1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Lower:
124     LLVM_DEBUG(dbgs() << ".. Lower\n");
125     return lower(MI, Step.TypeIdx, Step.NewType);
126   case FewerElements:
127     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
128     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
129   case MoreElements:
130     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
131     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case Custom:
133     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
134     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
135                                                             : UnableToLegalize;
136   default:
137     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
138     return UnableToLegalize;
139   }
140 }
141 
142 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
143                                    SmallVectorImpl<Register> &VRegs) {
144   for (int i = 0; i < NumParts; ++i)
145     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
146   MIRBuilder.buildUnmerge(VRegs, Reg);
147 }
148 
149 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
150                                    LLT MainTy, LLT &LeftoverTy,
151                                    SmallVectorImpl<Register> &VRegs,
152                                    SmallVectorImpl<Register> &LeftoverRegs) {
153   assert(!LeftoverTy.isValid() && "this is an out argument");
154 
155   unsigned RegSize = RegTy.getSizeInBits();
156   unsigned MainSize = MainTy.getSizeInBits();
157   unsigned NumParts = RegSize / MainSize;
158   unsigned LeftoverSize = RegSize - NumParts * MainSize;
159 
160   // Use an unmerge when possible.
161   if (LeftoverSize == 0) {
162     for (unsigned I = 0; I < NumParts; ++I)
163       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
164     MIRBuilder.buildUnmerge(VRegs, Reg);
165     return true;
166   }
167 
168   if (MainTy.isVector()) {
169     unsigned EltSize = MainTy.getScalarSizeInBits();
170     if (LeftoverSize % EltSize != 0)
171       return false;
172     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
173   } else {
174     LeftoverTy = LLT::scalar(LeftoverSize);
175   }
176 
177   // For irregular sizes, extract the individual parts.
178   for (unsigned I = 0; I != NumParts; ++I) {
179     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
180     VRegs.push_back(NewReg);
181     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
182   }
183 
184   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
185        Offset += LeftoverSize) {
186     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
187     LeftoverRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, Offset);
189   }
190 
191   return true;
192 }
193 
194 void LegalizerHelper::insertParts(Register DstReg,
195                                   LLT ResultTy, LLT PartTy,
196                                   ArrayRef<Register> PartRegs,
197                                   LLT LeftoverTy,
198                                   ArrayRef<Register> LeftoverRegs) {
199   if (!LeftoverTy.isValid()) {
200     assert(LeftoverRegs.empty());
201 
202     if (!ResultTy.isVector()) {
203       MIRBuilder.buildMerge(DstReg, PartRegs);
204       return;
205     }
206 
207     if (PartTy.isVector())
208       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
209     else
210       MIRBuilder.buildBuildVector(DstReg, PartRegs);
211     return;
212   }
213 
214   unsigned PartSize = PartTy.getSizeInBits();
215   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
216 
217   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
218   MIRBuilder.buildUndef(CurResultReg);
219 
220   unsigned Offset = 0;
221   for (Register PartReg : PartRegs) {
222     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
223     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
224     CurResultReg = NewResultReg;
225     Offset += PartSize;
226   }
227 
228   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
229     // Use the original output register for the final insert to avoid a copy.
230     Register NewResultReg = (I + 1 == E) ?
231       DstReg : MRI.createGenericVirtualRegister(ResultTy);
232 
233     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
234     CurResultReg = NewResultReg;
235     Offset += LeftoverPartSize;
236   }
237 }
238 
239 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
240 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
241                               const MachineInstr &MI) {
242   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
243 
244   const int NumResults = MI.getNumOperands() - 1;
245   Regs.resize(NumResults);
246   for (int I = 0; I != NumResults; ++I)
247     Regs[I] = MI.getOperand(I).getReg();
248 }
249 
250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
251                                     LLT NarrowTy, Register SrcReg) {
252   LLT SrcTy = MRI.getType(SrcReg);
253 
254   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
255   if (SrcTy == GCDTy) {
256     // If the source already evenly divides the result type, we don't need to do
257     // anything.
258     Parts.push_back(SrcReg);
259   } else {
260     // Need to split into common type sized pieces.
261     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
262     getUnmergeResults(Parts, *Unmerge);
263   }
264 
265   return GCDTy;
266 }
267 
268 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
269                                          SmallVectorImpl<Register> &VRegs,
270                                          unsigned PadStrategy) {
271   LLT LCMTy = getLCMType(DstTy, NarrowTy);
272 
273   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
274   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
275   int NumOrigSrc = VRegs.size();
276 
277   Register PadReg;
278 
279   // Get a value we can use to pad the source value if the sources won't evenly
280   // cover the result type.
281   if (NumOrigSrc < NumParts * NumSubParts) {
282     if (PadStrategy == TargetOpcode::G_ZEXT)
283       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
284     else if (PadStrategy == TargetOpcode::G_ANYEXT)
285       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
286     else {
287       assert(PadStrategy == TargetOpcode::G_SEXT);
288 
289       // Shift the sign bit of the low register through the high register.
290       auto ShiftAmt =
291         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
292       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
293     }
294   }
295 
296   // Registers for the final merge to be produced.
297   SmallVector<Register, 4> Remerge(NumParts);
298 
299   // Registers needed for intermediate merges, which will be merged into a
300   // source for Remerge.
301   SmallVector<Register, 4> SubMerge(NumSubParts);
302 
303   // Once we've fully read off the end of the original source bits, we can reuse
304   // the same high bits for remaining padding elements.
305   Register AllPadReg;
306 
307   // Build merges to the LCM type to cover the original result type.
308   for (int I = 0; I != NumParts; ++I) {
309     bool AllMergePartsArePadding = true;
310 
311     // Build the requested merges to the requested type.
312     for (int J = 0; J != NumSubParts; ++J) {
313       int Idx = I * NumSubParts + J;
314       if (Idx >= NumOrigSrc) {
315         SubMerge[J] = PadReg;
316         continue;
317       }
318 
319       SubMerge[J] = VRegs[Idx];
320 
321       // There are meaningful bits here we can't reuse later.
322       AllMergePartsArePadding = false;
323     }
324 
325     // If we've filled up a complete piece with padding bits, we can directly
326     // emit the natural sized constant if applicable, rather than a merge of
327     // smaller constants.
328     if (AllMergePartsArePadding && !AllPadReg) {
329       if (PadStrategy == TargetOpcode::G_ANYEXT)
330         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
331       else if (PadStrategy == TargetOpcode::G_ZEXT)
332         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
333 
334       // If this is a sign extension, we can't materialize a trivial constant
335       // with the right type and have to produce a merge.
336     }
337 
338     if (AllPadReg) {
339       // Avoid creating additional instructions if we're just adding additional
340       // copies of padding bits.
341       Remerge[I] = AllPadReg;
342       continue;
343     }
344 
345     if (NumSubParts == 1)
346       Remerge[I] = SubMerge[0];
347     else
348       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
349 
350     // In the sign extend padding case, re-use the first all-signbit merge.
351     if (AllMergePartsArePadding && !AllPadReg)
352       AllPadReg = Remerge[I];
353   }
354 
355   VRegs = std::move(Remerge);
356   return LCMTy;
357 }
358 
359 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
360                                                ArrayRef<Register> RemergeRegs) {
361   LLT DstTy = MRI.getType(DstReg);
362 
363   // Create the merge to the widened source, and extract the relevant bits into
364   // the result.
365 
366   if (DstTy == LCMTy) {
367     MIRBuilder.buildMerge(DstReg, RemergeRegs);
368     return;
369   }
370 
371   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
372   if (DstTy.isScalar() && LCMTy.isScalar()) {
373     MIRBuilder.buildTrunc(DstReg, Remerge);
374     return;
375   }
376 
377   if (LCMTy.isVector()) {
378     MIRBuilder.buildExtract(DstReg, Remerge, 0);
379     return;
380   }
381 
382   llvm_unreachable("unhandled case");
383 }
384 
385 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
386   switch (Opcode) {
387   case TargetOpcode::G_SDIV:
388     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
389     switch (Size) {
390     case 32:
391       return RTLIB::SDIV_I32;
392     case 64:
393       return RTLIB::SDIV_I64;
394     case 128:
395       return RTLIB::SDIV_I128;
396     default:
397       llvm_unreachable("unexpected size");
398     }
399   case TargetOpcode::G_UDIV:
400     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
401     switch (Size) {
402     case 32:
403       return RTLIB::UDIV_I32;
404     case 64:
405       return RTLIB::UDIV_I64;
406     case 128:
407       return RTLIB::UDIV_I128;
408     default:
409       llvm_unreachable("unexpected size");
410     }
411   case TargetOpcode::G_SREM:
412     assert((Size == 32 || Size == 64) && "Unsupported size");
413     return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
414   case TargetOpcode::G_UREM:
415     assert((Size == 32 || Size == 64) && "Unsupported size");
416     return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
417   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
418     assert(Size == 32 && "Unsupported size");
419     return RTLIB::CTLZ_I32;
420   case TargetOpcode::G_FADD:
421     assert((Size == 32 || Size == 64) && "Unsupported size");
422     return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
423   case TargetOpcode::G_FSUB:
424     assert((Size == 32 || Size == 64) && "Unsupported size");
425     return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
426   case TargetOpcode::G_FMUL:
427     assert((Size == 32 || Size == 64) && "Unsupported size");
428     return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
429   case TargetOpcode::G_FDIV:
430     assert((Size == 32 || Size == 64) && "Unsupported size");
431     return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
432   case TargetOpcode::G_FEXP:
433     assert((Size == 32 || Size == 64) && "Unsupported size");
434     return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
435   case TargetOpcode::G_FEXP2:
436     assert((Size == 32 || Size == 64) && "Unsupported size");
437     return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
438   case TargetOpcode::G_FREM:
439     return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
440   case TargetOpcode::G_FPOW:
441     return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
442   case TargetOpcode::G_FMA:
443     assert((Size == 32 || Size == 64) && "Unsupported size");
444     return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
445   case TargetOpcode::G_FSIN:
446     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
447     return Size == 128 ? RTLIB::SIN_F128
448                        : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
449   case TargetOpcode::G_FCOS:
450     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
451     return Size == 128 ? RTLIB::COS_F128
452                        : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
453   case TargetOpcode::G_FLOG10:
454     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
455     return Size == 128 ? RTLIB::LOG10_F128
456                        : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
457   case TargetOpcode::G_FLOG:
458     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
459     return Size == 128 ? RTLIB::LOG_F128
460                        : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
461   case TargetOpcode::G_FLOG2:
462     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
463     return Size == 128 ? RTLIB::LOG2_F128
464                        : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
465   case TargetOpcode::G_FCEIL:
466     assert((Size == 32 || Size == 64) && "Unsupported size");
467     return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
468   case TargetOpcode::G_FFLOOR:
469     assert((Size == 32 || Size == 64) && "Unsupported size");
470     return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
471   }
472   llvm_unreachable("Unknown libcall function");
473 }
474 
475 /// True if an instruction is in tail position in its caller. Intended for
476 /// legalizing libcalls as tail calls when possible.
477 static bool isLibCallInTailPosition(MachineInstr &MI) {
478   const Function &F = MI.getParent()->getParent()->getFunction();
479 
480   // Conservatively require the attributes of the call to match those of
481   // the return. Ignore NoAlias and NonNull because they don't affect the
482   // call sequence.
483   AttributeList CallerAttrs = F.getAttributes();
484   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
485           .removeAttribute(Attribute::NoAlias)
486           .removeAttribute(Attribute::NonNull)
487           .hasAttributes())
488     return false;
489 
490   // It's not safe to eliminate the sign / zero extension of the return value.
491   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
492       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
493     return false;
494 
495   // Only tail call if the following instruction is a standard return.
496   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
497   MachineInstr *Next = MI.getNextNode();
498   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
499     return false;
500 
501   return true;
502 }
503 
504 LegalizerHelper::LegalizeResult
505 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
506                     const CallLowering::ArgInfo &Result,
507                     ArrayRef<CallLowering::ArgInfo> Args) {
508   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
509   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
510   const char *Name = TLI.getLibcallName(Libcall);
511 
512   CallLowering::CallLoweringInfo Info;
513   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
514   Info.Callee = MachineOperand::CreateES(Name);
515   Info.OrigRet = Result;
516   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
517   if (!CLI.lowerCall(MIRBuilder, Info))
518     return LegalizerHelper::UnableToLegalize;
519 
520   return LegalizerHelper::Legalized;
521 }
522 
523 // Useful for libcalls where all operands have the same type.
524 static LegalizerHelper::LegalizeResult
525 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
526               Type *OpType) {
527   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
528 
529   SmallVector<CallLowering::ArgInfo, 3> Args;
530   for (unsigned i = 1; i < MI.getNumOperands(); i++)
531     Args.push_back({MI.getOperand(i).getReg(), OpType});
532   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
533                        Args);
534 }
535 
536 LegalizerHelper::LegalizeResult
537 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
538                        MachineInstr &MI) {
539   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
540   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
541 
542   SmallVector<CallLowering::ArgInfo, 3> Args;
543   // Add all the args, except for the last which is an imm denoting 'tail'.
544   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
545     Register Reg = MI.getOperand(i).getReg();
546 
547     // Need derive an IR type for call lowering.
548     LLT OpLLT = MRI.getType(Reg);
549     Type *OpTy = nullptr;
550     if (OpLLT.isPointer())
551       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
552     else
553       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
554     Args.push_back({Reg, OpTy});
555   }
556 
557   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
558   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
559   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
560   RTLIB::Libcall RTLibcall;
561   switch (ID) {
562   case Intrinsic::memcpy:
563     RTLibcall = RTLIB::MEMCPY;
564     break;
565   case Intrinsic::memset:
566     RTLibcall = RTLIB::MEMSET;
567     break;
568   case Intrinsic::memmove:
569     RTLibcall = RTLIB::MEMMOVE;
570     break;
571   default:
572     return LegalizerHelper::UnableToLegalize;
573   }
574   const char *Name = TLI.getLibcallName(RTLibcall);
575 
576   MIRBuilder.setInstr(MI);
577 
578   CallLowering::CallLoweringInfo Info;
579   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
580   Info.Callee = MachineOperand::CreateES(Name);
581   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
582   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
583                     isLibCallInTailPosition(MI);
584 
585   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
586   if (!CLI.lowerCall(MIRBuilder, Info))
587     return LegalizerHelper::UnableToLegalize;
588 
589   if (Info.LoweredTailCall) {
590     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
591     // We must have a return following the call to get past
592     // isLibCallInTailPosition.
593     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
594            "Expected instr following MI to be a return?");
595 
596     // We lowered a tail call, so the call is now the return from the block.
597     // Delete the old return.
598     MI.getNextNode()->eraseFromParent();
599   }
600 
601   return LegalizerHelper::Legalized;
602 }
603 
604 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
605                                        Type *FromType) {
606   auto ToMVT = MVT::getVT(ToType);
607   auto FromMVT = MVT::getVT(FromType);
608 
609   switch (Opcode) {
610   case TargetOpcode::G_FPEXT:
611     return RTLIB::getFPEXT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTRUNC:
613     return RTLIB::getFPROUND(FromMVT, ToMVT);
614   case TargetOpcode::G_FPTOSI:
615     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
616   case TargetOpcode::G_FPTOUI:
617     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
618   case TargetOpcode::G_SITOFP:
619     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
620   case TargetOpcode::G_UITOFP:
621     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
622   }
623   llvm_unreachable("Unsupported libcall function");
624 }
625 
626 static LegalizerHelper::LegalizeResult
627 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
628                   Type *FromType) {
629   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
630   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
631                        {{MI.getOperand(1).getReg(), FromType}});
632 }
633 
634 LegalizerHelper::LegalizeResult
635 LegalizerHelper::libcall(MachineInstr &MI) {
636   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
637   unsigned Size = LLTy.getSizeInBits();
638   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
639 
640   MIRBuilder.setInstr(MI);
641 
642   switch (MI.getOpcode()) {
643   default:
644     return UnableToLegalize;
645   case TargetOpcode::G_SDIV:
646   case TargetOpcode::G_UDIV:
647   case TargetOpcode::G_SREM:
648   case TargetOpcode::G_UREM:
649   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
650     Type *HLTy = IntegerType::get(Ctx, Size);
651     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
652     if (Status != Legalized)
653       return Status;
654     break;
655   }
656   case TargetOpcode::G_FADD:
657   case TargetOpcode::G_FSUB:
658   case TargetOpcode::G_FMUL:
659   case TargetOpcode::G_FDIV:
660   case TargetOpcode::G_FMA:
661   case TargetOpcode::G_FPOW:
662   case TargetOpcode::G_FREM:
663   case TargetOpcode::G_FCOS:
664   case TargetOpcode::G_FSIN:
665   case TargetOpcode::G_FLOG10:
666   case TargetOpcode::G_FLOG:
667   case TargetOpcode::G_FLOG2:
668   case TargetOpcode::G_FEXP:
669   case TargetOpcode::G_FEXP2:
670   case TargetOpcode::G_FCEIL:
671   case TargetOpcode::G_FFLOOR: {
672     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
673     if (!HLTy || (Size != 32 && Size != 64)) {
674       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
675       return UnableToLegalize;
676     }
677     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
678     if (Status != Legalized)
679       return Status;
680     break;
681   }
682   case TargetOpcode::G_FPEXT:
683   case TargetOpcode::G_FPTRUNC: {
684     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
685     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
686     if (!FromTy || !ToTy)
687       return UnableToLegalize;
688     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
689     if (Status != Legalized)
690       return Status;
691     break;
692   }
693   case TargetOpcode::G_FPTOSI:
694   case TargetOpcode::G_FPTOUI: {
695     // FIXME: Support other types
696     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
697     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
698     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
699       return UnableToLegalize;
700     LegalizeResult Status = conversionLibcall(
701         MI, MIRBuilder,
702         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
703         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
704     if (Status != Legalized)
705       return Status;
706     break;
707   }
708   case TargetOpcode::G_SITOFP:
709   case TargetOpcode::G_UITOFP: {
710     // FIXME: Support other types
711     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
712     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
713     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
714       return UnableToLegalize;
715     LegalizeResult Status = conversionLibcall(
716         MI, MIRBuilder,
717         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
718         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   }
724 
725   MI.eraseFromParent();
726   return Legalized;
727 }
728 
729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
730                                                               unsigned TypeIdx,
731                                                               LLT NarrowTy) {
732   MIRBuilder.setInstr(MI);
733 
734   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
735   uint64_t NarrowSize = NarrowTy.getSizeInBits();
736 
737   switch (MI.getOpcode()) {
738   default:
739     return UnableToLegalize;
740   case TargetOpcode::G_IMPLICIT_DEF: {
741     // FIXME: add support for when SizeOp0 isn't an exact multiple of
742     // NarrowSize.
