1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file implements the LegalizerHelper class to legalize 11 /// individual instructions and the LegalizeMachineIR wrapper pass for the 12 /// primary legalization. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 17 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 18 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 34 GISelChangeObserver &Observer) 35 : MRI(MF.getRegInfo()), LI(*MF.getSubtarget().getLegalizerInfo()), 36 Observer(Observer) { 37 MIRBuilder.setMF(MF); 38 MIRBuilder.setChangeObserver(Observer); 39 } 40 41 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 42 GISelChangeObserver &Observer) 43 : MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 44 MIRBuilder.setMF(MF); 45 MIRBuilder.setChangeObserver(Observer); 46 } 47 LegalizerHelper::LegalizeResult 48 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 49 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 50 51 auto Step = LI.getAction(MI, MRI); 52 switch (Step.Action) { 53 case Legal: 54 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 55 return AlreadyLegal; 56 case Libcall: 57 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 58 return libcall(MI); 59 case NarrowScalar: 60 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 61 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 62 case WidenScalar: 63 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 64 return widenScalar(MI, Step.TypeIdx, Step.NewType); 65 case Lower: 66 LLVM_DEBUG(dbgs() << ".. Lower\n"); 67 return lower(MI, Step.TypeIdx, Step.NewType); 68 case FewerElements: 69 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 70 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 71 case Custom: 72 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 73 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 74 : UnableToLegalize; 75 default: 76 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 77 return UnableToLegalize; 78 } 79 } 80 81 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 82 SmallVectorImpl<unsigned> &VRegs) { 83 for (int i = 0; i < NumParts; ++i) 84 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 85 MIRBuilder.buildUnmerge(VRegs, Reg); 86 } 87 88 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 89 switch (Opcode) { 90 case TargetOpcode::G_SDIV: 91 assert((Size == 32 || Size == 64) && "Unsupported size"); 92 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 93 case TargetOpcode::G_UDIV: 94 assert((Size == 32 || Size == 64) && "Unsupported size"); 95 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 96 case TargetOpcode::G_SREM: 97 assert((Size == 32 || Size == 64) && "Unsupported size"); 98 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 99 case TargetOpcode::G_UREM: 100 assert((Size == 32 || Size == 64) && "Unsupported size"); 101 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 102 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 103 assert(Size == 32 && "Unsupported size"); 104 return RTLIB::CTLZ_I32; 105 case TargetOpcode::G_FADD: 106 assert((Size == 32 || Size == 64) && "Unsupported size"); 107 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 108 case TargetOpcode::G_FSUB: 109 assert((Size == 32 || Size == 64) && "Unsupported size"); 110 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 111 case TargetOpcode::G_FMUL: 112 assert((Size == 32 || Size == 64) && "Unsupported size"); 113 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 114 case TargetOpcode::G_FDIV: 115 assert((Size == 32 || Size == 64) && "Unsupported size"); 116 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 117 case TargetOpcode::G_FREM: 118 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 119 case TargetOpcode::G_FPOW: 120 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 121 case TargetOpcode::G_FMA: 122 assert((Size == 32 || Size == 64) && "Unsupported size"); 123 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 124 } 125 llvm_unreachable("Unknown libcall function"); 126 } 127 128 LegalizerHelper::LegalizeResult 129 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 130 const CallLowering::ArgInfo &Result, 131 ArrayRef<CallLowering::ArgInfo> Args) { 132 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 133 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 134 const char *Name = TLI.getLibcallName(Libcall); 135 136 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 137 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 138 MachineOperand::CreateES(Name), Result, Args)) 139 return LegalizerHelper::UnableToLegalize; 140 141 return LegalizerHelper::Legalized; 142 } 143 144 // Useful for libcalls where all operands have the same type. 145 static LegalizerHelper::LegalizeResult 146 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 147 Type *OpType) { 148 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 149 150 SmallVector<CallLowering::ArgInfo, 3> Args; 151 for (unsigned i = 1; i < MI.getNumOperands(); i++) 152 Args.push_back({MI.getOperand(i).getReg(), OpType}); 153 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 154 Args); 155 } 156 157 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 158 Type *FromType) { 159 auto ToMVT = MVT::getVT(ToType); 160 auto FromMVT = MVT::getVT(FromType); 161 162 switch (Opcode) { 163 case TargetOpcode::G_FPEXT: 164 return RTLIB::getFPEXT(FromMVT, ToMVT); 165 case TargetOpcode::G_FPTRUNC: 166 return RTLIB::getFPROUND(FromMVT, ToMVT); 167 case TargetOpcode::G_FPTOSI: 168 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 169 case TargetOpcode::G_FPTOUI: 170 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 171 case TargetOpcode::G_SITOFP: 172 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 173 case TargetOpcode::G_UITOFP: 174 