1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FEXP2: 248 assert((Size == 32 || Size == 64) && "Unsupported size"); 249 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 250 case TargetOpcode::G_FREM: 251 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 252 case TargetOpcode::G_FPOW: 253 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 254 case TargetOpcode::G_FMA: 255 assert((Size == 32 || Size == 64) && "Unsupported size"); 256 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 257 case TargetOpcode::G_FSIN: 258 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 259 return Size == 128 ? RTLIB::SIN_F128 260 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 261 case TargetOpcode::G_FCOS: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::COS_F128 264 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 265 case TargetOpcode::G_FLOG10: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::LOG10_F128 268 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 269 case TargetOpcode::G_FLOG: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG_F128 272 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 273 case TargetOpcode::G_FLOG2: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG2_F128 276 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 277 } 278 llvm_unreachable("Unknown libcall function"); 279 } 280 281 LegalizerHelper::LegalizeResult 282 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 283 const CallLowering::ArgInfo &Result, 284 ArrayRef<CallLowering::ArgInfo> Args) { 285 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 286 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 287 const char *Name = TLI.getLibcallName(Libcall); 288 289 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 290 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 291 MachineOperand::CreateES(Name), Result, Args)) 292 return LegalizerHelper::UnableToLegalize; 293 294 return LegalizerHelper::Legalized; 295 } 296 297 // Useful for libcalls where all operands have the same type. 298 static LegalizerHelper::LegalizeResult 299 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 300 Type *OpType) { 301 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 302 303 SmallVector<CallLowering::ArgInfo, 3> Args; 304 for (unsigned i = 1; i < MI.getNumOperands(); i++) 305 Args.push_back({MI.getOperand(i).getReg(), OpType}); 306 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 307 Args); 308 } 309 310 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 311 Type *FromType) { 312 auto ToMVT = MVT::getVT(ToType); 313 auto FromMVT = MVT::getVT(FromType); 314 315 switch (Opcode) { 316 case TargetOpcode::G_FPEXT: 317 return RTLIB::getFPEXT(FromMVT, ToMVT); 318 case TargetOpcode::G_FPTRUNC: 319 return RTLIB::getFPROUND(FromMVT, ToMVT); 320 case TargetOpcode::G_FPTOSI: 321 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 322 case TargetOpcode::G_FPTOUI: 323 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 324 case TargetOpcode::G_SITOFP: 325 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 326 case TargetOpcode::G_UITOFP: 327 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 328 } 329 llvm_unreachable("Unsupported libcall function"); 330 } 331 332 static LegalizerHelper::LegalizeResult 333 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 334 Type *FromType) { 335 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 336 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 337 {{MI.getOperand(1).getReg(), FromType}}); 338 } 339 340 LegalizerHelper::LegalizeResult 341 LegalizerHelper::libcall(MachineInstr &MI) { 342 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 343 unsigned Size = LLTy.getSizeInBits(); 344 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 345 346 MIRBuilder.setInstr(MI); 347 348 switch (MI.getOpcode()) { 349 default: 350 return UnableToLegalize; 351 case TargetOpcode::G_SDIV: 352 case TargetOpcode::G_UDIV: 353 case TargetOpcode::G_SREM: 354 case TargetOpcode::G_UREM: 355 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 356 Type *HLTy = IntegerType::get(Ctx, Size); 357 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 358 if (Status != Legalized) 359 return Status; 360 break; 361 } 362 case TargetOpcode::G_FADD: 363 case TargetOpcode::G_FSUB: 364 case TargetOpcode::G_FMUL: 365 case TargetOpcode::G_FDIV: 366 case TargetOpcode::G_FMA: 367 case TargetOpcode::G_FPOW: 368 case TargetOpcode::G_FREM: 369 case TargetOpcode::G_FCOS: 370 case TargetOpcode::G_FSIN: 371 case TargetOpcode::G_FLOG10: 372 case TargetOpcode::G_FLOG: 373 case TargetOpcode::G_FLOG2: 374 case TargetOpcode::G_FEXP: 375 case TargetOpcode::G_FEXP2: { 376 if (Size > 64) { 377 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 378 return UnableToLegalize; 379 } 380 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 381 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 382 if (Status != Legalized) 383 return Status; 384 break; 385 } 386 case TargetOpcode::G_FPEXT: { 387 // FIXME: Support other floating point types (half, fp128 etc) 388 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 389 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 390 if (ToSize != 64 || FromSize != 32) 391 return UnableToLegalize; 392 LegalizeResult Status = conversionLibcall( 393 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 394 if (Status != Legalized) 395 return Status; 396 break; 397 } 398 case TargetOpcode::G_FPTRUNC: { 399 // FIXME: Support other floating point types (half, fp128 etc) 400 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 401 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 402 if (ToSize != 32 || FromSize != 64) 403 return UnableToLegalize; 404 LegalizeResult Status = conversionLibcall( 405 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 406 if (Status != Legalized) 407 return Status; 408 break; 409 } 410 case TargetOpcode::G_FPTOSI: 411 case TargetOpcode::G_FPTOUI: { 412 // FIXME: Support other types 413 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 414 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 415 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 416 return UnableToLegalize; 417 LegalizeResult Status = conversionLibcall( 418 MI, MIRBuilder, Type::getInt32Ty(Ctx), 419 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 420 if (Status != Legalized) 421 return Status; 422 break; 423 } 424 case TargetOpcode::G_SITOFP: 425 case TargetOpcode::G_UITOFP: { 426 // FIXME: Support other types 427 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 428 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 429 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 430 return UnableToLegalize; 431 LegalizeResult Status = conversionLibcall( 432 MI, MIRBuilder, 433 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 434 Type::getInt32Ty(Ctx)); 435 if (Status != Legalized) 436 return Status; 437 break; 438 } 439 } 440 441 MI.eraseFromParent(); 442 return Legalized; 443 } 444 445 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 446 unsigned TypeIdx, 447 LLT NarrowTy) { 448 MIRBuilder.setInstr(MI); 449 450 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 451 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 452 453 switch (MI.getOpcode()) { 454 default: 455 return UnableToLegalize; 456 case TargetOpcode::G_IMPLICIT_DEF: { 457 // FIXME: add support for when SizeOp0 isn't an exact multiple of 458 // NarrowSize. 459 if (SizeOp0 % NarrowSize != 0) 460 return UnableToLegalize; 461 int NumParts = SizeOp0 / NarrowSize; 462 463 SmallVector<unsigned, 2> DstRegs; 464 for (int i = 0; i < NumParts; ++i) 465 DstRegs.push_back( 466 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 467 468 unsigned DstReg = MI.getOperand(0).getReg(); 469 if(MRI.getType(DstReg).isVector()) 470 MIRBuilder.buildBuildVector(DstReg, DstRegs); 471 else 472 MIRBuilder.buildMerge(DstReg, DstRegs); 473 MI.eraseFromParent(); 474 return Legalized; 475 } 476 case TargetOpcode::G_CONSTANT: { 477 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 478 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 479 unsigned TotalSize = Ty.getSizeInBits(); 480 unsigned NarrowSize = NarrowTy.getSizeInBits(); 481 int NumParts = TotalSize / NarrowSize; 482 483 SmallVector<unsigned, 4> PartRegs; 484 for (int I = 0; I != NumParts; ++I) { 485 unsigned Offset = I * NarrowSize; 486 auto K = MIRBuilder.buildConstant(NarrowTy, 487 Val.lshr(Offset).trunc(NarrowSize)); 488 PartRegs.push_back(K.getReg(0)); 489 } 490 491 LLT LeftoverTy; 492 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 493 SmallVector<unsigned, 1> LeftoverRegs; 494 if (LeftoverBits != 0) { 495 LeftoverTy = LLT::scalar(LeftoverBits); 496 auto K = MIRBuilder.buildConstant( 497 LeftoverTy, 498 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 499 LeftoverRegs.push_back(K.getReg(0)); 500 } 501 502 insertParts(MI.getOperand(0).getReg(), 503 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 504 505 MI.eraseFromParent(); 506 return Legalized; 507 } 508 case TargetOpcode::G_ADD: { 509 // FIXME: add support for when SizeOp0 isn't an exact multiple of 510 // NarrowSize. 511 if (SizeOp0 % NarrowSize != 0) 512 return UnableToLegalize; 513 // Expand in terms of carry-setting/consuming G_ADDE instructions. 514 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 515 516 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 517 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 518 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 519 520 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 521 MIRBuilder.buildConstant(CarryIn, 0); 522 523 for (int i = 0; i < NumParts; ++i) { 524 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 525 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 526 527 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 528 Src2Regs[i], CarryIn); 529 530 DstRegs.push_back(DstReg); 531 CarryIn = CarryOut; 532 } 533 unsigned DstReg = MI.getOperand(0).getReg(); 534 if(MRI.getType(DstReg).isVector()) 535 MIRBuilder.buildBuildVector(DstReg, DstRegs); 536 else 537 MIRBuilder.buildMerge(DstReg, DstRegs); 538 MI.eraseFromParent(); 539 return Legalized; 540 } 541 case TargetOpcode::G_SUB: { 542 // FIXME: add support for when SizeOp0 isn't an exact multiple of 543 // NarrowSize. 