1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int StartIdx = Regs.size();
252   const int NumResults = MI.getNumOperands() - 1;
253   Regs.resize(Regs.size() + NumResults);
254   for (int I = 0; I != NumResults; ++I)
255     Regs[StartIdx + I] = MI.getOperand(I).getReg();
256 }
257 
258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
259                                      LLT GCDTy, Register SrcReg) {
260   LLT SrcTy = MRI.getType(SrcReg);
261   if (SrcTy == GCDTy) {
262     // If the source already evenly divides the result type, we don't need to do
263     // anything.
264     Parts.push_back(SrcReg);
265   } else {
266     // Need to split into common type sized pieces.
267     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
268     getUnmergeResults(Parts, *Unmerge);
269   }
270 }
271 
272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
273                                     LLT NarrowTy, Register SrcReg) {
274   LLT SrcTy = MRI.getType(SrcReg);
275   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
276   extractGCDType(Parts, GCDTy, SrcReg);
277   return GCDTy;
278 }
279 
280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
281                                          SmallVectorImpl<Register> &VRegs,
282                                          unsigned PadStrategy) {
283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
284 
285   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
286   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
287   int NumOrigSrc = VRegs.size();
288 
289   Register PadReg;
290 
291   // Get a value we can use to pad the source value if the sources won't evenly
292   // cover the result type.
293   if (NumOrigSrc < NumParts * NumSubParts) {
294     if (PadStrategy == TargetOpcode::G_ZEXT)
295       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
296     else if (PadStrategy == TargetOpcode::G_ANYEXT)
297       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
298     else {
299       assert(PadStrategy == TargetOpcode::G_SEXT);
300 
301       // Shift the sign bit of the low register through the high register.
302       auto ShiftAmt =
303         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
304       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
305     }
306   }
307 
308   // Registers for the final merge to be produced.
309   SmallVector<Register, 4> Remerge(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge(NumSubParts);
314 
315   // Once we've fully read off the end of the original source bits, we can reuse
316   // the same high bits for remaining padding elements.
317   Register AllPadReg;
318 
319   // Build merges to the LCM type to cover the original result type.
320   for (int I = 0; I != NumParts; ++I) {
321     bool AllMergePartsArePadding = true;
322 
323     // Build the requested merges to the requested type.
324     for (int J = 0; J != NumSubParts; ++J) {
325       int Idx = I * NumSubParts + J;
326       if (Idx >= NumOrigSrc) {
327         SubMerge[J] = PadReg;
328         continue;
329       }
330 
331       SubMerge[J] = VRegs[Idx];
332 
333       // There are meaningful bits here we can't reuse later.
334       AllMergePartsArePadding = false;
335     }
336 
337     // If we've filled up a complete piece with padding bits, we can directly
338     // emit the natural sized constant if applicable, rather than a merge of
339     // smaller constants.
340     if (AllMergePartsArePadding && !AllPadReg) {
341       if (PadStrategy == TargetOpcode::G_ANYEXT)
342         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
343       else if (PadStrategy == TargetOpcode::G_ZEXT)
344         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
345 
346       // If this is a sign extension, we can't materialize a trivial constant
347       // with the right type and have to produce a merge.
348     }
349 
350     if (AllPadReg) {
351       // Avoid creating additional instructions if we're just adding additional
352       // copies of padding bits.
353       Remerge[I] = AllPadReg;
354       continue;
355     }
356 
357     if (NumSubParts == 1)
358       Remerge[I] = SubMerge[0];
359     else
360       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
361 
362     // In the sign extend padding case, re-use the first all-signbit merge.
363     if (AllMergePartsArePadding && !AllPadReg)
364       AllPadReg = Remerge[I];
365   }
366 
367   VRegs = std::move(Remerge);
368   return LCMTy;
369 }
370 
371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
372                                                ArrayRef<Register> RemergeRegs) {
373   LLT DstTy = MRI.getType(DstReg);
374 
375   // Create the merge to the widened source, and extract the relevant bits into
376   // the result.
377 
378   if (DstTy == LCMTy) {
379     MIRBuilder.buildMerge(DstReg, RemergeRegs);
380     return;
381   }
382 
383   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
384   if (DstTy.isScalar() && LCMTy.isScalar()) {
385     MIRBuilder.buildTrunc(DstReg, Remerge);
386     return;
387   }
388 
389   if (LCMTy.isVector()) {
390     MIRBuilder.buildExtract(DstReg, Remerge, 0);
391     return;
392   }
393 
394   llvm_unreachable("unhandled case");
395 }
396 
397 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
398 #define RTLIBCASE_INT(LibcallPrefix)                                           \
399   do {                                                                         \
400     switch (Size) {                                                            \
401     case 32:                                                                   \
402       return RTLIB::LibcallPrefix##32;                                         \
403     case 64:                                                                   \
404       return RTLIB::LibcallPrefix##64;                                         \
405     case 128:                                                                  \
406       return RTLIB::LibcallPrefix##128;                                        \
407     default:                                                                   \
408       llvm_unreachable("unexpected size");                                     \
409     }                                                                          \
410   } while (0)
411 
412 #define RTLIBCASE(LibcallPrefix)                                               \
413   do {                                                                         \
414     switch (Size) {                                                            \
415     case 32:                                                                   \
416       return RTLIB::LibcallPrefix##32;                                         \
417     case 64:                                                                   \
418       return RTLIB::LibcallPrefix##64;                                         \
419     case 80:                                                                   \
420       return RTLIB::LibcallPrefix##80;                                         \
421     case 128:                                                                  \
422       return RTLIB::LibcallPrefix##128;                                        \
423     default:                                                                   \
424       llvm_unreachable("unexpected size");                                     \
425     }                                                                          \
426   } while (0)
427 
428   switch (Opcode) {
429   case TargetOpcode::G_SDIV:
430     RTLIBCASE_INT(SDIV_I);
431   case TargetOpcode::G_UDIV:
432     RTLIBCASE_INT(UDIV_I);
433   case TargetOpcode::G_SREM:
434     RTLIBCASE_INT(SREM_I);
435   case TargetOpcode::G_UREM:
436     RTLIBCASE_INT(UREM_I);
437   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
438     RTLIBCASE_INT(CTLZ_I);
439   case TargetOpcode::G_FADD:
440     RTLIBCASE(ADD_F);
441   case TargetOpcode::G_FSUB:
442     RTLIBCASE(SUB_F);
443   case TargetOpcode::G_FMUL:
444     RTLIBCASE(MUL_F);
445   case TargetOpcode::G_FDIV:
446     RTLIBCASE(DIV_F);
447   case TargetOpcode::G_FEXP:
448     RTLIBCASE(EXP_F);
449   case TargetOpcode::G_FEXP2:
450     RTLIBCASE(EXP2_F);
451   case TargetOpcode::G_FREM:
452     RTLIBCASE(REM_F);
453   case TargetOpcode::G_FPOW:
454     RTLIBCASE(POW_F);
455   case TargetOpcode::G_FMA:
456     RTLIBCASE(FMA_F);
457   case TargetOpcode::G_FSIN:
458     RTLIBCASE(SIN_F);
459   case TargetOpcode::G_FCOS:
460     RTLIBCASE(COS_F);
461   case TargetOpcode::G_FLOG10:
462     RTLIBCASE(LOG10_F);
463   case TargetOpcode::G_FLOG:
464     RTLIBCASE(LOG_F);
465   case TargetOpcode::G_FLOG2:
466     RTLIBCASE(LOG2_F);
467   case TargetOpcode::G_FCEIL:
468     RTLIBCASE(CEIL_F);
469   case TargetOpcode::G_FFLOOR:
470     RTLIBCASE(FLOOR_F);
471   case TargetOpcode::G_FMINNUM:
472     RTLIBCASE(FMIN_F);
473   case TargetOpcode::G_FMAXNUM:
474     RTLIBCASE(FMAX_F);
475   case TargetOpcode::G_FSQRT:
476     RTLIBCASE(SQRT_F);
477   case TargetOpcode::G_FRINT:
478     RTLIBCASE(RINT_F);
479   case TargetOpcode::G_FNEARBYINT:
480     RTLIBCASE(NEARBYINT_F);
481   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
482     RTLIBCASE(ROUNDEVEN_F);
483   }
484   llvm_unreachable("Unknown libcall function");
485 }
486 
487 /// True if an instruction is in tail position in its caller. Intended for
488 /// legalizing libcalls as tail calls when possible.
489 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
490                                     MachineInstr &MI) {
491   MachineBasicBlock &MBB = *MI.getParent();
492   const Function &F = MBB.getParent()->getFunction();
493 
494   // Conservatively require the attributes of the call to match those of
495   // the return. Ignore NoAlias and NonNull because they don't affect the
496   // call sequence.
497   AttributeList CallerAttrs = F.getAttributes();
498   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
499           .removeAttribute(Attribute::NoAlias)
500           .removeAttribute(Attribute::NonNull)
501           .hasAttributes())
502     return false;
503 
504   // It's not safe to eliminate the sign / zero extension of the return value.
505   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
506       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
507     return false;
508 
509   // Only tail call if the following instruction is a standard return.
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
512     return false;
513 
514   return true;
515 }
516 
517 LegalizerHelper::LegalizeResult
518 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
519                     const CallLowering::ArgInfo &Result,
520                     ArrayRef<CallLowering::ArgInfo> Args,
521                     const CallingConv::ID CC) {
522   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
523 
524   CallLowering::CallLoweringInfo Info;
525   Info.CallConv = CC;
526   Info.Callee = MachineOperand::CreateES(Name);
527   Info.OrigRet = Result;
528   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
529   if (!CLI.lowerCall(MIRBuilder, Info))
530     return LegalizerHelper::UnableToLegalize;
531 
532   return LegalizerHelper::Legalized;
533 }
534 
535 LegalizerHelper::LegalizeResult
536 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
537                     const CallLowering::ArgInfo &Result,
538                     ArrayRef<CallLowering::ArgInfo> Args) {
539   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
540   const char *Name = TLI.getLibcallName(Libcall);
541   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
542   return createLibcall(MIRBuilder, Name, Result, Args, CC);
543 }
544 
545 // Useful for libcalls where all operands have the same type.
546 static LegalizerHelper::LegalizeResult
547 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
548               Type *OpType) {
549   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
550 
551   SmallVector<CallLowering::ArgInfo, 3> Args;
552   for (unsigned i = 1; i < MI.getNumOperands(); i++)
553     Args.push_back({MI.getOperand(i).getReg(), OpType});
554   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
555                        Args);
556 }
557 
558 LegalizerHelper::LegalizeResult
559 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
560                        MachineInstr &MI) {
561   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
562 
563   SmallVector<CallLowering::ArgInfo, 3> Args;
564   // Add all the args, except for the last which is an imm denoting 'tail'.
565   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
566     Register Reg = MI.getOperand(i).getReg();
567 
568     // Need derive an IR type for call lowering.
569     LLT OpLLT = MRI.getType(Reg);
570     Type *OpTy = nullptr;
571     if (OpLLT.isPointer())
572       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
573     else
574       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
575     Args.push_back({Reg, OpTy});
576   }
577 
578   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
579   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
580   RTLIB::Libcall RTLibcall;
581   switch (MI.getOpcode()) {
582   case TargetOpcode::G_MEMCPY:
583     RTLibcall = RTLIB::MEMCPY;
584     break;
585   case TargetOpcode::G_MEMMOVE:
586     RTLibcall = RTLIB::MEMMOVE;
587     break;
588   case TargetOpcode::G_MEMSET:
589     RTLibcall = RTLIB::MEMSET;
590     break;
591   default:
592     return LegalizerHelper::UnableToLegalize;
593   }
594   const char *Name = TLI.getLibcallName(RTLibcall);
595 
596   CallLowering::CallLoweringInfo Info;
597   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
598   Info.Callee = MachineOperand::CreateES(Name);
599   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
600   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
601                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
602 
603   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
604   if (!CLI.lowerCall(MIRBuilder, Info))
605     return LegalizerHelper::UnableToLegalize;
606 
607   if (Info.LoweredTailCall) {
608     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
609     // We must have a return following the call (or debug insts) to get past
610     // isLibCallInTailPosition.
611     do {
612       MachineInstr *Next = MI.getNextNode();
613       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
614              "Expected instr following MI to be return or debug inst?");
615       // We lowered a tail call, so the call is now the return from the block.
616       // Delete the old return.
617       Next->eraseFromParent();
618     } while (MI.getNextNode());
619   }
620 
621   return LegalizerHelper::Legalized;
622 }
623 
624 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
625                                        Type *FromType) {
626   auto ToMVT = MVT::getVT(ToType);
627   auto FromMVT = MVT::getVT(FromType);
628 
629   switch (Opcode) {
630   case TargetOpcode::G_FPEXT:
631     return RTLIB::getFPEXT(FromMVT, ToMVT);
632   case TargetOpcode::G_FPTRUNC:
633     return RTLIB::getFPROUND(FromMVT, ToMVT);
634   case TargetOpcode::G_FPTOSI:
635     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTOUI:
637     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
638   case TargetOpcode::G_SITOFP:
639     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
640   case TargetOpcode::G_UITOFP:
641     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
642   }
643   llvm_unreachable("Unsupported libcall function");
644 }
645 
646 static LegalizerHelper::LegalizeResult
647 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
648                   Type *FromType) {
649   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
650   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
651                        {{MI.getOperand(1).getReg(), FromType}});
652 }
653 
654 LegalizerHelper::LegalizeResult
655 LegalizerHelper::libcall(MachineInstr &MI) {
656   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
657   unsigned Size = LLTy.getSizeInBits();
658   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
659 
660   switch (MI.getOpcode()) {
661   default:
662     return UnableToLegalize;
663   case TargetOpcode::G_SDIV:
664   case TargetOpcode::G_UDIV:
665   case TargetOpcode::G_SREM:
666   case TargetOpcode::G_UREM:
667   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
668     Type *HLTy = IntegerType::get(Ctx, Size);
669     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
670     if (Status != Legalized)
671       return Status;
672     break;
673   }
674   case TargetOpcode::G_FADD:
675   case TargetOpcode::G_FSUB:
676   case TargetOpcode::G_FMUL:
677   case TargetOpcode::G_FDIV:
678   case TargetOpcode::G_FMA:
679   case TargetOpcode::G_FPOW:
680   case TargetOpcode::G_FREM:
681   case TargetOpcode::G_FCOS:
682   case TargetOpcode::G_FSIN:
683   case TargetOpcode::G_FLOG10:
684   case TargetOpcode::G_FLOG:
685   case TargetOpcode::G_FLOG2:
686   case TargetOpcode::G_FEXP:
687   case TargetOpcode::G_FEXP2:
688   case TargetOpcode::G_FCEIL:
689   case TargetOpcode::G_FFLOOR:
690   case TargetOpcode::G_FMINNUM:
691   case TargetOpcode::G_FMAXNUM:
692   case TargetOpcode::G_FSQRT:
693   case TargetOpcode::G_FRINT:
694   case TargetOpcode::G_FNEARBYINT:
695   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
696     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
697     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
698       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
699       return UnableToLegalize;
700     }
701     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
702     if (Status != Legalized)
703       return Status;
704     break;
705   }
706   case TargetOpcode::G_FPEXT:
707   case TargetOpcode::G_FPTRUNC: {
708     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
709     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
710     if (!FromTy || !ToTy)
711       return UnableToLegalize;
712     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
713     if (Status != Legalized)
714       return Status;
715     break;
716   }
717   case TargetOpcode::G_FPTOSI:
718   case TargetOpcode::G_FPTOUI: {
719     // FIXME: Support other types
720     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
721     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
722     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
723       return UnableToLegalize;
724     LegalizeResult Status = conversionLibcall(
725         MI, MIRBuilder,
726         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
727         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_SITOFP:
733   case TargetOpcode::G_UITOFP: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
742         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_MEMCPY:
748   case TargetOpcode::G_MEMMOVE:
749   case TargetOpcode::G_MEMSET: {
750     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
751     MI.eraseFromParent();
752     return Result;
753   }
754   }
755 
756   MI.eraseFromParent();
757   return Legalized;
758 }
759 
760 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
761                                                               unsigned TypeIdx,
762                                                               LLT NarrowTy) {
763   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
764   uint64_t NarrowSize = NarrowTy.getSizeInBits();
765 
766   switch (MI.getOpcode()) {
767   default:
768     return UnableToLegalize;
769   case TargetOpcode::G_IMPLICIT_DEF: {
770     Register DstReg = MI.getOperand(0).getReg();
771     LLT DstTy = MRI.getType(DstReg);
772 
773     // If SizeOp0 is not an exact multiple of NarrowSize, emit
774     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
775     // FIXME: Although this would also be legal for the general case, it causes
776     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
777     //  combines not being hit). This seems to be a problem related to the
778     //  artifact combiner.
779     if (SizeOp0 % NarrowSize != 0) {
780       LLT ImplicitTy = NarrowTy;
781       if (DstTy.isVector())
782         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
783 
784       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
785       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
786 
787       MI.eraseFromParent();
788       return Legalized;
789     }
790 
791     int NumParts = SizeOp0 / NarrowSize;
792 
793     SmallVector<Register, 2> DstRegs;
794     for (int i = 0; i < NumParts; ++i)
795       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
796 
797     if (DstTy.isVector())
798       MIRBuilder.buildBuildVector(DstReg, DstRegs);
799     else
800       MIRBuilder.buildMerge(DstReg, DstRegs);
801     MI.eraseFromParent();
802     return Legalized;
803   }
804   case TargetOpcode::G_CONSTANT: {
805     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
806     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
807     unsigned TotalSize = Ty.getSizeInBits();
808     unsigned NarrowSize = NarrowTy.getSizeInBits();
809     int NumParts = TotalSize / NarrowSize;
810 
811     SmallVector<Register, 4> PartRegs;
812     for (int I = 0; I != NumParts; ++I) {
813       unsigned Offset = I * NarrowSize;
814       auto K = MIRBuilder.buildConstant(NarrowTy,
815                                         Val.lshr(Offset).trunc(NarrowSize));
816       PartRegs.push_back(K.getReg(0));
817     }
818 
819     LLT LeftoverTy;
820     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
821     SmallVector<Register, 1> LeftoverRegs;
822     if (LeftoverBits != 0) {
823       LeftoverTy = LLT::scalar(LeftoverBits);
824       auto K = MIRBuilder.buildConstant(
825         LeftoverTy,
826         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
827       LeftoverRegs.push_back(K.getReg(0));
828     }
829 
830     insertParts(MI.getOperand(0).getReg(),
831                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
832 
833     MI.eraseFromParent();
834     return Legalized;
835   }
836   case TargetOpcode::G_SEXT:
837   case TargetOpcode::G_ZEXT:
838   case TargetOpcode::G_ANYEXT:
839     return narrowScalarExt(MI, TypeIdx, NarrowTy);
840   case TargetOpcode::G_TRUNC: {
841     if (TypeIdx != 1)
842       return UnableToLegalize;
843 
844     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
845     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
846       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
847       return UnableToLegalize;
848     }
849 
850     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
851     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
852     MI.eraseFromParent();
853     return Legalized;
854   }
855 
856   case TargetOpcode::G_FREEZE:
857     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
858 
859   case TargetOpcode::G_ADD: {
860     // FIXME: add support for when SizeOp0 isn't an exact multiple of
861     // NarrowSize.
862     if (SizeOp0 % NarrowSize != 0)
863       return UnableToLegalize;
864     // Expand in terms of carry-setting/consuming G_ADDE instructions.
865     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
866 
867     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
868     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
869     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
870 
871     Register CarryIn;
872     for (int i = 0; i < NumParts; ++i) {
873       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
874       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
875 
876       if (i == 0)
877         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
878       else {
879         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
880                               Src2Regs[i], CarryIn);
881       }
882 
883       DstRegs.push_back(DstReg);
884       CarryIn = CarryOut;
885     }
886     Register DstReg = MI.getOperand(0).getReg();
887     if(MRI.getType(DstReg).isVector())
888       MIRBuilder.buildBuildVector(DstReg, DstRegs);
889     else
890       MIRBuilder.buildMerge(DstReg, DstRegs);
891     MI.eraseFromParent();
892     return Legalized;
893   }
894   case TargetOpcode::G_SUB: {
895     // FIXME: add support for when SizeOp0 isn't an exact multiple of
896     // NarrowSize.