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 175 } 176 llvm_unreachable("Unsupported libcall function"); 177 } 178 179 static LegalizerHelper::LegalizeResult 180 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 181 Type *FromType) { 182 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 183 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 184 {{MI.getOperand(1).getReg(), FromType}}); 185 } 186 187 LegalizerHelper::LegalizeResult 188 LegalizerHelper::libcall(MachineInstr &MI) { 189 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 190 unsigned Size = LLTy.getSizeInBits(); 191 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 192 193 MIRBuilder.setInstr(MI); 194 195 switch (MI.getOpcode()) { 196 default: 197 return UnableToLegalize; 198 case TargetOpcode::G_SDIV: 199 case TargetOpcode::G_UDIV: 200 case TargetOpcode::G_SREM: 201 case TargetOpcode::G_UREM: 202 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 203 Type *HLTy = IntegerType::get(Ctx, Size); 204 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 205 if (Status != Legalized) 206 return Status; 207 break; 208 } 209 case TargetOpcode::G_FADD: 210 case TargetOpcode::G_FSUB: 211 case TargetOpcode::G_FMUL: 212 case TargetOpcode::G_FDIV: 213 case TargetOpcode::G_FMA: 214 case TargetOpcode::G_FPOW: 215 case TargetOpcode::G_FREM: { 216 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 217 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 218 if (Status != Legalized) 219 return Status; 220 break; 221 } 222 case TargetOpcode::G_FPEXT: { 223 // FIXME: Support other floating point types (half, fp128 etc) 224 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 225 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 226 if (ToSize != 64 || FromSize != 32) 227 return UnableToLegalize; 228 LegalizeResult Status = conversionLibcall( 229 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 230 if (Status != Legalized) 231 return Status; 232 break; 233 } 234 case TargetOpcode::G_FPTRUNC: { 235 // FIXME: Support other floating point types (half, fp128 etc) 236 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 237 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 238 if (ToSize != 32 || FromSize != 64) 239 return UnableToLegalize; 240 LegalizeResult Status = conversionLibcall( 241 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 242 if (Status != Legalized) 243 return Status; 244 break; 245 } 246 case TargetOpcode::G_FPTOSI: 247 case TargetOpcode::G_FPTOUI: { 248 // FIXME: Support other types 249 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 250 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 251 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 252 return UnableToLegalize; 253 LegalizeResult Status = conversionLibcall( 254 MI, MIRBuilder, Type::getInt32Ty(Ctx), 255 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 256 if (Status != Legalized) 257 return Status; 258 break; 259 } 260 case TargetOpcode::G_SITOFP: 261 case TargetOpcode::G_UITOFP: { 262 // FIXME: Support other types 263 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 264 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 265 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 266 return UnableToLegalize; 267 LegalizeResult Status = conversionLibcall( 268 MI, MIRBuilder, 269 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 270 Type::getInt32Ty(Ctx)); 271 if (Status != Legalized) 272 return Status; 273 break; 274 } 275 } 276 277 MI.eraseFromParent(); 278 return Legalized; 279 } 280 281 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 282 unsigned TypeIdx, 283 LLT NarrowTy) { 284 // FIXME: Don't know how to handle secondary types yet. 285 if (TypeIdx != 0 && MI.getOpcode() != TargetOpcode::G_EXTRACT) 286 return UnableToLegalize; 287 288 MIRBuilder.setInstr(MI); 289 290 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 291 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 292 293 switch (MI.getOpcode()) { 294 default: 295 return UnableToLegalize; 296 case TargetOpcode::G_IMPLICIT_DEF: { 297 // FIXME: add support for when SizeOp0 isn't an exact multiple of 298 // NarrowSize. 299 if (SizeOp0 % NarrowSize != 0) 300 return UnableToLegalize; 301 int NumParts = SizeOp0 / NarrowSize; 302 303 SmallVector<unsigned, 2> DstRegs; 304 for (int i = 0; i < NumParts; ++i) 305 DstRegs.push_back( 306 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 307 308 unsigned DstReg = MI.getOperand(0).getReg(); 309 if(MRI.getType(DstReg).isVector()) 310 MIRBuilder.buildBuildVector(DstReg, DstRegs); 311 else 312 MIRBuilder.buildMerge(DstReg, DstRegs); 313 MI.eraseFromParent(); 314 return Legalized; 315 } 316 case TargetOpcode::G_ADD: { 317 // FIXME: add support for when SizeOp0 isn't an exact multiple of 318 // NarrowSize. 319 if (SizeOp0 % NarrowSize != 0) 320 return UnableToLegalize; 321 // Expand in terms of carry-setting/consuming G_ADDE instructions. 322 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 323 324 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 325 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 326 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 327 328 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 329 MIRBuilder.buildConstant(CarryIn, 0); 330 331 for (int i = 0; i < NumParts; ++i) { 332 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 333 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 334 335 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 336 Src2Regs[i], CarryIn); 337 338 DstRegs.push_back(DstReg); 339 CarryIn = CarryOut; 340 } 341 unsigned DstReg = MI.getOperand(0).getReg(); 342 if(MRI.getType(DstReg).isVector()) 343 MIRBuilder.buildBuildVector(DstReg, DstRegs); 344 else 345 MIRBuilder.buildMerge(DstReg, DstRegs); 346 MI.eraseFromParent(); 347 return Legalized; 348 } 349 case TargetOpcode::G_EXTRACT: { 350 if (TypeIdx != 1) 351 return UnableToLegalize; 352 353 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 354 // FIXME: add support for when SizeOp1 isn't an exact multiple of 355 // NarrowSize. 