1);
1343   const int DstSize = DstTy.getSizeInBits();
1344   const int SrcSize = SrcTy.getSizeInBits();
1345   const int WideSize = WideTy.getSizeInBits();
1346   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1347 
1348   unsigned NumOps = MI.getNumOperands();
1349   unsigned NumSrc = MI.getNumOperands() - 1;
1350   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1351 
1352   if (WideSize >= DstSize) {
1353     // Directly pack the bits in the target type.
1354     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1355 
1356     for (unsigned I = 2; I != NumOps; ++I) {
1357       const unsigned Offset = (I - 1) * PartSize;
1358 
1359       Register SrcReg = MI.getOperand(I).getReg();
1360       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1361 
1362       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1363 
1364       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1365         MRI.createGenericVirtualRegister(WideTy);
1366 
1367       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1368       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1369       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1370       ResultReg = NextResult;
1371     }
1372 
1373     if (WideSize > DstSize)
1374       MIRBuilder.buildTrunc(DstReg, ResultReg);
1375     else if (DstTy.isPointer())
1376       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1377 
1378     MI.eraseFromParent();
1379     return Legalized;
1380   }
1381 
1382   // Unmerge the original values to the GCD type, and recombine to the next
1383   // multiple greater than the original type.
1384   //
1385   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1386   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1387   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1388   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1389   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1390   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1391   // %12:_(s12) = G_MERGE_VALUES %10, %11
1392   //
1393   // Padding with undef if necessary:
1394   //
1395   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1396   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1397   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1398   // %7:_(s2) = G_IMPLICIT_DEF
1399   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1400   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1401   // %10:_(s12) = G_MERGE_VALUES %8, %9
1402 
1403   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1404   LLT GCDTy = LLT::scalar(GCD);
1405 
1406   SmallVector<Register, 8> Parts;
1407   SmallVector<Register, 8> NewMergeRegs;
1408   SmallVector<Register, 8> Unmerges;
1409   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1410 
1411   // Decompose the original operands if they don't evenly divide.
1412   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1413     Register SrcReg = MI.getOperand(I).getReg();
1414     if (GCD == SrcSize) {
1415       Unmerges.push_back(SrcReg);
1416     } else {
1417       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1418       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1419         Unmerges.push_back(Unmerge.getReg(J));
1420     }
1421   }
1422 
1423   // Pad with undef to the next size that is a multiple of the requested size.
1424   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1425     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1426     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1427       Unmerges.push_back(UndefReg);
1428   }
1429 
1430   const int PartsPerGCD = WideSize / GCD;
1431 
1432   // Build merges of each piece.
1433   ArrayRef<Register> Slicer(Unmerges);
1434   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1435     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1436     NewMergeRegs.push_back(Merge.getReg(0));
1437   }
1438 
1439   // A truncate may be necessary if the requested type doesn't evenly divide the
1440   // original result type.
1441   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1442     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1443   } else {
1444     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1445     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1446   }
1447 
1448   MI.eraseFromParent();
1449   return Legalized;
1450 }
1451 
1452 LegalizerHelper::LegalizeResult
1453 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1454                                           LLT WideTy) {
1455   if (TypeIdx != 0)
1456     return UnableToLegalize;
1457 
1458   int NumDst = MI.getNumOperands() - 1;
1459   Register SrcReg = MI.getOperand(NumDst).getReg();
1460   LLT SrcTy = MRI.getType(SrcReg);
1461   if (SrcTy.isVector())
1462     return UnableToLegalize;
1463 
1464   Register Dst0Reg = MI.getOperand(0).getReg();
1465   LLT DstTy = MRI.getType(Dst0Reg);
1466   if (!DstTy.isScalar())
1467     return UnableToLegalize;
1468 
1469   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1470     if (SrcTy.isPointer()) {
1471       const DataLayout &DL = MIRBuilder.getDataLayout();
1472       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1473         LLVM_DEBUG(
1474             dbgs() << "Not casting non-integral address space integer\n");
1475         return UnableToLegalize;
1476       }
1477 
1478       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1479       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1480     }
1481 
1482     // Widen SrcTy to WideTy. This does not affect the result, but since the
1483     // user requested this size, it is probably better handled than SrcTy and
1484     // should reduce the total number of legalization artifacts
1485     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1486       SrcTy = WideTy;
1487       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1488     }
1489 
1490     // Theres no unmerge type to target. Directly extract the bits from the
1491     // source type
1492     unsigned DstSize = DstTy.getSizeInBits();
1493 
1494     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1495     for (int I = 1; I != NumDst; ++I) {
1496       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1497       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1498       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1499     }
1500 
1501     MI.eraseFromParent();
1502     return Legalized;
1503   }
1504 
1505   // Extend the source to a wider type.
1506   LLT LCMTy = getLCMType(SrcTy, WideTy);
1507 
1508   Register WideSrc = SrcReg;
1509   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1510     // TODO: If this is an integral address space, cast to integer and anyext.
1511     if (SrcTy.isPointer()) {
1512       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1513       return UnableToLegalize;
1514     }
1515 
1516     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1517   }
1518 
1519   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1520 
1521   // Create a sequence of unmerges to the original results. since we may have
1522   // widened the source, we will need to pad the results with dead defs to cover
1523   // the source register.
1524   // e.g. widen s16 to s32:
1525   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1526   //
1527   // =>
1528   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1529   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1530   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1531   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1532 
1533   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1534   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1535 
1536   for (int I = 0; I != NumUnmerge; ++I) {
1537     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1538 
1539     for (int J = 0; J != PartsPerUnmerge; ++J) {
1540       int Idx = I * PartsPerUnmerge + J;
1541       if (Idx < NumDst)
1542         MIB.addDef(MI.getOperand(Idx).getReg());
1543       else {
1544         // Create dead def for excess components.
1545         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1546       }
1547     }
1548 
1549     MIB.addUse(Unmerge.getReg(I));
1550   }
1551 
1552   MI.eraseFromParent();
1553   return Legalized;
1554 }
1555 
1556 LegalizerHelper::LegalizeResult
1557 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1558                                     LLT WideTy) {
1559   Register DstReg = MI.getOperand(0).getReg();
1560   Register SrcReg = MI.getOperand(1).getReg();
1561   LLT SrcTy = MRI.getType(SrcReg);
1562 
1563   LLT DstTy = MRI.getType(DstReg);
1564   unsigned Offset = MI.getOperand(2).getImm();
1565 
1566   if (TypeIdx == 0) {
1567     if (SrcTy.isVector() || DstTy.isVector())
1568       return UnableToLegalize;
1569 
1570     SrcOp Src(SrcReg);
1571     if (SrcTy.isPointer()) {
1572       // Extracts from pointers can be handled only if they are really just
1573       // simple integers.
1574       const DataLayout &DL = MIRBuilder.getDataLayout();
1575       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1576         return UnableToLegalize;
1577 
1578       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1579       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1580       SrcTy = SrcAsIntTy;
1581     }
1582 
1583     if (DstTy.isPointer())
1584       return UnableToLegalize;
1585 
1586     if (Offset == 0) {
1587       // Avoid a shift in the degenerate case.
1588       MIRBuilder.buildTrunc(DstReg,
1589                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1590       MI.eraseFromParent();
1591       return Legalized;
1592     }
1593 
1594     // Do a shift in the source type.
1595     LLT ShiftTy = SrcTy;
1596     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1597       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1598       ShiftTy = WideTy;
1599     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1600       return UnableToLegalize;
1601 
1602     auto LShr = MIRBuilder.buildLShr(
1603       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1604     MIRBuilder.buildTrunc(DstReg, LShr);
1605     MI.eraseFromParent();
1606     return Legalized;
1607   }
1608 
1609   if (SrcTy.isScalar()) {
1610     Observer.changingInstr(MI);
1611     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1612     Observer.changedInstr(MI);
1613     return Legalized;
1614   }
1615 
1616   if (!SrcTy.isVector())
1617     return UnableToLegalize;
1618 
1619   if (DstTy != SrcTy.getElementType())
1620     return UnableToLegalize;
1621 
1622   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1623     return UnableToLegalize;
1624 
1625   Observer.changingInstr(MI);
1626   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1627 
1628   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1629                           Offset);
1630   widenScalarDst(MI, WideTy.getScalarType(), 0);
1631   Observer.changedInstr(MI);
1632   return Legalized;
1633 }
1634 
1635 LegalizerHelper::LegalizeResult
1636 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1637                                    LLT WideTy) {
1638   if (TypeIdx != 0)
1639     return UnableToLegalize;
1640   Observer.changingInstr(MI);
1641   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1642   widenScalarDst(MI, WideTy);
1643   Observer.changedInstr(MI);
1644   return Legalized;
1645 }
1646 
1647 LegalizerHelper::LegalizeResult
1648 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1649   MIRBuilder.setInstrAndDebugLoc(MI);
1650 
1651   switch (MI.getOpcode()) {
1652   default:
1653     return UnableToLegalize;
1654   case TargetOpcode::G_EXTRACT:
1655     return widenScalarExtract(MI, TypeIdx, WideTy);
1656   case TargetOpcode::G_INSERT:
1657     return widenScalarInsert(MI, TypeIdx, WideTy);
1658   case TargetOpcode::G_MERGE_VALUES:
1659     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1660   case TargetOpcode::G_UNMERGE_VALUES:
1661     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1662   case TargetOpcode::G_UADDO:
1663   case TargetOpcode::G_USUBO: {
1664     if (TypeIdx == 1)
1665       return UnableToLegalize; // TODO
1666     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1667     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1668     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1669                           ? TargetOpcode::G_ADD
1670                           : TargetOpcode::G_SUB;
1671     // Do the arithmetic in the larger type.
1672     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1673     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1674     APInt Mask =
1675         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1676     auto AndOp = MIRBuilder.buildAnd(
1677         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1678     // There is no overflow if the AndOp is the same as NewOp.
1679     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1680     // Now trunc the NewOp to the original result.
1681     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1682     MI.eraseFromParent();
1683     return Legalized;
1684   }
1685   case TargetOpcode::G_CTTZ:
1686   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1687   case TargetOpcode::G_CTLZ:
1688   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1689   case TargetOpcode::G_CTPOP: {
1690     if (TypeIdx == 0) {
1691       Observer.changingInstr(MI);
1692       widenScalarDst(MI, WideTy, 0);
1693       Observer.changedInstr(MI);
1694       return Legalized;
1695     }
1696 
1697     Register SrcReg = MI.getOperand(1).getReg();
1698 
1699     // First ZEXT the input.
1700     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1701     LLT CurTy = MRI.getType(SrcReg);
1702     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1703       // The count is the same in the larger type except if the original
1704       // value was zero.  This can be handled by setting the bit just off
1705       // the top of the original type.
1706       auto TopBit =
1707           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1708       MIBSrc = MIRBuilder.buildOr(
1709         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1710     }
1711 
1712     // Perform the operation at the larger size.
1713     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1714     // This is already the correct result for CTPOP and CTTZs
1715     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1716         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1717       // The correct result is NewOp - (Difference in widety and current ty).
1718       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1719       MIBNewOp = MIRBuilder.buildSub(
1720           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1721     }
1722 
1723     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1724     MI.eraseFromParent();
1725     return Legalized;
1726   }
1727   case TargetOpcode::G_BSWAP: {
1728     Observer.changingInstr(MI);
1729     Register DstReg = MI.getOperand(0).getReg();
1730 
1731     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1732     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1733     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1734     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1735 
1736     MI.getOperand(0).setReg(DstExt);
1737 
1738     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1739 
1740     LLT Ty = MRI.getType(DstReg);
1741     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1742     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1743     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1744 
1745     MIRBuilder.buildTrunc(DstReg, ShrReg);
1746     Observer.changedInstr(MI);
1747     return Legalized;
1748   }
1749   case TargetOpcode::G_BITREVERSE: {
1750     Observer.changingInstr(MI);
1751 
1752     Register DstReg = MI.getOperand(0).getReg();
1753     LLT Ty = MRI.getType(DstReg);
1754     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1755 
1756     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1757     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1758     MI.getOperand(0).setReg(DstExt);
1759     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1760 
1761     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1762     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1763     MIRBuilder.buildTrunc(DstReg, Shift);
1764     Observer.changedInstr(MI);
1765     return Legalized;
1766   }
1767   case TargetOpcode::G_FREEZE:
1768     Observer.changingInstr(MI);
1769     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1770     widenScalarDst(MI, WideTy);
1771     Observer.changedInstr(MI);
1772     return Legalized;
1773 
1774   case TargetOpcode::G_ADD:
1775   case TargetOpcode::G_AND:
1776   case TargetOpcode::G_MUL:
1777   case TargetOpcode::G_OR:
1778   case TargetOpcode::G_XOR:
1779   case TargetOpcode::G_SUB:
1780     // Perform operation at larger width (any extension is fines here, high bits
1781     // don't affect the result) and then truncate the result back to the
1782     // original type.
1783     Observer.changingInstr(MI);
1784     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1785     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1786     widenScalarDst(MI, WideTy);
1787     Observer.changedInstr(MI);
1788     return Legalized;
1789 
1790   case TargetOpcode::G_SHL:
1791     Observer.changingInstr(MI);
1792 
1793     if (TypeIdx == 0) {
1794       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1795       widenScalarDst(MI, WideTy);
1796     } else {
1797       assert(TypeIdx == 1);
1798       // The "number of bits to shift" operand must preserve its value as an
1799       // unsigned integer:
1800       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1801     }
1802 
1803     Observer.changedInstr(MI);
1804     return Legalized;
1805 
1806   case TargetOpcode::G_SDIV:
1807   case TargetOpcode::G_SREM:
1808   case TargetOpcode::G_SMIN:
1809   case TargetOpcode::G_SMAX:
1810     Observer.changingInstr(MI);
1811     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1812     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1813     widenScalarDst(MI, WideTy);
1814     Observer.changedInstr(MI);
1815     return Legalized;
1816 
1817   case TargetOpcode::G_ASHR:
1818   case TargetOpcode::G_LSHR:
1819     Observer.changingInstr(MI);
1820 
1821     if (TypeIdx == 0) {
1822       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1823         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1824 
1825       widenScalarSrc(MI, WideTy, 1, CvtOp);
1826       widenScalarDst(MI, WideTy);
1827     } else {
1828       assert(TypeIdx == 1);
1829       // The "number of bits to shift" operand must preserve its value as an
1830       // unsigned integer:
1831       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1832     }
1833 
1834     Observer.changedInstr(MI);
1835     return Legalized;
1836   case TargetOpcode::G_UDIV:
1837   case TargetOpcode::G_UREM:
1838   case TargetOpcode::G_UMIN:
1839   case TargetOpcode::G_UMAX:
1840     Observer.changingInstr(MI);
1841     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1842     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1843     widenScalarDst(MI, WideTy);
1844     Observer.changedInstr(MI);
1845     return Legalized;
1846 
1847   case TargetOpcode::G_SELECT:
1848     Observer.changingInstr(MI);
1849     if (TypeIdx == 0) {
1850       // Perform operation at larger width (any extension is fine here, high
1851       // bits don't affect the result) and then truncate the result back to the
1852       // original type.