897     if (SizeOp0 % NarrowSize != 0)
898       return UnableToLegalize;
899 
900     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
901 
902     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
903     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
904     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
905 
906     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
907     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
908     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
909                           {Src1Regs[0], Src2Regs[0]});
910     DstRegs.push_back(DstReg);
911     Register BorrowIn = BorrowOut;
912     for (int i = 1; i < NumParts; ++i) {
913       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
914       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
915 
916       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
917                             {Src1Regs[i], Src2Regs[i], BorrowIn});
918 
919       DstRegs.push_back(DstReg);
920       BorrowIn = BorrowOut;
921     }
922     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
923     MI.eraseFromParent();
924     return Legalized;
925   }
926   case TargetOpcode::G_MUL:
927   case TargetOpcode::G_UMULH:
928     return narrowScalarMul(MI, NarrowTy);
929   case TargetOpcode::G_EXTRACT:
930     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
931   case TargetOpcode::G_INSERT:
932     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
933   case TargetOpcode::G_LOAD: {
934     auto &MMO = **MI.memoperands_begin();
935     Register DstReg = MI.getOperand(0).getReg();
936     LLT DstTy = MRI.getType(DstReg);
937     if (DstTy.isVector())
938       return UnableToLegalize;
939 
940     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
941       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
942       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
943       MIRBuilder.buildAnyExt(DstReg, TmpReg);
944       MI.eraseFromParent();
945       return Legalized;
946     }
947 
948     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
949   }
950   case TargetOpcode::G_ZEXTLOAD:
951   case TargetOpcode::G_SEXTLOAD: {
952     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
953     Register DstReg = MI.getOperand(0).getReg();
954     Register PtrReg = MI.getOperand(1).getReg();
955 
956     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
957     auto &MMO = **MI.memoperands_begin();
958     if (MMO.getSizeInBits() == NarrowSize) {
959       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
960     } else {
961       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
962     }
963 
964     if (ZExt)
965       MIRBuilder.buildZExt(DstReg, TmpReg);
966     else
967       MIRBuilder.buildSExt(DstReg, TmpReg);
968 
969     MI.eraseFromParent();
970     return Legalized;
971   }
972   case TargetOpcode::G_STORE: {
973     const auto &MMO = **MI.memoperands_begin();
974 
975     Register SrcReg = MI.getOperand(0).getReg();
976     LLT SrcTy = MRI.getType(SrcReg);
977     if (SrcTy.isVector())
978       return UnableToLegalize;
979 
980     int NumParts = SizeOp0 / NarrowSize;
981     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
982     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
983     if (SrcTy.isVector() && LeftoverBits != 0)
984       return UnableToLegalize;
985 
986     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
987       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
988       auto &MMO = **MI.memoperands_begin();
989       MIRBuilder.buildTrunc(TmpReg, SrcReg);
990       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
991       MI.eraseFromParent();
992       return Legalized;
993     }
994 
995     return reduceLoadStoreWidth(MI, 0, NarrowTy);
996   }
997   case TargetOpcode::G_SELECT:
998     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
999   case TargetOpcode::G_AND:
1000   case TargetOpcode::G_OR:
1001   case TargetOpcode::G_XOR: {
1002     // Legalize bitwise operation:
1003     // A = BinOp<Ty> B, C
1004     // into:
1005     // B1, ..., BN = G_UNMERGE_VALUES B
1006     // C1, ..., CN = G_UNMERGE_VALUES C
1007     // A1 = BinOp<Ty/N> B1, C2
1008     // ...
1009     // AN = BinOp<Ty/N> BN, CN
1010     // A = G_MERGE_VALUES A1, ..., AN
1011     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1012   }
1013   case TargetOpcode::G_SHL:
1014   case TargetOpcode::G_LSHR:
1015   case TargetOpcode::G_ASHR:
1016     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1017   case TargetOpcode::G_CTLZ:
1018   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1019   case TargetOpcode::G_CTTZ:
1020   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1021   case TargetOpcode::G_CTPOP:
1022     if (TypeIdx == 1)
1023       switch (MI.getOpcode()) {
1024       case TargetOpcode::G_CTLZ:
1025       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1026         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1027       case TargetOpcode::G_CTTZ:
1028       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1029         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1030       case TargetOpcode::G_CTPOP:
1031         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1032       default:
1033         return UnableToLegalize;
1034       }
1035 
1036     Observer.changingInstr(MI);
1037     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1038     Observer.changedInstr(MI);
1039     return Legalized;
1040   case TargetOpcode::G_INTTOPTR:
1041     if (TypeIdx != 1)
1042       return UnableToLegalize;
1043 
1044     Observer.changingInstr(MI);
1045     narrowScalarSrc(MI, NarrowTy, 1);
1046     Observer.changedInstr(MI);
1047     return Legalized;
1048   case TargetOpcode::G_PTRTOINT:
1049     if (TypeIdx != 0)
1050       return UnableToLegalize;
1051 
1052     Observer.changingInstr(MI);
1053     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1054     Observer.changedInstr(MI);
1055     return Legalized;
1056   case TargetOpcode::G_PHI: {
1057     unsigned NumParts = SizeOp0 / NarrowSize;
1058     SmallVector<Register, 2> DstRegs(NumParts);
1059     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1060     Observer.changingInstr(MI);
1061     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1062       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1063       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1064       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1065                    SrcRegs[i / 2]);
1066     }
1067     MachineBasicBlock &MBB = *MI.getParent();
1068     MIRBuilder.setInsertPt(MBB, MI);
1069     for (unsigned i = 0; i < NumParts; ++i) {
1070       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1071       MachineInstrBuilder MIB =
1072           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1073       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1074         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1075     }
1076     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1077     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1078     Observer.changedInstr(MI);
1079     MI.eraseFromParent();
1080     return Legalized;
1081   }
1082   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1083   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1084     if (TypeIdx != 2)
1085       return UnableToLegalize;
1086 
1087     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1088     Observer.changingInstr(MI);
1089     narrowScalarSrc(MI, NarrowTy, OpIdx);
1090     Observer.changedInstr(MI);
1091     return Legalized;
1092   }
1093   case TargetOpcode::G_ICMP: {
1094     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1095     if (NarrowSize * 2 != SrcSize)
1096       return UnableToLegalize;
1097 
1098     Observer.changingInstr(MI);
1099     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1100     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1101     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1102 
1103     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1104     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1105     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1106 
1107     CmpInst::Predicate Pred =
1108         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1109     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1110 
1111     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1112       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1113       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1114       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1115       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1116       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1117     } else {
1118       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1119       MachineInstrBuilder CmpHEQ =
1120           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1121       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1122           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1123       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1124     }
1125     Observer.changedInstr(MI);
1126     MI.eraseFromParent();
1127     return Legalized;
1128   }
1129   case TargetOpcode::G_SEXT_INREG: {
1130     if (TypeIdx != 0)
1131       return UnableToLegalize;
1132 
1133     int64_t SizeInBits = MI.getOperand(2).getImm();
1134 
1135     // So long as the new type has more bits than the bits we're extending we
1136     // don't need to break it apart.
1137     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1138       Observer.changingInstr(MI);
1139       // We don't lose any non-extension bits by truncating the src and
1140       // sign-extending the dst.
1141       MachineOperand &MO1 = MI.getOperand(1);
1142       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1143       MO1.setReg(TruncMIB.getReg(0));
1144 
1145       MachineOperand &MO2 = MI.getOperand(0);
1146       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1147       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1148       MIRBuilder.buildSExt(MO2, DstExt);
1149       MO2.setReg(DstExt);
1150       Observer.changedInstr(MI);
1151       return Legalized;
1152     }
1153 
1154     // Break it apart. Components below the extension point are unmodified. The
1155     // component containing the extension point becomes a narrower SEXT_INREG.
1156     // Components above it are ashr'd from the component containing the
1157     // extension point.
1158     if (SizeOp0 % NarrowSize != 0)
1159       return UnableToLegalize;
1160     int NumParts = SizeOp0 / NarrowSize;
1161 
1162     // List the registers where the destination will be scattered.
1163     SmallVector<Register, 2> DstRegs;
1164     // List the registers where the source will be split.
1165     SmallVector<Register, 2> SrcRegs;
1166 
1167     // Create all the temporary registers.
1168     for (int i = 0; i < NumParts; ++i) {
1169       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1170 
1171       SrcRegs.push_back(SrcReg);
1172     }
1173 
1174     // Explode the big arguments into smaller chunks.
1175     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1176 
1177     Register AshrCstReg =
1178         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1179             .getReg(0);
1180     Register FullExtensionReg = 0;
1181     Register PartialExtensionReg = 0;
1182 
1183     // Do the operation on each small part.
1184     for (int i = 0; i < NumParts; ++i) {
1185       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1186         DstRegs.push_back(SrcRegs[i]);
1187       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1188         assert(PartialExtensionReg &&
1189                "Expected to visit partial extension before full");
1190         if (FullExtensionReg) {
1191           DstRegs.push_back(FullExtensionReg);
1192           continue;
1193         }
1194         DstRegs.push_back(
1195             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1196                 .getReg(0));
1197         FullExtensionReg = DstRegs.back();
1198       } else {
1199         DstRegs.push_back(
1200             MIRBuilder
1201                 .buildInstr(
1202                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1203                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1204                 .getReg(0));
1205         PartialExtensionReg = DstRegs.back();
1206       }
1207     }
1208 
1209     // Gather the destination registers into the final destination.
1210     Register DstReg = MI.getOperand(0).getReg();
1211     MIRBuilder.buildMerge(DstReg, DstRegs);
1212     MI.eraseFromParent();
1213     return Legalized;
1214   }
1215   case TargetOpcode::G_BSWAP:
1216   case TargetOpcode::G_BITREVERSE: {
1217     if (SizeOp0 % NarrowSize != 0)
1218       return UnableToLegalize;
1219 
1220     Observer.changingInstr(MI);
1221     SmallVector<Register, 2> SrcRegs, DstRegs;
1222     unsigned NumParts = SizeOp0 / NarrowSize;
1223     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1224 
1225     for (unsigned i = 0; i < NumParts; ++i) {
1226       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1227                                            {SrcRegs[NumParts - 1 - i]});
1228       DstRegs.push_back(DstPart.getReg(0));
1229     }
1230 
1231     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1232 
1233     Observer.changedInstr(MI);
1234     MI.eraseFromParent();
1235     return Legalized;
1236   }
1237   case TargetOpcode::G_PTR_ADD:
1238   case TargetOpcode::G_PTRMASK: {
1239     if (TypeIdx != 1)
1240       return UnableToLegalize;
1241     Observer.changingInstr(MI);
1242     narrowScalarSrc(MI, NarrowTy, 2);
1243     Observer.changedInstr(MI);
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_FPTOUI: {
1247     if (TypeIdx != 0)
1248       return UnableToLegalize;
1249     Observer.changingInstr(MI);
1250     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1251     Observer.changedInstr(MI);
1252     return Legalized;
1253   }
1254   case TargetOpcode::G_FPTOSI: {
1255     if (TypeIdx != 0)
1256       return UnableToLegalize;
1257     Observer.changingInstr(MI);
1258     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1259     Observer.changedInstr(MI);
1260     return Legalized;
1261   }
1262   case TargetOpcode::G_FPEXT:
1263     if (TypeIdx != 0)
1264       return UnableToLegalize;
1265     Observer.changingInstr(MI);
1266     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1267     Observer.changedInstr(MI);
1268     return Legalized;
1269   }
1270 }
1271 
1272 Register LegalizerHelper::coerceToScalar(Register Val) {
1273   LLT Ty = MRI.getType(Val);
1274   if (Ty.isScalar())
1275     return Val;
1276 
1277   const DataLayout &DL = MIRBuilder.getDataLayout();
1278   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1279   if (Ty.isPointer()) {
1280     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1281       return Register();
1282     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1283   }
1284 
1285   Register NewVal = Val;
1286 
1287   assert(Ty.isVector());
1288   LLT EltTy = Ty.getElementType();
1289   if (EltTy.isPointer())
1290     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1291   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1292 }
1293 
1294 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1295                                      unsigned OpIdx, unsigned ExtOpcode) {
1296   MachineOperand &MO = MI.getOperand(OpIdx);
1297   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1298   MO.setReg(ExtB.getReg(0));
1299 }
1300 
1301 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1302                                       unsigned OpIdx) {
1303   MachineOperand &MO = MI.getOperand(OpIdx);
1304   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1305   MO.setReg(ExtB.getReg(0));
1306 }
1307 
1308 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1309                                      unsigned OpIdx, unsigned TruncOpcode) {
1310   MachineOperand &MO = MI.getOperand(OpIdx);
1311   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1312   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1313   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1314   MO.setReg(DstExt);
1315 }
1316 
1317 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1318                                       unsigned OpIdx, unsigned ExtOpcode) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1323   MO.setReg(DstTrunc);
1324 }
1325 
1326 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1327                                             unsigned OpIdx) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1330   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1331 }
1332 
1333 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1334                                             unsigned OpIdx) {
1335   MachineOperand &MO = MI.getOperand(OpIdx);
1336 
1337   LLT OldTy = MRI.getType(MO.getReg());
1338   unsigned OldElts = OldTy.getNumElements();
1339   unsigned NewElts = MoreTy.getNumElements();
1340 
1341   unsigned NumParts = NewElts / OldElts;
1342 
1343   // Use concat_vectors if the result is a multiple of the number of elements.
1344   if (NumParts * OldElts == NewElts) {
1345     SmallVector<Register, 8> Parts;
1346     Parts.push_back(MO.getReg());
1347 
1348     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1349     for (unsigned I = 1; I != NumParts; ++I)
1350       Parts.push_back(ImpDef);
1351 
1352     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1353     MO.setReg(Concat.getReg(0));
1354     return;
1355   }
1356 
1357   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1358   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1359   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1360   MO.setReg(MoreReg);
1361 }
1362 
1363 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1364   MachineOperand &Op = MI.getOperand(OpIdx);
1365   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1366 }
1367 
1368 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1369   MachineOperand &MO = MI.getOperand(OpIdx);
1370   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1371   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1372   MIRBuilder.buildBitcast(MO, CastDst);
1373   MO.setReg(CastDst);
1374 }
1375 
1376 LegalizerHelper::LegalizeResult
1377 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1378                                         LLT WideTy) {
1379   if (TypeIdx != 1)
1380     return UnableToLegalize;
1381 
1382   Register DstReg = MI.getOperand(0).getReg();
1383   LLT DstTy = MRI.getType(DstReg);
1384   if (DstTy.isVector())
1385     return UnableToLegalize;
1386 
1387   Register Src1 = MI.getOperand(1).getReg();
1388   LLT SrcTy = MRI.getType(Src1);
1389   const int DstSize = DstTy.getSizeInBits();
1390   const int SrcSize = SrcTy.getSizeInBits();
1391   const int WideSize = WideTy.getSizeInBits();
1392   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1393 
1394   unsigned NumOps = MI.getNumOperands();
1395   unsigned NumSrc = MI.getNumOperands() - 1;
1396   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1397 
1398   if (WideSize >= DstSize) {
1399     // Directly pack the bits in the target type.
1400     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1401 
1402     for (unsigned I = 2; I != NumOps; ++I) {
1403       const unsigned Offset = (I - 1) * PartSize;
1404 
1405       Register SrcReg = MI.getOperand(I).getReg();
1406       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1407 
1408       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1409 
1410       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1411         MRI.createGenericVirtualRegister(WideTy);
1412 
1413       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1414       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1415       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1416       ResultReg = NextResult;
1417     }
1418 
1419     if (WideSize > DstSize)
1420       MIRBuilder.buildTrunc(DstReg, ResultReg);
1421     else if (DstTy.isPointer())
1422       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1423 
1424     MI.eraseFromParent();
1425     return Legalized;
1426   }
1427 
1428   // Unmerge the original values to the GCD type, and recombine to the next
1429   // multiple greater than the original type.
1430   //
1431   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1432   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1433   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1434   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1435   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1436   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1437   // %12:_(s12) = G_MERGE_VALUES %10, %11
1438   //
1439   // Padding with undef if necessary:
1440   //
1441   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1442   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1443   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1444   // %7:_(s2) = G_IMPLICIT_DEF
1445   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1446   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1447   // %10:_(s12) = G_MERGE_VALUES %8, %9
1448 
1449   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1450   LLT GCDTy = LLT::scalar(GCD);
1451 
1452   SmallVector<Register, 8> Parts;
1453   SmallVector<Register, 8> NewMergeRegs;
1454   SmallVector<Register, 8> Unmerges;
1455   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1456 
1457   // Decompose the original operands if they don't evenly divide.
1458   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1459     Register SrcReg = MI.getOperand(I).getReg();
1460     if (GCD == SrcSize) {
1461       Unmerges.push_back(SrcReg);
1462     } else {
1463       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1464       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1465         Unmerges.push_back(Unmerge.getReg(J));
1466     }
1467   }
1468 
1469   // Pad with undef to the next size that is a multiple of the requested size.
1470   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1471     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1472     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1473       Unmerges.push_back(UndefReg);
1474   }
1475 
1476   const int PartsPerGCD = WideSize / GCD;
1477 
1478   // Build merges of each piece.
1479   ArrayRef<Register> Slicer(Unmerges);
1480   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1481     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1482     NewMergeRegs.push_back(Merge.getReg(0));
1483   }
1484 
1485   // A truncate may be necessary if the requested type doesn't evenly divide the
1486   // original result type.
1487   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1488     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1489   } else {
1490     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1491     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1492   }
1493 
1494   MI.eraseFromParent();
1495   return Legalized;
1496 }
1497 
1498 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1499   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1500   LLT OrigTy = MRI.getType(OrigReg);
1501   LLT LCMTy = getLCMType(WideTy, OrigTy);
1502 
1503   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1504   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1505 
1506   Register UnmergeSrc = WideReg;
1507 
1508   // Create a merge to the LCM type, padding with undef
1509   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1510   // =>
1511   // %1:_(<4 x s32>) = G_FOO
1512   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1513   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1514   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1515   if (NumMergeParts > 1) {
1516     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1517     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1518     MergeParts[0] = WideReg;
1519     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1520   }
1521 
1522   // Unmerge to the original register and pad with dead defs.
1523   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1524   UnmergeResults[0] = OrigReg;
1525   for (int I = 1; I != NumUnmergeParts; ++I)
1526     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1527 
1528   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1529   return WideReg;
1530 }
1531 
1532 LegalizerHelper::LegalizeResult
1533 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1534                                           LLT WideTy) {
1535   if (TypeIdx != 0)
1536     return UnableToLegalize;
1537 
1538   int NumDst = MI.getNumOperands() - 1;
1539   Register SrcReg = MI.getOperand(NumDst).getReg();
1540   LLT SrcTy = MRI.getType(SrcReg);
1541   if (SrcTy.isVector())
1542     return UnableToLegalize;
1543 
1544   Register Dst0Reg = MI.getOperand(0).getReg();
1545   LLT DstTy = MRI.getType(Dst0Reg);
1546   if (!DstTy.isScalar())
1547     return UnableToLegalize;
1548 
1549   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1550     if (SrcTy.isPointer()) {
1551       const DataLayout &DL = MIRBuilder.getDataLayout();
1552       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1553         LLVM_DEBUG(
1554             dbgs() << "Not casting non-integral address space integer\n");
1555         return UnableToLegalize;
1556       }
1557 
1558       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1559       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1560     }
1561 
1562     // Widen SrcTy to WideTy. This does not affect the result, but since the
1563     // user requested this size, it is probably better handled than SrcTy and
1564     // should reduce the total number of legalization artifacts
1565     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1566       SrcTy = WideTy;
1567       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1568     }
1569 
1570     // Theres no unmerge type to target. Directly extract the bits from the
1571     // source type
1572     unsigned DstSize = DstTy.getSizeInBits();
1573 
1574     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1575     for (int I = 1; I != NumDst; ++I) {
1576       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1577       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1578       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1579     }
1580 
1581     MI.eraseFromParent();
1582     return Legalized;
1583   }
1584 
1585   // Extend the source to a wider type.
1586   LLT LCMTy = getLCMType(SrcTy, WideTy);
1587 
1588   Register WideSrc = SrcReg;
1589   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1590     // TODO: If this is an integral address space, cast to integer and anyext.
1591     if (SrcTy.isPointer()) {
1592       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1593       return UnableToLegalize;
1594     }
1595 
1596     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1597   }
1598 
1599   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1600 
1601   // Create a sequence of unmerges to the original results. since we may have
1602   // widened the source, we will need to pad the results with dead defs to cover
1603   // the source register.
1604   // e.g. widen s16 to s32:
1605   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1606   //
1607   // =>
1608   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1609   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1610   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1611   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1612 
1613   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1614   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1615 
1616   for (int I = 0; I != NumUnmerge; ++I) {
1617     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1618 
1619     for (int J = 0; J != PartsPerUnmerge; ++J) {
1620       int Idx = I * PartsPerUnmerge + J;
1621       if (Idx < NumDst)
1622         MIB.addDef(MI.getOperand(Idx).getReg());
1623       else {
1624         // Create dead def for excess components.
1625         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1626       }
1627     }
1628 
1629     MIB.addUse(Unmerge.getReg(I));
1630   }
1631 
1632   MI.eraseFromParent();
1633   return Legalized;
1634 }
1635 
1636 LegalizerHelper::LegalizeResult
1637 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1638                                     LLT WideTy) {
1639   Register DstReg = MI.getOperand(0).getReg();
1640   Register SrcReg = MI.getOperand(1).getReg();
1641   LLT SrcTy = MRI.getType(SrcReg);
1642 
1643   LLT DstTy = MRI.getType(DstReg);
1644   unsigned Offset = MI.getOperand(2).getImm();
1645 
1646   if (TypeIdx == 0) {
1647     if (SrcTy.isVector() || DstTy.isVector())
1648       return UnableToLegalize;
1649 
1650     SrcOp Src(SrcReg);
1651     if (SrcTy.isPointer()) {
1652       // Extracts from pointers can be handled only if they are really just
1653       // simple integers.
1654       const DataLayout &DL = MIRBuilder.getDataLayout();
1655       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1656         return UnableToLegalize;
1657 
1658       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1659       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1660       SrcTy = SrcAsIntTy;
1661     }
1662 
1663     if (DstTy.isPointer())
1664       return UnableToLegalize;
1665 
1666     if (Offset == 0) {
1667       // Avoid a shift in the degenerate case.
1668       MIRBuilder.buildTrunc(DstReg,
1669                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1670       MI.eraseFromParent();
1671       return Legalized;
1672     }
1673 
1674     // Do a shift in the source type.
