1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 MachineBasicBlock &MBB = *MI.getParent(); 466 const Function &F = MBB.getParent()->getFunction(); 467 468 // Conservatively require the attributes of the call to match those of 469 // the return. Ignore NoAlias and NonNull because they don't affect the 470 // call sequence. 471 AttributeList CallerAttrs = F.getAttributes(); 472 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 473 .removeAttribute(Attribute::NoAlias) 474 .removeAttribute(Attribute::NonNull) 475 .hasAttributes()) 476 return false; 477 478 // It's not safe to eliminate the sign / zero extension of the return value. 479 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 480 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 481 return false; 482 483 // Only tail call if the following instruction is a standard return. 484 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 MIRBuilder.setInstrAndDebugLoc(MI); 640 641 switch (MI.getOpcode()) { 642 default: 643 return UnableToLegalize; 644 case TargetOpcode::G_SDIV: 645 case TargetOpcode::G_UDIV: 646 case TargetOpcode::G_SREM: 647 case TargetOpcode::G_UREM: 648 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 649 Type *HLTy = IntegerType::get(Ctx, Size); 650 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 651 if (Status != Legalized) 652 return Status; 653 break; 654 } 655 case TargetOpcode::G_FADD: 656 case TargetOpcode::G_FSUB: 657 case TargetOpcode::G_FMUL: 658 case TargetOpcode::G_FDIV: 659 case TargetOpcode::G_FMA: 660 case TargetOpcode::G_FPOW: 661 case TargetOpcode::G_FREM: 662 case TargetOpcode::G_FCOS: 663 case TargetOpcode::G_FSIN: 664 case TargetOpcode::G_FLOG10: 665 case TargetOpcode::G_FLOG: 666 case TargetOpcode::G_FLOG2: 667 case TargetOpcode::G_FEXP: 668 case TargetOpcode::G_FEXP2: 669 case TargetOpcode::G_FCEIL: 670 case TargetOpcode::G_FFLOOR: 671 case TargetOpcode::G_FMINNUM: 672 case TargetOpcode::G_FMAXNUM: 673 case TargetOpcode::G_FSQRT: 674 case TargetOpcode::G_FRINT: 675 case TargetOpcode::G_FNEARBYINT: { 676 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 677 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 678 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 679 return UnableToLegalize; 680 } 681 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 682 if (Status != Legalized) 683 return Status; 684 break; 685 } 686 case TargetOpcode::G_FPEXT: 687 case TargetOpcode::G_FPTRUNC: { 688 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 689 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 690 if (!FromTy || !ToTy) 691 return UnableToLegalize; 692 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_FPTOSI: 698 case TargetOpcode::G_FPTOUI: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 707 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 case TargetOpcode::G_SITOFP: 713 case TargetOpcode::G_UITOFP: { 714 // FIXME: Support other types 715 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 716 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 717 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall( 720 MI, MIRBuilder, 721 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 722 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 } 728 729 MI.eraseFromParent(); 730 return Legalized; 731 } 732 733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 734 unsigned TypeIdx, 735 LLT NarrowTy) { 736 MIRBuilder.setInstrAndDebugLoc(MI); 737 738 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 740 741 switch (MI.getOpcode()) { 742 default: 743 return UnableToLegalize; 744 case TargetOpcode::G_IMPLICIT_DEF: { 745 Register DstReg = MI.getOperand(0).getReg(); 746 LLT DstTy = MRI.getType(DstReg); 747 748 // If SizeOp0 is not an exact multiple of NarrowSize, emit 749 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 750 // FIXME: Although this would also be legal for the general case, it causes 751 // a lot of regressions in the emitted code (superfluous COPYs, artifact 752 // combines not being hit). This seems to be a problem related to the 753 // artifact combiner. 754 if (SizeOp0 % NarrowSize != 0) { 755 LLT ImplicitTy = NarrowTy; 756 if (DstTy.isVector()) 757 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 758 759 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 760 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 761 762 MI.eraseFromParent(); 763 return Legalized; 764 } 765 766 int NumParts = SizeOp0 / NarrowSize; 767 768 SmallVector<Register, 2> DstRegs; 769 for (int i = 0; i < NumParts; ++i) 770 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 771 772 if (DstTy.isVector()) 773 MIRBuilder.buildBuildVector(DstReg, DstRegs); 774 else 775 MIRBuilder.buildMerge(DstReg, DstRegs); 776 MI.eraseFromParent(); 777 return Legalized; 778 } 779 case TargetOpcode::G_CONSTANT: { 780 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 781 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 782 unsigned TotalSize = Ty.getSizeInBits(); 783 unsigned NarrowSize = NarrowTy.getSizeInBits(); 784 int NumParts = TotalSize / NarrowSize; 785 786 SmallVector<Register, 4> PartRegs; 787 for (int I = 0; I != NumParts; ++I) { 788 unsigned Offset = I * NarrowSize; 789 auto K = MIRBuilder.buildConstant(NarrowTy, 790 Val.lshr(Offset).trunc(NarrowSize)); 791 PartRegs.push_back(K.getReg(0)); 792 } 793 794 LLT LeftoverTy; 795 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 796 SmallVector<Register, 1> LeftoverRegs; 797 if (LeftoverBits != 0) { 798 LeftoverTy = LLT::scalar(LeftoverBits); 799 auto K = MIRBuilder.buildConstant( 800 LeftoverTy, 801 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 802 LeftoverRegs.push_back(K.getReg(0)); 803 } 804 805 insertParts(MI.getOperand(0).getReg(), 806 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 case TargetOpcode::G_SEXT: 812 case TargetOpcode::G_ZEXT: 813 case TargetOpcode::G_ANYEXT: 814 return narrowScalarExt(MI, TypeIdx, NarrowTy); 815 case TargetOpcode::G_TRUNC: { 816 if (TypeIdx != 1) 817 return UnableToLegalize; 818 819 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 820 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 821 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 822 return UnableToLegalize; 823 } 824 825 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 826 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 827 MI.eraseFromParent(); 828 return Legalized; 829 } 830 831 case TargetOpcode::G_FREEZE: 832 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 833 834 case TargetOpcode::G_ADD: { 835 // FIXME: add support for when SizeOp0 isn't an exact multiple of 836 // NarrowSize. 837 if (SizeOp0 % NarrowSize != 0) 838 return UnableToLegalize; 839 // Expand in terms of carry-setting/consuming G_ADDE instructions. 840 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 841 842 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 843 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 844 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 845 846 Register CarryIn; 847 for (int i = 0; i < NumParts; ++i) { 848 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 849 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 850 851 if (i == 0) 852 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 853 else { 854 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 855 Src2Regs[i], CarryIn); 856 } 857 858 DstRegs.push_back(DstReg); 859 CarryIn = CarryOut; 860 } 861 Register DstReg = MI.getOperand(0).getReg(); 862 if(MRI.getType(DstReg).isVector()) 863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 864 else 865 MIRBuilder.buildMerge(DstReg, DstRegs); 866 MI.eraseFromParent(); 867 return Legalized; 868 } 869 case TargetOpcode::G_SUB: { 870 // FIXME: add support for when SizeOp0 isn't an exact multiple of 871 // NarrowSize. 872 if (SizeOp0 % NarrowSize != 0) 873 return UnableToLegalize; 874 875 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 876 877 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 878 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 879 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 880 881 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 882 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 883 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 884 {Src1Regs[0], Src2Regs[0]}); 885 DstRegs.push_back(DstReg); 886 Register BorrowIn = BorrowOut; 887 for (int i = 1; i < NumParts; ++i) { 888 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 889 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 890 891 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 892 {Src1Regs[i], Src2Regs[i], BorrowIn}); 893 894 DstRegs.push_back(DstReg); 895 BorrowIn = BorrowOut; 896 } 897 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 898 MI.eraseFromParent(); 899 return Legalized; 900 } 901 case TargetOpcode::G_MUL: 902 case TargetOpcode::G_UMULH: 903 return narrowScalarMul(MI, NarrowTy); 904 case TargetOpcode::G_EXTRACT: 905 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 906 case TargetOpcode::G_INSERT: 907 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 908 case TargetOpcode::G_LOAD: { 909 const auto &MMO = **MI.memoperands_begin(); 910 Register DstReg = MI.getOperand(0).getReg(); 911 LLT DstTy = MRI.getType(DstReg); 912 if (DstTy.isVector()) 913 return UnableToLegalize; 914 915 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 916 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 917 auto &MMO = **MI.memoperands_begin(); 918 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 919 MIRBuilder.buildAnyExt(DstReg, TmpReg); 920 MI.eraseFromParent(); 921 return Legalized; 922 } 923 924 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 925 } 926 case TargetOpcode::G_ZEXTLOAD: 927 case TargetOpcode::G_SEXTLOAD: { 928 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 929 Register DstReg = MI.getOperand(0).getReg(); 930 Register PtrReg = MI.getOperand(1).getReg(); 931 932 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 933 auto &MMO = **MI.memoperands_begin(); 934 if (MMO.getSizeInBits() == NarrowSize) { 935 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 936 } else { 937 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 938 } 939 940 if (ZExt) 941 MIRBuilder.buildZExt(DstReg, TmpReg); 942 else 943 MIRBuilder.buildSExt(DstReg, TmpReg); 944 945 MI.eraseFromParent(); 946 return Legalized; 947 } 948 case TargetOpcode::G_STORE: { 949 const auto &MMO = **MI.memoperands_begin(); 950 951 Register SrcReg = MI.getOperand(0).getReg(); 952 LLT SrcTy = MRI.getType(SrcReg); 953 if (SrcTy.isVector()) 954 return UnableToLegalize; 955 956 int NumParts = SizeOp0 / NarrowSize; 957 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 958 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 959 if (SrcTy.isVector() && LeftoverBits != 0) 960 return UnableToLegalize; 961 962 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 963 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 964 auto &MMO = **MI.memoperands_begin(); 965 MIRBuilder.buildTrunc(TmpReg, SrcReg); 966 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 967 MI.eraseFromParent(); 968 return Legalized; 969 } 970 971 return reduceLoadStoreWidth(MI, 0, NarrowTy); 972 } 973 case TargetOpcode::G_SELECT: 974 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 975 case TargetOpcode::G_AND: 976 case TargetOpcode::G_OR: 977 case TargetOpcode::G_XOR: { 978 // Legalize bitwise operation: 979 // A = BinOp<Ty> B, C 980 // into: 981 // B1, ..., BN = G_UNMERGE_VALUES B 982 // C1, ..., CN = G_UNMERGE_VALUES C 983 // A1 = BinOp<Ty/N> B1, C2 984 // ... 985 // AN = BinOp<Ty/N> BN, CN 986 // A = G_MERGE_VALUES A1, ..., AN 987 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 988 } 989 case TargetOpcode::G_SHL: 990 case TargetOpcode::G_LSHR: 991 case TargetOpcode::G_ASHR: 992 return narrowScalarShift(MI, TypeIdx, NarrowTy); 993 case TargetOpcode::G_CTLZ: 994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 995 case TargetOpcode::G_CTTZ: 996 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 997 case TargetOpcode::G_CTPOP: 998 if (TypeIdx == 1) 999 switch (MI.getOpcode()) { 1000 case TargetOpcode::G_CTLZ: 1001 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1002 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1003 case TargetOpcode::G_CTTZ: 1004 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1005 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1006 case TargetOpcode::G_CTPOP: 1007 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1008 default: 1009 return UnableToLegalize; 1010 } 1011 1012 Observer.changingInstr(MI); 1013 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1014 Observer.changedInstr(MI); 1015 return Legalized; 1016 case TargetOpcode::G_INTTOPTR: 1017 if (TypeIdx != 1) 1018 return UnableToLegalize; 1019 1020 Observer.changingInstr(MI); 1021 narrowScalarSrc(MI, NarrowTy, 1); 1022 Observer.changedInstr(MI); 1023 return Legalized; 1024 case TargetOpcode::G_PTRTOINT: 1025 if (TypeIdx != 0) 1026 return UnableToLegalize; 1027 1028 Observer.changingInstr(MI); 1029 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1030 Observer.changedInstr(MI); 1031 return Legalized; 1032 case TargetOpcode::G_PHI: { 1033 unsigned NumParts = SizeOp0 / NarrowSize; 1034 SmallVector<Register, 2> DstRegs(NumParts); 1035 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1036 Observer.changingInstr(MI); 1037 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1038 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1039 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1040 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1041 SrcRegs[i / 2]); 1042 } 1043 MachineBasicBlock &MBB = *MI.getParent(); 1044 MIRBuilder.setInsertPt(MBB, MI); 1045 for (unsigned i = 0; i < NumParts; ++i) { 1046 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1047 MachineInstrBuilder MIB = 1048 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1049 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1050 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1051 } 1052 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1053 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1054 Observer.changedInstr(MI); 1055 MI.eraseFromParent(); 1056 return Legalized; 1057 } 1058 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1059 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1060 if (TypeIdx != 2) 1061 return UnableToLegalize; 1062 1063 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1064 Observer.changingInstr(MI); 1065 narrowScalarSrc(MI, NarrowTy, OpIdx); 1066 Observer.changedInstr(MI); 1067 return Legalized; 1068 } 1069 case TargetOpcode::G_ICMP: { 1070 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1071 if (NarrowSize * 2 != SrcSize) 1072 return UnableToLegalize; 1073 1074 Observer.changingInstr(MI); 1075 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1078 1079 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1080 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1081 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1082 1083 CmpInst::Predicate Pred = 1084 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1085 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1086 1087 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1088 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1089 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1090 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1091 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1092 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1093 } else { 1094 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1095 MachineInstrBuilder CmpHEQ = 1096 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1097 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1098 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1099 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1100 } 1101 Observer.changedInstr(MI); 1102 MI.eraseFromParent(); 1103 return Legalized; 1104 } 1105 case TargetOpcode::G_SEXT_INREG: { 1106 if (TypeIdx != 0) 1107 return UnableToLegalize; 1108 1109 int64_t SizeInBits = MI.getOperand(2).getImm(); 1110 1111 // So long as the new type has more bits than the bits we're extending we 1112 // don't need to break it apart. 1113 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1114 Observer.changingInstr(MI); 1115 // We don't lose any non-extension bits by truncating the src and 1116 // sign-extending the dst. 1117 MachineOperand &MO1 = MI.getOperand(1); 1118 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1119 MO1.setReg(TruncMIB.getReg(0)); 1120 1121 MachineOperand &MO2 = MI.getOperand(0); 1122 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1123 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1124 MIRBuilder.buildSExt(MO2, DstExt); 1125 MO2.setReg(DstExt); 1126 Observer.changedInstr(MI); 1127 return Legalized; 1128 } 1129 1130 // Break it apart. Components below the extension point are unmodified. The 1131 // component containing the extension point becomes a narrower SEXT_INREG. 1132 // Components above it are ashr'd from the component containing the 1133 // extension point. 1134 if (SizeOp0 % NarrowSize != 0) 1135 return UnableToLegalize; 1136 int NumParts = SizeOp0 / NarrowSize; 1137 1138 // List the registers where the destination will be scattered. 1139 SmallVector<Register, 2> DstRegs; 1140 // List the registers where the source will be split. 1141 SmallVector<Register, 2> SrcRegs; 1142 1143 // Create all the temporary registers. 1144 for (int i = 0; i < NumParts; ++i) { 1145 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1146 1147 SrcRegs.push_back(SrcReg); 1148 } 1149 1150 // Explode the big arguments into smaller chunks. 1151 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1152 1153 Register AshrCstReg = 1154 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1155 .getReg(0); 1156 Register FullExtensionReg = 0; 1157 Register PartialExtensionReg = 0; 1158 1159 // Do the operation on each small part. 1160 for (int i = 0; i < NumParts; ++i) { 1161 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1162 DstRegs.push_back(SrcRegs[i]); 1163 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1164 assert(PartialExtensionReg && 1165 "Expected to visit partial extension before full"); 1166 if (FullExtensionReg) { 1167 DstRegs.push_back(FullExtensionReg); 1168 continue; 1169 } 1170 DstRegs.push_back( 1171 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1172 .getReg(0)); 1173 FullExtensionReg = DstRegs.back(); 1174 } else { 1175 DstRegs.push_back( 1176 MIRBuilder 1177 .buildInstr( 1178 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1179 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1180 .getReg(0)); 1181 PartialExtensionReg = DstRegs.back(); 1182 } 1183 } 1184 1185 // Gather the destination registers into the final destination. 