1853       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1854       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1855       widenScalarDst(MI, WideTy);
1856     } else {
1857       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1858       // Explicit extension is required here since high bits affect the result.
1859       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1860     }
1861     Observer.changedInstr(MI);
1862     return Legalized;
1863 
1864   case TargetOpcode::G_FPTOSI:
1865   case TargetOpcode::G_FPTOUI:
1866     Observer.changingInstr(MI);
1867 
1868     if (TypeIdx == 0)
1869       widenScalarDst(MI, WideTy);
1870     else
1871       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1872 
1873     Observer.changedInstr(MI);
1874     return Legalized;
1875   case TargetOpcode::G_SITOFP:
1876     if (TypeIdx != 1)
1877       return UnableToLegalize;
1878     Observer.changingInstr(MI);
1879     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1880     Observer.changedInstr(MI);
1881     return Legalized;
1882 
1883   case TargetOpcode::G_UITOFP:
1884     if (TypeIdx != 1)
1885       return UnableToLegalize;
1886     Observer.changingInstr(MI);
1887     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1888     Observer.changedInstr(MI);
1889     return Legalized;
1890 
1891   case TargetOpcode::G_LOAD:
1892   case TargetOpcode::G_SEXTLOAD:
1893   case TargetOpcode::G_ZEXTLOAD:
1894     Observer.changingInstr(MI);
1895     widenScalarDst(MI, WideTy);
1896     Observer.changedInstr(MI);
1897     return Legalized;
1898 
1899   case TargetOpcode::G_STORE: {
1900     if (TypeIdx != 0)
1901       return UnableToLegalize;
1902 
1903     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1904     if (!isPowerOf2_32(Ty.getSizeInBits()))
1905       return UnableToLegalize;
1906 
1907     Observer.changingInstr(MI);
1908 
1909     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1910       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1911     widenScalarSrc(MI, WideTy, 0, ExtType);
1912 
1913     Observer.changedInstr(MI);
1914     return Legalized;
1915   }
1916   case TargetOpcode::G_CONSTANT: {
1917     MachineOperand &SrcMO = MI.getOperand(1);
1918     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1919     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1920         MRI.getType(MI.getOperand(0).getReg()));
1921     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1922             ExtOpc == TargetOpcode::G_ANYEXT) &&
1923            "Illegal Extend");
1924     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1925     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1926                            ? SrcVal.sext(WideTy.getSizeInBits())
1927                            : SrcVal.zext(WideTy.getSizeInBits());
1928     Observer.changingInstr(MI);
1929     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1930 
1931     widenScalarDst(MI, WideTy);
1932     Observer.changedInstr(MI);
1933     return Legalized;
1934   }
1935   case TargetOpcode::G_FCONSTANT: {
1936     MachineOperand &SrcMO = MI.getOperand(1);
1937     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1938     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1939     bool LosesInfo;
1940     switch (WideTy.getSizeInBits()) {
1941     case 32:
1942       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1943                   &LosesInfo);
1944       break;
1945     case 64:
1946       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1947                   &LosesInfo);
1948       break;
1949     default:
1950       return UnableToLegalize;
1951     }
1952 
1953     assert(!LosesInfo && "extend should always be lossless");
1954 
1955     Observer.changingInstr(MI);
1956     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1957 
1958     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1959     Observer.changedInstr(MI);
1960     return Legalized;
1961   }
1962   case TargetOpcode::G_IMPLICIT_DEF: {
1963     Observer.changingInstr(MI);
1964     widenScalarDst(MI, WideTy);
1965     Observer.changedInstr(MI);
1966     return Legalized;
1967   }
1968   case TargetOpcode::G_BRCOND:
1969     Observer.changingInstr(MI);
1970     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1971     Observer.changedInstr(MI);
1972     return Legalized;
1973 
1974   case TargetOpcode::G_FCMP:
1975     Observer.changingInstr(MI);
1976     if (TypeIdx == 0)
1977       widenScalarDst(MI, WideTy);
1978     else {
1979       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1980       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1981     }
1982     Observer.changedInstr(MI);
1983     return Legalized;
1984 
1985   case TargetOpcode::G_ICMP:
1986     Observer.changingInstr(MI);
1987     if (TypeIdx == 0)
1988       widenScalarDst(MI, WideTy);
1989     else {
1990       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1991                                MI.getOperand(1).getPredicate()))
1992                                ? TargetOpcode::G_SEXT
1993                                : TargetOpcode::G_ZEXT;
1994       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1995       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1996     }
1997     Observer.changedInstr(MI);
1998     return Legalized;
1999 
2000   case TargetOpcode::G_PTR_ADD:
2001     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2002     Observer.changingInstr(MI);
2003     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006 
2007   case TargetOpcode::G_PHI: {
2008     assert(TypeIdx == 0 && "Expecting only Idx 0");
2009 
2010     Observer.changingInstr(MI);
2011     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2012       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2013       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2014       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2015     }
2016 
2017     MachineBasicBlock &MBB = *MI.getParent();
2018     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2019     widenScalarDst(MI, WideTy);
2020     Observer.changedInstr(MI);
2021     return Legalized;
2022   }
2023   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2024     if (TypeIdx == 0) {
2025       Register VecReg = MI.getOperand(1).getReg();
2026       LLT VecTy = MRI.getType(VecReg);
2027       Observer.changingInstr(MI);
2028 
2029       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2030                                      WideTy.getSizeInBits()),
2031                      1, TargetOpcode::G_SEXT);
2032 
2033       widenScalarDst(MI, WideTy, 0);
2034       Observer.changedInstr(MI);
2035       return Legalized;
2036     }
2037 
2038     if (TypeIdx != 2)
2039       return UnableToLegalize;
2040     Observer.changingInstr(MI);
2041     // TODO: Probably should be zext
2042     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045   }
2046   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2047     if (TypeIdx == 1) {
2048       Observer.changingInstr(MI);
2049 
2050       Register VecReg = MI.getOperand(1).getReg();
2051       LLT VecTy = MRI.getType(VecReg);
2052       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2053 
2054       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2055       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2056       widenScalarDst(MI, WideVecTy, 0);
2057       Observer.changedInstr(MI);
2058       return Legalized;
2059     }
2060 
2061     if (TypeIdx == 2) {
2062       Observer.changingInstr(MI);
2063       // TODO: Probably should be zext
2064       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2065       Observer.changedInstr(MI);
2066     }
2067 
2068     return Legalized;
2069   }
2070   case TargetOpcode::G_FADD:
2071   case TargetOpcode::G_FMUL:
2072   case TargetOpcode::G_FSUB:
2073   case TargetOpcode::G_FMA:
2074   case TargetOpcode::G_FMAD:
2075   case TargetOpcode::G_FNEG:
2076   case TargetOpcode::G_FABS:
2077   case TargetOpcode::G_FCANONICALIZE:
2078   case TargetOpcode::G_FMINNUM:
2079   case TargetOpcode::G_FMAXNUM:
2080   case TargetOpcode::G_FMINNUM_IEEE:
2081   case TargetOpcode::G_FMAXNUM_IEEE:
2082   case TargetOpcode::G_FMINIMUM:
2083   case TargetOpcode::G_FMAXIMUM:
2084   case TargetOpcode::G_FDIV:
2085   case TargetOpcode::G_FREM:
2086   case TargetOpcode::G_FCEIL:
2087   case TargetOpcode::G_FFLOOR:
2088   case TargetOpcode::G_FCOS:
2089   case TargetOpcode::G_FSIN:
2090   case TargetOpcode::G_FLOG10:
2091   case TargetOpcode::G_FLOG:
2092   case TargetOpcode::G_FLOG2:
2093   case TargetOpcode::G_FRINT:
2094   case TargetOpcode::G_FNEARBYINT:
2095   case TargetOpcode::G_FSQRT:
2096   case TargetOpcode::G_FEXP:
2097   case TargetOpcode::G_FEXP2:
2098   case TargetOpcode::G_FPOW:
2099   case TargetOpcode::G_INTRINSIC_TRUNC:
2100   case TargetOpcode::G_INTRINSIC_ROUND:
2101     assert(TypeIdx == 0);
2102     Observer.changingInstr(MI);
2103 
2104     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2105       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2106 
2107     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110   case TargetOpcode::G_INTTOPTR:
2111     if (TypeIdx != 1)
2112       return UnableToLegalize;
2113 
2114     Observer.changingInstr(MI);
2115     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2116     Observer.changedInstr(MI);
2117     return Legalized;
2118   case TargetOpcode::G_PTRTOINT:
2119     if (TypeIdx != 0)
2120       return UnableToLegalize;
2121 
2122     Observer.changingInstr(MI);
2123     widenScalarDst(MI, WideTy, 0);
2124     Observer.changedInstr(MI);
2125     return Legalized;
2126   case TargetOpcode::G_BUILD_VECTOR: {
2127     Observer.changingInstr(MI);
2128 
2129     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2130     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2131       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2132 
2133     // Avoid changing the result vector type if the source element type was
2134     // requested.
2135     if (TypeIdx == 1) {
2136       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2137       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2138     } else {
2139       widenScalarDst(MI, WideTy, 0);
2140     }
2141 
2142     Observer.changedInstr(MI);
2143     return Legalized;
2144   }
2145   case TargetOpcode::G_SEXT_INREG:
2146     if (TypeIdx != 0)
2147       return UnableToLegalize;
2148 
2149     Observer.changingInstr(MI);
2150     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2151     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154   case TargetOpcode::G_PTRMASK: {
2155     if (TypeIdx != 1)
2156       return UnableToLegalize;
2157     Observer.changingInstr(MI);
2158     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2159     Observer.changedInstr(MI);
2160     return Legalized;
2161   }
2162   }
2163 }
2164 
2165 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2166                              MachineIRBuilder &B, Register Src, LLT Ty) {
2167   auto Unmerge = B.buildUnmerge(Ty, Src);
2168   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2169     Pieces.push_back(Unmerge.getReg(I));
2170 }
2171 
2172 LegalizerHelper::LegalizeResult
2173 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2174   Register Dst = MI.getOperand(0).getReg();
2175   Register Src = MI.getOperand(1).getReg();
2176   LLT DstTy = MRI.getType(Dst);
2177   LLT SrcTy = MRI.getType(Src);
2178 
2179   if (SrcTy.isVector() && !DstTy.isVector()) {
2180     SmallVector<Register, 8> SrcRegs;
2181     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2182     MIRBuilder.buildMerge(Dst, SrcRegs);
2183     MI.eraseFromParent();
2184     return Legalized;
2185   }
2186 
2187   if (DstTy.isVector() && !SrcTy.isVector()) {
2188     SmallVector<Register, 8> SrcRegs;
2189     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2190     MIRBuilder.buildMerge(Dst, SrcRegs);
2191     MI.eraseFromParent();
2192     return Legalized;
2193   }
2194 
2195   return UnableToLegalize;
2196 }
2197 
2198 LegalizerHelper::LegalizeResult
2199 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2200   MIRBuilder.setInstr(MI);
2201 
2202   switch (MI.getOpcode()) {
2203   case TargetOpcode::G_LOAD: {
2204     if (TypeIdx != 0)
2205       return UnableToLegalize;
2206 
2207     Observer.changingInstr(MI);
2208     bitcastDst(MI, CastTy, 0);
2209     Observer.changedInstr(MI);
2210     return Legalized;
2211   }
2212   case TargetOpcode::G_STORE: {
2213     if (TypeIdx != 0)
2214       return UnableToLegalize;
2215 
2216     Observer.changingInstr(MI);
2217     bitcastSrc(MI, CastTy, 0);
2218     Observer.changedInstr(MI);
2219     return Legalized;
2220   }
2221   case TargetOpcode::G_SELECT: {
2222     if (TypeIdx != 0)
2223       return UnableToLegalize;
2224 
2225     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2226       LLVM_DEBUG(
2227           dbgs() << "bitcast action not implemented for vector select\n");
2228       return UnableToLegalize;
2229     }
2230 
2231     Observer.changingInstr(MI);
2232     bitcastSrc(MI, CastTy, 2);
2233     bitcastSrc(MI, CastTy, 3);
2234     bitcastDst(MI, CastTy, 0);
2235     Observer.changedInstr(MI);
2236     return Legalized;
2237   }
2238   case TargetOpcode::G_AND:
2239   case TargetOpcode::G_OR:
2240   case TargetOpcode::G_XOR: {
2241     Observer.changingInstr(MI);
2242     bitcastSrc(MI, CastTy, 1);
2243     bitcastSrc(MI, CastTy, 2);
2244     bitcastDst(MI, CastTy, 0);
2245     Observer.changedInstr(MI);
2246     return Legalized;
2247   }
2248   default:
2249     return UnableToLegalize;
2250   }
2251 }
2252 
2253 LegalizerHelper::LegalizeResult
2254 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2255   using namespace TargetOpcode;
2256   MIRBuilder.setInstrAndDebugLoc(MI);
2257 
2258   switch(MI.getOpcode()) {
2259   default:
2260     return UnableToLegalize;
2261   case TargetOpcode::G_BITCAST:
2262     return lowerBitcast(MI);
2263   case TargetOpcode::G_SREM:
2264   case TargetOpcode::G_UREM: {
2265     auto Quot =
2266         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2267                               {MI.getOperand(1), MI.getOperand(2)});
2268 
2269     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2270     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2271     MI.eraseFromParent();
2272     return Legalized;
2273   }
2274   case TargetOpcode::G_SADDO:
2275   case TargetOpcode::G_SSUBO:
2276     return lowerSADDO_SSUBO(MI);
2277   case TargetOpcode::G_SMULO:
2278   case TargetOpcode::G_UMULO: {
2279     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2280     // result.
2281     Register Res = MI.getOperand(0).getReg();
2282     Register Overflow = MI.getOperand(1).getReg();
2283     Register LHS = MI.getOperand(2).getReg();
2284     Register RHS = MI.getOperand(3).getReg();
2285 
2286     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2287                           ? TargetOpcode::G_SMULH
2288                           : TargetOpcode::G_UMULH;
2289 
2290     Observer.changingInstr(MI);
2291     const auto &TII = MIRBuilder.getTII();
2292     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2293     MI.RemoveOperand(1);
2294     Observer.changedInstr(MI);
2295 
2296     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2297 
2298     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2299     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2300 
2301     // For *signed* multiply, overflow is detected by checking:
2302     // (hi != (lo >> bitwidth-1))
2303     if (Opcode == TargetOpcode::G_SMULH) {
2304       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2305       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2306       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2307     } else {
2308       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2309     }
2310     return Legalized;
2311   }
2312   case TargetOpcode::G_FNEG: {
2313     // TODO: Handle vector types once we are able to
2314     // represent them.