743     if (SizeOp0 % NarrowSize != 0)
744       return UnableToLegalize;
745     int NumParts = SizeOp0 / NarrowSize;
746 
747     SmallVector<Register, 2> DstRegs;
748     for (int i = 0; i < NumParts; ++i)
749       DstRegs.push_back(
750           MIRBuilder.buildUndef(NarrowTy).getReg(0));
751 
752     Register DstReg = MI.getOperand(0).getReg();
753     if(MRI.getType(DstReg).isVector())
754       MIRBuilder.buildBuildVector(DstReg, DstRegs);
755     else
756       MIRBuilder.buildMerge(DstReg, DstRegs);
757     MI.eraseFromParent();
758     return Legalized;
759   }
760   case TargetOpcode::G_CONSTANT: {
761     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
762     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
763     unsigned TotalSize = Ty.getSizeInBits();
764     unsigned NarrowSize = NarrowTy.getSizeInBits();
765     int NumParts = TotalSize / NarrowSize;
766 
767     SmallVector<Register, 4> PartRegs;
768     for (int I = 0; I != NumParts; ++I) {
769       unsigned Offset = I * NarrowSize;
770       auto K = MIRBuilder.buildConstant(NarrowTy,
771                                         Val.lshr(Offset).trunc(NarrowSize));
772       PartRegs.push_back(K.getReg(0));
773     }
774 
775     LLT LeftoverTy;
776     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
777     SmallVector<Register, 1> LeftoverRegs;
778     if (LeftoverBits != 0) {
779       LeftoverTy = LLT::scalar(LeftoverBits);
780       auto K = MIRBuilder.buildConstant(
781         LeftoverTy,
782         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
783       LeftoverRegs.push_back(K.getReg(0));
784     }
785 
786     insertParts(MI.getOperand(0).getReg(),
787                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
788 
789     MI.eraseFromParent();
790     return Legalized;
791   }
792   case TargetOpcode::G_SEXT:
793   case TargetOpcode::G_ZEXT:
794   case TargetOpcode::G_ANYEXT:
795     return narrowScalarExt(MI, TypeIdx, NarrowTy);
796   case TargetOpcode::G_TRUNC: {
797     if (TypeIdx != 1)
798       return UnableToLegalize;
799 
800     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
801     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
802       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
803       return UnableToLegalize;
804     }
805 
806     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
807     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
808     MI.eraseFromParent();
809     return Legalized;
810   }
811 
812   case TargetOpcode::G_ADD: {
813     // FIXME: add support for when SizeOp0 isn't an exact multiple of
814     // NarrowSize.
815     if (SizeOp0 % NarrowSize != 0)
816       return UnableToLegalize;
817     // Expand in terms of carry-setting/consuming G_ADDE instructions.
818     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
819 
820     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
821     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
822     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
823 
824     Register CarryIn;
825     for (int i = 0; i < NumParts; ++i) {
826       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
827       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
828 
829       if (i == 0)
830         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
831       else {
832         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
833                               Src2Regs[i], CarryIn);
834       }
835 
836       DstRegs.push_back(DstReg);
837       CarryIn = CarryOut;
838     }
839     Register DstReg = MI.getOperand(0).getReg();
840     if(MRI.getType(DstReg).isVector())
841       MIRBuilder.buildBuildVector(DstReg, DstRegs);
842     else
843       MIRBuilder.buildMerge(DstReg, DstRegs);
844     MI.eraseFromParent();
845     return Legalized;
846   }
847   case TargetOpcode::G_SUB: {
848     // FIXME: add support for when SizeOp0 isn't an exact multiple of
849     // NarrowSize.
850     if (SizeOp0 % NarrowSize != 0)
851       return UnableToLegalize;
852 
853     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
854 
855     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
856     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
857     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
858 
859     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
860     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
861     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
862                           {Src1Regs[0], Src2Regs[0]});
863     DstRegs.push_back(DstReg);
864     Register BorrowIn = BorrowOut;
865     for (int i = 1; i < NumParts; ++i) {
866       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
867       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
868 
869       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
870                             {Src1Regs[i], Src2Regs[i], BorrowIn});
871 
872       DstRegs.push_back(DstReg);
873       BorrowIn = BorrowOut;
874     }
875     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
876     MI.eraseFromParent();
877     return Legalized;
878   }
879   case TargetOpcode::G_MUL:
880   case TargetOpcode::G_UMULH:
881     return narrowScalarMul(MI, NarrowTy);
882   case TargetOpcode::G_EXTRACT:
883     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
884   case TargetOpcode::G_INSERT:
885     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
886   case TargetOpcode::G_LOAD: {
887     const auto &MMO = **MI.memoperands_begin();
888     Register DstReg = MI.getOperand(0).getReg();
889     LLT DstTy = MRI.getType(DstReg);
890     if (DstTy.isVector())
891       return UnableToLegalize;
892 
893     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
894       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
895       auto &MMO = **MI.memoperands_begin();
896       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
897       MIRBuilder.buildAnyExt(DstReg, TmpReg);
898       MI.eraseFromParent();
899       return Legalized;
900     }
901 
902     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
903   }
904   case TargetOpcode::G_ZEXTLOAD:
905   case TargetOpcode::G_SEXTLOAD: {
906     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
907     Register DstReg = MI.getOperand(0).getReg();
908     Register PtrReg = MI.getOperand(1).getReg();
909 
910     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
911     auto &MMO = **MI.memoperands_begin();
912     if (MMO.getSizeInBits() == NarrowSize) {
913       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
914     } else {
915       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
916     }
917 
918     if (ZExt)
919       MIRBuilder.buildZExt(DstReg, TmpReg);
920     else
921       MIRBuilder.buildSExt(DstReg, TmpReg);
922 
923     MI.eraseFromParent();
924     return Legalized;
925   }
926   case TargetOpcode::G_STORE: {
927     const auto &MMO = **MI.memoperands_begin();
928 
929     Register SrcReg = MI.getOperand(0).getReg();
930     LLT SrcTy = MRI.getType(SrcReg);
931     if (SrcTy.isVector())
932       return UnableToLegalize;
933 
934     int NumParts = SizeOp0 / NarrowSize;
935     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
936     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
937     if (SrcTy.isVector() && LeftoverBits != 0)
938       return UnableToLegalize;
939 
940     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
941       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
942       auto &MMO = **MI.memoperands_begin();
943       MIRBuilder.buildTrunc(TmpReg, SrcReg);
944       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
945       MI.eraseFromParent();
946       return Legalized;
947     }
948 
949     return reduceLoadStoreWidth(MI, 0, NarrowTy);
950   }
951   case TargetOpcode::G_SELECT:
952     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
953   case TargetOpcode::G_AND:
954   case TargetOpcode::G_OR:
955   case TargetOpcode::G_XOR: {
956     // Legalize bitwise operation:
957     // A = BinOp<Ty> B, C
958     // into:
959     // B1, ..., BN = G_UNMERGE_VALUES B
960     // C1, ..., CN = G_UNMERGE_VALUES C
961     // A1 = BinOp<Ty/N> B1, C2
962     // ...
963     // AN = BinOp<Ty/N> BN, CN
964     // A = G_MERGE_VALUES A1, ..., AN
965     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
966   }
967   case TargetOpcode::G_SHL:
968   case TargetOpcode::G_LSHR:
969   case TargetOpcode::G_ASHR:
970     return narrowScalarShift(MI, TypeIdx, NarrowTy);
971   case TargetOpcode::G_CTLZ:
972   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
973   case TargetOpcode::G_CTTZ:
974   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
975   case TargetOpcode::G_CTPOP:
976     if (TypeIdx == 1)
977       switch (MI.getOpcode()) {
978       case TargetOpcode::G_CTLZ:
979       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
980         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
981       case TargetOpcode::G_CTTZ:
982       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
983         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
984       case TargetOpcode::G_CTPOP:
985         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
986       default:
987         return UnableToLegalize;
988       }
989 
990     Observer.changingInstr(MI);
991     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
992     Observer.changedInstr(MI);
993     return Legalized;
994   case TargetOpcode::G_INTTOPTR:
995     if (TypeIdx != 1)
996       return UnableToLegalize;
997 
998     Observer.changingInstr(MI);
999     narrowScalarSrc(MI, NarrowTy, 1);
1000     Observer.changedInstr(MI);
1001     return Legalized;
1002   case TargetOpcode::G_PTRTOINT:
1003     if (TypeIdx != 0)
1004       return UnableToLegalize;
1005 
1006     Observer.changingInstr(MI);
1007     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1008     Observer.changedInstr(MI);
1009     return Legalized;
1010   case TargetOpcode::G_PHI: {
1011     unsigned NumParts = SizeOp0 / NarrowSize;
1012     SmallVector<Register, 2> DstRegs(NumParts);
1013     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1014     Observer.changingInstr(MI);
1015     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1016       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1017       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1018       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1019                    SrcRegs[i / 2]);
1020     }
1021     MachineBasicBlock &MBB = *MI.getParent();
1022     MIRBuilder.setInsertPt(MBB, MI);
1023     for (unsigned i = 0; i < NumParts; ++i) {
1024       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1025       MachineInstrBuilder MIB =
1026           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1027       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1028         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1029     }
1030     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1031     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1032     Observer.changedInstr(MI);
1033     MI.eraseFromParent();
1034     return Legalized;
1035   }
1036   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1037   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1038     if (TypeIdx != 2)
1039       return UnableToLegalize;
1040 
1041     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1042     Observer.changingInstr(MI);
1043     narrowScalarSrc(MI, NarrowTy, OpIdx);
1044     Observer.changedInstr(MI);
1045     return Legalized;
1046   }
1047   case TargetOpcode::G_ICMP: {
1048     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1049     if (NarrowSize * 2 != SrcSize)
1050       return UnableToLegalize;
1051 
1052     Observer.changingInstr(MI);
1053     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1054     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1055     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1056 
1057     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1058     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1059     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1060 
1061     CmpInst::Predicate Pred =
1062         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1063     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1064 
1065     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1066       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1067       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1068       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1069       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1070       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1071     } else {
1072       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1073       MachineInstrBuilder CmpHEQ =
1074           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1075       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1076           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1077       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1078     }
1079     Observer.changedInstr(MI);
1080     MI.eraseFromParent();
1081     return Legalized;
1082   }
1083   case TargetOpcode::G_SEXT_INREG: {
1084     if (TypeIdx != 0)
1085       return UnableToLegalize;
1086 
1087     int64_t SizeInBits = MI.getOperand(2).getImm();
1088 
1089     // So long as the new type has more bits than the bits we're extending we
1090     // don't need to break it apart.
1091     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1092       Observer.changingInstr(MI);
1093       // We don't lose any non-extension bits by truncating the src and
1094       // sign-extending the dst.
1095       MachineOperand &MO1 = MI.getOperand(1);
1096       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1097       MO1.setReg(TruncMIB.getReg(0));
1098 
1099       MachineOperand &MO2 = MI.getOperand(0);
1100       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1101       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1102       MIRBuilder.buildSExt(MO2, DstExt);
1103       MO2.setReg(DstExt);
1104       Observer.changedInstr(MI);
1105       return Legalized;
1106     }
1107 
1108     // Break it apart. Components below the extension point are unmodified. The
1109     // component containing the extension point becomes a narrower SEXT_INREG.
1110     // Components above it are ashr'd from the component containing the
1111     // extension point.
1112     if (SizeOp0 % NarrowSize != 0)
1113       return UnableToLegalize;
1114     int NumParts = SizeOp0 / NarrowSize;
1115 
1116     // List the registers where the destination will be scattered.
1117     SmallVector<Register, 2> DstRegs;
1118     // List the registers where the source will be split.
1119     SmallVector<Register, 2> SrcRegs;
1120 
1121     // Create all the temporary registers.
1122     for (int i = 0; i < NumParts; ++i) {
1123       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1124 
1125       SrcRegs.push_back(SrcReg);
1126     }
1127 
1128     // Explode the big arguments into smaller chunks.
1129     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1130 
1131     Register AshrCstReg =
1132         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1133             .getReg(0);
1134     Register FullExtensionReg = 0;
1135     Register PartialExtensionReg = 0;
1136 
1137     // Do the operation on each small part.
1138     for (int i = 0; i < NumParts; ++i) {
1139       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1140         DstRegs.push_back(SrcRegs[i]);
1141       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1142         assert(PartialExtensionReg &&
1143                "Expected to visit partial extension before full");
1144         if (FullExtensionReg) {
1145           DstRegs.push_back(FullExtensionReg);
1146           continue;
1147         }
1148         DstRegs.push_back(
1149             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1150                 .getReg(0));
1151         FullExtensionReg = DstRegs.back();
1152       } else {
1153         DstRegs.push_back(
1154             MIRBuilder
1155                 .buildInstr(
1156                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1157                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1158                 .getReg(0));
1159         PartialExtensionReg = DstRegs.back();
1160       }
1161     }
1162 
1163     // Gather the destination registers into the final destination.
1164     Register DstReg = MI.getOperand(0).getReg();
1165     MIRBuilder.buildMerge(DstReg, DstRegs);
1166     MI.eraseFromParent();
1167     return Legalized;
1168   }
1169   case TargetOpcode::G_BSWAP:
1170   case TargetOpcode::G_BITREVERSE: {
1171     if (SizeOp0 % NarrowSize != 0)
1172       return UnableToLegalize;
1173 
1174     Observer.changingInstr(MI);
1175     SmallVector<Register, 2> SrcRegs, DstRegs;
1176     unsigned NumParts = SizeOp0 / NarrowSize;
1177     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1178 
1179     for (unsigned i = 0; i < NumParts; ++i) {
1180       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1181                                            {SrcRegs[NumParts - 1 - i]});
1182       DstRegs.push_back(DstPart.getReg(0));
1183     }
1184 
1185     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1186 
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   }
1192 }
1193 
1194 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1195                                      unsigned OpIdx, unsigned ExtOpcode) {
1196   MachineOperand &MO = MI.getOperand(OpIdx);
1197   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1198   MO.setReg(ExtB.getReg(0));
1199 }
1200 
1201 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1202                                       unsigned OpIdx) {
1203   MachineOperand &MO = MI.getOperand(OpIdx);
1204   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1205   MO.setReg(ExtB.getReg(0));
1206 }
1207 
1208 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1209                                      unsigned OpIdx, unsigned TruncOpcode) {
1210   MachineOperand &MO = MI.getOperand(OpIdx);
1211   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1212   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1213   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1214   MO.setReg(DstExt);
1215 }
1216 
1217 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1218                                       unsigned OpIdx, unsigned ExtOpcode) {
1219   MachineOperand &MO = MI.getOperand(OpIdx);
1220   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1221   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1222   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1223   MO.setReg(DstTrunc);
1224 }
1225 
1226 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1227                                             unsigned OpIdx) {
1228   MachineOperand &MO = MI.getOperand(OpIdx);
1229   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1230   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1231   MIRBuilder.buildExtract(MO, DstExt, 0);
1232   MO.setReg(DstExt);
1233 }
1234 
1235 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1236                                             unsigned OpIdx) {
1237   MachineOperand &MO = MI.getOperand(OpIdx);
1238 
1239   LLT OldTy = MRI.getType(MO.getReg());
1240   unsigned OldElts = OldTy.getNumElements();
1241   unsigned NewElts = MoreTy.getNumElements();
1242 
1243   unsigned NumParts = NewElts / OldElts;
1244 
1245   // Use concat_vectors if the result is a multiple of the number of elements.