544 if (SizeOp0 % NarrowSize != 0) 545 return UnableToLegalize; 546 547 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 548 549 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 550 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 551 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 552 553 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 554 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 555 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 556 {Src1Regs[0], Src2Regs[0]}); 557 DstRegs.push_back(DstReg); 558 unsigned BorrowIn = BorrowOut; 559 for (int i = 1; i < NumParts; ++i) { 560 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 561 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 562 563 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 564 {Src1Regs[i], Src2Regs[i], BorrowIn}); 565 566 DstRegs.push_back(DstReg); 567 BorrowIn = BorrowOut; 568 } 569 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 570 MI.eraseFromParent(); 571 return Legalized; 572 } 573 case TargetOpcode::G_MUL: 574 case TargetOpcode::G_UMULH: 575 return narrowScalarMul(MI, NarrowTy); 576 case TargetOpcode::G_EXTRACT: 577 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 578 case TargetOpcode::G_INSERT: 579 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 580 case TargetOpcode::G_LOAD: { 581 const auto &MMO = **MI.memoperands_begin(); 582 unsigned DstReg = MI.getOperand(0).getReg(); 583 LLT DstTy = MRI.getType(DstReg); 584 if (DstTy.isVector()) 585 return UnableToLegalize; 586 587 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 588 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 589 auto &MMO = **MI.memoperands_begin(); 590 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 591 MIRBuilder.buildAnyExt(DstReg, TmpReg); 592 MI.eraseFromParent(); 593 return Legalized; 594 } 595 596 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 597 } 598 case TargetOpcode::G_ZEXTLOAD: 599 case TargetOpcode::G_SEXTLOAD: { 600 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 601 unsigned DstReg = MI.getOperand(0).getReg(); 602 unsigned PtrReg = MI.getOperand(1).getReg(); 603 604 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 605 auto &MMO = **MI.memoperands_begin(); 606 if (MMO.getSizeInBits() == NarrowSize) { 607 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 608 } else { 609 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 610 : TargetOpcode::G_SEXTLOAD; 611 MIRBuilder.buildInstr(ExtLoad) 612 .addDef(TmpReg) 613 .addUse(PtrReg) 614 .addMemOperand(&MMO); 615 } 616 617 if (ZExt) 618 MIRBuilder.buildZExt(DstReg, TmpReg); 619 else 620 MIRBuilder.buildSExt(DstReg, TmpReg); 621 622 MI.eraseFromParent(); 623 return Legalized; 624 } 625 case TargetOpcode::G_STORE: { 626 const auto &MMO = **MI.memoperands_begin(); 627 628 unsigned SrcReg = MI.getOperand(0).getReg(); 629 LLT SrcTy = MRI.getType(SrcReg); 630 if (SrcTy.isVector()) 631 return UnableToLegalize; 632 633 int NumParts = SizeOp0 / NarrowSize; 634 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 635 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 636 if (SrcTy.isVector() && LeftoverBits != 0) 637 return UnableToLegalize; 638 639 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 640 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 641 auto &MMO = **MI.memoperands_begin(); 642 MIRBuilder.buildTrunc(TmpReg, SrcReg); 643 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 644 MI.eraseFromParent(); 645 return Legalized; 646 } 647 648 return reduceLoadStoreWidth(MI, 0, NarrowTy); 649 } 650 case TargetOpcode::G_SELECT: 651 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 652 case TargetOpcode::G_AND: 653 case TargetOpcode::G_OR: 654 case TargetOpcode::G_XOR: { 655 // Legalize bitwise operation: 656 // A = BinOp<Ty> B, C 657 // into: 658 // B1, ..., BN = G_UNMERGE_VALUES B 659 // C1, ..., CN = G_UNMERGE_VALUES C 660 // A1 = BinOp<Ty/N> B1, C2 661 // ... 662 // AN = BinOp<Ty/N> BN, CN 663 // A = G_MERGE_VALUES A1, ..., AN 664 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 665 } 666 case TargetOpcode::G_SHL: 667 case TargetOpcode::G_LSHR: 668 case TargetOpcode::G_ASHR: 669 return narrowScalarShift(MI, TypeIdx, NarrowTy); 670 case TargetOpcode::G_CTLZ: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 672 case TargetOpcode::G_CTTZ: 673 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 674 case TargetOpcode::G_CTPOP: 675 if (TypeIdx != 0) 676 return UnableToLegalize; // TODO 677 678 Observer.changingInstr(MI); 679 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 680 Observer.changedInstr(MI); 681 return Legalized; 682 case TargetOpcode::G_INTTOPTR: 683 if (TypeIdx != 1) 684 return UnableToLegalize; 685 686 Observer.changingInstr(MI); 687 narrowScalarSrc(MI, NarrowTy, 1); 688 Observer.changedInstr(MI); 689 return Legalized; 690 case TargetOpcode::G_PTRTOINT: 691 if (TypeIdx != 0) 692 return UnableToLegalize; 693 694 Observer.changingInstr(MI); 695 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 696 Observer.changedInstr(MI); 697 return Legalized; 698 } 699 } 700 701 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 702 unsigned OpIdx, unsigned ExtOpcode) { 703 MachineOperand &MO = MI.getOperand(OpIdx); 704 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 705 MO.setReg(ExtB->getOperand(0).getReg()); 706 } 707 708 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 709 unsigned OpIdx) { 710 MachineOperand &MO = MI.getOperand(OpIdx); 711 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 712 {MO.getReg()}); 713 MO.setReg(ExtB->getOperand(0).getReg()); 714 } 715 716 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 717 unsigned OpIdx, unsigned TruncOpcode) { 718 MachineOperand &MO = MI.getOperand(OpIdx); 719 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 720 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 721 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 722 MO.setReg(DstExt); 723 } 724 725 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 726 unsigned OpIdx, unsigned ExtOpcode) { 727 MachineOperand &MO = MI.getOperand(OpIdx); 728 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 729 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 730 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 731 MO.setReg(DstTrunc); 732 } 733 734 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 735 unsigned OpIdx) { 736 MachineOperand &MO = MI.getOperand(OpIdx); 737 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 738 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 739 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 740 MO.setReg(DstExt); 741 } 742 743 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 744 unsigned OpIdx) { 745 MachineOperand &MO = MI.getOperand(OpIdx); 746 747 LLT OldTy = MRI.getType(MO.getReg()); 748 unsigned OldElts = OldTy.getNumElements(); 749 unsigned NewElts = MoreTy.getNumElements(); 750 751 unsigned NumParts = NewElts / OldElts; 752 753 // Use concat_vectors if the result is a multiple of the number of elements. 754 if (NumParts * OldElts == NewElts) { 755 SmallVector<unsigned, 8> Parts; 756 Parts.push_back(MO.getReg()); 757 758 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 759 for (unsigned I = 1; I != NumParts; ++I) 760 Parts.push_back(ImpDef); 761 762 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 763 MO.setReg(Concat.getReg(0)); 764 return; 765 } 766 767 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 768 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 769 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 770 MO.setReg(MoreReg); 771 } 772 773 LegalizerHelper::LegalizeResult 774 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 775 LLT WideTy) { 776 if (TypeIdx != 1) 777 return UnableToLegalize; 778 779 unsigned DstReg = MI.getOperand(0).getReg(); 780 LLT DstTy = MRI.getType(DstReg); 781 if (!DstTy.isScalar()) 782 return UnableToLegalize; 783 784 unsigned NumOps = MI.getNumOperands(); 785 unsigned NumSrc = MI.getNumOperands() - 1; 786 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 787 788 unsigned Src1 = MI.getOperand(1).getReg(); 789 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 790 791 for (unsigned I = 2; I != NumOps; ++I) { 792 const unsigned Offset = (I - 1) * PartSize; 793 794 unsigned SrcReg = MI.getOperand(I).getReg(); 795 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 796 797 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 798 799 unsigned NextResult = I + 1 == NumOps ? DstReg : 800 MRI.createGenericVirtualRegister(DstTy); 801 802 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 803 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 804 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 805 ResultReg = NextResult; 806 } 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 812 LegalizerHelper::LegalizeResult 813 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 814 LLT WideTy) { 815 if (TypeIdx != 0) 816 return UnableToLegalize; 817 818 unsigned NumDst = MI.getNumOperands() - 1; 819 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 820 LLT SrcTy = MRI.getType(SrcReg); 821 if (!SrcTy.isScalar()) 822 return UnableToLegalize; 823 824 unsigned Dst0Reg = MI.getOperand(0).getReg(); 825 LLT DstTy = MRI.getType(Dst0Reg); 826 if (!DstTy.isScalar()) 827 return UnableToLegalize; 828 829 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 830 LLT NewSrcTy = LLT::scalar(NewSrcSize); 831 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 832 833 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 834 835 for (unsigned I = 1; I != NumDst; ++I) { 836 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 837 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 838 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 839 } 840 841 Observer.changingInstr(MI); 842 843 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 844 for (unsigned I = 0; I != NumDst; ++I) 845 widenScalarDst(MI, WideTy, I); 846 847 Observer.changedInstr(MI); 848 849 return Legalized; 850 } 851 852 LegalizerHelper::LegalizeResult 853 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 854 LLT WideTy) { 855 unsigned DstReg = MI.getOperand(0).getReg(); 856 unsigned SrcReg = MI.getOperand(1).getReg(); 857 LLT SrcTy = MRI.getType(SrcReg); 858 859 LLT DstTy = MRI.getType(DstReg); 860 unsigned Offset = MI.getOperand(2).getImm(); 861 862 if (TypeIdx == 0) { 863 if (SrcTy.isVector() || DstTy.isVector()) 864 return UnableToLegalize; 865 866 SrcOp Src(SrcReg); 867 if (SrcTy.isPointer()) { 868 // Extracts from pointers can be handled only if they are really just 869 // simple integers. 870 const DataLayout &DL = MIRBuilder.getDataLayout(); 871 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 872 return UnableToLegalize; 873 874 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 875 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 876 SrcTy = SrcAsIntTy; 877 } 878 879 if (DstTy.isPointer()) 880 return UnableToLegalize; 881 882 if (Offset == 0) { 883 // Avoid a shift in the degenerate case. 884 MIRBuilder.buildTrunc(DstReg, 885 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 886 MI.eraseFromParent(); 887 return Legalized; 888 } 889 890 // Do a shift in the source type. 891 LLT ShiftTy = SrcTy; 892 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 893 Src = MIRBuilder.buildAnyExt(WideTy, Src); 894 ShiftTy = WideTy; 895 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 896 return UnableToLegalize; 897 898 auto LShr = MIRBuilder.buildLShr( 899 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 900 MIRBuilder.buildTrunc(DstReg, LShr); 901 MI.eraseFromParent(); 902 return Legalized; 903 } 904 905 if (SrcTy.isScalar()) { 906 Observer.changingInstr(MI); 907 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 908 Observer.changedInstr(MI); 909 return Legalized; 910 } 911 912 if (!SrcTy.isVector()) 913 return UnableToLegalize; 914 915 if (DstTy != SrcTy.getElementType()) 916 return UnableToLegalize; 917 918 if (Offset % SrcTy.getScalarSizeInBits() != 0) 919 return UnableToLegalize; 920 921 Observer.changingInstr(MI); 922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 923 924 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 925 Offset); 926 widenScalarDst(MI, WideTy.getScalarType(), 0); 927 Observer.changedInstr(MI); 928 return Legalized; 929 } 930 931 LegalizerHelper::LegalizeResult 932 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 933 LLT WideTy) { 934 if (TypeIdx != 0) 935 return UnableToLegalize; 936 Observer.changingInstr(MI); 937 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 938 widenScalarDst(MI, WideTy); 939 Observer.changedInstr(MI); 940 return Legalized; 941 } 942 943 LegalizerHelper::LegalizeResult 944 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 945 MIRBuilder.setInstr(MI); 946 947 switch (MI.getOpcode()) { 948 default: 949 return UnableToLegalize; 950 case TargetOpcode::G_EXTRACT: 951 return widenScalarExtract(MI, TypeIdx, WideTy); 952 case TargetOpcode::G_INSERT: 953 return widenScalarInsert(MI, TypeIdx, WideTy); 954 case TargetOpcode::G_MERGE_VALUES: 955 return widenScalarMergeValues(MI, TypeIdx, WideTy); 956 case TargetOpcode::G_UNMERGE_VALUES: 957 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 958 case TargetOpcode::G_UADDO: 959 case TargetOpcode::G_USUBO: { 960 if (TypeIdx == 1) 961 return UnableToLegalize; // TODO 962 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 963 {MI.getOperand(2).getReg()}); 964 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 965 {MI.getOperand(3).getReg()}); 966 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 967 ? TargetOpcode::G_ADD 968 : TargetOpcode::G_SUB; 969 // Do the arithmetic in the larger type. 970 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 971 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 972 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 973 auto AndOp = MIRBuilder.buildInstr( 974 TargetOpcode::G_AND, {WideTy}, 975 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 976 // There is no overflow if the AndOp is the same as NewOp. 