2315     if (Ty.isVector())
2316       return UnableToLegalize;
2317     Register Res = MI.getOperand(0).getReg();
2318     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2319     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2320     if (!ZeroTy)
2321       return UnableToLegalize;
2322     ConstantFP &ZeroForNegation =
2323         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2324     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2325     Register SubByReg = MI.getOperand(1).getReg();
2326     Register ZeroReg = Zero.getReg(0);
2327     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2328     MI.eraseFromParent();
2329     return Legalized;
2330   }
2331   case TargetOpcode::G_FSUB: {
2332     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2333     // First, check if G_FNEG is marked as Lower. If so, we may
2334     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2335     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2336       return UnableToLegalize;
2337     Register Res = MI.getOperand(0).getReg();
2338     Register LHS = MI.getOperand(1).getReg();
2339     Register RHS = MI.getOperand(2).getReg();
2340     Register Neg = MRI.createGenericVirtualRegister(Ty);
2341     MIRBuilder.buildFNeg(Neg, RHS);
2342     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2343     MI.eraseFromParent();
2344     return Legalized;
2345   }
2346   case TargetOpcode::G_FMAD:
2347     return lowerFMad(MI);
2348   case TargetOpcode::G_FFLOOR:
2349     return lowerFFloor(MI);
2350   case TargetOpcode::G_INTRINSIC_ROUND:
2351     return lowerIntrinsicRound(MI);
2352   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2353     Register OldValRes = MI.getOperand(0).getReg();
2354     Register SuccessRes = MI.getOperand(1).getReg();
2355     Register Addr = MI.getOperand(2).getReg();
2356     Register CmpVal = MI.getOperand(3).getReg();
2357     Register NewVal = MI.getOperand(4).getReg();
2358     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2359                                   **MI.memoperands_begin());
2360     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2361     MI.eraseFromParent();
2362     return Legalized;
2363   }
2364   case TargetOpcode::G_LOAD:
2365   case TargetOpcode::G_SEXTLOAD:
2366   case TargetOpcode::G_ZEXTLOAD: {
2367     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2368     Register DstReg = MI.getOperand(0).getReg();
2369     Register PtrReg = MI.getOperand(1).getReg();
2370     LLT DstTy = MRI.getType(DstReg);
2371     auto &MMO = **MI.memoperands_begin();
2372 
2373     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2374       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2375         // This load needs splitting into power of 2 sized loads.
2376         if (DstTy.isVector())
2377           return UnableToLegalize;
2378         if (isPowerOf2_32(DstTy.getSizeInBits()))
2379           return UnableToLegalize; // Don't know what we're being asked to do.
2380 
2381         // Our strategy here is to generate anyextending loads for the smaller
2382         // types up to next power-2 result type, and then combine the two larger
2383         // result values together, before truncating back down to the non-pow-2
2384         // type.
2385         // E.g. v1 = i24 load =>
2386         // v2 = i32 zextload (2 byte)
2387         // v3 = i32 load (1 byte)
2388         // v4 = i32 shl v3, 16
2389         // v5 = i32 or v4, v2
2390         // v1 = i24 trunc v5
2391         // By doing this we generate the correct truncate which should get
2392         // combined away as an artifact with a matching extend.
2393         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2394         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2395 
2396         MachineFunction &MF = MIRBuilder.getMF();
2397         MachineMemOperand *LargeMMO =
2398             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2399         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2400             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2401 
2402         LLT PtrTy = MRI.getType(PtrReg);
2403         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2404         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2405         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2406         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2407         auto LargeLoad = MIRBuilder.buildLoadInstr(
2408             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2409 
2410         auto OffsetCst = MIRBuilder.buildConstant(
2411             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2412         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2413         auto SmallPtr =
2414             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2415         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2416                                               *SmallMMO);
2417 
2418         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2419         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2420         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2421         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2422         MI.eraseFromParent();
2423         return Legalized;
2424       }
2425       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2426       MI.eraseFromParent();
2427       return Legalized;
2428     }
2429 
2430     if (DstTy.isScalar()) {
2431       Register TmpReg =
2432           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2433       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2434       switch (MI.getOpcode()) {
2435       default:
2436         llvm_unreachable("Unexpected opcode");
2437       case TargetOpcode::G_LOAD:
2438         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2439         break;
2440       case TargetOpcode::G_SEXTLOAD:
2441         MIRBuilder.buildSExt(DstReg, TmpReg);
2442         break;
2443       case TargetOpcode::G_ZEXTLOAD:
2444         MIRBuilder.buildZExt(DstReg, TmpReg);
2445         break;
2446       }
2447       MI.eraseFromParent();
2448       return Legalized;
2449     }
2450 
2451     return UnableToLegalize;
2452   }
2453   case TargetOpcode::G_STORE: {
2454     // Lower a non-power of 2 store into multiple pow-2 stores.
2455     // E.g. split an i24 store into an i16 store + i8 store.
2456     // We do this by first extending the stored value to the next largest power
2457     // of 2 type, and then using truncating stores to store the components.
2458     // By doing this, likewise with G_LOAD, generate an extend that can be
2459     // artifact-combined away instead of leaving behind extracts.
2460     Register SrcReg = MI.getOperand(0).getReg();
2461     Register PtrReg = MI.getOperand(1).getReg();
2462     LLT SrcTy = MRI.getType(SrcReg);
2463     MachineMemOperand &MMO = **MI.memoperands_begin();
2464     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2465       return UnableToLegalize;
2466     if (SrcTy.isVector())
2467       return UnableToLegalize;
2468     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2469       return UnableToLegalize; // Don't know what we're being asked to do.
2470 
2471     // Extend to the next pow-2.
2472     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2473     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2474 
2475     // Obtain the smaller value by shifting away the larger value.
2476     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2477     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2478     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2479     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2480 
2481     // Generate the PtrAdd and truncating stores.
2482     LLT PtrTy = MRI.getType(PtrReg);
2483     auto OffsetCst = MIRBuilder.buildConstant(
2484             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2485     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2486     auto SmallPtr =
2487         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2488 
2489     MachineFunction &MF = MIRBuilder.getMF();
2490     MachineMemOperand *LargeMMO =
2491         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2492     MachineMemOperand *SmallMMO =
2493         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2494     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2495     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2496     MI.eraseFromParent();
2497     return Legalized;
2498   }
2499   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2500   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2501   case TargetOpcode::G_CTLZ:
2502   case TargetOpcode::G_CTTZ:
2503   case TargetOpcode::G_CTPOP:
2504     return lowerBitCount(MI, TypeIdx, Ty);
2505   case G_UADDO: {
2506     Register Res = MI.getOperand(0).getReg();
2507     Register CarryOut = MI.getOperand(1).getReg();
2508     Register LHS = MI.getOperand(2).getReg();
2509     Register RHS = MI.getOperand(3).getReg();
2510 
2511     MIRBuilder.buildAdd(Res, LHS, RHS);
2512     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2513 
2514     MI.eraseFromParent();
2515     return Legalized;
2516   }
2517   case G_UADDE: {
2518     Register Res = MI.getOperand(0).getReg();
2519     Register CarryOut = MI.getOperand(1).getReg();
2520     Register LHS = MI.getOperand(2).getReg();
2521     Register RHS = MI.getOperand(3).getReg();
2522     Register CarryIn = MI.getOperand(4).getReg();
2523     LLT Ty = MRI.getType(Res);
2524 
2525     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2526     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2527     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2528     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2529 
2530     MI.eraseFromParent();
2531     return Legalized;
2532   }
2533   case G_USUBO: {
2534     Register Res = MI.getOperand(0).getReg();
2535     Register BorrowOut = MI.getOperand(1).getReg();
2536     Register LHS = MI.getOperand(2).getReg();
2537     Register RHS = MI.getOperand(3).getReg();
2538 
2539     MIRBuilder.buildSub(Res, LHS, RHS);
2540     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2541 
2542     MI.eraseFromParent();
2543     return Legalized;
2544   }
2545   case G_USUBE: {
2546     Register Res = MI.getOperand(0).getReg();
2547     Register BorrowOut = MI.getOperand(1).getReg();
2548     Register LHS = MI.getOperand(2).getReg();
2549     Register RHS = MI.getOperand(3).getReg();
2550     Register BorrowIn = MI.getOperand(4).getReg();
2551     const LLT CondTy = MRI.getType(BorrowOut);
2552     const LLT Ty = MRI.getType(Res);
2553 
2554     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2555     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2556     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2557 
2558     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2559     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2560     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2561 
2562     MI.eraseFromParent();
2563     return Legalized;
2564   }
2565   case G_UITOFP:
2566     return lowerUITOFP(MI, TypeIdx, Ty);
2567   case G_SITOFP:
2568     return lowerSITOFP(MI, TypeIdx, Ty);
2569   case G_FPTOUI:
2570     return lowerFPTOUI(MI, TypeIdx, Ty);
2571   case G_FPTOSI:
2572     return lowerFPTOSI(MI);
2573   case G_FPTRUNC:
2574     return lowerFPTRUNC(MI, TypeIdx, Ty);
2575   case G_SMIN:
2576   case G_SMAX:
2577   case G_UMIN:
2578   case G_UMAX:
2579     return lowerMinMax(MI, TypeIdx, Ty);
2580   case G_FCOPYSIGN:
2581     return lowerFCopySign(MI, TypeIdx, Ty);
2582   case G_FMINNUM:
2583   case G_FMAXNUM:
2584     return lowerFMinNumMaxNum(MI);
2585   case G_MERGE_VALUES:
2586     return lowerMergeValues(MI);
2587   case G_UNMERGE_VALUES:
2588     return lowerUnmergeValues(MI);
2589   case TargetOpcode::G_SEXT_INREG: {
2590     assert(MI.getOperand(2).isImm() && "Expected immediate");
2591     int64_t SizeInBits = MI.getOperand(2).getImm();
2592 
2593     Register DstReg = MI.getOperand(0).getReg();
2594     Register SrcReg = MI.getOperand(1).getReg();
2595     LLT DstTy = MRI.getType(DstReg);
2596     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2597 
2598     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2599     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2600     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2601     MI.eraseFromParent();
2602     return Legalized;
2603   }
2604   case G_SHUFFLE_VECTOR:
2605     return lowerShuffleVector(MI);
2606   case G_DYN_STACKALLOC:
2607     return lowerDynStackAlloc(MI);
2608   case G_EXTRACT:
2609     return lowerExtract(MI);
2610   case G_INSERT:
2611     return lowerInsert(MI);
2612   case G_BSWAP:
2613     return lowerBswap(MI);
2614   case G_BITREVERSE:
2615     return lowerBitreverse(MI);
2616   case G_READ_REGISTER:
2617   case G_WRITE_REGISTER:
2618     return lowerReadWriteRegister(MI);
2619   }
2620 }
2621 
2622 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2623     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2624   SmallVector<Register, 2> DstRegs;
2625 
2626   unsigned NarrowSize = NarrowTy.getSizeInBits();
2627   Register DstReg = MI.getOperand(0).getReg();
2628   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2629   int NumParts = Size / NarrowSize;
2630   // FIXME: Don't know how to handle the situation where the small vectors
2631   // aren't all the same size yet.
2632   if (Size % NarrowSize != 0)
2633     return UnableToLegalize;
2634 
2635   for (int i = 0; i < NumParts; ++i) {
2636     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2637     MIRBuilder.buildUndef(TmpReg);
2638     DstRegs.push_back(TmpReg);
2639   }
2640 
2641   if (NarrowTy.isVector())
2642     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2643   else
2644     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2645 
2646   MI.eraseFromParent();
2647   return Legalized;
2648 }
2649 
2650 // Handle splitting vector operations which need to have the same number of
2651 // elements in each type index, but each type index may have a different element
2652 // type.
2653 //
2654 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2655 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2656 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2657 //
2658 // Also handles some irregular breakdown cases, e.g.
2659 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2660 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2661 //             s64 = G_SHL s64, s32
2662 LegalizerHelper::LegalizeResult
2663 LegalizerHelper::fewerElementsVectorMultiEltType(
2664   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2665   if (TypeIdx != 0)
2666     return UnableToLegalize;
2667 
2668   const LLT NarrowTy0 = NarrowTyArg;
2669   const unsigned NewNumElts =
2670       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2671 
2672   const Register DstReg = MI.getOperand(0).getReg();
2673   LLT DstTy = MRI.getType(DstReg);
2674   LLT LeftoverTy0;
2675 
2676   // All of the operands need to have the same number of elements, so if we can
2677   // determine a type breakdown for the result type, we can for all of the
2678   // source types.
2679   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2680   if (NumParts < 0)
2681     return UnableToLegalize;
2682 
2683   SmallVector<MachineInstrBuilder, 4> NewInsts;
2684 
2685   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2686   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2687 
2688   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2689     LLT LeftoverTy;
2690     Register SrcReg = MI.getOperand(I).getReg();
2691     LLT SrcTyI = MRI.getType(SrcReg);
2692     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2693     LLT LeftoverTyI;
2694 
2695     // Split this operand into the requested typed registers, and any leftover
2696     // required to reproduce the original type.
2697     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2698                       LeftoverRegs))
2699       return UnableToLegalize;
2700 
2701     if (I == 1) {
2702       // For the first operand, create an instruction for each part and setup
2703       // the result.
2704       for (Register PartReg : PartRegs) {
2705         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2706         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2707                                .addDef(PartDstReg)
2708                                .addUse(PartReg));
2709         DstRegs.push_back(PartDstReg);
2710       }
2711 
2712       for (Register LeftoverReg : LeftoverRegs) {
2713         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2714         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2715                                .addDef(PartDstReg)
2716                                .addUse(LeftoverReg));
2717         LeftoverDstRegs.push_back(PartDstReg);
2718       }
2719     } else {
2720       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2721 
2722       // Add the newly created operand splits to the existing instructions. The
2723       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2724       // pieces.
2725       unsigned InstCount = 0;
2726       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2727         NewInsts[InstCount++].addUse(PartRegs[J]);
2728       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2729         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2730     }
2731 
2732     PartRegs.clear();
2733     LeftoverRegs.clear();
2734   }
2735 
2736   // Insert the newly built operations and rebuild the result register.