1246   if (NumParts * OldElts == NewElts) {
1247     SmallVector<Register, 8> Parts;
1248     Parts.push_back(MO.getReg());
1249 
1250     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1251     for (unsigned I = 1; I != NumParts; ++I)
1252       Parts.push_back(ImpDef);
1253 
1254     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1255     MO.setReg(Concat.getReg(0));
1256     return;
1257   }
1258 
1259   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1260   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1261   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1262   MO.setReg(MoreReg);
1263 }
1264 
1265 LegalizerHelper::LegalizeResult
1266 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1267                                         LLT WideTy) {
1268   if (TypeIdx != 1)
1269     return UnableToLegalize;
1270 
1271   Register DstReg = MI.getOperand(0).getReg();
1272   LLT DstTy = MRI.getType(DstReg);
1273   if (DstTy.isVector())
1274     return UnableToLegalize;
1275 
1276   Register Src1 = MI.getOperand(1).getReg();
1277   LLT SrcTy = MRI.getType(Src1);
1278   const int DstSize = DstTy.getSizeInBits();
1279   const int SrcSize = SrcTy.getSizeInBits();
1280   const int WideSize = WideTy.getSizeInBits();
1281   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1282 
1283   unsigned NumOps = MI.getNumOperands();
1284   unsigned NumSrc = MI.getNumOperands() - 1;
1285   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1286 
1287   if (WideSize >= DstSize) {
1288     // Directly pack the bits in the target type.
1289     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1290 
1291     for (unsigned I = 2; I != NumOps; ++I) {
1292       const unsigned Offset = (I - 1) * PartSize;
1293 
1294       Register SrcReg = MI.getOperand(I).getReg();
1295       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1296 
1297       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1298 
1299       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1300         MRI.createGenericVirtualRegister(WideTy);
1301 
1302       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1303       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1304       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1305       ResultReg = NextResult;
1306     }
1307 
1308     if (WideSize > DstSize)
1309       MIRBuilder.buildTrunc(DstReg, ResultReg);
1310     else if (DstTy.isPointer())
1311       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1312 
1313     MI.eraseFromParent();
1314     return Legalized;
1315   }
1316 
1317   // Unmerge the original values to the GCD type, and recombine to the next
1318   // multiple greater than the original type.
1319   //
1320   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1321   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1322   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1323   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1324   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1325   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1326   // %12:_(s12) = G_MERGE_VALUES %10, %11
1327   //
1328   // Padding with undef if necessary:
1329   //
1330   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1331   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1332   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1333   // %7:_(s2) = G_IMPLICIT_DEF
1334   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1335   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1336   // %10:_(s12) = G_MERGE_VALUES %8, %9
1337 
1338   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1339   LLT GCDTy = LLT::scalar(GCD);
1340 
1341   SmallVector<Register, 8> Parts;
1342   SmallVector<Register, 8> NewMergeRegs;
1343   SmallVector<Register, 8> Unmerges;
1344   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1345 
1346   // Decompose the original operands if they don't evenly divide.
1347   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1348     Register SrcReg = MI.getOperand(I).getReg();
1349     if (GCD == SrcSize) {
1350       Unmerges.push_back(SrcReg);
1351     } else {
1352       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1353       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1354         Unmerges.push_back(Unmerge.getReg(J));
1355     }
1356   }
1357 
1358   // Pad with undef to the next size that is a multiple of the requested size.
1359   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1360     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1361     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1362       Unmerges.push_back(UndefReg);
1363   }
1364 
1365   const int PartsPerGCD = WideSize / GCD;
1366 
1367   // Build merges of each piece.
1368   ArrayRef<Register> Slicer(Unmerges);
1369   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1370     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1371     NewMergeRegs.push_back(Merge.getReg(0));
1372   }
1373 
1374   // A truncate may be necessary if the requested type doesn't evenly divide the
1375   // original result type.
1376   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1377     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1378   } else {
1379     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1380     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1381   }
1382 
1383   MI.eraseFromParent();
1384   return Legalized;
1385 }
1386 
1387 LegalizerHelper::LegalizeResult
1388 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1389                                           LLT WideTy) {
1390   if (TypeIdx != 0)
1391     return UnableToLegalize;
1392 
1393   int NumDst = MI.getNumOperands() - 1;
1394   Register SrcReg = MI.getOperand(NumDst).getReg();
1395   LLT SrcTy = MRI.getType(SrcReg);
1396   if (SrcTy.isVector())
1397     return UnableToLegalize;
1398 
1399   Register Dst0Reg = MI.getOperand(0).getReg();
1400   LLT DstTy = MRI.getType(Dst0Reg);
1401   if (!DstTy.isScalar())
1402     return UnableToLegalize;
1403 
1404   if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) {
1405     if (SrcTy.isPointer()) {
1406       const DataLayout &DL = MIRBuilder.getDataLayout();
1407       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1408         LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
1409         return UnableToLegalize;
1410       }
1411 
1412       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1413       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1414     }
1415 
1416     // Theres no unmerge type to target. Directly extract the bits from the
1417     // source type
1418     unsigned DstSize = DstTy.getSizeInBits();
1419 
1420     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1421     for (int I = 1; I != NumDst; ++I) {
1422       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1423       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1424       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1425     }
1426 
1427     MI.eraseFromParent();
1428     return Legalized;
1429   }
1430 
1431   // TODO
1432   if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1433     return UnableToLegalize;
1434 
1435   // Extend the source to a wider type.
1436   LLT LCMTy = getLCMType(SrcTy, WideTy);
1437 
1438   Register WideSrc = SrcReg;
1439   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1440     // TODO: If this is an integral address space, cast to integer and anyext.
1441     if (SrcTy.isPointer()) {
1442       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1443       return UnableToLegalize;
1444     }
1445 
1446     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1447   }
1448 
1449   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1450 
1451   // Create a sequence of unmerges to the original results. since we may have
1452   // widened the source, we will need to pad the results with dead defs to cover
1453   // the source register.
1454   // e.g. widen s16 to s32:
1455   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1456   //
1457   // =>
1458   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1459   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1460   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1461   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1462 
1463   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1464   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1465 
1466   for (int I = 0; I != NumUnmerge; ++I) {
1467     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1468 
1469     for (int J = 0; J != PartsPerUnmerge; ++J) {
1470       int Idx = I * PartsPerUnmerge + J;
1471       if (Idx < NumDst)
1472         MIB.addDef(MI.getOperand(Idx).getReg());
1473       else {
1474         // Create dead def for excess components.
1475         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1476       }
1477     }
1478 
1479     MIB.addUse(Unmerge.getReg(I));
1480   }
1481 
1482   MI.eraseFromParent();
1483   return Legalized;
1484 }
1485 
1486 LegalizerHelper::LegalizeResult
1487 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1488                                     LLT WideTy) {
1489   Register DstReg = MI.getOperand(0).getReg();
1490   Register SrcReg = MI.getOperand(1).getReg();
1491   LLT SrcTy = MRI.getType(SrcReg);
1492 
1493   LLT DstTy = MRI.getType(DstReg);
1494   unsigned Offset = MI.getOperand(2).getImm();
1495 
1496   if (TypeIdx == 0) {
1497     if (SrcTy.isVector() || DstTy.isVector())
1498       return UnableToLegalize;
1499 
1500     SrcOp Src(SrcReg);
1501     if (SrcTy.isPointer()) {
1502       // Extracts from pointers can be handled only if they are really just
1503       // simple integers.
1504       const DataLayout &DL = MIRBuilder.getDataLayout();
1505       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1506         return UnableToLegalize;
1507 
1508       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1509       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1510       SrcTy = SrcAsIntTy;
1511     }
1512 
1513     if (DstTy.isPointer())
1514       return UnableToLegalize;
1515 
1516     if (Offset == 0) {
1517       // Avoid a shift in the degenerate case.
1518       MIRBuilder.buildTrunc(DstReg,
1519                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1520       MI.eraseFromParent();
1521       return Legalized;
1522     }
1523 
1524     // Do a shift in the source type.
1525     LLT ShiftTy = SrcTy;
1526     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1527       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1528       ShiftTy = WideTy;
1529     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1530       return UnableToLegalize;
1531 
1532     auto LShr = MIRBuilder.buildLShr(
1533       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1534     MIRBuilder.buildTrunc(DstReg, LShr);
1535     MI.eraseFromParent();
1536     return Legalized;
1537   }
1538 
1539   if (SrcTy.isScalar()) {
1540     Observer.changingInstr(MI);
1541     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1542     Observer.changedInstr(MI);
1543     return Legalized;
1544   }
1545 
1546   if (!SrcTy.isVector())
1547     return UnableToLegalize;
1548 
1549   if (DstTy != SrcTy.getElementType())
1550     return UnableToLegalize;
1551 
1552   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1553     return UnableToLegalize;
1554 
1555   Observer.changingInstr(MI);
1556   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1557 
1558   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1559                           Offset);
1560   widenScalarDst(MI, WideTy.getScalarType(), 0);
1561   Observer.changedInstr(MI);
1562   return Legalized;
1563 }
1564 
1565 LegalizerHelper::LegalizeResult
1566 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1567                                    LLT WideTy) {
1568   if (TypeIdx != 0)
1569     return UnableToLegalize;
1570   Observer.changingInstr(MI);
1571   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1572   widenScalarDst(MI, WideTy);
1573   Observer.changedInstr(MI);
1574   return Legalized;
1575 }
1576 
1577 LegalizerHelper::LegalizeResult
1578 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1579   MIRBuilder.setInstr(MI);
1580 
1581   switch (MI.getOpcode()) {
1582   default:
1583     return UnableToLegalize;
1584   case TargetOpcode::G_EXTRACT:
1585     return widenScalarExtract(MI, TypeIdx, WideTy);
1586   case TargetOpcode::G_INSERT:
1587     return widenScalarInsert(MI, TypeIdx, WideTy);
1588   case TargetOpcode::G_MERGE_VALUES:
1589     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1590   case TargetOpcode::G_UNMERGE_VALUES:
1591     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1592   case TargetOpcode::G_UADDO:
1593   case TargetOpcode::G_USUBO: {
1594     if (TypeIdx == 1)
1595       return UnableToLegalize; // TODO
1596     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1597     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1598     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1599                           ? TargetOpcode::G_ADD
1600                           : TargetOpcode::G_SUB;
1601     // Do the arithmetic in the larger type.
1602     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1603     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1604     APInt Mask =
1605         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1606     auto AndOp = MIRBuilder.buildAnd(
1607         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1608     // There is no overflow if the AndOp is the same as NewOp.
1609     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1610     // Now trunc the NewOp to the original result.
1611     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1612     MI.eraseFromParent();
1613     return Legalized;
1614   }
1615   case TargetOpcode::G_CTTZ:
1616   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1617   case TargetOpcode::G_CTLZ:
1618   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1619   case TargetOpcode::G_CTPOP: {
1620     if (TypeIdx == 0) {
1621       Observer.changingInstr(MI);
1622       widenScalarDst(MI, WideTy, 0);
1623       Observer.changedInstr(MI);
1624       return Legalized;
1625     }
1626 
1627     Register SrcReg = MI.getOperand(1).getReg();
1628 
1629     // First ZEXT the input.
1630     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1631     LLT CurTy = MRI.getType(SrcReg);
1632     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1633       // The count is the same in the larger type except if the original
1634       // value was zero.  This can be handled by setting the bit just off
1635       // the top of the original type.
1636       auto TopBit =
1637           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1638       MIBSrc = MIRBuilder.buildOr(
1639         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1640     }
1641 
1642     // Perform the operation at the larger size.
1643     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1644     // This is already the correct result for CTPOP and CTTZs
1645     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1646         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1647       // The correct result is NewOp - (Difference in widety and current ty).
1648       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1649       MIBNewOp = MIRBuilder.buildSub(
1650           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1651     }
1652 
1653     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1654     MI.eraseFromParent();
1655     return Legalized;
1656   }
1657   case TargetOpcode::G_BSWAP: {
1658     Observer.changingInstr(MI);
1659     Register DstReg = MI.getOperand(0).getReg();
1660 
1661     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1662     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1663     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1664     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1665 
1666     MI.getOperand(0).setReg(DstExt);
1667 
1668     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1669 
1670     LLT Ty = MRI.getType(DstReg);
1671     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1672     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1673     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1674 
1675     MIRBuilder.buildTrunc(DstReg, ShrReg);
1676     Observer.changedInstr(MI);
1677     return Legalized;
1678   }
1679   case TargetOpcode::G_BITREVERSE: {
1680     Observer.changingInstr(MI);
1681 
1682     Register DstReg = MI.getOperand(0).getReg();
1683     LLT Ty = MRI.getType(DstReg);
1684     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1685 
1686     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     MI.getOperand(0).setReg(DstExt);
1689     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1690 
1691     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1692     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1693     MIRBuilder.buildTrunc(DstReg, Shift);
1694     Observer.changedInstr(MI);
1695     return Legalized;
1696   }
1697   case TargetOpcode::G_ADD:
1698   case TargetOpcode::G_AND:
1699   case TargetOpcode::G_MUL:
1700   case TargetOpcode::G_OR:
1701   case TargetOpcode::G_XOR:
1702   case TargetOpcode::G_SUB:
1703     // Perform operation at larger width (any extension is fines here, high bits
1704     // don't affect the result) and then truncate the result back to the
1705     // original type.
1706     Observer.changingInstr(MI);
1707     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1708     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1709     widenScalarDst(MI, WideTy);
1710     Observer.changedInstr(MI);
1711     return Legalized;
1712 
1713   case TargetOpcode::G_SHL:
1714     Observer.changingInstr(MI);
1715 
1716     if (TypeIdx == 0) {
1717       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718       widenScalarDst(MI, WideTy);
1719     } else {
1720       assert(TypeIdx == 1);
1721       // The "number of bits to shift" operand must preserve its value as an
1722       // unsigned integer:
1723       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1724     }
1725 
1726     Observer.changedInstr(MI);
1727     return Legalized;
1728 
1729   case TargetOpcode::G_SDIV:
1730   case TargetOpcode::G_SREM:
1731   case TargetOpcode::G_SMIN:
1732   case TargetOpcode::G_SMAX:
1733     Observer.changingInstr(MI);
1734     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1735     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1736     widenScalarDst(MI, WideTy);
1737     Observer.changedInstr(MI);
1738     return Legalized;
1739 
1740   case TargetOpcode::G_ASHR:
1741   case TargetOpcode::G_LSHR:
1742     Observer.changingInstr(MI);
1743 
1744     if (TypeIdx == 0) {
1745       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1746         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1747 
1748       widenScalarSrc(MI, WideTy, 1, CvtOp);
1749       widenScalarDst(MI, WideTy);
1750     } else {
1751       assert(TypeIdx == 1);
1752       // The "number of bits to shift" operand must preserve its value as an
1753       // unsigned integer:
1754       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1755     }
1756 
1757     Observer.changedInstr(MI);
1758     return Legalized;
1759   case TargetOpcode::G_UDIV:
1760   case TargetOpcode::G_UREM:
1761   case TargetOpcode::G_UMIN:
1762   case TargetOpcode::G_UMAX:
1763     Observer.changingInstr(MI);
1764     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1765     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1766     widenScalarDst(MI, WideTy);
1767     Observer.changedInstr(MI);
1768     return Legalized;
1769 
1770   case TargetOpcode::G_SELECT:
1771     Observer.changingInstr(MI);
1772     if (TypeIdx == 0) {
1773       // Perform operation at larger width (any extension is fine here, high
1774       // bits don't affect the result) and then truncate the result back to the
1775       // original type.
1776       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1777       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1778       widenScalarDst(MI, WideTy);
1779     } else {
1780       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1781       // Explicit extension is required here since high bits affect the result.