977 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 978 AndOp); 979 // Now trunc the NewOp to the original result. 980 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 981 MI.eraseFromParent(); 982 return Legalized; 983 } 984 case TargetOpcode::G_CTTZ: 985 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 986 case TargetOpcode::G_CTLZ: 987 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 988 case TargetOpcode::G_CTPOP: { 989 if (TypeIdx == 0) { 990 Observer.changingInstr(MI); 991 widenScalarDst(MI, WideTy, 0); 992 Observer.changedInstr(MI); 993 return Legalized; 994 } 995 996 unsigned SrcReg = MI.getOperand(1).getReg(); 997 998 // First ZEXT the input. 999 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1000 LLT CurTy = MRI.getType(SrcReg); 1001 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1002 // The count is the same in the larger type except if the original 1003 // value was zero. This can be handled by setting the bit just off 1004 // the top of the original type. 1005 auto TopBit = 1006 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1007 MIBSrc = MIRBuilder.buildOr( 1008 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1009 } 1010 1011 // Perform the operation at the larger size. 1012 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1013 // This is already the correct result for CTPOP and CTTZs 1014 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1015 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1016 // The correct result is NewOp - (Difference in widety and current ty). 1017 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1018 MIBNewOp = MIRBuilder.buildInstr( 1019 TargetOpcode::G_SUB, {WideTy}, 1020 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1021 } 1022 1023 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1024 MI.eraseFromParent(); 1025 return Legalized; 1026 } 1027 case TargetOpcode::G_BSWAP: { 1028 Observer.changingInstr(MI); 1029 unsigned DstReg = MI.getOperand(0).getReg(); 1030 1031 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1032 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1033 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1034 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1035 1036 MI.getOperand(0).setReg(DstExt); 1037 1038 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1039 1040 LLT Ty = MRI.getType(DstReg); 1041 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1042 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1043 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1044 .addDef(ShrReg) 1045 .addUse(DstExt) 1046 .addUse(ShiftAmtReg); 1047 1048 MIRBuilder.buildTrunc(DstReg, ShrReg); 1049 Observer.changedInstr(MI); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_ADD: 1053 case TargetOpcode::G_AND: 1054 case TargetOpcode::G_MUL: 1055 case TargetOpcode::G_OR: 1056 case TargetOpcode::G_XOR: 1057 case TargetOpcode::G_SUB: 1058 // Perform operation at larger width (any extension is fines here, high bits 1059 // don't affect the result) and then truncate the result back to the 1060 // original type. 1061 Observer.changingInstr(MI); 1062 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1064 widenScalarDst(MI, WideTy); 1065 Observer.changedInstr(MI); 1066 return Legalized; 1067 1068 case TargetOpcode::G_SHL: 1069 Observer.changingInstr(MI); 1070 1071 if (TypeIdx == 0) { 1072 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1073 widenScalarDst(MI, WideTy); 1074 } else { 1075 assert(TypeIdx == 1); 1076 // The "number of bits to shift" operand must preserve its value as an 1077 // unsigned integer: 1078 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1079 } 1080 1081 Observer.changedInstr(MI); 1082 return Legalized; 1083 1084 case TargetOpcode::G_SDIV: 1085 case TargetOpcode::G_SREM: 1086 case TargetOpcode::G_SMIN: 1087 case TargetOpcode::G_SMAX: 1088 Observer.changingInstr(MI); 1089 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1090 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1091 widenScalarDst(MI, WideTy); 1092 Observer.changedInstr(MI); 1093 return Legalized; 1094 1095 case TargetOpcode::G_ASHR: 1096 case TargetOpcode::G_LSHR: 1097 Observer.changingInstr(MI); 1098 1099 if (TypeIdx == 0) { 1100 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1101 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1102 1103 widenScalarSrc(MI, WideTy, 1, CvtOp); 1104 widenScalarDst(MI, WideTy); 1105 } else { 1106 assert(TypeIdx == 1); 1107 // The "number of bits to shift" operand must preserve its value as an 1108 // unsigned integer: 1109 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1110 } 1111 1112 Observer.changedInstr(MI); 1113 return Legalized; 1114 case TargetOpcode::G_UDIV: 1115 case TargetOpcode::G_UREM: 1116 case TargetOpcode::G_UMIN: 1117 case TargetOpcode::G_UMAX: 1118 Observer.changingInstr(MI); 1119 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1120 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1121 widenScalarDst(MI, WideTy); 1122 Observer.changedInstr(MI); 1123 return Legalized; 1124 1125 case TargetOpcode::G_SELECT: 1126 Observer.changingInstr(MI); 1127 if (TypeIdx == 0) { 1128 // Perform operation at larger width (any extension is fine here, high 1129 // bits don't affect the result) and then truncate the result back to the 1130 // original type. 1131 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1132 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1133 widenScalarDst(MI, WideTy); 1134 } else { 1135 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1136 // Explicit extension is required here since high bits affect the result. 1137 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1138 } 1139 Observer.changedInstr(MI); 1140 return Legalized; 1141 1142 case TargetOpcode::G_FPTOSI: 1143 case TargetOpcode::G_FPTOUI: 1144 if (TypeIdx != 0) 1145 return UnableToLegalize; 1146 Observer.changingInstr(MI); 1147 widenScalarDst(MI, WideTy); 1148 Observer.changedInstr(MI); 1149 return Legalized; 1150 1151 case TargetOpcode::G_SITOFP: 1152 if (TypeIdx != 1) 1153 return UnableToLegalize; 1154 Observer.changingInstr(MI); 1155 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1156 Observer.changedInstr(MI); 1157 return Legalized; 1158 1159 case TargetOpcode::G_UITOFP: 1160 if (TypeIdx != 1) 1161 return UnableToLegalize; 1162 Observer.changingInstr(MI); 1163 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1164 Observer.changedInstr(MI); 1165 return Legalized; 1166 1167 case TargetOpcode::G_LOAD: 1168 case TargetOpcode::G_SEXTLOAD: 1169 case TargetOpcode::G_ZEXTLOAD: 1170 Observer.changingInstr(MI); 1171 widenScalarDst(MI, WideTy); 1172 Observer.changedInstr(MI); 1173 return Legalized; 1174 1175 case TargetOpcode::G_STORE: { 1176 if (TypeIdx != 0) 1177 return UnableToLegalize; 1178 1179 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1180 if (!isPowerOf2_32(Ty.getSizeInBits())) 1181 return UnableToLegalize; 1182 1183 Observer.changingInstr(MI); 1184 1185 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1186 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1187 widenScalarSrc(MI, WideTy, 0, ExtType); 1188 1189 Observer.changedInstr(MI); 1190 return Legalized; 1191 } 1192 case TargetOpcode::G_CONSTANT: { 1193 MachineOperand &SrcMO = MI.getOperand(1); 1194 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1195 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1196 Observer.changingInstr(MI); 1197 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1198 1199 widenScalarDst(MI, WideTy); 1200 Observer.changedInstr(MI); 1201 return Legalized; 1202 } 1203 case TargetOpcode::G_FCONSTANT: { 1204 MachineOperand &SrcMO = MI.getOperand(1); 1205 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1206 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1207 bool LosesInfo; 1208 switch (WideTy.getSizeInBits()) { 1209 case 32: 1210 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1211 &LosesInfo); 1212 break; 1213 case 64: 1214 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1215 &LosesInfo); 1216 break; 1217 default: 1218 return UnableToLegalize; 1219 } 1220 1221 assert(!LosesInfo && "extend should always be lossless"); 1222 1223 Observer.changingInstr(MI); 1224 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1225 1226 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1227 Observer.changedInstr(MI); 1228 return Legalized; 1229 } 1230 case TargetOpcode::G_IMPLICIT_DEF: { 1231 Observer.changingInstr(MI); 1232 widenScalarDst(MI, WideTy); 1233 Observer.changedInstr(MI); 1234 return Legalized; 1235 } 1236 case TargetOpcode::G_BRCOND: 1237 Observer.changingInstr(MI); 1238 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 1242 case TargetOpcode::G_FCMP: 1243 Observer.changingInstr(MI); 1244 if (TypeIdx == 0) 1245 widenScalarDst(MI, WideTy); 1246 else { 1247 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1248 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1249 } 1250 Observer.changedInstr(MI); 1251 return Legalized; 1252 1253 case TargetOpcode::G_ICMP: 1254 Observer.changingInstr(MI); 1255 if (TypeIdx == 0) 1256 widenScalarDst(MI, WideTy); 1257 else { 1258 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1259 MI.getOperand(1).getPredicate())) 1260 ? TargetOpcode::G_SEXT 1261 : TargetOpcode::G_ZEXT; 1262 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1263 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1264 } 1265 Observer.changedInstr(MI); 1266 return Legalized; 1267 1268 case TargetOpcode::G_GEP: 1269 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1270 Observer.changingInstr(MI); 1271 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1272 Observer.changedInstr(MI); 1273 return Legalized; 1274 1275 case TargetOpcode::G_PHI: { 1276 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1277 1278 Observer.changingInstr(MI); 1279 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1280 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1281 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1282 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1283 } 1284 1285 MachineBasicBlock &MBB = *MI.getParent(); 1286 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1287 widenScalarDst(MI, WideTy); 1288 Observer.changedInstr(MI); 1289 return Legalized; 1290 } 1291 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1292 if (TypeIdx == 0) { 1293 unsigned VecReg = MI.getOperand(1).getReg(); 1294 LLT VecTy = MRI.getType(VecReg); 1295 Observer.changingInstr(MI); 1296 1297 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1298 WideTy.getSizeInBits()), 1299 1, TargetOpcode::G_SEXT); 1300 1301 widenScalarDst(MI, WideTy, 0); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 if (TypeIdx != 2) 1307 return UnableToLegalize; 1308 Observer.changingInstr(MI); 1309 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1310 Observer.changedInstr(MI); 1311 return Legalized; 1312 } 1313 case TargetOpcode::G_FADD: 1314 case TargetOpcode::G_FMUL: 1315 case TargetOpcode::G_FSUB: 1316 case TargetOpcode::G_FMA: 1317 case TargetOpcode::G_FNEG: 1318 case TargetOpcode::G_FABS: 1319 case TargetOpcode::G_FCANONICALIZE: 1320 case TargetOpcode::G_FDIV: 1321 case TargetOpcode::G_FREM: 1322 case TargetOpcode::G_FCEIL: 1323 case TargetOpcode::G_FFLOOR: 1324 case TargetOpcode::G_FCOS: 1325 case TargetOpcode::G_FSIN: 1326 case TargetOpcode::G_FLOG10: 1327 case TargetOpcode::G_FLOG: 1328 case TargetOpcode::G_FLOG2: 1329 case TargetOpcode::G_FRINT: 1330 case TargetOpcode::G_FNEARBYINT: 1331 case TargetOpcode::G_FSQRT: 1332 case TargetOpcode::G_FEXP: 1333 case TargetOpcode::G_FEXP2: 1334 case TargetOpcode::G_FPOW: 1335 case TargetOpcode::G_INTRINSIC_TRUNC: 1336 case TargetOpcode::G_INTRINSIC_ROUND: 1337 assert(TypeIdx == 0); 1338 Observer.changingInstr(MI); 1339 1340 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1341 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1342 1343 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1344 Observer.changedInstr(MI); 1345 return Legalized; 1346 case TargetOpcode::G_INTTOPTR: 1347 if (TypeIdx != 1) 1348 return UnableToLegalize; 1349 1350 Observer.changingInstr(MI); 1351 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1352 Observer.changedInstr(MI); 1353 return Legalized; 1354 case TargetOpcode::G_PTRTOINT: 1355 if (TypeIdx != 0) 1356 return UnableToLegalize; 1357 1358 Observer.changingInstr(MI); 1359 widenScalarDst(MI, WideTy, 0); 1360 Observer.changedInstr(MI); 1361 return Legalized; 1362 } 1363 } 1364 1365 LegalizerHelper::LegalizeResult 1366 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1367 using namespace TargetOpcode; 1368 MIRBuilder.setInstr(MI); 1369 1370 switch(MI.getOpcode()) { 1371 default: 1372 return UnableToLegalize; 1373 case TargetOpcode::G_SREM: 1374 case TargetOpcode::G_UREM: { 1375 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1376 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1377 .addDef(QuotReg) 1378 .addUse(MI.getOperand(1).getReg()) 1379 .addUse(MI.getOperand(2).getReg()); 1380 1381 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1382 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1383 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1384 ProdReg); 1385 MI.eraseFromParent(); 1386 return Legalized; 1387 } 1388 case TargetOpcode::G_SMULO: 1389 case TargetOpcode::G_UMULO: { 1390 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1391 // result. 