2737   for (auto &MIB : NewInsts)
2738     MIRBuilder.insertInstr(MIB);
2739 
2740   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2741 
2742   MI.eraseFromParent();
2743   return Legalized;
2744 }
2745 
2746 LegalizerHelper::LegalizeResult
2747 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2748                                           LLT NarrowTy) {
2749   if (TypeIdx != 0)
2750     return UnableToLegalize;
2751 
2752   Register DstReg = MI.getOperand(0).getReg();
2753   Register SrcReg = MI.getOperand(1).getReg();
2754   LLT DstTy = MRI.getType(DstReg);
2755   LLT SrcTy = MRI.getType(SrcReg);
2756 
2757   LLT NarrowTy0 = NarrowTy;
2758   LLT NarrowTy1;
2759   unsigned NumParts;
2760 
2761   if (NarrowTy.isVector()) {
2762     // Uneven breakdown not handled.
2763     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2764     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2765       return UnableToLegalize;
2766 
2767     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2768   } else {
2769     NumParts = DstTy.getNumElements();
2770     NarrowTy1 = SrcTy.getElementType();
2771   }
2772 
2773   SmallVector<Register, 4> SrcRegs, DstRegs;
2774   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2775 
2776   for (unsigned I = 0; I < NumParts; ++I) {
2777     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2778     MachineInstr *NewInst =
2779         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2780 
2781     NewInst->setFlags(MI.getFlags());
2782     DstRegs.push_back(DstReg);
2783   }
2784 
2785   if (NarrowTy.isVector())
2786     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2787   else
2788     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2789 
2790   MI.eraseFromParent();
2791   return Legalized;
2792 }
2793 
2794 LegalizerHelper::LegalizeResult
2795 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2796                                         LLT NarrowTy) {
2797   Register DstReg = MI.getOperand(0).getReg();
2798   Register Src0Reg = MI.getOperand(2).getReg();
2799   LLT DstTy = MRI.getType(DstReg);
2800   LLT SrcTy = MRI.getType(Src0Reg);
2801 
2802   unsigned NumParts;
2803   LLT NarrowTy0, NarrowTy1;
2804 
2805   if (TypeIdx == 0) {
2806     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2807     unsigned OldElts = DstTy.getNumElements();
2808 
2809     NarrowTy0 = NarrowTy;
2810     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2811     NarrowTy1 = NarrowTy.isVector() ?
2812       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2813       SrcTy.getElementType();
2814 
2815   } else {
2816     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2817     unsigned OldElts = SrcTy.getNumElements();
2818 
2819     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2820       NarrowTy.getNumElements();
2821     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2822                             DstTy.getScalarSizeInBits());
2823     NarrowTy1 = NarrowTy;
2824   }
2825 
2826   // FIXME: Don't know how to handle the situation where the small vectors
2827   // aren't all the same size yet.
2828   if (NarrowTy1.isVector() &&
2829       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2830     return UnableToLegalize;
2831 
2832   CmpInst::Predicate Pred
2833     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2834 
2835   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2836   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2837   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2838 
2839   for (unsigned I = 0; I < NumParts; ++I) {
2840     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2841     DstRegs.push_back(DstReg);
2842 
2843     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2844       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2845     else {
2846       MachineInstr *NewCmp
2847         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2848       NewCmp->setFlags(MI.getFlags());
2849     }
2850   }
2851 
2852   if (NarrowTy1.isVector())
2853     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2854   else
2855     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2856 
2857   MI.eraseFromParent();
2858   return Legalized;
2859 }
2860 
2861 LegalizerHelper::LegalizeResult
2862 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2863                                            LLT NarrowTy) {
2864   Register DstReg = MI.getOperand(0).getReg();
2865   Register CondReg = MI.getOperand(1).getReg();
2866 
2867   unsigned NumParts = 0;
2868   LLT NarrowTy0, NarrowTy1;
2869 
2870   LLT DstTy = MRI.getType(DstReg);
2871   LLT CondTy = MRI.getType(CondReg);
2872   unsigned Size = DstTy.getSizeInBits();
2873 
2874   assert(TypeIdx == 0 || CondTy.isVector());
2875 
2876   if (TypeIdx == 0) {
2877     NarrowTy0 = NarrowTy;
2878     NarrowTy1 = CondTy;
2879 
2880     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2881     // FIXME: Don't know how to handle the situation where the small vectors
2882     // aren't all the same size yet.
2883     if (Size % NarrowSize != 0)
2884       return UnableToLegalize;
2885 
2886     NumParts = Size / NarrowSize;
2887 
2888     // Need to break down the condition type
2889     if (CondTy.isVector()) {
2890       if (CondTy.getNumElements() == NumParts)
2891         NarrowTy1 = CondTy.getElementType();
2892       else
2893         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2894                                 CondTy.getScalarSizeInBits());
2895     }
2896   } else {
2897     NumParts = CondTy.getNumElements();
2898     if (NarrowTy.isVector()) {
2899       // TODO: Handle uneven breakdown.
2900       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2901         return UnableToLegalize;
2902 
2903       return UnableToLegalize;
2904     } else {
2905       NarrowTy0 = DstTy.getElementType();
2906       NarrowTy1 = NarrowTy;
2907     }
2908   }
2909 
2910   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2911   if (CondTy.isVector())
2912     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2913 
2914   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2915   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2916 
2917   for (unsigned i = 0; i < NumParts; ++i) {
2918     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2919     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2920                            Src1Regs[i], Src2Regs[i]);
2921     DstRegs.push_back(DstReg);
2922   }
2923 
2924   if (NarrowTy0.isVector())
2925     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2926   else
2927     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2928 
2929   MI.eraseFromParent();
2930   return Legalized;
2931 }
2932 
2933 LegalizerHelper::LegalizeResult
2934 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2935                                         LLT NarrowTy) {
2936   const Register DstReg = MI.getOperand(0).getReg();
2937   LLT PhiTy = MRI.getType(DstReg);
2938   LLT LeftoverTy;
2939 
2940   // All of the operands need to have the same number of elements, so if we can
2941   // determine a type breakdown for the result type, we can for all of the
2942   // source types.
2943   int NumParts, NumLeftover;
2944   std::tie(NumParts, NumLeftover)
2945     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2946   if (NumParts < 0)
2947     return UnableToLegalize;
2948 
2949   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2950   SmallVector<MachineInstrBuilder, 4> NewInsts;
2951 
2952   const int TotalNumParts = NumParts + NumLeftover;
2953 
2954   // Insert the new phis in the result block first.
2955   for (int I = 0; I != TotalNumParts; ++I) {
2956     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2957     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2958     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2959                        .addDef(PartDstReg));
2960     if (I < NumParts)
2961       DstRegs.push_back(PartDstReg);
2962     else
2963       LeftoverDstRegs.push_back(PartDstReg);
2964   }
2965 
2966   MachineBasicBlock *MBB = MI.getParent();
2967   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2968   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2969 
2970   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2971 
2972   // Insert code to extract the incoming values in each predecessor block.
2973   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2974     PartRegs.clear();
2975     LeftoverRegs.clear();
2976 
2977     Register SrcReg = MI.getOperand(I).getReg();
2978     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2979     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2980 
2981     LLT Unused;
2982     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2983                       LeftoverRegs))
2984       return UnableToLegalize;
2985 
2986     // Add the newly created operand splits to the existing instructions. The
2987     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2988     // pieces.
2989     for (int J = 0; J != TotalNumParts; ++J) {
2990       MachineInstrBuilder MIB = NewInsts[J];
2991       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2992       MIB.addMBB(&OpMBB);
2993     }
2994   }
2995 
2996   MI.eraseFromParent();
2997   return Legalized;
2998 }
2999 
3000 LegalizerHelper::LegalizeResult
3001 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3002                                                   unsigned TypeIdx,
3003                                                   LLT NarrowTy) {
3004   if (TypeIdx != 1)
3005     return UnableToLegalize;
3006 
3007   const int NumDst = MI.getNumOperands() - 1;
3008   const Register SrcReg = MI.getOperand(NumDst).getReg();
3009   LLT SrcTy = MRI.getType(SrcReg);
3010 
3011   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3012 
3013   // TODO: Create sequence of extracts.
3014   if (DstTy == NarrowTy)
3015     return UnableToLegalize;
3016 
3017   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3018   if (DstTy == GCDTy) {
3019     // This would just be a copy of the same unmerge.
3020     // TODO: Create extracts, pad with undef and create intermediate merges.
3021     return UnableToLegalize;
3022   }
3023 
3024   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3025   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3026   const int PartsPerUnmerge = NumDst / NumUnmerge;
3027 
3028   for (int I = 0; I != NumUnmerge; ++I) {
3029     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3030 
3031     for (int J = 0; J != PartsPerUnmerge; ++J)
3032       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3033     MIB.addUse(Unmerge.getReg(I));
3034   }
3035 
3036   MI.eraseFromParent();
3037   return Legalized;
3038 }
3039 
3040 LegalizerHelper::LegalizeResult
3041 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3042                                                 unsigned TypeIdx,
3043                                                 LLT NarrowTy) {
3044   assert(TypeIdx == 0 && "not a vector type index");
3045   Register DstReg = MI.getOperand(0).getReg();
3046   LLT DstTy = MRI.getType(DstReg);
3047   LLT SrcTy = DstTy.getElementType();
3048 
3049   int DstNumElts = DstTy.getNumElements();
3050   int NarrowNumElts = NarrowTy.getNumElements();
3051   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3052   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3053 
3054   SmallVector<Register, 8> ConcatOps;
3055   SmallVector<Register, 8> SubBuildVector;
3056 
3057   Register UndefReg;
3058   if (WidenedDstTy != DstTy)
3059     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3060 
3061   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3062   // necessary.
3063   //
3064   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3065   //   -> <2 x s16>
3066   //
3067   // %4:_(s16) = G_IMPLICIT_DEF
3068   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3069   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3070   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3071   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3072   for (int I = 0; I != NumConcat; ++I) {
3073     for (int J = 0; J != NarrowNumElts; ++J) {
3074       int SrcIdx = NarrowNumElts * I + J;
3075 
3076       if (SrcIdx < DstNumElts) {
3077         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3078         SubBuildVector.push_back(SrcReg);
3079       } else
3080         SubBuildVector.push_back(UndefReg);
3081     }
3082 
3083     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3084     ConcatOps.push_back(BuildVec.getReg(0));
3085     SubBuildVector.clear();
3086   }
3087 
3088   if (DstTy == WidenedDstTy)
3089     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3090   else {
3091     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3092     MIRBuilder.buildExtract(DstReg, Concat, 0);
3093   }
3094 
3095   MI.eraseFromParent();
3096   return Legalized;
3097 }
3098 
3099 LegalizerHelper::LegalizeResult
3100 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3101                                       LLT NarrowTy) {
3102   // FIXME: Don't know how to handle secondary types yet.
3103   if (TypeIdx != 0)
3104     return UnableToLegalize;
3105 
3106   MachineMemOperand *MMO = *MI.memoperands_begin();
3107 
3108   // This implementation doesn't work for atomics. Give up instead of doing
3109   // something invalid.
3110   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3111       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3112     return UnableToLegalize;
3113 
3114   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3115   Register ValReg = MI.getOperand(0).getReg();
3116   Register AddrReg = MI.getOperand(1).getReg();
3117   LLT ValTy = MRI.getType(ValReg);
3118 
3119   // FIXME: Do we need a distinct NarrowMemory legalize action?
3120   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3121     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3122     return UnableToLegalize;
3123   }
3124 
3125   int NumParts = -1;
3126   int NumLeftover = -1;
3127   LLT LeftoverTy;
3128   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3129   if (IsLoad) {
3130     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3131   } else {
3132     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3133                      NarrowLeftoverRegs)) {
3134       NumParts = NarrowRegs.size();
3135       NumLeftover = NarrowLeftoverRegs.size();
3136     }
3137   }
3138 
3139   if (NumParts == -1)
3140     return UnableToLegalize;
3141 
3142   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3143 
3144   unsigned TotalSize = ValTy.getSizeInBits();
3145 
3146   // Split the load/store into PartTy sized pieces starting at Offset. If this
3147   // is a load, return the new registers in ValRegs. For a store, each elements
3148   // of ValRegs should be PartTy. Returns the next offset that needs to be
3149   // handled.
3150   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3151                              unsigned Offset) -> unsigned {
3152     MachineFunction &MF = MIRBuilder.getMF();
3153     unsigned PartSize = PartTy.getSizeInBits();
3154     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3155          Offset += PartSize, ++Idx) {
3156       unsigned ByteSize = PartSize / 8;
3157       unsigned ByteOffset = Offset / 8;
3158       Register NewAddrReg;
3159 
3160       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3161 
3162       MachineMemOperand *NewMMO =
3163         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3164 
3165       if (IsLoad) {
3166         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3167         ValRegs.push_back(Dst);
3168         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3169       } else {
3170         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3171       }
3172     }
3173 
3174     return Offset;
3175   };
3176 
3177   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3178 
3179   // Handle the rest of the register if this isn't an even type breakdown.
3180   if (LeftoverTy.isValid())
3181     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3182 
3183   if (IsLoad) {
3184     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3185                 LeftoverTy, NarrowLeftoverRegs);
3186   }
3187 
3188   MI.eraseFromParent();
3189   return Legalized;
3190 }
3191 
3192 LegalizerHelper::LegalizeResult
3193 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3194                                       LLT NarrowTy) {
3195   assert(TypeIdx == 0 && "only one type index expected");
3196 
3197   const unsigned Opc = MI.getOpcode();
3198   const int NumOps = MI.getNumOperands() - 1;
3199   const Register DstReg = MI.getOperand(0).getReg();
3200   const unsigned Flags = MI.getFlags();
3201   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3202   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3203 
3204   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3205 
3206   // First of all check whether we are narrowing (changing the element type)
3207   // or reducing the vector elements
3208   const LLT DstTy = MRI.getType(DstReg);
3209   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3210 
3211   SmallVector<Register, 8> ExtractedRegs[3];
3212   SmallVector<Register, 8> Parts;
3213 
3214   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3215 
3216   // Break down all the sources into NarrowTy pieces we can operate on. This may
3217   // involve creating merges to a wider type, padded with undef.
3218   for (int I = 0; I != NumOps; ++I) {
3219     Register SrcReg = MI.getOperand(I + 1).getReg();
3220     LLT SrcTy = MRI.getType(SrcReg);
3221 
3222     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3223     // For fewerElements, this is a smaller vector with the same element type.
3224     LLT OpNarrowTy;
3225     if (IsNarrow) {
3226       OpNarrowTy = NarrowScalarTy;
3227 
3228       // In case of narrowing, we need to cast vectors to scalars for this to
3229       // work properly
3230       // FIXME: Can we do without the bitcast here if we're narrowing?
3231       if (SrcTy.isVector()) {
3232         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3233         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3234       }
3235     } else {
3236       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3237     }
3238 
3239     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3240 
3241     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3242     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3243                         TargetOpcode::G_ANYEXT);
3244   }
3245 
3246   SmallVector<Register, 8> ResultRegs;
3247 
3248   // Input operands for each sub-instruction.