1675     LLT ShiftTy = SrcTy;
1676     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1677       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1678       ShiftTy = WideTy;
1679     }
1680 
1681     auto LShr = MIRBuilder.buildLShr(
1682       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1683     MIRBuilder.buildTrunc(DstReg, LShr);
1684     MI.eraseFromParent();
1685     return Legalized;
1686   }
1687 
1688   if (SrcTy.isScalar()) {
1689     Observer.changingInstr(MI);
1690     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1691     Observer.changedInstr(MI);
1692     return Legalized;
1693   }
1694 
1695   if (!SrcTy.isVector())
1696     return UnableToLegalize;
1697 
1698   if (DstTy != SrcTy.getElementType())
1699     return UnableToLegalize;
1700 
1701   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1702     return UnableToLegalize;
1703 
1704   Observer.changingInstr(MI);
1705   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1706 
1707   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1708                           Offset);
1709   widenScalarDst(MI, WideTy.getScalarType(), 0);
1710   Observer.changedInstr(MI);
1711   return Legalized;
1712 }
1713 
1714 LegalizerHelper::LegalizeResult
1715 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1716                                    LLT WideTy) {
1717   if (TypeIdx != 0 || WideTy.isVector())
1718     return UnableToLegalize;
1719   Observer.changingInstr(MI);
1720   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1721   widenScalarDst(MI, WideTy);
1722   Observer.changedInstr(MI);
1723   return Legalized;
1724 }
1725 
1726 LegalizerHelper::LegalizeResult
1727 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1728                                          LLT WideTy) {
1729   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1730                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1731                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1732   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1733                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1734   // We can convert this to:
1735   //   1. Any extend iN to iM
1736   //   2. SHL by M-N
1737   //   3. [US][ADD|SUB|SHL]SAT
1738   //   4. L/ASHR by M-N
1739   //
1740   // It may be more efficient to lower this to a min and a max operation in
1741   // the higher precision arithmetic if the promoted operation isn't legal,
1742   // but this decision is up to the target's lowering request.
1743   Register DstReg = MI.getOperand(0).getReg();
1744 
1745   unsigned NewBits = WideTy.getScalarSizeInBits();
1746   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1747 
1748   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1749   // must not left shift the RHS to preserve the shift amount.
1750   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1751   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1752                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1753   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1754   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1755   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1756 
1757   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1758                                         {ShiftL, ShiftR}, MI.getFlags());
1759 
1760   // Use a shift that will preserve the number of sign bits when the trunc is
1761   // folded away.
1762   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1763                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1764 
1765   MIRBuilder.buildTrunc(DstReg, Result);
1766   MI.eraseFromParent();
1767   return Legalized;
1768 }
1769 
1770 LegalizerHelper::LegalizeResult
1771 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1772   switch (MI.getOpcode()) {
1773   default:
1774     return UnableToLegalize;
1775   case TargetOpcode::G_EXTRACT:
1776     return widenScalarExtract(MI, TypeIdx, WideTy);
1777   case TargetOpcode::G_INSERT:
1778     return widenScalarInsert(MI, TypeIdx, WideTy);
1779   case TargetOpcode::G_MERGE_VALUES:
1780     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1781   case TargetOpcode::G_UNMERGE_VALUES:
1782     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1783   case TargetOpcode::G_UADDO:
1784   case TargetOpcode::G_USUBO: {
1785     if (TypeIdx == 1)
1786       return UnableToLegalize; // TODO
1787     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1788     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1789     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1790                           ? TargetOpcode::G_ADD
1791                           : TargetOpcode::G_SUB;
1792     // Do the arithmetic in the larger type.
1793     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1794     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1795     APInt Mask =
1796         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1797     auto AndOp = MIRBuilder.buildAnd(
1798         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1799     // There is no overflow if the AndOp is the same as NewOp.
1800     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1801     // Now trunc the NewOp to the original result.
1802     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1803     MI.eraseFromParent();
1804     return Legalized;
1805   }
1806   case TargetOpcode::G_SADDSAT:
1807   case TargetOpcode::G_SSUBSAT:
1808   case TargetOpcode::G_SSHLSAT:
1809   case TargetOpcode::G_UADDSAT:
1810   case TargetOpcode::G_USUBSAT:
1811   case TargetOpcode::G_USHLSAT:
1812     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1813   case TargetOpcode::G_CTTZ:
1814   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1815   case TargetOpcode::G_CTLZ:
1816   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1817   case TargetOpcode::G_CTPOP: {
1818     if (TypeIdx == 0) {
1819       Observer.changingInstr(MI);
1820       widenScalarDst(MI, WideTy, 0);
1821       Observer.changedInstr(MI);
1822       return Legalized;
1823     }
1824 
1825     Register SrcReg = MI.getOperand(1).getReg();
1826 
1827     // First ZEXT the input.
1828     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1829     LLT CurTy = MRI.getType(SrcReg);
1830     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1831       // The count is the same in the larger type except if the original
1832       // value was zero.  This can be handled by setting the bit just off
1833       // the top of the original type.
1834       auto TopBit =
1835           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1836       MIBSrc = MIRBuilder.buildOr(
1837         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1838     }
1839 
1840     // Perform the operation at the larger size.
1841     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1842     // This is already the correct result for CTPOP and CTTZs
1843     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1844         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1845       // The correct result is NewOp - (Difference in widety and current ty).
1846       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1847       MIBNewOp = MIRBuilder.buildSub(
1848           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1849     }
1850 
1851     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1852     MI.eraseFromParent();
1853     return Legalized;
1854   }
1855   case TargetOpcode::G_BSWAP: {
1856     Observer.changingInstr(MI);
1857     Register DstReg = MI.getOperand(0).getReg();
1858 
1859     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1860     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1861     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1862     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1863 
1864     MI.getOperand(0).setReg(DstExt);
1865 
1866     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1867 
1868     LLT Ty = MRI.getType(DstReg);
1869     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1870     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1871     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1872 
1873     MIRBuilder.buildTrunc(DstReg, ShrReg);
1874     Observer.changedInstr(MI);
1875     return Legalized;
1876   }
1877   case TargetOpcode::G_BITREVERSE: {
1878     Observer.changingInstr(MI);
1879 
1880     Register DstReg = MI.getOperand(0).getReg();
1881     LLT Ty = MRI.getType(DstReg);
1882     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1883 
1884     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1885     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1886     MI.getOperand(0).setReg(DstExt);
1887     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1888 
1889     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1890     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1891     MIRBuilder.buildTrunc(DstReg, Shift);
1892     Observer.changedInstr(MI);
1893     return Legalized;
1894   }
1895   case TargetOpcode::G_FREEZE:
1896     Observer.changingInstr(MI);
1897     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1898     widenScalarDst(MI, WideTy);
1899     Observer.changedInstr(MI);
1900     return Legalized;
1901 
1902   case TargetOpcode::G_ADD:
1903   case TargetOpcode::G_AND:
1904   case TargetOpcode::G_MUL:
1905   case TargetOpcode::G_OR:
1906   case TargetOpcode::G_XOR:
1907   case TargetOpcode::G_SUB:
1908     // Perform operation at larger width (any extension is fines here, high bits
1909     // don't affect the result) and then truncate the result back to the
1910     // original type.
1911     Observer.changingInstr(MI);
1912     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1913     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1914     widenScalarDst(MI, WideTy);
1915     Observer.changedInstr(MI);
1916     return Legalized;
1917 
1918   case TargetOpcode::G_SHL:
1919     Observer.changingInstr(MI);
1920 
1921     if (TypeIdx == 0) {
1922       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1923       widenScalarDst(MI, WideTy);
1924     } else {
1925       assert(TypeIdx == 1);
1926       // The "number of bits to shift" operand must preserve its value as an
1927       // unsigned integer:
1928       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1929     }
1930 
1931     Observer.changedInstr(MI);
1932     return Legalized;
1933 
1934   case TargetOpcode::G_SDIV:
1935   case TargetOpcode::G_SREM:
1936   case TargetOpcode::G_SMIN:
1937   case TargetOpcode::G_SMAX:
1938     Observer.changingInstr(MI);
1939     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1940     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1941     widenScalarDst(MI, WideTy);
1942     Observer.changedInstr(MI);
1943     return Legalized;
1944 
1945   case TargetOpcode::G_ASHR:
1946   case TargetOpcode::G_LSHR:
1947     Observer.changingInstr(MI);
1948 
1949     if (TypeIdx == 0) {
1950       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1951         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1952 
1953       widenScalarSrc(MI, WideTy, 1, CvtOp);
1954       widenScalarDst(MI, WideTy);
1955     } else {
1956       assert(TypeIdx == 1);
1957       // The "number of bits to shift" operand must preserve its value as an
1958       // unsigned integer:
1959       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1960     }
1961 
1962     Observer.changedInstr(MI);
1963     return Legalized;
1964   case TargetOpcode::G_UDIV:
1965   case TargetOpcode::G_UREM:
1966   case TargetOpcode::G_UMIN:
1967   case TargetOpcode::G_UMAX:
1968     Observer.changingInstr(MI);
1969     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1970     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1971     widenScalarDst(MI, WideTy);
1972     Observer.changedInstr(MI);
1973     return Legalized;
1974 
1975   case TargetOpcode::G_SELECT:
1976     Observer.changingInstr(MI);
1977     if (TypeIdx == 0) {
1978       // Perform operation at larger width (any extension is fine here, high
1979       // bits don't affect the result) and then truncate the result back to the
1980       // original type.
1981       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1982       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1983       widenScalarDst(MI, WideTy);
1984     } else {
1985       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1986       // Explicit extension is required here since high bits affect the result.
1987       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1988     }
1989     Observer.changedInstr(MI);
1990     return Legalized;
1991 
1992   case TargetOpcode::G_FPTOSI:
1993   case TargetOpcode::G_FPTOUI:
1994     Observer.changingInstr(MI);
1995 
1996     if (TypeIdx == 0)
1997       widenScalarDst(MI, WideTy);
1998     else
1999       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2000 
2001     Observer.changedInstr(MI);
2002     return Legalized;
2003   case TargetOpcode::G_SITOFP:
2004     Observer.changingInstr(MI);
2005 
2006     if (TypeIdx == 0)
2007       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2008     else
2009       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2010 
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_UITOFP:
2014     Observer.changingInstr(MI);
2015 
2016     if (TypeIdx == 0)
2017       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2018     else
2019       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2020 
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023   case TargetOpcode::G_LOAD:
2024   case TargetOpcode::G_SEXTLOAD:
2025   case TargetOpcode::G_ZEXTLOAD:
2026     Observer.changingInstr(MI);
2027     widenScalarDst(MI, WideTy);
2028     Observer.changedInstr(MI);
2029     return Legalized;
2030 
2031   case TargetOpcode::G_STORE: {
2032     if (TypeIdx != 0)
2033       return UnableToLegalize;
2034 
2035     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2036     if (!isPowerOf2_32(Ty.getSizeInBits()))
2037       return UnableToLegalize;
2038 
2039     Observer.changingInstr(MI);
2040 
2041     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2042       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2043     widenScalarSrc(MI, WideTy, 0, ExtType);
2044 
2045     Observer.changedInstr(MI);
2046     return Legalized;
2047   }
2048   case TargetOpcode::G_CONSTANT: {
2049     MachineOperand &SrcMO = MI.getOperand(1);
2050     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2051     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2052         MRI.getType(MI.getOperand(0).getReg()));
2053     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2054             ExtOpc == TargetOpcode::G_ANYEXT) &&
2055            "Illegal Extend");
2056     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2057     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2058                            ? SrcVal.sext(WideTy.getSizeInBits())
2059                            : SrcVal.zext(WideTy.getSizeInBits());
2060     Observer.changingInstr(MI);
2061     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2062 
2063     widenScalarDst(MI, WideTy);
2064     Observer.changedInstr(MI);
2065     return Legalized;
2066   }
2067   case TargetOpcode::G_FCONSTANT: {
2068     MachineOperand &SrcMO = MI.getOperand(1);
2069     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2070     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2071     bool LosesInfo;
2072     switch (WideTy.getSizeInBits()) {
2073     case 32:
2074       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2075                   &LosesInfo);
2076       break;
2077     case 64:
2078       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2079                   &LosesInfo);
2080       break;
2081     default:
2082       return UnableToLegalize;
2083     }
2084 
2085     assert(!LosesInfo && "extend should always be lossless");
2086 
2087     Observer.changingInstr(MI);
2088     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2089 
2090     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2091     Observer.changedInstr(MI);
2092     return Legalized;
2093   }
2094   case TargetOpcode::G_IMPLICIT_DEF: {
2095     Observer.changingInstr(MI);
2096     widenScalarDst(MI, WideTy);
2097     Observer.changedInstr(MI);
2098     return Legalized;
2099   }
2100   case TargetOpcode::G_BRCOND:
2101     Observer.changingInstr(MI);
2102     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2103     Observer.changedInstr(MI);
2104     return Legalized;
2105 
2106   case TargetOpcode::G_FCMP:
2107     Observer.changingInstr(MI);
2108     if (TypeIdx == 0)
2109       widenScalarDst(MI, WideTy);
2110     else {
2111       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2112       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2113     }
2114     Observer.changedInstr(MI);
2115     return Legalized;
2116 
2117   case TargetOpcode::G_ICMP:
2118     Observer.changingInstr(MI);
2119     if (TypeIdx == 0)
2120       widenScalarDst(MI, WideTy);
2121     else {
2122       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2123                                MI.getOperand(1).getPredicate()))
2124                                ? TargetOpcode::G_SEXT
2125                                : TargetOpcode::G_ZEXT;
2126       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2127       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2128     }
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131 
2132   case TargetOpcode::G_PTR_ADD:
2133     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2134     Observer.changingInstr(MI);
2135     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2136     Observer.changedInstr(MI);
2137     return Legalized;
2138 
2139   case TargetOpcode::G_PHI: {
2140     assert(TypeIdx == 0 && "Expecting only Idx 0");
2141 
2142     Observer.changingInstr(MI);
2143     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2144       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2145       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2146       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2147     }
2148 
2149     MachineBasicBlock &MBB = *MI.getParent();
2150     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2151     widenScalarDst(MI, WideTy);
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154   }
2155   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2156     if (TypeIdx == 0) {
2157       Register VecReg = MI.getOperand(1).getReg();
2158       LLT VecTy = MRI.getType(VecReg);
2159       Observer.changingInstr(MI);
2160 
2161       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2162                                      WideTy.getSizeInBits()),
2163                      1, TargetOpcode::G_SEXT);
2164 
2165       widenScalarDst(MI, WideTy, 0);
2166       Observer.changedInstr(MI);
2167       return Legalized;
2168     }
2169 
2170     if (TypeIdx != 2)
2171       return UnableToLegalize;
2172     Observer.changingInstr(MI);
2173     // TODO: Probably should be zext
2174     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2175     Observer.changedInstr(MI);
2176     return Legalized;
2177   }
2178   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2179     if (TypeIdx == 1) {
2180       Observer.changingInstr(MI);
2181 
2182       Register VecReg = MI.getOperand(1).getReg();
2183       LLT VecTy = MRI.getType(VecReg);
2184       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2185 
2186       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2187       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2188       widenScalarDst(MI, WideVecTy, 0);
2189       Observer.changedInstr(MI);
2190       return Legalized;
2191     }
2192 
2193     if (TypeIdx == 2) {
2194       Observer.changingInstr(MI);
2195       // TODO: Probably should be zext
2196       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2197       Observer.changedInstr(MI);
2198       return Legalized;
2199     }
2200 
2201     return UnableToLegalize;
2202   }
2203   case TargetOpcode::G_FADD:
2204   case TargetOpcode::G_FMUL:
2205   case TargetOpcode::G_FSUB:
2206   case TargetOpcode::G_FMA:
2207   case TargetOpcode::G_FMAD:
2208   case TargetOpcode::G_FNEG:
2209   case TargetOpcode::G_FABS:
2210   case TargetOpcode::G_FCANONICALIZE:
2211   case TargetOpcode::G_FMINNUM:
2212   case TargetOpcode::G_FMAXNUM:
2213   case TargetOpcode::G_FMINNUM_IEEE:
2214   case TargetOpcode::G_FMAXNUM_IEEE:
2215   case TargetOpcode::G_FMINIMUM:
2216   case TargetOpcode::G_FMAXIMUM:
2217   case TargetOpcode::G_FDIV:
2218   case TargetOpcode::G_FREM:
2219   case TargetOpcode::G_FCEIL:
2220   case TargetOpcode::G_FFLOOR:
2221   case TargetOpcode::G_FCOS:
2222   case TargetOpcode::G_FSIN:
2223   case TargetOpcode::G_FLOG10:
2224   case TargetOpcode::G_FLOG:
2225   case TargetOpcode::G_FLOG2:
2226   case TargetOpcode::G_FRINT:
2227   case TargetOpcode::G_FNEARBYINT:
2228   case TargetOpcode::G_FSQRT:
2229   case TargetOpcode::G_FEXP:
2230   case TargetOpcode::G_FEXP2:
2231   case TargetOpcode::G_FPOW:
2232   case TargetOpcode::G_INTRINSIC_TRUNC:
2233   case TargetOpcode::G_INTRINSIC_ROUND:
2234   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2235     assert(TypeIdx == 0);
2236     Observer.changingInstr(MI);
2237 
2238     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2239       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2240 
2241     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   case TargetOpcode::G_FPOWI: {
2245     if (TypeIdx != 0)
2246       return UnableToLegalize;
2247     Observer.changingInstr(MI);
2248     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2249     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2250     Observer.changedInstr(MI);
2251     return Legalized;
2252   }
2253   case TargetOpcode::G_INTTOPTR:
2254     if (TypeIdx != 1)
2255       return UnableToLegalize;
2256 
2257     Observer.changingInstr(MI);
2258     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261   case TargetOpcode::G_PTRTOINT:
2262     if (TypeIdx != 0)
2263       return UnableToLegalize;
2264 
2265     Observer.changingInstr(MI);
2266     widenScalarDst(MI, WideTy, 0);
2267     Observer.changedInstr(MI);
2268     return Legalized;
2269   case TargetOpcode::G_BUILD_VECTOR: {
2270     Observer.changingInstr(MI);
2271 
2272     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2273     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2274       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2275 
2276     // Avoid changing the result vector type if the source element type was
2277     // requested.
2278     if (TypeIdx == 1) {
2279       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2280     } else {
2281       widenScalarDst(MI, WideTy, 0);
2282     }
2283 
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   }
2287   case TargetOpcode::G_SEXT_INREG:
2288     if (TypeIdx != 0)
2289       return UnableToLegalize;
2290 
2291     Observer.changingInstr(MI);
2292     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2293     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2294     Observer.changedInstr(MI);
2295     return Legalized;
2296   case TargetOpcode::G_PTRMASK: {
2297     if (TypeIdx != 1)
2298       return UnableToLegalize;
2299     Observer.changingInstr(MI);
2300     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2301     Observer.changedInstr(MI);
2302     return Legalized;
2303   }
2304   }
2305 }
2306 
2307 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2308                              MachineIRBuilder &B, Register Src, LLT Ty) {
2309   auto Unmerge = B.buildUnmerge(Ty, Src);
2310   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2311     Pieces.push_back(Unmerge.getReg(I));
2312 }
2313 
2314 LegalizerHelper::LegalizeResult
2315 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2316   Register Dst = MI.getOperand(0).getReg();
2317   Register Src = MI.getOperand(1).getReg();
2318   LLT DstTy = MRI.getType(Dst);
2319   LLT SrcTy = MRI.getType(Src);
2320 
2321   if (SrcTy.isVector()) {
2322     LLT SrcEltTy = SrcTy.getElementType();
2323     SmallVector<Register, 8> SrcRegs;
2324 
2325     if (DstTy.isVector()) {
2326       int NumDstElt = DstTy.getNumElements();
2327       int NumSrcElt = SrcTy.getNumElements();
2328 
2329       LLT DstEltTy = DstTy.getElementType();
2330       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2331       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2332 
2333       // If there's an element size mismatch, insert intermediate casts to match
2334       // the result element type.
2335       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2336         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2337         //
2338         // =>
2339         //
2340         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2341         // %3:_(<2 x s8>) = G_BITCAST %2
2342         // %4:_(<2 x s8>) = G_BITCAST %3
2343         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2344         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2345         SrcPartTy = SrcEltTy;
2346       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2347         //
2348         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2349         //
2350         // =>
2351         //
2352         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2353         // %3:_(s16) = G_BITCAST %2
2354         // %4:_(s16) = G_BITCAST %3
2355         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2356         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2357         DstCastTy = DstEltTy;
2358       }
2359 
2360       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2361       for (Register &SrcReg : SrcRegs)
2362         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2363     } else
2364       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2365 
2366     MIRBuilder.buildMerge(Dst, SrcRegs);
2367     MI.eraseFromParent();
2368     return Legalized;
2369   }
2370 
2371   if (DstTy.isVector()) {
2372     SmallVector<Register, 8> SrcRegs;
2373     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2374     MIRBuilder.buildMerge(Dst, SrcRegs);
2375     MI.eraseFromParent();
2376     return Legalized;
2377   }
2378 
2379   return UnableToLegalize;
2380 }
2381 
2382 /// Figure out the bit offset into a register when coercing a vector index for
2383 /// the wide element type. This is only for the case when promoting vector to
2384 /// one with larger elements.
2385 //
2386 ///
2387 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2388 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2389 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2390                                                    Register Idx,
2391                                                    unsigned NewEltSize,
2392                                                    unsigned OldEltSize) {
2393   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2394   LLT IdxTy = B.getMRI()->getType(Idx);
2395 
2396   // Now figure out the amount we need to shift to get the target bits.
2397   auto OffsetMask = B.buildConstant(
2398     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2399   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2400   return B.buildShl(IdxTy, OffsetIdx,
2401                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2402 }
2403 
2404 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2405 /// is casting to a vector with a smaller element size, perform multiple element
2406 /// extracts and merge the results. If this is coercing to a vector with larger
2407 /// elements, index the bitcasted vector and extract the target element with bit
2408 /// operations. This is intended to force the indexing in the native register
2409 /// size for architectures that can dynamically index the register file.
2410 LegalizerHelper::LegalizeResult
2411 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2412                                          LLT CastTy) {
2413   if (TypeIdx != 1)
2414     return UnableToLegalize;
2415 
2416   Register Dst = MI.getOperand(0).getReg();
2417   Register SrcVec = MI.getOperand(1).getReg();
2418   Register Idx = MI.getOperand(2).getReg();
2419   LLT SrcVecTy = MRI.getType(SrcVec);
2420   LLT IdxTy = MRI.getType(Idx);
2421 
2422   LLT SrcEltTy = SrcVecTy.getElementType();
2423   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2424   unsigned OldNumElts = SrcVecTy.getNumElements();
2425 
2426   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2427   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2428 
2429   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2430   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2431   if (NewNumElts > OldNumElts) {
2432     // Decreasing the vector element size
2433     //
2434     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2435     //  =>
2436     //  v4i32:castx = bitcast x:v2i64
2437     //
2438     // i64 = bitcast
2439     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2440     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2441     //
2442     if (NewNumElts % OldNumElts != 0)
2443       return UnableToLegalize;
2444 
2445     // Type of the intermediate result vector.