1186 Register DstReg = MI.getOperand(0).getReg(); 1187 MIRBuilder.buildMerge(DstReg, DstRegs); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_BSWAP: 1192 case TargetOpcode::G_BITREVERSE: { 1193 if (SizeOp0 % NarrowSize != 0) 1194 return UnableToLegalize; 1195 1196 Observer.changingInstr(MI); 1197 SmallVector<Register, 2> SrcRegs, DstRegs; 1198 unsigned NumParts = SizeOp0 / NarrowSize; 1199 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1200 1201 for (unsigned i = 0; i < NumParts; ++i) { 1202 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1203 {SrcRegs[NumParts - 1 - i]}); 1204 DstRegs.push_back(DstPart.getReg(0)); 1205 } 1206 1207 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1208 1209 Observer.changedInstr(MI); 1210 MI.eraseFromParent(); 1211 return Legalized; 1212 } 1213 case TargetOpcode::G_PTRMASK: { 1214 if (TypeIdx != 1) 1215 return UnableToLegalize; 1216 Observer.changingInstr(MI); 1217 narrowScalarSrc(MI, NarrowTy, 2); 1218 Observer.changedInstr(MI); 1219 return Legalized; 1220 } 1221 } 1222 } 1223 1224 Register LegalizerHelper::coerceToScalar(Register Val) { 1225 LLT Ty = MRI.getType(Val); 1226 if (Ty.isScalar()) 1227 return Val; 1228 1229 const DataLayout &DL = MIRBuilder.getDataLayout(); 1230 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1231 if (Ty.isPointer()) { 1232 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1233 return Register(); 1234 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1235 } 1236 1237 Register NewVal = Val; 1238 1239 assert(Ty.isVector()); 1240 LLT EltTy = Ty.getElementType(); 1241 if (EltTy.isPointer()) 1242 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1243 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1244 } 1245 1246 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1247 unsigned OpIdx, unsigned ExtOpcode) { 1248 MachineOperand &MO = MI.getOperand(OpIdx); 1249 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1250 MO.setReg(ExtB.getReg(0)); 1251 } 1252 1253 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1254 unsigned OpIdx) { 1255 MachineOperand &MO = MI.getOperand(OpIdx); 1256 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1257 MO.setReg(ExtB.getReg(0)); 1258 } 1259 1260 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1261 unsigned OpIdx, unsigned TruncOpcode) { 1262 MachineOperand &MO = MI.getOperand(OpIdx); 1263 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1264 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1265 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1266 MO.setReg(DstExt); 1267 } 1268 1269 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1270 unsigned OpIdx, unsigned ExtOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1275 MO.setReg(DstTrunc); 1276 } 1277 1278 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1279 unsigned OpIdx) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildExtract(MO, DstExt, 0); 1284 MO.setReg(DstExt); 1285 } 1286 1287 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1288 unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 1291 LLT OldTy = MRI.getType(MO.getReg()); 1292 unsigned OldElts = OldTy.getNumElements(); 1293 unsigned NewElts = MoreTy.getNumElements(); 1294 1295 unsigned NumParts = NewElts / OldElts; 1296 1297 // Use concat_vectors if the result is a multiple of the number of elements. 1298 if (NumParts * OldElts == NewElts) { 1299 SmallVector<Register, 8> Parts; 1300 Parts.push_back(MO.getReg()); 1301 1302 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1303 for (unsigned I = 1; I != NumParts; ++I) 1304 Parts.push_back(ImpDef); 1305 1306 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1307 MO.setReg(Concat.getReg(0)); 1308 return; 1309 } 1310 1311 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1312 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1313 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1314 MO.setReg(MoreReg); 1315 } 1316 1317 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1318 MachineOperand &Op = MI.getOperand(OpIdx); 1319 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1320 } 1321 1322 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1323 MachineOperand &MO = MI.getOperand(OpIdx); 1324 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1325 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1326 MIRBuilder.buildBitcast(MO, CastDst); 1327 MO.setReg(CastDst); 1328 } 1329 1330 LegalizerHelper::LegalizeResult 1331 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1332 LLT WideTy) { 1333 if (TypeIdx != 1) 1334 return UnableToLegalize; 1335 1336 Register DstReg = MI.getOperand(0).getReg(); 1337 LLT DstTy = MRI.getType(DstReg); 1338 if (DstTy.isVector()) 1339 return UnableToLegalize; 1340 1341 Register Src1 = MI.getOperand(1).getReg(); 1342 LLT SrcTy = MRI.getType(Src1); 1343 const int DstSize = DstTy.getSizeInBits(); 1344 const int SrcSize = SrcTy.getSizeInBits(); 1345 const int WideSize = WideTy.getSizeInBits(); 1346 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1347 1348 unsigned NumOps = MI.getNumOperands(); 1349 unsigned NumSrc = MI.getNumOperands() - 1; 1350 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1351 1352 if (WideSize >= DstSize) { 1353 // Directly pack the bits in the target type. 1354 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1355 1356 for (unsigned I = 2; I != NumOps; ++I) { 1357 const unsigned Offset = (I - 1) * PartSize; 1358 1359 Register SrcReg = MI.getOperand(I).getReg(); 1360 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1361 1362 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1363 1364 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1365 MRI.createGenericVirtualRegister(WideTy); 1366 1367 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1368 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1369 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1370 ResultReg = NextResult; 1371 } 1372 1373 if (WideSize > DstSize) 1374 MIRBuilder.buildTrunc(DstReg, ResultReg); 1375 else if (DstTy.isPointer()) 1376 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1377 1378 MI.eraseFromParent(); 1379 return Legalized; 1380 } 1381 1382 // Unmerge the original values to the GCD type, and recombine to the next 1383 // multiple greater than the original type. 1384 // 1385 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1386 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1387 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1388 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1389 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1390 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1391 // %12:_(s12) = G_MERGE_VALUES %10, %11 1392 // 1393 // Padding with undef if necessary: 1394 // 1395 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1396 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1397 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1398 // %7:_(s2) = G_IMPLICIT_DEF 1399 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1400 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1401 // %10:_(s12) = G_MERGE_VALUES %8, %9 1402 1403 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1404 LLT GCDTy = LLT::scalar(GCD); 1405 1406 SmallVector<Register, 8> Parts; 1407 SmallVector<Register, 8> NewMergeRegs; 1408 SmallVector<Register, 8> Unmerges; 1409 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1410 1411 // Decompose the original operands if they don't evenly divide. 1412 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1413 Register SrcReg = MI.getOperand(I).getReg(); 1414 if (GCD == SrcSize) { 1415 Unmerges.push_back(SrcReg); 1416 } else { 1417 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1418 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1419 Unmerges.push_back(Unmerge.getReg(J)); 1420 } 1421 } 1422 1423 // Pad with undef to the next size that is a multiple of the requested size. 1424 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1425 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1426 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1427 Unmerges.push_back(UndefReg); 1428 } 1429 1430 const int PartsPerGCD = WideSize / GCD; 1431 1432 // Build merges of each piece. 1433 ArrayRef<Register> Slicer(Unmerges); 1434 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1435 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1436 NewMergeRegs.push_back(Merge.getReg(0)); 1437 } 1438 1439 // A truncate may be necessary if the requested type doesn't evenly divide the 1440 // original result type. 1441 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1442 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1443 } else { 1444 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1445 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1446 } 1447 1448 MI.eraseFromParent(); 1449 return Legalized; 1450 } 1451 1452 LegalizerHelper::LegalizeResult 1453 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1454 LLT WideTy) { 1455 if (TypeIdx != 0) 1456 return UnableToLegalize; 1457 1458 int NumDst = MI.getNumOperands() - 1; 1459 Register SrcReg = MI.getOperand(NumDst).getReg(); 1460 LLT SrcTy = MRI.getType(SrcReg); 1461 if (SrcTy.isVector()) 1462 return UnableToLegalize; 1463 1464 Register Dst0Reg = MI.getOperand(0).getReg(); 1465 LLT DstTy = MRI.getType(Dst0Reg); 1466 if (!DstTy.isScalar()) 1467 return UnableToLegalize; 1468 1469 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1470 if (SrcTy.isPointer()) { 1471 const DataLayout &DL = MIRBuilder.getDataLayout(); 1472 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1473 LLVM_DEBUG( 1474 dbgs() << "Not casting non-integral address space integer\n"); 1475 return UnableToLegalize; 1476 } 1477 1478 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1479 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1480 } 1481 1482 // Widen SrcTy to WideTy. This does not affect the result, but since the 1483 // user requested this size, it is probably better handled than SrcTy and 1484 // should reduce the total number of legalization artifacts 1485 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1486 SrcTy = WideTy; 1487 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1488 } 1489 1490 // Theres no unmerge type to target. Directly extract the bits from the 1491 // source type 1492 unsigned DstSize = DstTy.getSizeInBits(); 1493 1494 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1495 for (int I = 1; I != NumDst; ++I) { 1496 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1497 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1498 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1499 } 1500 1501 MI.eraseFromParent(); 1502 return Legalized; 1503 } 1504 1505 // Extend the source to a wider type. 1506 LLT LCMTy = getLCMType(SrcTy, WideTy); 1507 1508 Register WideSrc = SrcReg; 1509 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1510 // TODO: If this is an integral address space, cast to integer and anyext. 1511 if (SrcTy.isPointer()) { 1512 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1513 return UnableToLegalize; 1514 } 1515 1516 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1517 } 1518 1519 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1520 1521 // Create a sequence of unmerges to the original results. since we may have 1522 // widened the source, we will need to pad the results with dead defs to cover 1523 // the source register. 1524 // e.g. widen s16 to s32: 1525 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1526 // 1527 // => 1528 // %4:_(s64) = G_ANYEXT %0:_(s48) 1529 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1530 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1531 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1532 1533 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1534 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1535 1536 for (int I = 0; I != NumUnmerge; ++I) { 1537 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1538 1539 for (int J = 0; J != PartsPerUnmerge; ++J) { 1540 int Idx = I * PartsPerUnmerge + J; 1541 if (Idx < NumDst) 1542 MIB.addDef(MI.getOperand(Idx).getReg()); 1543 else { 1544 // Create dead def for excess components. 1545 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1546 } 1547 } 1548 1549 MIB.addUse(Unmerge.getReg(I)); 1550 } 1551 1552 MI.eraseFromParent(); 1553 return Legalized; 1554 } 1555 1556 LegalizerHelper::LegalizeResult 1557 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1558 LLT WideTy) { 1559 Register DstReg = MI.getOperand(0).getReg(); 1560 Register SrcReg = MI.getOperand(1).getReg(); 1561 LLT SrcTy = MRI.getType(SrcReg); 1562 1563 LLT DstTy = MRI.getType(DstReg); 1564 unsigned Offset = MI.getOperand(2).getImm(); 1565 1566 if (TypeIdx == 0) { 1567 if (SrcTy.isVector() || DstTy.isVector()) 1568 return UnableToLegalize; 1569 1570 SrcOp Src(SrcReg); 1571 if (SrcTy.isPointer()) { 1572 // Extracts from pointers can be handled only if they are really just 1573 // simple integers. 1574 const DataLayout &DL = MIRBuilder.getDataLayout(); 1575 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1576 return UnableToLegalize; 1577 1578 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1579 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1580 SrcTy = SrcAsIntTy; 1581 } 1582 1583 if (DstTy.isPointer()) 1584 return UnableToLegalize; 1585 1586 if (Offset == 0) { 1587 // Avoid a shift in the degenerate case. 1588 MIRBuilder.buildTrunc(DstReg, 1589 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1590 MI.eraseFromParent(); 1591 return Legalized; 1592 } 1593 1594 // Do a shift in the source type. 1595 LLT ShiftTy = SrcTy; 1596 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1597 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1598 ShiftTy = WideTy; 1599 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1600 return UnableToLegalize; 1601 1602 auto LShr = MIRBuilder.buildLShr( 1603 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1604 MIRBuilder.buildTrunc(DstReg, LShr); 1605 MI.eraseFromParent(); 1606 return Legalized; 1607 } 1608 1609 if (SrcTy.isScalar()) { 1610 Observer.changingInstr(MI); 1611 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1612 Observer.changedInstr(MI); 1613 return Legalized; 1614 } 1615 1616 if (!SrcTy.isVector()) 1617 return UnableToLegalize; 1618 1619 if (DstTy != SrcTy.getElementType()) 1620 return UnableToLegalize; 1621 1622 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1623 return UnableToLegalize; 1624 1625 Observer.changingInstr(MI); 1626 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1627 1628 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1629 Offset); 1630 widenScalarDst(MI, WideTy.getScalarType(), 0); 1631 Observer.changedInstr(MI); 1632 return Legalized; 1633 } 1634 1635 LegalizerHelper::LegalizeResult 1636 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1637 LLT WideTy) { 1638 if (TypeIdx != 0) 1639 return UnableToLegalize; 1640 Observer.changingInstr(MI); 1641 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1642 widenScalarDst(MI, WideTy); 1643 Observer.changedInstr(MI); 1644 return Legalized; 1645 } 1646 1647 LegalizerHelper::LegalizeResult 1648 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1649 MIRBuilder.setInstrAndDebugLoc(MI); 1650 1651 switch (MI.getOpcode()) { 1652 default: 1653 return UnableToLegalize; 1654 case TargetOpcode::G_EXTRACT: 1655 return widenScalarExtract(MI, TypeIdx, WideTy); 1656 case TargetOpcode::G_INSERT: 1657 return widenScalarInsert(MI, TypeIdx, WideTy); 1658 case TargetOpcode::G_MERGE_VALUES: 1659 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1660 case TargetOpcode::G_UNMERGE_VALUES: 1661 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1662 case TargetOpcode::G_UADDO: 1663 case TargetOpcode::G_USUBO: { 1664 if (TypeIdx == 1) 1665 return UnableToLegalize; // TODO 1666 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1667 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1668 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1669 ? TargetOpcode::G_ADD 1670 : TargetOpcode::G_SUB; 1671 // Do the arithmetic in the larger type. 1672 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1673 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1674 APInt Mask = 1675 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1676 auto AndOp = MIRBuilder.buildAnd( 1677 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1678 // There is no overflow if the AndOp is the same as NewOp. 1679 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1680 // Now trunc the NewOp to the original result. 1681 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1682 MI.eraseFromParent(); 1683 return Legalized; 1684 } 1685 case TargetOpcode::G_CTTZ: 1686 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1687 case TargetOpcode::G_CTLZ: 1688 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1689 case TargetOpcode::G_CTPOP: { 1690 if (TypeIdx == 0) { 1691 Observer.changingInstr(MI); 1692 widenScalarDst(MI, WideTy, 0); 1693 Observer.changedInstr(MI); 1694 return Legalized; 1695 } 1696 1697 Register SrcReg = MI.getOperand(1).getReg(); 1698 1699 // First ZEXT the input. 1700 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1701 LLT CurTy = MRI.getType(SrcReg); 1702 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1703 // The count is the same in the larger type except if the original 1704 // value was zero. This can be handled by setting the bit just off 1705 // the top of the original type. 1706 auto TopBit = 1707 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1708 MIBSrc = MIRBuilder.buildOr( 1709 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1710 } 1711 1712 // Perform the operation at the larger size. 1713 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1714 // This is already the correct result for CTPOP and CTTZs 1715 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1716 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1717 // The correct result is NewOp - (Difference in widety and current ty). 1718 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1719 MIBNewOp = MIRBuilder.buildSub( 1720 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1721 } 1722 1723 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1724 MI.eraseFromParent(); 1725 return Legalized; 1726 } 1727 case TargetOpcode::G_BSWAP: { 1728 Observer.changingInstr(MI); 1729 Register DstReg = MI.getOperand(0).getReg(); 1730 1731 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1732 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1733 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1734 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1735 1736 MI.getOperand(0).setReg(DstExt); 1737 1738 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1739 1740 LLT Ty = MRI.getType(DstReg); 1741 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1742 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1743 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1744 1745 MIRBuilder.buildTrunc(DstReg, ShrReg); 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 } 1749 case TargetOpcode::G_BITREVERSE: { 1750 Observer.changingInstr(MI); 1751 1752 Register DstReg = MI.getOperand(0).getReg(); 1753 LLT Ty = MRI.getType(DstReg); 1754 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1755 1756 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1757 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1758 MI.getOperand(0).setReg(DstExt); 1759 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1760 1761 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1762 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1763 MIRBuilder.buildTrunc(DstReg, Shift); 1764 Observer.changedInstr(MI); 1765 return Legalized; 1766 } 1767 case TargetOpcode::G_FREEZE: 1768 Observer.changingInstr(MI); 1769 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1770 widenScalarDst(MI, WideTy); 1771 Observer.changedInstr(MI); 1772 return Legalized; 1773 1774 case TargetOpcode::G_ADD: 1775 case TargetOpcode::G_AND: 1776 case TargetOpcode::G_MUL: 1777 case TargetOpcode::G_OR: 1778 case TargetOpcode::G_XOR: 1779 case TargetOpcode::G_SUB: 1780 // Perform operation at larger width (any extension is fines here, high bits 1781 // don't affect the result) and then truncate the result back to the 1782 // original type. 1783 Observer.changingInstr(MI); 1784 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1785 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1786 widenScalarDst(MI, WideTy); 1787 Observer.changedInstr(MI); 1788 return Legalized; 1789 1790 case TargetOpcode::G_SHL: 1791 Observer.changingInstr(MI); 1792 1793 if (TypeIdx == 0) { 1794 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1795 widenScalarDst(MI, WideTy); 1796 } else { 1797 assert(TypeIdx == 1); 1798 // The "number of bits to shift" operand must preserve its value as an 1799 // unsigned integer: 1800 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1801 } 1802 1803 Observer.changedInstr(MI); 1804 return Legalized; 1805 1806 case TargetOpcode::G_SDIV: 1807 case TargetOpcode::G_SREM: 1808 case TargetOpcode::G_SMIN: 1809 case TargetOpcode::G_SMAX: 1810 Observer.changingInstr(MI); 1811 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1812 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1813 widenScalarDst(MI, WideTy); 1814 Observer.changedInstr(MI); 1815 return Legalized; 1816 1817 case TargetOpcode::G_ASHR: 1818 case TargetOpcode::G_LSHR: 1819 Observer.changingInstr(MI); 1820 1821 if (TypeIdx == 0) { 1822 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1823 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1824 1825 widenScalarSrc(MI, WideTy, 1, CvtOp); 1826 widenScalarDst(MI, WideTy); 1827 } else { 1828 assert(TypeIdx == 1); 1829 // The "number of bits to shift" operand must preserve its value as an 1830 // unsigned integer: 1831 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1832 } 1833 1834 Observer.changedInstr(MI); 1835 return Legalized; 1836 case TargetOpcode::G_UDIV: 1837 case TargetOpcode::G_UREM: 1838 case TargetOpcode::G_UMIN: 1839 case TargetOpcode::G_UMAX: 1840 Observer.changingInstr(MI); 1841 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1842 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1843 widenScalarDst(MI, WideTy); 1844 Observer.changedInstr(MI); 1845 return Legalized; 1846 1847 case TargetOpcode::G_SELECT: 1848 Observer.changingInstr(MI); 1849 if (TypeIdx == 0) { 1850 // Perform operation at larger width (any extension is fine here, high 1851 // bits don't affect the result) and then truncate the result back to the 1852 // original type. 1853 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1854 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1855 widenScalarDst(MI, WideTy); 1856 } else { 1857 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1858 // Explicit extension is required here since high bits affect the result. 