1392 unsigned Res = MI.getOperand(0).getReg(); 1393 unsigned Overflow = MI.getOperand(1).getReg(); 1394 unsigned LHS = MI.getOperand(2).getReg(); 1395 unsigned RHS = MI.getOperand(3).getReg(); 1396 1397 MIRBuilder.buildMul(Res, LHS, RHS); 1398 1399 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1400 ? TargetOpcode::G_SMULH 1401 : TargetOpcode::G_UMULH; 1402 1403 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1404 MIRBuilder.buildInstr(Opcode) 1405 .addDef(HiPart) 1406 .addUse(LHS) 1407 .addUse(RHS); 1408 1409 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1410 MIRBuilder.buildConstant(Zero, 0); 1411 1412 // For *signed* multiply, overflow is detected by checking: 1413 // (hi != (lo >> bitwidth-1)) 1414 if (Opcode == TargetOpcode::G_SMULH) { 1415 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1416 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1417 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1418 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1419 .addDef(Shifted) 1420 .addUse(Res) 1421 .addUse(ShiftAmt); 1422 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1423 } else { 1424 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1425 } 1426 MI.eraseFromParent(); 1427 return Legalized; 1428 } 1429 case TargetOpcode::G_FNEG: { 1430 // TODO: Handle vector types once we are able to 1431 // represent them. 1432 if (Ty.isVector()) 1433 return UnableToLegalize; 1434 unsigned Res = MI.getOperand(0).getReg(); 1435 Type *ZeroTy; 1436 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1437 switch (Ty.getSizeInBits()) { 1438 case 16: 1439 ZeroTy = Type::getHalfTy(Ctx); 1440 break; 1441 case 32: 1442 ZeroTy = Type::getFloatTy(Ctx); 1443 break; 1444 case 64: 1445 ZeroTy = Type::getDoubleTy(Ctx); 1446 break; 1447 case 128: 1448 ZeroTy = Type::getFP128Ty(Ctx); 1449 break; 1450 default: 1451 llvm_unreachable("unexpected floating-point type"); 1452 } 1453 ConstantFP &ZeroForNegation = 1454 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1455 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1456 unsigned SubByReg = MI.getOperand(1).getReg(); 1457 unsigned ZeroReg = Zero->getOperand(0).getReg(); 1458 MachineInstr *SrcMI = MRI.getVRegDef(SubByReg); 1459 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1460 SrcMI->getFlags()); 1461 MI.eraseFromParent(); 1462 return Legalized; 1463 } 1464 case TargetOpcode::G_FSUB: { 1465 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1466 // First, check if G_FNEG is marked as Lower. If so, we may 1467 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1468 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1469 return UnableToLegalize; 1470 unsigned Res = MI.getOperand(0).getReg(); 1471 unsigned LHS = MI.getOperand(1).getReg(); 1472 unsigned RHS = MI.getOperand(2).getReg(); 1473 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1474 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1475 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1476 MI.eraseFromParent(); 1477 return Legalized; 1478 } 1479 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1480 unsigned OldValRes = MI.getOperand(0).getReg(); 1481 unsigned SuccessRes = MI.getOperand(1).getReg(); 1482 unsigned Addr = MI.getOperand(2).getReg(); 1483 unsigned CmpVal = MI.getOperand(3).getReg(); 1484 unsigned NewVal = MI.getOperand(4).getReg(); 1485 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1486 **MI.memoperands_begin()); 1487 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1488 MI.eraseFromParent(); 1489 return Legalized; 1490 } 1491 case TargetOpcode::G_LOAD: 1492 case TargetOpcode::G_SEXTLOAD: 1493 case TargetOpcode::G_ZEXTLOAD: { 1494 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1495 unsigned DstReg = MI.getOperand(0).getReg(); 1496 unsigned PtrReg = MI.getOperand(1).getReg(); 1497 LLT DstTy = MRI.getType(DstReg); 1498 auto &MMO = **MI.memoperands_begin(); 1499 1500 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1501 // In the case of G_LOAD, this was a non-extending load already and we're 1502 // about to lower to the same instruction. 1503 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1504 return UnableToLegalize; 1505 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1506 MI.eraseFromParent(); 1507 return Legalized; 1508 } 1509 1510 if (DstTy.isScalar()) { 1511 unsigned TmpReg = 1512 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1513 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1514 switch (MI.getOpcode()) { 1515 default: 1516 llvm_unreachable("Unexpected opcode"); 1517 case TargetOpcode::G_LOAD: 1518 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1519 break; 1520 case TargetOpcode::G_SEXTLOAD: 1521 MIRBuilder.buildSExt(DstReg, TmpReg); 1522 break; 1523 case TargetOpcode::G_ZEXTLOAD: 1524 MIRBuilder.buildZExt(DstReg, TmpReg); 1525 break; 1526 } 1527 MI.eraseFromParent(); 1528 return Legalized; 1529 } 1530 1531 return UnableToLegalize; 1532 } 1533 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1534 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1535 case TargetOpcode::G_CTLZ: 1536 case TargetOpcode::G_CTTZ: 1537 case TargetOpcode::G_CTPOP: 1538 return lowerBitCount(MI, TypeIdx, Ty); 1539 case G_UADDO: { 1540 unsigned Res = MI.getOperand(0).getReg(); 1541 unsigned CarryOut = MI.getOperand(1).getReg(); 1542 unsigned LHS = MI.getOperand(2).getReg(); 1543 unsigned RHS = MI.getOperand(3).getReg(); 1544 1545 MIRBuilder.buildAdd(Res, LHS, RHS); 1546 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1547 1548 MI.eraseFromParent(); 1549 return Legalized; 1550 } 1551 case G_UADDE: { 1552 unsigned Res = MI.getOperand(0).getReg(); 1553 unsigned CarryOut = MI.getOperand(1).getReg(); 1554 unsigned LHS = MI.getOperand(2).getReg(); 1555 unsigned RHS = MI.getOperand(3).getReg(); 1556 unsigned CarryIn = MI.getOperand(4).getReg(); 1557 1558 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1559 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1560 1561 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1562 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1563 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1564 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1565 1566 MI.eraseFromParent(); 1567 return Legalized; 1568 } 1569 case G_USUBO: { 1570 unsigned Res = MI.getOperand(0).getReg(); 1571 unsigned BorrowOut = MI.getOperand(1).getReg(); 1572 unsigned LHS = MI.getOperand(2).getReg(); 1573 unsigned RHS = MI.getOperand(3).getReg(); 1574 1575 MIRBuilder.buildSub(Res, LHS, RHS); 1576 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1577 1578 MI.eraseFromParent(); 1579 return Legalized; 1580 } 1581 case G_USUBE: { 1582 unsigned Res = MI.getOperand(0).getReg(); 1583 unsigned BorrowOut = MI.getOperand(1).getReg(); 1584 unsigned LHS = MI.getOperand(2).getReg(); 1585 unsigned RHS = MI.getOperand(3).getReg(); 1586 unsigned BorrowIn = MI.getOperand(4).getReg(); 1587 1588 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1589 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1590 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1591 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1592 1593 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1594 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1595 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1596 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1597 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1598 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1599 1600 MI.eraseFromParent(); 1601 return Legalized; 1602 } 1603 case G_UITOFP: 1604 return lowerUITOFP(MI, TypeIdx, Ty); 1605 case G_SITOFP: 1606 return lowerSITOFP(MI, TypeIdx, Ty); 1607 } 1608 } 1609 1610 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1611 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1612 SmallVector<unsigned, 2> DstRegs; 1613 1614 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1615 unsigned DstReg = MI.getOperand(0).getReg(); 1616 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1617 int NumParts = Size / NarrowSize; 1618 // FIXME: Don't know how to handle the situation where the small vectors 1619 // aren't all the same size yet. 1620 if (Size % NarrowSize != 0) 1621 return UnableToLegalize; 1622 1623 for (int i = 0; i < NumParts; ++i) { 1624 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1625 MIRBuilder.buildUndef(TmpReg); 1626 DstRegs.push_back(TmpReg); 1627 } 1628 1629 if (NarrowTy.isVector()) 1630 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1631 else 1632 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1633 1634 MI.eraseFromParent(); 1635 return Legalized; 1636 } 1637 1638 LegalizerHelper::LegalizeResult 1639 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1640 LLT NarrowTy) { 1641 const unsigned Opc = MI.getOpcode(); 1642 const unsigned NumOps = MI.getNumOperands() - 1; 1643 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1644 const unsigned DstReg = MI.getOperand(0).getReg(); 1645 const unsigned Flags = MI.getFlags(); 1646 const LLT DstTy = MRI.getType(DstReg); 1647 const unsigned Size = DstTy.getSizeInBits(); 1648 const int NumParts = Size / NarrowSize; 1649 const LLT EltTy = DstTy.getElementType(); 1650 const unsigned EltSize = EltTy.getSizeInBits(); 1651 const unsigned BitsForNumParts = NarrowSize * NumParts; 1652 1653 // Check if we have any leftovers. If we do, then only handle the case where 1654 // the leftover is one element. 1655 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1656 return UnableToLegalize; 1657 1658 if (BitsForNumParts != Size) { 1659 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1660 MIRBuilder.buildUndef(AccumDstReg); 1661 1662 // Handle the pieces which evenly divide into the requested type with 1663 // extract/op/insert sequence. 1664 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1665 SmallVector<SrcOp, 4> SrcOps; 1666 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1667 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1668 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1669 SrcOps.push_back(PartOpReg); 1670 } 1671 1672 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1673 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1674 1675 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1676 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1677 AccumDstReg = PartInsertReg; 1678 } 1679 1680 // Handle the remaining element sized leftover piece. 