3249   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3250 
3251   int NumParts = ExtractedRegs[0].size();
3252   const unsigned DstSize = DstTy.getSizeInBits();
3253   const LLT DstScalarTy = LLT::scalar(DstSize);
3254 
3255   // Narrowing needs to use scalar types
3256   LLT DstLCMTy, NarrowDstTy;
3257   if (IsNarrow) {
3258     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3259     NarrowDstTy = NarrowScalarTy;
3260   } else {
3261     DstLCMTy = getLCMType(DstTy, NarrowTy);
3262     NarrowDstTy = NarrowTy;
3263   }
3264 
3265   // We widened the source registers to satisfy merge/unmerge size
3266   // constraints. We'll have some extra fully undef parts.
3267   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3268 
3269   for (int I = 0; I != NumRealParts; ++I) {
3270     // Emit this instruction on each of the split pieces.
3271     for (int J = 0; J != NumOps; ++J)
3272       InputRegs[J] = ExtractedRegs[J][I];
3273 
3274     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3275     ResultRegs.push_back(Inst.getReg(0));
3276   }
3277 
3278   // Fill out the widened result with undef instead of creating instructions
3279   // with undef inputs.
3280   int NumUndefParts = NumParts - NumRealParts;
3281   if (NumUndefParts != 0)
3282     ResultRegs.append(NumUndefParts,
3283                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3284 
3285   // Extract the possibly padded result. Use a scratch register if we need to do
3286   // a final bitcast, otherwise use the original result register.
3287   Register MergeDstReg;
3288   if (IsNarrow && DstTy.isVector())
3289     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3290   else
3291     MergeDstReg = DstReg;
3292 
3293   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3294 
3295   // Recast to vector if we narrowed a vector
3296   if (IsNarrow && DstTy.isVector())
3297     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3298 
3299   MI.eraseFromParent();
3300   return Legalized;
3301 }
3302 
3303 LegalizerHelper::LegalizeResult
3304 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3305                                               LLT NarrowTy) {
3306   Register DstReg = MI.getOperand(0).getReg();
3307   Register SrcReg = MI.getOperand(1).getReg();
3308   int64_t Imm = MI.getOperand(2).getImm();
3309 
3310   LLT DstTy = MRI.getType(DstReg);
3311 
3312   SmallVector<Register, 8> Parts;
3313   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3314   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3315 
3316   for (Register &R : Parts)
3317     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3318 
3319   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3320 
3321   MI.eraseFromParent();
3322   return Legalized;
3323 }
3324 
3325 LegalizerHelper::LegalizeResult
3326 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3327                                      LLT NarrowTy) {
3328   using namespace TargetOpcode;
3329 
3330   MIRBuilder.setInstrAndDebugLoc(MI);
3331   switch (MI.getOpcode()) {
3332   case G_IMPLICIT_DEF:
3333     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3334   case G_TRUNC:
3335   case G_AND:
3336   case G_OR:
3337   case G_XOR:
3338   case G_ADD:
3339   case G_SUB:
3340   case G_MUL:
3341   case G_SMULH:
3342   case G_UMULH:
3343   case G_FADD:
3344   case G_FMUL:
3345   case G_FSUB:
3346   case G_FNEG:
3347   case G_FABS:
3348   case G_FCANONICALIZE:
3349   case G_FDIV:
3350   case G_FREM:
3351   case G_FMA:
3352   case G_FMAD:
3353   case G_FPOW:
3354   case G_FEXP:
3355   case G_FEXP2:
3356   case G_FLOG:
3357   case G_FLOG2:
3358   case G_FLOG10:
3359   case G_FNEARBYINT:
3360   case G_FCEIL:
3361   case G_FFLOOR:
3362   case G_FRINT:
3363   case G_INTRINSIC_ROUND:
3364   case G_INTRINSIC_TRUNC:
3365   case G_FCOS:
3366   case G_FSIN:
3367   case G_FSQRT:
3368   case G_BSWAP:
3369   case G_BITREVERSE:
3370   case G_SDIV:
3371   case G_UDIV:
3372   case G_SREM:
3373   case G_UREM:
3374   case G_SMIN:
3375   case G_SMAX:
3376   case G_UMIN:
3377   case G_UMAX:
3378   case G_FMINNUM:
3379   case G_FMAXNUM:
3380   case G_FMINNUM_IEEE:
3381   case G_FMAXNUM_IEEE:
3382   case G_FMINIMUM:
3383   case G_FMAXIMUM:
3384   case G_FSHL:
3385   case G_FSHR:
3386   case G_FREEZE:
3387     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3388   case G_SHL:
3389   case G_LSHR:
3390   case G_ASHR:
3391   case G_CTLZ:
3392   case G_CTLZ_ZERO_UNDEF:
3393   case G_CTTZ:
3394   case G_CTTZ_ZERO_UNDEF:
3395   case G_CTPOP:
3396   case G_FCOPYSIGN:
3397     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3398   case G_ZEXT:
3399   case G_SEXT:
3400   case G_ANYEXT:
3401   case G_FPEXT:
3402   case G_FPTRUNC:
3403   case G_SITOFP:
3404   case G_UITOFP:
3405   case G_FPTOSI:
3406   case G_FPTOUI:
3407   case G_INTTOPTR:
3408   case G_PTRTOINT:
3409   case G_ADDRSPACE_CAST:
3410     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3411   case G_ICMP:
3412   case G_FCMP:
3413     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3414   case G_SELECT:
3415     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3416   case G_PHI:
3417     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3418   case G_UNMERGE_VALUES:
3419     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3420   case G_BUILD_VECTOR:
3421     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3422   case G_LOAD:
3423   case G_STORE:
3424     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3425   case G_SEXT_INREG:
3426     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3427   default:
3428     return UnableToLegalize;
3429   }
3430 }
3431 
3432 LegalizerHelper::LegalizeResult
3433 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3434                                              const LLT HalfTy, const LLT AmtTy) {
3435 
3436   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3437   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3438   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3439 
3440   if (Amt.isNullValue()) {
3441     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3442     MI.eraseFromParent();
3443     return Legalized;
3444   }
3445 
3446   LLT NVT = HalfTy;
3447   unsigned NVTBits = HalfTy.getSizeInBits();
3448   unsigned VTBits = 2 * NVTBits;
3449 
3450   SrcOp Lo(Register(0)), Hi(Register(0));
3451   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3452     if (Amt.ugt(VTBits)) {
3453       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3454     } else if (Amt.ugt(NVTBits)) {
3455       Lo = MIRBuilder.buildConstant(NVT, 0);
3456       Hi = MIRBuilder.buildShl(NVT, InL,
3457                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3458     } else if (Amt == NVTBits) {
3459       Lo = MIRBuilder.buildConstant(NVT, 0);
3460       Hi = InL;
3461     } else {
3462       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3463       auto OrLHS =
3464           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3465       auto OrRHS = MIRBuilder.buildLShr(
3466           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3467       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3468     }
3469   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3470     if (Amt.ugt(VTBits)) {
3471       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3472     } else if (Amt.ugt(NVTBits)) {
3473       Lo = MIRBuilder.buildLShr(NVT, InH,
3474                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3475       Hi = MIRBuilder.buildConstant(NVT, 0);
3476     } else if (Amt == NVTBits) {
3477       Lo = InH;
3478       Hi = MIRBuilder.buildConstant(NVT, 0);
3479     } else {
3480       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3481 
3482       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3483       auto OrRHS = MIRBuilder.buildShl(
3484           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3485 
3486       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3487       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3488     }
3489   } else {
3490     if (Amt.ugt(VTBits)) {
3491       Hi = Lo = MIRBuilder.buildAShr(
3492           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3493     } else if (Amt.ugt(NVTBits)) {
3494       Lo = MIRBuilder.buildAShr(NVT, InH,
3495                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3496       Hi = MIRBuilder.buildAShr(NVT, InH,
3497                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3498     } else if (Amt == NVTBits) {
3499       Lo = InH;
3500       Hi = MIRBuilder.buildAShr(NVT, InH,
3501                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3502     } else {
3503       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3504 
3505       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3506       auto OrRHS = MIRBuilder.buildShl(
3507           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3508 
3509       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3510       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3511     }
3512   }
3513 
3514   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3515   MI.eraseFromParent();
3516 
3517   return Legalized;
3518 }
3519 
3520 // TODO: Optimize if constant shift amount.
3521 LegalizerHelper::LegalizeResult
3522 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3523                                    LLT RequestedTy) {
3524   if (TypeIdx == 1) {
3525     Observer.changingInstr(MI);
3526     narrowScalarSrc(MI, RequestedTy, 2);
3527     Observer.changedInstr(MI);
3528     return Legalized;
3529   }
3530 
3531   Register DstReg = MI.getOperand(0).getReg();
3532   LLT DstTy = MRI.getType(DstReg);
3533   if (DstTy.isVector())
3534     return UnableToLegalize;
3535 
3536   Register Amt = MI.getOperand(2).getReg();
3537   LLT ShiftAmtTy = MRI.getType(Amt);
3538   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3539   if (DstEltSize % 2 != 0)
3540     return UnableToLegalize;
3541 
3542   // Ignore the input type. We can only go to exactly half the size of the
3543   // input. If that isn't small enough, the resulting pieces will be further
3544   // legalized.
3545   const unsigned NewBitSize = DstEltSize / 2;
3546   const LLT HalfTy = LLT::scalar(NewBitSize);
3547   const LLT CondTy = LLT::scalar(1);
3548 
3549   if (const MachineInstr *KShiftAmt =
3550           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3551     return narrowScalarShiftByConstant(
3552         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3553   }
3554 
3555   // TODO: Expand with known bits.
3556 
3557   // Handle the fully general expansion by an unknown amount.
3558   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3559 
3560   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3561   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3562   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3563 
3564   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3565   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3566 
3567   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3568   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3569   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3570 
3571   Register ResultRegs[2];
3572   switch (MI.getOpcode()) {
3573   case TargetOpcode::G_SHL: {
3574     // Short: ShAmt < NewBitSize
3575     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3576 
3577     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3578     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3579     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3580 
3581     // Long: ShAmt >= NewBitSize
3582     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3583     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3584 
3585     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3586     auto Hi = MIRBuilder.buildSelect(
3587         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3588 
3589     ResultRegs[0] = Lo.getReg(0);
3590     ResultRegs[1] = Hi.getReg(0);
3591     break;
3592   }
3593   case TargetOpcode::G_LSHR:
3594   case TargetOpcode::G_ASHR: {
3595     // Short: ShAmt < NewBitSize
3596     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3597 
3598     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3599     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3600     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3601 
3602     // Long: ShAmt >= NewBitSize
3603     MachineInstrBuilder HiL;
3604     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3605       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3606     } else {
3607       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3608       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3609     }
3610     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3611                                      {InH, AmtExcess});     // Lo from Hi part.
3612 
3613     auto Lo = MIRBuilder.buildSelect(
3614         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3615 
3616     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3617 
3618     ResultRegs[0] = Lo.getReg(0);
3619     ResultRegs[1] = Hi.getReg(0);
3620     break;
3621   }
3622   default:
3623     llvm_unreachable("not a shift");
3624   }
3625 
3626   MIRBuilder.buildMerge(DstReg, ResultRegs);
3627   MI.eraseFromParent();
3628   return Legalized;
3629 }
3630 
3631 LegalizerHelper::LegalizeResult
3632 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3633                                        LLT MoreTy) {
3634   assert(TypeIdx == 0 && "Expecting only Idx 0");
3635 
3636   Observer.changingInstr(MI);
3637   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3638     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3639     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3640     moreElementsVectorSrc(MI, MoreTy, I);
3641   }
3642 
3643   MachineBasicBlock &MBB = *MI.getParent();
3644   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3645   moreElementsVectorDst(MI, MoreTy, 0);
3646   Observer.changedInstr(MI);
3647   return Legalized;
3648 }
3649 
3650 LegalizerHelper::LegalizeResult
3651 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3652                                     LLT MoreTy) {
3653   MIRBuilder.setInstrAndDebugLoc(MI);
3654   unsigned Opc = MI.getOpcode();
3655   switch (Opc) {
3656   case TargetOpcode::G_IMPLICIT_DEF:
3657   case TargetOpcode::G_LOAD: {
3658     if (TypeIdx != 0)
3659       return UnableToLegalize;
3660     Observer.changingInstr(MI);
3661     moreElementsVectorDst(MI, MoreTy, 0);
3662     Observer.changedInstr(MI);
3663     return Legalized;
3664   }
3665   case TargetOpcode::G_STORE:
3666     if (TypeIdx != 0)
3667       return UnableToLegalize;
3668     Observer.changingInstr(MI);
3669     moreElementsVectorSrc(MI, MoreTy, 0);
3670     Observer.changedInstr(MI);
3671     return Legalized;
3672   case TargetOpcode::G_AND:
3673   case TargetOpcode::G_OR:
3674   case TargetOpcode::G_XOR:
3675   case TargetOpcode::G_SMIN:
3676   case TargetOpcode::G_SMAX:
3677   case TargetOpcode::G_UMIN:
3678   case TargetOpcode::G_UMAX:
3679   case TargetOpcode::G_FMINNUM:
3680   case TargetOpcode::G_FMAXNUM:
3681   case TargetOpcode::G_FMINNUM_IEEE:
3682   case TargetOpcode::G_FMAXNUM_IEEE:
3683   case TargetOpcode::G_FMINIMUM:
3684   case TargetOpcode::G_FMAXIMUM: {
3685     Observer.changingInstr(MI);
3686     moreElementsVectorSrc(MI, MoreTy, 1);
3687     moreElementsVectorSrc(MI, MoreTy, 2);
3688     moreElementsVectorDst(MI, MoreTy, 0);
3689     Observer.changedInstr(MI);
3690     return Legalized;
3691   }
3692   case TargetOpcode::G_EXTRACT:
3693     if (TypeIdx != 1)
3694       return UnableToLegalize;
3695     Observer.changingInstr(MI);
3696     moreElementsVectorSrc(MI, MoreTy, 1);
3697     Observer.changedInstr(MI);
3698     return Legalized;
3699   case TargetOpcode::G_INSERT:
3700   case TargetOpcode::G_FREEZE:
3701     if (TypeIdx != 0)
3702       return UnableToLegalize;
3703     Observer.changingInstr(MI);
3704     moreElementsVectorSrc(MI, MoreTy, 1);
3705     moreElementsVectorDst(MI, MoreTy, 0);
3706     Observer.changedInstr(MI);
3707     return Legalized;
3708   case TargetOpcode::G_SELECT:
3709     if (TypeIdx != 0)
3710       return UnableToLegalize;
3711     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3712       return UnableToLegalize;
3713 
3714     Observer.changingInstr(MI);
3715     moreElementsVectorSrc(MI, MoreTy, 2);
3716     moreElementsVectorSrc(MI, MoreTy, 3);
3717     moreElementsVectorDst(MI, MoreTy, 0);
3718     Observer.changedInstr(MI);
3719     return Legalized;
3720   case TargetOpcode::G_UNMERGE_VALUES: {
3721     if (TypeIdx != 1)
3722       return UnableToLegalize;
3723 
3724     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3725     int NumDst = MI.getNumOperands() - 1;
3726     moreElementsVectorSrc(MI, MoreTy, NumDst);
3727 
3728     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3729     for (int I = 0; I != NumDst; ++I)
3730       MIB.addDef(MI.getOperand(I).getReg());
3731 
3732     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3733     for (int I = NumDst; I != NewNumDst; ++I)
3734       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3735 
3736     MIB.addUse(MI.getOperand(NumDst).getReg());
3737     MI.eraseFromParent();
3738     return Legalized;
3739   }
3740   case TargetOpcode::G_PHI:
3741     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3742   default:
3743     return UnableToLegalize;
3744   }
3745 }
3746 
3747 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3748                                         ArrayRef<Register> Src1Regs,
3749                                         ArrayRef<Register> Src2Regs,
3750                                         LLT NarrowTy) {
3751   MachineIRBuilder &B = MIRBuilder;
3752   unsigned SrcParts = Src1Regs.size();
3753   unsigned DstParts = DstRegs.size();
3754 
3755   unsigned DstIdx = 0; // Low bits of the result.