1782       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1783     }
1784     Observer.changedInstr(MI);
1785     return Legalized;
1786 
1787   case TargetOpcode::G_FPTOSI:
1788   case TargetOpcode::G_FPTOUI:
1789     Observer.changingInstr(MI);
1790 
1791     if (TypeIdx == 0)
1792       widenScalarDst(MI, WideTy);
1793     else
1794       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1795 
1796     Observer.changedInstr(MI);
1797     return Legalized;
1798   case TargetOpcode::G_SITOFP:
1799     if (TypeIdx != 1)
1800       return UnableToLegalize;
1801     Observer.changingInstr(MI);
1802     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1803     Observer.changedInstr(MI);
1804     return Legalized;
1805 
1806   case TargetOpcode::G_UITOFP:
1807     if (TypeIdx != 1)
1808       return UnableToLegalize;
1809     Observer.changingInstr(MI);
1810     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1811     Observer.changedInstr(MI);
1812     return Legalized;
1813 
1814   case TargetOpcode::G_LOAD:
1815   case TargetOpcode::G_SEXTLOAD:
1816   case TargetOpcode::G_ZEXTLOAD:
1817     Observer.changingInstr(MI);
1818     widenScalarDst(MI, WideTy);
1819     Observer.changedInstr(MI);
1820     return Legalized;
1821 
1822   case TargetOpcode::G_STORE: {
1823     if (TypeIdx != 0)
1824       return UnableToLegalize;
1825 
1826     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1827     if (!isPowerOf2_32(Ty.getSizeInBits()))
1828       return UnableToLegalize;
1829 
1830     Observer.changingInstr(MI);
1831 
1832     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1833       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1834     widenScalarSrc(MI, WideTy, 0, ExtType);
1835 
1836     Observer.changedInstr(MI);
1837     return Legalized;
1838   }
1839   case TargetOpcode::G_CONSTANT: {
1840     MachineOperand &SrcMO = MI.getOperand(1);
1841     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1842     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1843         MRI.getType(MI.getOperand(0).getReg()));
1844     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1845             ExtOpc == TargetOpcode::G_ANYEXT) &&
1846            "Illegal Extend");
1847     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1848     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1849                            ? SrcVal.sext(WideTy.getSizeInBits())
1850                            : SrcVal.zext(WideTy.getSizeInBits());
1851     Observer.changingInstr(MI);
1852     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1853 
1854     widenScalarDst(MI, WideTy);
1855     Observer.changedInstr(MI);
1856     return Legalized;
1857   }
1858   case TargetOpcode::G_FCONSTANT: {
1859     MachineOperand &SrcMO = MI.getOperand(1);
1860     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1861     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1862     bool LosesInfo;
1863     switch (WideTy.getSizeInBits()) {
1864     case 32:
1865       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1866                   &LosesInfo);
1867       break;
1868     case 64:
1869       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1870                   &LosesInfo);
1871       break;
1872     default:
1873       return UnableToLegalize;
1874     }
1875 
1876     assert(!LosesInfo && "extend should always be lossless");
1877 
1878     Observer.changingInstr(MI);
1879     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1880 
1881     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884   }
1885   case TargetOpcode::G_IMPLICIT_DEF: {
1886     Observer.changingInstr(MI);
1887     widenScalarDst(MI, WideTy);
1888     Observer.changedInstr(MI);
1889     return Legalized;
1890   }
1891   case TargetOpcode::G_BRCOND:
1892     Observer.changingInstr(MI);
1893     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1894     Observer.changedInstr(MI);
1895     return Legalized;
1896 
1897   case TargetOpcode::G_FCMP:
1898     Observer.changingInstr(MI);
1899     if (TypeIdx == 0)
1900       widenScalarDst(MI, WideTy);
1901     else {
1902       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1903       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1904     }
1905     Observer.changedInstr(MI);
1906     return Legalized;
1907 
1908   case TargetOpcode::G_ICMP:
1909     Observer.changingInstr(MI);
1910     if (TypeIdx == 0)
1911       widenScalarDst(MI, WideTy);
1912     else {
1913       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1914                                MI.getOperand(1).getPredicate()))
1915                                ? TargetOpcode::G_SEXT
1916                                : TargetOpcode::G_ZEXT;
1917       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1918       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1919     }
1920     Observer.changedInstr(MI);
1921     return Legalized;
1922 
1923   case TargetOpcode::G_PTR_ADD:
1924     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1925     Observer.changingInstr(MI);
1926     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1927     Observer.changedInstr(MI);
1928     return Legalized;
1929 
1930   case TargetOpcode::G_PHI: {
1931     assert(TypeIdx == 0 && "Expecting only Idx 0");
1932 
1933     Observer.changingInstr(MI);
1934     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1935       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1936       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1937       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1938     }
1939 
1940     MachineBasicBlock &MBB = *MI.getParent();
1941     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1942     widenScalarDst(MI, WideTy);
1943     Observer.changedInstr(MI);
1944     return Legalized;
1945   }
1946   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1947     if (TypeIdx == 0) {
1948       Register VecReg = MI.getOperand(1).getReg();
1949       LLT VecTy = MRI.getType(VecReg);
1950       Observer.changingInstr(MI);
1951 
1952       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1953                                      WideTy.getSizeInBits()),
1954                      1, TargetOpcode::G_SEXT);
1955 
1956       widenScalarDst(MI, WideTy, 0);
1957       Observer.changedInstr(MI);
1958       return Legalized;
1959     }
1960 
1961     if (TypeIdx != 2)
1962       return UnableToLegalize;
1963     Observer.changingInstr(MI);
1964     // TODO: Probably should be zext
1965     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1966     Observer.changedInstr(MI);
1967     return Legalized;
1968   }
1969   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1970     if (TypeIdx == 1) {
1971       Observer.changingInstr(MI);
1972 
1973       Register VecReg = MI.getOperand(1).getReg();
1974       LLT VecTy = MRI.getType(VecReg);
1975       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1976 
1977       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1978       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1979       widenScalarDst(MI, WideVecTy, 0);
1980       Observer.changedInstr(MI);
1981       return Legalized;
1982     }
1983 
1984     if (TypeIdx == 2) {
1985       Observer.changingInstr(MI);
1986       // TODO: Probably should be zext
1987       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
1988       Observer.changedInstr(MI);
1989     }
1990 
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_FADD:
1994   case TargetOpcode::G_FMUL:
1995   case TargetOpcode::G_FSUB:
1996   case TargetOpcode::G_FMA:
1997   case TargetOpcode::G_FMAD:
1998   case TargetOpcode::G_FNEG:
1999   case TargetOpcode::G_FABS:
2000   case TargetOpcode::G_FCANONICALIZE:
2001   case TargetOpcode::G_FMINNUM:
2002   case TargetOpcode::G_FMAXNUM:
2003   case TargetOpcode::G_FMINNUM_IEEE:
2004   case TargetOpcode::G_FMAXNUM_IEEE:
2005   case TargetOpcode::G_FMINIMUM:
2006   case TargetOpcode::G_FMAXIMUM:
2007   case TargetOpcode::G_FDIV:
2008   case TargetOpcode::G_FREM:
2009   case TargetOpcode::G_FCEIL:
2010   case TargetOpcode::G_FFLOOR:
2011   case TargetOpcode::G_FCOS:
2012   case TargetOpcode::G_FSIN:
2013   case TargetOpcode::G_FLOG10:
2014   case TargetOpcode::G_FLOG:
2015   case TargetOpcode::G_FLOG2:
2016   case TargetOpcode::G_FRINT:
2017   case TargetOpcode::G_FNEARBYINT:
2018   case TargetOpcode::G_FSQRT:
2019   case TargetOpcode::G_FEXP:
2020   case TargetOpcode::G_FEXP2:
2021   case TargetOpcode::G_FPOW:
2022   case TargetOpcode::G_INTRINSIC_TRUNC:
2023   case TargetOpcode::G_INTRINSIC_ROUND:
2024     assert(TypeIdx == 0);
2025     Observer.changingInstr(MI);
2026 
2027     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2028       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2029 
2030     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033   case TargetOpcode::G_INTTOPTR:
2034     if (TypeIdx != 1)
2035       return UnableToLegalize;
2036 
2037     Observer.changingInstr(MI);
2038     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2039     Observer.changedInstr(MI);
2040     return Legalized;
2041   case TargetOpcode::G_PTRTOINT:
2042     if (TypeIdx != 0)
2043       return UnableToLegalize;
2044 
2045     Observer.changingInstr(MI);
2046     widenScalarDst(MI, WideTy, 0);
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049   case TargetOpcode::G_BUILD_VECTOR: {
2050     Observer.changingInstr(MI);
2051 
2052     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2053     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2054       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2055 
2056     // Avoid changing the result vector type if the source element type was
2057     // requested.
2058     if (TypeIdx == 1) {
2059       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2060       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2061     } else {
2062       widenScalarDst(MI, WideTy, 0);
2063     }
2064 
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   }
2068   case TargetOpcode::G_SEXT_INREG:
2069     if (TypeIdx != 0)
2070       return UnableToLegalize;
2071 
2072     Observer.changingInstr(MI);
2073     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2074     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   }
2078 }
2079 
2080 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2081                              MachineIRBuilder &B, Register Src, LLT Ty) {
2082   auto Unmerge = B.buildUnmerge(Ty, Src);
2083   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2084     Pieces.push_back(Unmerge.getReg(I));
2085 }
2086 
2087 LegalizerHelper::LegalizeResult
2088 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2089   Register Dst = MI.getOperand(0).getReg();
2090   Register Src = MI.getOperand(1).getReg();
2091   LLT DstTy = MRI.getType(Dst);
2092   LLT SrcTy = MRI.getType(Src);
2093 
2094   if (SrcTy.isVector() && !DstTy.isVector()) {
2095     SmallVector<Register, 8> SrcRegs;
2096     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2097     MIRBuilder.buildMerge(Dst, SrcRegs);
2098     MI.eraseFromParent();
2099     return Legalized;
2100   }
2101 
2102   if (DstTy.isVector() && !SrcTy.isVector()) {
2103     SmallVector<Register, 8> SrcRegs;
2104     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2105     MIRBuilder.buildMerge(Dst, SrcRegs);
2106     MI.eraseFromParent();
2107     return Legalized;
2108   }
2109 
2110   return UnableToLegalize;
2111 }
2112 
2113 LegalizerHelper::LegalizeResult
2114 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2115   using namespace TargetOpcode;
2116   MIRBuilder.setInstr(MI);
2117 
2118   switch(MI.getOpcode()) {
2119   default:
2120     return UnableToLegalize;
2121   case TargetOpcode::G_BITCAST:
2122     return lowerBitcast(MI);
2123   case TargetOpcode::G_SREM:
2124   case TargetOpcode::G_UREM: {
2125     auto Quot =
2126         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2127                               {MI.getOperand(1), MI.getOperand(2)});
2128 
2129     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2130     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2131     MI.eraseFromParent();
2132     return Legalized;
2133   }
2134   case TargetOpcode::G_SADDO:
2135   case TargetOpcode::G_SSUBO:
2136     return lowerSADDO_SSUBO(MI);
2137   case TargetOpcode::G_SMULO:
2138   case TargetOpcode::G_UMULO: {
2139     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2140     // result.
2141     Register Res = MI.getOperand(0).getReg();
2142     Register Overflow = MI.getOperand(1).getReg();
2143     Register LHS = MI.getOperand(2).getReg();
2144     Register RHS = MI.getOperand(3).getReg();
2145 
2146     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2147                           ? TargetOpcode::G_SMULH
2148                           : TargetOpcode::G_UMULH;
2149 
2150     Observer.changingInstr(MI);
2151     const auto &TII = MIRBuilder.getTII();
2152     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2153     MI.RemoveOperand(1);
2154     Observer.changedInstr(MI);
2155 
2156     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2157 
2158     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2159     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2160 
2161     // For *signed* multiply, overflow is detected by checking:
2162     // (hi != (lo >> bitwidth-1))
2163     if (Opcode == TargetOpcode::G_SMULH) {
2164       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2165       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2166       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2167     } else {
2168       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2169     }
2170     return Legalized;
2171   }
2172   case TargetOpcode::G_FNEG: {
2173     // TODO: Handle vector types once we are able to
2174     // represent them.
2175     if (Ty.isVector())
2176       return UnableToLegalize;
2177     Register Res = MI.getOperand(0).getReg();
2178     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2179     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2180     if (!ZeroTy)
2181       return UnableToLegalize;
2182     ConstantFP &ZeroForNegation =
2183         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2184     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2185     Register SubByReg = MI.getOperand(1).getReg();
2186     Register ZeroReg = Zero.getReg(0);
2187     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2188     MI.eraseFromParent();
2189     return Legalized;
2190   }
2191   case TargetOpcode::G_FSUB: {
2192     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2193     // First, check if G_FNEG is marked as Lower. If so, we may
2194     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2195     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2196       return UnableToLegalize;
2197     Register Res = MI.getOperand(0).getReg();
2198     Register LHS = MI.getOperand(1).getReg();
2199     Register RHS = MI.getOperand(2).getReg();
2200     Register Neg = MRI.createGenericVirtualRegister(Ty);
2201     MIRBuilder.buildFNeg(Neg, RHS);
2202     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2203     MI.eraseFromParent();
2204     return Legalized;
2205   }
2206   case TargetOpcode::G_FMAD:
2207     return lowerFMad(MI);
2208   case TargetOpcode::G_INTRINSIC_ROUND:
2209     return lowerIntrinsicRound(MI);
2210   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2211     Register OldValRes = MI.getOperand(0).getReg();
2212     Register SuccessRes = MI.getOperand(1).getReg();
2213     Register Addr = MI.getOperand(2).getReg();
2214     Register CmpVal = MI.getOperand(3).getReg();
2215     Register NewVal = MI.getOperand(4).getReg();
2216     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2217                                   **MI.memoperands_begin());
2218     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2219     MI.eraseFromParent();
2220     return Legalized;
2221   }
2222   case TargetOpcode::G_LOAD:
2223   case TargetOpcode::G_SEXTLOAD:
2224   case TargetOpcode::G_ZEXTLOAD: {
2225     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2226     Register DstReg = MI.getOperand(0).getReg();
2227     Register PtrReg = MI.getOperand(1).getReg();
2228     LLT DstTy = MRI.getType(DstReg);
2229     auto &MMO = **MI.memoperands_begin();
2230 
2231     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2232       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2233         // This load needs splitting into power of 2 sized loads.
2234         if (DstTy.isVector())
2235           return UnableToLegalize;
2236         if (isPowerOf2_32(DstTy.getSizeInBits()))
2237           return UnableToLegalize; // Don't know what we're being asked to do.
2238 
2239         // Our strategy here is to generate anyextending loads for the smaller
2240         // types up to next power-2 result type, and then combine the two larger
2241         // result values together, before truncating back down to the non-pow-2
2242         // type.
2243         // E.g. v1 = i24 load =>
2244         // v2 = i32 zextload (2 byte)
2245         // v3 = i32 load (1 byte)
2246         // v4 = i32 shl v3, 16
2247         // v5 = i32 or v4, v2
2248         // v1 = i24 trunc v5
2249         // By doing this we generate the correct truncate which should get
2250         // combined away as an artifact with a matching extend.
2251         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2252         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2253 
2254         MachineFunction &MF = MIRBuilder.getMF();
2255         MachineMemOperand *LargeMMO =
2256             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2257         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2258             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2259 
2260         LLT PtrTy = MRI.getType(PtrReg);
2261         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2262         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2263         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2264         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2265         auto LargeLoad = MIRBuilder.buildLoadInstr(
2266             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2267 
2268         auto OffsetCst = MIRBuilder.buildConstant(
2269             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2270         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2271         auto SmallPtr =
2272             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2273         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2274                                               *SmallMMO);
2275 
2276         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2277         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2278         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2279         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2280         MI.eraseFromParent();
2281         return Legalized;
2282       }
2283       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2284       MI.eraseFromParent();
2285       return Legalized;
2286     }
2287 
2288     if (DstTy.isScalar()) {
2289       Register TmpReg =
2290           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2291       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2292       switch (MI.getOpcode()) {
2293       default:
2294         llvm_unreachable("Unexpected opcode");
2295       case TargetOpcode::G_LOAD:
2296         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2297         break;
2298       case TargetOpcode::G_SEXTLOAD:
2299         MIRBuilder.buildSExt(DstReg, TmpReg);
2300         break;
2301       case TargetOpcode::G_ZEXTLOAD:
2302         MIRBuilder.buildZExt(DstReg, TmpReg);
2303         break;
2304       }
2305       MI.eraseFromParent();
2306       return Legalized;
2307     }
2308 
2309     return UnableToLegalize;
2310   }
2311   case TargetOpcode::G_STORE: {
2312     // Lower a non-power of 2 store into multiple pow-2 stores.
2313     // E.g. split an i24 store into an i16 store + i8 store.
2314     // We do this by first extending the stored value to the next largest power
2315     // of 2 type, and then using truncating stores to store the components.
2316     // By doing this, likewise with G_LOAD, generate an extend that can be
2317     // artifact-combined away instead of leaving behind extracts.
2318     Register SrcReg = MI.getOperand(0).getReg();
2319     Register PtrReg = MI.getOperand(1).getReg();
2320     LLT SrcTy = MRI.getType(SrcReg);
2321     MachineMemOperand &MMO = **MI.memoperands_begin();
2322     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2323       return UnableToLegalize;
2324     if (SrcTy.isVector())
2325       return UnableToLegalize;
2326     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2327       return UnableToLegalize; // Don't know what we're being asked to do.
