1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FEXP2: 248 assert((Size == 32 || Size == 64) && "Unsupported size"); 249 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 250 case TargetOpcode::G_FREM: 251 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 252 case TargetOpcode::G_FPOW: 253 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 254 case TargetOpcode::G_FMA: 255 assert((Size == 32 || Size == 64) && "Unsupported size"); 256 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 257 case TargetOpcode::G_FSIN: 258 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 259 return Size == 128 ? RTLIB::SIN_F128 260 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 261 case TargetOpcode::G_FCOS: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::COS_F128 264 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 265 case TargetOpcode::G_FLOG10: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::LOG10_F128 268 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 269 case TargetOpcode::G_FLOG: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG_F128 272 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 273 case TargetOpcode::G_FLOG2: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG2_F128 276 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 277 } 278 llvm_unreachable("Unknown libcall function"); 279 } 280 281 LegalizerHelper::LegalizeResult 282 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 283 const CallLowering::ArgInfo &Result, 284 ArrayRef<CallLowering::ArgInfo> Args) { 285 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 286 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 287 const char *Name = TLI.getLibcallName(Libcall); 288 289 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 290 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 291 MachineOperand::CreateES(Name), Result, Args)) 292 return LegalizerHelper::UnableToLegalize; 293 294 return LegalizerHelper::Legalized; 295 } 296 297 // Useful for libcalls where all operands have the same type. 298 static LegalizerHelper::LegalizeResult 299 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 300 Type *OpType) { 301 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 302 303 SmallVector<CallLowering::ArgInfo, 3> Args; 304 for (unsigned i = 1; i < MI.getNumOperands(); i++) 305 Args.push_back({MI.getOperand(i).getReg(), OpType}); 306 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 307 Args); 308 } 309 310 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 311 Type *FromType) { 312 auto ToMVT = MVT::getVT(ToType); 313 auto FromMVT = MVT::getVT(FromType); 314 315 switch (Opcode) { 316 case TargetOpcode::G_FPEXT: 317 return RTLIB::getFPEXT(FromMVT, ToMVT); 318 case TargetOpcode::G_FPTRUNC: 319 return RTLIB::getFPROUND(FromMVT, ToMVT); 320 case TargetOpcode::G_FPTOSI: 321 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 322 case TargetOpcode::G_FPTOUI: 323 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 324 case TargetOpcode::G_SITOFP: 325 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 326 case TargetOpcode::G_UITOFP: 327 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 328 } 329 llvm_unreachable("Unsupported libcall function"); 330 } 331 332 static LegalizerHelper::LegalizeResult 333 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 334 Type *FromType) { 335 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 336 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 337 {{MI.getOperand(1).getReg(), FromType}}); 338 } 339 340 LegalizerHelper::LegalizeResult 341 LegalizerHelper::libcall(MachineInstr &MI) { 342 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 343 unsigned Size = LLTy.getSizeInBits(); 344 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 345 346 MIRBuilder.setInstr(MI); 347 348 switch (MI.getOpcode()) { 349 default: 350 return UnableToLegalize; 351 case TargetOpcode::G_SDIV: 352 case TargetOpcode::G_UDIV: 353 case TargetOpcode::G_SREM: 354 case TargetOpcode::G_UREM: 355 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 356 Type *HLTy = IntegerType::get(Ctx, Size); 357 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 358 if (Status != Legalized) 359 return Status; 360 break; 361 } 362 case TargetOpcode::G_FADD: 363 case TargetOpcode::G_FSUB: 364 case TargetOpcode::G_FMUL: 365 case TargetOpcode::G_FDIV: 366 case TargetOpcode::G_FMA: 367 case TargetOpcode::G_FPOW: 368 case TargetOpcode::G_FREM: 369 case TargetOpcode::G_FCOS: 370 case TargetOpcode::G_FSIN: 371 case TargetOpcode::G_FLOG10: 372 case TargetOpcode::G_FLOG: 373 case TargetOpcode::G_FLOG2: 374 case TargetOpcode::G_FEXP: 375 case TargetOpcode::G_FEXP2: { 376 if (Size > 64) { 377 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 378 return UnableToLegalize; 379 } 380 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 381 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 382 if (Status != Legalized) 383 return Status; 384 break; 385 } 386 case TargetOpcode::G_FPEXT: { 387 // FIXME: Support other floating point types (half, fp128 etc) 388 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 389 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 390 if (ToSize != 64 || FromSize != 32) 391 return UnableToLegalize; 392 LegalizeResult Status = conversionLibcall( 393 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 394 if (Status != Legalized) 395 return Status; 396 break; 397 } 398 case TargetOpcode::G_FPTRUNC: { 399 // FIXME: Support other floating point types (half, fp128 etc) 400 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 401 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 402 if (ToSize != 32 || FromSize != 64) 403 return UnableToLegalize; 404 LegalizeResult Status = conversionLibcall( 405 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 406 if (Status != Legalized) 407 return Status; 408 break; 409 } 410 case TargetOpcode::G_FPTOSI: 411 case TargetOpcode::G_FPTOUI: { 412 // FIXME: Support other types 413 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 414 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 415 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 416 return UnableToLegalize; 417 LegalizeResult Status = conversionLibcall( 418 MI, MIRBuilder, Type::getInt32Ty(Ctx), 419 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 420 if (Status != Legalized) 421 return Status; 422 break; 423 } 424 case TargetOpcode::G_SITOFP: 425 case TargetOpcode::G_UITOFP: { 426 // FIXME: Support other types 427 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 428 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 429 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 430 return UnableToLegalize; 431 LegalizeResult Status = conversionLibcall( 432 MI, MIRBuilder, 433 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 434 Type::getInt32Ty(Ctx)); 435 if (Status != Legalized) 436 return Status; 437 break; 438 } 439 } 440 441 MI.eraseFromParent(); 442 return Legalized; 443 } 444 445 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 446 unsigned TypeIdx, 447 LLT NarrowTy) { 448 MIRBuilder.setInstr(MI); 449 450 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 451 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 452 453 switch (MI.getOpcode()) { 454 default: 455 return UnableToLegalize; 456 case TargetOpcode::G_IMPLICIT_DEF: { 457 // FIXME: add support for when SizeOp0 isn't an exact multiple of 458 // NarrowSize. 459 if (SizeOp0 % NarrowSize != 0) 460 return UnableToLegalize; 461 int NumParts = SizeOp0 / NarrowSize; 462 463 SmallVector<unsigned, 2> DstRegs; 464 for (int i = 0; i < NumParts; ++i) 465 DstRegs.push_back( 466 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 467 468 unsigned DstReg = MI.getOperand(0).getReg(); 469 if(MRI.getType(DstReg).isVector()) 470 MIRBuilder.buildBuildVector(DstReg, DstRegs); 471 else 472 MIRBuilder.buildMerge(DstReg, DstRegs); 473 MI.eraseFromParent(); 474 return Legalized; 475 } 476 case TargetOpcode::G_CONSTANT: { 477 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 478 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 479 unsigned TotalSize = Ty.getSizeInBits(); 480 unsigned NarrowSize = NarrowTy.getSizeInBits(); 481 int NumParts = TotalSize / NarrowSize; 482 483 SmallVector<unsigned, 4> PartRegs; 484 for (int I = 0; I != NumParts; ++I) { 485 unsigned Offset = I * NarrowSize; 486 auto K = MIRBuilder.buildConstant(NarrowTy, 487 Val.lshr(Offset).trunc(NarrowSize)); 488 PartRegs.push_back(K.getReg(0)); 489 } 490 491 LLT LeftoverTy; 492 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 493 SmallVector<unsigned, 1> LeftoverRegs; 494 if (LeftoverBits != 0) { 495 LeftoverTy = LLT::scalar(LeftoverBits); 496 auto K = MIRBuilder.buildConstant( 497 LeftoverTy, 498 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 499 LeftoverRegs.push_back(K.getReg(0)); 500 } 501 502 insertParts(MI.getOperand(0).getReg(), 503 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 504 505 MI.eraseFromParent(); 506 return Legalized; 507 } 508 case TargetOpcode::G_ADD: { 509 // FIXME: add support for when SizeOp0 isn't an exact multiple of 510 // NarrowSize. 511 if (SizeOp0 % NarrowSize != 0) 512 return UnableToLegalize; 513 // Expand in terms of carry-setting/consuming G_ADDE instructions. 514 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 515 516 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 517 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 518 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 519 520 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 521 MIRBuilder.buildConstant(CarryIn, 0); 522 523 for (int i = 0; i < NumParts; ++i) { 524 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 525 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 526 527 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 528 Src2Regs[i], CarryIn); 529 530 DstRegs.push_back(DstReg); 531 CarryIn = CarryOut; 532 } 533 unsigned DstReg = MI.getOperand(0).getReg(); 534 if(MRI.getType(DstReg).isVector()) 535 MIRBuilder.buildBuildVector(DstReg, DstRegs); 536 else 537 MIRBuilder.buildMerge(DstReg, DstRegs); 538 MI.eraseFromParent(); 539 return Legalized; 540 } 541 case TargetOpcode::G_SUB: { 542 // FIXME: add support for when SizeOp0 isn't an exact multiple of 543 // NarrowSize. 