356 if (SizeOp1 % NarrowSize != 0) 357 return UnableToLegalize; 358 int NumParts = SizeOp1 / NarrowSize; 359 360 SmallVector<unsigned, 2> SrcRegs, DstRegs; 361 SmallVector<uint64_t, 2> Indexes; 362 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 363 364 unsigned OpReg = MI.getOperand(0).getReg(); 365 uint64_t OpStart = MI.getOperand(2).getImm(); 366 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 367 for (int i = 0; i < NumParts; ++i) { 368 unsigned SrcStart = i * NarrowSize; 369 370 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 371 // No part of the extract uses this subregister, ignore it. 372 continue; 373 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 374 // The entire subregister is extracted, forward the value. 375 DstRegs.push_back(SrcRegs[i]); 376 continue; 377 } 378 379 // OpSegStart is where this destination segment would start in OpReg if it 380 // extended infinitely in both directions. 381 int64_t ExtractOffset; 382 uint64_t SegSize; 383 if (OpStart < SrcStart) { 384 ExtractOffset = 0; 385 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 386 } else { 387 ExtractOffset = OpStart - SrcStart; 388 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 389 } 390 391 unsigned SegReg = SrcRegs[i]; 392 if (ExtractOffset != 0 || SegSize != NarrowSize) { 393 // A genuine extract is needed. 394 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 395 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 396 } 397 398 DstRegs.push_back(SegReg); 399 } 400 401 unsigned DstReg = MI.getOperand(0).getReg(); 402 if(MRI.getType(DstReg).isVector()) 403 MIRBuilder.buildBuildVector(DstReg, DstRegs); 404 else 405 MIRBuilder.buildMerge(DstReg, DstRegs); 406 MI.eraseFromParent(); 407 return Legalized; 408 } 409 case TargetOpcode::G_INSERT: { 410 // FIXME: add support for when SizeOp0 isn't an exact multiple of 411 // NarrowSize. 412 if (SizeOp0 % NarrowSize != 0) 413 return UnableToLegalize; 414 415 int NumParts = SizeOp0 / NarrowSize; 416 417 SmallVector<unsigned, 2> SrcRegs, DstRegs; 418 SmallVector<uint64_t, 2> Indexes; 419 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 420 421 unsigned OpReg = MI.getOperand(2).getReg(); 422 uint64_t OpStart = MI.getOperand(3).getImm(); 423 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 424 for (int i = 0; i < NumParts; ++i) { 425 unsigned DstStart = i * NarrowSize; 426 427 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 428 // No part of the insert affects this subregister, forward the original. 429 DstRegs.push_back(SrcRegs[i]); 430 continue; 431 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 432 // The entire subregister is defined by this insert, forward the new 433 // value. 434 DstRegs.push_back(OpReg); 435 continue; 436 } 437 438 // OpSegStart is where this destination segment would start in OpReg if it 439 // extended infinitely in both directions. 440 int64_t ExtractOffset, InsertOffset; 441 uint64_t SegSize; 442 if (OpStart < DstStart) { 443 InsertOffset = 0; 444 ExtractOffset = DstStart - OpStart; 445 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 446 } else { 447 InsertOffset = OpStart - DstStart; 448 ExtractOffset = 0; 449 SegSize = 450 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 451 } 452 453 unsigned SegReg = OpReg; 454 if (ExtractOffset != 0 || SegSize != OpSize) { 455 // A genuine extract is needed. 456 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 457 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 458 } 459 460 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 461 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 462 DstRegs.push_back(DstReg); 463 } 464 465 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 466 unsigned DstReg = MI.getOperand(0).getReg(); 467 if(MRI.getType(DstReg).isVector()) 468 MIRBuilder.buildBuildVector(DstReg, DstRegs); 469 else 470 MIRBuilder.buildMerge(DstReg, DstRegs); 471 MI.eraseFromParent(); 472 return Legalized; 473 } 474 case TargetOpcode::G_LOAD: { 475 // FIXME: add support for when SizeOp0 isn't an exact multiple of 476 // NarrowSize. 477 if (SizeOp0 % NarrowSize != 0) 478 return UnableToLegalize; 479 480 const auto &MMO = **MI.memoperands_begin(); 481 // This implementation doesn't work for atomics. Give up instead of doing 482 // something invalid. 483 if (MMO.getOrdering() != AtomicOrdering::NotAtomic || 484 MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) 485 return UnableToLegalize; 486 487 int NumParts = SizeOp0 / NarrowSize; 488 LLT OffsetTy = LLT::scalar( 489 MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); 490 491 SmallVector<unsigned, 2> DstRegs; 492 for (int i = 0; i < NumParts; ++i) { 493 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 494 unsigned SrcReg = 0; 495 unsigned Adjustment = i * NarrowSize / 8; 496 unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); 497 498 MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( 499 MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), 500 NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), 501 MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); 502 503 MIRBuilder.materializeGEP(SrcReg, MI.getOperand(1).getReg(), OffsetTy, 504 Adjustment); 505 506 MIRBuilder.buildLoad(DstReg, SrcReg, *SplitMMO); 507 508 DstRegs.push_back(DstReg); 509 } 510 unsigned DstReg = MI.getOperand(0).getReg(); 511 if(MRI.getType(DstReg).isVector()) 512 MIRBuilder.buildBuildVector(DstReg, DstRegs); 513 else 514 MIRBuilder.buildMerge(DstReg, DstRegs); 515 MI.eraseFromParent(); 516 return Legalized; 517 } 518 case TargetOpcode::G_STORE: { 519 // FIXME: add support for when SizeOp0 isn't an exact multiple of 520 // NarrowSize. 