2328 
2329     // Extend to the next pow-2.
2330     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2331     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2332 
2333     // Obtain the smaller value by shifting away the larger value.
2334     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2335     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2336     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2337     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2338 
2339     // Generate the PtrAdd and truncating stores.
2340     LLT PtrTy = MRI.getType(PtrReg);
2341     auto OffsetCst = MIRBuilder.buildConstant(
2342             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2343     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2344     auto SmallPtr =
2345         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2346 
2347     MachineFunction &MF = MIRBuilder.getMF();
2348     MachineMemOperand *LargeMMO =
2349         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2350     MachineMemOperand *SmallMMO =
2351         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2352     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2353     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2354     MI.eraseFromParent();
2355     return Legalized;
2356   }
2357   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2358   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2359   case TargetOpcode::G_CTLZ:
2360   case TargetOpcode::G_CTTZ:
2361   case TargetOpcode::G_CTPOP:
2362     return lowerBitCount(MI, TypeIdx, Ty);
2363   case G_UADDO: {
2364     Register Res = MI.getOperand(0).getReg();
2365     Register CarryOut = MI.getOperand(1).getReg();
2366     Register LHS = MI.getOperand(2).getReg();
2367     Register RHS = MI.getOperand(3).getReg();
2368 
2369     MIRBuilder.buildAdd(Res, LHS, RHS);
2370     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2371 
2372     MI.eraseFromParent();
2373     return Legalized;
2374   }
2375   case G_UADDE: {
2376     Register Res = MI.getOperand(0).getReg();
2377     Register CarryOut = MI.getOperand(1).getReg();
2378     Register LHS = MI.getOperand(2).getReg();
2379     Register RHS = MI.getOperand(3).getReg();
2380     Register CarryIn = MI.getOperand(4).getReg();
2381     LLT Ty = MRI.getType(Res);
2382 
2383     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2384     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2385     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2386     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2387 
2388     MI.eraseFromParent();
2389     return Legalized;
2390   }
2391   case G_USUBO: {
2392     Register Res = MI.getOperand(0).getReg();
2393     Register BorrowOut = MI.getOperand(1).getReg();
2394     Register LHS = MI.getOperand(2).getReg();
2395     Register RHS = MI.getOperand(3).getReg();
2396 
2397     MIRBuilder.buildSub(Res, LHS, RHS);
2398     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2399 
2400     MI.eraseFromParent();
2401     return Legalized;
2402   }
2403   case G_USUBE: {
2404     Register Res = MI.getOperand(0).getReg();
2405     Register BorrowOut = MI.getOperand(1).getReg();
2406     Register LHS = MI.getOperand(2).getReg();
2407     Register RHS = MI.getOperand(3).getReg();
2408     Register BorrowIn = MI.getOperand(4).getReg();
2409     const LLT CondTy = MRI.getType(BorrowOut);
2410     const LLT Ty = MRI.getType(Res);
2411 
2412     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2413     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2414     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2415 
2416     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2417     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2418     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2419 
2420     MI.eraseFromParent();
2421     return Legalized;
2422   }
2423   case G_UITOFP:
2424     return lowerUITOFP(MI, TypeIdx, Ty);
2425   case G_SITOFP:
2426     return lowerSITOFP(MI, TypeIdx, Ty);
2427   case G_FPTOUI:
2428     return lowerFPTOUI(MI, TypeIdx, Ty);
2429   case G_FPTOSI:
2430     return lowerFPTOSI(MI);
2431   case G_FPTRUNC:
2432     return lowerFPTRUNC(MI, TypeIdx, Ty);
2433   case G_SMIN:
2434   case G_SMAX:
2435   case G_UMIN:
2436   case G_UMAX:
2437     return lowerMinMax(MI, TypeIdx, Ty);
2438   case G_FCOPYSIGN:
2439     return lowerFCopySign(MI, TypeIdx, Ty);
2440   case G_FMINNUM:
2441   case G_FMAXNUM:
2442     return lowerFMinNumMaxNum(MI);
2443   case G_UNMERGE_VALUES:
2444     return lowerUnmergeValues(MI);
2445   case TargetOpcode::G_SEXT_INREG: {
2446     assert(MI.getOperand(2).isImm() && "Expected immediate");
2447     int64_t SizeInBits = MI.getOperand(2).getImm();
2448 
2449     Register DstReg = MI.getOperand(0).getReg();
2450     Register SrcReg = MI.getOperand(1).getReg();
2451     LLT DstTy = MRI.getType(DstReg);
2452     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2453 
2454     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2455     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2456     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2457     MI.eraseFromParent();
2458     return Legalized;
2459   }
2460   case G_SHUFFLE_VECTOR:
2461     return lowerShuffleVector(MI);
2462   case G_DYN_STACKALLOC:
2463     return lowerDynStackAlloc(MI);
2464   case G_EXTRACT:
2465     return lowerExtract(MI);
2466   case G_INSERT:
2467     return lowerInsert(MI);
2468   case G_BSWAP:
2469     return lowerBswap(MI);
2470   case G_BITREVERSE:
2471     return lowerBitreverse(MI);
2472   case G_READ_REGISTER:
2473   case G_WRITE_REGISTER:
2474     return lowerReadWriteRegister(MI);
2475   }
2476 }
2477 
2478 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2479     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2480   SmallVector<Register, 2> DstRegs;
2481 
2482   unsigned NarrowSize = NarrowTy.getSizeInBits();
2483   Register DstReg = MI.getOperand(0).getReg();
2484   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2485   int NumParts = Size / NarrowSize;
2486   // FIXME: Don't know how to handle the situation where the small vectors
2487   // aren't all the same size yet.
2488   if (Size % NarrowSize != 0)
2489     return UnableToLegalize;
2490 
2491   for (int i = 0; i < NumParts; ++i) {
2492     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2493     MIRBuilder.buildUndef(TmpReg);
2494     DstRegs.push_back(TmpReg);
2495   }
2496 
2497   if (NarrowTy.isVector())
2498     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2499   else
2500     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2501 
2502   MI.eraseFromParent();
2503   return Legalized;
2504 }
2505 
2506 LegalizerHelper::LegalizeResult
2507 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2508                                           LLT NarrowTy) {
2509   assert(TypeIdx == 0 && "only one type index expected");
2510 
2511   const unsigned Opc = MI.getOpcode();
2512   const int NumOps = MI.getNumOperands() - 1;
2513   const Register DstReg = MI.getOperand(0).getReg();
2514   const unsigned Flags = MI.getFlags();
2515 
2516   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2517 
2518   SmallVector<Register, 8> ExtractedRegs[3];
2519   SmallVector<Register, 8> Parts;
2520 
2521   // Break down all the sources into NarrowTy pieces we can operate on. This may
2522   // involve creating merges to a wider type, padded with undef.
2523   for (int I = 0; I != NumOps; ++I) {
2524     Register SrcReg =  MI.getOperand(I + 1).getReg();
2525     LLT SrcTy = MRI.getType(SrcReg);
2526     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, NarrowTy, SrcReg);
2527 
2528     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2529     buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ExtractedRegs[I],
2530                         TargetOpcode::G_ANYEXT);
2531   }
2532 
2533   SmallVector<Register, 8> ResultRegs;
2534 
2535   // Input operands for each sub-instruction.
2536   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2537 
2538   int NumParts = ExtractedRegs[0].size();
2539   const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
2540   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2541 
2542   // We widened the source registers to satisfy merge/unmerge size
2543   // constraints. We'll have some extra fully undef parts.
2544   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2545 
2546   for (int I = 0; I != NumRealParts; ++I) {
2547     // Emit this instruction on each of the split pieces.
2548     for (int J = 0; J != NumOps; ++J)
2549       InputRegs[J] = ExtractedRegs[J][I];
2550 
2551     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2552     ResultRegs.push_back(Inst.getReg(0));
2553   }
2554 
2555   // Fill out the widened result with undef instead of creating instructions
2556   // with undef inputs.
2557   int NumUndefParts = NumParts - NumRealParts;
2558   if (NumUndefParts != 0)
2559     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2560 
2561   // Extract the possibly padded result to the original result register.
2562   LLT DstTy = MRI.getType(DstReg);
2563   LLT LCMTy = getLCMType(DstTy, NarrowTy);
2564   buildWidenedRemergeToDst(DstReg, LCMTy, ResultRegs);
2565 
2566   MI.eraseFromParent();
2567   return Legalized;
2568 }
2569 
2570 // Handle splitting vector operations which need to have the same number of
2571 // elements in each type index, but each type index may have a different element
2572 // type.
2573 //
2574 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2575 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2576 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2577 //
2578 // Also handles some irregular breakdown cases, e.g.
2579 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2580 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2581 //             s64 = G_SHL s64, s32
2582 LegalizerHelper::LegalizeResult
2583 LegalizerHelper::fewerElementsVectorMultiEltType(
2584   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2585   if (TypeIdx != 0)
2586     return UnableToLegalize;
2587 
2588   const LLT NarrowTy0 = NarrowTyArg;
2589   const unsigned NewNumElts =
2590       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2591 
2592   const Register DstReg = MI.getOperand(0).getReg();
2593   LLT DstTy = MRI.getType(DstReg);
2594   LLT LeftoverTy0;
2595 
2596   // All of the operands need to have the same number of elements, so if we can
2597   // determine a type breakdown for the result type, we can for all of the
2598   // source types.
2599   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2600   if (NumParts < 0)
2601     return UnableToLegalize;
2602 
2603   SmallVector<MachineInstrBuilder, 4> NewInsts;
2604 
2605   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2606   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2607 
2608   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2609     LLT LeftoverTy;
2610     Register SrcReg = MI.getOperand(I).getReg();
2611     LLT SrcTyI = MRI.getType(SrcReg);
2612     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2613     LLT LeftoverTyI;
2614 
2615     // Split this operand into the requested typed registers, and any leftover
2616     // required to reproduce the original type.
2617     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2618                       LeftoverRegs))
2619       return UnableToLegalize;
2620 
2621     if (I == 1) {
2622       // For the first operand, create an instruction for each part and setup
2623       // the result.
2624       for (Register PartReg : PartRegs) {
2625         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2626         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2627                                .addDef(PartDstReg)
2628                                .addUse(PartReg));
2629         DstRegs.push_back(PartDstReg);
2630       }
2631 
2632       for (Register LeftoverReg : LeftoverRegs) {
2633         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2634         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2635                                .addDef(PartDstReg)
2636                                .addUse(LeftoverReg));
2637         LeftoverDstRegs.push_back(PartDstReg);
2638       }
2639     } else {
2640       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2641 
2642       // Add the newly created operand splits to the existing instructions. The
2643       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2644       // pieces.
2645       unsigned InstCount = 0;
2646       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2647         NewInsts[InstCount++].addUse(PartRegs[J]);
2648       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2649         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2650     }
2651 
2652     PartRegs.clear();
2653     LeftoverRegs.clear();
2654   }
2655 
2656   // Insert the newly built operations and rebuild the result register.
2657   for (auto &MIB : NewInsts)
2658     MIRBuilder.insertInstr(MIB);
2659 
2660   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2661 
2662   MI.eraseFromParent();
2663   return Legalized;
2664 }
2665 
2666 LegalizerHelper::LegalizeResult
2667 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2668                                           LLT NarrowTy) {
2669   if (TypeIdx != 0)
2670     return UnableToLegalize;
2671 
2672   Register DstReg = MI.getOperand(0).getReg();
2673   Register SrcReg = MI.getOperand(1).getReg();
2674   LLT DstTy = MRI.getType(DstReg);
2675   LLT SrcTy = MRI.getType(SrcReg);
2676 
2677   LLT NarrowTy0 = NarrowTy;
2678   LLT NarrowTy1;
2679   unsigned NumParts;
2680 
2681   if (NarrowTy.isVector()) {
2682     // Uneven breakdown not handled.
2683     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2684     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2685       return UnableToLegalize;
2686 
2687     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2688   } else {
2689     NumParts = DstTy.getNumElements();
2690     NarrowTy1 = SrcTy.getElementType();
2691   }
2692 
2693   SmallVector<Register, 4> SrcRegs, DstRegs;
2694   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2695 
2696   for (unsigned I = 0; I < NumParts; ++I) {
2697     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2698     MachineInstr *NewInst =
2699         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2700 
2701     NewInst->setFlags(MI.getFlags());
2702     DstRegs.push_back(DstReg);
2703   }
2704 
2705   if (NarrowTy.isVector())
2706     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2707   else
2708     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2709 
2710   MI.eraseFromParent();
2711   return Legalized;
2712 }
2713 
2714 LegalizerHelper::LegalizeResult
2715 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2716                                         LLT NarrowTy) {
2717   Register DstReg = MI.getOperand(0).getReg();
2718   Register Src0Reg = MI.getOperand(2).getReg();
2719   LLT DstTy = MRI.getType(DstReg);
2720   LLT SrcTy = MRI.getType(Src0Reg);
2721 
2722   unsigned NumParts;
2723   LLT NarrowTy0, NarrowTy1;
2724 
2725   if (TypeIdx == 0) {
2726     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2727     unsigned OldElts = DstTy.getNumElements();
2728 
2729     NarrowTy0 = NarrowTy;
2730     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2731     NarrowTy1 = NarrowTy.isVector() ?
2732       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2733       SrcTy.getElementType();
2734 
2735   } else {
2736     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2737     unsigned OldElts = SrcTy.getNumElements();
2738 
2739     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2740       NarrowTy.getNumElements();
2741     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2742                             DstTy.getScalarSizeInBits());
2743     NarrowTy1 = NarrowTy;
2744   }
2745 
2746   // FIXME: Don't know how to handle the situation where the small vectors
2747   // aren't all the same size yet.
2748   if (NarrowTy1.isVector() &&
2749       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2750     return UnableToLegalize;
2751 
2752   CmpInst::Predicate Pred
2753     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2754 
2755   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2756   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2757   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2758 
2759   for (unsigned I = 0; I < NumParts; ++I) {
2760     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2761     DstRegs.push_back(DstReg);
2762 
2763     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2764       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2765     else {
2766       MachineInstr *NewCmp
2767         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2768       NewCmp->setFlags(MI.getFlags());
2769     }
2770   }
2771 
2772   if (NarrowTy1.isVector())
2773     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2774   else
2775     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2776 
2777   MI.eraseFromParent();
2778   return Legalized;
2779 }
2780 
2781 LegalizerHelper::LegalizeResult
2782 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2783                                            LLT NarrowTy) {
2784   Register DstReg = MI.getOperand(0).getReg();
2785   Register CondReg = MI.getOperand(1).getReg();
2786 
2787   unsigned NumParts = 0;
2788   LLT NarrowTy0, NarrowTy1;
2789 
2790   LLT DstTy = MRI.getType(DstReg);
2791   LLT CondTy = MRI.getType(CondReg);
2792   unsigned Size = DstTy.getSizeInBits();
2793 
2794   assert(TypeIdx == 0 || CondTy.isVector());
2795 
2796   if (TypeIdx == 0) {
2797     NarrowTy0 = NarrowTy;
2798     NarrowTy1 = CondTy;
2799 
2800     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2801     // FIXME: Don't know how to handle the situation where the small vectors
2802     // aren't all the same size yet.
2803     if (Size % NarrowSize != 0)
2804       return UnableToLegalize;
2805 
2806     NumParts = Size / NarrowSize;
2807 
2808     // Need to break down the condition type
2809     if (CondTy.isVector()) {
2810       if (CondTy.getNumElements() == NumParts)
2811         NarrowTy1 = CondTy.getElementType();
2812       else
2813         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2814                                 CondTy.getScalarSizeInBits());
2815     }
2816   } else {
2817     NumParts = CondTy.getNumElements();
2818     if (NarrowTy.isVector()) {
2819       // TODO: Handle uneven breakdown.
2820       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2821         return UnableToLegalize;
2822 
2823       return UnableToLegalize;
2824     } else {
2825       NarrowTy0 = DstTy.getElementType();
2826       NarrowTy1 = NarrowTy;
2827     }
2828   }
2829 
2830   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2831   if (CondTy.isVector())
2832     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2833 
2834   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2835   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2836 
2837   for (unsigned i = 0; i < NumParts; ++i) {
2838     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2839     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2840                            Src1Regs[i], Src2Regs[i]);
2841     DstRegs.push_back(DstReg);
2842   }
2843 
2844   if (NarrowTy0.isVector())
2845     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2846   else
2847     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2848 
2849   MI.eraseFromParent();
2850   return Legalized;
2851 }
2852 
2853 LegalizerHelper::LegalizeResult
2854 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2855                                         LLT NarrowTy) {
2856   const Register DstReg = MI.getOperand(0).getReg();
2857   LLT PhiTy = MRI.getType(DstReg);
2858   LLT LeftoverTy;
2859 
2860   // All of the operands need to have the same number of elements, so if we can
2861   // determine a type breakdown for the result type, we can for all of the
2862   // source types.