1859 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1860 } 1861 Observer.changedInstr(MI); 1862 return Legalized; 1863 1864 case TargetOpcode::G_FPTOSI: 1865 case TargetOpcode::G_FPTOUI: 1866 Observer.changingInstr(MI); 1867 1868 if (TypeIdx == 0) 1869 widenScalarDst(MI, WideTy); 1870 else 1871 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1872 1873 Observer.changedInstr(MI); 1874 return Legalized; 1875 case TargetOpcode::G_SITOFP: 1876 if (TypeIdx != 1) 1877 return UnableToLegalize; 1878 Observer.changingInstr(MI); 1879 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 1883 case TargetOpcode::G_UITOFP: 1884 if (TypeIdx != 1) 1885 return UnableToLegalize; 1886 Observer.changingInstr(MI); 1887 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 1891 case TargetOpcode::G_LOAD: 1892 case TargetOpcode::G_SEXTLOAD: 1893 case TargetOpcode::G_ZEXTLOAD: 1894 Observer.changingInstr(MI); 1895 widenScalarDst(MI, WideTy); 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 1899 case TargetOpcode::G_STORE: { 1900 if (TypeIdx != 0) 1901 return UnableToLegalize; 1902 1903 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1904 if (!isPowerOf2_32(Ty.getSizeInBits())) 1905 return UnableToLegalize; 1906 1907 Observer.changingInstr(MI); 1908 1909 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1910 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1911 widenScalarSrc(MI, WideTy, 0, ExtType); 1912 1913 Observer.changedInstr(MI); 1914 return Legalized; 1915 } 1916 case TargetOpcode::G_CONSTANT: { 1917 MachineOperand &SrcMO = MI.getOperand(1); 1918 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1919 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1920 MRI.getType(MI.getOperand(0).getReg())); 1921 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1922 ExtOpc == TargetOpcode::G_ANYEXT) && 1923 "Illegal Extend"); 1924 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1925 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1926 ? SrcVal.sext(WideTy.getSizeInBits()) 1927 : SrcVal.zext(WideTy.getSizeInBits()); 1928 Observer.changingInstr(MI); 1929 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1930 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_FCONSTANT: { 1936 MachineOperand &SrcMO = MI.getOperand(1); 1937 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1938 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1939 bool LosesInfo; 1940 switch (WideTy.getSizeInBits()) { 1941 case 32: 1942 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1943 &LosesInfo); 1944 break; 1945 case 64: 1946 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1947 &LosesInfo); 1948 break; 1949 default: 1950 return UnableToLegalize; 1951 } 1952 1953 assert(!LosesInfo && "extend should always be lossless"); 1954 1955 Observer.changingInstr(MI); 1956 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1957 1958 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 } 1962 case TargetOpcode::G_IMPLICIT_DEF: { 1963 Observer.changingInstr(MI); 1964 widenScalarDst(MI, WideTy); 1965 Observer.changedInstr(MI); 1966 return Legalized; 1967 } 1968 case TargetOpcode::G_BRCOND: 1969 Observer.changingInstr(MI); 1970 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1971 Observer.changedInstr(MI); 1972 return Legalized; 1973 1974 case TargetOpcode::G_FCMP: 1975 Observer.changingInstr(MI); 1976 if (TypeIdx == 0) 1977 widenScalarDst(MI, WideTy); 1978 else { 1979 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1980 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1981 } 1982 Observer.changedInstr(MI); 1983 return Legalized; 1984 1985 case TargetOpcode::G_ICMP: 1986 Observer.changingInstr(MI); 1987 if (TypeIdx == 0) 1988 widenScalarDst(MI, WideTy); 1989 else { 1990 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1991 MI.getOperand(1).getPredicate())) 1992 ? TargetOpcode::G_SEXT 1993 : TargetOpcode::G_ZEXT; 1994 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1995 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1996 } 1997 Observer.changedInstr(MI); 1998 return Legalized; 1999 2000 case TargetOpcode::G_PTR_ADD: 2001 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2002 Observer.changingInstr(MI); 2003 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 2007 case TargetOpcode::G_PHI: { 2008 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2009 2010 Observer.changingInstr(MI); 2011 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2012 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2013 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2014 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2015 } 2016 2017 MachineBasicBlock &MBB = *MI.getParent(); 2018 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2019 widenScalarDst(MI, WideTy); 2020 Observer.changedInstr(MI); 2021 return Legalized; 2022 } 2023 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2024 if (TypeIdx == 0) { 2025 Register VecReg = MI.getOperand(1).getReg(); 2026 LLT VecTy = MRI.getType(VecReg); 2027 Observer.changingInstr(MI); 2028 2029 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2030 WideTy.getSizeInBits()), 2031 1, TargetOpcode::G_SEXT); 2032 2033 widenScalarDst(MI, WideTy, 0); 2034 Observer.changedInstr(MI); 2035 return Legalized; 2036 } 2037 2038 if (TypeIdx != 2) 2039 return UnableToLegalize; 2040 Observer.changingInstr(MI); 2041 // TODO: Probably should be zext 2042 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2043 Observer.changedInstr(MI); 2044 return Legalized; 2045 } 2046 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2047 if (TypeIdx == 1) { 2048 Observer.changingInstr(MI); 2049 2050 Register VecReg = MI.getOperand(1).getReg(); 2051 LLT VecTy = MRI.getType(VecReg); 2052 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2053 2054 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2055 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2056 widenScalarDst(MI, WideVecTy, 0); 2057 Observer.changedInstr(MI); 2058 return Legalized; 2059 } 2060 2061 if (TypeIdx == 2) { 2062 Observer.changingInstr(MI); 2063 // TODO: Probably should be zext 2064 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2065 Observer.changedInstr(MI); 2066 } 2067 2068 return Legalized; 2069 } 2070 case TargetOpcode::G_FADD: 2071 case TargetOpcode::G_FMUL: 2072 case TargetOpcode::G_FSUB: 2073 case TargetOpcode::G_FMA: 2074 case TargetOpcode::G_FMAD: 2075 case TargetOpcode::G_FNEG: 2076 case TargetOpcode::G_FABS: 2077 case TargetOpcode::G_FCANONICALIZE: 2078 case TargetOpcode::G_FMINNUM: 2079 case TargetOpcode::G_FMAXNUM: 2080 case TargetOpcode::G_FMINNUM_IEEE: 2081 case TargetOpcode::G_FMAXNUM_IEEE: 2082 case TargetOpcode::G_FMINIMUM: 2083 case TargetOpcode::G_FMAXIMUM: 2084 case TargetOpcode::G_FDIV: 2085 case TargetOpcode::G_FREM: 2086 case TargetOpcode::G_FCEIL: 2087 case TargetOpcode::G_FFLOOR: 2088 case TargetOpcode::G_FCOS: 2089 case TargetOpcode::G_FSIN: 2090 case TargetOpcode::G_FLOG10: 2091 case TargetOpcode::G_FLOG: 2092 case TargetOpcode::G_FLOG2: 2093 case TargetOpcode::G_FRINT: 2094 case TargetOpcode::G_FNEARBYINT: 2095 case TargetOpcode::G_FSQRT: 2096 case TargetOpcode::G_FEXP: 2097 case TargetOpcode::G_FEXP2: 2098 case TargetOpcode::G_FPOW: 2099 case TargetOpcode::G_INTRINSIC_TRUNC: 2100 case TargetOpcode::G_INTRINSIC_ROUND: 2101 assert(TypeIdx == 0); 2102 Observer.changingInstr(MI); 2103 2104 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2105 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2106 2107 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 case TargetOpcode::G_INTTOPTR: 2111 if (TypeIdx != 1) 2112 return UnableToLegalize; 2113 2114 Observer.changingInstr(MI); 2115 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2116 Observer.changedInstr(MI); 2117 return Legalized; 2118 case TargetOpcode::G_PTRTOINT: 2119 if (TypeIdx != 0) 2120 return UnableToLegalize; 2121 2122 Observer.changingInstr(MI); 2123 widenScalarDst(MI, WideTy, 0); 2124 Observer.changedInstr(MI); 2125 return Legalized; 2126 case TargetOpcode::G_BUILD_VECTOR: { 2127 Observer.changingInstr(MI); 2128 2129 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2130 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2131 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2132 2133 // Avoid changing the result vector type if the source element type was 2134 // requested. 2135 if (TypeIdx == 1) { 2136 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2137 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2138 } else { 2139 widenScalarDst(MI, WideTy, 0); 2140 } 2141 2142 Observer.changedInstr(MI); 2143 return Legalized; 2144 } 2145 case TargetOpcode::G_SEXT_INREG: 2146 if (TypeIdx != 0) 2147 return UnableToLegalize; 2148 2149 Observer.changingInstr(MI); 2150 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2151 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 case TargetOpcode::G_PTRMASK: { 2155 if (TypeIdx != 1) 2156 return UnableToLegalize; 2157 Observer.changingInstr(MI); 2158 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2159 Observer.changedInstr(MI); 2160 return Legalized; 2161 } 2162 } 2163 } 2164 2165 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2166 MachineIRBuilder &B, Register Src, LLT Ty) { 2167 auto Unmerge = B.buildUnmerge(Ty, Src); 2168 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2169 Pieces.push_back(Unmerge.getReg(I)); 2170 } 2171 2172 LegalizerHelper::LegalizeResult 2173 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2174 Register Dst = MI.getOperand(0).getReg(); 2175 Register Src = MI.getOperand(1).getReg(); 2176 LLT DstTy = MRI.getType(Dst); 2177 LLT SrcTy = MRI.getType(Src); 2178 2179 if (SrcTy.isVector() && !DstTy.isVector()) { 2180 SmallVector<Register, 8> SrcRegs; 2181 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2182 MIRBuilder.buildMerge(Dst, SrcRegs); 2183 MI.eraseFromParent(); 2184 return Legalized; 2185 } 2186 2187 if (DstTy.isVector() && !SrcTy.isVector()) { 2188 SmallVector<Register, 8> SrcRegs; 2189 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2190 MIRBuilder.buildMerge(Dst, SrcRegs); 2191 MI.eraseFromParent(); 2192 return Legalized; 2193 } 2194 2195 return UnableToLegalize; 2196 } 2197 2198 LegalizerHelper::LegalizeResult 2199 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2200 MIRBuilder.setInstr(MI); 2201 2202 switch (MI.getOpcode()) { 2203 case TargetOpcode::G_LOAD: { 2204 if (TypeIdx != 0) 2205 return UnableToLegalize; 2206 2207 Observer.changingInstr(MI); 2208 bitcastDst(MI, CastTy, 0); 2209 Observer.changedInstr(MI); 2210 return Legalized; 2211 } 2212 case TargetOpcode::G_STORE: { 2213 if (TypeIdx != 0) 2214 return UnableToLegalize; 2215 2216 Observer.changingInstr(MI); 2217 bitcastSrc(MI, CastTy, 0); 2218 Observer.changedInstr(MI); 2219 return Legalized; 2220 } 2221 case TargetOpcode::G_SELECT: { 2222 if (TypeIdx != 0) 2223 return UnableToLegalize; 2224 2225 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2226 LLVM_DEBUG( 2227 dbgs() << "bitcast action not implemented for vector select\n"); 2228 return UnableToLegalize; 2229 } 2230 2231 Observer.changingInstr(MI); 2232 bitcastSrc(MI, CastTy, 2); 2233 bitcastSrc(MI, CastTy, 3); 2234 bitcastDst(MI, CastTy, 0); 2235 Observer.changedInstr(MI); 2236 return Legalized; 2237 } 2238 case TargetOpcode::G_AND: 2239 case TargetOpcode::G_OR: 2240 case TargetOpcode::G_XOR: { 2241 Observer.changingInstr(MI); 2242 bitcastSrc(MI, CastTy, 1); 2243 bitcastSrc(MI, CastTy, 2); 2244 bitcastDst(MI, CastTy, 0); 2245 Observer.changedInstr(MI); 2246 return Legalized; 2247 } 2248 default: 2249 return UnableToLegalize; 2250 } 2251 } 2252 2253 LegalizerHelper::LegalizeResult 2254 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2255 using namespace TargetOpcode; 2256 MIRBuilder.setInstrAndDebugLoc(MI); 2257 2258 switch(MI.getOpcode()) { 2259 default: 2260 return UnableToLegalize; 2261 case TargetOpcode::G_BITCAST: 2262 return lowerBitcast(MI); 2263 case TargetOpcode::G_SREM: 2264 case TargetOpcode::G_UREM: { 2265 auto Quot = 2266 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2267 {MI.getOperand(1), MI.getOperand(2)}); 2268 2269 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2270 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2271 MI.eraseFromParent(); 2272 return Legalized; 2273 } 2274 case TargetOpcode::G_SADDO: 2275 case TargetOpcode::G_SSUBO: 2276 return lowerSADDO_SSUBO(MI); 2277 case TargetOpcode::G_SMULO: 2278 case TargetOpcode::G_UMULO: { 2279 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2280 // result. 2281 Register Res = MI.getOperand(0).getReg(); 2282 Register Overflow = MI.getOperand(1).getReg(); 2283 Register LHS = MI.getOperand(2).getReg(); 2284 Register RHS = MI.getOperand(3).getReg(); 2285 2286 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2287 ? TargetOpcode::G_SMULH 2288 : TargetOpcode::G_UMULH; 2289 2290 Observer.changingInstr(MI); 2291 const auto &TII = MIRBuilder.getTII(); 2292 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2293 MI.RemoveOperand(1); 2294 Observer.changedInstr(MI); 2295 2296 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2297 2298 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2299 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2300 2301 // For *signed* multiply, overflow is detected by checking: 2302 // (hi != (lo >> bitwidth-1)) 2303 if (Opcode == TargetOpcode::G_SMULH) { 2304 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2305 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2306 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2307 } else { 2308 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2309 } 2310 return Legalized; 2311 } 2312 case TargetOpcode::G_FNEG: { 2313 // TODO: Handle vector types once we are able to 2314 // represent them. 2315 if (Ty.isVector()) 2316 return UnableToLegalize; 2317 Register Res = MI.getOperand(0).getReg(); 2318 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2319 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2320 if (!ZeroTy) 2321 return UnableToLegalize; 2322 ConstantFP &ZeroForNegation = 2323 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2324 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2325 Register SubByReg = MI.getOperand(1).getReg(); 2326 Register ZeroReg = Zero.getReg(0); 2327 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2328 MI.eraseFromParent(); 2329 return Legalized; 2330 } 2331 case TargetOpcode::G_FSUB: { 2332 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2333 // First, check if G_FNEG is marked as Lower. If so, we may 2334 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2335 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2336 return UnableToLegalize; 2337 Register Res = MI.getOperand(0).getReg(); 2338 Register LHS = MI.getOperand(1).getReg(); 2339 Register RHS = MI.getOperand(2).getReg(); 2340 Register Neg = MRI.createGenericVirtualRegister(Ty); 2341 MIRBuilder.buildFNeg(Neg, RHS); 2342 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2343 MI.eraseFromParent(); 2344 return Legalized; 2345 } 2346 case TargetOpcode::G_FMAD: 2347 return lowerFMad(MI); 2348 case TargetOpcode::G_FFLOOR: 2349 return lowerFFloor(MI); 2350 case TargetOpcode::G_INTRINSIC_ROUND: 2351 return lowerIntrinsicRound(MI); 2352 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2353 Register OldValRes = MI.getOperand(0).getReg(); 2354 Register SuccessRes = MI.getOperand(1).getReg(); 2355 Register Addr = MI.getOperand(2).getReg(); 2356 Register CmpVal = MI.getOperand(3).getReg(); 2357 Register NewVal = MI.getOperand(4).getReg(); 2358 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2359 **MI.memoperands_begin()); 2360 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2361 MI.eraseFromParent(); 2362 return Legalized; 2363 } 2364 case TargetOpcode::G_LOAD: 2365 case TargetOpcode::G_SEXTLOAD: 2366 case TargetOpcode::G_ZEXTLOAD: { 2367 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2368 Register DstReg = MI.getOperand(0).getReg(); 2369 Register PtrReg = MI.getOperand(1).getReg(); 2370 LLT DstTy = MRI.getType(DstReg); 2371 auto &MMO = **MI.memoperands_begin(); 2372 2373 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2374 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2375 // This load needs splitting into power of 2 sized loads. 2376 if (DstTy.isVector()) 2377 return UnableToLegalize; 2378 if (isPowerOf2_32(DstTy.getSizeInBits())) 2379 return UnableToLegalize; // Don't know what we're being asked to do. 2380 2381 // Our strategy here is to generate anyextending loads for the smaller 2382 // types up to next power-2 result type, and then combine the two larger 2383 // result values together, before truncating back down to the non-pow-2 2384 // type. 2385 // E.g. v1 = i24 load => 2386 // v2 = i32 zextload (2 byte) 2387 // v3 = i32 load (1 byte) 2388 // v4 = i32 shl v3, 16 2389 // v5 = i32 or v4, v2 2390 // v1 = i24 trunc v5 2391 // By doing this we generate the correct truncate which should get 2392 // combined away as an artifact with a matching extend. 2393 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2394 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2395 2396 MachineFunction &MF = MIRBuilder.getMF(); 2397 MachineMemOperand *LargeMMO = 2398 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2399 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2400 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2401 2402 LLT PtrTy = MRI.getType(PtrReg); 2403 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2404 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2405 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2406 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2407 auto LargeLoad = MIRBuilder.buildLoadInstr( 2408 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2409 2410 auto OffsetCst = MIRBuilder.buildConstant( 2411 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2412 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2413 auto SmallPtr = 2414 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2415 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2416 *SmallMMO); 2417 2418 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2419 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2420 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2421 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2422 MI.eraseFromParent(); 2423 return Legalized; 2424 } 2425 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2426 MI.eraseFromParent(); 2427 return Legalized; 2428 } 2429 2430 if (DstTy.isScalar()) { 2431 Register TmpReg = 2432 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2433 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2434 switch (MI.getOpcode()) { 2435 default: 2436 llvm_unreachable("Unexpected opcode"); 2437 case TargetOpcode::G_LOAD: 2438 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2439 break; 2440 case TargetOpcode::G_SEXTLOAD: 2441 MIRBuilder.buildSExt(DstReg, TmpReg); 2442 break; 2443 case TargetOpcode::G_ZEXTLOAD: 2444 MIRBuilder.buildZExt(DstReg, TmpReg); 2445 break; 2446 } 2447 MI.eraseFromParent(); 2448 return Legalized; 2449 } 2450 2451 return UnableToLegalize; 2452 } 2453 case TargetOpcode::G_STORE: { 2454 // Lower a non-power of 2 store into multiple pow-2 stores. 