521 if (SizeOp0 % NarrowSize != 0) 522 return UnableToLegalize; 523 524 const auto &MMO = **MI.memoperands_begin(); 525 // This implementation doesn't work for atomics. Give up instead of doing 526 // something invalid. 527 if (MMO.getOrdering() != AtomicOrdering::NotAtomic || 528 MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) 529 return UnableToLegalize; 530 531 int NumParts = SizeOp0 / NarrowSize; 532 LLT OffsetTy = LLT::scalar( 533 MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); 534 535 SmallVector<unsigned, 2> SrcRegs; 536 extractParts(MI.getOperand(0).getReg(), NarrowTy, NumParts, SrcRegs); 537 538 for (int i = 0; i < NumParts; ++i) { 539 unsigned DstReg = 0; 540 unsigned Adjustment = i * NarrowSize / 8; 541 unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); 542 543 MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( 544 MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), 545 NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), 546 MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); 547 548 MIRBuilder.materializeGEP(DstReg, MI.getOperand(1).getReg(), OffsetTy, 549 Adjustment); 550 551 MIRBuilder.buildStore(SrcRegs[i], DstReg, *SplitMMO); 552 } 553 MI.eraseFromParent(); 554 return Legalized; 555 } 556 case TargetOpcode::G_CONSTANT: { 557 // FIXME: add support for when SizeOp0 isn't an exact multiple of 558 // NarrowSize. 559 if (SizeOp0 % NarrowSize != 0) 560 return UnableToLegalize; 561 int NumParts = SizeOp0 / NarrowSize; 562 const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); 563 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 564 565 SmallVector<unsigned, 2> DstRegs; 566 for (int i = 0; i < NumParts; ++i) { 567 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 568 ConstantInt *CI = 569 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); 570 MIRBuilder.buildConstant(DstReg, *CI); 571 DstRegs.push_back(DstReg); 572 } 573 unsigned DstReg = MI.getOperand(0).getReg(); 574 if(MRI.getType(DstReg).isVector()) 575 MIRBuilder.buildBuildVector(DstReg, DstRegs); 576 else 577 MIRBuilder.buildMerge(DstReg, DstRegs); 578 MI.eraseFromParent(); 579 return Legalized; 580 } 581 case TargetOpcode::G_AND: 582 case TargetOpcode::G_OR: 583 case TargetOpcode::G_XOR: { 584 // Legalize bitwise operation: 585 // A = BinOp<Ty> B, C 586 // into: 587 // B1, ..., BN = G_UNMERGE_VALUES B 588 // C1, ..., CN = G_UNMERGE_VALUES C 589 // A1 = BinOp<Ty/N> B1, C2 590 // ... 591 // AN = BinOp<Ty/N> BN, CN 592 // A = G_MERGE_VALUES A1, ..., AN 593 594 // FIXME: add support for when SizeOp0 isn't an exact multiple of 595 // NarrowSize. 596 if (SizeOp0 % NarrowSize != 0) 597 return UnableToLegalize; 598 int NumParts = SizeOp0 / NarrowSize; 599 600 // List the registers where the destination will be scattered. 601 SmallVector<unsigned, 2> DstRegs; 602 // List the registers where the first argument will be split. 603 SmallVector<unsigned, 2> SrcsReg1; 604 // List the registers where the second argument will be split. 605 SmallVector<unsigned, 2> SrcsReg2; 606 // Create all the temporary registers. 607 for (int i = 0; i < NumParts; ++i) { 608 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 609 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); 610 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); 611 612 DstRegs.push_back(DstReg); 613 SrcsReg1.push_back(SrcReg1); 614 SrcsReg2.push_back(SrcReg2); 615 } 616 // Explode the big arguments into smaller chunks. 617 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); 618 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); 619 620 // Do the operation on each small part. 621 for (int i = 0; i < NumParts; ++i) 622 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, 623 {SrcsReg1[i], SrcsReg2[i]}); 624 625 // Gather the destination registers into the final destination. 626 unsigned DstReg = MI.getOperand(0).getReg(); 627 if(MRI.getType(DstReg).isVector()) 628 MIRBuilder.buildBuildVector(DstReg, DstRegs); 629 else 630 MIRBuilder.buildMerge(DstReg, DstRegs); 631 MI.eraseFromParent(); 632 return Legalized; 633 } 634 } 635 } 636 637 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 638 unsigned OpIdx, unsigned ExtOpcode) { 639 MachineOperand &MO = MI.getOperand(OpIdx); 640 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 641 MO.setReg(ExtB->getOperand(0).getReg()); 642 } 643 644 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 645 unsigned OpIdx, unsigned TruncOpcode) { 646 MachineOperand &MO = MI.getOperand(OpIdx); 647 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 648 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 649 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 650 MO.setReg(DstExt); 651 } 652 653 LegalizerHelper::LegalizeResult 654 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 655 MIRBuilder.setInstr(MI); 656 657 switch (MI.getOpcode()) { 658 default: 659 return UnableToLegalize; 660 case TargetOpcode::G_UADDO: 661 case TargetOpcode::G_USUBO: { 662 if (TypeIdx == 1) 663 return UnableToLegalize; // TODO 664 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 665 {MI.getOperand(2).getReg()}); 666 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 667 {MI.getOperand(3).getReg()}); 668 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 669 ? TargetOpcode::G_ADD 670 : TargetOpcode::G_SUB; 671 // Do the arithmetic in the larger type. 672 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 673 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 674 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 675 auto AndOp = MIRBuilder.buildInstr( 676 TargetOpcode::G_AND, {WideTy}, 677 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 678 // There is no overflow if the AndOp is the same as NewOp. 