544 if (SizeOp0 % NarrowSize != 0) 545 return UnableToLegalize; 546 547 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 548 549 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 550 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 551 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 552 553 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 554 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 555 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 556 {Src1Regs[0], Src2Regs[0]}); 557 DstRegs.push_back(DstReg); 558 unsigned BorrowIn = BorrowOut; 559 for (int i = 1; i < NumParts; ++i) { 560 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 561 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 562 563 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 564 {Src1Regs[i], Src2Regs[i], BorrowIn}); 565 566 DstRegs.push_back(DstReg); 567 BorrowIn = BorrowOut; 568 } 569 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 570 MI.eraseFromParent(); 571 return Legalized; 572 } 573 case TargetOpcode::G_MUL: 574 case TargetOpcode::G_UMULH: 575 return narrowScalarMul(MI, NarrowTy); 576 case TargetOpcode::G_EXTRACT: 577 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 578 case TargetOpcode::G_INSERT: 579 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 580 case TargetOpcode::G_LOAD: { 581 const auto &MMO = **MI.memoperands_begin(); 582 unsigned DstReg = MI.getOperand(0).getReg(); 583 LLT DstTy = MRI.getType(DstReg); 584 if (DstTy.isVector()) 585 return UnableToLegalize; 586 587 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 588 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 589 auto &MMO = **MI.memoperands_begin(); 590 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 591 MIRBuilder.buildAnyExt(DstReg, TmpReg); 592 MI.eraseFromParent(); 593 return Legalized; 594 } 595 596 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 597 } 598 case TargetOpcode::G_ZEXTLOAD: 599 case TargetOpcode::G_SEXTLOAD: { 600 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 601 unsigned DstReg = MI.getOperand(0).getReg(); 602 unsigned PtrReg = MI.getOperand(1).getReg(); 603 604 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 605 auto &MMO = **MI.memoperands_begin(); 606 if (MMO.getSizeInBits() == NarrowSize) { 607 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 608 } else { 609 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 610 : TargetOpcode::G_SEXTLOAD; 611 MIRBuilder.buildInstr(ExtLoad) 612 .addDef(TmpReg) 613 .addUse(PtrReg) 614 .addMemOperand(&MMO); 615 } 616 617 if (ZExt) 618 MIRBuilder.buildZExt(DstReg, TmpReg); 619 else 620 MIRBuilder.buildSExt(DstReg, TmpReg); 621 622 MI.eraseFromParent(); 623 return Legalized; 624 } 625 case TargetOpcode::G_STORE: { 626 const auto &MMO = **MI.memoperands_begin(); 627 628 unsigned SrcReg = MI.getOperand(0).getReg(); 629 LLT SrcTy = MRI.getType(SrcReg); 630 if (SrcTy.isVector()) 631 return UnableToLegalize; 632 633 int NumParts = SizeOp0 / NarrowSize; 634 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 635 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 636 if (SrcTy.isVector() && LeftoverBits != 0) 637 return UnableToLegalize; 638 639 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 640 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 641 auto &MMO = **MI.memoperands_begin(); 642 MIRBuilder.buildTrunc(TmpReg, SrcReg); 643 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 644 MI.eraseFromParent(); 645 return Legalized; 646 } 647 648 return reduceLoadStoreWidth(MI, 0, NarrowTy); 649 } 650 case TargetOpcode::G_SELECT: 651 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 652 case TargetOpcode::G_AND: 653 case TargetOpcode::G_OR: 654 case TargetOpcode::G_XOR: { 655 // Legalize bitwise operation: 656 // A = BinOp<Ty> B, C 657 // into: 658 // B1, ..., BN = G_UNMERGE_VALUES B 659 // C1, ..., CN = G_UNMERGE_VALUES C 660 // A1 = BinOp<Ty/N> B1, C2 661 // ... 662 // AN = BinOp<Ty/N> BN, CN 663 // A = G_MERGE_VALUES A1, ..., AN 664 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 665 } 666 case TargetOpcode::G_SHL: 667 case TargetOpcode::G_LSHR: 668 case TargetOpcode::G_ASHR: 669 return narrowScalarShift(MI, TypeIdx, NarrowTy); 670 case TargetOpcode::G_CTLZ: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 672 case TargetOpcode::G_CTTZ: 673 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 674 case TargetOpcode::G_CTPOP: 675 if (TypeIdx != 0) 676 return UnableToLegalize; // TODO 677 678 Observer.changingInstr(MI); 679 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 680 Observer.changedInstr(MI); 681 return Legalized; 682 case TargetOpcode::G_INTTOPTR: 683 if (TypeIdx != 1) 684 return UnableToLegalize; 685 686 Observer.changingInstr(MI); 687 narrowScalarSrc(MI, NarrowTy, 1); 688 Observer.changedInstr(MI); 689 return Legalized; 690 case TargetOpcode::G_PTRTOINT: 691 if (TypeIdx != 0) 692 return UnableToLegalize; 693 694 Observer.changingInstr(MI); 695 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 696 Observer.changedInstr(MI); 697 return Legalized; 698 } 699 } 700 701 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 702 unsigned OpIdx, unsigned ExtOpcode) { 703 MachineOperand &MO = MI.getOperand(OpIdx); 704 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 705 MO.setReg(ExtB->getOperand(0).getReg()); 706 } 707 708 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 709 unsigned OpIdx) { 710 MachineOperand &MO = MI.getOperand(OpIdx); 711 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 712 {MO.getReg()}); 713 MO.setReg(ExtB->getOperand(0).getReg()); 714 } 715 716 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 717 unsigned OpIdx, unsigned TruncOpcode) { 718 MachineOperand &MO = MI.getOperand(OpIdx); 719 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 720 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 721 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 722 MO.setReg(DstExt); 723 } 724 725 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 726 unsigned OpIdx, unsigned ExtOpcode) { 727 MachineOperand &MO = MI.getOperand(OpIdx); 728 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 729 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 730 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 731 MO.setReg(DstTrunc); 732 } 733 734 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 735 unsigned OpIdx) { 736 MachineOperand &MO = MI.getOperand(OpIdx); 737 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 738 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 739 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 740 MO.setReg(DstExt); 741 } 742 743 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 744 unsigned OpIdx) { 745 MachineOperand &MO = MI.getOperand(OpIdx); 746 747 LLT OldTy = MRI.getType(MO.getReg()); 748 unsigned OldElts = OldTy.getNumElements(); 749 unsigned NewElts = MoreTy.getNumElements(); 750 751 unsigned NumParts = NewElts / OldElts; 752 753 // Use concat_vectors if the result is a multiple of the number of elements. 754 if (NumParts * OldElts == NewElts) { 755 SmallVector<unsigned, 8> Parts; 756 Parts.push_back(MO.getReg()); 757 758 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 759 for (unsigned I = 1; I != NumParts; ++I) 760 Parts.push_back(ImpDef); 761 762 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 763 MO.setReg(Concat.getReg(0)); 764 return; 765 } 766 767 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 768 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 769 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 770 MO.setReg(MoreReg); 771 } 772 773 LegalizerHelper::LegalizeResult 774 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 775 LLT WideTy) { 776 if (TypeIdx != 1) 777 return UnableToLegalize; 778 779 unsigned DstReg = MI.getOperand(0).getReg(); 780 LLT DstTy = MRI.getType(DstReg); 781 if (!DstTy.isScalar()) 782 return UnableToLegalize; 783 784 unsigned NumOps = MI.getNumOperands(); 785 unsigned NumSrc = MI.getNumOperands() - 1; 786 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 787 788 unsigned Src1 = MI.getOperand(1).getReg(); 789 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 790 791 for (unsigned I = 2; I != NumOps; ++I) { 792 const unsigned Offset = (I - 1) * PartSize; 793 794 unsigned SrcReg = MI.getOperand(I).getReg(); 795 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 796 797 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 798 799 unsigned NextResult = I + 1 == NumOps ? DstReg : 800 MRI.createGenericVirtualRegister(DstTy); 801 802 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 803 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 804 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 805 ResultReg = NextResult; 806 } 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 812 LegalizerHelper::LegalizeResult 813 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 814 LLT WideTy) { 815 if (TypeIdx != 0) 816 return UnableToLegalize; 817 818 unsigned NumDst = MI.getNumOperands() - 1; 819 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 820 LLT SrcTy = MRI.getType(SrcReg); 821 if (!SrcTy.isScalar()) 822 return UnableToLegalize; 823 824 unsigned Dst0Reg = MI.getOperand(0).getReg(); 825 LLT DstTy = MRI.getType(Dst0Reg); 826 if (!DstTy.isScalar()) 827 return UnableToLegalize; 828 829 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 830 LLT NewSrcTy = LLT::scalar(NewSrcSize); 831 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 832 833 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 834 835 for (unsigned I = 1; I != NumDst; ++I) { 836 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 837 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 838 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 839 } 840 841 Observer.changingInstr(MI); 842 843 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 844 for (unsigned I = 0; I != NumDst; ++I) 845 widenScalarDst(MI, WideTy, I); 846 847 Observer.changedInstr(MI); 848 849 return Legalized; 850 } 851 852 LegalizerHelper::LegalizeResult 853 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 854 LLT WideTy) { 855 unsigned DstReg = MI.getOperand(0).getReg(); 856 unsigned SrcReg = MI.getOperand(1).getReg(); 857 LLT SrcTy = MRI.getType(SrcReg); 858 859 LLT DstTy = MRI.getType(DstReg); 860 unsigned Offset = MI.getOperand(2).getImm(); 861 862 if (TypeIdx == 0) { 863 if (SrcTy.isVector() || DstTy.isVector()) 864 return UnableToLegalize; 865 866 SrcOp Src(SrcReg); 867 if (SrcTy.isPointer()) { 868 // Extracts from pointers can be handled only if they are really just 869 // simple integers. 870 const DataLayout &DL = MIRBuilder.getDataLayout(); 871 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 872 return UnableToLegalize; 873 874 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 875 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 876 SrcTy = SrcAsIntTy; 877 } 878 879 if (DstTy.isPointer()) 880 return UnableToLegalize; 881 882 if (Offset == 0) { 883 // Avoid a shift in the degenerate case. 884 MIRBuilder.buildTrunc(DstReg, 885 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 886 MI.eraseFromParent(); 887 return Legalized; 888 } 889 890 // Do a shift in the source type. 891 LLT ShiftTy = SrcTy; 892 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 893 Src = MIRBuilder.buildAnyExt(WideTy, Src); 894 ShiftTy = WideTy; 895 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 896 return UnableToLegalize; 897 898 auto LShr = MIRBuilder.buildLShr( 899 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 900 MIRBuilder.buildTrunc(DstReg, LShr); 901 MI.eraseFromParent(); 902 return Legalized; 903 } 904 905 if (SrcTy.isScalar()) { 906 Observer.changingInstr(MI); 907 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 908 Observer.changedInstr(MI); 909 return Legalized; 910 } 911 912 if (!SrcTy.isVector()) 913 return UnableToLegalize; 914 915 if (DstTy != SrcTy.getElementType()) 916 return UnableToLegalize; 917 918 if (Offset % SrcTy.getScalarSizeInBits() != 0) 919 return UnableToLegalize; 920 921 Observer.changingInstr(MI); 922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 923 924 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 925 Offset); 926 widenScalarDst(MI, WideTy.getScalarType(), 0); 927 Observer.changedInstr(MI); 928 return Legalized; 929 } 930 931 LegalizerHelper::LegalizeResult 932 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 933 LLT WideTy) { 934 if (TypeIdx != 0) 935 return UnableToLegalize; 936 Observer.changingInstr(MI); 937 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 938 widenScalarDst(MI, WideTy); 939 Observer.changedInstr(MI); 940 return Legalized; 941 } 942 943 LegalizerHelper::LegalizeResult 944 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 945 MIRBuilder.setInstr(MI); 946 947 switch (MI.getOpcode()) { 948 default: 949 return UnableToLegalize; 950 case TargetOpcode::G_EXTRACT: 951 return widenScalarExtract(MI, TypeIdx, WideTy); 952 case TargetOpcode::G_INSERT: 953 return widenScalarInsert(MI, TypeIdx, WideTy); 954 case TargetOpcode::G_MERGE_VALUES: 955 return widenScalarMergeValues(MI, TypeIdx, WideTy); 956 case TargetOpcode::G_UNMERGE_VALUES: 957 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 958 case TargetOpcode::G_UADDO: 959 case TargetOpcode::G_USUBO: { 960 if (TypeIdx == 1) 961 return UnableToLegalize; // TODO 962 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 963 {MI.getOperand(2).getReg()}); 964 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 965 {MI.getOperand(3).getReg()}); 966 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 967 ? TargetOpcode::G_ADD 968 : TargetOpcode::G_SUB; 969 // Do the arithmetic in the larger type. 970 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 971 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 972 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 973 auto AndOp = MIRBuilder.buildInstr( 974 TargetOpcode::G_AND, {WideTy}, 975 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 976 // There is no overflow if the AndOp is the same as NewOp. 