2455 // E.g. split an i24 store into an i16 store + i8 store. 2456 // We do this by first extending the stored value to the next largest power 2457 // of 2 type, and then using truncating stores to store the components. 2458 // By doing this, likewise with G_LOAD, generate an extend that can be 2459 // artifact-combined away instead of leaving behind extracts. 2460 Register SrcReg = MI.getOperand(0).getReg(); 2461 Register PtrReg = MI.getOperand(1).getReg(); 2462 LLT SrcTy = MRI.getType(SrcReg); 2463 MachineMemOperand &MMO = **MI.memoperands_begin(); 2464 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2465 return UnableToLegalize; 2466 if (SrcTy.isVector()) 2467 return UnableToLegalize; 2468 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2469 return UnableToLegalize; // Don't know what we're being asked to do. 2470 2471 // Extend to the next pow-2. 2472 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2473 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2474 2475 // Obtain the smaller value by shifting away the larger value. 2476 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2477 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2478 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2479 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2480 2481 // Generate the PtrAdd and truncating stores. 2482 LLT PtrTy = MRI.getType(PtrReg); 2483 auto OffsetCst = MIRBuilder.buildConstant( 2484 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2485 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2486 auto SmallPtr = 2487 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2488 2489 MachineFunction &MF = MIRBuilder.getMF(); 2490 MachineMemOperand *LargeMMO = 2491 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2492 MachineMemOperand *SmallMMO = 2493 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2494 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2495 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2496 MI.eraseFromParent(); 2497 return Legalized; 2498 } 2499 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2500 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2501 case TargetOpcode::G_CTLZ: 2502 case TargetOpcode::G_CTTZ: 2503 case TargetOpcode::G_CTPOP: 2504 return lowerBitCount(MI, TypeIdx, Ty); 2505 case G_UADDO: { 2506 Register Res = MI.getOperand(0).getReg(); 2507 Register CarryOut = MI.getOperand(1).getReg(); 2508 Register LHS = MI.getOperand(2).getReg(); 2509 Register RHS = MI.getOperand(3).getReg(); 2510 2511 MIRBuilder.buildAdd(Res, LHS, RHS); 2512 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2513 2514 MI.eraseFromParent(); 2515 return Legalized; 2516 } 2517 case G_UADDE: { 2518 Register Res = MI.getOperand(0).getReg(); 2519 Register CarryOut = MI.getOperand(1).getReg(); 2520 Register LHS = MI.getOperand(2).getReg(); 2521 Register RHS = MI.getOperand(3).getReg(); 2522 Register CarryIn = MI.getOperand(4).getReg(); 2523 LLT Ty = MRI.getType(Res); 2524 2525 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2526 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2527 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2528 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2529 2530 MI.eraseFromParent(); 2531 return Legalized; 2532 } 2533 case G_USUBO: { 2534 Register Res = MI.getOperand(0).getReg(); 2535 Register BorrowOut = MI.getOperand(1).getReg(); 2536 Register LHS = MI.getOperand(2).getReg(); 2537 Register RHS = MI.getOperand(3).getReg(); 2538 2539 MIRBuilder.buildSub(Res, LHS, RHS); 2540 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2541 2542 MI.eraseFromParent(); 2543 return Legalized; 2544 } 2545 case G_USUBE: { 2546 Register Res = MI.getOperand(0).getReg(); 2547 Register BorrowOut = MI.getOperand(1).getReg(); 2548 Register LHS = MI.getOperand(2).getReg(); 2549 Register RHS = MI.getOperand(3).getReg(); 2550 Register BorrowIn = MI.getOperand(4).getReg(); 2551 const LLT CondTy = MRI.getType(BorrowOut); 2552 const LLT Ty = MRI.getType(Res); 2553 2554 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2555 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2556 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2557 2558 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2559 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2560 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2561 2562 MI.eraseFromParent(); 2563 return Legalized; 2564 } 2565 case G_UITOFP: 2566 return lowerUITOFP(MI, TypeIdx, Ty); 2567 case G_SITOFP: 2568 return lowerSITOFP(MI, TypeIdx, Ty); 2569 case G_FPTOUI: 2570 return lowerFPTOUI(MI, TypeIdx, Ty); 2571 case G_FPTOSI: 2572 return lowerFPTOSI(MI); 2573 case G_FPTRUNC: 2574 return lowerFPTRUNC(MI, TypeIdx, Ty); 2575 case G_SMIN: 2576 case G_SMAX: 2577 case G_UMIN: 2578 case G_UMAX: 2579 return lowerMinMax(MI, TypeIdx, Ty); 2580 case G_FCOPYSIGN: 2581 return lowerFCopySign(MI, TypeIdx, Ty); 2582 case G_FMINNUM: 2583 case G_FMAXNUM: 2584 return lowerFMinNumMaxNum(MI); 2585 case G_MERGE_VALUES: 2586 return lowerMergeValues(MI); 2587 case G_UNMERGE_VALUES: 2588 return lowerUnmergeValues(MI); 2589 case TargetOpcode::G_SEXT_INREG: { 2590 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2591 int64_t SizeInBits = MI.getOperand(2).getImm(); 2592 2593 Register DstReg = MI.getOperand(0).getReg(); 2594 Register SrcReg = MI.getOperand(1).getReg(); 2595 LLT DstTy = MRI.getType(DstReg); 2596 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2597 2598 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2599 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2600 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2601 MI.eraseFromParent(); 2602 return Legalized; 2603 } 2604 case G_SHUFFLE_VECTOR: 2605 return lowerShuffleVector(MI); 2606 case G_DYN_STACKALLOC: 2607 return lowerDynStackAlloc(MI); 2608 case G_EXTRACT: 2609 return lowerExtract(MI); 2610 case G_INSERT: 2611 return lowerInsert(MI); 2612 case G_BSWAP: 2613 return lowerBswap(MI); 2614 case G_BITREVERSE: 2615 return lowerBitreverse(MI); 2616 case G_READ_REGISTER: 2617 case G_WRITE_REGISTER: 2618 return lowerReadWriteRegister(MI); 2619 } 2620 } 2621 2622 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2623 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2624 SmallVector<Register, 2> DstRegs; 2625 2626 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2627 Register DstReg = MI.getOperand(0).getReg(); 2628 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2629 int NumParts = Size / NarrowSize; 2630 // FIXME: Don't know how to handle the situation where the small vectors 2631 // aren't all the same size yet. 2632 if (Size % NarrowSize != 0) 2633 return UnableToLegalize; 2634 2635 for (int i = 0; i < NumParts; ++i) { 2636 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2637 MIRBuilder.buildUndef(TmpReg); 2638 DstRegs.push_back(TmpReg); 2639 } 2640 2641 if (NarrowTy.isVector()) 2642 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2643 else 2644 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2645 2646 MI.eraseFromParent(); 2647 return Legalized; 2648 } 2649 2650 // Handle splitting vector operations which need to have the same number of 2651 // elements in each type index, but each type index may have a different element 2652 // type. 2653 // 2654 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2655 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2656 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2657 // 2658 // Also handles some irregular breakdown cases, e.g. 2659 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2660 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2661 // s64 = G_SHL s64, s32 2662 LegalizerHelper::LegalizeResult 2663 LegalizerHelper::fewerElementsVectorMultiEltType( 2664 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2665 if (TypeIdx != 0) 2666 return UnableToLegalize; 2667 2668 const LLT NarrowTy0 = NarrowTyArg; 2669 const unsigned NewNumElts = 2670 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2671 2672 const Register DstReg = MI.getOperand(0).getReg(); 2673 LLT DstTy = MRI.getType(DstReg); 2674 LLT LeftoverTy0; 2675 2676 // All of the operands need to have the same number of elements, so if we can 2677 // determine a type breakdown for the result type, we can for all of the 2678 // source types. 2679 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2680 if (NumParts < 0) 2681 return UnableToLegalize; 2682 2683 SmallVector<MachineInstrBuilder, 4> NewInsts; 2684 2685 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2686 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2687 2688 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2689 LLT LeftoverTy; 2690 Register SrcReg = MI.getOperand(I).getReg(); 2691 LLT SrcTyI = MRI.getType(SrcReg); 2692 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2693 LLT LeftoverTyI; 2694 2695 // Split this operand into the requested typed registers, and any leftover 2696 // required to reproduce the original type. 2697 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2698 LeftoverRegs)) 2699 return UnableToLegalize; 2700 2701 if (I == 1) { 2702 // For the first operand, create an instruction for each part and setup 2703 // the result. 2704 for (Register PartReg : PartRegs) { 2705 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2706 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2707 .addDef(PartDstReg) 2708 .addUse(PartReg)); 2709 DstRegs.push_back(PartDstReg); 2710 } 2711 2712 for (Register LeftoverReg : LeftoverRegs) { 2713 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2714 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2715 .addDef(PartDstReg) 2716 .addUse(LeftoverReg)); 2717 LeftoverDstRegs.push_back(PartDstReg); 2718 } 2719 } else { 2720 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2721 2722 // Add the newly created operand splits to the existing instructions. The 2723 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2724 // pieces. 2725 unsigned InstCount = 0; 2726 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2727 NewInsts[InstCount++].addUse(PartRegs[J]); 2728 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2729 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2730 } 2731 2732 PartRegs.clear(); 2733 LeftoverRegs.clear(); 2734 } 2735 2736 // Insert the newly built operations and rebuild the result register. 2737 for (auto &MIB : NewInsts) 2738 MIRBuilder.insertInstr(MIB); 2739 2740 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2741 2742 MI.eraseFromParent(); 2743 return Legalized; 2744 } 2745 2746 LegalizerHelper::LegalizeResult 2747 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2748 LLT NarrowTy) { 2749 if (TypeIdx != 0) 2750 return UnableToLegalize; 2751 2752 Register DstReg = MI.getOperand(0).getReg(); 2753 Register SrcReg = MI.getOperand(1).getReg(); 2754 LLT DstTy = MRI.getType(DstReg); 2755 LLT SrcTy = MRI.getType(SrcReg); 2756 2757 LLT NarrowTy0 = NarrowTy; 2758 LLT NarrowTy1; 2759 unsigned NumParts; 2760 2761 if (NarrowTy.isVector()) { 2762 // Uneven breakdown not handled. 2763 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2764 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2765 return UnableToLegalize; 2766 2767 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2768 } else { 2769 NumParts = DstTy.getNumElements(); 2770 NarrowTy1 = SrcTy.getElementType(); 2771 } 2772 2773 SmallVector<Register, 4> SrcRegs, DstRegs; 2774 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2775 2776 for (unsigned I = 0; I < NumParts; ++I) { 2777 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2778 MachineInstr *NewInst = 2779 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2780 2781 NewInst->setFlags(MI.getFlags()); 2782 DstRegs.push_back(DstReg); 2783 } 2784 2785 if (NarrowTy.isVector()) 2786 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2787 else 2788 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2789 2790 MI.eraseFromParent(); 2791 return Legalized; 2792 } 2793 2794 LegalizerHelper::LegalizeResult 2795 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2796 LLT NarrowTy) { 2797 Register DstReg = MI.getOperand(0).getReg(); 2798 Register Src0Reg = MI.getOperand(2).getReg(); 2799 LLT DstTy = MRI.getType(DstReg); 2800 LLT SrcTy = MRI.getType(Src0Reg); 2801 2802 unsigned NumParts; 2803 LLT NarrowTy0, NarrowTy1; 2804 2805 if (TypeIdx == 0) { 2806 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2807 unsigned OldElts = DstTy.getNumElements(); 2808 2809 NarrowTy0 = NarrowTy; 2810 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2811 NarrowTy1 = NarrowTy.isVector() ? 2812 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2813 SrcTy.getElementType(); 2814 2815 } else { 2816 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2817 unsigned OldElts = SrcTy.getNumElements(); 2818 2819 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2820 NarrowTy.getNumElements(); 2821 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2822 DstTy.getScalarSizeInBits()); 2823 NarrowTy1 = NarrowTy; 2824 } 2825 2826 // FIXME: Don't know how to handle the situation where the small vectors 2827 // aren't all the same size yet. 2828 if (NarrowTy1.isVector() && 2829 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2830 return UnableToLegalize; 2831 2832 CmpInst::Predicate Pred 2833 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2834 2835 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2836 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2837 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2838 2839 for (unsigned I = 0; I < NumParts; ++I) { 2840 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2841 DstRegs.push_back(DstReg); 2842 2843 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2844 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2845 else { 2846 MachineInstr *NewCmp 2847 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2848 NewCmp->setFlags(MI.getFlags()); 2849 } 2850 } 2851 2852 if (NarrowTy1.isVector()) 2853 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2854 else 2855 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2856 2857 MI.eraseFromParent(); 2858 return Legalized; 2859 } 2860 2861 LegalizerHelper::LegalizeResult 2862 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2863 LLT NarrowTy) { 2864 Register DstReg = MI.getOperand(0).getReg(); 2865 Register CondReg = MI.getOperand(1).getReg(); 2866 2867 unsigned NumParts = 0; 2868 LLT NarrowTy0, NarrowTy1; 2869 2870 LLT DstTy = MRI.getType(DstReg); 2871 LLT CondTy = MRI.getType(CondReg); 2872 unsigned Size = DstTy.getSizeInBits(); 2873 2874 assert(TypeIdx == 0 || CondTy.isVector()); 2875 2876 if (TypeIdx == 0) { 2877 NarrowTy0 = NarrowTy; 2878 NarrowTy1 = CondTy; 2879 2880 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2881 // FIXME: Don't know how to handle the situation where the small vectors 2882 // aren't all the same size yet. 2883 if (Size % NarrowSize != 0) 2884 return UnableToLegalize; 2885 2886 NumParts = Size / NarrowSize; 2887 2888 // Need to break down the condition type 2889 if (CondTy.isVector()) { 2890 if (CondTy.getNumElements() == NumParts) 2891 NarrowTy1 = CondTy.getElementType(); 2892 else 2893 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2894 CondTy.getScalarSizeInBits()); 2895 } 2896 } else { 2897 NumParts = CondTy.getNumElements(); 2898 if (NarrowTy.isVector()) { 2899 // TODO: Handle uneven breakdown. 2900 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2901 return UnableToLegalize; 2902 2903 return UnableToLegalize; 2904 } else { 2905 NarrowTy0 = DstTy.getElementType(); 2906 NarrowTy1 = NarrowTy; 2907 } 2908 } 2909 2910 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2911 if (CondTy.isVector()) 2912 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2913 2914 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2915 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2916 2917 for (unsigned i = 0; i < NumParts; ++i) { 2918 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2919 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2920 Src1Regs[i], Src2Regs[i]); 2921 DstRegs.push_back(DstReg); 2922 } 2923 2924 if (NarrowTy0.isVector()) 2925 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2926 else 2927 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2928 2929 MI.eraseFromParent(); 2930 return Legalized; 2931 } 2932 2933 LegalizerHelper::LegalizeResult 2934 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2935 LLT NarrowTy) { 2936 const Register DstReg = MI.getOperand(0).getReg(); 2937 LLT PhiTy = MRI.getType(DstReg); 2938 LLT LeftoverTy; 2939 2940 // All of the operands need to have the same number of elements, so if we can 2941 // determine a type breakdown for the result type, we can for all of the 2942 // source types. 2943 int NumParts, NumLeftover; 2944 std::tie(NumParts, NumLeftover) 2945 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2946 if (NumParts < 0) 2947 return UnableToLegalize; 2948 2949 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2950 SmallVector<MachineInstrBuilder, 4> NewInsts; 2951 2952 const int TotalNumParts = NumParts + NumLeftover; 2953 2954 // Insert the new phis in the result block first. 2955 for (int I = 0; I != TotalNumParts; ++I) { 2956 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2957 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2958 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2959 .addDef(PartDstReg)); 2960 if (I < NumParts) 2961 DstRegs.push_back(PartDstReg); 2962 else 2963 LeftoverDstRegs.push_back(PartDstReg); 2964 } 2965 2966 MachineBasicBlock *MBB = MI.getParent(); 2967 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2968 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2969 2970 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2971 2972 // Insert code to extract the incoming values in each predecessor block. 2973 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2974 PartRegs.clear(); 2975 LeftoverRegs.clear(); 2976 2977 Register SrcReg = MI.getOperand(I).getReg(); 2978 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2979 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2980 2981 LLT Unused; 2982 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2983 LeftoverRegs)) 2984 return UnableToLegalize; 2985 2986 // Add the newly created operand splits to the existing instructions. The 2987 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2988 // pieces. 2989 for (int J = 0; J != TotalNumParts; ++J) { 2990 MachineInstrBuilder MIB = NewInsts[J]; 2991 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2992 MIB.addMBB(&OpMBB); 2993 } 2994 } 2995 2996 MI.eraseFromParent(); 2997 return Legalized; 2998 } 2999 3000 LegalizerHelper::LegalizeResult 3001 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3002 unsigned TypeIdx, 3003 LLT NarrowTy) { 3004 if (TypeIdx != 1) 3005 return UnableToLegalize; 3006 3007 const int NumDst = MI.getNumOperands() - 1; 3008 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3009 LLT SrcTy = MRI.getType(SrcReg); 3010 3011 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3012 3013 // TODO: Create sequence of extracts. 