679 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 680 AndOp); 681 // Now trunc the NewOp to the original result. 682 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 683 MI.eraseFromParent(); 684 return Legalized; 685 } 686 case TargetOpcode::G_CTTZ: 687 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 688 case TargetOpcode::G_CTLZ: 689 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 690 case TargetOpcode::G_CTPOP: { 691 // First ZEXT the input. 692 auto MIBSrc = MIRBuilder.buildZExt(WideTy, MI.getOperand(1).getReg()); 693 LLT CurTy = MRI.getType(MI.getOperand(0).getReg()); 694 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 695 // The count is the same in the larger type except if the original 696 // value was zero. This can be handled by setting the bit just off 697 // the top of the original type. 698 auto TopBit = 699 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 700 MIBSrc = MIRBuilder.buildInstr( 701 TargetOpcode::G_OR, {WideTy}, 702 {MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit.getSExtValue())}); 703 } 704 // Perform the operation at the larger size. 705 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 706 // This is already the correct result for CTPOP and CTTZs 707 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 708 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 709 // The correct result is NewOp - (Difference in widety and current ty). 710 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 711 MIBNewOp = MIRBuilder.buildInstr( 712 TargetOpcode::G_SUB, {WideTy}, 713 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 714 } 715 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 716 // Make the original instruction a trunc now, and update its source. 717 Observer.changingInstr(MI); 718 MI.setDesc(TII.get(TargetOpcode::G_TRUNC)); 719 MI.getOperand(1).setReg(MIBNewOp->getOperand(0).getReg()); 720 Observer.changedInstr(MI); 721 return Legalized; 722 } 723 724 case TargetOpcode::G_ADD: 725 case TargetOpcode::G_AND: 726 case TargetOpcode::G_MUL: 727 case TargetOpcode::G_OR: 728 case TargetOpcode::G_XOR: 729 case TargetOpcode::G_SUB: 730 // Perform operation at larger width (any extension is fine here, high bits 731 // don't affect the result) and then truncate the result back to the 732 // original type. 733 Observer.changingInstr(MI); 734 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 735 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 736 widenScalarDst(MI, WideTy); 737 Observer.changedInstr(MI); 738 return Legalized; 739 740 case TargetOpcode::G_SHL: 741 Observer.changingInstr(MI); 742 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 743 // The "number of bits to shift" operand must preserve its value as an 744 // unsigned integer: 745 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 746 widenScalarDst(MI, WideTy); 747 Observer.changedInstr(MI); 748 return Legalized; 749 750 case TargetOpcode::G_SDIV: 751 case TargetOpcode::G_SREM: 752 Observer.changingInstr(MI); 753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 755 widenScalarDst(MI, WideTy); 756 Observer.changedInstr(MI); 757 return Legalized; 758 759 case TargetOpcode::G_ASHR: 760 Observer.changingInstr(MI); 761 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 762 // The "number of bits to shift" operand must preserve its value as an 763 // unsigned integer: 764 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 765 widenScalarDst(MI, WideTy); 766 Observer.changedInstr(MI); 767 return Legalized; 768 769 case TargetOpcode::G_UDIV: 770 case TargetOpcode::G_UREM: 771 case TargetOpcode::G_LSHR: 772 Observer.changingInstr(MI); 773 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 774 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 775 widenScalarDst(MI, WideTy); 776 Observer.changedInstr(MI); 777 return Legalized; 778 779 case TargetOpcode::G_SELECT: 780 if (TypeIdx != 0) 781 return UnableToLegalize; 782 // Perform operation at larger width (any extension is fine here, high bits 783 // don't affect the result) and then truncate the result back to the 784 // original type. 785 Observer.changingInstr(MI); 786 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 787 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 788 widenScalarDst(MI, WideTy); 789 Observer.changedInstr(MI); 790 return Legalized; 791 792 case TargetOpcode::G_FPTOSI: 793 case TargetOpcode::G_FPTOUI: 794 if (TypeIdx != 0) 795 return UnableToLegalize; 796 Observer.changingInstr(MI); 797 widenScalarDst(MI, WideTy); 798 Observer.changedInstr(MI); 799 return Legalized; 800 801 case TargetOpcode::G_SITOFP: 802 if (TypeIdx != 1) 803 return UnableToLegalize; 804 Observer.changingInstr(MI); 805 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 806 Observer.changedInstr(MI); 807 return Legalized; 808 809 case TargetOpcode::G_UITOFP: 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 Observer.changingInstr(MI); 813 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 814 Observer.changedInstr(MI); 815 return Legalized; 816 817 case TargetOpcode::G_INSERT: 818 if (TypeIdx != 0) 819 return UnableToLegalize; 820 Observer.changingInstr(MI); 821 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 822 widenScalarDst(MI, WideTy); 823 Observer.changedInstr(MI); 824 return Legalized; 825 826 case TargetOpcode::G_LOAD: 827 // For some types like i24, we might try to widen to i32. To properly handle 828 // this we should be using a dedicated extending load, until then avoid 829 // trying to legalize. 