3756   Register FactorSum =
3757       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3758   DstRegs[DstIdx] = FactorSum;
3759 
3760   unsigned CarrySumPrevDstIdx;
3761   SmallVector<Register, 4> Factors;
3762 
3763   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3764     // Collect low parts of muls for DstIdx.
3765     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3766          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3767       MachineInstrBuilder Mul =
3768           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3769       Factors.push_back(Mul.getReg(0));
3770     }
3771     // Collect high parts of muls from previous DstIdx.
3772     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3773          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3774       MachineInstrBuilder Umulh =
3775           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3776       Factors.push_back(Umulh.getReg(0));
3777     }
3778     // Add CarrySum from additions calculated for previous DstIdx.
3779     if (DstIdx != 1) {
3780       Factors.push_back(CarrySumPrevDstIdx);
3781     }
3782 
3783     Register CarrySum;
3784     // Add all factors and accumulate all carries into CarrySum.
3785     if (DstIdx != DstParts - 1) {
3786       MachineInstrBuilder Uaddo =
3787           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3788       FactorSum = Uaddo.getReg(0);
3789       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3790       for (unsigned i = 2; i < Factors.size(); ++i) {
3791         MachineInstrBuilder Uaddo =
3792             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3793         FactorSum = Uaddo.getReg(0);
3794         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3795         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3796       }
3797     } else {
3798       // Since value for the next index is not calculated, neither is CarrySum.
3799       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3800       for (unsigned i = 2; i < Factors.size(); ++i)
3801         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3802     }
3803 
3804     CarrySumPrevDstIdx = CarrySum;
3805     DstRegs[DstIdx] = FactorSum;
3806     Factors.clear();
3807   }
3808 }
3809 
3810 LegalizerHelper::LegalizeResult
3811 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3812   Register DstReg = MI.getOperand(0).getReg();
3813   Register Src1 = MI.getOperand(1).getReg();
3814   Register Src2 = MI.getOperand(2).getReg();
3815 
3816   LLT Ty = MRI.getType(DstReg);
3817   if (Ty.isVector())
3818     return UnableToLegalize;
3819 
3820   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3821   unsigned DstSize = Ty.getSizeInBits();
3822   unsigned NarrowSize = NarrowTy.getSizeInBits();
3823   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3824     return UnableToLegalize;
3825 
3826   unsigned NumDstParts = DstSize / NarrowSize;
3827   unsigned NumSrcParts = SrcSize / NarrowSize;
3828   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3829   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3830 
3831   SmallVector<Register, 2> Src1Parts, Src2Parts;
3832   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3833   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3834   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3835   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3836 
3837   // Take only high half of registers if this is high mul.
3838   ArrayRef<Register> DstRegs(
3839       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3840   MIRBuilder.buildMerge(DstReg, DstRegs);
3841   MI.eraseFromParent();
3842   return Legalized;
3843 }
3844 
3845 LegalizerHelper::LegalizeResult
3846 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3847                                      LLT NarrowTy) {
3848   if (TypeIdx != 1)
3849     return UnableToLegalize;
3850 
3851   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3852 
3853   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3854   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3855   // NarrowSize.
3856   if (SizeOp1 % NarrowSize != 0)
3857     return UnableToLegalize;
3858   int NumParts = SizeOp1 / NarrowSize;
3859 
3860   SmallVector<Register, 2> SrcRegs, DstRegs;
3861   SmallVector<uint64_t, 2> Indexes;
3862   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3863 
3864   Register OpReg = MI.getOperand(0).getReg();
3865   uint64_t OpStart = MI.getOperand(2).getImm();
3866   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3867   for (int i = 0; i < NumParts; ++i) {
3868     unsigned SrcStart = i * NarrowSize;
3869 
3870     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3871       // No part of the extract uses this subregister, ignore it.
3872       continue;
3873     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3874       // The entire subregister is extracted, forward the value.
3875       DstRegs.push_back(SrcRegs[i]);
3876       continue;
3877     }
3878 
3879     // OpSegStart is where this destination segment would start in OpReg if it
3880     // extended infinitely in both directions.
3881     int64_t ExtractOffset;
3882     uint64_t SegSize;
3883     if (OpStart < SrcStart) {
3884       ExtractOffset = 0;
3885       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3886     } else {
3887       ExtractOffset = OpStart - SrcStart;
3888       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3889     }
3890 
3891     Register SegReg = SrcRegs[i];
3892     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3893       // A genuine extract is needed.
3894       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3895       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3896     }
3897 
3898     DstRegs.push_back(SegReg);
3899   }
3900 
3901   Register DstReg = MI.getOperand(0).getReg();
3902   if (MRI.getType(DstReg).isVector())
3903     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3904   else if (DstRegs.size() > 1)
3905     MIRBuilder.buildMerge(DstReg, DstRegs);
3906   else
3907     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3908   MI.eraseFromParent();
3909   return Legalized;
3910 }
3911 
3912 LegalizerHelper::LegalizeResult
3913 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3914                                     LLT NarrowTy) {
3915   // FIXME: Don't know how to handle secondary types yet.
3916   if (TypeIdx != 0)
3917     return UnableToLegalize;
3918 
3919   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3920   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3921 
3922   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3923   // NarrowSize.
3924   if (SizeOp0 % NarrowSize != 0)
3925     return UnableToLegalize;
3926 
3927   int NumParts = SizeOp0 / NarrowSize;
3928 
3929   SmallVector<Register, 2> SrcRegs, DstRegs;
3930   SmallVector<uint64_t, 2> Indexes;
3931   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3932 
3933   Register OpReg = MI.getOperand(2).getReg();
3934   uint64_t OpStart = MI.getOperand(3).getImm();
3935   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3936   for (int i = 0; i < NumParts; ++i) {
3937     unsigned DstStart = i * NarrowSize;
3938 
3939     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3940       // No part of the insert affects this subregister, forward the original.
3941       DstRegs.push_back(SrcRegs[i]);
3942       continue;
3943     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3944       // The entire subregister is defined by this insert, forward the new
3945       // value.
3946       DstRegs.push_back(OpReg);
3947       continue;
3948     }
3949 
3950     // OpSegStart is where this destination segment would start in OpReg if it
3951     // extended infinitely in both directions.
3952     int64_t ExtractOffset, InsertOffset;
3953     uint64_t SegSize;
3954     if (OpStart < DstStart) {
3955       InsertOffset = 0;
3956       ExtractOffset = DstStart - OpStart;
3957       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3958     } else {
3959       InsertOffset = OpStart - DstStart;
3960       ExtractOffset = 0;
3961       SegSize =
3962         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3963     }
3964 
3965     Register SegReg = OpReg;
3966     if (ExtractOffset != 0 || SegSize != OpSize) {
3967       // A genuine extract is needed.
3968       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3969       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3970     }
3971 
3972     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3973     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3974     DstRegs.push_back(DstReg);
3975   }
3976 
3977   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3978   Register DstReg = MI.getOperand(0).getReg();
3979   if(MRI.getType(DstReg).isVector())
3980     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3981   else
3982     MIRBuilder.buildMerge(DstReg, DstRegs);
3983   MI.eraseFromParent();
3984   return Legalized;
3985 }
3986 
3987 LegalizerHelper::LegalizeResult
3988 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3989                                    LLT NarrowTy) {
3990   Register DstReg = MI.getOperand(0).getReg();
3991   LLT DstTy = MRI.getType(DstReg);
3992 
3993   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3994 
3995   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3996   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3997   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3998   LLT LeftoverTy;
3999   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4000                     Src0Regs, Src0LeftoverRegs))
4001     return UnableToLegalize;
4002 
4003   LLT Unused;
4004   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4005                     Src1Regs, Src1LeftoverRegs))
4006     llvm_unreachable("inconsistent extractParts result");
4007 
4008   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4009     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4010                                         {Src0Regs[I], Src1Regs[I]});
4011     DstRegs.push_back(Inst.getReg(0));
4012   }
4013 
4014   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4015     auto Inst = MIRBuilder.buildInstr(
4016       MI.getOpcode(),
4017       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4018     DstLeftoverRegs.push_back(Inst.getReg(0));
4019   }
4020 
4021   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4022               LeftoverTy, DstLeftoverRegs);
4023 
4024   MI.eraseFromParent();
4025   return Legalized;
4026 }
4027 
4028 LegalizerHelper::LegalizeResult
4029 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4030                                  LLT NarrowTy) {
4031   if (TypeIdx != 0)
4032     return UnableToLegalize;
4033 
4034   Register DstReg = MI.getOperand(0).getReg();
4035   Register SrcReg = MI.getOperand(1).getReg();
4036 
4037   LLT DstTy = MRI.getType(DstReg);
4038   if (DstTy.isVector())
4039     return UnableToLegalize;
4040 
4041   SmallVector<Register, 8> Parts;
4042   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4043   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4044   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4045 
4046   MI.eraseFromParent();
4047   return Legalized;
4048 }
4049 
4050 LegalizerHelper::LegalizeResult
4051 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4052                                     LLT NarrowTy) {
4053   if (TypeIdx != 0)
4054     return UnableToLegalize;
4055 
4056   Register CondReg = MI.getOperand(1).getReg();
4057   LLT CondTy = MRI.getType(CondReg);
4058   if (CondTy.isVector()) // TODO: Handle vselect
4059     return UnableToLegalize;
4060 
4061   Register DstReg = MI.getOperand(0).getReg();
4062   LLT DstTy = MRI.getType(DstReg);
4063 
4064   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4065   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4066   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4067   LLT LeftoverTy;
4068   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4069                     Src1Regs, Src1LeftoverRegs))
4070     return UnableToLegalize;
4071 
4072   LLT Unused;
4073   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4074                     Src2Regs, Src2LeftoverRegs))
4075     llvm_unreachable("inconsistent extractParts result");
4076 
4077   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4078     auto Select = MIRBuilder.buildSelect(NarrowTy,
4079                                          CondReg, Src1Regs[I], Src2Regs[I]);
4080     DstRegs.push_back(Select.getReg(0));
4081   }
4082 
4083   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4084     auto Select = MIRBuilder.buildSelect(
4085       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4086     DstLeftoverRegs.push_back(Select.getReg(0));
4087   }
4088 
4089   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4090               LeftoverTy, DstLeftoverRegs);
4091 
4092   MI.eraseFromParent();
4093   return Legalized;
4094 }
4095 
4096 LegalizerHelper::LegalizeResult
4097 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4098                                   LLT NarrowTy) {
4099   if (TypeIdx != 1)
4100     return UnableToLegalize;
4101 
4102   Register DstReg = MI.getOperand(0).getReg();
4103   Register SrcReg = MI.getOperand(1).getReg();
4104   LLT DstTy = MRI.getType(DstReg);
4105   LLT SrcTy = MRI.getType(SrcReg);
4106   unsigned NarrowSize = NarrowTy.getSizeInBits();
4107 
4108   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4109     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4110 
4111     MachineIRBuilder &B = MIRBuilder;
4112     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4113     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4114     auto C_0 = B.buildConstant(NarrowTy, 0);
4115     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4116                                 UnmergeSrc.getReg(1), C_0);
4117     auto LoCTLZ = IsUndef ?
4118       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4119       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4120     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4121     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4122     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4123     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4124 
4125     MI.eraseFromParent();
4126     return Legalized;
4127   }
4128 
4129   return UnableToLegalize;
4130 }
4131 
4132 LegalizerHelper::LegalizeResult
4133 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4134                                   LLT NarrowTy) {
4135   if (TypeIdx != 1)
4136     return UnableToLegalize;
4137 
4138   Register DstReg = MI.getOperand(0).getReg();
4139   Register SrcReg = MI.getOperand(1).getReg();
4140   LLT DstTy = MRI.getType(DstReg);
4141   LLT SrcTy = MRI.getType(SrcReg);
4142   unsigned NarrowSize = NarrowTy.getSizeInBits();
4143 
4144   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4145     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4146 
4147     MachineIRBuilder &B = MIRBuilder;
4148     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4149     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4150     auto C_0 = B.buildConstant(NarrowTy, 0);
4151     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4152                                 UnmergeSrc.getReg(0), C_0);
4153     auto HiCTTZ = IsUndef ?
4154       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4155       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4156     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4157     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4158     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4159     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4160 
4161     MI.eraseFromParent();
4162     return Legalized;
4163   }
4164 
4165   return UnableToLegalize;
4166 }
4167 
4168 LegalizerHelper::LegalizeResult
4169 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4170                                    LLT NarrowTy) {
4171   if (TypeIdx != 1)
4172     return UnableToLegalize;
4173 
4174   Register DstReg = MI.getOperand(0).getReg();
4175   LLT DstTy = MRI.getType(DstReg);
4176   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4177   unsigned NarrowSize = NarrowTy.getSizeInBits();
4178 
4179   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4180     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4181 
4182     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4183     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4184     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4185 
4186     MI.eraseFromParent();
4187     return Legalized;
4188   }
4189 
4190   return UnableToLegalize;
4191 }
4192 
4193 LegalizerHelper::LegalizeResult
4194 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4195   unsigned Opc = MI.getOpcode();
4196   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4197   auto isSupported = [this](const LegalityQuery &Q) {
4198     auto QAction = LI.getAction(Q).Action;
4199     return QAction == Legal || QAction == Libcall || QAction == Custom;
4200   };
4201   switch (Opc) {
4202   default:
4203     return UnableToLegalize;
4204   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4205     // This trivially expands to CTLZ.