3014 if (DstTy == NarrowTy) 3015 return UnableToLegalize; 3016 3017 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3018 if (DstTy == GCDTy) { 3019 // This would just be a copy of the same unmerge. 3020 // TODO: Create extracts, pad with undef and create intermediate merges. 3021 return UnableToLegalize; 3022 } 3023 3024 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3025 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3026 const int PartsPerUnmerge = NumDst / NumUnmerge; 3027 3028 for (int I = 0; I != NumUnmerge; ++I) { 3029 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3030 3031 for (int J = 0; J != PartsPerUnmerge; ++J) 3032 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3033 MIB.addUse(Unmerge.getReg(I)); 3034 } 3035 3036 MI.eraseFromParent(); 3037 return Legalized; 3038 } 3039 3040 LegalizerHelper::LegalizeResult 3041 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3042 unsigned TypeIdx, 3043 LLT NarrowTy) { 3044 assert(TypeIdx == 0 && "not a vector type index"); 3045 Register DstReg = MI.getOperand(0).getReg(); 3046 LLT DstTy = MRI.getType(DstReg); 3047 LLT SrcTy = DstTy.getElementType(); 3048 3049 int DstNumElts = DstTy.getNumElements(); 3050 int NarrowNumElts = NarrowTy.getNumElements(); 3051 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3052 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3053 3054 SmallVector<Register, 8> ConcatOps; 3055 SmallVector<Register, 8> SubBuildVector; 3056 3057 Register UndefReg; 3058 if (WidenedDstTy != DstTy) 3059 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3060 3061 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3062 // necessary. 3063 // 3064 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3065 // -> <2 x s16> 3066 // 3067 // %4:_(s16) = G_IMPLICIT_DEF 3068 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3069 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3070 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3071 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3072 for (int I = 0; I != NumConcat; ++I) { 3073 for (int J = 0; J != NarrowNumElts; ++J) { 3074 int SrcIdx = NarrowNumElts * I + J; 3075 3076 if (SrcIdx < DstNumElts) { 3077 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3078 SubBuildVector.push_back(SrcReg); 3079 } else 3080 SubBuildVector.push_back(UndefReg); 3081 } 3082 3083 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3084 ConcatOps.push_back(BuildVec.getReg(0)); 3085 SubBuildVector.clear(); 3086 } 3087 3088 if (DstTy == WidenedDstTy) 3089 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3090 else { 3091 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3092 MIRBuilder.buildExtract(DstReg, Concat, 0); 3093 } 3094 3095 MI.eraseFromParent(); 3096 return Legalized; 3097 } 3098 3099 LegalizerHelper::LegalizeResult 3100 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3101 LLT NarrowTy) { 3102 // FIXME: Don't know how to handle secondary types yet. 3103 if (TypeIdx != 0) 3104 return UnableToLegalize; 3105 3106 MachineMemOperand *MMO = *MI.memoperands_begin(); 3107 3108 // This implementation doesn't work for atomics. Give up instead of doing 3109 // something invalid. 3110 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3111 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3112 return UnableToLegalize; 3113 3114 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3115 Register ValReg = MI.getOperand(0).getReg(); 3116 Register AddrReg = MI.getOperand(1).getReg(); 3117 LLT ValTy = MRI.getType(ValReg); 3118 3119 // FIXME: Do we need a distinct NarrowMemory legalize action? 3120 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3121 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3122 return UnableToLegalize; 3123 } 3124 3125 int NumParts = -1; 3126 int NumLeftover = -1; 3127 LLT LeftoverTy; 3128 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3129 if (IsLoad) { 3130 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3131 } else { 3132 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3133 NarrowLeftoverRegs)) { 3134 NumParts = NarrowRegs.size(); 3135 NumLeftover = NarrowLeftoverRegs.size(); 3136 } 3137 } 3138 3139 if (NumParts == -1) 3140 return UnableToLegalize; 3141 3142 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3143 3144 unsigned TotalSize = ValTy.getSizeInBits(); 3145 3146 // Split the load/store into PartTy sized pieces starting at Offset. If this 3147 // is a load, return the new registers in ValRegs. For a store, each elements 3148 // of ValRegs should be PartTy. Returns the next offset that needs to be 3149 // handled. 3150 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3151 unsigned Offset) -> unsigned { 3152 MachineFunction &MF = MIRBuilder.getMF(); 3153 unsigned PartSize = PartTy.getSizeInBits(); 3154 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3155 Offset += PartSize, ++Idx) { 3156 unsigned ByteSize = PartSize / 8; 3157 unsigned ByteOffset = Offset / 8; 3158 Register NewAddrReg; 3159 3160 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3161 3162 MachineMemOperand *NewMMO = 3163 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3164 3165 if (IsLoad) { 3166 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3167 ValRegs.push_back(Dst); 3168 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3169 } else { 3170 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3171 } 3172 } 3173 3174 return Offset; 3175 }; 3176 3177 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3178 3179 // Handle the rest of the register if this isn't an even type breakdown. 3180 if (LeftoverTy.isValid()) 3181 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3182 3183 if (IsLoad) { 3184 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3185 LeftoverTy, NarrowLeftoverRegs); 3186 } 3187 3188 MI.eraseFromParent(); 3189 return Legalized; 3190 } 3191 3192 LegalizerHelper::LegalizeResult 3193 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3194 LLT NarrowTy) { 3195 assert(TypeIdx == 0 && "only one type index expected"); 3196 3197 const unsigned Opc = MI.getOpcode(); 3198 const int NumOps = MI.getNumOperands() - 1; 3199 const Register DstReg = MI.getOperand(0).getReg(); 3200 const unsigned Flags = MI.getFlags(); 3201 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3202 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3203 3204 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3205 3206 // First of all check whether we are narrowing (changing the element type) 3207 // or reducing the vector elements 3208 const LLT DstTy = MRI.getType(DstReg); 3209 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3210 3211 SmallVector<Register, 8> ExtractedRegs[3]; 3212 SmallVector<Register, 8> Parts; 3213 3214 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3215 3216 // Break down all the sources into NarrowTy pieces we can operate on. This may 3217 // involve creating merges to a wider type, padded with undef. 3218 for (int I = 0; I != NumOps; ++I) { 3219 Register SrcReg = MI.getOperand(I + 1).getReg(); 3220 LLT SrcTy = MRI.getType(SrcReg); 3221 3222 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3223 // For fewerElements, this is a smaller vector with the same element type. 3224 LLT OpNarrowTy; 3225 if (IsNarrow) { 3226 OpNarrowTy = NarrowScalarTy; 3227 3228 // In case of narrowing, we need to cast vectors to scalars for this to 3229 // work properly 3230 // FIXME: Can we do without the bitcast here if we're narrowing? 3231 if (SrcTy.isVector()) { 3232 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3233 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3234 } 3235 } else { 3236 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3237 } 3238 3239 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3240 3241 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3242 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3243 TargetOpcode::G_ANYEXT); 3244 } 3245 3246 SmallVector<Register, 8> ResultRegs; 3247 3248 // Input operands for each sub-instruction. 3249 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3250 3251 int NumParts = ExtractedRegs[0].size(); 3252 const unsigned DstSize = DstTy.getSizeInBits(); 3253 const LLT DstScalarTy = LLT::scalar(DstSize); 3254 3255 // Narrowing needs to use scalar types 3256 LLT DstLCMTy, NarrowDstTy; 3257 if (IsNarrow) { 3258 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3259 NarrowDstTy = NarrowScalarTy; 3260 } else { 3261 DstLCMTy = getLCMType(DstTy, NarrowTy); 3262 NarrowDstTy = NarrowTy; 3263 } 3264 3265 // We widened the source registers to satisfy merge/unmerge size 3266 // constraints. We'll have some extra fully undef parts. 3267 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3268 3269 for (int I = 0; I != NumRealParts; ++I) { 3270 // Emit this instruction on each of the split pieces. 3271 for (int J = 0; J != NumOps; ++J) 3272 InputRegs[J] = ExtractedRegs[J][I]; 3273 3274 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3275 ResultRegs.push_back(Inst.getReg(0)); 3276 } 3277 3278 // Fill out the widened result with undef instead of creating instructions 3279 // with undef inputs. 3280 int NumUndefParts = NumParts - NumRealParts; 3281 if (NumUndefParts != 0) 3282 ResultRegs.append(NumUndefParts, 3283 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3284 3285 // Extract the possibly padded result. Use a scratch register if we need to do 3286 // a final bitcast, otherwise use the original result register. 3287 Register MergeDstReg; 3288 if (IsNarrow && DstTy.isVector()) 3289 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3290 else 3291 MergeDstReg = DstReg; 3292 3293 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3294 3295 // Recast to vector if we narrowed a vector 3296 if (IsNarrow && DstTy.isVector()) 3297 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3298 3299 MI.eraseFromParent(); 3300 return Legalized; 3301 } 3302 3303 LegalizerHelper::LegalizeResult 3304 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3305 LLT NarrowTy) { 3306 Register DstReg = MI.getOperand(0).getReg(); 3307 Register SrcReg = MI.getOperand(1).getReg(); 3308 int64_t Imm = MI.getOperand(2).getImm(); 3309 3310 LLT DstTy = MRI.getType(DstReg); 3311 3312 SmallVector<Register, 8> Parts; 3313 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3314 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3315 3316 for (Register &R : Parts) 3317 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3318 3319 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3320 3321 MI.eraseFromParent(); 3322 return Legalized; 3323 } 3324 3325 LegalizerHelper::LegalizeResult 3326 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3327 LLT NarrowTy) { 3328 using namespace TargetOpcode; 3329 3330 MIRBuilder.setInstrAndDebugLoc(MI); 3331 switch (MI.getOpcode()) { 3332 case G_IMPLICIT_DEF: 3333 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3334 case G_TRUNC: 3335 case G_AND: 3336 case G_OR: 3337 case G_XOR: 3338 case G_ADD: 3339 case G_SUB: 3340 case G_MUL: 3341 case G_SMULH: 3342 case G_UMULH: 3343 case G_FADD: 3344 case G_FMUL: 3345 case G_FSUB: 3346 case G_FNEG: 3347 case G_FABS: 3348 case G_FCANONICALIZE: 3349 case G_FDIV: 3350 case G_FREM: 3351 case G_FMA: 3352 case G_FMAD: 3353 case G_FPOW: 3354 case G_FEXP: 3355 case G_FEXP2: 3356 case G_FLOG: 3357 case G_FLOG2: 3358 case G_FLOG10: 3359 case G_FNEARBYINT: 3360 case G_FCEIL: 3361 case G_FFLOOR: 3362 case G_FRINT: 3363 case G_INTRINSIC_ROUND: 3364 case G_INTRINSIC_TRUNC: 3365 case G_FCOS: 3366 case G_FSIN: 3367 case G_FSQRT: 3368 case G_BSWAP: 3369 case G_BITREVERSE: 3370 case G_SDIV: 3371 case G_UDIV: 3372 case G_SREM: 3373 case G_UREM: 3374 case G_SMIN: 3375 case G_SMAX: 3376 case G_UMIN: 3377 case G_UMAX: 3378 case G_FMINNUM: 3379 case G_FMAXNUM: 3380 case G_FMINNUM_IEEE: 3381 case G_FMAXNUM_IEEE: 3382 case G_FMINIMUM: 3383 case G_FMAXIMUM: 3384 case G_FSHL: 3385 case G_FSHR: 3386 case G_FREEZE: 3387 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3388 case G_SHL: 3389 case G_LSHR: 3390 case G_ASHR: 3391 case G_CTLZ: 3392 case G_CTLZ_ZERO_UNDEF: 3393 case G_CTTZ: 3394 case G_CTTZ_ZERO_UNDEF: 3395 case G_CTPOP: 3396 case G_FCOPYSIGN: 3397 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3398 case G_ZEXT: 3399 case G_SEXT: 3400 case G_ANYEXT: 3401 case G_FPEXT: 3402 case G_FPTRUNC: 3403 case G_SITOFP: 3404 case G_UITOFP: 3405 case G_FPTOSI: 3406 case G_FPTOUI: 3407 case G_INTTOPTR: 3408 case G_PTRTOINT: 3409 case G_ADDRSPACE_CAST: 3410 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3411 case G_ICMP: 3412 case G_FCMP: 3413 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3414 case G_SELECT: 3415 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3416 case G_PHI: 3417 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3418 case G_UNMERGE_VALUES: 3419 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3420 case G_BUILD_VECTOR: 3421 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3422 case G_LOAD: 3423 case G_STORE: 3424 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3425 case G_SEXT_INREG: 3426 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3427 default: 3428 return UnableToLegalize; 3429 } 3430 } 3431 3432 LegalizerHelper::LegalizeResult 3433 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3434 const LLT HalfTy, const LLT AmtTy) { 3435 3436 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3437 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3438 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3439 3440 if (Amt.isNullValue()) { 3441 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3442 MI.eraseFromParent(); 3443 return Legalized; 3444 } 3445 3446 LLT NVT = HalfTy; 3447 unsigned NVTBits = HalfTy.getSizeInBits(); 3448 unsigned VTBits = 2 * NVTBits; 3449 3450 SrcOp Lo(Register(0)), Hi(Register(0)); 3451 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3452 if (Amt.ugt(VTBits)) { 3453 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3454 } else if (Amt.ugt(NVTBits)) { 3455 Lo = MIRBuilder.buildConstant(NVT, 0); 3456 Hi = MIRBuilder.buildShl(NVT, InL, 3457 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3458 } else if (Amt == NVTBits) { 3459 Lo = MIRBuilder.buildConstant(NVT, 0); 3460 Hi = InL; 3461 } else { 3462 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3463 auto OrLHS = 3464 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3465 auto OrRHS = MIRBuilder.buildLShr( 3466 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3467 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3468 } 3469 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3470 if (Amt.ugt(VTBits)) { 3471 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3472 } else if (Amt.ugt(NVTBits)) { 3473 Lo = MIRBuilder.buildLShr(NVT, InH, 3474 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3475 Hi = MIRBuilder.buildConstant(NVT, 0); 3476 } else if (Amt == NVTBits) { 3477 Lo = InH; 3478 Hi = MIRBuilder.buildConstant(NVT, 0); 3479 } else { 3480 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3481 3482 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3483 auto OrRHS = MIRBuilder.buildShl( 3484 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3485 3486 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3487 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3488 } 3489 } else { 3490 if (Amt.ugt(VTBits)) { 3491 Hi = Lo = MIRBuilder.buildAShr( 3492 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3493 } else if (Amt.ugt(NVTBits)) { 3494 Lo = MIRBuilder.buildAShr(NVT, InH, 3495 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3496 Hi = MIRBuilder.buildAShr(NVT, InH, 3497 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3498 } else if (Amt == NVTBits) { 3499 Lo = InH; 3500 Hi = MIRBuilder.buildAShr(NVT, InH, 3501 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3502 } else { 3503 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3504 3505 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3506 auto OrRHS = MIRBuilder.buildShl( 3507 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3508 3509 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3510 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3511 } 3512 } 3513 3514 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3515 MI.eraseFromParent(); 3516 3517 return Legalized; 3518 } 3519 3520 // TODO: Optimize if constant shift amount. 3521 LegalizerHelper::LegalizeResult 3522 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3523 LLT RequestedTy) { 3524 if (TypeIdx == 1) { 3525 Observer.changingInstr(MI); 3526 narrowScalarSrc(MI, RequestedTy, 2); 3527 Observer.changedInstr(MI); 3528 return Legalized; 3529 } 3530 3531 Register DstReg = MI.getOperand(0).getReg(); 3532 LLT DstTy = MRI.getType(DstReg); 3533 if (DstTy.isVector()) 3534 return UnableToLegalize; 3535 3536 Register Amt = MI.getOperand(2).getReg(); 3537 LLT ShiftAmtTy = MRI.getType(Amt); 3538 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3539 if (DstEltSize % 2 != 0) 3540 return UnableToLegalize; 3541 3542 // Ignore the input type. We can only go to exactly half the size of the 3543 // input. If that isn't small enough, the resulting pieces will be further 3544 // legalized. 3545 const unsigned NewBitSize = DstEltSize / 2; 3546 const LLT HalfTy = LLT::scalar(NewBitSize); 3547 const LLT CondTy = LLT::scalar(1); 3548 3549 if (const MachineInstr *KShiftAmt = 3550 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3551 return narrowScalarShiftByConstant( 3552 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3553 } 3554 3555 // TODO: Expand with known bits. 3556 3557 // Handle the fully general expansion by an unknown amount. 