977 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 978 AndOp); 979 // Now trunc the NewOp to the original result. 980 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 981 MI.eraseFromParent(); 982 return Legalized; 983 } 984 case TargetOpcode::G_CTTZ: 985 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 986 case TargetOpcode::G_CTLZ: 987 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 988 case TargetOpcode::G_CTPOP: { 989 if (TypeIdx == 0) { 990 Observer.changingInstr(MI); 991 widenScalarDst(MI, WideTy, 0); 992 Observer.changedInstr(MI); 993 return Legalized; 994 } 995 996 unsigned SrcReg = MI.getOperand(1).getReg(); 997 998 // First ZEXT the input. 999 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1000 LLT CurTy = MRI.getType(SrcReg); 1001 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1002 // The count is the same in the larger type except if the original 1003 // value was zero. This can be handled by setting the bit just off 1004 // the top of the original type. 1005 auto TopBit = 1006 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1007 MIBSrc = MIRBuilder.buildOr( 1008 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1009 } 1010 1011 // Perform the operation at the larger size. 1012 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1013 // This is already the correct result for CTPOP and CTTZs 1014 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1015 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1016 // The correct result is NewOp - (Difference in widety and current ty). 1017 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1018 MIBNewOp = MIRBuilder.buildInstr( 1019 TargetOpcode::G_SUB, {WideTy}, 1020 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1021 } 1022 1023 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1024 MI.eraseFromParent(); 1025 return Legalized; 1026 } 1027 case TargetOpcode::G_BSWAP: { 1028 Observer.changingInstr(MI); 1029 unsigned DstReg = MI.getOperand(0).getReg(); 1030 1031 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1032 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1033 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1034 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1035 1036 MI.getOperand(0).setReg(DstExt); 1037 1038 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1039 1040 LLT Ty = MRI.getType(DstReg); 1041 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1042 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1043 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1044 .addDef(ShrReg) 1045 .addUse(DstExt) 1046 .addUse(ShiftAmtReg); 1047 1048 MIRBuilder.buildTrunc(DstReg, ShrReg); 1049 Observer.changedInstr(MI); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_ADD: 1053 case TargetOpcode::G_AND: 1054 case TargetOpcode::G_MUL: 1055 case TargetOpcode::G_OR: 1056 case TargetOpcode::G_XOR: 1057 case TargetOpcode::G_SUB: 1058 // Perform operation at larger width (any extension is fines here, high bits 1059 // don't affect the result) and then truncate the result back to the 1060 // original type. 1061 Observer.changingInstr(MI); 1062 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1064 widenScalarDst(MI, WideTy); 1065 Observer.changedInstr(MI); 1066 return Legalized; 1067 1068 case TargetOpcode::G_SHL: 1069 Observer.changingInstr(MI); 1070 1071 if (TypeIdx == 0) { 1072 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1073 widenScalarDst(MI, WideTy); 1074 } else { 1075 assert(TypeIdx == 1); 1076 // The "number of bits to shift" operand must preserve its value as an 1077 // unsigned integer: 1078 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1079 } 1080 1081 Observer.changedInstr(MI); 1082 return Legalized; 1083 1084 case TargetOpcode::G_SDIV: 1085 case TargetOpcode::G_SREM: 1086 Observer.changingInstr(MI); 1087 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1088 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1089 widenScalarDst(MI, WideTy); 1090 Observer.changedInstr(MI); 1091 return Legalized; 1092 1093 case TargetOpcode::G_ASHR: 1094 case TargetOpcode::G_LSHR: 1095 Observer.changingInstr(MI); 1096 1097 if (TypeIdx == 0) { 1098 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1099 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1100 1101 widenScalarSrc(MI, WideTy, 1, CvtOp); 1102 widenScalarDst(MI, WideTy); 1103 } else { 1104 assert(TypeIdx == 1); 1105 // The "number of bits to shift" operand must preserve its value as an 1106 // unsigned integer: 1107 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1108 } 1109 1110 Observer.changedInstr(MI); 1111 return Legalized; 1112 case TargetOpcode::G_UDIV: 1113 case TargetOpcode::G_UREM: 1114 Observer.changingInstr(MI); 1115 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1116 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1117 widenScalarDst(MI, WideTy); 1118 Observer.changedInstr(MI); 1119 return Legalized; 1120 1121 case TargetOpcode::G_SELECT: 1122 Observer.changingInstr(MI); 1123 if (TypeIdx == 0) { 1124 // Perform operation at larger width (any extension is fine here, high 1125 // bits don't affect the result) and then truncate the result back to the 1126 // original type. 1127 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1128 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1129 widenScalarDst(MI, WideTy); 1130 } else { 1131 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1132 // Explicit extension is required here since high bits affect the result. 1133 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1134 } 1135 Observer.changedInstr(MI); 1136 return Legalized; 1137 1138 case TargetOpcode::G_FPTOSI: 1139 case TargetOpcode::G_FPTOUI: 1140 if (TypeIdx != 0) 1141 return UnableToLegalize; 1142 Observer.changingInstr(MI); 1143 widenScalarDst(MI, WideTy); 1144 Observer.changedInstr(MI); 1145 return Legalized; 1146 1147 case TargetOpcode::G_SITOFP: 1148 if (TypeIdx != 1) 1149 return UnableToLegalize; 1150 Observer.changingInstr(MI); 1151 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1152 Observer.changedInstr(MI); 1153 return Legalized; 1154 1155 case TargetOpcode::G_UITOFP: 1156 if (TypeIdx != 1) 1157 return UnableToLegalize; 1158 Observer.changingInstr(MI); 1159 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1160 Observer.changedInstr(MI); 1161 return Legalized; 1162 1163 case TargetOpcode::G_LOAD: 1164 case TargetOpcode::G_SEXTLOAD: 1165 case TargetOpcode::G_ZEXTLOAD: 1166 Observer.changingInstr(MI); 1167 widenScalarDst(MI, WideTy); 1168 Observer.changedInstr(MI); 1169 return Legalized; 1170 1171 case TargetOpcode::G_STORE: { 1172 if (TypeIdx != 0) 1173 return UnableToLegalize; 1174 1175 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1176 if (!isPowerOf2_32(Ty.getSizeInBits())) 1177 return UnableToLegalize; 1178 1179 Observer.changingInstr(MI); 1180 1181 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1182 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1183 widenScalarSrc(MI, WideTy, 0, ExtType); 1184 1185 Observer.changedInstr(MI); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_CONSTANT: { 1189 MachineOperand &SrcMO = MI.getOperand(1); 1190 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1191 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1192 Observer.changingInstr(MI); 1193 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1194 1195 widenScalarDst(MI, WideTy); 1196 Observer.changedInstr(MI); 1197 return Legalized; 1198 } 1199 case TargetOpcode::G_FCONSTANT: { 1200 MachineOperand &SrcMO = MI.getOperand(1); 1201 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1202 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1203 bool LosesInfo; 1204 switch (WideTy.getSizeInBits()) { 1205 case 32: 1206 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1207 &LosesInfo); 1208 break; 1209 case 64: 1210 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1211 &LosesInfo); 1212 break; 1213 default: 1214 return UnableToLegalize; 1215 } 1216 1217 assert(!LosesInfo && "extend should always be lossless"); 1218 1219 Observer.changingInstr(MI); 1220 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1221 1222 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1223 Observer.changedInstr(MI); 1224 return Legalized; 1225 } 1226 case TargetOpcode::G_IMPLICIT_DEF: { 1227 Observer.changingInstr(MI); 1228 widenScalarDst(MI, WideTy); 1229 Observer.changedInstr(MI); 1230 return Legalized; 1231 } 1232 case TargetOpcode::G_BRCOND: 1233 Observer.changingInstr(MI); 1234 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1235 Observer.changedInstr(MI); 1236 return Legalized; 1237 1238 case TargetOpcode::G_FCMP: 1239 Observer.changingInstr(MI); 1240 if (TypeIdx == 0) 1241 widenScalarDst(MI, WideTy); 1242 else { 1243 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1244 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1245 } 1246 Observer.changedInstr(MI); 1247 return Legalized; 1248 1249 case TargetOpcode::G_ICMP: 1250 Observer.changingInstr(MI); 1251 if (TypeIdx == 0) 1252 widenScalarDst(MI, WideTy); 1253 else { 1254 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1255 MI.getOperand(1).getPredicate())) 1256 ? TargetOpcode::G_SEXT 1257 : TargetOpcode::G_ZEXT; 1258 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1259 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1260 } 1261 Observer.changedInstr(MI); 1262 return Legalized; 1263 1264 case TargetOpcode::G_GEP: 1265 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1266 Observer.changingInstr(MI); 1267 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1268 Observer.changedInstr(MI); 1269 return Legalized; 1270 1271 case TargetOpcode::G_PHI: { 1272 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1273 1274 Observer.changingInstr(MI); 1275 