4206     Observer.changingInstr(MI);
4207     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4208     Observer.changedInstr(MI);
4209     return Legalized;
4210   }
4211   case TargetOpcode::G_CTLZ: {
4212     Register DstReg = MI.getOperand(0).getReg();
4213     Register SrcReg = MI.getOperand(1).getReg();
4214     LLT DstTy = MRI.getType(DstReg);
4215     LLT SrcTy = MRI.getType(SrcReg);
4216     unsigned Len = SrcTy.getSizeInBits();
4217 
4218     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4219       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4220       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4221       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4222       auto ICmp = MIRBuilder.buildICmp(
4223           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4224       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4225       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4226       MI.eraseFromParent();
4227       return Legalized;
4228     }
4229     // for now, we do this:
4230     // NewLen = NextPowerOf2(Len);
4231     // x = x | (x >> 1);
4232     // x = x | (x >> 2);
4233     // ...
4234     // x = x | (x >>16);
4235     // x = x | (x >>32); // for 64-bit input
4236     // Upto NewLen/2
4237     // return Len - popcount(x);
4238     //
4239     // Ref: "Hacker's Delight" by Henry Warren
4240     Register Op = SrcReg;
4241     unsigned NewLen = PowerOf2Ceil(Len);
4242     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4243       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4244       auto MIBOp = MIRBuilder.buildOr(
4245           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4246       Op = MIBOp.getReg(0);
4247     }
4248     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4249     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4250                         MIBPop);
4251     MI.eraseFromParent();
4252     return Legalized;
4253   }
4254   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4255     // This trivially expands to CTTZ.
4256     Observer.changingInstr(MI);
4257     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4258     Observer.changedInstr(MI);
4259     return Legalized;
4260   }
4261   case TargetOpcode::G_CTTZ: {
4262     Register DstReg = MI.getOperand(0).getReg();
4263     Register SrcReg = MI.getOperand(1).getReg();
4264     LLT DstTy = MRI.getType(DstReg);
4265     LLT SrcTy = MRI.getType(SrcReg);
4266 
4267     unsigned Len = SrcTy.getSizeInBits();
4268     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4269       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4270       // zero.
4271       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4272       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4273       auto ICmp = MIRBuilder.buildICmp(
4274           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4275       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4276       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4277       MI.eraseFromParent();
4278       return Legalized;
4279     }
4280     // for now, we use: { return popcount(~x & (x - 1)); }
4281     // unless the target has ctlz but not ctpop, in which case we use:
4282     // { return 32 - nlz(~x & (x-1)); }
4283     // Ref: "Hacker's Delight" by Henry Warren
4284     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4285     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4286     auto MIBTmp = MIRBuilder.buildAnd(
4287         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4288     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4289         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4290       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4291       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4292                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4293       MI.eraseFromParent();
4294       return Legalized;
4295     }
4296     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4297     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4298     return Legalized;
4299   }
4300   case TargetOpcode::G_CTPOP: {
4301     unsigned Size = Ty.getSizeInBits();
4302     MachineIRBuilder &B = MIRBuilder;
4303 
4304     // Count set bits in blocks of 2 bits. Default approach would be
4305     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4306     // We use following formula instead:
4307     // B2Count = val - { (val >> 1) & 0x55555555 }
4308     // since it gives same result in blocks of 2 with one instruction less.
4309     auto C_1 = B.buildConstant(Ty, 1);
4310     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4311     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4312     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4313     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4314     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4315 
4316     // In order to get count in blocks of 4 add values from adjacent block of 2.
4317     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4318     auto C_2 = B.buildConstant(Ty, 2);
4319     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4320     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4321     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4322     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4323     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4324     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4325 
4326     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4327     // addition since count value sits in range {0,...,8} and 4 bits are enough
4328     // to hold such binary values. After addition high 4 bits still hold count
4329     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4330     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4331     auto C_4 = B.buildConstant(Ty, 4);
4332     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4333     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4334     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4335     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4336     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4337 
4338     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4339     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4340     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4341     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4342     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4343 
4344     // Shift count result from 8 high bits to low bits.
4345     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4346     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4347 
4348     MI.eraseFromParent();
4349     return Legalized;
4350   }
4351   }
4352 }
4353 
4354 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4355 // representation.
4356 LegalizerHelper::LegalizeResult
4357 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4358   Register Dst = MI.getOperand(0).getReg();
4359   Register Src = MI.getOperand(1).getReg();
4360   const LLT S64 = LLT::scalar(64);
4361   const LLT S32 = LLT::scalar(32);
4362   const LLT S1 = LLT::scalar(1);
4363 
4364   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4365 
4366   // unsigned cul2f(ulong u) {
4367   //   uint lz = clz(u);
4368   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4369   //   u = (u << lz) & 0x7fffffffffffffffUL;
4370   //   ulong t = u & 0xffffffffffUL;
4371   //   uint v = (e << 23) | (uint)(u >> 40);
4372   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4373   //   return as_float(v + r);
4374   // }
4375 
4376   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4377   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4378 
4379   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4380 
4381   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4382   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4383 
4384   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4385   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4386 
4387   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4388   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4389 
4390   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4391 
4392   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4393   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4394 
4395   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4396   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4397   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4398 
4399   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4400   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4401   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4402   auto One = MIRBuilder.buildConstant(S32, 1);
4403 
4404   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4405   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4406   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4407   MIRBuilder.buildAdd(Dst, V, R);
4408 
4409   return Legalized;
4410 }
4411 
4412 LegalizerHelper::LegalizeResult
4413 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4414   Register Dst = MI.getOperand(0).getReg();
4415   Register Src = MI.getOperand(1).getReg();
4416   LLT DstTy = MRI.getType(Dst);
4417   LLT SrcTy = MRI.getType(Src);
4418 
4419   if (SrcTy == LLT::scalar(1)) {
4420     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4421     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4422     MIRBuilder.buildSelect(Dst, Src, True, False);
4423     MI.eraseFromParent();
4424     return Legalized;
4425   }
4426 
4427   if (SrcTy != LLT::scalar(64))
4428     return UnableToLegalize;
4429 
4430   if (DstTy == LLT::scalar(32)) {
4431     // TODO: SelectionDAG has several alternative expansions to port which may
4432     // be more reasonble depending on the available instructions. If a target
4433     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4434     // intermediate type, this is probably worse.
4435     return lowerU64ToF32BitOps(MI);
4436   }
4437 
4438   return UnableToLegalize;
4439 }
4440 
4441 LegalizerHelper::LegalizeResult
4442 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4443   Register Dst = MI.getOperand(0).getReg();
4444   Register Src = MI.getOperand(1).getReg();
4445   LLT DstTy = MRI.getType(Dst);
4446   LLT SrcTy = MRI.getType(Src);
4447 
4448   const LLT S64 = LLT::scalar(64);
4449   const LLT S32 = LLT::scalar(32);
4450   const LLT S1 = LLT::scalar(1);
4451 
4452   if (SrcTy == S1) {
4453     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4454     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4455     MIRBuilder.buildSelect(Dst, Src, True, False);
4456     MI.eraseFromParent();
4457     return Legalized;
4458   }
4459 
4460   if (SrcTy != S64)
4461     return UnableToLegalize;
4462 
4463   if (DstTy == S32) {
4464     // signed cl2f(long l) {
4465     //   long s = l >> 63;
4466     //   float r = cul2f((l + s) ^ s);
4467     //   return s ? -r : r;
4468     // }
4469     Register L = Src;
4470     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4471     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4472 
4473     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4474     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4475     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4476 
4477     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4478     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4479                                             MIRBuilder.buildConstant(S64, 0));
4480     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4481     return Legalized;
4482   }
4483 
4484   return UnableToLegalize;
4485 }
4486 
4487 LegalizerHelper::LegalizeResult
4488 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4489   Register Dst = MI.getOperand(0).getReg();
4490   Register Src = MI.getOperand(1).getReg();
4491   LLT DstTy = MRI.getType(Dst);
4492   LLT SrcTy = MRI.getType(Src);
4493   const LLT S64 = LLT::scalar(64);
4494   const LLT S32 = LLT::scalar(32);
4495 
4496   if (SrcTy != S64 && SrcTy != S32)
4497     return UnableToLegalize;
4498   if (DstTy != S32 && DstTy != S64)
4499     return UnableToLegalize;
4500 
4501   // FPTOSI gives same result as FPTOUI for positive signed integers.
4502   // FPTOUI needs to deal with fp values that convert to unsigned integers
4503   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4504 
4505   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4506   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4507                                                 : APFloat::IEEEdouble(),
4508                     APInt::getNullValue(SrcTy.getSizeInBits()));
4509   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4510 
4511   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4512 
4513   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4514   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4515   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4516   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4517   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4518   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4519   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4520 
4521   const LLT S1 = LLT::scalar(1);
4522 
4523   MachineInstrBuilder FCMP =
4524       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4525   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4526 
4527   MI.eraseFromParent();
4528   return Legalized;
4529 }
4530 
4531 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4532   Register Dst = MI.getOperand(0).getReg();
4533   Register Src = MI.getOperand(1).getReg();
4534   LLT DstTy = MRI.getType(Dst);
4535   LLT SrcTy = MRI.getType(Src);
4536   const LLT S64 = LLT::scalar(64);
4537   const LLT S32 = LLT::scalar(32);
4538 
4539   // FIXME: Only f32 to i64 conversions are supported.
4540   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4541     return UnableToLegalize;
4542 
4543   // Expand f32 -> i64 conversion
4544   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4545   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4546 
4547   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4548 
4549   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4550   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4551 
4552   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4553   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4554 
4555   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4556                                            APInt::getSignMask(SrcEltBits));
4557   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4558   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4559   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4560   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4561 
4562   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4563   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4564   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4565 
4566   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4567   R = MIRBuilder.buildZExt(DstTy, R);
4568 
4569   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4570   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4571   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4572   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4573 
4574   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4575   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4576 
4577   const LLT S1 = LLT::scalar(1);
4578   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4579                                     S1, Exponent, ExponentLoBit);
4580 
4581   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4582 
4583   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4584   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4585 
4586   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4587 
4588   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4589                                           S1, Exponent, ZeroSrcTy);
4590 
4591   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4592   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4593 
4594   MI.eraseFromParent();
4595   return Legalized;
4596 }
4597 
4598 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4599 LegalizerHelper::LegalizeResult
4600 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4601   Register Dst = MI.getOperand(0).getReg();
4602   Register Src = MI.getOperand(1).getReg();
4603 
4604   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4605     return UnableToLegalize;
4606 
4607   const unsigned ExpMask = 0x7ff;
4608   const unsigned ExpBiasf64 = 1023;
4609   const unsigned ExpBiasf16 = 15;
4610   const LLT S32 = LLT::scalar(32);
4611   const LLT S1 = LLT::scalar(1);
4612 
4613   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4614   Register U = Unmerge.getReg(0);
4615   Register UH = Unmerge.getReg(1);
4616 
4617   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4618 
4619   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4620   // add the f16 bias (15) to get the biased exponent for the f16 format.
4621   E = MIRBuilder.buildAdd(
4622     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4623   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4624 
4625   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4626   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4627 
4628   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4629                                        MIRBuilder.buildConstant(S32, 0x1ff));
4630   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4631 
4632   auto Zero = MIRBuilder.buildConstant(S32, 0);
4633   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4634   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4635   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4636 
4637   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4638   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4639   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4640   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4641 
4642   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4643   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4644 
4645   // N = M | (E << 12);
4646   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4647   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4648 
4649   // B = clamp(1-E, 0, 13);
4650   auto One = MIRBuilder.buildConstant(S32, 1);
4651   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4652   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4653   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4654 
4655   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4656                                        MIRBuilder.buildConstant(S32, 0x1000));
4657 
4658   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4659   auto D0 = MIRBuilder.buildShl(S32, D, B);
4660 
4661   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4662                                              D0, SigSetHigh);
4663   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4664   D = MIRBuilder.buildOr(S32, D, D1);
4665 
4666   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4667   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4668 
4669   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4670   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4671 
4672   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4673                                        MIRBuilder.buildConstant(S32, 3));
4674   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4675 
4676   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4677                                        MIRBuilder.buildConstant(S32, 5));
4678   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4679 
4680   V1 = MIRBuilder.buildOr(S32, V0, V1);
4681   V = MIRBuilder.buildAdd(S32, V, V1);
4682 
4683   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4684                                        E, MIRBuilder.buildConstant(S32, 30));
4685   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4686                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4687 
4688   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4689                                          E, MIRBuilder.buildConstant(S32, 1039));
4690   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4691 
4692   // Extract the sign bit.
4693   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4694   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4695 
4696   // Insert the sign bit
4697   V = MIRBuilder.buildOr(S32, Sign, V);
4698 
4699   MIRBuilder.buildTrunc(Dst, V);
4700   MI.eraseFromParent();
4701   return Legalized;
4702 }
4703 
4704 LegalizerHelper::LegalizeResult
4705 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4706   Register Dst = MI.getOperand(0).getReg();
4707   Register Src = MI.getOperand(1).getReg();
4708 
4709   LLT DstTy = MRI.getType(Dst);
4710   LLT SrcTy = MRI.getType(Src);
4711   const LLT S64 = LLT::scalar(64);
4712   const LLT S16 = LLT::scalar(16);
4713 
4714   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4715     return lowerFPTRUNC_F64_TO_F16(MI);
4716 
4717   return UnableToLegalize;
4718 }
4719 
4720 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4721   switch (Opc) {
4722   case TargetOpcode::G_SMIN:
4723     return CmpInst::ICMP_SLT;
4724   case TargetOpcode::G_SMAX:
4725     return CmpInst::ICMP_SGT;
4726   case TargetOpcode::G_UMIN:
4727     return CmpInst::ICMP_ULT;
4728   case TargetOpcode::G_UMAX:
4729     return CmpInst::ICMP_UGT;
4730   default:
4731     llvm_unreachable("not in integer min/max");
4732   }
4733 }
4734 
4735 LegalizerHelper::LegalizeResult
4736 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4737   Register Dst = MI.getOperand(0).getReg();
4738   Register Src0 = MI.getOperand(1).getReg();
4739   Register Src1 = MI.getOperand(2).getReg();
4740 
4741   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4742   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4743 
4744   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4745   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4746 
4747   MI.eraseFromParent();
4748   return Legalized;
4749 }
4750 
4751 LegalizerHelper::LegalizeResult
4752 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4753   Register Dst = MI.getOperand(0).getReg();
4754   Register Src0 = MI.getOperand(1).getReg();
4755   Register Src1 = MI.getOperand(2).getReg();
4756 
4757   const LLT Src0Ty = MRI.getType(Src0);
4758   const LLT Src1Ty = MRI.getType(Src1);
4759 
4760   const int Src0Size = Src0Ty.getScalarSizeInBits();
4761   const int Src1Size = Src1Ty.getScalarSizeInBits();
4762 
4763   auto SignBitMask = MIRBuilder.buildConstant(
4764     Src0Ty, APInt::getSignMask(Src0Size));
4765 
4766   auto NotSignBitMask = MIRBuilder.buildConstant(
4767     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4768 
4769   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4770   MachineInstr *Or;
4771 
4772   if (Src0Ty == Src1Ty) {
4773     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4774     Or = MIRBuilder.buildOr(Dst, And0, And1);
4775   } else if (Src0Size > Src1Size) {
4776     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4777     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4778     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4779     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4780     Or = MIRBuilder.buildOr(Dst, And0, And1);
4781   } else {
4782     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4783     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4784     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4785     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4786     Or = MIRBuilder.buildOr(Dst, And0, And1);
4787   }
4788 
4789   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4790   // constants are a nan and -0.0, but the final result should preserve
4791   // everything.