3558 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3559 3560 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3561 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3562 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3563 3564 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3565 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3566 3567 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3568 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3569 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3570 3571 Register ResultRegs[2]; 3572 switch (MI.getOpcode()) { 3573 case TargetOpcode::G_SHL: { 3574 // Short: ShAmt < NewBitSize 3575 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3576 3577 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3578 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3579 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3580 3581 // Long: ShAmt >= NewBitSize 3582 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3583 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3584 3585 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3586 auto Hi = MIRBuilder.buildSelect( 3587 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3588 3589 ResultRegs[0] = Lo.getReg(0); 3590 ResultRegs[1] = Hi.getReg(0); 3591 break; 3592 } 3593 case TargetOpcode::G_LSHR: 3594 case TargetOpcode::G_ASHR: { 3595 // Short: ShAmt < NewBitSize 3596 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3597 3598 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3599 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3600 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3601 3602 // Long: ShAmt >= NewBitSize 3603 MachineInstrBuilder HiL; 3604 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3605 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3606 } else { 3607 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3608 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3609 } 3610 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3611 {InH, AmtExcess}); // Lo from Hi part. 3612 3613 auto Lo = MIRBuilder.buildSelect( 3614 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3615 3616 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3617 3618 ResultRegs[0] = Lo.getReg(0); 3619 ResultRegs[1] = Hi.getReg(0); 3620 break; 3621 } 3622 default: 3623 llvm_unreachable("not a shift"); 3624 } 3625 3626 MIRBuilder.buildMerge(DstReg, ResultRegs); 3627 MI.eraseFromParent(); 3628 return Legalized; 3629 } 3630 3631 LegalizerHelper::LegalizeResult 3632 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3633 LLT MoreTy) { 3634 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3635 3636 Observer.changingInstr(MI); 3637 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3638 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3639 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3640 moreElementsVectorSrc(MI, MoreTy, I); 3641 } 3642 3643 MachineBasicBlock &MBB = *MI.getParent(); 3644 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3645 moreElementsVectorDst(MI, MoreTy, 0); 3646 Observer.changedInstr(MI); 3647 return Legalized; 3648 } 3649 3650 LegalizerHelper::LegalizeResult 3651 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3652 LLT MoreTy) { 3653 MIRBuilder.setInstrAndDebugLoc(MI); 3654 unsigned Opc = MI.getOpcode(); 3655 switch (Opc) { 3656 case TargetOpcode::G_IMPLICIT_DEF: 3657 case TargetOpcode::G_LOAD: { 3658 if (TypeIdx != 0) 3659 return UnableToLegalize; 3660 Observer.changingInstr(MI); 3661 moreElementsVectorDst(MI, MoreTy, 0); 3662 Observer.changedInstr(MI); 3663 return Legalized; 3664 } 3665 case TargetOpcode::G_STORE: 3666 if (TypeIdx != 0) 3667 return UnableToLegalize; 3668 Observer.changingInstr(MI); 3669 moreElementsVectorSrc(MI, MoreTy, 0); 3670 Observer.changedInstr(MI); 3671 return Legalized; 3672 case TargetOpcode::G_AND: 3673 case TargetOpcode::G_OR: 3674 case TargetOpcode::G_XOR: 3675 case TargetOpcode::G_SMIN: 3676 case TargetOpcode::G_SMAX: 3677 case TargetOpcode::G_UMIN: 3678 case TargetOpcode::G_UMAX: 3679 case TargetOpcode::G_FMINNUM: 3680 case TargetOpcode::G_FMAXNUM: 3681 case TargetOpcode::G_FMINNUM_IEEE: 3682 case TargetOpcode::G_FMAXNUM_IEEE: 3683 case TargetOpcode::G_FMINIMUM: 3684 case TargetOpcode::G_FMAXIMUM: { 3685 Observer.changingInstr(MI); 3686 moreElementsVectorSrc(MI, MoreTy, 1); 3687 moreElementsVectorSrc(MI, MoreTy, 2); 3688 moreElementsVectorDst(MI, MoreTy, 0); 3689 Observer.changedInstr(MI); 3690 return Legalized; 3691 } 3692 case TargetOpcode::G_EXTRACT: 3693 if (TypeIdx != 1) 3694 return UnableToLegalize; 3695 Observer.changingInstr(MI); 3696 moreElementsVectorSrc(MI, MoreTy, 1); 3697 Observer.changedInstr(MI); 3698 return Legalized; 3699 case TargetOpcode::G_INSERT: 3700 case TargetOpcode::G_FREEZE: 3701 if (TypeIdx != 0) 3702 return UnableToLegalize; 3703 Observer.changingInstr(MI); 3704 moreElementsVectorSrc(MI, MoreTy, 1); 3705 moreElementsVectorDst(MI, MoreTy, 0); 3706 Observer.changedInstr(MI); 3707 return Legalized; 3708 case TargetOpcode::G_SELECT: 3709 if (TypeIdx != 0) 3710 return UnableToLegalize; 3711 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3712 return UnableToLegalize; 3713 3714 Observer.changingInstr(MI); 3715 moreElementsVectorSrc(MI, MoreTy, 2); 3716 moreElementsVectorSrc(MI, MoreTy, 3); 3717 moreElementsVectorDst(MI, MoreTy, 0); 3718 Observer.changedInstr(MI); 3719 return Legalized; 3720 case TargetOpcode::G_UNMERGE_VALUES: { 3721 if (TypeIdx != 1) 3722 return UnableToLegalize; 3723 3724 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3725 int NumDst = MI.getNumOperands() - 1; 3726 moreElementsVectorSrc(MI, MoreTy, NumDst); 3727 3728 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3729 for (int I = 0; I != NumDst; ++I) 3730 MIB.addDef(MI.getOperand(I).getReg()); 3731 3732 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3733 for (int I = NumDst; I != NewNumDst; ++I) 3734 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3735 3736 MIB.addUse(MI.getOperand(NumDst).getReg()); 3737 MI.eraseFromParent(); 3738 return Legalized; 3739 } 3740 case TargetOpcode::G_PHI: 3741 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3742 default: 3743 return UnableToLegalize; 3744 } 3745 } 3746 3747 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3748 ArrayRef<Register> Src1Regs, 3749 ArrayRef<Register> Src2Regs, 3750 LLT NarrowTy) { 3751 MachineIRBuilder &B = MIRBuilder; 3752 unsigned SrcParts = Src1Regs.size(); 3753 unsigned DstParts = DstRegs.size(); 3754 3755 unsigned DstIdx = 0; // Low bits of the result. 3756 Register FactorSum = 3757 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3758 DstRegs[DstIdx] = FactorSum; 3759 3760 unsigned CarrySumPrevDstIdx; 3761 SmallVector<Register, 4> Factors; 3762 3763 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3764 // Collect low parts of muls for DstIdx. 3765 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3766 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3767 MachineInstrBuilder Mul = 3768 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3769 Factors.push_back(Mul.getReg(0)); 3770 } 3771 // Collect high parts of muls from previous DstIdx. 3772 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3773 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3774 MachineInstrBuilder Umulh = 3775 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3776 Factors.push_back(Umulh.getReg(0)); 3777 } 3778 // Add CarrySum from additions calculated for previous DstIdx. 3779 if (DstIdx != 1) { 3780 Factors.push_back(CarrySumPrevDstIdx); 3781 } 3782 3783 Register CarrySum; 3784 // Add all factors and accumulate all carries into CarrySum. 3785 if (DstIdx != DstParts - 1) { 3786 MachineInstrBuilder Uaddo = 3787 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3788 FactorSum = Uaddo.getReg(0); 3789 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3790 for (unsigned i = 2; i < Factors.size(); ++i) { 3791 MachineInstrBuilder Uaddo = 3792 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3793 FactorSum = Uaddo.getReg(0); 3794 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3795 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3796 } 3797 } else { 3798 // Since value for the next index is not calculated, neither is CarrySum. 3799 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3800 for (unsigned i = 2; i < Factors.size(); ++i) 3801 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3802 } 3803 3804 CarrySumPrevDstIdx = CarrySum; 3805 DstRegs[DstIdx] = FactorSum; 3806 Factors.clear(); 3807 } 3808 } 3809 3810 LegalizerHelper::LegalizeResult 3811 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3812 Register DstReg = MI.getOperand(0).getReg(); 3813 Register Src1 = MI.getOperand(1).getReg(); 3814 Register Src2 = MI.getOperand(2).getReg(); 3815 3816 LLT Ty = MRI.getType(DstReg); 3817 if (Ty.isVector()) 3818 return UnableToLegalize; 3819 3820 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3821 unsigned DstSize = Ty.getSizeInBits(); 3822 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3823 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3824 return UnableToLegalize; 3825 3826 unsigned NumDstParts = DstSize / NarrowSize; 3827 unsigned NumSrcParts = SrcSize / NarrowSize; 3828 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3829 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3830 3831 SmallVector<Register, 2> Src1Parts, Src2Parts; 3832 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3833 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3834 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3835 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3836 3837 // Take only high half of registers if this is high mul. 3838 ArrayRef<Register> DstRegs( 3839 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3840 MIRBuilder.buildMerge(DstReg, DstRegs); 3841 MI.eraseFromParent(); 3842 return Legalized; 3843 } 3844 3845 LegalizerHelper::LegalizeResult 3846 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3847 LLT NarrowTy) { 3848 if (TypeIdx != 1) 3849 return UnableToLegalize; 3850 3851 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3852 3853 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3854 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3855 // NarrowSize. 3856 if (SizeOp1 % NarrowSize != 0) 3857 return UnableToLegalize; 3858 int NumParts = SizeOp1 / NarrowSize; 3859 3860 SmallVector<Register, 2> SrcRegs, DstRegs; 3861 SmallVector<uint64_t, 2> Indexes; 3862 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3863 3864 Register OpReg = MI.getOperand(0).getReg(); 3865 uint64_t OpStart = MI.getOperand(2).getImm(); 3866 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3867 for (int i = 0; i < NumParts; ++i) { 3868 unsigned SrcStart = i * NarrowSize; 3869 3870 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3871 // No part of the extract uses this subregister, ignore it. 3872 continue; 3873 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3874 // The entire subregister is extracted, forward the value. 3875 DstRegs.push_back(SrcRegs[i]); 3876 continue; 3877 } 3878 3879 // OpSegStart is where this destination segment would start in OpReg if it 3880 // extended infinitely in both directions. 3881 int64_t ExtractOffset; 3882 uint64_t SegSize; 3883 if (OpStart < SrcStart) { 3884 ExtractOffset = 0; 3885 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3886 } else { 3887 ExtractOffset = OpStart - SrcStart; 3888 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3889 } 3890 3891 Register SegReg = SrcRegs[i]; 3892 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3893 // A genuine extract is needed. 3894 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3895 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3896 } 3897 3898 DstRegs.push_back(SegReg); 3899 } 3900 3901 Register DstReg = MI.getOperand(0).getReg(); 3902 if (MRI.getType(DstReg).isVector()) 3903 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3904 else if (DstRegs.size() > 1) 3905 MIRBuilder.buildMerge(DstReg, DstRegs); 3906 else 3907 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3908 MI.eraseFromParent(); 3909 return Legalized; 3910 } 3911 3912 LegalizerHelper::LegalizeResult 3913 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3914 LLT NarrowTy) { 3915 // FIXME: Don't know how to handle secondary types yet. 3916 if (TypeIdx != 0) 3917 return UnableToLegalize; 3918 3919 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3920 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3921 3922 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3923 // NarrowSize. 3924 if (SizeOp0 % NarrowSize != 0) 3925 return UnableToLegalize; 3926 3927 int NumParts = SizeOp0 / NarrowSize; 3928 3929 SmallVector<Register, 2> SrcRegs, DstRegs; 3930 SmallVector<uint64_t, 2> Indexes; 3931 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3932 3933 Register OpReg = MI.getOperand(2).getReg(); 3934 uint64_t OpStart = MI.getOperand(3).getImm(); 3935 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3936 for (int i = 0; i < NumParts; ++i) { 3937 unsigned DstStart = i * NarrowSize; 3938 3939 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3940 // No part of the insert affects this subregister, forward the original. 3941 DstRegs.push_back(SrcRegs[i]); 3942 continue; 3943 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3944 // The entire subregister is defined by this insert, forward the new 3945 // value. 3946 DstRegs.push_back(OpReg); 3947 continue; 3948 } 3949 3950 // OpSegStart is where this destination segment would start in OpReg if it 3951 // extended infinitely in both directions. 3952 int64_t ExtractOffset, InsertOffset; 3953 uint64_t SegSize; 3954 if (OpStart < DstStart) { 3955 InsertOffset = 0; 3956 ExtractOffset = DstStart - OpStart; 3957 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3958 } else { 3959 InsertOffset = OpStart - DstStart; 3960 ExtractOffset = 0; 3961 SegSize = 3962 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3963 } 3964 3965 Register SegReg = OpReg; 3966 if (ExtractOffset != 0 || SegSize != OpSize) { 3967 // A genuine extract is needed. 3968 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3969 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3970 } 3971 3972 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3973 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3974 DstRegs.push_back(DstReg); 3975 } 3976 3977 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3978 Register DstReg = MI.getOperand(0).getReg(); 3979 if(MRI.getType(DstReg).isVector()) 3980 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3981 else 3982 MIRBuilder.buildMerge(DstReg, DstRegs); 3983 MI.eraseFromParent(); 3984 return Legalized; 3985 } 3986 3987 LegalizerHelper::LegalizeResult 3988 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3989 LLT NarrowTy) { 3990 Register DstReg = MI.getOperand(0).getReg(); 3991 LLT DstTy = MRI.getType(DstReg); 3992 3993 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3994 3995 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3996 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3997 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3998 LLT LeftoverTy; 3999 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4000 Src0Regs, Src0LeftoverRegs)) 4001 return UnableToLegalize; 4002 4003 LLT Unused; 4004 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4005 Src1Regs, Src1LeftoverRegs)) 4006 llvm_unreachable("inconsistent extractParts result"); 4007 4008 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4009 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4010 {Src0Regs[I], Src1Regs[I]}); 4011 DstRegs.push_back(Inst.getReg(0)); 4012 } 4013 4014 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4015 auto Inst = MIRBuilder.buildInstr( 4016 MI.getOpcode(), 4017 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4018 DstLeftoverRegs.push_back(Inst.getReg(0)); 4019 } 4020 4021 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4022 LeftoverTy, DstLeftoverRegs); 4023 4024 MI.eraseFromParent(); 4025 return Legalized; 4026 } 4027 4028 LegalizerHelper::LegalizeResult 4029 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4030 LLT NarrowTy) { 4031 if (TypeIdx != 0) 4032 return UnableToLegalize; 4033 4034 Register DstReg = MI.getOperand(0).getReg(); 4035 Register SrcReg = MI.getOperand(1).getReg(); 4036 4037 LLT DstTy = MRI.getType(DstReg); 4038 if (DstTy.isVector()) 4039 return UnableToLegalize; 4040 4041 SmallVector<Register, 8> Parts; 4042 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4043 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4044 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4045 4046 MI.eraseFromParent(); 4047 return Legalized; 4048 } 4049 4050 LegalizerHelper::LegalizeResult 4051 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4052 LLT NarrowTy) { 4053 if (TypeIdx != 0) 4054 return UnableToLegalize; 4055 4056 Register CondReg = MI.getOperand(1).getReg(); 4057 LLT CondTy = MRI.getType(CondReg); 4058 if (CondTy.isVector()) // TODO: Handle vselect 4059 return UnableToLegalize; 4060 4061 Register DstReg = MI.getOperand(0).getReg(); 4062 LLT DstTy = MRI.getType(DstReg); 4063 4064 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4065 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4066 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4067 LLT LeftoverTy; 4068 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4069 Src1Regs, Src1LeftoverRegs)) 4070 return UnableToLegalize; 4071 4072 LLT Unused; 4073 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4074 Src2Regs, Src2LeftoverRegs)) 4075 llvm_unreachable("inconsistent extractParts result"); 4076 4077 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4078 auto Select = MIRBuilder.buildSelect(NarrowTy, 4079 CondReg, Src1Regs[I], Src2Regs[I]); 4080 DstRegs.push_back(Select.getReg(0)); 4081 } 4082 4083 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4084 auto Select = MIRBuilder.buildSelect( 4085 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4086 DstLeftoverRegs.push_back(Select.getReg(0)); 4087 } 4088 4089 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4090 LeftoverTy, DstLeftoverRegs); 4091 4092 MI.eraseFromParent(); 4093 return Legalized; 4094 } 4095 4096 LegalizerHelper::LegalizeResult 4097 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4098 LLT NarrowTy) { 4099 if (TypeIdx != 1) 4100 return UnableToLegalize; 4101 4102 Register DstReg = MI.getOperand(0).getReg(); 4103 Register SrcReg = MI.getOperand(1).getReg(); 4104 LLT DstTy = MRI.getType(DstReg); 4105 LLT SrcTy = MRI.getType(SrcReg); 4106 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4107 4108 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4109 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4110 4111 MachineIRBuilder &B = MIRBuilder; 4112 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4113 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4114 auto C_0 = B.buildConstant(NarrowTy, 0); 4115 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4116 UnmergeSrc.getReg(1), C_0); 4117 auto LoCTLZ = IsUndef ? 4118 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4119 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4120 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4121 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4122 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4123 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4124 4125 MI.eraseFromParent(); 4126 return Legalized; 4127 } 4128 4129 return UnableToLegalize; 4130 } 4131 4132 LegalizerHelper::LegalizeResult 4133 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4134 LLT NarrowTy) { 4135 if (TypeIdx != 1) 4136 return UnableToLegalize; 4137 4138 Register DstReg = MI.getOperand(0).getReg(); 4139 Register SrcReg = MI.getOperand(1).getReg(); 4140 LLT DstTy = MRI.getType(DstReg); 4141 LLT SrcTy = MRI.getType(SrcReg); 4142 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4143 4144 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4145 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4146 4147 MachineIRBuilder &B = MIRBuilder; 4148 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4149 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4150 auto C_0 = B.buildConstant(NarrowTy, 0); 4151 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4152 UnmergeSrc.getReg(0), C_0); 4153 auto HiCTTZ = IsUndef ? 4154 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4155 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4156 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4157 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4158 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4159 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4160 4161 MI.eraseFromParent(); 4162 return Legalized; 4163 } 4164 4165 return UnableToLegalize; 4166 } 4167 4168 LegalizerHelper::LegalizeResult 4169 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4170 LLT NarrowTy) { 4171 if (TypeIdx != 1) 4172 return UnableToLegalize; 4173 4174 Register DstReg = MI.getOperand(0).getReg(); 4175 LLT DstTy = MRI.getType(DstReg); 4176 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4177 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4178 4179 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4180 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4181 4182 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4183 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4184 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4185 4186 MI.eraseFromParent(); 4187 return Legalized; 4188 } 4189 4190 return UnableToLegalize; 4191 } 4192 4193 LegalizerHelper::LegalizeResult 4194 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4195 unsigned Opc = MI.getOpcode(); 4196 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4197 auto isSupported = [this](const LegalityQuery &Q) { 4198 auto QAction = LI.getAction(Q).Action; 4199 return QAction == Legal || QAction == Libcall || QAction == Custom; 4200 }; 4201 switch (Opc) { 4202 default: 4203 return UnableToLegalize; 4204 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4205 // This trivially expands to CTLZ. 4206 Observer.changingInstr(MI); 4207 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4208 Observer.changedInstr(MI); 4209 return Legalized; 4210 } 4211 case TargetOpcode::G_CTLZ: { 4212 Register DstReg = MI.getOperand(0).getReg(); 4213 Register SrcReg = MI.getOperand(1).getReg(); 4214 LLT DstTy = MRI.getType(DstReg); 4215 LLT SrcTy = MRI.getType(SrcReg); 4216 unsigned Len = SrcTy.getSizeInBits(); 4217 4218 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4219 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4220 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4221 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4222 auto ICmp = MIRBuilder.buildICmp( 4223 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4224 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4225 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4226 MI.eraseFromParent(); 4227 return Legalized; 4228 } 4229 // for now, we do this: 4230 // NewLen = NextPowerOf2(Len); 4231 // x = x | (x >> 1); 4232 // x = x | (x >> 2); 4233 // ... 