2446     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2447     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2448 
2449     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2450 
2451     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2452     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2453 
2454     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2455       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2456       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2457       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2458       NewOps[I] = Elt.getReg(0);
2459     }
2460 
2461     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2462     MIRBuilder.buildBitcast(Dst, NewVec);
2463     MI.eraseFromParent();
2464     return Legalized;
2465   }
2466 
2467   if (NewNumElts < OldNumElts) {
2468     if (NewEltSize % OldEltSize != 0)
2469       return UnableToLegalize;
2470 
2471     // This only depends on powers of 2 because we use bit tricks to figure out
2472     // the bit offset we need to shift to get the target element. A general
2473     // expansion could emit division/multiply.
2474     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2475       return UnableToLegalize;
2476 
2477     // Increasing the vector element size.
2478     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2479     //
2480     //   =>
2481     //
2482     // %cast = G_BITCAST %vec
2483     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2484     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2485     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2486     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2487     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2488     // %elt = G_TRUNC %elt_bits
2489 
2490     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2491     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2492 
2493     // Divide to get the index in the wider element type.
2494     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2495 
2496     Register WideElt = CastVec;
2497     if (CastTy.isVector()) {
2498       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2499                                                      ScaledIdx).getReg(0);
2500     }
2501 
2502     // Compute the bit offset into the register of the target element.
2503     Register OffsetBits = getBitcastWiderVectorElementOffset(
2504       MIRBuilder, Idx, NewEltSize, OldEltSize);
2505 
2506     // Shift the wide element to get the target element.
2507     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2508     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2509     MI.eraseFromParent();
2510     return Legalized;
2511   }
2512 
2513   return UnableToLegalize;
2514 }
2515 
2516 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2517 /// TargetReg, while preserving other bits in \p TargetReg.
2518 ///
2519 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2520 static Register buildBitFieldInsert(MachineIRBuilder &B,
2521                                     Register TargetReg, Register InsertReg,
2522                                     Register OffsetBits) {
2523   LLT TargetTy = B.getMRI()->getType(TargetReg);
2524   LLT InsertTy = B.getMRI()->getType(InsertReg);
2525   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2526   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2527 
2528   // Produce a bitmask of the value to insert
2529   auto EltMask = B.buildConstant(
2530     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2531                                    InsertTy.getSizeInBits()));
2532   // Shift it into position
2533   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2534   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2535 
2536   // Clear out the bits in the wide element
2537   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2538 
2539   // The value to insert has all zeros already, so stick it into the masked
2540   // wide element.
2541   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2542 }
2543 
2544 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2545 /// is increasing the element size, perform the indexing in the target element
2546 /// type, and use bit operations to insert at the element position. This is
2547 /// intended for architectures that can dynamically index the register file and
2548 /// want to force indexing in the native register size.
2549 LegalizerHelper::LegalizeResult
2550 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2551                                         LLT CastTy) {
2552   if (TypeIdx != 0)
2553     return UnableToLegalize;
2554 
2555   Register Dst = MI.getOperand(0).getReg();
2556   Register SrcVec = MI.getOperand(1).getReg();
2557   Register Val = MI.getOperand(2).getReg();
2558   Register Idx = MI.getOperand(3).getReg();
2559 
2560   LLT VecTy = MRI.getType(Dst);
2561   LLT IdxTy = MRI.getType(Idx);
2562 
2563   LLT VecEltTy = VecTy.getElementType();
2564   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2565   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2566   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2567 
2568   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2569   unsigned OldNumElts = VecTy.getNumElements();
2570 
2571   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2572   if (NewNumElts < OldNumElts) {
2573     if (NewEltSize % OldEltSize != 0)
2574       return UnableToLegalize;
2575 
2576     // This only depends on powers of 2 because we use bit tricks to figure out
2577     // the bit offset we need to shift to get the target element. A general
2578     // expansion could emit division/multiply.
2579     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2580       return UnableToLegalize;
2581 
2582     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2583     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2584 
2585     // Divide to get the index in the wider element type.
2586     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2587 
2588     Register ExtractedElt = CastVec;
2589     if (CastTy.isVector()) {
2590       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2591                                                           ScaledIdx).getReg(0);
2592     }
2593 
2594     // Compute the bit offset into the register of the target element.
2595     Register OffsetBits = getBitcastWiderVectorElementOffset(
2596       MIRBuilder, Idx, NewEltSize, OldEltSize);
2597 
2598     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2599                                                Val, OffsetBits);
2600     if (CastTy.isVector()) {
2601       InsertedElt = MIRBuilder.buildInsertVectorElement(
2602         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2603     }
2604 
2605     MIRBuilder.buildBitcast(Dst, InsertedElt);
2606     MI.eraseFromParent();
2607     return Legalized;
2608   }
2609 
2610   return UnableToLegalize;
2611 }
2612 
2613 LegalizerHelper::LegalizeResult
2614 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2615   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2616   Register DstReg = MI.getOperand(0).getReg();
2617   Register PtrReg = MI.getOperand(1).getReg();
2618   LLT DstTy = MRI.getType(DstReg);
2619   auto &MMO = **MI.memoperands_begin();
2620 
2621   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2622     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2623       // This load needs splitting into power of 2 sized loads.
2624       if (DstTy.isVector())
2625         return UnableToLegalize;
2626       if (isPowerOf2_32(DstTy.getSizeInBits()))
2627         return UnableToLegalize; // Don't know what we're being asked to do.
2628 
2629       // Our strategy here is to generate anyextending loads for the smaller
2630       // types up to next power-2 result type, and then combine the two larger
2631       // result values together, before truncating back down to the non-pow-2
2632       // type.
2633       // E.g. v1 = i24 load =>
2634       // v2 = i32 zextload (2 byte)
2635       // v3 = i32 load (1 byte)
2636       // v4 = i32 shl v3, 16
2637       // v5 = i32 or v4, v2
2638       // v1 = i24 trunc v5
2639       // By doing this we generate the correct truncate which should get
2640       // combined away as an artifact with a matching extend.
2641       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2642       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2643 
2644       MachineFunction &MF = MIRBuilder.getMF();
2645       MachineMemOperand *LargeMMO =
2646         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2647       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2648         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2649 
2650       LLT PtrTy = MRI.getType(PtrReg);
2651       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2652       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2653       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2654       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2655       auto LargeLoad = MIRBuilder.buildLoadInstr(
2656         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2657 
2658       auto OffsetCst = MIRBuilder.buildConstant(
2659         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2660       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2661       auto SmallPtr =
2662         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2663       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2664                                             *SmallMMO);
2665 
2666       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2667       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2668       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2669       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2670       MI.eraseFromParent();
2671       return Legalized;
2672     }
2673 
2674     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2675     MI.eraseFromParent();
2676     return Legalized;
2677   }
2678 
2679   if (DstTy.isScalar()) {
2680     Register TmpReg =
2681       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2682     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2683     switch (MI.getOpcode()) {
2684     default:
2685       llvm_unreachable("Unexpected opcode");
2686     case TargetOpcode::G_LOAD:
2687       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2688       break;
2689     case TargetOpcode::G_SEXTLOAD:
2690       MIRBuilder.buildSExt(DstReg, TmpReg);
2691       break;
2692     case TargetOpcode::G_ZEXTLOAD:
2693       MIRBuilder.buildZExt(DstReg, TmpReg);
2694       break;
2695     }
2696 
2697     MI.eraseFromParent();
2698     return Legalized;
2699   }
2700 
2701   return UnableToLegalize;
2702 }
2703 
2704 LegalizerHelper::LegalizeResult
2705 LegalizerHelper::lowerStore(MachineInstr &MI) {
2706   // Lower a non-power of 2 store into multiple pow-2 stores.
2707   // E.g. split an i24 store into an i16 store + i8 store.
2708   // We do this by first extending the stored value to the next largest power
2709   // of 2 type, and then using truncating stores to store the components.
2710   // By doing this, likewise with G_LOAD, generate an extend that can be
2711   // artifact-combined away instead of leaving behind extracts.
2712   Register SrcReg = MI.getOperand(0).getReg();
2713   Register PtrReg = MI.getOperand(1).getReg();
2714   LLT SrcTy = MRI.getType(SrcReg);
2715   MachineMemOperand &MMO = **MI.memoperands_begin();
2716   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2717     return UnableToLegalize;
2718   if (SrcTy.isVector())
2719     return UnableToLegalize;
2720   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2721     return UnableToLegalize; // Don't know what we're being asked to do.
2722 
2723   // Extend to the next pow-2.
2724   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2725   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2726 
2727   // Obtain the smaller value by shifting away the larger value.
2728   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2729   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2730   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2731   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2732 
2733   // Generate the PtrAdd and truncating stores.
2734   LLT PtrTy = MRI.getType(PtrReg);
2735   auto OffsetCst = MIRBuilder.buildConstant(
2736     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2737   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2738   auto SmallPtr =
2739     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2740 
2741   MachineFunction &MF = MIRBuilder.getMF();
2742   MachineMemOperand *LargeMMO =
2743     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2744   MachineMemOperand *SmallMMO =
2745     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2746   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2747   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2748   MI.eraseFromParent();
2749   return Legalized;
2750 }
2751 
2752 LegalizerHelper::LegalizeResult
2753 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2754   switch (MI.getOpcode()) {
2755   case TargetOpcode::G_LOAD: {
2756     if (TypeIdx != 0)
2757       return UnableToLegalize;
2758 
2759     Observer.changingInstr(MI);
2760     bitcastDst(MI, CastTy, 0);
2761     Observer.changedInstr(MI);
2762     return Legalized;
2763   }
2764   case TargetOpcode::G_STORE: {
2765     if (TypeIdx != 0)
2766       return UnableToLegalize;
2767 
2768     Observer.changingInstr(MI);
2769     bitcastSrc(MI, CastTy, 0);
2770     Observer.changedInstr(MI);
2771     return Legalized;
2772   }
2773   case TargetOpcode::G_SELECT: {
2774     if (TypeIdx != 0)
2775       return UnableToLegalize;
2776 
2777     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2778       LLVM_DEBUG(
2779           dbgs() << "bitcast action not implemented for vector select\n");
2780       return UnableToLegalize;
2781     }
2782 
2783     Observer.changingInstr(MI);
2784     bitcastSrc(MI, CastTy, 2);
2785     bitcastSrc(MI, CastTy, 3);
2786     bitcastDst(MI, CastTy, 0);
2787     Observer.changedInstr(MI);
2788     return Legalized;
2789   }
2790   case TargetOpcode::G_AND:
2791   case TargetOpcode::G_OR:
2792   case TargetOpcode::G_XOR: {
2793     Observer.changingInstr(MI);
2794     bitcastSrc(MI, CastTy, 1);
2795     bitcastSrc(MI, CastTy, 2);
2796     bitcastDst(MI, CastTy, 0);
2797     Observer.changedInstr(MI);
2798     return Legalized;
2799   }
2800   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2801     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2802   case TargetOpcode::G_INSERT_VECTOR_ELT:
2803     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2804   default:
2805     return UnableToLegalize;
2806   }
2807 }
2808 
2809 // Legalize an instruction by changing the opcode in place.
2810 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2811     Observer.changingInstr(MI);
2812     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2813     Observer.changedInstr(MI);
2814 }
2815 
2816 LegalizerHelper::LegalizeResult
2817 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2818   using namespace TargetOpcode;
2819 
2820   switch(MI.getOpcode()) {
2821   default:
2822     return UnableToLegalize;
2823   case TargetOpcode::G_BITCAST:
2824     return lowerBitcast(MI);
2825   case TargetOpcode::G_SREM:
2826   case TargetOpcode::G_UREM: {
2827     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2828     auto Quot =
2829         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2830                               {MI.getOperand(1), MI.getOperand(2)});
2831 
2832     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2833     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2834     MI.eraseFromParent();
2835     return Legalized;
2836   }
2837   case TargetOpcode::G_SADDO:
2838   case TargetOpcode::G_SSUBO:
2839     return lowerSADDO_SSUBO(MI);
2840   case TargetOpcode::G_SMULO:
2841   case TargetOpcode::G_UMULO: {
2842     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2843     // result.
2844     Register Res = MI.getOperand(0).getReg();
2845     Register Overflow = MI.getOperand(1).getReg();
2846     Register LHS = MI.getOperand(2).getReg();
2847     Register RHS = MI.getOperand(3).getReg();
2848     LLT Ty = MRI.getType(Res);
2849 
2850     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2851                           ? TargetOpcode::G_SMULH
2852                           : TargetOpcode::G_UMULH;
2853 
2854     Observer.changingInstr(MI);
2855     const auto &TII = MIRBuilder.getTII();
2856     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2857     MI.RemoveOperand(1);
2858     Observer.changedInstr(MI);
2859 
2860     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2861 
2862     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2863     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2864 
2865     // For *signed* multiply, overflow is detected by checking:
2866     // (hi != (lo >> bitwidth-1))
2867     if (Opcode == TargetOpcode::G_SMULH) {
2868       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2869       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2870       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2871     } else {
2872       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2873     }
2874     return Legalized;
2875   }
2876   case TargetOpcode::G_FNEG: {
2877     Register Res = MI.getOperand(0).getReg();
2878     LLT Ty = MRI.getType(Res);
2879 
2880     // TODO: Handle vector types once we are able to
2881     // represent them.
2882     if (Ty.isVector())
2883       return UnableToLegalize;
2884     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2885     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2886     if (!ZeroTy)
2887       return UnableToLegalize;
2888     ConstantFP &ZeroForNegation =
2889         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2890     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2891     Register SubByReg = MI.getOperand(1).getReg();
2892     Register ZeroReg = Zero.getReg(0);
2893     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2894     MI.eraseFromParent();
2895     return Legalized;
2896   }
2897   case TargetOpcode::G_FSUB: {
2898     Register Res = MI.getOperand(0).getReg();
2899     LLT Ty = MRI.getType(Res);
2900 
2901     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2902     // First, check if G_FNEG is marked as Lower. If so, we may
2903     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2904     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2905       return UnableToLegalize;
2906     Register LHS = MI.getOperand(1).getReg();
2907     Register RHS = MI.getOperand(2).getReg();
2908     Register Neg = MRI.createGenericVirtualRegister(Ty);
2909     MIRBuilder.buildFNeg(Neg, RHS);
2910     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2911     MI.eraseFromParent();
2912     return Legalized;
2913   }
2914   case TargetOpcode::G_FMAD:
2915     return lowerFMad(MI);
2916   case TargetOpcode::G_FFLOOR:
2917     return lowerFFloor(MI);
2918   case TargetOpcode::G_INTRINSIC_ROUND:
2919     return lowerIntrinsicRound(MI);
2920   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2921     // Since round even is the assumed rounding mode for unconstrained FP
2922     // operations, rint and roundeven are the same operation.
2923     changeOpcode(MI, TargetOpcode::G_FRINT);
2924     return Legalized;
2925   }
2926   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2927     Register OldValRes = MI.getOperand(0).getReg();
2928     Register SuccessRes = MI.getOperand(1).getReg();
2929     Register Addr = MI.getOperand(2).getReg();
2930     Register CmpVal = MI.getOperand(3).getReg();
2931     Register NewVal = MI.getOperand(4).getReg();
2932     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2933                                   **MI.memoperands_begin());
2934     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2935     MI.eraseFromParent();
2936     return Legalized;
2937   }
2938   case TargetOpcode::G_LOAD:
2939   case TargetOpcode::G_SEXTLOAD:
2940   case TargetOpcode::G_ZEXTLOAD:
2941     return lowerLoad(MI);
2942   case TargetOpcode::G_STORE:
2943     return lowerStore(MI);
2944   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2945   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2946   case TargetOpcode::G_CTLZ:
2947   case TargetOpcode::G_CTTZ:
2948   case TargetOpcode::G_CTPOP:
2949     return lowerBitCount(MI);
2950   case G_UADDO: {
2951     Register Res = MI.getOperand(0).getReg();
2952     Register CarryOut = MI.getOperand(1).getReg();
2953     Register LHS = MI.getOperand(2).getReg();
2954     Register RHS = MI.getOperand(3).getReg();
2955 
2956     MIRBuilder.buildAdd(Res, LHS, RHS);
2957     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2958 
2959     MI.eraseFromParent();
2960     return Legalized;
2961   }
2962   case G_UADDE: {
2963     Register Res = MI.getOperand(0).getReg();
2964     Register CarryOut = MI.getOperand(1).getReg();
2965     Register LHS = MI.getOperand(2).getReg();
2966     Register RHS = MI.getOperand(3).getReg();
2967     Register CarryIn = MI.getOperand(4).getReg();
2968     LLT Ty = MRI.getType(Res);
2969 
2970     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2971     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2972     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2973     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2974 
2975     MI.eraseFromParent();
2976     return Legalized;
2977   }
2978   case G_USUBO: {
2979     Register Res = MI.getOperand(0).getReg();
2980     Register BorrowOut = MI.getOperand(1).getReg();
2981     Register LHS = MI.getOperand(2).getReg();
2982     Register RHS = MI.getOperand(3).getReg();
2983 
2984     MIRBuilder.buildSub(Res, LHS, RHS);
2985     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2986 
2987     MI.eraseFromParent();
2988     return Legalized;
2989   }
2990   case G_USUBE: {
2991     Register Res = MI.getOperand(0).getReg();
2992     Register BorrowOut = MI.getOperand(1).getReg();
2993     Register LHS = MI.getOperand(2).getReg();
2994     Register RHS = MI.getOperand(3).getReg();
2995     Register BorrowIn = MI.getOperand(4).getReg();
2996     const LLT CondTy = MRI.getType(BorrowOut);
2997     const LLT Ty = MRI.getType(Res);
2998 
2999     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3000     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3001     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3002 
3003     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3004     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3005     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3006 
3007     MI.eraseFromParent();
3008     return Legalized;
3009   }
3010   case G_UITOFP:
3011     return lowerUITOFP(MI);
3012   case G_SITOFP:
3013     return lowerSITOFP(MI);
3014   case G_FPTOUI:
3015     return lowerFPTOUI(MI);
3016   case G_FPTOSI:
3017     return lowerFPTOSI(MI);
3018   case G_FPTRUNC:
3019     return lowerFPTRUNC(MI);
3020   case G_FPOWI:
3021     return lowerFPOWI(MI);
3022   case G_SMIN:
3023   case G_SMAX:
3024   case G_UMIN:
3025   case G_UMAX:
3026     return lowerMinMax(MI);
3027   case G_FCOPYSIGN:
3028     return lowerFCopySign(MI);
3029   case G_FMINNUM:
3030   case G_FMAXNUM:
3031     return lowerFMinNumMaxNum(MI);
3032   case G_MERGE_VALUES:
3033     return lowerMergeValues(MI);
3034   case G_UNMERGE_VALUES:
3035     return lowerUnmergeValues(MI);
3036   case TargetOpcode::G_SEXT_INREG: {
3037     assert(MI.getOperand(2).isImm() && "Expected immediate");
3038     int64_t SizeInBits = MI.getOperand(2).getImm();
3039 
3040     Register DstReg = MI.getOperand(0).getReg();
3041     Register SrcReg = MI.getOperand(1).getReg();
3042     LLT DstTy = MRI.getType(DstReg);
3043     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3044 
3045     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3046     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3047     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3048     MI.eraseFromParent();
3049     return Legalized;
3050   }
3051   case G_EXTRACT_VECTOR_ELT:
3052   case G_INSERT_VECTOR_ELT:
3053     return lowerExtractInsertVectorElt(MI);
3054   case G_SHUFFLE_VECTOR:
3055     return lowerShuffleVector(MI);
3056   case G_DYN_STACKALLOC:
3057     return lowerDynStackAlloc(MI);
3058   case G_EXTRACT:
3059     return lowerExtract(MI);
3060   case G_INSERT:
3061     return lowerInsert(MI);
3062   case G_BSWAP:
3063     return lowerBswap(MI);
3064   case G_BITREVERSE:
3065     return lowerBitreverse(MI);
3066   case G_READ_REGISTER:
3067   case G_WRITE_REGISTER:
3068     return lowerReadWriteRegister(MI);
3069   case G_UADDSAT:
3070   case G_USUBSAT: {
3071     // Try to make a reasonable guess about which lowering strategy to use. The
3072     // target can override this with custom lowering and calling the
3073     // implementation functions.
3074     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3075     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3076       return lowerAddSubSatToMinMax(MI);
3077     return lowerAddSubSatToAddoSubo(MI);
3078   }
3079   case G_SADDSAT:
3080   case G_SSUBSAT: {
3081     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3082 
3083     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3084     // since it's a shorter expansion. However, we would need to figure out the
3085     // preferred boolean type for the carry out for the query.
3086     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3087       return lowerAddSubSatToMinMax(MI);
3088     return lowerAddSubSatToAddoSubo(MI);
3089   }
3090   case G_SSHLSAT:
3091   case G_USHLSAT:
3092     return lowerShlSat(MI);
3093   }
3094 }
3095 
3096 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3097                                                   Align MinAlign) const {
3098   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3099   // datalayout for the preferred alignment. Also there should be a target hook
3100   // for this to allow targets to reduce the alignment and ignore the
3101   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3102   // the type.