1681 SmallVector<SrcOp, 4> SrcOps; 1682 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1683 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1684 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1685 BitsForNumParts); 1686 SrcOps.push_back(PartOpReg); 1687 } 1688 1689 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1690 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1691 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1692 MI.eraseFromParent(); 1693 1694 return Legalized; 1695 } 1696 1697 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1698 1699 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1700 1701 if (NumOps >= 2) 1702 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1703 1704 if (NumOps >= 3) 1705 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1706 1707 for (int i = 0; i < NumParts; ++i) { 1708 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1709 1710 if (NumOps == 1) 1711 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1712 else if (NumOps == 2) { 1713 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1714 } else if (NumOps == 3) { 1715 MIRBuilder.buildInstr(Opc, {DstReg}, 1716 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1717 } 1718 1719 DstRegs.push_back(DstReg); 1720 } 1721 1722 if (NarrowTy.isVector()) 1723 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1724 else 1725 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1726 1727 MI.eraseFromParent(); 1728 return Legalized; 1729 } 1730 1731 // Handle splitting vector operations which need to have the same number of 1732 // elements in each type index, but each type index may have a different element 1733 // type. 1734 // 1735 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1736 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1737 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1738 // 1739 // Also handles some irregular breakdown cases, e.g. 1740 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1741 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1742 // s64 = G_SHL s64, s32 1743 LegalizerHelper::LegalizeResult 1744 LegalizerHelper::fewerElementsVectorMultiEltType( 1745 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1746 if (TypeIdx != 0) 1747 return UnableToLegalize; 1748 1749 const LLT NarrowTy0 = NarrowTyArg; 1750 const unsigned NewNumElts = 1751 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1752 1753 const unsigned DstReg = MI.getOperand(0).getReg(); 1754 LLT DstTy = MRI.getType(DstReg); 1755 LLT LeftoverTy0; 1756 1757 int NumParts, NumLeftover; 1758 // All of the operands need to have the same number of elements, so if we can 1759 // determine a type breakdown for the result type, we can for all of the 1760 // source types. 1761 std::tie(NumParts, NumLeftover) 1762 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1763 if (NumParts < 0) 1764 return UnableToLegalize; 1765 1766 SmallVector<MachineInstrBuilder, 4> NewInsts; 1767 1768 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1769 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1770 1771 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1772 LLT LeftoverTy; 1773 unsigned SrcReg = MI.getOperand(I).getReg(); 1774 LLT SrcTyI = MRI.getType(SrcReg); 1775 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1776 LLT LeftoverTyI; 1777 1778 // Split this operand into the requested typed registers, and any leftover 1779 // required to reproduce the original type. 1780 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1781 LeftoverRegs)) 1782 return UnableToLegalize; 1783 1784 if (I == 1) { 1785 // For the first operand, create an instruction for each part and setup 1786 // the result. 1787 for (unsigned PartReg : PartRegs) { 1788 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1789 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1790 .addDef(PartDstReg) 1791 .addUse(PartReg)); 1792 DstRegs.push_back(PartDstReg); 1793 } 1794 1795 for (unsigned LeftoverReg : LeftoverRegs) { 1796 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1797 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1798 .addDef(PartDstReg) 1799 .addUse(LeftoverReg)); 1800 LeftoverDstRegs.push_back(PartDstReg); 1801 } 1802 } else { 1803 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1804 1805 // Add the newly created operand splits to the existing instructions. The 1806 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1807 // pieces. 1808 unsigned InstCount = 0; 1809 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1810 NewInsts[InstCount++].addUse(PartRegs[J]); 1811 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1812 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1813 } 1814 1815 PartRegs.clear(); 1816 LeftoverRegs.clear(); 1817 } 1818 1819 // Insert the newly built operations and rebuild the result register. 1820 for (auto &MIB : NewInsts) 1821 MIRBuilder.insertInstr(MIB); 1822 1823 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1824 1825 MI.eraseFromParent(); 1826 return Legalized; 1827 } 1828 1829 LegalizerHelper::LegalizeResult 1830 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1831 LLT NarrowTy) { 1832 if (TypeIdx != 0) 1833 return UnableToLegalize; 1834 1835 unsigned DstReg = MI.getOperand(0).getReg(); 1836 unsigned SrcReg = MI.getOperand(1).getReg(); 1837 LLT DstTy = MRI.getType(DstReg); 1838 LLT SrcTy = MRI.getType(SrcReg); 1839 1840 LLT NarrowTy0 = NarrowTy; 1841 LLT NarrowTy1; 1842 unsigned NumParts; 1843 1844 if (NarrowTy.isVector()) { 1845 // Uneven breakdown not handled. 1846 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1847 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1848 return UnableToLegalize; 1849 1850 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1851 } else { 1852 NumParts = DstTy.getNumElements(); 1853 NarrowTy1 = SrcTy.getElementType(); 1854 } 1855 1856 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1857 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1858 1859 for (unsigned I = 0; I < NumParts; ++I) { 1860 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1861 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1862 .addDef(DstReg) 1863 .addUse(SrcRegs[I]); 1864 1865 NewInst->setFlags(MI.getFlags()); 1866 DstRegs.push_back(DstReg); 1867 } 1868 1869 if (NarrowTy.isVector()) 1870 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1871 else 1872 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1873 1874 MI.eraseFromParent(); 1875 return Legalized; 1876 } 1877 1878 LegalizerHelper::LegalizeResult 1879 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1880 LLT NarrowTy) { 1881 unsigned DstReg = MI.getOperand(0).getReg(); 1882 unsigned Src0Reg = MI.getOperand(2).getReg(); 1883 LLT DstTy = MRI.getType(DstReg); 1884 LLT SrcTy = MRI.getType(Src0Reg); 1885 1886 unsigned NumParts; 1887 LLT NarrowTy0, NarrowTy1; 1888 1889 if (TypeIdx == 0) { 1890 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1891 unsigned OldElts = DstTy.getNumElements(); 1892 1893 NarrowTy0 = NarrowTy; 1894 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1895 NarrowTy1 = NarrowTy.isVector() ? 1896 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1897 SrcTy.getElementType(); 1898 1899 } else { 1900 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1901 unsigned OldElts = SrcTy.getNumElements(); 1902 1903 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1904 NarrowTy.getNumElements(); 1905 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1906 DstTy.getScalarSizeInBits()); 1907 NarrowTy1 = NarrowTy; 1908 } 1909 1910 // FIXME: Don't know how to handle the situation where the small vectors 1911 // aren't all the same size yet. 1912 if (NarrowTy1.isVector() && 1913 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1914 return UnableToLegalize; 1915 1916 CmpInst::Predicate Pred 1917 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1918 1919 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1920 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1921 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1922 1923 for (unsigned I = 0; I < NumParts; ++I) { 1924 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1925 DstRegs.push_back(DstReg); 1926 1927 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1928 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1929 else { 1930 MachineInstr *NewCmp 1931 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1932 NewCmp->setFlags(MI.getFlags()); 1933 } 1934 } 1935 1936 if (NarrowTy1.isVector()) 1937 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1938 else 1939 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1940 1941 MI.eraseFromParent(); 1942 return Legalized; 1943 } 1944 1945 LegalizerHelper::LegalizeResult 1946 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1947 LLT NarrowTy) { 1948 unsigned DstReg = MI.getOperand(0).getReg(); 1949 unsigned CondReg = MI.getOperand(1).getReg(); 1950 1951 unsigned NumParts = 0; 1952 LLT NarrowTy0, NarrowTy1; 1953 1954 LLT DstTy = MRI.getType(DstReg); 1955 LLT CondTy = MRI.getType(CondReg); 1956 unsigned Size = DstTy.getSizeInBits(); 1957 1958 assert(TypeIdx == 0 || CondTy.isVector()); 1959 1960 if (TypeIdx == 0) { 1961 NarrowTy0 = NarrowTy; 1962 NarrowTy1 = CondTy; 1963 1964 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1965 // FIXME: Don't know how to handle the situation where the small vectors 1966 // aren't all the same size yet. 1967 if (Size % NarrowSize != 0) 1968 return UnableToLegalize; 1969 1970 NumParts = Size / NarrowSize; 1971 1972 // Need to break down the condition type 1973 if (CondTy.isVector()) { 1974 if (CondTy.getNumElements() == NumParts) 1975 NarrowTy1 = CondTy.getElementType(); 1976 else 1977 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1978 CondTy.getScalarSizeInBits()); 1979 } 1980 } else { 1981 NumParts = CondTy.getNumElements(); 1982 if (NarrowTy.isVector()) { 1983 // TODO: Handle uneven breakdown. 1984 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1985 return UnableToLegalize; 1986 1987 return UnableToLegalize; 1988 } else { 1989 NarrowTy0 = DstTy.getElementType(); 1990 NarrowTy1 = NarrowTy; 1991 } 1992 } 1993 1994 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1995 if (CondTy.isVector()) 1996 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 1997 1998 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 1999 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2000 2001 for (unsigned i = 0; i < NumParts; ++i) { 2002 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2003 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2004 Src1Regs[i], Src2Regs[i]); 2005 DstRegs.push_back(DstReg); 2006 } 2007 2008 if (NarrowTy0.isVector()) 2009 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2010 else 2011 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2012 2013 MI.eraseFromParent(); 2014 return Legalized; 2015 } 2016 2017 LegalizerHelper::LegalizeResult 2018 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2019 LLT NarrowTy) { 2020 const unsigned DstReg = MI.getOperand(0).getReg(); 2021 LLT PhiTy = MRI.getType(DstReg); 2022 LLT LeftoverTy; 2023 2024 // All of the operands need to have the same number of elements, so if we can 2025 // determine a type breakdown for the result type, we can for all of the 2026 // source types. 2027 int NumParts, NumLeftover; 2028 std::tie(NumParts, NumLeftover) 2029 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2030 if (NumParts < 0) 2031 return UnableToLegalize; 2032 2033 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2034 SmallVector<MachineInstrBuilder, 4> NewInsts; 2035 2036 const int TotalNumParts = NumParts + NumLeftover; 2037 2038 // Insert the new phis in the result block first. 