4234 // x = x | (x >>16); 4235 // x = x | (x >>32); // for 64-bit input 4236 // Upto NewLen/2 4237 // return Len - popcount(x); 4238 // 4239 // Ref: "Hacker's Delight" by Henry Warren 4240 Register Op = SrcReg; 4241 unsigned NewLen = PowerOf2Ceil(Len); 4242 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4243 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4244 auto MIBOp = MIRBuilder.buildOr( 4245 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4246 Op = MIBOp.getReg(0); 4247 } 4248 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4249 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4250 MIBPop); 4251 MI.eraseFromParent(); 4252 return Legalized; 4253 } 4254 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4255 // This trivially expands to CTTZ. 4256 Observer.changingInstr(MI); 4257 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4258 Observer.changedInstr(MI); 4259 return Legalized; 4260 } 4261 case TargetOpcode::G_CTTZ: { 4262 Register DstReg = MI.getOperand(0).getReg(); 4263 Register SrcReg = MI.getOperand(1).getReg(); 4264 LLT DstTy = MRI.getType(DstReg); 4265 LLT SrcTy = MRI.getType(SrcReg); 4266 4267 unsigned Len = SrcTy.getSizeInBits(); 4268 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4269 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4270 // zero. 4271 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4272 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4273 auto ICmp = MIRBuilder.buildICmp( 4274 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4275 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4276 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4277 MI.eraseFromParent(); 4278 return Legalized; 4279 } 4280 // for now, we use: { return popcount(~x & (x - 1)); } 4281 // unless the target has ctlz but not ctpop, in which case we use: 4282 // { return 32 - nlz(~x & (x-1)); } 4283 // Ref: "Hacker's Delight" by Henry Warren 4284 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4285 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4286 auto MIBTmp = MIRBuilder.buildAnd( 4287 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4288 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4289 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4290 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4291 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4292 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4293 MI.eraseFromParent(); 4294 return Legalized; 4295 } 4296 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4297 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4298 return Legalized; 4299 } 4300 case TargetOpcode::G_CTPOP: { 4301 unsigned Size = Ty.getSizeInBits(); 4302 MachineIRBuilder &B = MIRBuilder; 4303 4304 // Count set bits in blocks of 2 bits. Default approach would be 4305 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4306 // We use following formula instead: 4307 // B2Count = val - { (val >> 1) & 0x55555555 } 4308 // since it gives same result in blocks of 2 with one instruction less. 4309 auto C_1 = B.buildConstant(Ty, 1); 4310 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4311 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4312 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4313 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4314 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4315 4316 // In order to get count in blocks of 4 add values from adjacent block of 2. 4317 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4318 auto C_2 = B.buildConstant(Ty, 2); 4319 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4320 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4321 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4322 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4323 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4324 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4325 4326 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4327 // addition since count value sits in range {0,...,8} and 4 bits are enough 4328 // to hold such binary values. After addition high 4 bits still hold count 4329 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4330 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4331 auto C_4 = B.buildConstant(Ty, 4); 4332 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4333 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4334 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4335 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4336 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4337 4338 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4339 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4340 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4341 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4342 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4343 4344 // Shift count result from 8 high bits to low bits. 4345 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4346 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4347 4348 MI.eraseFromParent(); 4349 return Legalized; 4350 } 4351 } 4352 } 4353 4354 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4355 // representation. 4356 LegalizerHelper::LegalizeResult 4357 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4358 Register Dst = MI.getOperand(0).getReg(); 4359 Register Src = MI.getOperand(1).getReg(); 4360 const LLT S64 = LLT::scalar(64); 4361 const LLT S32 = LLT::scalar(32); 4362 const LLT S1 = LLT::scalar(1); 4363 4364 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4365 4366 // unsigned cul2f(ulong u) { 4367 // uint lz = clz(u); 4368 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4369 // u = (u << lz) & 0x7fffffffffffffffUL; 4370 // ulong t = u & 0xffffffffffUL; 4371 // uint v = (e << 23) | (uint)(u >> 40); 4372 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4373 // return as_float(v + r); 4374 // } 4375 4376 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4377 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4378 4379 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4380 4381 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4382 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4383 4384 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4385 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4386 4387 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4388 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4389 4390 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4391 4392 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4393 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4394 4395 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4396 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4397 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4398 4399 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4400 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4401 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4402 auto One = MIRBuilder.buildConstant(S32, 1); 4403 4404 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4405 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4406 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4407 MIRBuilder.buildAdd(Dst, V, R); 4408 4409 return Legalized; 4410 } 4411 4412 LegalizerHelper::LegalizeResult 4413 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4414 Register Dst = MI.getOperand(0).getReg(); 4415 Register Src = MI.getOperand(1).getReg(); 4416 LLT DstTy = MRI.getType(Dst); 4417 LLT SrcTy = MRI.getType(Src); 4418 4419 if (SrcTy == LLT::scalar(1)) { 4420 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4421 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4422 MIRBuilder.buildSelect(Dst, Src, True, False); 4423 MI.eraseFromParent(); 4424 return Legalized; 4425 } 4426 4427 if (SrcTy != LLT::scalar(64)) 4428 return UnableToLegalize; 4429 4430 if (DstTy == LLT::scalar(32)) { 4431 // TODO: SelectionDAG has several alternative expansions to port which may 4432 // be more reasonble depending on the available instructions. If a target 4433 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4434 // intermediate type, this is probably worse. 4435 return lowerU64ToF32BitOps(MI); 4436 } 4437 4438 return UnableToLegalize; 4439 } 4440 4441 LegalizerHelper::LegalizeResult 4442 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4443 Register Dst = MI.getOperand(0).getReg(); 4444 Register Src = MI.getOperand(1).getReg(); 4445 LLT DstTy = MRI.getType(Dst); 4446 LLT SrcTy = MRI.getType(Src); 4447 4448 const LLT S64 = LLT::scalar(64); 4449 const LLT S32 = LLT::scalar(32); 4450 const LLT S1 = LLT::scalar(1); 4451 4452 if (SrcTy == S1) { 4453 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4454 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4455 MIRBuilder.buildSelect(Dst, Src, True, False); 4456 MI.eraseFromParent(); 4457 return Legalized; 4458 } 4459 4460 if (SrcTy != S64) 4461 return UnableToLegalize; 4462 4463 if (DstTy == S32) { 4464 // signed cl2f(long l) { 4465 // long s = l >> 63; 4466 // float r = cul2f((l + s) ^ s); 4467 // return s ? -r : r; 4468 // } 4469 Register L = Src; 4470 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4471 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4472 4473 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4474 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4475 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4476 4477 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4478 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4479 MIRBuilder.buildConstant(S64, 0)); 4480 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4481 return Legalized; 4482 } 4483 4484 return UnableToLegalize; 4485 } 4486 4487 LegalizerHelper::LegalizeResult 4488 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4489 Register Dst = MI.getOperand(0).getReg(); 4490 Register Src = MI.getOperand(1).getReg(); 4491 LLT DstTy = MRI.getType(Dst); 4492 LLT SrcTy = MRI.getType(Src); 4493 const LLT S64 = LLT::scalar(64); 4494 const LLT S32 = LLT::scalar(32); 4495 4496 if (SrcTy != S64 && SrcTy != S32) 4497 return UnableToLegalize; 4498 if (DstTy != S32 && DstTy != S64) 4499 return UnableToLegalize; 4500 4501 // FPTOSI gives same result as FPTOUI for positive signed integers. 4502 // FPTOUI needs to deal with fp values that convert to unsigned integers 4503 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4504 4505 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4506 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4507 : APFloat::IEEEdouble(), 4508 APInt::getNullValue(SrcTy.getSizeInBits())); 4509 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4510 4511 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4512 4513 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4514 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4515 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4516 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4517 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4518 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4519 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4520 4521 const LLT S1 = LLT::scalar(1); 4522 4523 MachineInstrBuilder FCMP = 4524 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4525 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4526 4527 MI.eraseFromParent(); 4528 return Legalized; 4529 } 4530 4531 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4532 Register Dst = MI.getOperand(0).getReg(); 4533 Register Src = MI.getOperand(1).getReg(); 4534 LLT DstTy = MRI.getType(Dst); 4535 LLT SrcTy = MRI.getType(Src); 4536 const LLT S64 = LLT::scalar(64); 4537 const LLT S32 = LLT::scalar(32); 4538 4539 // FIXME: Only f32 to i64 conversions are supported. 4540 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4541 return UnableToLegalize; 4542 4543 // Expand f32 -> i64 conversion 4544 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4545 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4546 4547 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4548 4549 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4550 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4551 4552 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4553 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4554 4555 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4556 APInt::getSignMask(SrcEltBits)); 4557 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4558 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4559 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4560 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4561 4562 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4563 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4564 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4565 4566 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4567 R = MIRBuilder.buildZExt(DstTy, R); 4568 4569 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4570 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4571 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4572 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4573 4574 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4575 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4576 4577 const LLT S1 = LLT::scalar(1); 4578 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4579 S1, Exponent, ExponentLoBit); 4580 4581 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4582 4583 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4584 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4585 4586 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4587 4588 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4589 S1, Exponent, ZeroSrcTy); 4590 4591 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4592 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4593 4594 MI.eraseFromParent(); 4595 return Legalized; 4596 } 4597 4598 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4599 LegalizerHelper::LegalizeResult 4600 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4601 Register Dst = MI.getOperand(0).getReg(); 4602 Register Src = MI.getOperand(1).getReg(); 4603 4604 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4605 return UnableToLegalize; 4606 4607 const unsigned ExpMask = 0x7ff; 4608 const unsigned ExpBiasf64 = 1023; 4609 const unsigned ExpBiasf16 = 15; 4610 const LLT S32 = LLT::scalar(32); 4611 const LLT S1 = LLT::scalar(1); 4612 4613 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4614 Register U = Unmerge.getReg(0); 4615 Register UH = Unmerge.getReg(1); 4616 4617 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4618 4619 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4620 // add the f16 bias (15) to get the biased exponent for the f16 format. 4621 E = MIRBuilder.buildAdd( 4622 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4623 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4624 4625 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4626 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4627 4628 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4629 MIRBuilder.buildConstant(S32, 0x1ff)); 4630 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4631 4632 auto Zero = MIRBuilder.buildConstant(S32, 0); 4633 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4634 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4635 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4636 4637 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4638 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4639 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4640 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4641 4642 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4643 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4644 4645 // N = M | (E << 12); 4646 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4647 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4648 4649 // B = clamp(1-E, 0, 13); 4650 auto One = MIRBuilder.buildConstant(S32, 1); 4651 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4652 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4653 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4654 4655 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4656 MIRBuilder.buildConstant(S32, 0x1000)); 4657 4658 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4659 auto D0 = MIRBuilder.buildShl(S32, D, B); 4660 4661 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4662 D0, SigSetHigh); 4663 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4664 D = MIRBuilder.buildOr(S32, D, D1); 4665 4666 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4667 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4668 4669 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4670 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4671 4672 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4673 MIRBuilder.buildConstant(S32, 3)); 4674 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4675 4676 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4677 MIRBuilder.buildConstant(S32, 5)); 4678 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4679 4680 V1 = MIRBuilder.buildOr(S32, V0, V1); 4681 V = MIRBuilder.buildAdd(S32, V, V1); 4682 4683 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4684 E, MIRBuilder.buildConstant(S32, 30)); 4685 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4686 MIRBuilder.buildConstant(S32, 0x7c00), V); 4687 4688 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4689 E, MIRBuilder.buildConstant(S32, 1039)); 4690 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4691 4692 // Extract the sign bit. 4693 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4694 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4695 4696 // Insert the sign bit 4697 V = MIRBuilder.buildOr(S32, Sign, V); 4698 4699 MIRBuilder.buildTrunc(Dst, V); 4700 MI.eraseFromParent(); 4701 return Legalized; 4702 } 4703 4704 LegalizerHelper::LegalizeResult 4705 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4706 Register Dst = MI.getOperand(0).getReg(); 4707 Register Src = MI.getOperand(1).getReg(); 4708 4709 LLT DstTy = MRI.getType(Dst); 4710 LLT SrcTy = MRI.getType(Src); 4711 const LLT S64 = LLT::scalar(64); 4712 const LLT S16 = LLT::scalar(16); 4713 4714 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4715 return lowerFPTRUNC_F64_TO_F16(MI); 4716 4717 return UnableToLegalize; 4718 } 4719 4720 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4721 switch (Opc) { 4722 case TargetOpcode::G_SMIN: 4723 return CmpInst::ICMP_SLT; 4724 case TargetOpcode::G_SMAX: 4725 return CmpInst::ICMP_SGT; 4726 case TargetOpcode::G_UMIN: 4727 return CmpInst::ICMP_ULT; 4728 case TargetOpcode::G_UMAX: 4729 return CmpInst::ICMP_UGT; 4730 default: 4731 llvm_unreachable("not in integer min/max"); 4732 } 4733 } 4734 4735 LegalizerHelper::LegalizeResult 4736 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4737 Register Dst = MI.getOperand(0).getReg(); 4738 Register Src0 = MI.getOperand(1).getReg(); 4739 Register Src1 = MI.getOperand(2).getReg(); 4740 4741 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4742 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4743 4744 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4745 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4746 4747 MI.eraseFromParent(); 4748 return Legalized; 4749 } 4750 4751 LegalizerHelper::LegalizeResult 4752 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4753 Register Dst = MI.getOperand(0).getReg(); 4754 Register Src0 = MI.getOperand(1).getReg(); 4755 Register Src1 = MI.getOperand(2).getReg(); 4756 4757 const LLT Src0Ty = MRI.getType(Src0); 4758 const LLT Src1Ty = MRI.getType(Src1); 4759 4760 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4761 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4762 4763 auto SignBitMask = MIRBuilder.buildConstant( 4764 Src0Ty, APInt::getSignMask(Src0Size)); 4765 4766 auto NotSignBitMask = MIRBuilder.buildConstant( 4767 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4768 4769 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4770 MachineInstr *Or; 4771 4772 if (Src0Ty == Src1Ty) { 4773 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4774 Or = MIRBuilder.buildOr(Dst, And0, And1); 4775 } else if (Src0Size > Src1Size) { 4776 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4777 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4778 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4779 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4780 Or = MIRBuilder.buildOr(Dst, And0, And1); 4781 } else { 4782 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4783 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4784 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4785 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4786 Or = MIRBuilder.buildOr(Dst, And0, And1); 4787 } 4788 4789 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4790 // constants are a nan and -0.0, but the final result should preserve 4791 // everything. 