3103   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3104 }
3105 
3106 MachineInstrBuilder
3107 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3108                                       MachinePointerInfo &PtrInfo) {
3109   MachineFunction &MF = MIRBuilder.getMF();
3110   const DataLayout &DL = MIRBuilder.getDataLayout();
3111   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3112 
3113   unsigned AddrSpace = DL.getAllocaAddrSpace();
3114   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3115 
3116   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3117   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3118 }
3119 
3120 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3121                                         LLT VecTy) {
3122   int64_t IdxVal;
3123   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3124     return IdxReg;
3125 
3126   LLT IdxTy = B.getMRI()->getType(IdxReg);
3127   unsigned NElts = VecTy.getNumElements();
3128   if (isPowerOf2_32(NElts)) {
3129     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3130     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3131   }
3132 
3133   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3134       .getReg(0);
3135 }
3136 
3137 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3138                                                   Register Index) {
3139   LLT EltTy = VecTy.getElementType();
3140 
3141   // Calculate the element offset and add it to the pointer.
3142   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3143   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3144          "Converting bits to bytes lost precision");
3145 
3146   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3147 
3148   LLT IdxTy = MRI.getType(Index);
3149   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3150                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3151 
3152   LLT PtrTy = MRI.getType(VecPtr);
3153   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3154 }
3155 
3156 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3157     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3158   Register DstReg = MI.getOperand(0).getReg();
3159   LLT DstTy = MRI.getType(DstReg);
3160   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3161 
3162   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3163 
3164   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3165   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3166 
3167   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3168   MI.eraseFromParent();
3169   return Legalized;
3170 }
3171 
3172 // Handle splitting vector operations which need to have the same number of
3173 // elements in each type index, but each type index may have a different element
3174 // type.
3175 //
3176 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3177 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3178 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3179 //
3180 // Also handles some irregular breakdown cases, e.g.
3181 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3182 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3183 //             s64 = G_SHL s64, s32
3184 LegalizerHelper::LegalizeResult
3185 LegalizerHelper::fewerElementsVectorMultiEltType(
3186   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3187   if (TypeIdx != 0)
3188     return UnableToLegalize;
3189 
3190   const LLT NarrowTy0 = NarrowTyArg;
3191   const unsigned NewNumElts =
3192       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3193 
3194   const Register DstReg = MI.getOperand(0).getReg();
3195   LLT DstTy = MRI.getType(DstReg);
3196   LLT LeftoverTy0;
3197 
3198   // All of the operands need to have the same number of elements, so if we can
3199   // determine a type breakdown for the result type, we can for all of the
3200   // source types.
3201   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3202   if (NumParts < 0)
3203     return UnableToLegalize;
3204 
3205   SmallVector<MachineInstrBuilder, 4> NewInsts;
3206 
3207   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3208   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3209 
3210   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3211     Register SrcReg = MI.getOperand(I).getReg();
3212     LLT SrcTyI = MRI.getType(SrcReg);
3213     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3214     LLT LeftoverTyI;
3215 
3216     // Split this operand into the requested typed registers, and any leftover
3217     // required to reproduce the original type.
3218     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3219                       LeftoverRegs))
3220       return UnableToLegalize;
3221 
3222     if (I == 1) {
3223       // For the first operand, create an instruction for each part and setup
3224       // the result.
3225       for (Register PartReg : PartRegs) {
3226         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3227         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3228                                .addDef(PartDstReg)
3229                                .addUse(PartReg));
3230         DstRegs.push_back(PartDstReg);
3231       }
3232 
3233       for (Register LeftoverReg : LeftoverRegs) {
3234         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3235         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3236                                .addDef(PartDstReg)
3237                                .addUse(LeftoverReg));
3238         LeftoverDstRegs.push_back(PartDstReg);
3239       }
3240     } else {
3241       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3242 
3243       // Add the newly created operand splits to the existing instructions. The
3244       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3245       // pieces.
3246       unsigned InstCount = 0;
3247       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3248         NewInsts[InstCount++].addUse(PartRegs[J]);
3249       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3250         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3251     }
3252 
3253     PartRegs.clear();
3254     LeftoverRegs.clear();
3255   }
3256 
3257   // Insert the newly built operations and rebuild the result register.
3258   for (auto &MIB : NewInsts)
3259     MIRBuilder.insertInstr(MIB);
3260 
3261   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3262 
3263   MI.eraseFromParent();
3264   return Legalized;
3265 }
3266 
3267 LegalizerHelper::LegalizeResult
3268 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3269                                           LLT NarrowTy) {
3270   if (TypeIdx != 0)
3271     return UnableToLegalize;
3272 
3273   Register DstReg = MI.getOperand(0).getReg();
3274   Register SrcReg = MI.getOperand(1).getReg();
3275   LLT DstTy = MRI.getType(DstReg);
3276   LLT SrcTy = MRI.getType(SrcReg);
3277 
3278   LLT NarrowTy0 = NarrowTy;
3279   LLT NarrowTy1;
3280   unsigned NumParts;
3281 
3282   if (NarrowTy.isVector()) {
3283     // Uneven breakdown not handled.
3284     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3285     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3286       return UnableToLegalize;
3287 
3288     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3289   } else {
3290     NumParts = DstTy.getNumElements();
3291     NarrowTy1 = SrcTy.getElementType();
3292   }
3293 
3294   SmallVector<Register, 4> SrcRegs, DstRegs;
3295   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3296 
3297   for (unsigned I = 0; I < NumParts; ++I) {
3298     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3299     MachineInstr *NewInst =
3300         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3301 
3302     NewInst->setFlags(MI.getFlags());
3303     DstRegs.push_back(DstReg);
3304   }
3305 
3306   if (NarrowTy.isVector())
3307     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3308   else
3309     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3310 
3311   MI.eraseFromParent();
3312   return Legalized;
3313 }
3314 
3315 LegalizerHelper::LegalizeResult
3316 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3317                                         LLT NarrowTy) {
3318   Register DstReg = MI.getOperand(0).getReg();
3319   Register Src0Reg = MI.getOperand(2).getReg();
3320   LLT DstTy = MRI.getType(DstReg);
3321   LLT SrcTy = MRI.getType(Src0Reg);
3322 
3323   unsigned NumParts;
3324   LLT NarrowTy0, NarrowTy1;
3325 
3326   if (TypeIdx == 0) {
3327     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3328     unsigned OldElts = DstTy.getNumElements();
3329 
3330     NarrowTy0 = NarrowTy;
3331     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3332     NarrowTy1 = NarrowTy.isVector() ?
3333       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3334       SrcTy.getElementType();
3335 
3336   } else {
3337     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3338     unsigned OldElts = SrcTy.getNumElements();
3339 
3340     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3341       NarrowTy.getNumElements();
3342     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3343                             DstTy.getScalarSizeInBits());
3344     NarrowTy1 = NarrowTy;
3345   }
3346 
3347   // FIXME: Don't know how to handle the situation where the small vectors
3348   // aren't all the same size yet.
3349   if (NarrowTy1.isVector() &&
3350       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3351     return UnableToLegalize;
3352 
3353   CmpInst::Predicate Pred
3354     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3355 
3356   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3357   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3358   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3359 
3360   for (unsigned I = 0; I < NumParts; ++I) {
3361     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3362     DstRegs.push_back(DstReg);
3363 
3364     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3365       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3366     else {
3367       MachineInstr *NewCmp
3368         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3369       NewCmp->setFlags(MI.getFlags());
3370     }
3371   }
3372 
3373   if (NarrowTy1.isVector())
3374     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3375   else
3376     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3377 
3378   MI.eraseFromParent();
3379   return Legalized;
3380 }
3381 
3382 LegalizerHelper::LegalizeResult
3383 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3384                                            LLT NarrowTy) {
3385   Register DstReg = MI.getOperand(0).getReg();
3386   Register CondReg = MI.getOperand(1).getReg();
3387 
3388   unsigned NumParts = 0;
3389   LLT NarrowTy0, NarrowTy1;
3390 
3391   LLT DstTy = MRI.getType(DstReg);
3392   LLT CondTy = MRI.getType(CondReg);
3393   unsigned Size = DstTy.getSizeInBits();
3394 
3395   assert(TypeIdx == 0 || CondTy.isVector());
3396 
3397   if (TypeIdx == 0) {
3398     NarrowTy0 = NarrowTy;
3399     NarrowTy1 = CondTy;
3400 
3401     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3402     // FIXME: Don't know how to handle the situation where the small vectors
3403     // aren't all the same size yet.
3404     if (Size % NarrowSize != 0)
3405       return UnableToLegalize;
3406 
3407     NumParts = Size / NarrowSize;
3408 
3409     // Need to break down the condition type
3410     if (CondTy.isVector()) {
3411       if (CondTy.getNumElements() == NumParts)
3412         NarrowTy1 = CondTy.getElementType();
3413       else
3414         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3415                                 CondTy.getScalarSizeInBits());
3416     }
3417   } else {
3418     NumParts = CondTy.getNumElements();
3419     if (NarrowTy.isVector()) {
3420       // TODO: Handle uneven breakdown.
3421       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3422         return UnableToLegalize;
3423 
3424       return UnableToLegalize;
3425     } else {
3426       NarrowTy0 = DstTy.getElementType();
3427       NarrowTy1 = NarrowTy;
3428     }
3429   }
3430 
3431   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3432   if (CondTy.isVector())
3433     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3434 
3435   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3436   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3437 
3438   for (unsigned i = 0; i < NumParts; ++i) {
3439     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3440     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3441                            Src1Regs[i], Src2Regs[i]);
3442     DstRegs.push_back(DstReg);
3443   }
3444 
3445   if (NarrowTy0.isVector())
3446     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3447   else
3448     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3449 
3450   MI.eraseFromParent();
3451   return Legalized;
3452 }
3453 
3454 LegalizerHelper::LegalizeResult
3455 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3456                                         LLT NarrowTy) {
3457   const Register DstReg = MI.getOperand(0).getReg();
3458   LLT PhiTy = MRI.getType(DstReg);
3459   LLT LeftoverTy;
3460 
3461   // All of the operands need to have the same number of elements, so if we can
3462   // determine a type breakdown for the result type, we can for all of the
3463   // source types.
3464   int NumParts, NumLeftover;
3465   std::tie(NumParts, NumLeftover)
3466     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3467   if (NumParts < 0)
3468     return UnableToLegalize;
3469 
3470   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3471   SmallVector<MachineInstrBuilder, 4> NewInsts;
3472 
3473   const int TotalNumParts = NumParts + NumLeftover;
3474 
3475   // Insert the new phis in the result block first.
3476   for (int I = 0; I != TotalNumParts; ++I) {
3477     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3478     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3479     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3480                        .addDef(PartDstReg));
3481     if (I < NumParts)
3482       DstRegs.push_back(PartDstReg);
3483     else
3484       LeftoverDstRegs.push_back(PartDstReg);
3485   }
3486 
3487   MachineBasicBlock *MBB = MI.getParent();
3488   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3489   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3490 
3491   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3492 
3493   // Insert code to extract the incoming values in each predecessor block.
3494   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3495     PartRegs.clear();
3496     LeftoverRegs.clear();
3497 
3498     Register SrcReg = MI.getOperand(I).getReg();
3499     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3500     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3501 
3502     LLT Unused;
3503     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3504                       LeftoverRegs))
3505       return UnableToLegalize;
3506 
3507     // Add the newly created operand splits to the existing instructions. The
3508     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3509     // pieces.
3510     for (int J = 0; J != TotalNumParts; ++J) {
3511       MachineInstrBuilder MIB = NewInsts[J];
3512       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3513       MIB.addMBB(&OpMBB);
3514     }
3515   }
3516 
3517   MI.eraseFromParent();
3518   return Legalized;
3519 }
3520 
3521 LegalizerHelper::LegalizeResult
3522 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3523                                                   unsigned TypeIdx,
3524                                                   LLT NarrowTy) {
3525   if (TypeIdx != 1)
3526     return UnableToLegalize;
3527 
3528   const int NumDst = MI.getNumOperands() - 1;
3529   const Register SrcReg = MI.getOperand(NumDst).getReg();
3530   LLT SrcTy = MRI.getType(SrcReg);
3531 
3532   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3533 
3534   // TODO: Create sequence of extracts.
3535   if (DstTy == NarrowTy)
3536     return UnableToLegalize;
3537 
3538   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3539   if (DstTy == GCDTy) {
3540     // This would just be a copy of the same unmerge.
3541     // TODO: Create extracts, pad with undef and create intermediate merges.
3542     return UnableToLegalize;
3543   }
3544 
3545   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3546   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3547   const int PartsPerUnmerge = NumDst / NumUnmerge;
3548 
3549   for (int I = 0; I != NumUnmerge; ++I) {
3550     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3551 
3552     for (int J = 0; J != PartsPerUnmerge; ++J)
3553       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3554     MIB.addUse(Unmerge.getReg(I));
3555   }
3556 
3557   MI.eraseFromParent();
3558   return Legalized;
3559 }
3560 
3561 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3562 // a vector
3563 //
3564 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3565 // undef as necessary.
3566 //
3567 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3568 //   -> <2 x s16>
3569 //
3570 // %4:_(s16) = G_IMPLICIT_DEF
3571 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3572 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3573 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3574 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3575 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3576 LegalizerHelper::LegalizeResult
3577 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3578                                           LLT NarrowTy) {
3579   Register DstReg = MI.getOperand(0).getReg();
3580   LLT DstTy = MRI.getType(DstReg);
3581   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3582   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3583 
3584   // Break into a common type
3585   SmallVector<Register, 16> Parts;
3586   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3587     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3588 
3589   // Build the requested new merge, padding with undef.
3590   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3591                                   TargetOpcode::G_ANYEXT);
3592 
3593   // Pack into the original result register.
3594   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3595 
3596   MI.eraseFromParent();
3597   return Legalized;
3598 }
3599 
3600 LegalizerHelper::LegalizeResult
3601 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3602                                                            unsigned TypeIdx,
3603                                                            LLT NarrowVecTy) {
3604   Register DstReg = MI.getOperand(0).getReg();
3605   Register SrcVec = MI.getOperand(1).getReg();
3606   Register InsertVal;
3607   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3608 
3609   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3610   if (IsInsert)
3611     InsertVal = MI.getOperand(2).getReg();
3612 
3613   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3614 
3615   // TODO: Handle total scalarization case.
3616   if (!NarrowVecTy.isVector())
3617     return UnableToLegalize;
3618 
3619   LLT VecTy = MRI.getType(SrcVec);
3620 
3621   // If the index is a constant, we can really break this down as you would
3622   // expect, and index into the target size pieces.
3623   int64_t IdxVal;
3624   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3625     // Avoid out of bounds indexing the pieces.
3626     if (IdxVal >= VecTy.getNumElements()) {
3627       MIRBuilder.buildUndef(DstReg);
3628       MI.eraseFromParent();
3629       return Legalized;
3630     }
3631 
3632     SmallVector<Register, 8> VecParts;
3633     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3634 
3635     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3636     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3637                                     TargetOpcode::G_ANYEXT);
3638 
3639     unsigned NewNumElts = NarrowVecTy.getNumElements();
3640 
3641     LLT IdxTy = MRI.getType(Idx);
3642     int64_t PartIdx = IdxVal / NewNumElts;
3643     auto NewIdx =
3644         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3645 
3646     if (IsInsert) {
3647       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3648 
3649       // Use the adjusted index to insert into one of the subvectors.
3650       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3651           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3652       VecParts[PartIdx] = InsertPart.getReg(0);
3653 
3654       // Recombine the inserted subvector with the others to reform the result
3655       // vector.
3656       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3657     } else {
3658       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3659     }
3660 
3661     MI.eraseFromParent();
3662     return Legalized;
3663   }
3664 
3665   // With a variable index, we can't perform the operation in a smaller type, so
3666   // we're forced to expand this.
3667   //
3668   // TODO: We could emit a chain of compare/select to figure out which piece to
3669   // index.
3670   return lowerExtractInsertVectorElt(MI);
3671 }
3672 
3673 LegalizerHelper::LegalizeResult
3674 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3675                                       LLT NarrowTy) {
3676   // FIXME: Don't know how to handle secondary types yet.
3677   if (TypeIdx != 0)
3678     return UnableToLegalize;
3679 
3680   MachineMemOperand *MMO = *MI.memoperands_begin();
3681 
3682   // This implementation doesn't work for atomics. Give up instead of doing
3683   // something invalid.
3684   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3685       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3686     return UnableToLegalize;
3687 
3688   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3689   Register ValReg = MI.getOperand(0).getReg();
3690   Register AddrReg = MI.getOperand(1).getReg();
3691   LLT ValTy = MRI.getType(ValReg);
3692 
3693   // FIXME: Do we need a distinct NarrowMemory legalize action?
3694   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3695     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3696     return UnableToLegalize;
3697   }
3698 
3699   int NumParts = -1;
3700   int NumLeftover = -1;
3701   LLT LeftoverTy;
3702   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3703   if (IsLoad) {
3704     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3705   } else {
3706     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3707                      NarrowLeftoverRegs)) {
3708       NumParts = NarrowRegs.size();
3709       NumLeftover = NarrowLeftoverRegs.size();
3710     }
3711   }
3712 
3713   if (NumParts == -1)
3714     return UnableToLegalize;
3715 
3716   LLT PtrTy = MRI.getType(AddrReg);
3717   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3718 
3719   unsigned TotalSize = ValTy.getSizeInBits();
3720 
3721   // Split the load/store into PartTy sized pieces starting at Offset. If this
3722   // is a load, return the new registers in ValRegs. For a store, each elements
3723   // of ValRegs should be PartTy. Returns the next offset that needs to be
3724   // handled.
3725   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3726                              unsigned Offset) -> unsigned {
3727     MachineFunction &MF = MIRBuilder.getMF();
3728     unsigned PartSize = PartTy.getSizeInBits();
3729     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3730          Offset += PartSize, ++Idx) {
3731       unsigned ByteSize = PartSize / 8;
3732       unsigned ByteOffset = Offset / 8;
3733       Register NewAddrReg;
3734 
3735       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3736 
3737       MachineMemOperand *NewMMO =
3738         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3739 
3740       if (IsLoad) {
3741         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3742         ValRegs.push_back(Dst);
3743         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3744       } else {
3745         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3746       }
3747     }
3748 
3749     return Offset;
3750   };
3751 
3752   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3753 
3754   // Handle the rest of the register if this isn't an even type breakdown.
3755   if (LeftoverTy.isValid())
3756     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3757 
3758   if (IsLoad) {
3759     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3760                 LeftoverTy, NarrowLeftoverRegs);
3761   }
3762 
3763   MI.eraseFromParent();
3764   return Legalized;
3765 }
3766 
3767 LegalizerHelper::LegalizeResult
3768 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3769                                       LLT NarrowTy) {
3770   assert(TypeIdx == 0 && "only one type index expected");
3771 
3772   const unsigned Opc = MI.getOpcode();
3773   const int NumOps = MI.getNumOperands() - 1;
3774   const Register DstReg = MI.getOperand(0).getReg();
3775   const unsigned Flags = MI.getFlags();
3776   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3777   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3778 
3779   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3780 
3781   // First of all check whether we are narrowing (changing the element type)
3782   // or reducing the vector elements
3783   const LLT DstTy = MRI.getType(DstReg);
3784   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3785 
3786   SmallVector<Register, 8> ExtractedRegs[3];
3787   SmallVector<Register, 8> Parts;
3788 
3789   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3790 
3791   // Break down all the sources into NarrowTy pieces we can operate on. This may
3792   // involve creating merges to a wider type, padded with undef.
3793   for (int I = 0; I != NumOps; ++I) {
3794     Register SrcReg = MI.getOperand(I + 1).getReg();
3795     LLT SrcTy = MRI.getType(SrcReg);
3796 
3797     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3798     // For fewerElements, this is a smaller vector with the same element type.
3799     LLT OpNarrowTy;
3800     if (IsNarrow) {
3801       OpNarrowTy = NarrowScalarTy;
3802 
3803       // In case of narrowing, we need to cast vectors to scalars for this to
3804       // work properly
3805       // FIXME: Can we do without the bitcast here if we're narrowing?
3806       if (SrcTy.isVector()) {
3807         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3808         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3809       }
3810     } else {
3811       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3812     }
3813 
3814     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3815 
3816     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3817     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3818                         TargetOpcode::G_ANYEXT);
3819   }
3820 
3821   SmallVector<Register, 8> ResultRegs;
3822 
3823   // Input operands for each sub-instruction.
3824   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3825 
3826   int NumParts = ExtractedRegs[0].size();
3827   const unsigned DstSize = DstTy.getSizeInBits();
3828   const LLT DstScalarTy = LLT::scalar(DstSize);
3829 
3830   // Narrowing needs to use scalar types
3831   LLT DstLCMTy, NarrowDstTy;
3832   if (IsNarrow) {
3833     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3834     NarrowDstTy = NarrowScalarTy;
3835   } else {
3836     DstLCMTy = getLCMType(DstTy, NarrowTy);
3837     NarrowDstTy = NarrowTy;
3838   }
3839 
3840   // We widened the source registers to satisfy merge/unmerge size
3841   // constraints. We'll have some extra fully undef parts.
3842   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3843 
3844   for (int I = 0; I != NumRealParts; ++I) {
3845     // Emit this instruction on each of the split pieces.
3846     for (int J = 0; J != NumOps; ++J)
3847       InputRegs[J] = ExtractedRegs[J][I];
3848 
3849     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3850     ResultRegs.push_back(Inst.getReg(0));
3851   }
3852 
3853   // Fill out the widened result with undef instead of creating instructions
3854   // with undef inputs.
3855   int NumUndefParts = NumParts - NumRealParts;
3856   if (NumUndefParts != 0)
3857     ResultRegs.append(NumUndefParts,
3858                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3859 
3860   // Extract the possibly padded result. Use a scratch register if we need to do
3861   // a final bitcast, otherwise use the original result register.