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1276 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1277 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1278 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1279 } 1280 1281 MachineBasicBlock &MBB = *MI.getParent(); 1282 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1283 widenScalarDst(MI, WideTy); 1284 Observer.changedInstr(MI); 1285 return Legalized; 1286 } 1287 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1288 if (TypeIdx == 0) { 1289 unsigned VecReg = MI.getOperand(1).getReg(); 1290 LLT VecTy = MRI.getType(VecReg); 1291 Observer.changingInstr(MI); 1292 1293 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1294 WideTy.getSizeInBits()), 1295 1, TargetOpcode::G_SEXT); 1296 1297 widenScalarDst(MI, WideTy, 0); 1298 Observer.changedInstr(MI); 1299 return Legalized; 1300 } 1301 1302 if (TypeIdx != 2) 1303 return UnableToLegalize; 1304 Observer.changingInstr(MI); 1305 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1306 Observer.changedInstr(MI); 1307 return Legalized; 1308 } 1309 case TargetOpcode::G_FADD: 1310 case TargetOpcode::G_FMUL: 1311 case TargetOpcode::G_FSUB: 1312 case TargetOpcode::G_FMA: 1313 case TargetOpcode::G_FNEG: 1314 case TargetOpcode::G_FABS: 1315 case TargetOpcode::G_FCANONICALIZE: 1316 case TargetOpcode::G_FDIV: 1317 case TargetOpcode::G_FREM: 1318 case TargetOpcode::G_FCEIL: 1319 case TargetOpcode::G_FFLOOR: 1320 case TargetOpcode::G_FCOS: 1321 case TargetOpcode::G_FSIN: 1322 case TargetOpcode::G_FLOG10: 1323 case TargetOpcode::G_FLOG: 1324 case TargetOpcode::G_FLOG2: 1325 case TargetOpcode::G_FRINT: 1326 case TargetOpcode::G_FSQRT: 1327 case TargetOpcode::G_FEXP: 1328 case TargetOpcode::G_FEXP2: 1329 case TargetOpcode::G_FPOW: 1330 case TargetOpcode::G_INTRINSIC_TRUNC: 1331 case TargetOpcode::G_INTRINSIC_ROUND: 1332 assert(TypeIdx == 0); 1333 Observer.changingInstr(MI); 1334 1335 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1336 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1337 1338 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1339 Observer.changedInstr(MI); 1340 return Legalized; 1341 case TargetOpcode::G_INTTOPTR: 1342 if (TypeIdx != 1) 1343 return UnableToLegalize; 1344 1345 Observer.changingInstr(MI); 1346 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1347 Observer.changedInstr(MI); 1348 return Legalized; 1349 case TargetOpcode::G_PTRTOINT: 1350 if (TypeIdx != 0) 1351 return UnableToLegalize; 1352 1353 Observer.changingInstr(MI); 1354 widenScalarDst(MI, WideTy, 0); 1355 Observer.changedInstr(MI); 1356 return Legalized; 1357 } 1358 } 1359 1360 LegalizerHelper::LegalizeResult 1361 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1362 using namespace TargetOpcode; 1363 MIRBuilder.setInstr(MI); 1364 1365 switch(MI.getOpcode()) { 1366 default: 1367 return UnableToLegalize; 1368 case TargetOpcode::G_SREM: 1369 case TargetOpcode::G_UREM: { 1370 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1371 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1372 .addDef(QuotReg) 1373 .addUse(MI.getOperand(1).getReg()) 1374 .addUse(MI.getOperand(2).getReg()); 1375 1376 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1377 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1378 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1379 ProdReg); 1380 MI.eraseFromParent(); 1381 return Legalized; 1382 } 1383 case TargetOpcode::G_SMULO: 1384 case TargetOpcode::G_UMULO: { 1385 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1386 // result. 1387 unsigned Res = MI.getOperand(0).getReg(); 1388 unsigned Overflow = MI.getOperand(1).getReg(); 1389 unsigned LHS = MI.getOperand(2).getReg(); 1390 unsigned RHS = MI.getOperand(3).getReg(); 1391 1392 MIRBuilder.buildMul(Res, LHS, RHS); 1393 1394 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1395 ? TargetOpcode::G_SMULH 1396 : TargetOpcode::G_UMULH; 1397 1398 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1399 MIRBuilder.buildInstr(Opcode) 1400 .addDef(HiPart) 1401 .addUse(LHS) 1402 .addUse(RHS); 1403 1404 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1405 MIRBuilder.buildConstant(Zero, 0); 1406 1407 // For *signed* multiply, overflow is detected by checking: 1408 // (hi != (lo >> bitwidth-1)) 1409 if (Opcode == TargetOpcode::G_SMULH) { 1410 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1411 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1412 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1413 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1414 .addDef(Shifted) 1415 .addUse(Res) 1416 .addUse(ShiftAmt); 1417 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1418 } else { 1419 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1420 } 1421 MI.eraseFromParent(); 1422 return Legalized; 1423 } 1424 case TargetOpcode::G_FNEG: { 1425 // TODO: Handle vector types once we are able to 1426 // represent them. 1427 if (Ty.isVector()) 1428 return UnableToLegalize; 1429 unsigned Res = MI.getOperand(0).getReg(); 1430 Type *ZeroTy; 1431 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1432 switch (Ty.getSizeInBits()) { 1433 case 16: 1434 ZeroTy = Type::getHalfTy(Ctx); 1435 break; 1436 case 32: 1437 ZeroTy = Type::getFloatTy(Ctx); 1438 break; 1439 case 64: 1440 ZeroTy = Type::getDoubleTy(Ctx); 1441 break; 1442 case 128: 1443 ZeroTy = Type::getFP128Ty(Ctx); 1444 break; 1445 default: 1446 llvm_unreachable("unexpected floating-point type"); 1447 } 1448 ConstantFP &ZeroForNegation = 1449 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1450 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1451 unsigned SubByReg = MI.getOperand(1).getReg(); 1452 unsigned ZeroReg = Zero->getOperand(0).getReg(); 1453 MachineInstr *SrcMI = MRI.getVRegDef(SubByReg); 1454 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1455 SrcMI->getFlags()); 1456 MI.eraseFromParent(); 1457 return Legalized; 1458 } 1459 case TargetOpcode::G_FSUB: { 1460 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1461 // First, check if G_FNEG is marked as Lower. If so, we may 1462 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1463 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1464 return UnableToLegalize; 1465 unsigned Res = MI.getOperand(0).getReg(); 1466 unsigned LHS = MI.getOperand(1).getReg(); 1467 unsigned RHS = MI.getOperand(2).getReg(); 1468 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1469 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1470 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1475 unsigned OldValRes = MI.getOperand(0).getReg(); 1476 unsigned SuccessRes = MI.getOperand(1).getReg(); 1477 unsigned Addr = MI.getOperand(2).getReg(); 1478 unsigned CmpVal = MI.getOperand(3).getReg(); 1479 unsigned NewVal = MI.getOperand(4).getReg(); 1480 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1481 **MI.memoperands_begin()); 1482 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1483 MI.eraseFromParent(); 1484 return Legalized; 1485 } 1486 case TargetOpcode::G_LOAD: 1487 case TargetOpcode::G_SEXTLOAD: 1488 case TargetOpcode::G_ZEXTLOAD: { 1489 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1490 unsigned DstReg = MI.getOperand(0).getReg(); 1491 unsigned PtrReg = MI.getOperand(1).getReg(); 1492 LLT DstTy = MRI.getType(DstReg); 1493 auto &MMO = **MI.memoperands_begin(); 1494 1495 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1496 // In the case of G_LOAD, this was a non-extending load already and we're 1497 // about to lower to the same instruction. 1498 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1499 return UnableToLegalize; 1500 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1501 MI.eraseFromParent(); 1502 return Legalized; 1503 } 1504 1505 if (DstTy.isScalar()) { 1506 unsigned TmpReg = 1507 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1508 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1509 switch (MI.getOpcode()) { 1510 default: 1511 llvm_unreachable("Unexpected opcode"); 1512 case TargetOpcode::G_LOAD: 1513 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1514 break; 1515 case TargetOpcode::G_SEXTLOAD: 1516 MIRBuilder.buildSExt(DstReg, TmpReg); 1517 break; 1518 case TargetOpcode::G_ZEXTLOAD: 1519 MIRBuilder.buildZExt(DstReg, TmpReg); 1520 break; 1521 } 1522 MI.eraseFromParent(); 1523 return Legalized; 1524 } 1525 1526 return UnableToLegalize; 1527 } 1528 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1529 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1530 case TargetOpcode::G_CTLZ: 1531 case TargetOpcode::G_CTTZ: 1532 case TargetOpcode::G_CTPOP: 1533 return lowerBitCount(MI, TypeIdx, Ty); 1534 case G_UADDO: { 1535 unsigned Res = MI.getOperand(0).getReg(); 1536 unsigned CarryOut = MI.getOperand(1).getReg(); 1537 unsigned LHS = MI.getOperand(2).getReg(); 1538 unsigned RHS = MI.getOperand(3).getReg(); 1539 1540 MIRBuilder.buildAdd(Res, LHS, RHS); 1541 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 case G_UADDE: { 1547 unsigned Res = MI.getOperand(0).getReg(); 1548 unsigned CarryOut = MI.getOperand(1).getReg(); 1549 unsigned LHS = MI.getOperand(2).getReg(); 1550 unsigned RHS = MI.getOperand(3).getReg(); 1551 unsigned CarryIn = MI.getOperand(4).getReg(); 1552 1553 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1554 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1555 1556 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1557 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1558 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1559 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1560 1561 MI.eraseFromParent(); 1562 return Legalized; 1563 } 1564 case G_USUBO: { 1565 unsigned Res = MI.getOperand(0).getReg(); 1566 unsigned BorrowOut = MI.getOperand(1).getReg(); 1567 unsigned LHS = MI.getOperand(2).getReg(); 1568 unsigned RHS = MI.getOperand(3).getReg(); 1569 1570 MIRBuilder.buildSub(Res, LHS, RHS); 1571 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1572 1573 MI.eraseFromParent(); 1574 return Legalized; 1575 } 1576 case G_USUBE: { 1577 unsigned Res = MI.getOperand(0).getReg(); 1578 unsigned BorrowOut = MI.getOperand(1).getReg(); 1579 unsigned LHS = MI.getOperand(2).getReg(); 1580 unsigned RHS = MI.getOperand(3).getReg(); 1581 unsigned BorrowIn = MI.getOperand(4).getReg(); 1582 1583 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1584 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1585 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1586 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1587 1588 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1589 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1590 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1591 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1592 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1593 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1594 1595 MI.eraseFromParent(); 1596 return Legalized; 1597 } 1598 } 1599 } 1600 1601 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1602 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1603 SmallVector<unsigned, 2> DstRegs; 1604 1605 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1606 unsigned DstReg = MI.getOperand(0).getReg(); 1607 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1608 int NumParts = Size / NarrowSize; 1609 // FIXME: Don't know how to handle the situation where the small vectors 1610 // aren't all the same size yet. 1611 if (Size % NarrowSize != 0) 1612 return UnableToLegalize; 1613 1614 for (int i = 0; i < NumParts; ++i) { 1615 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1616 MIRBuilder.buildUndef(TmpReg); 1617 DstRegs.push_back(TmpReg); 1618 } 1619 1620 if (NarrowTy.isVector()) 1621 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1622 else 1623 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1624 1625 MI.eraseFromParent(); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1631 LLT NarrowTy) { 1632 const unsigned Opc = MI.getOpcode(); 1633 const unsigned NumOps = MI.getNumOperands() - 1; 1634 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1635 const unsigned DstReg = MI.getOperand(0).getReg(); 1636 const unsigned Flags = MI.getFlags(); 1637 const LLT DstTy = MRI.getType(DstReg); 1638 const unsigned Size = DstTy.getSizeInBits(); 1639 const int NumParts = Size / NarrowSize; 1640 const LLT EltTy = DstTy.getElementType(); 1641 const unsigned EltSize = EltTy.getSizeInBits(); 1642 const unsigned BitsForNumParts = NarrowSize * NumParts; 1643 1644 // Check if we have any leftovers. If we do, then only handle the case where 1645 // the leftover is one element. 