4792 if (unsigned Flags = MI.getFlags()) 4793 Or->setFlags(Flags); 4794 4795 MI.eraseFromParent(); 4796 return Legalized; 4797 } 4798 4799 LegalizerHelper::LegalizeResult 4800 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4801 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4802 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4803 4804 Register Dst = MI.getOperand(0).getReg(); 4805 Register Src0 = MI.getOperand(1).getReg(); 4806 Register Src1 = MI.getOperand(2).getReg(); 4807 LLT Ty = MRI.getType(Dst); 4808 4809 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4810 // Insert canonicalizes if it's possible we need to quiet to get correct 4811 // sNaN behavior. 4812 4813 // Note this must be done here, and not as an optimization combine in the 4814 // absence of a dedicate quiet-snan instruction as we're using an 4815 // omni-purpose G_FCANONICALIZE. 4816 if (!isKnownNeverSNaN(Src0, MRI)) 4817 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4818 4819 if (!isKnownNeverSNaN(Src1, MRI)) 4820 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4821 } 4822 4823 // If there are no nans, it's safe to simply replace this with the non-IEEE 4824 // version. 4825 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4826 MI.eraseFromParent(); 4827 return Legalized; 4828 } 4829 4830 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4831 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4832 Register DstReg = MI.getOperand(0).getReg(); 4833 LLT Ty = MRI.getType(DstReg); 4834 unsigned Flags = MI.getFlags(); 4835 4836 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4837 Flags); 4838 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4839 MI.eraseFromParent(); 4840 return Legalized; 4841 } 4842 4843 LegalizerHelper::LegalizeResult 4844 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4845 Register DstReg = MI.getOperand(0).getReg(); 4846 Register X = MI.getOperand(1).getReg(); 4847 const unsigned Flags = MI.getFlags(); 4848 const LLT Ty = MRI.getType(DstReg); 4849 const LLT CondTy = Ty.changeElementSize(1); 4850 4851 // round(x) => 4852 // t = trunc(x); 4853 // d = fabs(x - t); 4854 // o = copysign(1.0f, x); 4855 // return t + (d >= 0.5 ? o : 0.0); 4856 4857 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4858 4859 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4860 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4861 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4862 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4863 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4864 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4865 4866 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4867 Flags); 4868 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4869 4870 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4871 4872 MI.eraseFromParent(); 4873 return Legalized; 4874 } 4875 4876 LegalizerHelper::LegalizeResult 4877 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4878 Register DstReg = MI.getOperand(0).getReg(); 4879 Register SrcReg = MI.getOperand(1).getReg(); 4880 unsigned Flags = MI.getFlags(); 4881 LLT Ty = MRI.getType(DstReg); 4882 const LLT CondTy = Ty.changeElementSize(1); 4883 4884 // result = trunc(src); 4885 // if (src < 0.0 && src != result) 4886 // result += -1.0. 4887 4888 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4889 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4890 4891 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4892 SrcReg, Zero, Flags); 4893 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4894 SrcReg, Trunc, Flags); 4895 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4896 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4897 4898 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4899 MI.eraseFromParent(); 4900 return Legalized; 4901 } 4902 4903 LegalizerHelper::LegalizeResult 4904 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4905 const unsigned NumOps = MI.getNumOperands(); 4906 Register DstReg = MI.getOperand(0).getReg(); 4907 Register Src0Reg = MI.getOperand(1).getReg(); 4908 LLT DstTy = MRI.getType(DstReg); 4909 LLT SrcTy = MRI.getType(Src0Reg); 4910 unsigned PartSize = SrcTy.getSizeInBits(); 4911 4912 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4913 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4914 4915 for (unsigned I = 2; I != NumOps; ++I) { 4916 const unsigned Offset = (I - 1) * PartSize; 4917 4918 Register SrcReg = MI.getOperand(I).getReg(); 4919 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4920 4921 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 4922 MRI.createGenericVirtualRegister(WideTy); 4923 4924 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 4925 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 4926 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 4927 ResultReg = NextResult; 4928 } 4929 4930 if (DstTy.isPointer()) { 4931 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 4932 DstTy.getAddressSpace())) { 4933 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 4934 return UnableToLegalize; 4935 } 4936 4937 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 4938 } 4939 4940 MI.eraseFromParent(); 4941 return Legalized; 4942 } 4943 4944 LegalizerHelper::LegalizeResult 4945 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4946 const unsigned NumDst = MI.getNumOperands() - 1; 4947 Register SrcReg = MI.getOperand(NumDst).getReg(); 4948 Register Dst0Reg = MI.getOperand(0).getReg(); 4949 LLT DstTy = MRI.getType(Dst0Reg); 4950 if (DstTy.isPointer()) 4951 return UnableToLegalize; // TODO 4952 4953 SrcReg = coerceToScalar(SrcReg); 4954 if (!SrcReg) 4955 return UnableToLegalize; 4956 4957 // Expand scalarizing unmerge as bitcast to integer and shift. 4958 LLT IntTy = MRI.getType(SrcReg); 4959 4960 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 4961 4962 const unsigned DstSize = DstTy.getSizeInBits(); 4963 unsigned Offset = DstSize; 4964 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4965 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4966 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 4967 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4968 } 4969 4970 MI.eraseFromParent(); 4971 return Legalized; 4972 } 4973 4974 LegalizerHelper::LegalizeResult 4975 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4976 Register DstReg = MI.getOperand(0).getReg(); 4977 Register Src0Reg = MI.getOperand(1).getReg(); 4978 Register Src1Reg = MI.getOperand(2).getReg(); 4979 LLT Src0Ty = MRI.getType(Src0Reg); 4980 LLT DstTy = MRI.getType(DstReg); 4981 LLT IdxTy = LLT::scalar(32); 4982 4983 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4984 4985 if (DstTy.isScalar()) { 4986 if (Src0Ty.isVector()) 4987 return UnableToLegalize; 4988 4989 // This is just a SELECT. 4990 assert(Mask.size() == 1 && "Expected a single mask element"); 4991 Register Val; 4992 if (Mask[0] < 0 || Mask[0] > 1) 4993 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4994 else 4995 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4996 MIRBuilder.buildCopy(DstReg, Val); 4997 MI.eraseFromParent(); 4998 return Legalized; 4999 } 5000 5001 Register Undef; 5002 SmallVector<Register, 32> BuildVec; 5003 LLT EltTy = DstTy.getElementType(); 5004 5005 for (int Idx : Mask) { 5006 if (Idx < 0) { 5007 if (!Undef.isValid()) 5008 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5009 BuildVec.push_back(Undef); 5010 continue; 5011 } 5012 5013 if (Src0Ty.isScalar()) { 5014 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5015 } else { 5016 int NumElts = Src0Ty.getNumElements(); 5017 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5018 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5019 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5020 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5021 BuildVec.push_back(Extract.getReg(0)); 5022 } 5023 } 5024 5025 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5026 MI.eraseFromParent(); 5027 return Legalized; 5028 } 5029 5030 LegalizerHelper::LegalizeResult 5031 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5032 const auto &MF = *MI.getMF(); 5033 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5034 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5035 return UnableToLegalize; 5036 5037 Register Dst = MI.getOperand(0).getReg(); 5038 Register AllocSize = MI.getOperand(1).getReg(); 5039 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5040 5041 LLT PtrTy = MRI.getType(Dst); 5042 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5043 5044 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5045 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5046 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5047 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5048 5049 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5050 // have to generate an extra instruction to negate the alloc and then use 5051 // G_PTR_ADD to add the negative offset. 5052 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5053 if (Alignment > Align(1)) { 5054 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5055 AlignMask.negate(); 5056 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5057 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5058 } 5059 5060 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5061 MIRBuilder.buildCopy(SPReg, SPTmp); 5062 MIRBuilder.buildCopy(Dst, SPTmp); 5063 5064 MI.eraseFromParent(); 5065 return Legalized; 5066 } 5067 5068 LegalizerHelper::LegalizeResult 5069 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5070 Register Dst = MI.getOperand(0).getReg(); 5071 Register Src = MI.getOperand(1).getReg(); 5072 unsigned Offset = MI.getOperand(2).getImm(); 5073 5074 LLT DstTy = MRI.getType(Dst); 5075 LLT SrcTy = MRI.getType(Src); 5076 5077 if (DstTy.isScalar() && 5078 (SrcTy.isScalar() || 5079 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5080 LLT SrcIntTy = SrcTy; 5081 if (!SrcTy.isScalar()) { 5082 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5083 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5084 } 5085 5086 if (Offset == 0) 5087 MIRBuilder.buildTrunc(Dst, Src); 5088 else { 5089 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5090 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5091 MIRBuilder.buildTrunc(Dst, Shr); 5092 } 5093 5094 MI.eraseFromParent(); 5095 return Legalized; 5096 } 5097 5098 return UnableToLegalize; 5099 } 5100 5101 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5102 Register Dst = MI.getOperand(0).getReg(); 5103 Register Src = MI.getOperand(1).getReg(); 5104 Register InsertSrc = MI.getOperand(2).getReg(); 5105 uint64_t Offset = MI.getOperand(3).getImm(); 5106 5107 LLT DstTy = MRI.getType(Src); 5108 LLT InsertTy = MRI.getType(InsertSrc); 5109 5110 if (InsertTy.isVector() || 5111 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5112 return UnableToLegalize; 5113 5114 const DataLayout &DL = MIRBuilder.getDataLayout(); 5115 if ((DstTy.isPointer() && 5116 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5117 (InsertTy.isPointer() && 5118 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5119 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5120 return UnableToLegalize; 5121 } 5122 5123 LLT IntDstTy = DstTy; 5124 5125 if (!DstTy.isScalar()) { 5126 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5127 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5128 } 5129 5130 if (!InsertTy.isScalar()) { 5131 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5132 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5133 } 5134 5135 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5136 if (Offset != 0) { 5137 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5138 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5139 } 5140 5141 APInt MaskVal = APInt::getBitsSetWithWrap( 5142 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5143 5144 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5145 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5146 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5147 5148 MIRBuilder.buildCast(Dst, Or); 5149 MI.eraseFromParent(); 5150 return Legalized; 5151 } 5152 5153 LegalizerHelper::LegalizeResult 5154 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5155 Register Dst0 = MI.getOperand(0).getReg(); 5156 Register Dst1 = MI.getOperand(1).getReg(); 5157 Register LHS = MI.getOperand(2).getReg(); 5158 Register RHS = MI.getOperand(3).getReg(); 5159 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5160 5161 LLT Ty = MRI.getType(Dst0); 5162 LLT BoolTy = MRI.getType(Dst1); 5163 5164 if (IsAdd) 5165 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5166 else 5167 MIRBuilder.buildSub(Dst0, LHS, RHS); 5168 5169 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5170 5171 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5172 5173 // For an addition, the result should be less than one of the operands (LHS) 5174 // if and only if the other operand (RHS) is negative, otherwise there will 5175 // be overflow. 5176 // For a subtraction, the result should be less than one of the operands 5177 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5178 // otherwise there will be overflow. 5179 auto ResultLowerThanLHS = 5180 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5181 auto ConditionRHS = MIRBuilder.buildICmp( 5182 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5183 5184 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5185 MI.eraseFromParent(); 5186 return Legalized; 5187 } 5188 5189 LegalizerHelper::LegalizeResult 5190 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5191 Register Dst = MI.getOperand(0).getReg(); 5192 Register Src = MI.getOperand(1).getReg(); 5193 const LLT Ty = MRI.getType(Src); 5194 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5195 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5196 5197 // Swap most and least significant byte, set remaining bytes in Res to zero. 5198 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5199 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5200 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5201 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5202 5203 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5204 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5205 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5206 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5207 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5208 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5209 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5210 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5211 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5212 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5213 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5214 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5215 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5216 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5217 } 5218 Res.getInstr()->getOperand(0).setReg(Dst); 5219 5220 MI.eraseFromParent(); 5221 return Legalized; 5222 } 5223 5224 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5225 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5226 MachineInstrBuilder Src, APInt Mask) { 5227 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5228 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5229 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5230 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5231 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5232 return B.buildOr(Dst, LHS, RHS); 5233 } 5234 5235 LegalizerHelper::LegalizeResult 5236 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5237 Register Dst = MI.getOperand(0).getReg(); 5238 Register Src = MI.getOperand(1).getReg(); 5239 const LLT Ty = MRI.getType(Src); 5240 unsigned Size = Ty.getSizeInBits(); 5241 5242 MachineInstrBuilder BSWAP = 5243 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5244 5245 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5246 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5247 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5248 MachineInstrBuilder Swap4 = 5249 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5250 5251 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5252 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5253 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5254 MachineInstrBuilder Swap2 = 5255 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5256 5257 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5258 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5259 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5260 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5261 5262 MI.eraseFromParent(); 5263 return Legalized; 5264 } 5265 5266 LegalizerHelper::LegalizeResult 5267 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5268 MachineFunction &MF = MIRBuilder.getMF(); 5269 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5270 const TargetLowering *TLI = STI.getTargetLowering(); 5271 5272 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5273 int NameOpIdx = IsRead ? 1 : 0; 5274 int ValRegIndex = IsRead ? 0 : 1; 5275 5276 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5277 const LLT Ty = MRI.getType(ValReg); 5278 const MDString *RegStr = cast<MDString>( 5279 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5280 5281 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5282 if (!PhysReg.isValid()) 5283 return UnableToLegalize; 5284 5285 if (IsRead) 5286 MIRBuilder.buildCopy(ValReg, PhysReg); 5287 else 5288 MIRBuilder.buildCopy(PhysReg, ValReg); 5289 5290 MI.eraseFromParent(); 5291 return Legalized; 5292 } 5293