2863   int NumParts, NumLeftover;
2864   std::tie(NumParts, NumLeftover)
2865     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2866   if (NumParts < 0)
2867     return UnableToLegalize;
2868 
2869   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2870   SmallVector<MachineInstrBuilder, 4> NewInsts;
2871 
2872   const int TotalNumParts = NumParts + NumLeftover;
2873 
2874   // Insert the new phis in the result block first.
2875   for (int I = 0; I != TotalNumParts; ++I) {
2876     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2877     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2878     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2879                        .addDef(PartDstReg));
2880     if (I < NumParts)
2881       DstRegs.push_back(PartDstReg);
2882     else
2883       LeftoverDstRegs.push_back(PartDstReg);
2884   }
2885 
2886   MachineBasicBlock *MBB = MI.getParent();
2887   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2888   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2889 
2890   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2891 
2892   // Insert code to extract the incoming values in each predecessor block.
2893   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2894     PartRegs.clear();
2895     LeftoverRegs.clear();
2896 
2897     Register SrcReg = MI.getOperand(I).getReg();
2898     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2899     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2900 
2901     LLT Unused;
2902     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2903                       LeftoverRegs))
2904       return UnableToLegalize;
2905 
2906     // Add the newly created operand splits to the existing instructions. The
2907     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2908     // pieces.
2909     for (int J = 0; J != TotalNumParts; ++J) {
2910       MachineInstrBuilder MIB = NewInsts[J];
2911       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2912       MIB.addMBB(&OpMBB);
2913     }
2914   }
2915 
2916   MI.eraseFromParent();
2917   return Legalized;
2918 }
2919 
2920 LegalizerHelper::LegalizeResult
2921 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2922                                                   unsigned TypeIdx,
2923                                                   LLT NarrowTy) {
2924   if (TypeIdx != 1)
2925     return UnableToLegalize;
2926 
2927   const int NumDst = MI.getNumOperands() - 1;
2928   const Register SrcReg = MI.getOperand(NumDst).getReg();
2929   LLT SrcTy = MRI.getType(SrcReg);
2930 
2931   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2932 
2933   // TODO: Create sequence of extracts.
2934   if (DstTy == NarrowTy)
2935     return UnableToLegalize;
2936 
2937   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2938   if (DstTy == GCDTy) {
2939     // This would just be a copy of the same unmerge.
2940     // TODO: Create extracts, pad with undef and create intermediate merges.
2941     return UnableToLegalize;
2942   }
2943 
2944   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2945   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2946   const int PartsPerUnmerge = NumDst / NumUnmerge;
2947 
2948   for (int I = 0; I != NumUnmerge; ++I) {
2949     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2950 
2951     for (int J = 0; J != PartsPerUnmerge; ++J)
2952       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2953     MIB.addUse(Unmerge.getReg(I));
2954   }
2955 
2956   MI.eraseFromParent();
2957   return Legalized;
2958 }
2959 
2960 LegalizerHelper::LegalizeResult
2961 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
2962                                                 unsigned TypeIdx,
2963                                                 LLT NarrowTy) {
2964   assert(TypeIdx == 0 && "not a vector type index");
2965   Register DstReg = MI.getOperand(0).getReg();
2966   LLT DstTy = MRI.getType(DstReg);
2967   LLT SrcTy = DstTy.getElementType();
2968 
2969   int DstNumElts = DstTy.getNumElements();
2970   int NarrowNumElts = NarrowTy.getNumElements();
2971   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
2972   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
2973 
2974   SmallVector<Register, 8> ConcatOps;
2975   SmallVector<Register, 8> SubBuildVector;
2976 
2977   Register UndefReg;
2978   if (WidenedDstTy != DstTy)
2979     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
2980 
2981   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
2982   // necessary.
2983   //
2984   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
2985   //   -> <2 x s16>
2986   //
2987   // %4:_(s16) = G_IMPLICIT_DEF
2988   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
2989   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
2990   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
2991   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
2992   for (int I = 0; I != NumConcat; ++I) {
2993     for (int J = 0; J != NarrowNumElts; ++J) {
2994       int SrcIdx = NarrowNumElts * I + J;
2995 
2996       if (SrcIdx < DstNumElts) {
2997         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
2998         SubBuildVector.push_back(SrcReg);
2999       } else
3000         SubBuildVector.push_back(UndefReg);
3001     }
3002 
3003     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3004     ConcatOps.push_back(BuildVec.getReg(0));
3005     SubBuildVector.clear();
3006   }
3007 
3008   if (DstTy == WidenedDstTy)
3009     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3010   else {
3011     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3012     MIRBuilder.buildExtract(DstReg, Concat, 0);
3013   }
3014 
3015   MI.eraseFromParent();
3016   return Legalized;
3017 }
3018 
3019 LegalizerHelper::LegalizeResult
3020 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3021                                       LLT NarrowTy) {
3022   // FIXME: Don't know how to handle secondary types yet.
3023   if (TypeIdx != 0)
3024     return UnableToLegalize;
3025 
3026   MachineMemOperand *MMO = *MI.memoperands_begin();
3027 
3028   // This implementation doesn't work for atomics. Give up instead of doing
3029   // something invalid.
3030   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3031       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3032     return UnableToLegalize;
3033 
3034   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3035   Register ValReg = MI.getOperand(0).getReg();
3036   Register AddrReg = MI.getOperand(1).getReg();
3037   LLT ValTy = MRI.getType(ValReg);
3038 
3039   int NumParts = -1;
3040   int NumLeftover = -1;
3041   LLT LeftoverTy;
3042   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3043   if (IsLoad) {
3044     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3045   } else {
3046     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3047                      NarrowLeftoverRegs)) {
3048       NumParts = NarrowRegs.size();
3049       NumLeftover = NarrowLeftoverRegs.size();
3050     }
3051   }
3052 
3053   if (NumParts == -1)
3054     return UnableToLegalize;
3055 
3056   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3057 
3058   unsigned TotalSize = ValTy.getSizeInBits();
3059 
3060   // Split the load/store into PartTy sized pieces starting at Offset. If this
3061   // is a load, return the new registers in ValRegs. For a store, each elements
3062   // of ValRegs should be PartTy. Returns the next offset that needs to be
3063   // handled.
3064   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3065                              unsigned Offset) -> unsigned {
3066     MachineFunction &MF = MIRBuilder.getMF();
3067     unsigned PartSize = PartTy.getSizeInBits();
3068     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3069          Offset += PartSize, ++Idx) {
3070       unsigned ByteSize = PartSize / 8;
3071       unsigned ByteOffset = Offset / 8;
3072       Register NewAddrReg;
3073 
3074       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3075 
3076       MachineMemOperand *NewMMO =
3077         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3078 
3079       if (IsLoad) {
3080         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3081         ValRegs.push_back(Dst);
3082         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3083       } else {
3084         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3085       }
3086     }
3087 
3088     return Offset;
3089   };
3090 
3091   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3092 
3093   // Handle the rest of the register if this isn't an even type breakdown.
3094   if (LeftoverTy.isValid())
3095     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3096 
3097   if (IsLoad) {
3098     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3099                 LeftoverTy, NarrowLeftoverRegs);
3100   }
3101 
3102   MI.eraseFromParent();
3103   return Legalized;
3104 }
3105 
3106 LegalizerHelper::LegalizeResult
3107 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3108                                               LLT NarrowTy) {
3109   Register DstReg = MI.getOperand(0).getReg();
3110   Register SrcReg = MI.getOperand(1).getReg();
3111   int64_t Imm = MI.getOperand(2).getImm();
3112 
3113   LLT DstTy = MRI.getType(DstReg);
3114 
3115   SmallVector<Register, 8> Parts;
3116   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3117   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3118 
3119   for (Register &R : Parts)
3120     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3121 
3122   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3123 
3124   MI.eraseFromParent();
3125   return Legalized;
3126 }
3127 
3128 LegalizerHelper::LegalizeResult
3129 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3130                                      LLT NarrowTy) {
3131   using namespace TargetOpcode;
3132 
3133   MIRBuilder.setInstr(MI);
3134   switch (MI.getOpcode()) {
3135   case G_IMPLICIT_DEF:
3136     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3137   case G_AND:
3138   case G_OR:
3139   case G_XOR:
3140   case G_ADD:
3141   case G_SUB:
3142   case G_MUL:
3143   case G_SMULH:
3144   case G_UMULH:
3145   case G_FADD:
3146   case G_FMUL:
3147   case G_FSUB:
3148   case G_FNEG:
3149   case G_FABS:
3150   case G_FCANONICALIZE:
3151   case G_FDIV:
3152   case G_FREM:
3153   case G_FMA:
3154   case G_FMAD:
3155   case G_FPOW:
3156   case G_FEXP:
3157   case G_FEXP2:
3158   case G_FLOG:
3159   case G_FLOG2:
3160   case G_FLOG10:
3161   case G_FNEARBYINT:
3162   case G_FCEIL:
3163   case G_FFLOOR:
3164   case G_FRINT:
3165   case G_INTRINSIC_ROUND:
3166   case G_INTRINSIC_TRUNC:
3167   case G_FCOS:
3168   case G_FSIN:
3169   case G_FSQRT:
3170   case G_BSWAP:
3171   case G_BITREVERSE:
3172   case G_SDIV:
3173   case G_UDIV:
3174   case G_SREM:
3175   case G_UREM:
3176   case G_SMIN:
3177   case G_SMAX:
3178   case G_UMIN:
3179   case G_UMAX:
3180   case G_FMINNUM:
3181   case G_FMAXNUM:
3182   case G_FMINNUM_IEEE:
3183   case G_FMAXNUM_IEEE:
3184   case G_FMINIMUM:
3185   case G_FMAXIMUM:
3186     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3187   case G_SHL:
3188   case G_LSHR:
3189   case G_ASHR:
3190   case G_CTLZ:
3191   case G_CTLZ_ZERO_UNDEF:
3192   case G_CTTZ:
3193   case G_CTTZ_ZERO_UNDEF:
3194   case G_CTPOP:
3195   case G_FCOPYSIGN:
3196     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3197   case G_ZEXT:
3198   case G_SEXT:
3199   case G_ANYEXT:
3200   case G_FPEXT:
3201   case G_FPTRUNC:
3202   case G_SITOFP:
3203   case G_UITOFP:
3204   case G_FPTOSI:
3205   case G_FPTOUI:
3206   case G_INTTOPTR:
3207   case G_PTRTOINT:
3208   case G_ADDRSPACE_CAST:
3209     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3210   case G_ICMP:
3211   case G_FCMP:
3212     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3213   case G_SELECT:
3214     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3215   case G_PHI:
3216     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3217   case G_UNMERGE_VALUES:
3218     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3219   case G_BUILD_VECTOR:
3220     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3221   case G_LOAD:
3222   case G_STORE:
3223     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3224   case G_SEXT_INREG:
3225     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3226   default:
3227     return UnableToLegalize;
3228   }
3229 }
3230 
3231 LegalizerHelper::LegalizeResult
3232 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3233                                              const LLT HalfTy, const LLT AmtTy) {
3234 
3235   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3236   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3237   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3238 
3239   if (Amt.isNullValue()) {
3240     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3241     MI.eraseFromParent();
3242     return Legalized;
3243   }
3244 
3245   LLT NVT = HalfTy;
3246   unsigned NVTBits = HalfTy.getSizeInBits();
3247   unsigned VTBits = 2 * NVTBits;
3248 
3249   SrcOp Lo(Register(0)), Hi(Register(0));
3250   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3251     if (Amt.ugt(VTBits)) {
3252       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3253     } else if (Amt.ugt(NVTBits)) {
3254       Lo = MIRBuilder.buildConstant(NVT, 0);
3255       Hi = MIRBuilder.buildShl(NVT, InL,
3256                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3257     } else if (Amt == NVTBits) {
3258       Lo = MIRBuilder.buildConstant(NVT, 0);
3259       Hi = InL;
3260     } else {
3261       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3262       auto OrLHS =
3263           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3264       auto OrRHS = MIRBuilder.buildLShr(
3265           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3266       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3267     }
3268   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3269     if (Amt.ugt(VTBits)) {
3270       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3271     } else if (Amt.ugt(NVTBits)) {
3272       Lo = MIRBuilder.buildLShr(NVT, InH,
3273                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3274       Hi = MIRBuilder.buildConstant(NVT, 0);
3275     } else if (Amt == NVTBits) {
3276       Lo = InH;
3277       Hi = MIRBuilder.buildConstant(NVT, 0);
3278     } else {
3279       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3280 
3281       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3282       auto OrRHS = MIRBuilder.buildShl(
3283           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3284 
3285       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3286       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3287     }
3288   } else {
3289     if (Amt.ugt(VTBits)) {
3290       Hi = Lo = MIRBuilder.buildAShr(
3291           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3292     } else if (Amt.ugt(NVTBits)) {
3293       Lo = MIRBuilder.buildAShr(NVT, InH,
3294                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3295       Hi = MIRBuilder.buildAShr(NVT, InH,
3296                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3297     } else if (Amt == NVTBits) {
3298       Lo = InH;
3299       Hi = MIRBuilder.buildAShr(NVT, InH,
3300                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3301     } else {
3302       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3303 
3304       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3305       auto OrRHS = MIRBuilder.buildShl(
3306           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3307 
3308       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3309       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3310     }
3311   }
3312 
3313   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3314   MI.eraseFromParent();
3315 
3316   return Legalized;
3317 }
3318 
3319 // TODO: Optimize if constant shift amount.
3320 LegalizerHelper::LegalizeResult
3321 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3322                                    LLT RequestedTy) {
3323   if (TypeIdx == 1) {
3324     Observer.changingInstr(MI);
3325     narrowScalarSrc(MI, RequestedTy, 2);
3326     Observer.changedInstr(MI);
3327     return Legalized;
3328   }
3329 
3330   Register DstReg = MI.getOperand(0).getReg();
3331   LLT DstTy = MRI.getType(DstReg);
3332   if (DstTy.isVector())
3333     return UnableToLegalize;
3334 
3335   Register Amt = MI.getOperand(2).getReg();
3336   LLT ShiftAmtTy = MRI.getType(Amt);
3337   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3338   if (DstEltSize % 2 != 0)
3339     return UnableToLegalize;
3340 
3341   // Ignore the input type. We can only go to exactly half the size of the
3342   // input. If that isn't small enough, the resulting pieces will be further
3343   // legalized.
3344   const unsigned NewBitSize = DstEltSize / 2;
3345   const LLT HalfTy = LLT::scalar(NewBitSize);
3346   const LLT CondTy = LLT::scalar(1);
3347 
3348   if (const MachineInstr *KShiftAmt =
3349           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3350     return narrowScalarShiftByConstant(
3351         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3352   }
3353 
3354   // TODO: Expand with known bits.
3355 
3356   // Handle the fully general expansion by an unknown amount.
3357   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3358 
3359   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3360   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3361   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3362 
3363   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3364   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3365 
3366   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3367   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3368   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3369 
3370   Register ResultRegs[2];
3371   switch (MI.getOpcode()) {
3372   case TargetOpcode::G_SHL: {
3373     // Short: ShAmt < NewBitSize
3374     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3375 
3376     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3377     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3378     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3379 
3380     // Long: ShAmt >= NewBitSize
3381     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3382     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3383 
3384     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3385     auto Hi = MIRBuilder.buildSelect(
3386         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3387 
3388     ResultRegs[0] = Lo.getReg(0);
3389     ResultRegs[1] = Hi.getReg(0);
3390     break;
3391   }
3392   case TargetOpcode::G_LSHR:
3393   case TargetOpcode::G_ASHR: {
3394     // Short: ShAmt < NewBitSize
3395     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3396 
3397     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3398     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3399     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3400 
3401     // Long: ShAmt >= NewBitSize
3402     MachineInstrBuilder HiL;
3403     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3404       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3405     } else {
3406       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3407       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3408     }
3409     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3410                                      {InH, AmtExcess});     // Lo from Hi part.