2039 for (int I = 0; I != TotalNumParts; ++I) { 2040 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2041 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2042 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2043 .addDef(PartDstReg)); 2044 if (I < NumParts) 2045 DstRegs.push_back(PartDstReg); 2046 else 2047 LeftoverDstRegs.push_back(PartDstReg); 2048 } 2049 2050 MachineBasicBlock *MBB = MI.getParent(); 2051 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2052 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2053 2054 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2055 2056 // Insert code to extract the incoming values in each predecessor block. 2057 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2058 PartRegs.clear(); 2059 LeftoverRegs.clear(); 2060 2061 unsigned SrcReg = MI.getOperand(I).getReg(); 2062 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2063 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2064 2065 LLT Unused; 2066 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2067 LeftoverRegs)) 2068 return UnableToLegalize; 2069 2070 // Add the newly created operand splits to the existing instructions. The 2071 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2072 // pieces. 2073 for (int J = 0; J != TotalNumParts; ++J) { 2074 MachineInstrBuilder MIB = NewInsts[J]; 2075 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2076 MIB.addMBB(&OpMBB); 2077 } 2078 } 2079 2080 MI.eraseFromParent(); 2081 return Legalized; 2082 } 2083 2084 LegalizerHelper::LegalizeResult 2085 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2086 LLT NarrowTy) { 2087 // FIXME: Don't know how to handle secondary types yet. 2088 if (TypeIdx != 0) 2089 return UnableToLegalize; 2090 2091 MachineMemOperand *MMO = *MI.memoperands_begin(); 2092 2093 // This implementation doesn't work for atomics. Give up instead of doing 2094 // something invalid. 2095 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2096 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2097 return UnableToLegalize; 2098 2099 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2100 unsigned ValReg = MI.getOperand(0).getReg(); 2101 unsigned AddrReg = MI.getOperand(1).getReg(); 2102 LLT ValTy = MRI.getType(ValReg); 2103 2104 int NumParts = -1; 2105 int NumLeftover = -1; 2106 LLT LeftoverTy; 2107 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2108 if (IsLoad) { 2109 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2110 } else { 2111 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2112 NarrowLeftoverRegs)) { 2113 NumParts = NarrowRegs.size(); 2114 NumLeftover = NarrowLeftoverRegs.size(); 2115 } 2116 } 2117 2118 if (NumParts == -1) 2119 return UnableToLegalize; 2120 2121 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2122 2123 unsigned TotalSize = ValTy.getSizeInBits(); 2124 2125 // Split the load/store into PartTy sized pieces starting at Offset. If this 2126 // is a load, return the new registers in ValRegs. For a store, each elements 2127 // of ValRegs should be PartTy. Returns the next offset that needs to be 2128 // handled. 2129 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2130 unsigned Offset) -> unsigned { 2131 MachineFunction &MF = MIRBuilder.getMF(); 2132 unsigned PartSize = PartTy.getSizeInBits(); 2133 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2134 Offset += PartSize, ++Idx) { 2135 unsigned ByteSize = PartSize / 8; 2136 unsigned ByteOffset = Offset / 8; 2137 unsigned NewAddrReg = 0; 2138 2139 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2140 2141 MachineMemOperand *NewMMO = 2142 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2143 2144 if (IsLoad) { 2145 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2146 ValRegs.push_back(Dst); 2147 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2148 } else { 2149 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2150 } 2151 } 2152 2153 return Offset; 2154 }; 2155 2156 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2157 2158 // Handle the rest of the register if this isn't an even type breakdown. 2159 if (LeftoverTy.isValid()) 2160 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2161 2162 if (IsLoad) { 2163 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2164 LeftoverTy, NarrowLeftoverRegs); 2165 } 2166 2167 MI.eraseFromParent(); 2168 return Legalized; 2169 } 2170 2171 LegalizerHelper::LegalizeResult 2172 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2173 LLT NarrowTy) { 2174 using namespace TargetOpcode; 2175 2176 MIRBuilder.setInstr(MI); 2177 switch (MI.getOpcode()) { 2178 case G_IMPLICIT_DEF: 2179 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2180 case G_AND: 2181 case G_OR: 2182 case G_XOR: 2183 case G_ADD: 2184 case G_SUB: 2185 case G_MUL: 2186 case G_SMULH: 2187 case G_UMULH: 2188 case G_FADD: 2189 case G_FMUL: 2190 case G_FSUB: 2191 case G_FNEG: 2192 case G_FABS: 2193 case G_FCANONICALIZE: 2194 case G_FDIV: 2195 case G_FREM: 2196 case G_FMA: 2197 case G_FPOW: 2198 case G_FEXP: 2199 case G_FEXP2: 2200 case G_FLOG: 2201 case G_FLOG2: 2202 case G_FLOG10: 2203 case G_FNEARBYINT: 2204 case G_FCEIL: 2205 case G_FFLOOR: 2206 case G_FRINT: 2207 case G_INTRINSIC_ROUND: 2208 case G_INTRINSIC_TRUNC: 2209 case G_FCOS: 2210 case G_FSIN: 2211 case G_FSQRT: 2212 case G_BSWAP: 2213 case G_SDIV: 2214 case G_SMIN: 2215 case G_SMAX: 2216 case G_UMIN: 2217 case G_UMAX: 2218 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2219 case G_SHL: 2220 case G_LSHR: 2221 case G_ASHR: 2222 case G_CTLZ: 2223 case G_CTLZ_ZERO_UNDEF: 2224 case G_CTTZ: 2225 case G_CTTZ_ZERO_UNDEF: 2226 case G_CTPOP: 2227 case G_FCOPYSIGN: 2228 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2229 case G_ZEXT: 2230 case G_SEXT: 2231 case G_ANYEXT: 2232 case G_FPEXT: 2233 case G_FPTRUNC: 2234 case G_SITOFP: 2235 case G_UITOFP: 2236 case G_FPTOSI: 2237 case G_FPTOUI: 2238 case G_INTTOPTR: 2239 case G_PTRTOINT: 2240 case G_ADDRSPACE_CAST: 2241 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2242 case G_ICMP: 2243 case G_FCMP: 2244 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2245 case G_SELECT: 2246 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2247 case G_PHI: 2248 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2249 case G_LOAD: 2250 case G_STORE: 2251 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2252 default: 2253 return UnableToLegalize; 2254 } 2255 } 2256 2257 LegalizerHelper::LegalizeResult 2258 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2259 const LLT HalfTy, const LLT AmtTy) { 2260 2261 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2262 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2263 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2264 2265 if (Amt.isNullValue()) { 2266 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2267 MI.eraseFromParent(); 2268 return Legalized; 2269 } 2270 2271 LLT NVT = HalfTy; 2272 unsigned NVTBits = HalfTy.getSizeInBits(); 2273 unsigned VTBits = 2 * NVTBits; 2274 2275 SrcOp Lo(0), Hi(0); 2276 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2277 if (Amt.ugt(VTBits)) { 2278 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2279 } else if (Amt.ugt(NVTBits)) { 2280 Lo = MIRBuilder.buildConstant(NVT, 0); 2281 Hi = MIRBuilder.buildShl(NVT, InL, 2282 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2283 } else if (Amt == NVTBits) { 2284 Lo = MIRBuilder.buildConstant(NVT, 0); 2285 Hi = InL; 2286 } else { 2287 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2288 auto OrLHS = 2289 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2290 auto OrRHS = MIRBuilder.buildLShr( 2291 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2292 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2293 } 2294 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2295 if (Amt.ugt(VTBits)) { 2296 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2297 } else if (Amt.ugt(NVTBits)) { 2298 Lo = MIRBuilder.buildLShr(NVT, InH, 2299 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2300 Hi = MIRBuilder.buildConstant(NVT, 0); 2301 } else if (Amt == NVTBits) { 2302 Lo = InH; 2303 Hi = MIRBuilder.buildConstant(NVT, 0); 2304 } else { 2305 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2306 2307 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2308 auto OrRHS = MIRBuilder.buildShl( 2309 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2310 2311 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2312 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2313 } 2314 } else { 2315 if (Amt.ugt(VTBits)) { 2316 Hi = Lo = MIRBuilder.buildAShr( 2317 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2318 } else if (Amt.ugt(NVTBits)) { 2319 Lo = MIRBuilder.buildAShr(NVT, InH, 2320 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2321 Hi = MIRBuilder.buildAShr(NVT, InH, 2322 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2323 } else if (Amt == NVTBits) { 2324 Lo = InH; 2325 Hi = MIRBuilder.buildAShr(NVT, InH, 2326 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2327 } else { 2328 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2329 2330 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2331 auto OrRHS = MIRBuilder.buildShl( 2332 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2333 2334 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2335 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2336 } 2337 } 2338 2339 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2340 MI.eraseFromParent(); 2341 2342 return Legalized; 2343 } 2344 2345 // TODO: Optimize if constant shift amount. 2346 LegalizerHelper::LegalizeResult 2347 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2348 LLT RequestedTy) { 2349 if (TypeIdx == 1) { 2350 Observer.changingInstr(MI); 2351 narrowScalarSrc(MI, RequestedTy, 2); 2352 Observer.changedInstr(MI); 2353 return Legalized; 2354 } 2355 2356 unsigned DstReg = MI.getOperand(0).getReg(); 2357 LLT DstTy = MRI.getType(DstReg); 2358 if (DstTy.isVector()) 2359 return UnableToLegalize; 2360 2361 unsigned Amt = MI.getOperand(2).getReg(); 2362 LLT ShiftAmtTy = MRI.getType(Amt); 2363 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2364 if (DstEltSize % 2 != 0) 2365 return UnableToLegalize; 2366 2367 // Ignore the input type. We can only go to exactly half the size of the 2368 // input. If that isn't small enough, the resulting pieces will be further 2369 // legalized. 2370 const unsigned NewBitSize = DstEltSize / 2; 2371 const LLT HalfTy = LLT::scalar(NewBitSize); 2372 const LLT CondTy = LLT::scalar(1); 2373 2374 if (const MachineInstr *KShiftAmt = 2375 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2376 return narrowScalarShiftByConstant( 2377 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2378 } 2379 2380 // TODO: Expand with known bits. 2381 2382 // Handle the fully general expansion by an unknown amount. 