1646 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1647 return UnableToLegalize; 1648 1649 if (BitsForNumParts != Size) { 1650 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1651 MIRBuilder.buildUndef(AccumDstReg); 1652 1653 // Handle the pieces which evenly divide into the requested type with 1654 // extract/op/insert sequence. 1655 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1656 SmallVector<SrcOp, 4> SrcOps; 1657 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1658 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1659 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1660 SrcOps.push_back(PartOpReg); 1661 } 1662 1663 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1664 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1665 1666 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1667 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1668 AccumDstReg = PartInsertReg; 1669 } 1670 1671 // Handle the remaining element sized leftover piece. 1672 SmallVector<SrcOp, 4> SrcOps; 1673 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1674 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1675 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1676 BitsForNumParts); 1677 SrcOps.push_back(PartOpReg); 1678 } 1679 1680 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1681 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1682 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1683 MI.eraseFromParent(); 1684 1685 return Legalized; 1686 } 1687 1688 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1689 1690 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1691 1692 if (NumOps >= 2) 1693 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1694 1695 if (NumOps >= 3) 1696 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1697 1698 for (int i = 0; i < NumParts; ++i) { 1699 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1700 1701 if (NumOps == 1) 1702 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1703 else if (NumOps == 2) { 1704 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1705 } else if (NumOps == 3) { 1706 MIRBuilder.buildInstr(Opc, {DstReg}, 1707 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1708 } 1709 1710 DstRegs.push_back(DstReg); 1711 } 1712 1713 if (NarrowTy.isVector()) 1714 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1715 else 1716 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1717 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 1722 // Handle splitting vector operations which need to have the same number of 1723 // elements in each type index, but each type index may have a different element 1724 // type. 1725 // 1726 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1727 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1728 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1729 // 1730 // Also handles some irregular breakdown cases, e.g. 1731 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1732 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1733 // s64 = G_SHL s64, s32 1734 LegalizerHelper::LegalizeResult 1735 LegalizerHelper::fewerElementsVectorMultiEltType( 1736 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1737 if (TypeIdx != 0) 1738 return UnableToLegalize; 1739 1740 const LLT NarrowTy0 = NarrowTyArg; 1741 const unsigned NewNumElts = 1742 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1743 1744 const unsigned DstReg = MI.getOperand(0).getReg(); 1745 LLT DstTy = MRI.getType(DstReg); 1746 LLT LeftoverTy0; 1747 1748 int NumParts, NumLeftover; 1749 // All of the operands need to have the same number of elements, so if we can 1750 // determine a type breakdown for the result type, we can for all of the 1751 // source types. 1752 std::tie(NumParts, NumLeftover) 1753 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1754 if (NumParts < 0) 1755 return UnableToLegalize; 1756 1757 SmallVector<MachineInstrBuilder, 4> NewInsts; 1758 1759 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1760 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1761 1762 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1763 LLT LeftoverTy; 1764 unsigned SrcReg = MI.getOperand(I).getReg(); 1765 LLT SrcTyI = MRI.getType(SrcReg); 1766 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1767 LLT LeftoverTyI; 1768 1769 // Split this operand into the requested typed registers, and any leftover 1770 // required to reproduce the original type. 1771 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1772 LeftoverRegs)) 1773 return UnableToLegalize; 1774 1775 if (I == 1) { 1776 // For the first operand, create an instruction for each part and setup 1777 // the result. 1778 for (unsigned PartReg : PartRegs) { 1779 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1780 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1781 .addDef(PartDstReg) 1782 .addUse(PartReg)); 1783 DstRegs.push_back(PartDstReg); 1784 } 1785 1786 for (unsigned LeftoverReg : LeftoverRegs) { 1787 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1788 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1789 .addDef(PartDstReg) 1790 .addUse(LeftoverReg)); 1791 LeftoverDstRegs.push_back(PartDstReg); 1792 } 1793 } else { 1794 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1795 1796 // Add the newly created operand splits to the existing instructions. The 1797 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1798 // pieces. 1799 unsigned InstCount = 0; 1800 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1801 NewInsts[InstCount++].addUse(PartRegs[J]); 1802 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1803 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1804 } 1805 1806 PartRegs.clear(); 1807 LeftoverRegs.clear(); 1808 } 1809 1810 // Insert the newly built operations and rebuild the result register. 1811 for (auto &MIB : NewInsts) 1812 MIRBuilder.insertInstr(MIB); 1813 1814 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1815 1816 MI.eraseFromParent(); 1817 return Legalized; 1818 } 1819 1820 LegalizerHelper::LegalizeResult 1821 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1822 LLT NarrowTy) { 1823 if (TypeIdx != 0) 1824 return UnableToLegalize; 1825 1826 unsigned DstReg = MI.getOperand(0).getReg(); 1827 unsigned SrcReg = MI.getOperand(1).getReg(); 1828 LLT DstTy = MRI.getType(DstReg); 1829 LLT SrcTy = MRI.getType(SrcReg); 1830 1831 LLT NarrowTy0 = NarrowTy; 1832 LLT NarrowTy1; 1833 unsigned NumParts; 1834 1835 if (NarrowTy.isVector()) { 1836 // Uneven breakdown not handled. 1837 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1838 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1839 return UnableToLegalize; 1840 1841 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1842 } else { 1843 NumParts = DstTy.getNumElements(); 1844 NarrowTy1 = SrcTy.getElementType(); 1845 } 1846 1847 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1848 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1849 1850 for (unsigned I = 0; I < NumParts; ++I) { 1851 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1852 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1853 .addDef(DstReg) 1854 .addUse(SrcRegs[I]); 1855 1856 NewInst->setFlags(MI.getFlags()); 1857 DstRegs.push_back(DstReg); 1858 } 1859 1860 if (NarrowTy.isVector()) 1861 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1862 else 1863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1864 1865 MI.eraseFromParent(); 1866 return Legalized; 1867 } 1868 1869 LegalizerHelper::LegalizeResult 1870 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1871 LLT NarrowTy) { 1872 unsigned DstReg = MI.getOperand(0).getReg(); 1873 unsigned Src0Reg = MI.getOperand(2).getReg(); 1874 LLT DstTy = MRI.getType(DstReg); 1875 LLT SrcTy = MRI.getType(Src0Reg); 1876 1877 unsigned NumParts; 1878 LLT NarrowTy0, NarrowTy1; 1879 1880 if (TypeIdx == 0) { 1881 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1882 unsigned OldElts = DstTy.getNumElements(); 1883 1884 NarrowTy0 = NarrowTy; 1885 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1886 NarrowTy1 = NarrowTy.isVector() ? 1887 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1888 SrcTy.getElementType(); 1889 1890 } else { 1891 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1892 unsigned OldElts = SrcTy.getNumElements(); 1893 1894 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1895 NarrowTy.getNumElements(); 1896 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1897 DstTy.getScalarSizeInBits()); 1898 NarrowTy1 = NarrowTy; 1899 } 1900 1901 // FIXME: Don't know how to handle the situation where the small vectors 1902 // aren't all the same size yet. 1903 if (NarrowTy1.isVector() && 1904 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1905 return UnableToLegalize; 1906 1907 CmpInst::Predicate Pred 1908 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1909 1910 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1911 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1912 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1913 1914 for (unsigned I = 0; I < NumParts; ++I) { 1915 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1916 DstRegs.push_back(DstReg); 1917 1918 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1919 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1920 else { 1921 MachineInstr *NewCmp 1922 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1923 NewCmp->setFlags(MI.getFlags()); 1924 } 1925 } 1926 1927 if (NarrowTy1.isVector()) 1928 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1929 else 1930 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1931 1932 MI.eraseFromParent(); 1933 return Legalized; 1934 } 1935 1936 LegalizerHelper::LegalizeResult 1937 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1938 LLT NarrowTy) { 1939 unsigned DstReg = MI.getOperand(0).getReg(); 1940 unsigned CondReg = MI.getOperand(1).getReg(); 1941 1942 unsigned NumParts = 0; 1943 LLT NarrowTy0, NarrowTy1; 1944 1945 LLT DstTy = MRI.getType(DstReg); 1946 LLT CondTy = MRI.getType(CondReg); 1947 unsigned Size = DstTy.getSizeInBits(); 1948 1949 assert(TypeIdx == 0 || CondTy.isVector()); 1950 1951 if (TypeIdx == 0) { 1952 NarrowTy0 = NarrowTy; 1953 NarrowTy1 = CondTy; 1954 1955 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1956 // FIXME: Don't know how to handle the situation where the small vectors 1957 // aren't all the same size yet. 1958 if (Size % NarrowSize != 0) 1959 return UnableToLegalize; 1960 1961 NumParts = Size / NarrowSize; 1962 1963 // Need to break down the condition type 1964 if (CondTy.isVector()) { 1965 if (CondTy.getNumElements() == NumParts) 1966 NarrowTy1 = CondTy.getElementType(); 1967 else 1968 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1969 CondTy.getScalarSizeInBits()); 1970 } 1971 } else { 1972 NumParts = CondTy.getNumElements(); 1973 if (NarrowTy.isVector()) { 1974 // TODO: Handle uneven breakdown. 