3411 
3412     auto Lo = MIRBuilder.buildSelect(
3413         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3414 
3415     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3416 
3417     ResultRegs[0] = Lo.getReg(0);
3418     ResultRegs[1] = Hi.getReg(0);
3419     break;
3420   }
3421   default:
3422     llvm_unreachable("not a shift");
3423   }
3424 
3425   MIRBuilder.buildMerge(DstReg, ResultRegs);
3426   MI.eraseFromParent();
3427   return Legalized;
3428 }
3429 
3430 LegalizerHelper::LegalizeResult
3431 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3432                                        LLT MoreTy) {
3433   assert(TypeIdx == 0 && "Expecting only Idx 0");
3434 
3435   Observer.changingInstr(MI);
3436   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3437     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3438     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3439     moreElementsVectorSrc(MI, MoreTy, I);
3440   }
3441 
3442   MachineBasicBlock &MBB = *MI.getParent();
3443   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3444   moreElementsVectorDst(MI, MoreTy, 0);
3445   Observer.changedInstr(MI);
3446   return Legalized;
3447 }
3448 
3449 LegalizerHelper::LegalizeResult
3450 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3451                                     LLT MoreTy) {
3452   MIRBuilder.setInstr(MI);
3453   unsigned Opc = MI.getOpcode();
3454   switch (Opc) {
3455   case TargetOpcode::G_IMPLICIT_DEF:
3456   case TargetOpcode::G_LOAD: {
3457     if (TypeIdx != 0)
3458       return UnableToLegalize;
3459     Observer.changingInstr(MI);
3460     moreElementsVectorDst(MI, MoreTy, 0);
3461     Observer.changedInstr(MI);
3462     return Legalized;
3463   }
3464   case TargetOpcode::G_STORE:
3465     if (TypeIdx != 0)
3466       return UnableToLegalize;
3467     Observer.changingInstr(MI);
3468     moreElementsVectorSrc(MI, MoreTy, 0);
3469     Observer.changedInstr(MI);
3470     return Legalized;
3471   case TargetOpcode::G_AND:
3472   case TargetOpcode::G_OR:
3473   case TargetOpcode::G_XOR:
3474   case TargetOpcode::G_SMIN:
3475   case TargetOpcode::G_SMAX:
3476   case TargetOpcode::G_UMIN:
3477   case TargetOpcode::G_UMAX:
3478   case TargetOpcode::G_FMINNUM:
3479   case TargetOpcode::G_FMAXNUM:
3480   case TargetOpcode::G_FMINNUM_IEEE:
3481   case TargetOpcode::G_FMAXNUM_IEEE:
3482   case TargetOpcode::G_FMINIMUM:
3483   case TargetOpcode::G_FMAXIMUM: {
3484     Observer.changingInstr(MI);
3485     moreElementsVectorSrc(MI, MoreTy, 1);
3486     moreElementsVectorSrc(MI, MoreTy, 2);
3487     moreElementsVectorDst(MI, MoreTy, 0);
3488     Observer.changedInstr(MI);
3489     return Legalized;
3490   }
3491   case TargetOpcode::G_EXTRACT:
3492     if (TypeIdx != 1)
3493       return UnableToLegalize;
3494     Observer.changingInstr(MI);
3495     moreElementsVectorSrc(MI, MoreTy, 1);
3496     Observer.changedInstr(MI);
3497     return Legalized;
3498   case TargetOpcode::G_INSERT:
3499     if (TypeIdx != 0)
3500       return UnableToLegalize;
3501     Observer.changingInstr(MI);
3502     moreElementsVectorSrc(MI, MoreTy, 1);
3503     moreElementsVectorDst(MI, MoreTy, 0);
3504     Observer.changedInstr(MI);
3505     return Legalized;
3506   case TargetOpcode::G_SELECT:
3507     if (TypeIdx != 0)
3508       return UnableToLegalize;
3509     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3510       return UnableToLegalize;
3511 
3512     Observer.changingInstr(MI);
3513     moreElementsVectorSrc(MI, MoreTy, 2);
3514     moreElementsVectorSrc(MI, MoreTy, 3);
3515     moreElementsVectorDst(MI, MoreTy, 0);
3516     Observer.changedInstr(MI);
3517     return Legalized;
3518   case TargetOpcode::G_UNMERGE_VALUES: {
3519     if (TypeIdx != 1)
3520       return UnableToLegalize;
3521 
3522     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3523     int NumDst = MI.getNumOperands() - 1;
3524     moreElementsVectorSrc(MI, MoreTy, NumDst);
3525 
3526     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3527     for (int I = 0; I != NumDst; ++I)
3528       MIB.addDef(MI.getOperand(I).getReg());
3529 
3530     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3531     for (int I = NumDst; I != NewNumDst; ++I)
3532       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3533 
3534     MIB.addUse(MI.getOperand(NumDst).getReg());
3535     MI.eraseFromParent();
3536     return Legalized;
3537   }
3538   case TargetOpcode::G_PHI:
3539     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3540   default:
3541     return UnableToLegalize;
3542   }
3543 }
3544 
3545 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3546                                         ArrayRef<Register> Src1Regs,
3547                                         ArrayRef<Register> Src2Regs,
3548                                         LLT NarrowTy) {
3549   MachineIRBuilder &B = MIRBuilder;
3550   unsigned SrcParts = Src1Regs.size();
3551   unsigned DstParts = DstRegs.size();
3552 
3553   unsigned DstIdx = 0; // Low bits of the result.
3554   Register FactorSum =
3555       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3556   DstRegs[DstIdx] = FactorSum;
3557 
3558   unsigned CarrySumPrevDstIdx;
3559   SmallVector<Register, 4> Factors;
3560 
3561   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3562     // Collect low parts of muls for DstIdx.
3563     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3564          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3565       MachineInstrBuilder Mul =
3566           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3567       Factors.push_back(Mul.getReg(0));
3568     }
3569     // Collect high parts of muls from previous DstIdx.
3570     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3571          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3572       MachineInstrBuilder Umulh =
3573           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3574       Factors.push_back(Umulh.getReg(0));
3575     }
3576     // Add CarrySum from additions calculated for previous DstIdx.
3577     if (DstIdx != 1) {
3578       Factors.push_back(CarrySumPrevDstIdx);
3579     }
3580 
3581     Register CarrySum;
3582     // Add all factors and accumulate all carries into CarrySum.
3583     if (DstIdx != DstParts - 1) {
3584       MachineInstrBuilder Uaddo =
3585           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3586       FactorSum = Uaddo.getReg(0);
3587       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3588       for (unsigned i = 2; i < Factors.size(); ++i) {
3589         MachineInstrBuilder Uaddo =
3590             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3591         FactorSum = Uaddo.getReg(0);
3592         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3593         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3594       }
3595     } else {
3596       // Since value for the next index is not calculated, neither is CarrySum.
3597       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3598       for (unsigned i = 2; i < Factors.size(); ++i)
3599         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3600     }
3601 
3602     CarrySumPrevDstIdx = CarrySum;
3603     DstRegs[DstIdx] = FactorSum;
3604     Factors.clear();
3605   }
3606 }
3607 
3608 LegalizerHelper::LegalizeResult
3609 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3610   Register DstReg = MI.getOperand(0).getReg();
3611   Register Src1 = MI.getOperand(1).getReg();
3612   Register Src2 = MI.getOperand(2).getReg();
3613 
3614   LLT Ty = MRI.getType(DstReg);
3615   if (Ty.isVector())
3616     return UnableToLegalize;
3617 
3618   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3619   unsigned DstSize = Ty.getSizeInBits();
3620   unsigned NarrowSize = NarrowTy.getSizeInBits();
3621   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3622     return UnableToLegalize;
3623 
3624   unsigned NumDstParts = DstSize / NarrowSize;
3625   unsigned NumSrcParts = SrcSize / NarrowSize;
3626   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3627   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3628 
3629   SmallVector<Register, 2> Src1Parts, Src2Parts;
3630   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3631   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3632   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3633   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3634 
3635   // Take only high half of registers if this is high mul.
3636   ArrayRef<Register> DstRegs(
3637       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3638   MIRBuilder.buildMerge(DstReg, DstRegs);
3639   MI.eraseFromParent();
3640   return Legalized;
3641 }
3642 
3643 LegalizerHelper::LegalizeResult
3644 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3645                                      LLT NarrowTy) {
3646   if (TypeIdx != 1)
3647     return UnableToLegalize;
3648 
3649   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3650 
3651   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3652   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3653   // NarrowSize.
3654   if (SizeOp1 % NarrowSize != 0)
3655     return UnableToLegalize;
3656   int NumParts = SizeOp1 / NarrowSize;
3657 
3658   SmallVector<Register, 2> SrcRegs, DstRegs;
3659   SmallVector<uint64_t, 2> Indexes;
3660   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3661 
3662   Register OpReg = MI.getOperand(0).getReg();
3663   uint64_t OpStart = MI.getOperand(2).getImm();
3664   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3665   for (int i = 0; i < NumParts; ++i) {
3666     unsigned SrcStart = i * NarrowSize;
3667 
3668     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3669       // No part of the extract uses this subregister, ignore it.
3670       continue;
3671     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3672       // The entire subregister is extracted, forward the value.
3673       DstRegs.push_back(SrcRegs[i]);
3674       continue;
3675     }
3676 
3677     // OpSegStart is where this destination segment would start in OpReg if it
3678     // extended infinitely in both directions.
3679     int64_t ExtractOffset;
3680     uint64_t SegSize;
3681     if (OpStart < SrcStart) {
3682       ExtractOffset = 0;
3683       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3684     } else {
3685       ExtractOffset = OpStart - SrcStart;
3686       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3687     }
3688 
3689     Register SegReg = SrcRegs[i];
3690     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3691       // A genuine extract is needed.
3692       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3693       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3694     }
3695 
3696     DstRegs.push_back(SegReg);
3697   }
3698 
3699   Register DstReg = MI.getOperand(0).getReg();
3700   if(MRI.getType(DstReg).isVector())
3701     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3702   else
3703     MIRBuilder.buildMerge(DstReg, DstRegs);
3704   MI.eraseFromParent();
3705   return Legalized;
3706 }
3707 
3708 LegalizerHelper::LegalizeResult
3709 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3710                                     LLT NarrowTy) {
3711   // FIXME: Don't know how to handle secondary types yet.
3712   if (TypeIdx != 0)
3713     return UnableToLegalize;
3714 
3715   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3716   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3717 
3718   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3719   // NarrowSize.
3720   if (SizeOp0 % NarrowSize != 0)
3721     return UnableToLegalize;
3722 
3723   int NumParts = SizeOp0 / NarrowSize;
3724 
3725   SmallVector<Register, 2> SrcRegs, DstRegs;
3726   SmallVector<uint64_t, 2> Indexes;
3727   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3728 
3729   Register OpReg = MI.getOperand(2).getReg();
3730   uint64_t OpStart = MI.getOperand(3).getImm();
3731   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3732   for (int i = 0; i < NumParts; ++i) {
3733     unsigned DstStart = i * NarrowSize;
3734 
3735     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3736       // No part of the insert affects this subregister, forward the original.
3737       DstRegs.push_back(SrcRegs[i]);
3738       continue;
3739     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3740       // The entire subregister is defined by this insert, forward the new
3741       // value.
3742       DstRegs.push_back(OpReg);
3743       continue;
3744     }
3745 
3746     // OpSegStart is where this destination segment would start in OpReg if it
3747     // extended infinitely in both directions.
3748     int64_t ExtractOffset, InsertOffset;
3749     uint64_t SegSize;
3750     if (OpStart < DstStart) {
3751       InsertOffset = 0;
3752       ExtractOffset = DstStart - OpStart;
3753       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3754     } else {
3755       InsertOffset = OpStart - DstStart;
3756       ExtractOffset = 0;
3757       SegSize =
3758         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3759     }
3760 
3761     Register SegReg = OpReg;
3762     if (ExtractOffset != 0 || SegSize != OpSize) {
3763       // A genuine extract is needed.
3764       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3765       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3766     }
3767 
3768     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3769     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3770     DstRegs.push_back(DstReg);
3771   }
3772 
3773   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3774   Register DstReg = MI.getOperand(0).getReg();
3775   if(MRI.getType(DstReg).isVector())
3776     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3777   else
3778     MIRBuilder.buildMerge(DstReg, DstRegs);
3779   MI.eraseFromParent();
3780   return Legalized;
3781 }
3782 
3783 LegalizerHelper::LegalizeResult
3784 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3785                                    LLT NarrowTy) {
3786   Register DstReg = MI.getOperand(0).getReg();
3787   LLT DstTy = MRI.getType(DstReg);
3788 
3789   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3790 
3791   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3792   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3793   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3794   LLT LeftoverTy;
3795   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3796                     Src0Regs, Src0LeftoverRegs))
3797     return UnableToLegalize;
3798 
3799   LLT Unused;
3800   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3801                     Src1Regs, Src1LeftoverRegs))
3802     llvm_unreachable("inconsistent extractParts result");
3803 
3804   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3805     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3806                                         {Src0Regs[I], Src1Regs[I]});
3807     DstRegs.push_back(Inst.getReg(0));
3808   }
3809 
3810   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3811     auto Inst = MIRBuilder.buildInstr(
3812       MI.getOpcode(),
3813       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3814     DstLeftoverRegs.push_back(Inst.getReg(0));
3815   }
3816 
3817   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3818               LeftoverTy, DstLeftoverRegs);
3819 
3820   MI.eraseFromParent();
3821   return Legalized;
3822 }
3823 
3824 LegalizerHelper::LegalizeResult
3825 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3826                                  LLT NarrowTy) {
3827   if (TypeIdx != 0)
3828     return UnableToLegalize;
3829 
3830   Register DstReg = MI.getOperand(0).getReg();
3831   Register SrcReg = MI.getOperand(1).getReg();
3832 
3833   LLT DstTy = MRI.getType(DstReg);
3834   if (DstTy.isVector())
3835     return UnableToLegalize;
3836 
3837   SmallVector<Register, 8> Parts;
3838   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3839   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3840   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3841 
3842   MI.eraseFromParent();
3843   return Legalized;
3844 }
3845 
3846 LegalizerHelper::LegalizeResult
3847 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3848                                     LLT NarrowTy) {
3849   if (TypeIdx != 0)
3850     return UnableToLegalize;
3851 
3852   Register CondReg = MI.getOperand(1).getReg();
3853   LLT CondTy = MRI.getType(CondReg);
3854   if (CondTy.isVector()) // TODO: Handle vselect
3855     return UnableToLegalize;
3856 
3857   Register DstReg = MI.getOperand(0).getReg();
3858   LLT DstTy = MRI.getType(DstReg);
3859 
3860   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3861   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3862   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3863   LLT LeftoverTy;
3864   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3865                     Src1Regs, Src1LeftoverRegs))
3866     return UnableToLegalize;
3867 
3868   LLT Unused;
3869   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3870                     Src2Regs, Src2LeftoverRegs))
3871     llvm_unreachable("inconsistent extractParts result");
3872 
3873   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3874     auto Select = MIRBuilder.buildSelect(NarrowTy,
3875                                          CondReg, Src1Regs[I], Src2Regs[I]);
3876     DstRegs.push_back(Select.getReg(0));
3877   }
3878 
3879   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3880     auto Select = MIRBuilder.buildSelect(
3881       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3882     DstLeftoverRegs.push_back(Select.getReg(0));
3883   }
3884 
3885   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3886               LeftoverTy, DstLeftoverRegs);
3887 
3888   MI.eraseFromParent();
3889   return Legalized;
3890 }
3891 
3892 LegalizerHelper::LegalizeResult
3893 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
3894                                   LLT NarrowTy) {
3895   if (TypeIdx != 1)
3896     return UnableToLegalize;
3897 
3898   Register DstReg = MI.getOperand(0).getReg();
3899   Register SrcReg = MI.getOperand(1).getReg();
3900   LLT DstTy = MRI.getType(DstReg);
3901   LLT SrcTy = MRI.getType(SrcReg);
3902   unsigned NarrowSize = NarrowTy.getSizeInBits();
3903 
3904   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3905     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
3906 
3907     MachineIRBuilder &B = MIRBuilder;
3908     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
3909     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
3910     auto C_0 = B.buildConstant(NarrowTy, 0);
3911     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3912                                 UnmergeSrc.getReg(1), C_0);
3913     auto LoCTLZ = IsUndef ?
3914       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
3915       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
3916     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
3917     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
3918     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
3919     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
3920 
3921     MI.eraseFromParent();
3922     return Legalized;
3923   }
3924 
3925   return UnableToLegalize;
3926 }
3927 
3928 LegalizerHelper::LegalizeResult
3929 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
3930                                   LLT NarrowTy) {
3931   if (TypeIdx != 1)
3932     return UnableToLegalize;
3933 
3934   Register DstReg = MI.getOperand(0).getReg();
3935   Register SrcReg = MI.getOperand(1).getReg();
3936   LLT DstTy = MRI.getType(DstReg);
3937   LLT SrcTy = MRI.getType(SrcReg);
3938   unsigned NarrowSize = NarrowTy.getSizeInBits();
3939 
3940   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3941     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
3942 
3943     MachineIRBuilder &B = MIRBuilder;
3944     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
3945     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
3946     auto C_0 = B.buildConstant(NarrowTy, 0);
3947     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3948                                 UnmergeSrc.getReg(0), C_0);
3949     auto HiCTTZ = IsUndef ?