3862   Register MergeDstReg;
3863   if (IsNarrow && DstTy.isVector())
3864     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3865   else
3866     MergeDstReg = DstReg;
3867 
3868   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3869 
3870   // Recast to vector if we narrowed a vector
3871   if (IsNarrow && DstTy.isVector())
3872     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3873 
3874   MI.eraseFromParent();
3875   return Legalized;
3876 }
3877 
3878 LegalizerHelper::LegalizeResult
3879 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3880                                               LLT NarrowTy) {
3881   Register DstReg = MI.getOperand(0).getReg();
3882   Register SrcReg = MI.getOperand(1).getReg();
3883   int64_t Imm = MI.getOperand(2).getImm();
3884 
3885   LLT DstTy = MRI.getType(DstReg);
3886 
3887   SmallVector<Register, 8> Parts;
3888   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3889   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3890 
3891   for (Register &R : Parts)
3892     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3893 
3894   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3895 
3896   MI.eraseFromParent();
3897   return Legalized;
3898 }
3899 
3900 LegalizerHelper::LegalizeResult
3901 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3902                                      LLT NarrowTy) {
3903   using namespace TargetOpcode;
3904 
3905   switch (MI.getOpcode()) {
3906   case G_IMPLICIT_DEF:
3907     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3908   case G_TRUNC:
3909   case G_AND:
3910   case G_OR:
3911   case G_XOR:
3912   case G_ADD:
3913   case G_SUB:
3914   case G_MUL:
3915   case G_PTR_ADD:
3916   case G_SMULH:
3917   case G_UMULH:
3918   case G_FADD:
3919   case G_FMUL:
3920   case G_FSUB:
3921   case G_FNEG:
3922   case G_FABS:
3923   case G_FCANONICALIZE:
3924   case G_FDIV:
3925   case G_FREM:
3926   case G_FMA:
3927   case G_FMAD:
3928   case G_FPOW:
3929   case G_FEXP:
3930   case G_FEXP2:
3931   case G_FLOG:
3932   case G_FLOG2:
3933   case G_FLOG10:
3934   case G_FNEARBYINT:
3935   case G_FCEIL:
3936   case G_FFLOOR:
3937   case G_FRINT:
3938   case G_INTRINSIC_ROUND:
3939   case G_INTRINSIC_ROUNDEVEN:
3940   case G_INTRINSIC_TRUNC:
3941   case G_FCOS:
3942   case G_FSIN:
3943   case G_FSQRT:
3944   case G_BSWAP:
3945   case G_BITREVERSE:
3946   case G_SDIV:
3947   case G_UDIV:
3948   case G_SREM:
3949   case G_UREM:
3950   case G_SMIN:
3951   case G_SMAX:
3952   case G_UMIN:
3953   case G_UMAX:
3954   case G_FMINNUM:
3955   case G_FMAXNUM:
3956   case G_FMINNUM_IEEE:
3957   case G_FMAXNUM_IEEE:
3958   case G_FMINIMUM:
3959   case G_FMAXIMUM:
3960   case G_FSHL:
3961   case G_FSHR:
3962   case G_FREEZE:
3963   case G_SADDSAT:
3964   case G_SSUBSAT:
3965   case G_UADDSAT:
3966   case G_USUBSAT:
3967     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3968   case G_SHL:
3969   case G_LSHR:
3970   case G_ASHR:
3971   case G_SSHLSAT:
3972   case G_USHLSAT:
3973   case G_CTLZ:
3974   case G_CTLZ_ZERO_UNDEF:
3975   case G_CTTZ:
3976   case G_CTTZ_ZERO_UNDEF:
3977   case G_CTPOP:
3978   case G_FCOPYSIGN:
3979     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3980   case G_ZEXT:
3981   case G_SEXT:
3982   case G_ANYEXT:
3983   case G_FPEXT:
3984   case G_FPTRUNC:
3985   case G_SITOFP:
3986   case G_UITOFP:
3987   case G_FPTOSI:
3988   case G_FPTOUI:
3989   case G_INTTOPTR:
3990   case G_PTRTOINT:
3991   case G_ADDRSPACE_CAST:
3992     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3993   case G_ICMP:
3994   case G_FCMP:
3995     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3996   case G_SELECT:
3997     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3998   case G_PHI:
3999     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4000   case G_UNMERGE_VALUES:
4001     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4002   case G_BUILD_VECTOR:
4003     assert(TypeIdx == 0 && "not a vector type index");
4004     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4005   case G_CONCAT_VECTORS:
4006     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4007       return UnableToLegalize;
4008     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4009   case G_EXTRACT_VECTOR_ELT:
4010   case G_INSERT_VECTOR_ELT:
4011     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4012   case G_LOAD:
4013   case G_STORE:
4014     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4015   case G_SEXT_INREG:
4016     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4017   default:
4018     return UnableToLegalize;
4019   }
4020 }
4021 
4022 LegalizerHelper::LegalizeResult
4023 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4024                                              const LLT HalfTy, const LLT AmtTy) {
4025 
4026   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4027   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4028   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4029 
4030   if (Amt.isNullValue()) {
4031     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4032     MI.eraseFromParent();
4033     return Legalized;
4034   }
4035 
4036   LLT NVT = HalfTy;
4037   unsigned NVTBits = HalfTy.getSizeInBits();
4038   unsigned VTBits = 2 * NVTBits;
4039 
4040   SrcOp Lo(Register(0)), Hi(Register(0));
4041   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4042     if (Amt.ugt(VTBits)) {
4043       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4044     } else if (Amt.ugt(NVTBits)) {
4045       Lo = MIRBuilder.buildConstant(NVT, 0);
4046       Hi = MIRBuilder.buildShl(NVT, InL,
4047                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4048     } else if (Amt == NVTBits) {
4049       Lo = MIRBuilder.buildConstant(NVT, 0);
4050       Hi = InL;
4051     } else {
4052       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4053       auto OrLHS =
4054           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4055       auto OrRHS = MIRBuilder.buildLShr(
4056           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4057       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4058     }
4059   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4060     if (Amt.ugt(VTBits)) {
4061       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4062     } else if (Amt.ugt(NVTBits)) {
4063       Lo = MIRBuilder.buildLShr(NVT, InH,
4064                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4065       Hi = MIRBuilder.buildConstant(NVT, 0);
4066     } else if (Amt == NVTBits) {
4067       Lo = InH;
4068       Hi = MIRBuilder.buildConstant(NVT, 0);
4069     } else {
4070       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4071 
4072       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4073       auto OrRHS = MIRBuilder.buildShl(
4074           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4075 
4076       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4077       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4078     }
4079   } else {
4080     if (Amt.ugt(VTBits)) {
4081       Hi = Lo = MIRBuilder.buildAShr(
4082           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4083     } else if (Amt.ugt(NVTBits)) {
4084       Lo = MIRBuilder.buildAShr(NVT, InH,
4085                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4086       Hi = MIRBuilder.buildAShr(NVT, InH,
4087                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4088     } else if (Amt == NVTBits) {
4089       Lo = InH;
4090       Hi = MIRBuilder.buildAShr(NVT, InH,
4091                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4092     } else {
4093       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4094 
4095       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4096       auto OrRHS = MIRBuilder.buildShl(
4097           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4098 
4099       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4100       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4101     }
4102   }
4103 
4104   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4105   MI.eraseFromParent();
4106 
4107   return Legalized;
4108 }
4109 
4110 // TODO: Optimize if constant shift amount.
4111 LegalizerHelper::LegalizeResult
4112 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4113                                    LLT RequestedTy) {
4114   if (TypeIdx == 1) {
4115     Observer.changingInstr(MI);
4116     narrowScalarSrc(MI, RequestedTy, 2);
4117     Observer.changedInstr(MI);
4118     return Legalized;
4119   }
4120 
4121   Register DstReg = MI.getOperand(0).getReg();
4122   LLT DstTy = MRI.getType(DstReg);
4123   if (DstTy.isVector())
4124     return UnableToLegalize;
4125 
4126   Register Amt = MI.getOperand(2).getReg();
4127   LLT ShiftAmtTy = MRI.getType(Amt);
4128   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4129   if (DstEltSize % 2 != 0)
4130     return UnableToLegalize;
4131 
4132   // Ignore the input type. We can only go to exactly half the size of the
4133   // input. If that isn't small enough, the resulting pieces will be further
4134   // legalized.
4135   const unsigned NewBitSize = DstEltSize / 2;
4136   const LLT HalfTy = LLT::scalar(NewBitSize);
4137   const LLT CondTy = LLT::scalar(1);
4138 
4139   if (const MachineInstr *KShiftAmt =
4140           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4141     return narrowScalarShiftByConstant(
4142         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4143   }
4144 
4145   // TODO: Expand with known bits.
4146 
4147   // Handle the fully general expansion by an unknown amount.
4148   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4149 
4150   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4151   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4152   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4153 
4154   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4155   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4156 
4157   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4158   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4159   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4160 
4161   Register ResultRegs[2];
4162   switch (MI.getOpcode()) {
4163   case TargetOpcode::G_SHL: {
4164     // Short: ShAmt < NewBitSize
4165     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4166 
4167     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4168     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4169     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4170 
4171     // Long: ShAmt >= NewBitSize
4172     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4173     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4174 
4175     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4176     auto Hi = MIRBuilder.buildSelect(
4177         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4178 
4179     ResultRegs[0] = Lo.getReg(0);
4180     ResultRegs[1] = Hi.getReg(0);
4181     break;
4182   }
4183   case TargetOpcode::G_LSHR:
4184   case TargetOpcode::G_ASHR: {
4185     // Short: ShAmt < NewBitSize
4186     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4187 
4188     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4189     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4190     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4191 
4192     // Long: ShAmt >= NewBitSize
4193     MachineInstrBuilder HiL;
4194     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4195       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4196     } else {
4197       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4198       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4199     }
4200     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4201                                      {InH, AmtExcess});     // Lo from Hi part.
4202 
4203     auto Lo = MIRBuilder.buildSelect(
4204         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4205 
4206     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4207 
4208     ResultRegs[0] = Lo.getReg(0);
4209     ResultRegs[1] = Hi.getReg(0);
4210     break;
4211   }
4212   default:
4213     llvm_unreachable("not a shift");
4214   }
4215 
4216   MIRBuilder.buildMerge(DstReg, ResultRegs);
4217   MI.eraseFromParent();
4218   return Legalized;
4219 }
4220 
4221 LegalizerHelper::LegalizeResult
4222 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4223                                        LLT MoreTy) {
4224   assert(TypeIdx == 0 && "Expecting only Idx 0");
4225 
4226   Observer.changingInstr(MI);
4227   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4228     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4229     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4230     moreElementsVectorSrc(MI, MoreTy, I);
4231   }
4232 
4233   MachineBasicBlock &MBB = *MI.getParent();
4234   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4235   moreElementsVectorDst(MI, MoreTy, 0);
4236   Observer.changedInstr(MI);
4237   return Legalized;
4238 }
4239 
4240 LegalizerHelper::LegalizeResult
4241 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4242                                     LLT MoreTy) {
4243   unsigned Opc = MI.getOpcode();
4244   switch (Opc) {
4245   case TargetOpcode::G_IMPLICIT_DEF:
4246   case TargetOpcode::G_LOAD: {
4247     if (TypeIdx != 0)
4248       return UnableToLegalize;
4249     Observer.changingInstr(MI);
4250     moreElementsVectorDst(MI, MoreTy, 0);
4251     Observer.changedInstr(MI);
4252     return Legalized;
4253   }
4254   case TargetOpcode::G_STORE:
4255     if (TypeIdx != 0)
4256       return UnableToLegalize;
4257     Observer.changingInstr(MI);
4258     moreElementsVectorSrc(MI, MoreTy, 0);
4259     Observer.changedInstr(MI);
4260     return Legalized;
4261   case TargetOpcode::G_AND:
4262   case TargetOpcode::G_OR:
4263   case TargetOpcode::G_XOR:
4264   case TargetOpcode::G_SMIN:
4265   case TargetOpcode::G_SMAX:
4266   case TargetOpcode::G_UMIN:
4267   case TargetOpcode::G_UMAX:
4268   case TargetOpcode::G_FMINNUM:
4269   case TargetOpcode::G_FMAXNUM:
4270   case TargetOpcode::G_FMINNUM_IEEE:
4271   case TargetOpcode::G_FMAXNUM_IEEE:
4272   case TargetOpcode::G_FMINIMUM:
4273   case TargetOpcode::G_FMAXIMUM: {
4274     Observer.changingInstr(MI);
4275     moreElementsVectorSrc(MI, MoreTy, 1);
4276     moreElementsVectorSrc(MI, MoreTy, 2);
4277     moreElementsVectorDst(MI, MoreTy, 0);
4278     Observer.changedInstr(MI);
4279     return Legalized;
4280   }
4281   case TargetOpcode::G_EXTRACT:
4282     if (TypeIdx != 1)
4283       return UnableToLegalize;
4284     Observer.changingInstr(MI);
4285     moreElementsVectorSrc(MI, MoreTy, 1);
4286     Observer.changedInstr(MI);
4287     return Legalized;
4288   case TargetOpcode::G_INSERT:
4289   case TargetOpcode::G_FREEZE:
4290     if (TypeIdx != 0)
4291       return UnableToLegalize;
4292     Observer.changingInstr(MI);
4293     moreElementsVectorSrc(MI, MoreTy, 1);
4294     moreElementsVectorDst(MI, MoreTy, 0);
4295     Observer.changedInstr(MI);
4296     return Legalized;
4297   case TargetOpcode::G_SELECT:
4298     if (TypeIdx != 0)
4299       return UnableToLegalize;
4300     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4301       return UnableToLegalize;
4302 
4303     Observer.changingInstr(MI);
4304     moreElementsVectorSrc(MI, MoreTy, 2);
4305     moreElementsVectorSrc(MI, MoreTy, 3);
4306     moreElementsVectorDst(MI, MoreTy, 0);
4307     Observer.changedInstr(MI);
4308     return Legalized;
4309   case TargetOpcode::G_UNMERGE_VALUES: {
4310     if (TypeIdx != 1)
4311       return UnableToLegalize;
4312 
4313     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4314     int NumDst = MI.getNumOperands() - 1;
4315     moreElementsVectorSrc(MI, MoreTy, NumDst);
4316 
4317     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4318     for (int I = 0; I != NumDst; ++I)
4319       MIB.addDef(MI.getOperand(I).getReg());
4320 
4321     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4322     for (int I = NumDst; I != NewNumDst; ++I)
4323       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4324 
4325     MIB.addUse(MI.getOperand(NumDst).getReg());
4326     MI.eraseFromParent();
4327     return Legalized;
4328   }
4329   case TargetOpcode::G_PHI:
4330     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4331   default:
4332     return UnableToLegalize;
4333   }
4334 }
4335 
4336 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4337                                         ArrayRef<Register> Src1Regs,
4338                                         ArrayRef<Register> Src2Regs,
4339                                         LLT NarrowTy) {
4340   MachineIRBuilder &B = MIRBuilder;
4341   unsigned SrcParts = Src1Regs.size();
4342   unsigned DstParts = DstRegs.size();
4343 
4344   unsigned DstIdx = 0; // Low bits of the result.
4345   Register FactorSum =
4346       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4347   DstRegs[DstIdx] = FactorSum;
4348 
4349   unsigned CarrySumPrevDstIdx;
4350   SmallVector<Register, 4> Factors;
4351 
4352   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4353     // Collect low parts of muls for DstIdx.
4354     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4355          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4356       MachineInstrBuilder Mul =
4357           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4358       Factors.push_back(Mul.getReg(0));
4359     }
4360     // Collect high parts of muls from previous DstIdx.
4361     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4362          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4363       MachineInstrBuilder Umulh =
4364           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4365       Factors.push_back(Umulh.getReg(0));
4366     }
4367     // Add CarrySum from additions calculated for previous DstIdx.
4368     if (DstIdx != 1) {
4369       Factors.push_back(CarrySumPrevDstIdx);
4370     }
4371 
4372     Register CarrySum;
4373     // Add all factors and accumulate all carries into CarrySum.
4374     if (DstIdx != DstParts - 1) {
4375       MachineInstrBuilder Uaddo =
4376           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4377       FactorSum = Uaddo.getReg(0);
4378       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4379       for (unsigned i = 2; i < Factors.size(); ++i) {
4380         MachineInstrBuilder Uaddo =
4381             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4382         FactorSum = Uaddo.getReg(0);
4383         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4384         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4385       }
4386     } else {
4387       // Since value for the next index is not calculated, neither is CarrySum.
4388       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4389       for (unsigned i = 2; i < Factors.size(); ++i)
4390         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4391     }
4392 
4393     CarrySumPrevDstIdx = CarrySum;
4394     DstRegs[DstIdx] = FactorSum;
4395     Factors.clear();
4396   }
4397 }
4398 
4399 LegalizerHelper::LegalizeResult
4400 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4401   Register DstReg = MI.getOperand(0).getReg();
4402   Register Src1 = MI.getOperand(1).getReg();
4403   Register Src2 = MI.getOperand(2).getReg();
4404 
4405   LLT Ty = MRI.getType(DstReg);
4406   if (Ty.isVector())
4407     return UnableToLegalize;
4408 
4409   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4410   unsigned DstSize = Ty.getSizeInBits();
4411   unsigned NarrowSize = NarrowTy.getSizeInBits();
4412   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4413     return UnableToLegalize;
4414 
4415   unsigned NumDstParts = DstSize / NarrowSize;
4416   unsigned NumSrcParts = SrcSize / NarrowSize;
4417   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4418   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4419 
4420   SmallVector<Register, 2> Src1Parts, Src2Parts;
4421   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4422   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4423   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4424   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4425 
4426   // Take only high half of registers if this is high mul.
4427   ArrayRef<Register> DstRegs(
4428       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4429   MIRBuilder.buildMerge(DstReg, DstRegs);
4430   MI.eraseFromParent();
4431   return Legalized;
4432 }
4433 
4434 LegalizerHelper::LegalizeResult
4435 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4436                                      LLT NarrowTy) {
4437   if (TypeIdx != 1)
4438     return UnableToLegalize;
4439 
4440   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4441 
4442   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4443   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4444   // NarrowSize.
4445   if (SizeOp1 % NarrowSize != 0)
4446     return UnableToLegalize;
4447   int NumParts = SizeOp1 / NarrowSize;
4448 
4449   SmallVector<Register, 2> SrcRegs, DstRegs;
4450   SmallVector<uint64_t, 2> Indexes;
4451   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4452 
4453   Register OpReg = MI.getOperand(0).getReg();
4454   uint64_t OpStart = MI.getOperand(2).getImm();
4455   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4456   for (int i = 0; i < NumParts; ++i) {
4457     unsigned SrcStart = i * NarrowSize;
4458 
4459     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4460       // No part of the extract uses this subregister, ignore it.
4461       continue;
4462     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4463       // The entire subregister is extracted, forward the value.
4464       DstRegs.push_back(SrcRegs[i]);
4465       continue;
4466     }
4467 
4468     // OpSegStart is where this destination segment would start in OpReg if it
4469     // extended infinitely in both directions.
4470     int64_t ExtractOffset;
4471     uint64_t SegSize;
4472     if (OpStart < SrcStart) {
4473       ExtractOffset = 0;
4474       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4475     } else {
4476       ExtractOffset = OpStart - SrcStart;
4477       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4478     }
4479 
4480     Register SegReg = SrcRegs[i];
4481     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4482       // A genuine extract is needed.
4483       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4484       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4485     }
4486 
4487     DstRegs.push_back(SegReg);
4488   }
4489 
4490   Register DstReg = MI.getOperand(0).getReg();
4491   if (MRI.getType(DstReg).isVector())
4492     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4493   else if (DstRegs.size() > 1)
4494     MIRBuilder.buildMerge(DstReg, DstRegs);
4495   else
4496     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4497   MI.eraseFromParent();
4498   return Legalized;
4499 }
4500 
4501 LegalizerHelper::LegalizeResult
4502 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4503                                     LLT NarrowTy) {
4504   // FIXME: Don't know how to handle secondary types yet.
4505   if (TypeIdx != 0)
4506     return UnableToLegalize;
4507 
4508   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4509   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4510 
4511   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4512   // NarrowSize.
4513   if (SizeOp0 % NarrowSize != 0)
4514     return UnableToLegalize;
4515 
4516   int NumParts = SizeOp0 / NarrowSize;
4517 
4518   SmallVector<Register, 2> SrcRegs, DstRegs;
4519   SmallVector<uint64_t, 2> Indexes;
4520   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4521 
4522   Register OpReg = MI.getOperand(2).getReg();
4523   uint64_t OpStart = MI.getOperand(3).getImm();
4524   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4525   for (int i = 0; i < NumParts; ++i) {
4526     unsigned DstStart = i * NarrowSize;
4527 
4528     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4529       // No part of the insert affects this subregister, forward the original.
4530       DstRegs.push_back(SrcRegs[i]);
4531       continue;
4532     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4533       // The entire subregister is defined by this insert, forward the new
4534       // value.
4535       DstRegs.push_back(OpReg);
4536       continue;
4537     }
4538 
4539     // OpSegStart is where this destination segment would start in OpReg if it
4540     // extended infinitely in both directions.
4541     int64_t ExtractOffset, InsertOffset;
4542     uint64_t SegSize;
4543     if (OpStart < DstStart) {
4544       InsertOffset = 0;
4545       ExtractOffset = DstStart - OpStart;
4546       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4547     } else {
4548       InsertOffset = OpStart - DstStart;
4549       ExtractOffset = 0;
4550       SegSize =
4551         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4552     }
4553 
4554     Register SegReg = OpReg;
4555     if (ExtractOffset != 0 || SegSize != OpSize) {
4556       // A genuine extract is needed.