1975 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1976 return UnableToLegalize; 1977 1978 return UnableToLegalize; 1979 } else { 1980 NarrowTy0 = DstTy.getElementType(); 1981 NarrowTy1 = NarrowTy; 1982 } 1983 } 1984 1985 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1986 if (CondTy.isVector()) 1987 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 1988 1989 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 1990 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 1991 1992 for (unsigned i = 0; i < NumParts; ++i) { 1993 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1994 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 1995 Src1Regs[i], Src2Regs[i]); 1996 DstRegs.push_back(DstReg); 1997 } 1998 1999 if (NarrowTy0.isVector()) 2000 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2001 else 2002 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2003 2004 MI.eraseFromParent(); 2005 return Legalized; 2006 } 2007 2008 LegalizerHelper::LegalizeResult 2009 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2010 LLT NarrowTy) { 2011 const unsigned DstReg = MI.getOperand(0).getReg(); 2012 LLT PhiTy = MRI.getType(DstReg); 2013 LLT LeftoverTy; 2014 2015 // All of the operands need to have the same number of elements, so if we can 2016 // determine a type breakdown for the result type, we can for all of the 2017 // source types. 2018 int NumParts, NumLeftover; 2019 std::tie(NumParts, NumLeftover) 2020 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2021 if (NumParts < 0) 2022 return UnableToLegalize; 2023 2024 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2025 SmallVector<MachineInstrBuilder, 4> NewInsts; 2026 2027 const int TotalNumParts = NumParts + NumLeftover; 2028 2029 // Insert the new phis in the result block first. 2030 for (int I = 0; I != TotalNumParts; ++I) { 2031 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2032 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2033 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2034 .addDef(PartDstReg)); 2035 if (I < NumParts) 2036 DstRegs.push_back(PartDstReg); 2037 else 2038 LeftoverDstRegs.push_back(PartDstReg); 2039 } 2040 2041 MachineBasicBlock *MBB = MI.getParent(); 2042 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2043 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2044 2045 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2046 2047 // Insert code to extract the incoming values in each predecessor block. 2048 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2049 PartRegs.clear(); 2050 LeftoverRegs.clear(); 2051 2052 unsigned SrcReg = MI.getOperand(I).getReg(); 2053 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2054 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2055 2056 LLT Unused; 2057 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2058 LeftoverRegs)) 2059 return UnableToLegalize; 2060 2061 // Add the newly created operand splits to the existing instructions. The 2062 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2063 // pieces. 2064 for (int J = 0; J != TotalNumParts; ++J) { 2065 MachineInstrBuilder MIB = NewInsts[J]; 2066 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2067 MIB.addMBB(&OpMBB); 2068 } 2069 } 2070 2071 MI.eraseFromParent(); 2072 return Legalized; 2073 } 2074 2075 LegalizerHelper::LegalizeResult 2076 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2077 LLT NarrowTy) { 2078 // FIXME: Don't know how to handle secondary types yet. 2079 if (TypeIdx != 0) 2080 return UnableToLegalize; 2081 2082 MachineMemOperand *MMO = *MI.memoperands_begin(); 2083 2084 // This implementation doesn't work for atomics. Give up instead of doing 2085 // something invalid. 2086 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2087 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2088 return UnableToLegalize; 2089 2090 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2091 unsigned ValReg = MI.getOperand(0).getReg(); 2092 unsigned AddrReg = MI.getOperand(1).getReg(); 2093 LLT ValTy = MRI.getType(ValReg); 2094 2095 int NumParts = -1; 2096 int NumLeftover = -1; 2097 LLT LeftoverTy; 2098 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2099 if (IsLoad) { 2100 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2101 } else { 2102 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2103 NarrowLeftoverRegs)) { 2104 NumParts = NarrowRegs.size(); 2105 NumLeftover = NarrowLeftoverRegs.size(); 2106 } 2107 } 2108 2109 if (NumParts == -1) 2110 return UnableToLegalize; 2111 2112 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2113 2114 unsigned TotalSize = ValTy.getSizeInBits(); 2115 2116 // Split the load/store into PartTy sized pieces starting at Offset. If this 2117 // is a load, return the new registers in ValRegs. For a store, each elements 2118 // of ValRegs should be PartTy. Returns the next offset that needs to be 2119 // handled. 2120 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2121 unsigned Offset) -> unsigned { 2122 MachineFunction &MF = MIRBuilder.getMF(); 2123 unsigned PartSize = PartTy.getSizeInBits(); 2124 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2125 Offset += PartSize, ++Idx) { 2126 unsigned ByteSize = PartSize / 8; 2127 unsigned ByteOffset = Offset / 8; 2128 unsigned NewAddrReg = 0; 2129 2130 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2131 2132 MachineMemOperand *NewMMO = 2133 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2134 2135 if (IsLoad) { 2136 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2137 ValRegs.push_back(Dst); 2138 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2139 } else { 2140 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2141 } 2142 } 2143 2144 return Offset; 2145 }; 2146 2147 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2148 2149 // Handle the rest of the register if this isn't an even type breakdown. 2150 if (LeftoverTy.isValid()) 2151 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2152 2153 if (IsLoad) { 2154 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2155 LeftoverTy, NarrowLeftoverRegs); 2156 } 2157 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 2162 LegalizerHelper::LegalizeResult 2163 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2164 LLT NarrowTy) { 2165 using namespace TargetOpcode; 2166 2167 MIRBuilder.setInstr(MI); 2168 switch (MI.getOpcode()) { 2169 case G_IMPLICIT_DEF: 2170 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2171 case G_AND: 2172 case G_OR: 2173 case G_XOR: 2174 case G_ADD: 2175 case G_SUB: 2176 case G_MUL: 2177 case G_SMULH: 2178 case G_UMULH: 2179 case G_FADD: 2180 case G_FMUL: 2181 case G_FSUB: 2182 case G_FNEG: 2183 case G_FABS: 2184 case G_FCANONICALIZE: 2185 case G_FDIV: 2186 case G_FREM: 2187 case G_FMA: 2188 case G_FPOW: 2189 case G_FEXP: 2190 case G_FEXP2: 2191 case G_FLOG: 2192 case G_FLOG2: 2193 case G_FLOG10: 2194 case G_FCEIL: 2195 case G_FFLOOR: 2196 case G_FRINT: 2197 case G_INTRINSIC_ROUND: 2198 case G_INTRINSIC_TRUNC: 2199 case G_FCOS: 2200 case G_FSIN: 2201 case G_FSQRT: 2202 case G_BSWAP: 2203 case G_SDIV: 2204 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2205 case G_SHL: 2206 case G_LSHR: 2207 case G_ASHR: 2208 case G_CTLZ: 2209 case G_CTLZ_ZERO_UNDEF: 2210 case G_CTTZ: 2211 case G_CTTZ_ZERO_UNDEF: 2212 case G_CTPOP: 2213 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2214 case G_ZEXT: 2215 case G_SEXT: 2216 case G_ANYEXT: 2217 case G_FPEXT: 2218 case G_FPTRUNC: 2219 case G_SITOFP: 2220 case G_UITOFP: 2221 case G_FPTOSI: 2222 case G_FPTOUI: 2223 case G_INTTOPTR: 2224 case G_PTRTOINT: 2225 case G_ADDRSPACE_CAST: 2226 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2227 case G_ICMP: 2228 case G_FCMP: 2229 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2230 case G_SELECT: 2231 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2232 case G_PHI: 2233 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2234 case G_LOAD: 2235 case G_STORE: 2236 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2237 default: 2238 return UnableToLegalize; 2239 } 2240 } 2241 2242 LegalizerHelper::LegalizeResult 2243 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2244 const LLT HalfTy, const LLT AmtTy) { 2245 2246 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2247 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2248 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2249 2250 if (Amt.isNullValue()) { 2251 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2252 MI.eraseFromParent(); 2253 return Legalized; 2254 } 2255 2256 LLT NVT = HalfTy; 2257 unsigned NVTBits = HalfTy.getSizeInBits(); 2258 unsigned VTBits = 2 * NVTBits; 2259 2260 SrcOp Lo(0), Hi(0); 2261 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2262 if (Amt.ugt(VTBits)) { 2263 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2264 } else if (Amt.ugt(NVTBits)) { 2265 Lo = MIRBuilder.buildConstant(NVT, 0); 2266 Hi = MIRBuilder.buildShl(NVT, InL, 2267 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2268 } else if (Amt == NVTBits) { 2269 Lo = MIRBuilder.buildConstant(NVT, 0); 2270 Hi = InL; 2271 } else { 2272 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2273 auto OrLHS = 2274 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2275 auto OrRHS = MIRBuilder.buildLShr( 2276 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2277 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2278 } 2279 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2280 if (Amt.ugt(VTBits)) { 2281 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2282 } else if (Amt.ugt(NVTBits)) { 2283 Lo = MIRBuilder.buildLShr(NVT, InH, 2284 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2285 Hi = MIRBuilder.buildConstant(NVT, 0); 2286 } else if (Amt == NVTBits) { 2287 Lo = InH; 2288 Hi = MIRBuilder.buildConstant(NVT, 0); 2289 } else { 2290 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2291 2292 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2293 auto OrRHS = MIRBuilder.buildShl( 2294 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2295 2296 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2297 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2298 } 2299 } else { 2300 if (Amt.ugt(VTBits)) { 2301 Hi = Lo = MIRBuilder.buildAShr( 2302 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2303 } else if (Amt.ugt(NVTBits)) { 2304 Lo = MIRBuilder.buildAShr(NVT, InH, 2305 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2306 Hi = MIRBuilder.buildAShr(NVT, InH, 2307 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2308 } else if (Amt == NVTBits) { 2309 Lo = InH; 2310 Hi = MIRBuilder.buildAShr(NVT, InH, 2311 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2312 } else { 2313 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2314 2315 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2316 auto OrRHS = MIRBuilder.buildShl( 2317 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2318 2319 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2320 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2321 } 2322 } 2323 2324 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2325 MI.eraseFromParent(); 2326 2327 return Legalized; 2328 } 2329 2330 // TODO: Optimize if constant shift amount. 