830 if (alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) != 831 WideTy.getSizeInBits()) 832 return UnableToLegalize; 833 LLVM_FALLTHROUGH; 834 case TargetOpcode::G_SEXTLOAD: 835 case TargetOpcode::G_ZEXTLOAD: 836 Observer.changingInstr(MI); 837 widenScalarDst(MI, WideTy); 838 Observer.changedInstr(MI); 839 return Legalized; 840 841 case TargetOpcode::G_STORE: { 842 if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(1) || 843 WideTy != LLT::scalar(8)) 844 return UnableToLegalize; 845 846 Observer.changingInstr(MI); 847 widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ZEXT); 848 Observer.changedInstr(MI); 849 return Legalized; 850 } 851 case TargetOpcode::G_CONSTANT: { 852 MachineOperand &SrcMO = MI.getOperand(1); 853 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 854 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 855 Observer.changingInstr(MI); 856 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 857 858 widenScalarDst(MI, WideTy); 859 Observer.changedInstr(MI); 860 return Legalized; 861 } 862 case TargetOpcode::G_FCONSTANT: { 863 MachineOperand &SrcMO = MI.getOperand(1); 864 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 865 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 866 bool LosesInfo; 867 switch (WideTy.getSizeInBits()) { 868 case 32: 869 Val.convert(APFloat::IEEEsingle(), APFloat::rmTowardZero, &LosesInfo); 870 break; 871 case 64: 872 Val.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &LosesInfo); 873 break; 874 default: 875 llvm_unreachable("Unhandled fp widen type"); 876 } 877 Observer.changingInstr(MI); 878 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 879 880 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 881 Observer.changedInstr(MI); 882 return Legalized; 883 } 884 case TargetOpcode::G_BRCOND: 885 Observer.changingInstr(MI); 886 widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ANYEXT); 887 Observer.changedInstr(MI); 888 return Legalized; 889 890 case TargetOpcode::G_FCMP: 891 Observer.changingInstr(MI); 892 if (TypeIdx == 0) 893 widenScalarDst(MI, WideTy); 894 else { 895 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 896 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 897 } 898 Observer.changedInstr(MI); 899 return Legalized; 900 901 case TargetOpcode::G_ICMP: 902 Observer.changingInstr(MI); 903 if (TypeIdx == 0) 904 widenScalarDst(MI, WideTy); 905 else { 906 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 907 MI.getOperand(1).getPredicate())) 908 ? TargetOpcode::G_SEXT 909 : TargetOpcode::G_ZEXT; 910 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 911 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 912 } 913 Observer.changedInstr(MI); 914 return Legalized; 915 916 case TargetOpcode::G_GEP: 917 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 918 Observer.changingInstr(MI); 919 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 920 Observer.changedInstr(MI); 921 return Legalized; 922 923 case TargetOpcode::G_PHI: { 924 assert(TypeIdx == 0 && "Expecting only Idx 0"); 925 926 Observer.changingInstr(MI); 927 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 928 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 929 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 930 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 931 } 932 933 MachineBasicBlock &MBB = *MI.getParent(); 934 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 935 widenScalarDst(MI, WideTy); 936 Observer.changedInstr(MI); 937 return Legalized; 938 } 939 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 940 if (TypeIdx != 2) 941 return UnableToLegalize; 942 Observer.changingInstr(MI); 943 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 944 Observer.changedInstr(MI); 945 return Legalized; 946 } 947 } 948 949 LegalizerHelper::LegalizeResult 950 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 951 using namespace TargetOpcode; 952 MIRBuilder.setInstr(MI); 953 954 switch(MI.getOpcode()) { 955 default: 956 return UnableToLegalize; 957 case TargetOpcode::G_SREM: 958 case TargetOpcode::G_UREM: { 959 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 960 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 961 .addDef(QuotReg) 962 .addUse(MI.getOperand(1).getReg()) 963 .addUse(MI.getOperand(2).getReg()); 964 965 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 966 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 967 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 968 ProdReg); 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_SMULO: 973 case TargetOpcode::G_UMULO: { 974 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 975 // result. 976 unsigned Res = MI.getOperand(0).getReg(); 977 unsigned Overflow = MI.getOperand(1).getReg(); 978 unsigned LHS = MI.getOperand(2).getReg(); 979 unsigned RHS = MI.getOperand(3).getReg(); 980 981 MIRBuilder.buildMul(Res, LHS, RHS); 982 983 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 984 ? TargetOpcode::G_SMULH 985 : TargetOpcode::G_UMULH; 986 987 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 988 MIRBuilder.buildInstr(Opcode) 989 .addDef(HiPart) 990 .addUse(LHS) 991 .addUse(RHS); 992 993 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 994 MIRBuilder.buildConstant(Zero, 0); 995 996 // For *signed* multiply, overflow is detected by checking: 997 // (hi != (lo >> bitwidth-1)) 998 if (Opcode == TargetOpcode::G_SMULH) { 999 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1000 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1001 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1002 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1003 .addDef(Shifted) 1004 .addUse(Res) 1005 .addUse(ShiftAmt); 1006 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1007 } else { 1008 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1009 } 1010 MI.eraseFromParent(); 1011 return Legalized; 1012 } 1013 case TargetOpcode::G_FNEG: { 1014 // TODO: Handle vector types once we are able to 1015 // represent them. 1016 if (Ty.isVector()) 1017 return