2383 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2384 2385 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2386 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2387 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2388 2389 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2390 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2391 2392 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2393 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2394 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2395 2396 unsigned ResultRegs[2]; 2397 switch (MI.getOpcode()) { 2398 case TargetOpcode::G_SHL: { 2399 // Short: ShAmt < NewBitSize 2400 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2401 2402 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2403 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2404 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2405 2406 // Long: ShAmt >= NewBitSize 2407 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2408 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2409 2410 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2411 auto Hi = MIRBuilder.buildSelect( 2412 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2413 2414 ResultRegs[0] = Lo.getReg(0); 2415 ResultRegs[1] = Hi.getReg(0); 2416 break; 2417 } 2418 case TargetOpcode::G_LSHR: { 2419 // Short: ShAmt < NewBitSize 2420 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2421 2422 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2423 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2424 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2425 2426 // Long: ShAmt >= NewBitSize 2427 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2428 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2429 2430 auto Lo = MIRBuilder.buildSelect( 2431 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2432 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2433 2434 ResultRegs[0] = Lo.getReg(0); 2435 ResultRegs[1] = Hi.getReg(0); 2436 break; 2437 } 2438 case TargetOpcode::G_ASHR: { 2439 // Short: ShAmt < NewBitSize 2440 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2441 2442 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2443 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2444 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2445 2446 // Long: ShAmt >= NewBitSize 2447 2448 // Sign of Hi part. 2449 auto HiL = MIRBuilder.buildAShr( 2450 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2451 2452 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2453 2454 auto Lo = MIRBuilder.buildSelect( 2455 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2456 2457 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2458 2459 ResultRegs[0] = Lo.getReg(0); 2460 ResultRegs[1] = Hi.getReg(0); 2461 break; 2462 } 2463 default: 2464 llvm_unreachable("not a shift"); 2465 } 2466 2467 MIRBuilder.buildMerge(DstReg, ResultRegs); 2468 MI.eraseFromParent(); 2469 return Legalized; 2470 } 2471 2472 LegalizerHelper::LegalizeResult 2473 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2474 LLT MoreTy) { 2475 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2476 2477 Observer.changingInstr(MI); 2478 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2479 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2480 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2481 moreElementsVectorSrc(MI, MoreTy, I); 2482 } 2483 2484 MachineBasicBlock &MBB = *MI.getParent(); 2485 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2486 moreElementsVectorDst(MI, MoreTy, 0); 2487 Observer.changedInstr(MI); 2488 return Legalized; 2489 } 2490 2491 LegalizerHelper::LegalizeResult 2492 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2493 LLT MoreTy) { 2494 MIRBuilder.setInstr(MI); 2495 unsigned Opc = MI.getOpcode(); 2496 switch (Opc) { 2497 case TargetOpcode::G_IMPLICIT_DEF: { 2498 Observer.changingInstr(MI); 2499 moreElementsVectorDst(MI, MoreTy, 0); 2500 Observer.changedInstr(MI); 2501 return Legalized; 2502 } 2503 case TargetOpcode::G_AND: 2504 case TargetOpcode::G_OR: 2505 case TargetOpcode::G_XOR: 2506 case TargetOpcode::G_SMIN: 2507 case TargetOpcode::G_SMAX: 2508 case TargetOpcode::G_UMIN: 2509 case TargetOpcode::G_UMAX: { 2510 Observer.changingInstr(MI); 2511 moreElementsVectorSrc(MI, MoreTy, 1); 2512 moreElementsVectorSrc(MI, MoreTy, 2); 2513 moreElementsVectorDst(MI, MoreTy, 0); 2514 Observer.changedInstr(MI); 2515 return Legalized; 2516 } 2517 case TargetOpcode::G_EXTRACT: 2518 if (TypeIdx != 1) 2519 return UnableToLegalize; 2520 Observer.changingInstr(MI); 2521 moreElementsVectorSrc(MI, MoreTy, 1); 2522 Observer.changedInstr(MI); 2523 return Legalized; 2524 case TargetOpcode::G_INSERT: 2525 if (TypeIdx != 0) 2526 return UnableToLegalize; 2527 Observer.changingInstr(MI); 2528 moreElementsVectorSrc(MI, MoreTy, 1); 2529 moreElementsVectorDst(MI, MoreTy, 0); 2530 Observer.changedInstr(MI); 2531 return Legalized; 2532 case TargetOpcode::G_SELECT: 2533 if (TypeIdx != 0) 2534 return UnableToLegalize; 2535 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2536 return UnableToLegalize; 2537 2538 Observer.changingInstr(MI); 2539 moreElementsVectorSrc(MI, MoreTy, 2); 2540 moreElementsVectorSrc(MI, MoreTy, 3); 2541 moreElementsVectorDst(MI, MoreTy, 0); 2542 Observer.changedInstr(MI); 2543 return Legalized; 2544 case TargetOpcode::G_PHI: 2545 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2546 default: 2547 return UnableToLegalize; 2548 } 2549 } 2550 2551 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs, 2552 ArrayRef<unsigned> Src1Regs, 2553 ArrayRef<unsigned> Src2Regs, 2554 LLT NarrowTy) { 2555 MachineIRBuilder &B = MIRBuilder; 2556 unsigned SrcParts = Src1Regs.size(); 2557 unsigned DstParts = DstRegs.size(); 2558 2559 unsigned DstIdx = 0; // Low bits of the result. 2560 unsigned FactorSum = 2561 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2562 DstRegs[DstIdx] = FactorSum; 2563 2564 unsigned CarrySumPrevDstIdx; 2565 SmallVector<unsigned, 4> Factors; 2566 2567 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2568 // Collect low parts of muls for DstIdx. 2569 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2570 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2571 MachineInstrBuilder Mul = 2572 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2573 Factors.push_back(Mul.getReg(0)); 2574 } 2575 // Collect high parts of muls from previous DstIdx. 2576 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2577 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2578 MachineInstrBuilder Umulh = 2579 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2580 Factors.push_back(Umulh.getReg(0)); 2581 } 2582 // Add CarrySum from additons calculated for previous DstIdx. 2583 if (DstIdx != 1) { 2584 Factors.push_back(CarrySumPrevDstIdx); 2585 } 2586 2587 unsigned CarrySum = 0; 2588 // Add all factors and accumulate all carries into CarrySum. 2589 if (DstIdx != DstParts - 1) { 2590 MachineInstrBuilder Uaddo = 2591 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2592 FactorSum = Uaddo.getReg(0); 2593 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2594 for (unsigned i = 2; i < Factors.size(); ++i) { 2595 MachineInstrBuilder Uaddo = 2596 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2597 FactorSum = Uaddo.getReg(0); 2598 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2599 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2600 } 2601 } else { 2602 // Since value for the next index is not calculated, neither is CarrySum. 2603 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2604 for (unsigned i = 2; i < Factors.size(); ++i) 2605 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2606 } 2607 2608 CarrySumPrevDstIdx = CarrySum; 2609 DstRegs[DstIdx] = FactorSum; 2610 Factors.clear(); 2611 } 2612 } 2613 2614 LegalizerHelper::LegalizeResult 2615 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2616 unsigned DstReg = MI.getOperand(0).getReg(); 2617 unsigned Src1 = MI.getOperand(1).getReg(); 2618 unsigned Src2 = MI.getOperand(2).getReg(); 2619 2620 LLT Ty = MRI.getType(DstReg); 2621 if (Ty.isVector()) 2622 return UnableToLegalize; 2623 2624 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2625 unsigned DstSize = Ty.getSizeInBits(); 2626 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2627 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2628 return UnableToLegalize; 2629 2630 unsigned NumDstParts = DstSize / NarrowSize; 2631 unsigned NumSrcParts = SrcSize / NarrowSize; 2632 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2633 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2634 2635 SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs; 2636 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2637 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2638 DstTmpRegs.resize(DstTmpParts); 2639 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2640 2641 // Take only high half of registers if this is high mul. 2642 ArrayRef<unsigned> DstRegs( 2643 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2644 MIRBuilder.buildMerge(DstReg, DstRegs); 2645 MI.eraseFromParent(); 2646 return Legalized; 2647 } 2648 2649 LegalizerHelper::LegalizeResult 2650 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2651 LLT NarrowTy) { 2652 if (TypeIdx != 1) 2653 return UnableToLegalize; 2654 2655 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2656 2657 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2658 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2659 // NarrowSize. 2660 if (SizeOp1 % NarrowSize != 0) 2661 return UnableToLegalize; 2662 int NumParts = SizeOp1 / NarrowSize; 2663 2664 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2665 SmallVector<uint64_t, 2> Indexes; 2666 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2667 2668 unsigned OpReg = MI.getOperand(0).getReg(); 2669 uint64_t OpStart = MI.getOperand(2).getImm(); 2670 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2671 for (int i = 0; i < NumParts; ++i) { 2672 unsigned SrcStart = i * NarrowSize; 2673 2674 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2675 // No part of the extract uses this subregister, ignore it. 2676 continue; 2677 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2678 // The entire subregister is extracted, forward the value. 2679 DstRegs.push_back(SrcRegs[i]); 2680 continue; 2681 } 2682 2683 // OpSegStart is where this destination segment would start in OpReg if it 2684 // extended infinitely in both directions. 2685 int64_t ExtractOffset; 2686 uint64_t SegSize; 2687 if (OpStart < SrcStart) { 2688 ExtractOffset = 0; 2689 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2690 } else { 2691 ExtractOffset = OpStart - SrcStart; 2692 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2693 } 2694 2695 unsigned SegReg = SrcRegs[i]; 2696 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2697 // A genuine extract is needed. 2698 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2699 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2700 } 2701 2702 DstRegs.push_back(SegReg); 2703 } 2704 2705 unsigned DstReg = MI.getOperand(0).getReg(); 2706 if(MRI.getType(DstReg).isVector()) 2707 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2708 else 2709 MIRBuilder.buildMerge(DstReg, DstRegs); 2710 MI.eraseFromParent(); 2711 return Legalized; 2712 } 2713 2714 LegalizerHelper::LegalizeResult 2715 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2716 LLT NarrowTy) { 2717 // FIXME: Don't know how to handle secondary types yet. 2718 if (TypeIdx != 0) 2719 return UnableToLegalize; 2720 2721 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2722 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2723 2724 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2725 // NarrowSize. 2726 if (SizeOp0 % NarrowSize != 0) 2727 return UnableToLegalize; 2728 2729 int NumParts = SizeOp0 / NarrowSize; 2730 2731 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2732 SmallVector<uint64_t, 2> Indexes; 2733 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2734 2735 unsigned OpReg = MI.getOperand(2).getReg(); 2736 uint64_t OpStart = MI.getOperand(3).getImm(); 2737 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2738 for (int i = 0; i < NumParts; ++i) { 2739 unsigned DstStart = i * NarrowSize; 2740 2741 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2742 // No part of the insert affects this subregister, forward the original. 2743 DstRegs.push_back(SrcRegs[i]); 2744 continue; 2745 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2746 // The entire subregister is defined by this insert, forward the new 2747 // value. 2748 DstRegs.push_back(OpReg); 2749 continue; 2750 } 2751 2752 // OpSegStart is where this destination segment would start in OpReg if it 2753 // extended infinitely in both directions. 2754 int64_t ExtractOffset, InsertOffset; 2755 uint64_t SegSize; 2756 if (OpStart < DstStart) { 2757 InsertOffset = 0; 2758 ExtractOffset = DstStart - OpStart; 2759 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2760 } else { 2761 InsertOffset = OpStart - DstStart; 2762 ExtractOffset = 0; 2763 SegSize = 2764 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2765 } 2766 2767 unsigned SegReg = OpReg; 2768 if (ExtractOffset != 0 || SegSize != OpSize) { 2769 // A genuine extract is needed. 