2331 LegalizerHelper::LegalizeResult 2332 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2333 LLT RequestedTy) { 2334 if (TypeIdx == 1) { 2335 Observer.changingInstr(MI); 2336 narrowScalarSrc(MI, RequestedTy, 2); 2337 Observer.changedInstr(MI); 2338 return Legalized; 2339 } 2340 2341 unsigned DstReg = MI.getOperand(0).getReg(); 2342 LLT DstTy = MRI.getType(DstReg); 2343 if (DstTy.isVector()) 2344 return UnableToLegalize; 2345 2346 unsigned Amt = MI.getOperand(2).getReg(); 2347 LLT ShiftAmtTy = MRI.getType(Amt); 2348 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2349 if (DstEltSize % 2 != 0) 2350 return UnableToLegalize; 2351 2352 // Ignore the input type. We can only go to exactly half the size of the 2353 // input. If that isn't small enough, the resulting pieces will be further 2354 // legalized. 2355 const unsigned NewBitSize = DstEltSize / 2; 2356 const LLT HalfTy = LLT::scalar(NewBitSize); 2357 const LLT CondTy = LLT::scalar(1); 2358 2359 if (const MachineInstr *KShiftAmt = 2360 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2361 return narrowScalarShiftByConstant( 2362 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2363 } 2364 2365 // TODO: Expand with known bits. 2366 2367 // Handle the fully general expansion by an unknown amount. 2368 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2369 2370 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2371 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2372 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2373 2374 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2375 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2376 2377 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2378 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2379 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2380 2381 unsigned ResultRegs[2]; 2382 switch (MI.getOpcode()) { 2383 case TargetOpcode::G_SHL: { 2384 // Short: ShAmt < NewBitSize 2385 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2386 2387 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2388 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2389 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2390 2391 // Long: ShAmt >= NewBitSize 2392 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2393 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2394 2395 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2396 auto Hi = MIRBuilder.buildSelect( 2397 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2398 2399 ResultRegs[0] = Lo.getReg(0); 2400 ResultRegs[1] = Hi.getReg(0); 2401 break; 2402 } 2403 case TargetOpcode::G_LSHR: { 2404 // Short: ShAmt < NewBitSize 2405 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2406 2407 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2408 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2409 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2410 2411 // Long: ShAmt >= NewBitSize 2412 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2413 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2414 2415 auto Lo = MIRBuilder.buildSelect( 2416 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2417 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2418 2419 ResultRegs[0] = Lo.getReg(0); 2420 ResultRegs[1] = Hi.getReg(0); 2421 break; 2422 } 2423 case TargetOpcode::G_ASHR: { 2424 // Short: ShAmt < NewBitSize 2425 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2426 2427 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2428 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2429 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2430 2431 // Long: ShAmt >= NewBitSize 2432 2433 // Sign of Hi part. 2434 auto HiL = MIRBuilder.buildAShr( 2435 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2436 2437 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2438 2439 auto Lo = MIRBuilder.buildSelect( 2440 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2441 2442 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2443 2444 ResultRegs[0] = Lo.getReg(0); 2445 ResultRegs[1] = Hi.getReg(0); 2446 break; 2447 } 2448 default: 2449 llvm_unreachable("not a shift"); 2450 } 2451 2452 MIRBuilder.buildMerge(DstReg, ResultRegs); 2453 MI.eraseFromParent(); 2454 return Legalized; 2455 } 2456 2457 LegalizerHelper::LegalizeResult 2458 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2459 LLT MoreTy) { 2460 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2461 2462 Observer.changingInstr(MI); 2463 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2464 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2465 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2466 moreElementsVectorSrc(MI, MoreTy, I); 2467 } 2468 2469 MachineBasicBlock &MBB = *MI.getParent(); 2470 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2471 moreElementsVectorDst(MI, MoreTy, 0); 2472 Observer.changedInstr(MI); 2473 return Legalized; 2474 } 2475 2476 LegalizerHelper::LegalizeResult 2477 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2478 LLT MoreTy) { 2479 MIRBuilder.setInstr(MI); 2480 unsigned Opc = MI.getOpcode(); 2481 switch (Opc) { 2482 case TargetOpcode::G_IMPLICIT_DEF: { 2483 Observer.changingInstr(MI); 2484 moreElementsVectorDst(MI, MoreTy, 0); 2485 Observer.changedInstr(MI); 2486 return Legalized; 2487 } 2488 case TargetOpcode::G_AND: 2489 case TargetOpcode::G_OR: 2490 case TargetOpcode::G_XOR: { 2491 Observer.changingInstr(MI); 2492 moreElementsVectorSrc(MI, MoreTy, 1); 2493 moreElementsVectorSrc(MI, MoreTy, 2); 2494 moreElementsVectorDst(MI, MoreTy, 0); 2495 Observer.changedInstr(MI); 2496 return Legalized; 2497 } 2498 case TargetOpcode::G_EXTRACT: 2499 if (TypeIdx != 1) 2500 return UnableToLegalize; 2501 Observer.changingInstr(MI); 2502 moreElementsVectorSrc(MI, MoreTy, 1); 2503 Observer.changedInstr(MI); 2504 return Legalized; 2505 case TargetOpcode::G_INSERT: 2506 if (TypeIdx != 0) 2507 return UnableToLegalize; 2508 Observer.changingInstr(MI); 2509 moreElementsVectorSrc(MI, MoreTy, 1); 2510 moreElementsVectorDst(MI, MoreTy, 0); 2511 Observer.changedInstr(MI); 2512 return Legalized; 2513 case TargetOpcode::G_SELECT: 2514 if (TypeIdx != 0) 2515 return UnableToLegalize; 2516 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2517 return UnableToLegalize; 2518 2519 Observer.changingInstr(MI); 2520 moreElementsVectorSrc(MI, MoreTy, 2); 2521 moreElementsVectorSrc(MI, MoreTy, 3); 2522 moreElementsVectorDst(MI, MoreTy, 0); 2523 Observer.changedInstr(MI); 2524 return Legalized; 2525 case TargetOpcode::G_PHI: 2526 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2527 default: 2528 return UnableToLegalize; 2529 } 2530 } 2531 2532 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs, 2533 ArrayRef<unsigned> Src1Regs, 2534 ArrayRef<unsigned> Src2Regs, 2535 LLT NarrowTy) { 2536 MachineIRBuilder &B = MIRBuilder; 2537 unsigned SrcParts = Src1Regs.size(); 2538 unsigned DstParts = DstRegs.size(); 2539 2540 unsigned DstIdx = 0; // Low bits of the result. 2541 unsigned FactorSum = 2542 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2543 DstRegs[DstIdx] = FactorSum; 2544 2545 unsigned CarrySumPrevDstIdx; 2546 SmallVector<unsigned, 4> Factors; 2547 2548 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2549 // Collect low parts of muls for DstIdx. 2550 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2551 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2552 MachineInstrBuilder Mul = 2553 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2554 Factors.push_back(Mul.getReg(0)); 2555 } 2556 // Collect high parts of muls from previous DstIdx. 2557 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2558 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2559 MachineInstrBuilder Umulh = 2560 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2561 Factors.push_back(Umulh.getReg(0)); 2562 } 2563 // Add CarrySum from additons calculated for previous DstIdx. 2564 if (DstIdx != 1) { 2565 Factors.push_back(CarrySumPrevDstIdx); 2566 } 2567 2568 unsigned CarrySum = 0; 2569 // Add all factors and accumulate all carries into CarrySum. 2570 if (DstIdx != DstParts - 1) { 2571 MachineInstrBuilder Uaddo = 2572 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2573 FactorSum = Uaddo.getReg(0); 2574 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2575 for (unsigned i = 2; i < Factors.size(); ++i) { 2576 MachineInstrBuilder Uaddo = 2577 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2578 FactorSum = Uaddo.getReg(0); 2579 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2580 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2581 } 2582 } else { 2583 // Since value for the next index is not calculated, neither is CarrySum. 2584 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2585 for (unsigned i = 2; i < Factors.size(); ++i) 2586 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2587 } 2588 2589 CarrySumPrevDstIdx = CarrySum; 2590 DstRegs[DstIdx] = FactorSum; 2591 Factors.clear(); 2592 } 2593 } 2594 2595 LegalizerHelper::LegalizeResult 2596 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2597 unsigned DstReg = MI.getOperand(0).getReg(); 2598 unsigned Src1 = MI.getOperand(1).getReg(); 2599 unsigned Src2 = MI.getOperand(2).getReg(); 2600 2601 LLT Ty = MRI.getType(DstReg); 2602 if (Ty.isVector()) 2603 return UnableToLegalize; 2604 2605 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2606 unsigned DstSize = Ty.getSizeInBits(); 2607 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2608 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2609 return UnableToLegalize; 2610 2611 unsigned NumDstParts = DstSize / NarrowSize; 2612 unsigned NumSrcParts = SrcSize / NarrowSize; 2613 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2614 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2615 2616 SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs; 2617 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2618 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2619 DstTmpRegs.resize(DstTmpParts); 2620 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2621 2622 // Take only high half of registers if this is high mul. 2623 ArrayRef<unsigned> DstRegs( 2624 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2625 MIRBuilder.buildMerge(DstReg, DstRegs); 2626 MI.eraseFromParent(); 2627 return Legalized; 2628 } 2629 2630 LegalizerHelper::LegalizeResult 2631 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2632 LLT NarrowTy) { 2633 if (TypeIdx != 1) 2634 return UnableToLegalize; 2635 2636 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2637 2638 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2639 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2640 // NarrowSize. 