4557       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4558       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4559     }
4560 
4561     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4562     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4563     DstRegs.push_back(DstReg);
4564   }
4565 
4566   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4567   Register DstReg = MI.getOperand(0).getReg();
4568   if(MRI.getType(DstReg).isVector())
4569     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4570   else
4571     MIRBuilder.buildMerge(DstReg, DstRegs);
4572   MI.eraseFromParent();
4573   return Legalized;
4574 }
4575 
4576 LegalizerHelper::LegalizeResult
4577 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4578                                    LLT NarrowTy) {
4579   Register DstReg = MI.getOperand(0).getReg();
4580   LLT DstTy = MRI.getType(DstReg);
4581 
4582   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4583 
4584   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4585   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4586   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4587   LLT LeftoverTy;
4588   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4589                     Src0Regs, Src0LeftoverRegs))
4590     return UnableToLegalize;
4591 
4592   LLT Unused;
4593   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4594                     Src1Regs, Src1LeftoverRegs))
4595     llvm_unreachable("inconsistent extractParts result");
4596 
4597   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4598     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4599                                         {Src0Regs[I], Src1Regs[I]});
4600     DstRegs.push_back(Inst.getReg(0));
4601   }
4602 
4603   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4604     auto Inst = MIRBuilder.buildInstr(
4605       MI.getOpcode(),
4606       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4607     DstLeftoverRegs.push_back(Inst.getReg(0));
4608   }
4609 
4610   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4611               LeftoverTy, DstLeftoverRegs);
4612 
4613   MI.eraseFromParent();
4614   return Legalized;
4615 }
4616 
4617 LegalizerHelper::LegalizeResult
4618 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4619                                  LLT NarrowTy) {
4620   if (TypeIdx != 0)
4621     return UnableToLegalize;
4622 
4623   Register DstReg = MI.getOperand(0).getReg();
4624   Register SrcReg = MI.getOperand(1).getReg();
4625 
4626   LLT DstTy = MRI.getType(DstReg);
4627   if (DstTy.isVector())
4628     return UnableToLegalize;
4629 
4630   SmallVector<Register, 8> Parts;
4631   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4632   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4633   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4634 
4635   MI.eraseFromParent();
4636   return Legalized;
4637 }
4638 
4639 LegalizerHelper::LegalizeResult
4640 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4641                                     LLT NarrowTy) {
4642   if (TypeIdx != 0)
4643     return UnableToLegalize;
4644 
4645   Register CondReg = MI.getOperand(1).getReg();
4646   LLT CondTy = MRI.getType(CondReg);
4647   if (CondTy.isVector()) // TODO: Handle vselect
4648     return UnableToLegalize;
4649 
4650   Register DstReg = MI.getOperand(0).getReg();
4651   LLT DstTy = MRI.getType(DstReg);
4652 
4653   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4654   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4655   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4656   LLT LeftoverTy;
4657   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4658                     Src1Regs, Src1LeftoverRegs))
4659     return UnableToLegalize;
4660 
4661   LLT Unused;
4662   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4663                     Src2Regs, Src2LeftoverRegs))
4664     llvm_unreachable("inconsistent extractParts result");
4665 
4666   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4667     auto Select = MIRBuilder.buildSelect(NarrowTy,
4668                                          CondReg, Src1Regs[I], Src2Regs[I]);
4669     DstRegs.push_back(Select.getReg(0));
4670   }
4671 
4672   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4673     auto Select = MIRBuilder.buildSelect(
4674       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4675     DstLeftoverRegs.push_back(Select.getReg(0));
4676   }
4677 
4678   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4679               LeftoverTy, DstLeftoverRegs);
4680 
4681   MI.eraseFromParent();
4682   return Legalized;
4683 }
4684 
4685 LegalizerHelper::LegalizeResult
4686 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4687                                   LLT NarrowTy) {
4688   if (TypeIdx != 1)
4689     return UnableToLegalize;
4690 
4691   Register DstReg = MI.getOperand(0).getReg();
4692   Register SrcReg = MI.getOperand(1).getReg();
4693   LLT DstTy = MRI.getType(DstReg);
4694   LLT SrcTy = MRI.getType(SrcReg);
4695   unsigned NarrowSize = NarrowTy.getSizeInBits();
4696 
4697   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4698     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4699 
4700     MachineIRBuilder &B = MIRBuilder;
4701     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4702     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4703     auto C_0 = B.buildConstant(NarrowTy, 0);
4704     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4705                                 UnmergeSrc.getReg(1), C_0);
4706     auto LoCTLZ = IsUndef ?
4707       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4708       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4709     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4710     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4711     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4712     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4713 
4714     MI.eraseFromParent();
4715     return Legalized;
4716   }
4717 
4718   return UnableToLegalize;
4719 }
4720 
4721 LegalizerHelper::LegalizeResult
4722 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4723                                   LLT NarrowTy) {
4724   if (TypeIdx != 1)
4725     return UnableToLegalize;
4726 
4727   Register DstReg = MI.getOperand(0).getReg();
4728   Register SrcReg = MI.getOperand(1).getReg();
4729   LLT DstTy = MRI.getType(DstReg);
4730   LLT SrcTy = MRI.getType(SrcReg);
4731   unsigned NarrowSize = NarrowTy.getSizeInBits();
4732 
4733   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4734     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4735 
4736     MachineIRBuilder &B = MIRBuilder;
4737     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4738     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4739     auto C_0 = B.buildConstant(NarrowTy, 0);
4740     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4741                                 UnmergeSrc.getReg(0), C_0);
4742     auto HiCTTZ = IsUndef ?
4743       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4744       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4745     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4746     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4747     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4748     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4749 
4750     MI.eraseFromParent();
4751     return Legalized;
4752   }
4753 
4754   return UnableToLegalize;
4755 }
4756 
4757 LegalizerHelper::LegalizeResult
4758 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4759                                    LLT NarrowTy) {
4760   if (TypeIdx != 1)
4761     return UnableToLegalize;
4762 
4763   Register DstReg = MI.getOperand(0).getReg();
4764   LLT DstTy = MRI.getType(DstReg);
4765   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4766   unsigned NarrowSize = NarrowTy.getSizeInBits();
4767 
4768   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4769     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4770 
4771     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4772     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4773     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4774 
4775     MI.eraseFromParent();
4776     return Legalized;
4777   }
4778 
4779   return UnableToLegalize;
4780 }
4781 
4782 LegalizerHelper::LegalizeResult
4783 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4784   unsigned Opc = MI.getOpcode();
4785   const auto &TII = MIRBuilder.getTII();
4786   auto isSupported = [this](const LegalityQuery &Q) {
4787     auto QAction = LI.getAction(Q).Action;
4788     return QAction == Legal || QAction == Libcall || QAction == Custom;
4789   };
4790   switch (Opc) {
4791   default:
4792     return UnableToLegalize;
4793   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4794     // This trivially expands to CTLZ.
4795     Observer.changingInstr(MI);
4796     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4797     Observer.changedInstr(MI);
4798     return Legalized;
4799   }
4800   case TargetOpcode::G_CTLZ: {
4801     Register DstReg = MI.getOperand(0).getReg();
4802     Register SrcReg = MI.getOperand(1).getReg();
4803     LLT DstTy = MRI.getType(DstReg);
4804     LLT SrcTy = MRI.getType(SrcReg);
4805     unsigned Len = SrcTy.getSizeInBits();
4806 
4807     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4808       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4809       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4810       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4811       auto ICmp = MIRBuilder.buildICmp(
4812           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4813       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4814       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4815       MI.eraseFromParent();
4816       return Legalized;
4817     }
4818     // for now, we do this:
4819     // NewLen = NextPowerOf2(Len);
4820     // x = x | (x >> 1);
4821     // x = x | (x >> 2);
4822     // ...
4823     // x = x | (x >>16);
4824     // x = x | (x >>32); // for 64-bit input
4825     // Upto NewLen/2
4826     // return Len - popcount(x);
4827     //
4828     // Ref: "Hacker's Delight" by Henry Warren
4829     Register Op = SrcReg;
4830     unsigned NewLen = PowerOf2Ceil(Len);
4831     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4832       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4833       auto MIBOp = MIRBuilder.buildOr(
4834           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4835       Op = MIBOp.getReg(0);
4836     }
4837     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4838     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4839                         MIBPop);
4840     MI.eraseFromParent();
4841     return Legalized;
4842   }
4843   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4844     // This trivially expands to CTTZ.
4845     Observer.changingInstr(MI);
4846     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4847     Observer.changedInstr(MI);
4848     return Legalized;
4849   }
4850   case TargetOpcode::G_CTTZ: {
4851     Register DstReg = MI.getOperand(0).getReg();
4852     Register SrcReg = MI.getOperand(1).getReg();
4853     LLT DstTy = MRI.getType(DstReg);
4854     LLT SrcTy = MRI.getType(SrcReg);
4855 
4856     unsigned Len = SrcTy.getSizeInBits();
4857     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4858       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4859       // zero.
4860       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4861       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4862       auto ICmp = MIRBuilder.buildICmp(
4863           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4864       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4865       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4866       MI.eraseFromParent();
4867       return Legalized;
4868     }
4869     // for now, we use: { return popcount(~x & (x - 1)); }
4870     // unless the target has ctlz but not ctpop, in which case we use:
4871     // { return 32 - nlz(~x & (x-1)); }
4872     // Ref: "Hacker's Delight" by Henry Warren
4873     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4874     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4875     auto MIBTmp = MIRBuilder.buildAnd(
4876         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4877     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4878         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4879       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4880       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4881                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4882       MI.eraseFromParent();
4883       return Legalized;
4884     }
4885     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4886     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4887     return Legalized;
4888   }
4889   case TargetOpcode::G_CTPOP: {
4890     Register SrcReg = MI.getOperand(1).getReg();
4891     LLT Ty = MRI.getType(SrcReg);
4892     unsigned Size = Ty.getSizeInBits();
4893     MachineIRBuilder &B = MIRBuilder;
4894 
4895     // Count set bits in blocks of 2 bits. Default approach would be
4896     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4897     // We use following formula instead:
4898     // B2Count = val - { (val >> 1) & 0x55555555 }
4899     // since it gives same result in blocks of 2 with one instruction less.
4900     auto C_1 = B.buildConstant(Ty, 1);
4901     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4902     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4903     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4904     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4905     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4906 
4907     // In order to get count in blocks of 4 add values from adjacent block of 2.
4908     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4909     auto C_2 = B.buildConstant(Ty, 2);
4910     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4911     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4912     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4913     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4914     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4915     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4916 
4917     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4918     // addition since count value sits in range {0,...,8} and 4 bits are enough
4919     // to hold such binary values. After addition high 4 bits still hold count
4920     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4921     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4922     auto C_4 = B.buildConstant(Ty, 4);
4923     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4924     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4925     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4926     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4927     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4928 
4929     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4930     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4931     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4932     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4933     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4934 
4935     // Shift count result from 8 high bits to low bits.
4936     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4937     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4938 
4939     MI.eraseFromParent();
4940     return Legalized;
4941   }
4942   }
4943 }
4944 
4945 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4946 // representation.
4947 LegalizerHelper::LegalizeResult
4948 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4949   Register Dst = MI.getOperand(0).getReg();
4950   Register Src = MI.getOperand(1).getReg();
4951   const LLT S64 = LLT::scalar(64);
4952   const LLT S32 = LLT::scalar(32);
4953   const LLT S1 = LLT::scalar(1);
4954 
4955   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4956 
4957   // unsigned cul2f(ulong u) {
4958   //   uint lz = clz(u);
4959   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4960   //   u = (u << lz) & 0x7fffffffffffffffUL;
4961   //   ulong t = u & 0xffffffffffUL;
4962   //   uint v = (e << 23) | (uint)(u >> 40);
4963   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4964   //   return as_float(v + r);
4965   // }
4966 
4967   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4968   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4969 
4970   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4971 
4972   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4973   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4974 
4975   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4976   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4977 
4978   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4979   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4980 
4981   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4982 
4983   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4984   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4985 
4986   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4987   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4988   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4989 
4990   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4991   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4992   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4993   auto One = MIRBuilder.buildConstant(S32, 1);
4994 
4995   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4996   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4997   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4998   MIRBuilder.buildAdd(Dst, V, R);
4999 
5000   MI.eraseFromParent();
5001   return Legalized;
5002 }
5003 
5004 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5005   Register Dst = MI.getOperand(0).getReg();
5006   Register Src = MI.getOperand(1).getReg();
5007   LLT DstTy = MRI.getType(Dst);
5008   LLT SrcTy = MRI.getType(Src);
5009 
5010   if (SrcTy == LLT::scalar(1)) {
5011     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5012     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5013     MIRBuilder.buildSelect(Dst, Src, True, False);
5014     MI.eraseFromParent();
5015     return Legalized;
5016   }
5017 
5018   if (SrcTy != LLT::scalar(64))
5019     return UnableToLegalize;
5020 
5021   if (DstTy == LLT::scalar(32)) {
5022     // TODO: SelectionDAG has several alternative expansions to port which may
5023     // be more reasonble depending on the available instructions. If a target
5024     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5025     // intermediate type, this is probably worse.
5026     return lowerU64ToF32BitOps(MI);
5027   }
5028 
5029   return UnableToLegalize;
5030 }
5031 
5032 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5033   Register Dst = MI.getOperand(0).getReg();
5034   Register Src = MI.getOperand(1).getReg();
5035   LLT DstTy = MRI.getType(Dst);
5036   LLT SrcTy = MRI.getType(Src);
5037 
5038   const LLT S64 = LLT::scalar(64);
5039   const LLT S32 = LLT::scalar(32);
5040   const LLT S1 = LLT::scalar(1);
5041 
5042   if (SrcTy == S1) {
5043     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5044     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5045     MIRBuilder.buildSelect(Dst, Src, True, False);
5046     MI.eraseFromParent();
5047     return Legalized;
5048   }
5049 
5050   if (SrcTy != S64)
5051     return UnableToLegalize;
5052 
5053   if (DstTy == S32) {
5054     // signed cl2f(long l) {
5055     //   long s = l >> 63;
5056     //   float r = cul2f((l + s) ^ s);
5057     //   return s ? -r : r;
5058     // }
5059     Register L = Src;
5060     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5061     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5062 
5063     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5064     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5065     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5066 
5067     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5068     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5069                                             MIRBuilder.buildConstant(S64, 0));
5070     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5071     MI.eraseFromParent();
5072     return Legalized;
5073   }
5074 
5075   return UnableToLegalize;
5076 }
5077 
5078 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5079   Register Dst = MI.getOperand(0).getReg();
5080   Register Src = MI.getOperand(1).getReg();
5081   LLT DstTy = MRI.getType(Dst);
5082   LLT SrcTy = MRI.getType(Src);
5083   const LLT S64 = LLT::scalar(64);
5084   const LLT S32 = LLT::scalar(32);
5085 
5086   if (SrcTy != S64 && SrcTy != S32)
5087     return UnableToLegalize;
5088   if (DstTy != S32 && DstTy != S64)
5089     return UnableToLegalize;
5090 
5091   // FPTOSI gives same result as FPTOUI for positive signed integers.
5092   // FPTOUI needs to deal with fp values that convert to unsigned integers
5093   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5094 
5095   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5096   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5097                                                 : APFloat::IEEEdouble(),
5098                     APInt::getNullValue(SrcTy.getSizeInBits()));
5099   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5100 
5101   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5102 
5103   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5104   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5105   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5106   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5107   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5108   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5109   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5110 
5111   const LLT S1 = LLT::scalar(1);
5112 
5113   MachineInstrBuilder FCMP =
5114       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5115   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5116 
5117   MI.eraseFromParent();
5118   return Legalized;
5119 }
5120 
5121 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5122   Register Dst = MI.getOperand(0).getReg();
5123   Register Src = MI.getOperand(1).getReg();
5124   LLT DstTy = MRI.getType(Dst);
5125   LLT SrcTy = MRI.getType(Src);
5126   const LLT S64 = LLT::scalar(64);
5127   const LLT S32 = LLT::scalar(32);
5128 
5129   // FIXME: Only f32 to i64 conversions are supported.
5130   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5131     return UnableToLegalize;
5132 
5133   // Expand f32 -> i64 conversion
5134   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5135   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5136 
5137   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5138 
5139   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5140   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5141 
5142   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5143   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5144 
5145   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5146                                            APInt::getSignMask(SrcEltBits));
5147   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5148   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5149   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5150   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5151 
5152   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5153   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5154   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5155 
5156   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5157   R = MIRBuilder.buildZExt(DstTy, R);
5158 
5159   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5160   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5161   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5162   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5163 
5164   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5165   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5166 
5167   const LLT S1 = LLT::scalar(1);
5168   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5169                                     S1, Exponent, ExponentLoBit);
5170 
5171   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5172 
5173   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5174   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5175 
5176   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5177 
5178   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5179                                           S1, Exponent, ZeroSrcTy);
5180 
5181   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5182   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5183 
5184   MI.eraseFromParent();
5185   return Legalized;
5186 }
5187 
5188 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5189 LegalizerHelper::LegalizeResult
5190 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5191   Register Dst = MI.getOperand(0).getReg();
5192   Register Src = MI.getOperand(1).getReg();
5193 
5194   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5195     return UnableToLegalize;
5196 
5197   const unsigned ExpMask = 0x7ff;
5198   const unsigned ExpBiasf64 = 1023;
5199   const unsigned ExpBiasf16 = 15;
5200   const LLT S32 = LLT::scalar(32);
5201   const LLT S1 = LLT::scalar(1);
5202 
5203   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5204   Register U = Unmerge.getReg(0);
5205   Register UH = Unmerge.getReg(1);
5206 
5207   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5208   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5209 
5210   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5211   // add the f16 bias (15) to get the biased exponent for the f16 format.
5212   E = MIRBuilder.buildAdd(
5213     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5214 
5215   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5216   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5217 
5218   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5219                                        MIRBuilder.buildConstant(S32, 0x1ff));
5220   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5221 
5222   auto Zero = MIRBuilder.buildConstant(S32, 0);
5223   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5224   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5225   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5226 
5227   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5228   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5229   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5230   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5231 
5232   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5233   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5234 
5235   // N = M | (E << 12);
5236   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5237   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5238 
5239   // B = clamp(1-E, 0, 13);
5240   auto One = MIRBuilder.buildConstant(S32, 1);
5241   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5242   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5243   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5244 
5245   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5246                                        MIRBuilder.buildConstant(S32, 0x1000));
5247 
5248   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5249   auto D0 = MIRBuilder.buildShl(S32, D, B);
5250 
5251   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5252                                              D0, SigSetHigh);
5253   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5254   D = MIRBuilder.buildOr(S32, D, D1);
5255 
5256   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5257   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5258 
5259   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5260   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5261 
5262   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5263                                        MIRBuilder.buildConstant(S32, 3));
5264   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5265 
5266   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5267                                        MIRBuilder.buildConstant(S32, 5));
5268   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5269 
5270   V1 = MIRBuilder.buildOr(S32, V0, V1);
5271   V = MIRBuilder.buildAdd(S32, V, V1);
5272 
5273   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5274                                        E, MIRBuilder.buildConstant(S32, 30));
5275   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5276                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5277 
5278   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5279                                          E, MIRBuilder.buildConstant(S32, 1039));
5280   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5281 
5282   // Extract the sign bit.
5283   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5284   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5285 
5286   // Insert the sign bit
5287   V = MIRBuilder.buildOr(S32, Sign, V);
5288 
5289   MIRBuilder.buildTrunc(Dst, V);
5290   MI.eraseFromParent();
5291   return Legalized;
5292 }
5293 
5294 LegalizerHelper::LegalizeResult
5295 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5296   Register Dst = MI.getOperand(0).getReg();
5297   Register Src = MI.getOperand(1).getReg();
5298 
5299   LLT DstTy = MRI.getType(Dst);
5300   LLT SrcTy = MRI.getType(Src);
5301   const LLT S64 = LLT::scalar(64);
5302   const LLT S16 = LLT::scalar(16);
5303 
5304   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5305     return lowerFPTRUNC_F64_TO_F16(MI);
5306 
5307   return UnableToLegalize;
5308 }
5309 
5310 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5311 // multiplication tree.
5312 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5313   Register Dst = MI.getOperand(0).getReg();
5314   Register Src0 = MI.getOperand(1).getReg();
5315   Register Src1 = MI.getOperand(2).getReg();
5316   LLT Ty = MRI.getType(Dst);
5317 
5318   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5319   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5320   MI.eraseFromParent();
5321   return Legalized;
5322 }
5323 
5324 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5325   switch (Opc) {
5326   case TargetOpcode::G_SMIN:
5327     return CmpInst::ICMP_SLT;
5328   case TargetOpcode::G_SMAX:
5329     return CmpInst::ICMP_SGT;
5330   case TargetOpcode::G_UMIN:
5331     return CmpInst::ICMP_ULT;
5332   case TargetOpcode::G_UMAX:
5333     return CmpInst::ICMP_UGT;
5334   default:
5335     llvm_unreachable("not in integer min/max");
5336   }
5337 }
5338 
5339 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5340   Register Dst = MI.getOperand(0).getReg();
5341   Register Src0 = MI.getOperand(1).getReg();
5342   Register Src1 = MI.getOperand(2).getReg();
5343 
5344   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5345   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5346 
5347   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5348   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5349 
5350   MI.eraseFromParent();
5351   return Legalized;
5352 }
5353 
5354 LegalizerHelper::LegalizeResult
5355 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5356   Register Dst = MI.getOperand(0).getReg();
5357   Register Src0 = MI.getOperand(1).getReg();
5358   Register Src1 = MI.getOperand(2).getReg();
5359 
5360   const LLT Src0Ty = MRI.getType(Src0);
5361   const LLT Src1Ty = MRI.getType(Src1);
5362 
5363   const int Src0Size = Src0Ty.getScalarSizeInBits();
5364   const int Src1Size = Src1Ty.getScalarSizeInBits();
5365 
5366   auto SignBitMask = MIRBuilder.buildConstant(
5367     Src0Ty, APInt::getSignMask(Src0Size));
5368 
5369   auto NotSignBitMask = MIRBuilder.buildConstant(
5370     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5371 
5372   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5373   MachineInstr *Or;
5374 
5375   if (Src0Ty == Src1Ty) {
5376     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5377     Or = MIRBuilder.buildOr(Dst, And0, And1);
5378   } else if (Src0Size > Src1Size) {
5379     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5380     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5381     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5382     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5383     Or = MIRBuilder.buildOr(Dst, And0, And1);
5384   } else {
5385     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5386     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5387     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5388     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5389     Or = MIRBuilder.buildOr(Dst, And0, And1);
5390   }
5391 
5392   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5393   // constants are a nan and -0.0, but the final result should preserve
5394   // everything.