UnableToLegalize; 1018 unsigned Res = MI.getOperand(0).getReg(); 1019 Type *ZeroTy; 1020 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1021 switch (Ty.getSizeInBits()) { 1022 case 16: 1023 ZeroTy = Type::getHalfTy(Ctx); 1024 break; 1025 case 32: 1026 ZeroTy = Type::getFloatTy(Ctx); 1027 break; 1028 case 64: 1029 ZeroTy = Type::getDoubleTy(Ctx); 1030 break; 1031 case 128: 1032 ZeroTy = Type::getFP128Ty(Ctx); 1033 break; 1034 default: 1035 llvm_unreachable("unexpected floating-point type"); 1036 } 1037 ConstantFP &ZeroForNegation = 1038 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1039 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1040 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1041 .addDef(Res) 1042 .addUse(Zero->getOperand(0).getReg()) 1043 .addUse(MI.getOperand(1).getReg()); 1044 MI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 case TargetOpcode::G_FSUB: { 1048 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1049 // First, check if G_FNEG is marked as Lower. If so, we may 1050 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1051 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1052 return UnableToLegalize; 1053 unsigned Res = MI.getOperand(0).getReg(); 1054 unsigned LHS = MI.getOperand(1).getReg(); 1055 unsigned RHS = MI.getOperand(2).getReg(); 1056 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1057 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1058 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1059 .addDef(Res) 1060 .addUse(LHS) 1061 .addUse(Neg); 1062 MI.eraseFromParent(); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1066 unsigned OldValRes = MI.getOperand(0).getReg(); 1067 unsigned SuccessRes = MI.getOperand(1).getReg(); 1068 unsigned Addr = MI.getOperand(2).getReg(); 1069 unsigned CmpVal = MI.getOperand(3).getReg(); 1070 unsigned NewVal = MI.getOperand(4).getReg(); 1071 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1072 **MI.memoperands_begin()); 1073 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1074 MI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_LOAD: 1078 case TargetOpcode::G_SEXTLOAD: 1079 case TargetOpcode::G_ZEXTLOAD: { 1080 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1081 unsigned DstReg = MI.getOperand(0).getReg(); 1082 unsigned PtrReg = MI.getOperand(1).getReg(); 1083 LLT DstTy = MRI.getType(DstReg); 1084 auto &MMO = **MI.memoperands_begin(); 1085 1086 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1087 // In the case of G_LOAD, this was a non-extending load already and we're 1088 // about to lower to the same instruction. 1089 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1090 return UnableToLegalize; 1091 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1092 MI.eraseFromParent(); 1093 return Legalized; 1094 } 1095 1096 if (DstTy.isScalar()) { 1097 unsigned TmpReg = MRI.createGenericVirtualRegister( 1098 LLT::scalar(MMO.getSize() /* in bytes */ * 8)); 1099 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1100 switch (MI.getOpcode()) { 1101 default: 1102 llvm_unreachable("Unexpected opcode"); 1103 case TargetOpcode::G_LOAD: 1104 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1105 break; 1106 case TargetOpcode::G_SEXTLOAD: 1107 MIRBuilder.buildSExt(DstReg, TmpReg); 1108 break; 1109 case TargetOpcode::G_ZEXTLOAD: 1110 MIRBuilder.buildZExt(DstReg, TmpReg); 1111 break; 1112 } 1113 MI.eraseFromParent(); 1114 return Legalized; 1115 } 1116 1117 return UnableToLegalize; 1118 } 1119 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1120 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTTZ: 1123 case TargetOpcode::G_CTPOP: 1124 return lowerBitCount(MI, TypeIdx, Ty); 1125 case G_UADDE: { 1126 unsigned Res = MI.getOperand(0).getReg(); 1127 unsigned CarryOut = MI.getOperand(1).getReg(); 1128 unsigned LHS = MI.getOperand(2).getReg(); 1129 unsigned RHS = MI.getOperand(3).getReg(); 1130 unsigned CarryIn = MI.getOperand(4).getReg(); 1131 1132 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1133 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1134 1135 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1136 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1137 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1138 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1139 1140 MI.eraseFromParent(); 1141 return Legalized; 1142 } 1143 } 1144 } 1145 1146 LegalizerHelper::LegalizeResult 1147 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 1148 LLT NarrowTy) { 1149 // FIXME: Don't know how to handle secondary types yet. 1150 if (TypeIdx != 0) 1151 return UnableToLegalize; 1152 1153 MIRBuilder.setInstr(MI); 1154 switch (MI.getOpcode()) { 1155 default: 1156 return UnableToLegalize; 1157 case TargetOpcode::G_ADD: { 1158 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1159 unsigned DstReg = MI.getOperand(0).getReg(); 1160 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1161 int NumParts = Size / NarrowSize; 1162 // FIXME: Don't know how to handle the situation where the small vectors 1163 // aren't all the same size yet. 1164 if (Size % NarrowSize != 0) 1165 return UnableToLegalize; 1166 1167 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1168 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 1169 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 1170 1171 for (int i = 0; i < NumParts; ++i) { 1172 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1173 MIRBuilder.buildAdd(DstReg, Src1Regs[i], Src2Regs[i]); 1174 DstRegs.push_back(DstReg); 1175 } 1176 1177 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1178 MI.eraseFromParent(); 1179 return Legalized; 1180 } 1181 case TargetOpcode::G_LOAD: 1182 case TargetOpcode::G_STORE: { 1183 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 1184 unsigned ValReg = MI.getOperand(0).getReg(); 1185 unsigned AddrReg = MI.getOperand(1).getReg(); 1186 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1187 unsigned Size = MRI.getType(ValReg).getSizeInBits(); 1188 unsigned NumParts = Size / NarrowSize; 1189 1190 SmallVector<unsigned, 8> NarrowRegs; 1191 if (!IsLoad) 1192 extractParts(ValReg, NarrowTy, NumParts, NarrowRegs); 1193 1194 const LLT OffsetTy = 1195 LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 1196 MachineFunction &MF = *MI.getMF(); 1197 MachineMemOperand *MMO = *MI.memoperands_begin(); 1198 for (unsigned Idx = 0; Idx < NumParts; ++Idx) { 1199 unsigned Adjustment = Idx * NarrowTy.getSizeInBits() / 8; 1200 unsigned Alignment = MinAlign(MMO->getAlignment(), Adjustment); 1201 unsigned NewAddrReg = 0; 1202 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, Adjustment); 1203 MachineMemOperand &NewMMO = *MF.getMachineMemOperand( 1204 MMO->getPointerInfo().getWithOffset(Adjustment), MMO->getFlags(), 1205 NarrowTy.getSizeInBits() / 8, Alignment); 1206 if (IsLoad) { 1207 unsigned Dst = MRI.createGenericVirtualRegister(NarrowTy); 1208 NarrowRegs.push_back(Dst); 1209 MIRBuilder.buildLoad(Dst, NewAddrReg, NewMMO); 1210 } else { 1211 MIRBuilder.buildStore(NarrowRegs[Idx], NewAddrReg, NewMMO); 1212 } 1213 } 1214 if (IsLoad) { 1215 if (NarrowTy.isVector()) 1216 MIRBuilder.buildConcatVectors(ValReg, NarrowRegs); 1217 else 1218 MIRBuilder.buildBuildVector(ValReg, NarrowRegs); 1219 } 1220 MI.eraseFromParent(); 1221 return Legalized; 1222 } 1223 } 1224 } 1225 1226 LegalizerHelper::LegalizeResult 1227 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1228 unsigned Opc = MI.getOpcode(); 1229 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1230 auto isSupported = [this](const LegalityQuery &Q) { 1231 auto QAction = LI.getAction(Q).Action; 1232 return QAction == Legal || QAction == Libcall || QAction == Custom; 1233 }; 1234 switch (Opc) { 1235 default: 1236 return UnableToLegalize; 1237 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 1238 // This trivially expands to CTLZ. 1239 Observer.changingInstr(MI); 1240 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 1241 Observer.changedInstr(MI); 1242 return Legalized; 1243 } 1244 case TargetOpcode::G_CTLZ: { 1245 unsigned SrcReg = MI.getOperand(1).getReg(); 1246 unsigned Len = Ty.getSizeInBits(); 1247 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty}})) { 1248 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 1249 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 1250 {Ty}, {SrcReg}); 1251 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 1252 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 1253 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 1254 SrcReg, MIBZero); 1255 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 1256 MIBCtlzZU); 1257 MI.eraseFromParent(); 1258 return Legalized; 1259 } 1260 // for now, we do this: 1261 // NewLen = NextPowerOf2(Len); 1262 // x = x | (x >> 1); 1263 // x = x | (x >> 2); 1264 // ... 1265 // x = x | (x >>16); 1266 // x = x | (x >>32); // for 64-bit input 1267 // Upto NewLen/2 1268 // return Len - popcount(x); 1269 // 1270 // Ref: "Hacker's Delight" by Henry Warren 1271 unsigned Op = SrcReg; 1272 unsigned NewLen = PowerOf2Ceil(Len); 1273 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 1274 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 1275 auto MIBOp = MIRBuilder.buildInstr( 1276 TargetOpcode::G_OR, {Ty}, 1277 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 1278 {Op, MIBShiftAmt})}); 1279 Op = MIBOp->getOperand(0).getReg(); 1280 } 1281 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 1282 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 1283 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 1284 MI.eraseFromParent(); 1285 return Legalized; 1286 } 1287 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 1288 // This trivially expands to CTTZ. 1289 Observer.changingInstr(MI); 1290 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 1291 Observer.changedInstr(MI); 1292 return Legalized; 1293 } 1294 case TargetOpcode::G_CTTZ: { 1295 unsigned SrcReg = MI.getOperand(1).getReg(); 1296 unsigned Len = Ty.getSizeInBits(); 1297 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty}})) { 1298 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 1299 // zero. 1300 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 1301 {Ty}, {SrcReg}); 1302 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 1303 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 1304 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 1305 SrcReg, MIBZero); 1306 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 1307 MIBCttzZU); 1308 MI.eraseFromParent(); 1309 return Legalized; 1310 } 1311 // for now, we use: { return popcount(~x & (x - 1)); } 1312 // unless the target has ctlz but not ctpop, in which case we use: 1313 // { return 32 - nlz(~x & (x-1)); } 1314 // Ref: "Hacker's Delight" by Henry Warren 1315 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 1316 auto MIBNot = 1317 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 1318 auto MIBTmp = MIRBuilder.buildInstr( 1319 TargetOpcode::G_AND, {Ty}, 1320 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 1321 {SrcReg, MIBCstNeg1})}); 1322 if (!isSupported({TargetOpcode::G_CTPOP, {Ty}}) && 1323 isSupported({TargetOpcode::G_CTLZ, {Ty}})) { 1324 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 1325 MIRBuilder.buildInstr( 1326 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 1327 {MIBCstLen, 1328 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 1329 MI.eraseFromParent(); 1330 return Legalized; 1331 } 1332 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 1333 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 1334 return Legalized; 1335 } 1336 } 1337 } 1338