2641 if (SizeOp1 % NarrowSize != 0) 2642 return UnableToLegalize; 2643 int NumParts = SizeOp1 / NarrowSize; 2644 2645 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2646 SmallVector<uint64_t, 2> Indexes; 2647 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2648 2649 unsigned OpReg = MI.getOperand(0).getReg(); 2650 uint64_t OpStart = MI.getOperand(2).getImm(); 2651 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2652 for (int i = 0; i < NumParts; ++i) { 2653 unsigned SrcStart = i * NarrowSize; 2654 2655 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2656 // No part of the extract uses this subregister, ignore it. 2657 continue; 2658 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2659 // The entire subregister is extracted, forward the value. 2660 DstRegs.push_back(SrcRegs[i]); 2661 continue; 2662 } 2663 2664 // OpSegStart is where this destination segment would start in OpReg if it 2665 // extended infinitely in both directions. 2666 int64_t ExtractOffset; 2667 uint64_t SegSize; 2668 if (OpStart < SrcStart) { 2669 ExtractOffset = 0; 2670 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2671 } else { 2672 ExtractOffset = OpStart - SrcStart; 2673 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2674 } 2675 2676 unsigned SegReg = SrcRegs[i]; 2677 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2678 // A genuine extract is needed. 2679 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2680 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2681 } 2682 2683 DstRegs.push_back(SegReg); 2684 } 2685 2686 unsigned DstReg = MI.getOperand(0).getReg(); 2687 if(MRI.getType(DstReg).isVector()) 2688 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2689 else 2690 MIRBuilder.buildMerge(DstReg, DstRegs); 2691 MI.eraseFromParent(); 2692 return Legalized; 2693 } 2694 2695 LegalizerHelper::LegalizeResult 2696 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2697 LLT NarrowTy) { 2698 // FIXME: Don't know how to handle secondary types yet. 2699 if (TypeIdx != 0) 2700 return UnableToLegalize; 2701 2702 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2703 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2704 2705 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2706 // NarrowSize. 2707 if (SizeOp0 % NarrowSize != 0) 2708 return UnableToLegalize; 2709 2710 int NumParts = SizeOp0 / NarrowSize; 2711 2712 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2713 SmallVector<uint64_t, 2> Indexes; 2714 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2715 2716 unsigned OpReg = MI.getOperand(2).getReg(); 2717 uint64_t OpStart = MI.getOperand(3).getImm(); 2718 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2719 for (int i = 0; i < NumParts; ++i) { 2720 unsigned DstStart = i * NarrowSize; 2721 2722 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2723 // No part of the insert affects this subregister, forward the original. 2724 DstRegs.push_back(SrcRegs[i]); 2725 continue; 2726 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2727 // The entire subregister is defined by this insert, forward the new 2728 // value. 2729 DstRegs.push_back(OpReg); 2730 continue; 2731 } 2732 2733 // OpSegStart is where this destination segment would start in OpReg if it 2734 // extended infinitely in both directions. 2735 int64_t ExtractOffset, InsertOffset; 2736 uint64_t SegSize; 2737 if (OpStart < DstStart) { 2738 InsertOffset = 0; 2739 ExtractOffset = DstStart - OpStart; 2740 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2741 } else { 2742 InsertOffset = OpStart - DstStart; 2743 ExtractOffset = 0; 2744 SegSize = 2745 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2746 } 2747 2748 unsigned SegReg = OpReg; 2749 if (ExtractOffset != 0 || SegSize != OpSize) { 2750 // A genuine extract is needed. 2751 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2752 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2753 } 2754 2755 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2756 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2757 DstRegs.push_back(DstReg); 2758 } 2759 2760 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2761 unsigned DstReg = MI.getOperand(0).getReg(); 2762 if(MRI.getType(DstReg).isVector()) 2763 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2764 else 2765 MIRBuilder.buildMerge(DstReg, DstRegs); 2766 MI.eraseFromParent(); 2767 return Legalized; 2768 } 2769 2770 LegalizerHelper::LegalizeResult 2771 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2772 LLT NarrowTy) { 2773 unsigned DstReg = MI.getOperand(0).getReg(); 2774 LLT DstTy = MRI.getType(DstReg); 2775 2776 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2777 2778 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2779 SmallVector<unsigned, 4> Src0Regs, Src0LeftoverRegs; 2780 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2781 LLT LeftoverTy; 2782 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2783 Src0Regs, Src0LeftoverRegs)) 2784 return UnableToLegalize; 2785 2786 LLT Unused; 2787 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2788 Src1Regs, Src1LeftoverRegs)) 2789 llvm_unreachable("inconsistent extractParts result"); 2790 2791 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2792 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2793 {Src0Regs[I], Src1Regs[I]}); 2794 DstRegs.push_back(Inst->getOperand(0).getReg()); 2795 } 2796 2797 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2798 auto Inst = MIRBuilder.buildInstr( 2799 MI.getOpcode(), 2800 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2801 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2802 } 2803 2804 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2805 LeftoverTy, DstLeftoverRegs); 2806 2807 MI.eraseFromParent(); 2808 return Legalized; 2809 } 2810 2811 LegalizerHelper::LegalizeResult 2812 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2813 LLT NarrowTy) { 2814 if (TypeIdx != 0) 2815 return UnableToLegalize; 2816 2817 unsigned CondReg = MI.getOperand(1).getReg(); 2818 LLT CondTy = MRI.getType(CondReg); 2819 if (CondTy.isVector()) // TODO: Handle vselect 2820 return UnableToLegalize; 2821 2822 unsigned DstReg = MI.getOperand(0).getReg(); 2823 LLT DstTy = MRI.getType(DstReg); 2824 2825 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2826 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2827 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2828 LLT LeftoverTy; 2829 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2830 Src1Regs, Src1LeftoverRegs)) 2831 return UnableToLegalize; 2832 2833 LLT Unused; 2834 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2835 Src2Regs, Src2LeftoverRegs)) 2836 llvm_unreachable("inconsistent extractParts result"); 2837 2838 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2839 auto Select = MIRBuilder.buildSelect(NarrowTy, 2840 CondReg, Src1Regs[I], Src2Regs[I]); 2841 DstRegs.push_back(Select->getOperand(0).getReg()); 2842 } 2843 2844 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2845 auto Select = MIRBuilder.buildSelect( 2846 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2847 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2848 } 2849 2850 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2851 LeftoverTy, DstLeftoverRegs); 2852 2853 MI.eraseFromParent(); 2854 return Legalized; 2855 } 2856 2857 LegalizerHelper::LegalizeResult 2858 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2859 unsigned Opc = MI.getOpcode(); 2860 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2861 auto isSupported = [this](const LegalityQuery &Q) { 2862 auto QAction = LI.getAction(Q).Action; 2863 return QAction == Legal || QAction == Libcall || QAction == Custom; 2864 }; 2865 switch (Opc) { 2866 default: 2867 return UnableToLegalize; 2868 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2869 // This trivially expands to CTLZ. 2870 Observer.changingInstr(MI); 2871 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2872 Observer.changedInstr(MI); 2873 return Legalized; 2874 } 2875 case TargetOpcode::G_CTLZ: { 2876 unsigned SrcReg = MI.getOperand(1).getReg(); 2877 unsigned Len = Ty.getSizeInBits(); 2878 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2879 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2880 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2881 {Ty}, {SrcReg}); 2882 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2883 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2884 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2885 SrcReg, MIBZero); 2886 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2887 MIBCtlzZU); 2888 MI.eraseFromParent(); 2889 return Legalized; 2890 } 2891 // for now, we do this: 2892 // NewLen = NextPowerOf2(Len); 2893 // x = x | (x >> 1); 2894 // x = x | (x >> 2); 2895 // ... 2896 // x = x | (x >>16); 2897 // x = x | (x >>32); // for 64-bit input 2898 // Upto NewLen/2 2899 // return Len - popcount(x); 2900 // 2901 // Ref: "Hacker's Delight" by Henry Warren 2902 unsigned Op = SrcReg; 2903 unsigned NewLen = PowerOf2Ceil(Len); 2904 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2905 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2906 auto MIBOp = MIRBuilder.buildInstr( 2907 TargetOpcode::G_OR, {Ty}, 2908 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2909 {Op, MIBShiftAmt})}); 2910 Op = MIBOp->getOperand(0).getReg(); 2911 } 2912 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2913 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2914 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2915 MI.eraseFromParent(); 2916 return Legalized; 2917 } 2918 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2919 // This trivially expands to CTTZ. 2920 Observer.changingInstr(MI); 2921 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2922 Observer.changedInstr(MI); 2923 return Legalized; 2924 } 2925 case TargetOpcode::G_CTTZ: { 2926 unsigned SrcReg = MI.getOperand(1).getReg(); 2927 unsigned Len = Ty.getSizeInBits(); 2928 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2929 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2930 // zero. 2931 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2932 {Ty}, {SrcReg}); 2933 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2934 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2935 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2936 SrcReg, MIBZero); 2937 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2938 MIBCttzZU); 2939 MI.eraseFromParent(); 2940 return Legalized; 2941 } 2942 // for now, we use: { return popcount(~x & (x - 1)); } 2943 // unless the target has ctlz but not ctpop, in which case we use: 2944 // { return 32 - nlz(~x & (x-1)); } 2945 // Ref: "Hacker's Delight" by Henry Warren 2946 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2947 auto MIBNot = 2948 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2949 auto MIBTmp = MIRBuilder.buildInstr( 2950 TargetOpcode::G_AND, {Ty}, 2951 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2952 {SrcReg, MIBCstNeg1})}); 2953 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2954 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2955 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2956 MIRBuilder.buildInstr( 2957 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2958 {MIBCstLen, 2959 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2960 MI.eraseFromParent(); 2961 return Legalized; 2962 } 2963 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2964 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2965 return Legalized; 2966 } 2967 } 2968 } 2969