4792   if (unsigned Flags = MI.getFlags())
4793     Or->setFlags(Flags);
4794 
4795   MI.eraseFromParent();
4796   return Legalized;
4797 }
4798 
4799 LegalizerHelper::LegalizeResult
4800 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4801   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4802     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4803 
4804   Register Dst = MI.getOperand(0).getReg();
4805   Register Src0 = MI.getOperand(1).getReg();
4806   Register Src1 = MI.getOperand(2).getReg();
4807   LLT Ty = MRI.getType(Dst);
4808 
4809   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4810     // Insert canonicalizes if it's possible we need to quiet to get correct
4811     // sNaN behavior.
4812 
4813     // Note this must be done here, and not as an optimization combine in the
4814     // absence of a dedicate quiet-snan instruction as we're using an
4815     // omni-purpose G_FCANONICALIZE.
4816     if (!isKnownNeverSNaN(Src0, MRI))
4817       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4818 
4819     if (!isKnownNeverSNaN(Src1, MRI))
4820       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4821   }
4822 
4823   // If there are no nans, it's safe to simply replace this with the non-IEEE
4824   // version.
4825   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4826   MI.eraseFromParent();
4827   return Legalized;
4828 }
4829 
4830 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4831   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4832   Register DstReg = MI.getOperand(0).getReg();
4833   LLT Ty = MRI.getType(DstReg);
4834   unsigned Flags = MI.getFlags();
4835 
4836   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4837                                   Flags);
4838   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4839   MI.eraseFromParent();
4840   return Legalized;
4841 }
4842 
4843 LegalizerHelper::LegalizeResult
4844 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4845   Register DstReg = MI.getOperand(0).getReg();
4846   Register X = MI.getOperand(1).getReg();
4847   const unsigned Flags = MI.getFlags();
4848   const LLT Ty = MRI.getType(DstReg);
4849   const LLT CondTy = Ty.changeElementSize(1);
4850 
4851   // round(x) =>
4852   //  t = trunc(x);
4853   //  d = fabs(x - t);
4854   //  o = copysign(1.0f, x);
4855   //  return t + (d >= 0.5 ? o : 0.0);
4856 
4857   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4858 
4859   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4860   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4861   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4862   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4863   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4864   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4865 
4866   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4867                                   Flags);
4868   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4869 
4870   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4871 
4872   MI.eraseFromParent();
4873   return Legalized;
4874 }
4875 
4876 LegalizerHelper::LegalizeResult
4877 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4878   Register DstReg = MI.getOperand(0).getReg();
4879   Register SrcReg = MI.getOperand(1).getReg();
4880   unsigned Flags = MI.getFlags();
4881   LLT Ty = MRI.getType(DstReg);
4882   const LLT CondTy = Ty.changeElementSize(1);
4883 
4884   // result = trunc(src);
4885   // if (src < 0.0 && src != result)
4886   //   result += -1.0.
4887 
4888   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4889   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4890 
4891   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4892                                   SrcReg, Zero, Flags);
4893   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4894                                       SrcReg, Trunc, Flags);
4895   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4896   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4897 
4898   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4899   MI.eraseFromParent();
4900   return Legalized;
4901 }
4902 
4903 LegalizerHelper::LegalizeResult
4904 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
4905   const unsigned NumOps = MI.getNumOperands();
4906   Register DstReg = MI.getOperand(0).getReg();
4907   Register Src0Reg = MI.getOperand(1).getReg();
4908   LLT DstTy = MRI.getType(DstReg);
4909   LLT SrcTy = MRI.getType(Src0Reg);
4910   unsigned PartSize = SrcTy.getSizeInBits();
4911 
4912   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
4913   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
4914 
4915   for (unsigned I = 2; I != NumOps; ++I) {
4916     const unsigned Offset = (I - 1) * PartSize;
4917 
4918     Register SrcReg = MI.getOperand(I).getReg();
4919     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
4920 
4921     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
4922       MRI.createGenericVirtualRegister(WideTy);
4923 
4924     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
4925     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
4926     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
4927     ResultReg = NextResult;
4928   }
4929 
4930   if (DstTy.isPointer()) {
4931     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
4932           DstTy.getAddressSpace())) {
4933       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
4934       return UnableToLegalize;
4935     }
4936 
4937     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
4938   }
4939 
4940   MI.eraseFromParent();
4941   return Legalized;
4942 }
4943 
4944 LegalizerHelper::LegalizeResult
4945 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4946   const unsigned NumDst = MI.getNumOperands() - 1;
4947   Register SrcReg = MI.getOperand(NumDst).getReg();
4948   Register Dst0Reg = MI.getOperand(0).getReg();
4949   LLT DstTy = MRI.getType(Dst0Reg);
4950   if (DstTy.isPointer())
4951     return UnableToLegalize; // TODO
4952 
4953   SrcReg = coerceToScalar(SrcReg);
4954   if (!SrcReg)
4955     return UnableToLegalize;
4956 
4957   // Expand scalarizing unmerge as bitcast to integer and shift.
4958   LLT IntTy = MRI.getType(SrcReg);
4959 
4960   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
4961 
4962   const unsigned DstSize = DstTy.getSizeInBits();
4963   unsigned Offset = DstSize;
4964   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4965     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4966     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
4967     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4968   }
4969 
4970   MI.eraseFromParent();
4971   return Legalized;
4972 }
4973 
4974 LegalizerHelper::LegalizeResult
4975 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4976   Register DstReg = MI.getOperand(0).getReg();
4977   Register Src0Reg = MI.getOperand(1).getReg();
4978   Register Src1Reg = MI.getOperand(2).getReg();
4979   LLT Src0Ty = MRI.getType(Src0Reg);
4980   LLT DstTy = MRI.getType(DstReg);
4981   LLT IdxTy = LLT::scalar(32);
4982 
4983   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4984 
4985   if (DstTy.isScalar()) {
4986     if (Src0Ty.isVector())
4987       return UnableToLegalize;
4988 
4989     // This is just a SELECT.
4990     assert(Mask.size() == 1 && "Expected a single mask element");
4991     Register Val;
4992     if (Mask[0] < 0 || Mask[0] > 1)
4993       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4994     else
4995       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4996     MIRBuilder.buildCopy(DstReg, Val);
4997     MI.eraseFromParent();
4998     return Legalized;
4999   }
5000 
5001   Register Undef;
5002   SmallVector<Register, 32> BuildVec;
5003   LLT EltTy = DstTy.getElementType();
5004 
5005   for (int Idx : Mask) {
5006     if (Idx < 0) {
5007       if (!Undef.isValid())
5008         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5009       BuildVec.push_back(Undef);
5010       continue;
5011     }
5012 
5013     if (Src0Ty.isScalar()) {
5014       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5015     } else {
5016       int NumElts = Src0Ty.getNumElements();
5017       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5018       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5019       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5020       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5021       BuildVec.push_back(Extract.getReg(0));
5022     }
5023   }
5024 
5025   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5026   MI.eraseFromParent();
5027   return Legalized;
5028 }
5029 
5030 LegalizerHelper::LegalizeResult
5031 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5032   const auto &MF = *MI.getMF();
5033   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5034   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5035     return UnableToLegalize;
5036 
5037   Register Dst = MI.getOperand(0).getReg();
5038   Register AllocSize = MI.getOperand(1).getReg();
5039   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5040 
5041   LLT PtrTy = MRI.getType(Dst);
5042   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5043 
5044   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5045   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5046   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5047   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5048 
5049   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5050   // have to generate an extra instruction to negate the alloc and then use
5051   // G_PTR_ADD to add the negative offset.
5052   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5053   if (Alignment > Align(1)) {
5054     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5055     AlignMask.negate();
5056     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5057     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5058   }
5059 
5060   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5061   MIRBuilder.buildCopy(SPReg, SPTmp);
5062   MIRBuilder.buildCopy(Dst, SPTmp);
5063 
5064   MI.eraseFromParent();
5065   return Legalized;
5066 }
5067 
5068 LegalizerHelper::LegalizeResult
5069 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5070   Register Dst = MI.getOperand(0).getReg();
5071   Register Src = MI.getOperand(1).getReg();
5072   unsigned Offset = MI.getOperand(2).getImm();
5073 
5074   LLT DstTy = MRI.getType(Dst);
5075   LLT SrcTy = MRI.getType(Src);
5076 
5077   if (DstTy.isScalar() &&
5078       (SrcTy.isScalar() ||
5079        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5080     LLT SrcIntTy = SrcTy;
5081     if (!SrcTy.isScalar()) {
5082       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5083       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5084     }
5085 
5086     if (Offset == 0)
5087       MIRBuilder.buildTrunc(Dst, Src);
5088     else {
5089       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5090       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5091       MIRBuilder.buildTrunc(Dst, Shr);
5092     }
5093 
5094     MI.eraseFromParent();
5095     return Legalized;
5096   }
5097 
5098   return UnableToLegalize;
5099 }
5100 
5101 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5102   Register Dst = MI.getOperand(0).getReg();
5103   Register Src = MI.getOperand(1).getReg();
5104   Register InsertSrc = MI.getOperand(2).getReg();
5105   uint64_t Offset = MI.getOperand(3).getImm();
5106 
5107   LLT DstTy = MRI.getType(Src);
5108   LLT InsertTy = MRI.getType(InsertSrc);
5109 
5110   if (InsertTy.isVector() ||
5111       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5112     return UnableToLegalize;
5113 
5114   const DataLayout &DL = MIRBuilder.getDataLayout();
5115   if ((DstTy.isPointer() &&
5116        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5117       (InsertTy.isPointer() &&
5118        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5119     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5120     return UnableToLegalize;
5121   }
5122 
5123   LLT IntDstTy = DstTy;
5124 
5125   if (!DstTy.isScalar()) {
5126     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5127     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5128   }
5129 
5130   if (!InsertTy.isScalar()) {
5131     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5132     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5133   }
5134 
5135   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5136   if (Offset != 0) {
5137     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5138     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5139   }
5140 
5141   APInt MaskVal = APInt::getBitsSetWithWrap(
5142       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5143 
5144   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5145   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5146   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5147 
5148   MIRBuilder.buildCast(Dst, Or);
5149   MI.eraseFromParent();
5150   return Legalized;
5151 }
5152 
5153 LegalizerHelper::LegalizeResult
5154 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5155   Register Dst0 = MI.getOperand(0).getReg();
5156   Register Dst1 = MI.getOperand(1).getReg();
5157   Register LHS = MI.getOperand(2).getReg();
5158   Register RHS = MI.getOperand(3).getReg();
5159   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5160 
5161   LLT Ty = MRI.getType(Dst0);
5162   LLT BoolTy = MRI.getType(Dst1);
5163 
5164   if (IsAdd)
5165     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5166   else
5167     MIRBuilder.buildSub(Dst0, LHS, RHS);
5168 
5169   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5170 
5171   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5172 
5173   // For an addition, the result should be less than one of the operands (LHS)
5174   // if and only if the other operand (RHS) is negative, otherwise there will
5175   // be overflow.
5176   // For a subtraction, the result should be less than one of the operands
5177   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5178   // otherwise there will be overflow.
5179   auto ResultLowerThanLHS =
5180       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5181   auto ConditionRHS = MIRBuilder.buildICmp(
5182       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5183 
5184   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5185   MI.eraseFromParent();
5186   return Legalized;
5187 }
5188 
5189 LegalizerHelper::LegalizeResult
5190 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5191   Register Dst = MI.getOperand(0).getReg();
5192   Register Src = MI.getOperand(1).getReg();
5193   const LLT Ty = MRI.getType(Src);
5194   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5195   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5196 
5197   // Swap most and least significant byte, set remaining bytes in Res to zero.
5198   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5199   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5200   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5201   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5202 
5203   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5204   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5205     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5206     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5207     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5208     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5209     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5210     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5211     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5212     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5213     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5214     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5215     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5216     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5217   }
5218   Res.getInstr()->getOperand(0).setReg(Dst);
5219 
5220   MI.eraseFromParent();
5221   return Legalized;
5222 }
5223 
5224 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5225 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5226                                  MachineInstrBuilder Src, APInt Mask) {
5227   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5228   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5229   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5230   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5231   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5232   return B.buildOr(Dst, LHS, RHS);
5233 }
5234 
5235 LegalizerHelper::LegalizeResult
5236 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5237   Register Dst = MI.getOperand(0).getReg();
5238   Register Src = MI.getOperand(1).getReg();
5239   const LLT Ty = MRI.getType(Src);
5240   unsigned Size = Ty.getSizeInBits();
5241 
5242   MachineInstrBuilder BSWAP =
5243       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5244 
5245   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5246   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5247   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5248   MachineInstrBuilder Swap4 =
5249       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5250 
5251   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5252   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5253   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5254   MachineInstrBuilder Swap2 =
5255       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5256 
5257   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5258   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5259   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5260   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5261 
5262   MI.eraseFromParent();
5263   return Legalized;
5264 }
5265 
5266 LegalizerHelper::LegalizeResult
5267 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5268   MachineFunction &MF = MIRBuilder.getMF();
5269   const TargetSubtargetInfo &STI = MF.getSubtarget();
5270   const TargetLowering *TLI = STI.getTargetLowering();
5271 
5272   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5273   int NameOpIdx = IsRead ? 1 : 0;
5274   int ValRegIndex = IsRead ? 0 : 1;
5275 
5276   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5277   const LLT Ty = MRI.getType(ValReg);
5278   const MDString *RegStr = cast<MDString>(
5279     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5280 
5281   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5282   if (!PhysReg.isValid())
5283     return UnableToLegalize;
5284 
5285   if (IsRead)
5286     MIRBuilder.buildCopy(ValReg, PhysReg);
5287   else
5288     MIRBuilder.buildCopy(PhysReg, ValReg);
5289 
5290   MI.eraseFromParent();
5291   return Legalized;
5292 }
5293