5395   if (unsigned Flags = MI.getFlags())
5396     Or->setFlags(Flags);
5397 
5398   MI.eraseFromParent();
5399   return Legalized;
5400 }
5401 
5402 LegalizerHelper::LegalizeResult
5403 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5404   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5405     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5406 
5407   Register Dst = MI.getOperand(0).getReg();
5408   Register Src0 = MI.getOperand(1).getReg();
5409   Register Src1 = MI.getOperand(2).getReg();
5410   LLT Ty = MRI.getType(Dst);
5411 
5412   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5413     // Insert canonicalizes if it's possible we need to quiet to get correct
5414     // sNaN behavior.
5415 
5416     // Note this must be done here, and not as an optimization combine in the
5417     // absence of a dedicate quiet-snan instruction as we're using an
5418     // omni-purpose G_FCANONICALIZE.
5419     if (!isKnownNeverSNaN(Src0, MRI))
5420       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5421 
5422     if (!isKnownNeverSNaN(Src1, MRI))
5423       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5424   }
5425 
5426   // If there are no nans, it's safe to simply replace this with the non-IEEE
5427   // version.
5428   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5429   MI.eraseFromParent();
5430   return Legalized;
5431 }
5432 
5433 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5434   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5435   Register DstReg = MI.getOperand(0).getReg();
5436   LLT Ty = MRI.getType(DstReg);
5437   unsigned Flags = MI.getFlags();
5438 
5439   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5440                                   Flags);
5441   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5442   MI.eraseFromParent();
5443   return Legalized;
5444 }
5445 
5446 LegalizerHelper::LegalizeResult
5447 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5448   Register DstReg = MI.getOperand(0).getReg();
5449   Register X = MI.getOperand(1).getReg();
5450   const unsigned Flags = MI.getFlags();
5451   const LLT Ty = MRI.getType(DstReg);
5452   const LLT CondTy = Ty.changeElementSize(1);
5453 
5454   // round(x) =>
5455   //  t = trunc(x);
5456   //  d = fabs(x - t);
5457   //  o = copysign(1.0f, x);
5458   //  return t + (d >= 0.5 ? o : 0.0);
5459 
5460   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5461 
5462   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5463   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5464   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5465   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5466   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5467   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5468 
5469   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5470                                   Flags);
5471   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5472 
5473   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5474 
5475   MI.eraseFromParent();
5476   return Legalized;
5477 }
5478 
5479 LegalizerHelper::LegalizeResult
5480 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5481   Register DstReg = MI.getOperand(0).getReg();
5482   Register SrcReg = MI.getOperand(1).getReg();
5483   unsigned Flags = MI.getFlags();
5484   LLT Ty = MRI.getType(DstReg);
5485   const LLT CondTy = Ty.changeElementSize(1);
5486 
5487   // result = trunc(src);
5488   // if (src < 0.0 && src != result)
5489   //   result += -1.0.
5490 
5491   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5492   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5493 
5494   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5495                                   SrcReg, Zero, Flags);
5496   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5497                                       SrcReg, Trunc, Flags);
5498   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5499   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5500 
5501   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5502   MI.eraseFromParent();
5503   return Legalized;
5504 }
5505 
5506 LegalizerHelper::LegalizeResult
5507 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5508   const unsigned NumOps = MI.getNumOperands();
5509   Register DstReg = MI.getOperand(0).getReg();
5510   Register Src0Reg = MI.getOperand(1).getReg();
5511   LLT DstTy = MRI.getType(DstReg);
5512   LLT SrcTy = MRI.getType(Src0Reg);
5513   unsigned PartSize = SrcTy.getSizeInBits();
5514 
5515   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5516   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5517 
5518   for (unsigned I = 2; I != NumOps; ++I) {
5519     const unsigned Offset = (I - 1) * PartSize;
5520 
5521     Register SrcReg = MI.getOperand(I).getReg();
5522     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5523 
5524     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5525       MRI.createGenericVirtualRegister(WideTy);
5526 
5527     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5528     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5529     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5530     ResultReg = NextResult;
5531   }
5532 
5533   if (DstTy.isPointer()) {
5534     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5535           DstTy.getAddressSpace())) {
5536       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5537       return UnableToLegalize;
5538     }
5539 
5540     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5541   }
5542 
5543   MI.eraseFromParent();
5544   return Legalized;
5545 }
5546 
5547 LegalizerHelper::LegalizeResult
5548 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5549   const unsigned NumDst = MI.getNumOperands() - 1;
5550   Register SrcReg = MI.getOperand(NumDst).getReg();
5551   Register Dst0Reg = MI.getOperand(0).getReg();
5552   LLT DstTy = MRI.getType(Dst0Reg);
5553   if (DstTy.isPointer())
5554     return UnableToLegalize; // TODO
5555 
5556   SrcReg = coerceToScalar(SrcReg);
5557   if (!SrcReg)
5558     return UnableToLegalize;
5559 
5560   // Expand scalarizing unmerge as bitcast to integer and shift.
5561   LLT IntTy = MRI.getType(SrcReg);
5562 
5563   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5564 
5565   const unsigned DstSize = DstTy.getSizeInBits();
5566   unsigned Offset = DstSize;
5567   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5568     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5569     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5570     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5571   }
5572 
5573   MI.eraseFromParent();
5574   return Legalized;
5575 }
5576 
5577 /// Lower a vector extract or insert by writing the vector to a stack temporary
5578 /// and reloading the element or vector.
5579 ///
5580 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5581 ///  =>
5582 ///  %stack_temp = G_FRAME_INDEX
5583 ///  G_STORE %vec, %stack_temp
5584 ///  %idx = clamp(%idx, %vec.getNumElements())
5585 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5586 ///  %dst = G_LOAD %element_ptr
5587 LegalizerHelper::LegalizeResult
5588 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5589   Register DstReg = MI.getOperand(0).getReg();
5590   Register SrcVec = MI.getOperand(1).getReg();
5591   Register InsertVal;
5592   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5593     InsertVal = MI.getOperand(2).getReg();
5594 
5595   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5596 
5597   LLT VecTy = MRI.getType(SrcVec);
5598   LLT EltTy = VecTy.getElementType();
5599   if (!EltTy.isByteSized()) { // Not implemented.
5600     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5601     return UnableToLegalize;
5602   }
5603 
5604   unsigned EltBytes = EltTy.getSizeInBytes();
5605   Align VecAlign = getStackTemporaryAlignment(VecTy);
5606   Align EltAlign;
5607 
5608   MachinePointerInfo PtrInfo;
5609   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5610                                         VecAlign, PtrInfo);
5611   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5612 
5613   // Get the pointer to the element, and be sure not to hit undefined behavior
5614   // if the index is out of bounds.
5615   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5616 
5617   int64_t IdxVal;
5618   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5619     int64_t Offset = IdxVal * EltBytes;
5620     PtrInfo = PtrInfo.getWithOffset(Offset);
5621     EltAlign = commonAlignment(VecAlign, Offset);
5622   } else {
5623     // We lose information with a variable offset.
5624     EltAlign = getStackTemporaryAlignment(EltTy);
5625     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5626   }
5627 
5628   if (InsertVal) {
5629     // Write the inserted element
5630     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5631 
5632     // Reload the whole vector.
5633     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5634   } else {
5635     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5636   }
5637 
5638   MI.eraseFromParent();
5639   return Legalized;
5640 }
5641 
5642 LegalizerHelper::LegalizeResult
5643 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5644   Register DstReg = MI.getOperand(0).getReg();
5645   Register Src0Reg = MI.getOperand(1).getReg();
5646   Register Src1Reg = MI.getOperand(2).getReg();
5647   LLT Src0Ty = MRI.getType(Src0Reg);
5648   LLT DstTy = MRI.getType(DstReg);
5649   LLT IdxTy = LLT::scalar(32);
5650 
5651   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5652 
5653   if (DstTy.isScalar()) {
5654     if (Src0Ty.isVector())
5655       return UnableToLegalize;
5656 
5657     // This is just a SELECT.
5658     assert(Mask.size() == 1 && "Expected a single mask element");
5659     Register Val;
5660     if (Mask[0] < 0 || Mask[0] > 1)
5661       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5662     else
5663       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5664     MIRBuilder.buildCopy(DstReg, Val);
5665     MI.eraseFromParent();
5666     return Legalized;
5667   }
5668 
5669   Register Undef;
5670   SmallVector<Register, 32> BuildVec;
5671   LLT EltTy = DstTy.getElementType();
5672 
5673   for (int Idx : Mask) {
5674     if (Idx < 0) {
5675       if (!Undef.isValid())
5676         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5677       BuildVec.push_back(Undef);
5678       continue;
5679     }
5680 
5681     if (Src0Ty.isScalar()) {
5682       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5683     } else {
5684       int NumElts = Src0Ty.getNumElements();
5685       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5686       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5687       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5688       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5689       BuildVec.push_back(Extract.getReg(0));
5690     }
5691   }
5692 
5693   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5694   MI.eraseFromParent();
5695   return Legalized;
5696 }
5697 
5698 LegalizerHelper::LegalizeResult
5699 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5700   const auto &MF = *MI.getMF();
5701   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5702   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5703     return UnableToLegalize;
5704 
5705   Register Dst = MI.getOperand(0).getReg();
5706   Register AllocSize = MI.getOperand(1).getReg();
5707   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5708 
5709   LLT PtrTy = MRI.getType(Dst);
5710   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5711 
5712   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5713   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5714   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5715 
5716   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5717   // have to generate an extra instruction to negate the alloc and then use
5718   // G_PTR_ADD to add the negative offset.
5719   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5720   if (Alignment > Align(1)) {
5721     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5722     AlignMask.negate();
5723     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5724     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5725   }
5726 
5727   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5728   MIRBuilder.buildCopy(SPReg, SPTmp);
5729   MIRBuilder.buildCopy(Dst, SPTmp);
5730 
5731   MI.eraseFromParent();
5732   return Legalized;
5733 }
5734 
5735 LegalizerHelper::LegalizeResult
5736 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5737   Register Dst = MI.getOperand(0).getReg();
5738   Register Src = MI.getOperand(1).getReg();
5739   unsigned Offset = MI.getOperand(2).getImm();
5740 
5741   LLT DstTy = MRI.getType(Dst);
5742   LLT SrcTy = MRI.getType(Src);
5743 
5744   if (DstTy.isScalar() &&
5745       (SrcTy.isScalar() ||
5746        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5747     LLT SrcIntTy = SrcTy;
5748     if (!SrcTy.isScalar()) {
5749       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5750       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5751     }
5752 
5753     if (Offset == 0)
5754       MIRBuilder.buildTrunc(Dst, Src);
5755     else {
5756       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5757       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5758       MIRBuilder.buildTrunc(Dst, Shr);
5759     }
5760 
5761     MI.eraseFromParent();
5762     return Legalized;
5763   }
5764 
5765   return UnableToLegalize;
5766 }
5767 
5768 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5769   Register Dst = MI.getOperand(0).getReg();
5770   Register Src = MI.getOperand(1).getReg();
5771   Register InsertSrc = MI.getOperand(2).getReg();
5772   uint64_t Offset = MI.getOperand(3).getImm();
5773 
5774   LLT DstTy = MRI.getType(Src);
5775   LLT InsertTy = MRI.getType(InsertSrc);
5776 
5777   if (InsertTy.isVector() ||
5778       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5779     return UnableToLegalize;
5780 
5781   const DataLayout &DL = MIRBuilder.getDataLayout();
5782   if ((DstTy.isPointer() &&
5783        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5784       (InsertTy.isPointer() &&
5785        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5786     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5787     return UnableToLegalize;
5788   }
5789 
5790   LLT IntDstTy = DstTy;
5791 
5792   if (!DstTy.isScalar()) {
5793     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5794     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5795   }
5796 
5797   if (!InsertTy.isScalar()) {
5798     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5799     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5800   }
5801 
5802   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5803   if (Offset != 0) {
5804     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5805     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5806   }
5807 
5808   APInt MaskVal = APInt::getBitsSetWithWrap(
5809       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5810 
5811   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5812   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5813   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5814 
5815   MIRBuilder.buildCast(Dst, Or);
5816   MI.eraseFromParent();
5817   return Legalized;
5818 }
5819 
5820 LegalizerHelper::LegalizeResult
5821 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5822   Register Dst0 = MI.getOperand(0).getReg();
5823   Register Dst1 = MI.getOperand(1).getReg();
5824   Register LHS = MI.getOperand(2).getReg();
5825   Register RHS = MI.getOperand(3).getReg();
5826   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5827 
5828   LLT Ty = MRI.getType(Dst0);
5829   LLT BoolTy = MRI.getType(Dst1);
5830 
5831   if (IsAdd)
5832     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5833   else
5834     MIRBuilder.buildSub(Dst0, LHS, RHS);
5835 
5836   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5837 
5838   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5839 
5840   // For an addition, the result should be less than one of the operands (LHS)
5841   // if and only if the other operand (RHS) is negative, otherwise there will
5842   // be overflow.
5843   // For a subtraction, the result should be less than one of the operands
5844   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5845   // otherwise there will be overflow.
5846   auto ResultLowerThanLHS =
5847       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5848   auto ConditionRHS = MIRBuilder.buildICmp(
5849       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5850 
5851   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5852   MI.eraseFromParent();
5853   return Legalized;
5854 }
5855 
5856 LegalizerHelper::LegalizeResult
5857 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5858   Register Res = MI.getOperand(0).getReg();
5859   Register LHS = MI.getOperand(1).getReg();
5860   Register RHS = MI.getOperand(2).getReg();
5861   LLT Ty = MRI.getType(Res);
5862   bool IsSigned;
5863   bool IsAdd;
5864   unsigned BaseOp;
5865   switch (MI.getOpcode()) {
5866   default:
5867     llvm_unreachable("unexpected addsat/subsat opcode");
5868   case TargetOpcode::G_UADDSAT:
5869     IsSigned = false;
5870     IsAdd = true;
5871     BaseOp = TargetOpcode::G_ADD;
5872     break;
5873   case TargetOpcode::G_SADDSAT:
5874     IsSigned = true;
5875     IsAdd = true;
5876     BaseOp = TargetOpcode::G_ADD;
5877     break;
5878   case TargetOpcode::G_USUBSAT:
5879     IsSigned = false;
5880     IsAdd = false;
5881     BaseOp = TargetOpcode::G_SUB;
5882     break;
5883   case TargetOpcode::G_SSUBSAT:
5884     IsSigned = true;
5885     IsAdd = false;
5886     BaseOp = TargetOpcode::G_SUB;
5887     break;
5888   }
5889 
5890   if (IsSigned) {
5891     // sadd.sat(a, b) ->
5892     //   hi = 0x7fffffff - smax(a, 0)
5893     //   lo = 0x80000000 - smin(a, 0)
5894     //   a + smin(smax(lo, b), hi)
5895     // ssub.sat(a, b) ->
5896     //   lo = smax(a, -1) - 0x7fffffff
5897     //   hi = smin(a, -1) - 0x80000000
5898     //   a - smin(smax(lo, b), hi)
5899     // TODO: AMDGPU can use a "median of 3" instruction here:
5900     //   a +/- med3(lo, b, hi)
5901     uint64_t NumBits = Ty.getScalarSizeInBits();
5902     auto MaxVal =
5903         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5904     auto MinVal =
5905         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5906     MachineInstrBuilder Hi, Lo;
5907     if (IsAdd) {
5908       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5909       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5910       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5911     } else {
5912       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5913       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5914                                MaxVal);
5915       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5916                                MinVal);
5917     }
5918     auto RHSClamped =
5919         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5920     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5921   } else {
5922     // uadd.sat(a, b) -> a + umin(~a, b)
5923     // usub.sat(a, b) -> a - umin(a, b)
5924     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5925     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5926     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5927   }
5928 
5929   MI.eraseFromParent();
5930   return Legalized;
5931 }
5932 
5933 LegalizerHelper::LegalizeResult
5934 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5935   Register Res = MI.getOperand(0).getReg();
5936   Register LHS = MI.getOperand(1).getReg();
5937   Register RHS = MI.getOperand(2).getReg();
5938   LLT Ty = MRI.getType(Res);
5939   LLT BoolTy = Ty.changeElementSize(1);
5940   bool IsSigned;
5941   bool IsAdd;
5942   unsigned OverflowOp;
5943   switch (MI.getOpcode()) {
5944   default:
5945     llvm_unreachable("unexpected addsat/subsat opcode");
5946   case TargetOpcode::G_UADDSAT:
5947     IsSigned = false;
5948     IsAdd = true;
5949     OverflowOp = TargetOpcode::G_UADDO;
5950     break;
5951   case TargetOpcode::G_SADDSAT:
5952     IsSigned = true;
5953     IsAdd = true;
5954     OverflowOp = TargetOpcode::G_SADDO;
5955     break;
5956   case TargetOpcode::G_USUBSAT:
5957     IsSigned = false;
5958     IsAdd = false;
5959     OverflowOp = TargetOpcode::G_USUBO;
5960     break;
5961   case TargetOpcode::G_SSUBSAT:
5962     IsSigned = true;
5963     IsAdd = false;
5964     OverflowOp = TargetOpcode::G_SSUBO;
5965     break;
5966   }
5967 
5968   auto OverflowRes =
5969       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5970   Register Tmp = OverflowRes.getReg(0);
5971   Register Ov = OverflowRes.getReg(1);
5972   MachineInstrBuilder Clamp;
5973   if (IsSigned) {
5974     // sadd.sat(a, b) ->
5975     //   {tmp, ov} = saddo(a, b)
5976     //   ov ? (tmp >>s 31) + 0x80000000 : r
5977     // ssub.sat(a, b) ->
5978     //   {tmp, ov} = ssubo(a, b)
5979     //   ov ? (tmp >>s 31) + 0x80000000 : r
5980     uint64_t NumBits = Ty.getScalarSizeInBits();
5981     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5982     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5983     auto MinVal =
5984         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5985     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5986   } else {
5987     // uadd.sat(a, b) ->
5988     //   {tmp, ov} = uaddo(a, b)
5989     //   ov ? 0xffffffff : tmp
5990     // usub.sat(a, b) ->
5991     //   {tmp, ov} = usubo(a, b)
5992     //   ov ? 0 : tmp
5993     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
5994   }
5995   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
5996 
5997   MI.eraseFromParent();
5998   return Legalized;
5999 }
6000 
6001 LegalizerHelper::LegalizeResult
6002 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6003   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6004           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6005          "Expected shlsat opcode!");
6006   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6007   Register Res = MI.getOperand(0).getReg();
6008   Register LHS = MI.getOperand(1).getReg();
6009   Register RHS = MI.getOperand(2).getReg();
6010   LLT Ty = MRI.getType(Res);
6011   LLT BoolTy = Ty.changeElementSize(1);
6012 
6013   unsigned BW = Ty.getScalarSizeInBits();
6014   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6015   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6016                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6017 
6018   MachineInstrBuilder SatVal;
6019   if (IsSigned) {
6020     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6021     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6022     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6023                                     MIRBuilder.buildConstant(Ty, 0));
6024     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6025   } else {
6026     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6027   }
6028   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6029   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6030 
6031   MI.eraseFromParent();
6032   return Legalized;
6033 }
6034 
6035 LegalizerHelper::LegalizeResult
6036 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6037   Register Dst = MI.getOperand(0).getReg();
6038   Register Src = MI.getOperand(1).getReg();
6039   const LLT Ty = MRI.getType(Src);
6040   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6041   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6042 
6043   // Swap most and least significant byte, set remaining bytes in Res to zero.
6044   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6045   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6046   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6047   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6048 
6049   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6050   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6051     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6052     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6053     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6054     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6055     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6056     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6057     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6058     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6059     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6060     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6061     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6062     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6063   }
6064   Res.getInstr()->getOperand(0).setReg(Dst);
6065 
6066   MI.eraseFromParent();
6067   return Legalized;
6068 }
6069 
6070 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6071 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6072                                  MachineInstrBuilder Src, APInt Mask) {
6073   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6074   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6075   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6076   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6077   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6078   return B.buildOr(Dst, LHS, RHS);
6079 }
6080 
6081 LegalizerHelper::LegalizeResult
6082 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6083   Register Dst = MI.getOperand(0).getReg();
6084   Register Src = MI.getOperand(1).getReg();
6085   const LLT Ty = MRI.getType(Src);
6086   unsigned Size = Ty.getSizeInBits();
6087 
6088   MachineInstrBuilder BSWAP =
6089       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6090 
6091   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6092   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6093   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6094   MachineInstrBuilder Swap4 =
6095       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6096 
6097   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6098   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6099   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6100   MachineInstrBuilder Swap2 =
6101       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6102 
6103   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6104   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6105   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6106   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6107 
6108   MI.eraseFromParent();
6109   return Legalized;
6110 }
6111 
6112 LegalizerHelper::LegalizeResult
6113 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6114   MachineFunction &MF = MIRBuilder.getMF();
6115 
6116   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6117   int NameOpIdx = IsRead ? 1 : 0;
6118   int ValRegIndex = IsRead ? 0 : 1;
6119 
6120   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6121   const LLT Ty = MRI.getType(ValReg);
6122   const MDString *RegStr = cast<MDString>(
6123     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6124 
6125   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6126   if (!PhysReg.isValid())
6127     return UnableToLegalize;
6128 
6129   if (IsRead)
6130     MIRBuilder.buildCopy(ValReg, PhysReg);
6131   else
6132     MIRBuilder.buildCopy(PhysReg, ValReg);
6133 
6134   MI.eraseFromParent();
6135   return Legalized;
6136 }
6137