2770 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2771 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2772 } 2773 2774 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2775 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2776 DstRegs.push_back(DstReg); 2777 } 2778 2779 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2780 unsigned DstReg = MI.getOperand(0).getReg(); 2781 if(MRI.getType(DstReg).isVector()) 2782 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2783 else 2784 MIRBuilder.buildMerge(DstReg, DstRegs); 2785 MI.eraseFromParent(); 2786 return Legalized; 2787 } 2788 2789 LegalizerHelper::LegalizeResult 2790 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2791 LLT NarrowTy) { 2792 unsigned DstReg = MI.getOperand(0).getReg(); 2793 LLT DstTy = MRI.getType(DstReg); 2794 2795 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2796 2797 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2798 SmallVector<unsigned, 4> Src0Regs, Src0LeftoverRegs; 2799 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2800 LLT LeftoverTy; 2801 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2802 Src0Regs, Src0LeftoverRegs)) 2803 return UnableToLegalize; 2804 2805 LLT Unused; 2806 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2807 Src1Regs, Src1LeftoverRegs)) 2808 llvm_unreachable("inconsistent extractParts result"); 2809 2810 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2811 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2812 {Src0Regs[I], Src1Regs[I]}); 2813 DstRegs.push_back(Inst->getOperand(0).getReg()); 2814 } 2815 2816 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2817 auto Inst = MIRBuilder.buildInstr( 2818 MI.getOpcode(), 2819 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2820 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2821 } 2822 2823 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2824 LeftoverTy, DstLeftoverRegs); 2825 2826 MI.eraseFromParent(); 2827 return Legalized; 2828 } 2829 2830 LegalizerHelper::LegalizeResult 2831 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2832 LLT NarrowTy) { 2833 if (TypeIdx != 0) 2834 return UnableToLegalize; 2835 2836 unsigned CondReg = MI.getOperand(1).getReg(); 2837 LLT CondTy = MRI.getType(CondReg); 2838 if (CondTy.isVector()) // TODO: Handle vselect 2839 return UnableToLegalize; 2840 2841 unsigned DstReg = MI.getOperand(0).getReg(); 2842 LLT DstTy = MRI.getType(DstReg); 2843 2844 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2845 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2846 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2847 LLT LeftoverTy; 2848 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2849 Src1Regs, Src1LeftoverRegs)) 2850 return UnableToLegalize; 2851 2852 LLT Unused; 2853 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2854 Src2Regs, Src2LeftoverRegs)) 2855 llvm_unreachable("inconsistent extractParts result"); 2856 2857 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2858 auto Select = MIRBuilder.buildSelect(NarrowTy, 2859 CondReg, Src1Regs[I], Src2Regs[I]); 2860 DstRegs.push_back(Select->getOperand(0).getReg()); 2861 } 2862 2863 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2864 auto Select = MIRBuilder.buildSelect( 2865 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2866 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2867 } 2868 2869 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2870 LeftoverTy, DstLeftoverRegs); 2871 2872 MI.eraseFromParent(); 2873 return Legalized; 2874 } 2875 2876 LegalizerHelper::LegalizeResult 2877 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2878 unsigned Opc = MI.getOpcode(); 2879 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2880 auto isSupported = [this](const LegalityQuery &Q) { 2881 auto QAction = LI.getAction(Q).Action; 2882 return QAction == Legal || QAction == Libcall || QAction == Custom; 2883 }; 2884 switch (Opc) { 2885 default: 2886 return UnableToLegalize; 2887 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2888 // This trivially expands to CTLZ. 2889 Observer.changingInstr(MI); 2890 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2891 Observer.changedInstr(MI); 2892 return Legalized; 2893 } 2894 case TargetOpcode::G_CTLZ: { 2895 unsigned SrcReg = MI.getOperand(1).getReg(); 2896 unsigned Len = Ty.getSizeInBits(); 2897 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2898 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2899 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2900 {Ty}, {SrcReg}); 2901 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2902 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2903 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2904 SrcReg, MIBZero); 2905 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2906 MIBCtlzZU); 2907 MI.eraseFromParent(); 2908 return Legalized; 2909 } 2910 // for now, we do this: 2911 // NewLen = NextPowerOf2(Len); 2912 // x = x | (x >> 1); 2913 // x = x | (x >> 2); 2914 // ... 2915 // x = x | (x >>16); 2916 // x = x | (x >>32); // for 64-bit input 2917 // Upto NewLen/2 2918 // return Len - popcount(x); 2919 // 2920 // Ref: "Hacker's Delight" by Henry Warren 2921 unsigned Op = SrcReg; 2922 unsigned NewLen = PowerOf2Ceil(Len); 2923 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2924 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2925 auto MIBOp = MIRBuilder.buildInstr( 2926 TargetOpcode::G_OR, {Ty}, 2927 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2928 {Op, MIBShiftAmt})}); 2929 Op = MIBOp->getOperand(0).getReg(); 2930 } 2931 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2932 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2933 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2934 MI.eraseFromParent(); 2935 return Legalized; 2936 } 2937 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2938 // This trivially expands to CTTZ. 2939 Observer.changingInstr(MI); 2940 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2941 Observer.changedInstr(MI); 2942 return Legalized; 2943 } 2944 case TargetOpcode::G_CTTZ: { 2945 unsigned SrcReg = MI.getOperand(1).getReg(); 2946 unsigned Len = Ty.getSizeInBits(); 2947 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2948 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2949 // zero. 2950 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2951 {Ty}, {SrcReg}); 2952 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2953 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2954 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2955 SrcReg, MIBZero); 2956 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2957 MIBCttzZU); 2958 MI.eraseFromParent(); 2959 return Legalized; 2960 } 2961 // for now, we use: { return popcount(~x & (x - 1)); } 2962 // unless the target has ctlz but not ctpop, in which case we use: 2963 // { return 32 - nlz(~x & (x-1)); } 2964 // Ref: "Hacker's Delight" by Henry Warren 2965 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2966 auto MIBNot = 2967 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2968 auto MIBTmp = MIRBuilder.buildInstr( 2969 TargetOpcode::G_AND, {Ty}, 2970 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2971 {SrcReg, MIBCstNeg1})}); 2972 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2973 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2974 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2975 MIRBuilder.buildInstr( 2976 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2977 {MIBCstLen, 2978 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2979 MI.eraseFromParent(); 2980 return Legalized; 2981 } 2982 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2983 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2984 return Legalized; 2985 } 2986 } 2987 } 2988 2989 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 2990 // representation. 2991 LegalizerHelper::LegalizeResult 2992 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 2993 unsigned Dst = MI.getOperand(0).getReg(); 2994 unsigned Src = MI.getOperand(1).getReg(); 2995 const LLT S64 = LLT::scalar(64); 2996 const LLT S32 = LLT::scalar(32); 2997 const LLT S1 = LLT::scalar(1); 2998 2999 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3000 3001 // unsigned cul2f(ulong u) { 3002 // uint lz = clz(u); 3003 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3004 // u = (u << lz) & 0x7fffffffffffffffUL; 3005 // ulong t = u & 0xffffffffffUL; 3006 // uint v = (e << 23) | (uint)(u >> 40); 3007 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3008 // return as_float(v + r); 3009 // } 3010 3011 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3012 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3013 3014 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3015 3016 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3017 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3018 3019 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3020 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3021 3022 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3023 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3024 3025 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3026 3027 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3028 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3029 3030 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3031 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3032 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3033 3034 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3035 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3036 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3037 auto One = MIRBuilder.buildConstant(S32, 1); 3038 3039 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3040 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3041 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3042 MIRBuilder.buildAdd(Dst, V, R); 3043 3044 return Legalized; 3045 } 3046 3047 LegalizerHelper::LegalizeResult 3048 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3049 unsigned Dst = MI.getOperand(0).getReg(); 3050 unsigned Src = MI.getOperand(1).getReg(); 3051 LLT DstTy = MRI.getType(Dst); 3052 LLT SrcTy = MRI.getType(Src); 3053 3054 if (SrcTy != LLT::scalar(64)) 3055 return UnableToLegalize; 3056 3057 if (DstTy == LLT::scalar(32)) { 3058 // TODO: SelectionDAG has several alternative expansions to port which may 3059 // be more reasonble depending on the available instructions. If a target 3060 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3061 // intermediate type, this is probably worse. 3062 return lowerU64ToF32BitOps(MI); 3063 } 3064 3065 return UnableToLegalize; 3066 } 3067 3068 LegalizerHelper::LegalizeResult 3069 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3070 unsigned Dst = MI.getOperand(0).getReg(); 3071 unsigned Src = MI.getOperand(1).getReg(); 3072 LLT DstTy = MRI.getType(Dst); 3073 LLT SrcTy = MRI.getType(Src); 3074 3075 const LLT S64 = LLT::scalar(64); 3076 const LLT S32 = LLT::scalar(32); 3077 const LLT S1 = LLT::scalar(1); 3078 3079 if (SrcTy != S64) 3080 return UnableToLegalize; 3081 3082 if (DstTy == S32) { 3083 // signed cl2f(long l) { 3084 // long s = l >> 63; 3085 // float r = cul2f((l + s) ^ s); 3086 // return s ? -r : r; 3087 // } 3088 unsigned L = Src; 3089 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3090 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3091 3092 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3093 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3094 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3095 3096 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3097 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3098 MIRBuilder.buildConstant(S64, 0)); 3099 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3100 return Legalized; 3101 } 3102 3103 return UnableToLegalize; 3104 } 3105