3950       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
3951       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
3952     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
3953     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
3954     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
3955     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
3956 
3957     MI.eraseFromParent();
3958     return Legalized;
3959   }
3960 
3961   return UnableToLegalize;
3962 }
3963 
3964 LegalizerHelper::LegalizeResult
3965 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
3966                                    LLT NarrowTy) {
3967   if (TypeIdx != 1)
3968     return UnableToLegalize;
3969 
3970   Register DstReg = MI.getOperand(0).getReg();
3971   LLT DstTy = MRI.getType(DstReg);
3972   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3973   unsigned NarrowSize = NarrowTy.getSizeInBits();
3974 
3975   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3976     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
3977 
3978     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
3979     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
3980     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
3981 
3982     MI.eraseFromParent();
3983     return Legalized;
3984   }
3985 
3986   return UnableToLegalize;
3987 }
3988 
3989 LegalizerHelper::LegalizeResult
3990 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3991   unsigned Opc = MI.getOpcode();
3992   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3993   auto isSupported = [this](const LegalityQuery &Q) {
3994     auto QAction = LI.getAction(Q).Action;
3995     return QAction == Legal || QAction == Libcall || QAction == Custom;
3996   };
3997   switch (Opc) {
3998   default:
3999     return UnableToLegalize;
4000   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4001     // This trivially expands to CTLZ.
4002     Observer.changingInstr(MI);
4003     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4004     Observer.changedInstr(MI);
4005     return Legalized;
4006   }
4007   case TargetOpcode::G_CTLZ: {
4008     Register DstReg = MI.getOperand(0).getReg();
4009     Register SrcReg = MI.getOperand(1).getReg();
4010     LLT DstTy = MRI.getType(DstReg);
4011     LLT SrcTy = MRI.getType(SrcReg);
4012     unsigned Len = SrcTy.getSizeInBits();
4013 
4014     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4015       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4016       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4017       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4018       auto ICmp = MIRBuilder.buildICmp(
4019           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4020       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4021       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4022       MI.eraseFromParent();
4023       return Legalized;
4024     }
4025     // for now, we do this:
4026     // NewLen = NextPowerOf2(Len);
4027     // x = x | (x >> 1);
4028     // x = x | (x >> 2);
4029     // ...
4030     // x = x | (x >>16);
4031     // x = x | (x >>32); // for 64-bit input
4032     // Upto NewLen/2
4033     // return Len - popcount(x);
4034     //
4035     // Ref: "Hacker's Delight" by Henry Warren
4036     Register Op = SrcReg;
4037     unsigned NewLen = PowerOf2Ceil(Len);
4038     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4039       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4040       auto MIBOp = MIRBuilder.buildOr(
4041           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4042       Op = MIBOp.getReg(0);
4043     }
4044     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4045     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4046                         MIBPop);
4047     MI.eraseFromParent();
4048     return Legalized;
4049   }
4050   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4051     // This trivially expands to CTTZ.
4052     Observer.changingInstr(MI);
4053     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4054     Observer.changedInstr(MI);
4055     return Legalized;
4056   }
4057   case TargetOpcode::G_CTTZ: {
4058     Register DstReg = MI.getOperand(0).getReg();
4059     Register SrcReg = MI.getOperand(1).getReg();
4060     LLT DstTy = MRI.getType(DstReg);
4061     LLT SrcTy = MRI.getType(SrcReg);
4062 
4063     unsigned Len = SrcTy.getSizeInBits();
4064     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4065       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4066       // zero.
4067       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4068       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4069       auto ICmp = MIRBuilder.buildICmp(
4070           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4071       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4072       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4073       MI.eraseFromParent();
4074       return Legalized;
4075     }
4076     // for now, we use: { return popcount(~x & (x - 1)); }
4077     // unless the target has ctlz but not ctpop, in which case we use:
4078     // { return 32 - nlz(~x & (x-1)); }
4079     // Ref: "Hacker's Delight" by Henry Warren
4080     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4081     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4082     auto MIBTmp = MIRBuilder.buildAnd(
4083         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4084     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4085         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4086       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4087       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4088                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4089       MI.eraseFromParent();
4090       return Legalized;
4091     }
4092     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4093     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4094     return Legalized;
4095   }
4096   case TargetOpcode::G_CTPOP: {
4097     unsigned Size = Ty.getSizeInBits();
4098     MachineIRBuilder &B = MIRBuilder;
4099 
4100     // Count set bits in blocks of 2 bits. Default approach would be
4101     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4102     // We use following formula instead:
4103     // B2Count = val - { (val >> 1) & 0x55555555 }
4104     // since it gives same result in blocks of 2 with one instruction less.
4105     auto C_1 = B.buildConstant(Ty, 1);
4106     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4107     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4108     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4109     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4110     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4111 
4112     // In order to get count in blocks of 4 add values from adjacent block of 2.
4113     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4114     auto C_2 = B.buildConstant(Ty, 2);
4115     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4116     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4117     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4118     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4119     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4120     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4121 
4122     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4123     // addition since count value sits in range {0,...,8} and 4 bits are enough
4124     // to hold such binary values. After addition high 4 bits still hold count
4125     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4126     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4127     auto C_4 = B.buildConstant(Ty, 4);
4128     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4129     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4130     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4131     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4132     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4133 
4134     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4135     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4136     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4137     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4138     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4139 
4140     // Shift count result from 8 high bits to low bits.
4141     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4142     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4143 
4144     MI.eraseFromParent();
4145     return Legalized;
4146   }
4147   }
4148 }
4149 
4150 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4151 // representation.
4152 LegalizerHelper::LegalizeResult
4153 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4154   Register Dst = MI.getOperand(0).getReg();
4155   Register Src = MI.getOperand(1).getReg();
4156   const LLT S64 = LLT::scalar(64);
4157   const LLT S32 = LLT::scalar(32);
4158   const LLT S1 = LLT::scalar(1);
4159 
4160   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4161 
4162   // unsigned cul2f(ulong u) {
4163   //   uint lz = clz(u);
4164   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4165   //   u = (u << lz) & 0x7fffffffffffffffUL;
4166   //   ulong t = u & 0xffffffffffUL;
4167   //   uint v = (e << 23) | (uint)(u >> 40);
4168   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4169   //   return as_float(v + r);
4170   // }
4171 
4172   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4173   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4174 
4175   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4176 
4177   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4178   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4179 
4180   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4181   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4182 
4183   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4184   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4185 
4186   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4187 
4188   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4189   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4190 
4191   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4192   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4193   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4194 
4195   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4196   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4197   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4198   auto One = MIRBuilder.buildConstant(S32, 1);
4199 
4200   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4201   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4202   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4203   MIRBuilder.buildAdd(Dst, V, R);
4204 
4205   return Legalized;
4206 }
4207 
4208 LegalizerHelper::LegalizeResult
4209 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4210   Register Dst = MI.getOperand(0).getReg();
4211   Register Src = MI.getOperand(1).getReg();
4212   LLT DstTy = MRI.getType(Dst);
4213   LLT SrcTy = MRI.getType(Src);
4214 
4215   if (SrcTy == LLT::scalar(1)) {
4216     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4217     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4218     MIRBuilder.buildSelect(Dst, Src, True, False);
4219     MI.eraseFromParent();
4220     return Legalized;
4221   }
4222 
4223   if (SrcTy != LLT::scalar(64))
4224     return UnableToLegalize;
4225 
4226   if (DstTy == LLT::scalar(32)) {
4227     // TODO: SelectionDAG has several alternative expansions to port which may
4228     // be more reasonble depending on the available instructions. If a target
4229     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4230     // intermediate type, this is probably worse.
4231     return lowerU64ToF32BitOps(MI);
4232   }
4233 
4234   return UnableToLegalize;
4235 }
4236 
4237 LegalizerHelper::LegalizeResult
4238 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4239   Register Dst = MI.getOperand(0).getReg();
4240   Register Src = MI.getOperand(1).getReg();
4241   LLT DstTy = MRI.getType(Dst);
4242   LLT SrcTy = MRI.getType(Src);
4243 
4244   const LLT S64 = LLT::scalar(64);
4245   const LLT S32 = LLT::scalar(32);
4246   const LLT S1 = LLT::scalar(1);
4247 
4248   if (SrcTy == S1) {
4249     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4250     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4251     MIRBuilder.buildSelect(Dst, Src, True, False);
4252     MI.eraseFromParent();
4253     return Legalized;
4254   }
4255 
4256   if (SrcTy != S64)
4257     return UnableToLegalize;
4258 
4259   if (DstTy == S32) {
4260     // signed cl2f(long l) {
4261     //   long s = l >> 63;
4262     //   float r = cul2f((l + s) ^ s);
4263     //   return s ? -r : r;
4264     // }
4265     Register L = Src;
4266     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4267     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4268 
4269     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4270     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4271     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4272 
4273     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4274     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4275                                             MIRBuilder.buildConstant(S64, 0));
4276     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4277     return Legalized;
4278   }
4279 
4280   return UnableToLegalize;
4281 }
4282 
4283 LegalizerHelper::LegalizeResult
4284 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4285   Register Dst = MI.getOperand(0).getReg();
4286   Register Src = MI.getOperand(1).getReg();
4287   LLT DstTy = MRI.getType(Dst);
4288   LLT SrcTy = MRI.getType(Src);
4289   const LLT S64 = LLT::scalar(64);
4290   const LLT S32 = LLT::scalar(32);
4291 
4292   if (SrcTy != S64 && SrcTy != S32)
4293     return UnableToLegalize;
4294   if (DstTy != S32 && DstTy != S64)
4295     return UnableToLegalize;
4296 
4297   // FPTOSI gives same result as FPTOUI for positive signed integers.
4298   // FPTOUI needs to deal with fp values that convert to unsigned integers
4299   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4300 
4301   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4302   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4303                                                 : APFloat::IEEEdouble(),
4304                     APInt::getNullValue(SrcTy.getSizeInBits()));
4305   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4306 
4307   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4308 
4309   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4310   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4311   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4312   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4313   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4314   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4315   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4316 
4317   const LLT S1 = LLT::scalar(1);
4318 
4319   MachineInstrBuilder FCMP =
4320       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4321   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4322 
4323   MI.eraseFromParent();
4324   return Legalized;
4325 }
4326 
4327 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4328   Register Dst = MI.getOperand(0).getReg();
4329   Register Src = MI.getOperand(1).getReg();
4330   LLT DstTy = MRI.getType(Dst);
4331   LLT SrcTy = MRI.getType(Src);
4332   const LLT S64 = LLT::scalar(64);
4333   const LLT S32 = LLT::scalar(32);
4334 
4335   // FIXME: Only f32 to i64 conversions are supported.
4336   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4337     return UnableToLegalize;
4338 
4339   // Expand f32 -> i64 conversion
4340   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4341   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4342 
4343   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4344 
4345   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4346   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4347 
4348   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4349   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4350 
4351   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4352                                            APInt::getSignMask(SrcEltBits));
4353   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4354   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4355   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4356   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4357 
4358   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4359   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4360   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4361 
4362   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4363   R = MIRBuilder.buildZExt(DstTy, R);
4364 
4365   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4366   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4367   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4368   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4369 
4370   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4371   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4372 
4373   const LLT S1 = LLT::scalar(1);
4374   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4375                                     S1, Exponent, ExponentLoBit);
4376 
4377   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4378 
4379   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4380   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4381 
4382   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4383 
4384   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4385                                           S1, Exponent, ZeroSrcTy);
4386 
4387   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4388   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4389 
4390   MI.eraseFromParent();
4391   return Legalized;
4392 }
4393 
4394 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4395 LegalizerHelper::LegalizeResult
4396 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4397   Register Dst = MI.getOperand(0).getReg();
4398   Register Src = MI.getOperand(1).getReg();
4399 
4400   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4401     return UnableToLegalize;
4402 
4403   const unsigned ExpMask = 0x7ff;
4404   const unsigned ExpBiasf64 = 1023;
4405   const unsigned ExpBiasf16 = 15;
4406   const LLT S32 = LLT::scalar(32);
4407   const LLT S1 = LLT::scalar(1);
4408 
4409   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4410   Register U = Unmerge.getReg(0);
4411   Register UH = Unmerge.getReg(1);
4412 
4413   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4414 
4415   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4416   // add the f16 bias (15) to get the biased exponent for the f16 format.
4417   E = MIRBuilder.buildAdd(
4418     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4419   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4420 
4421   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4422   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4423 
4424   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4425                                        MIRBuilder.buildConstant(S32, 0x1ff));
4426   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4427 
4428   auto Zero = MIRBuilder.buildConstant(S32, 0);
4429   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4430   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4431   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4432 
4433   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4434   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4435   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4436   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4437 
4438   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4439   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4440 
4441   // N = M | (E << 12);
4442   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4443   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4444 
4445   // B = clamp(1-E, 0, 13);
4446   auto One = MIRBuilder.buildConstant(S32, 1);
4447   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4448   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4449   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4450 
4451   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4452                                        MIRBuilder.buildConstant(S32, 0x1000));
4453 
4454   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4455   auto D0 = MIRBuilder.buildShl(S32, D, B);
4456 
4457   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4458                                              D0, SigSetHigh);
4459   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4460   D = MIRBuilder.buildOr(S32, D, D1);
4461 
4462   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4463   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4464 
4465   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4466   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4467 
4468   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4469                                        MIRBuilder.buildConstant(S32, 3));
4470   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4471 
4472   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4473                                        MIRBuilder.buildConstant(S32, 5));
4474   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4475 
4476   V1 = MIRBuilder.buildOr(S32, V0, V1);
4477   V = MIRBuilder.buildAdd(S32, V, V1);
4478 
4479   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4480                                        E, MIRBuilder.buildConstant(S32, 30));
4481   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4482                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4483 
4484   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4485                                          E, MIRBuilder.buildConstant(S32, 1039));
4486   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4487 
4488   // Extract the sign bit.
4489   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4490   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4491 
4492   // Insert the sign bit
4493   V = MIRBuilder.buildOr(S32, Sign, V);
4494 
4495   MIRBuilder.buildTrunc(Dst, V);
4496   MI.eraseFromParent();
4497   return Legalized;
4498 }
4499 
4500 LegalizerHelper::LegalizeResult
4501 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4502   Register Dst = MI.getOperand(0).getReg();
4503   Register Src = MI.getOperand(1).getReg();
4504 
4505   LLT DstTy = MRI.getType(Dst);
4506   LLT SrcTy = MRI.getType(Src);
4507   const LLT S64 = LLT::scalar(64);
4508   const LLT S16 = LLT::scalar(16);
4509 
4510   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4511     return lowerFPTRUNC_F64_TO_F16(MI);
4512 
4513   return UnableToLegalize;
4514 }
4515 
4516 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4517   switch (Opc) {
4518   case TargetOpcode::G_SMIN:
4519     return CmpInst::ICMP_SLT;
4520   case TargetOpcode::G_SMAX:
4521     return CmpInst::ICMP_SGT;
4522   case TargetOpcode::G_UMIN:
4523     return CmpInst::ICMP_ULT;
4524   case TargetOpcode::G_UMAX:
4525     return CmpInst::ICMP_UGT;
4526   default:
4527     llvm_unreachable("not in integer min/max");
4528   }
4529 }
4530 
4531 LegalizerHelper::LegalizeResult
4532 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4533   Register Dst = MI.getOperand(0).getReg();
4534   Register Src0 = MI.getOperand(1).getReg();
4535   Register Src1 = MI.getOperand(2).getReg();
4536 
4537   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4538   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4539 
4540   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4541   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4542 
4543   MI.eraseFromParent();
4544   return Legalized;
4545 }
4546 
4547 LegalizerHelper::LegalizeResult
4548 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4549   Register Dst = MI.getOperand(0).getReg();
4550   Register Src0 = MI.getOperand(1).getReg();
4551   Register Src1 = MI.getOperand(2).getReg();
4552 
4553   const LLT Src0Ty = MRI.getType(Src0);
4554   const LLT Src1Ty = MRI.getType(Src1);
4555 
4556   const int Src0Size = Src0Ty.getScalarSizeInBits();
4557   const int Src1Size = Src1Ty.getScalarSizeInBits();
4558 
4559   auto SignBitMask = MIRBuilder.buildConstant(
4560     Src0Ty, APInt::getSignMask(Src0Size));
4561 
4562   auto NotSignBitMask = MIRBuilder.buildConstant(
4563     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4564 
4565   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4566   MachineInstr *Or;
4567 
4568   if (Src0Ty == Src1Ty) {
4569     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4570     Or = MIRBuilder.buildOr(Dst, And0, And1);
4571   } else if (Src0Size > Src1Size) {
4572     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4573     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4574     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4575     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4576     Or = MIRBuilder.buildOr(Dst, And0, And1);
4577   } else {
4578     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4579     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4580     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4581     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4582     Or = MIRBuilder.buildOr(Dst, And0, And1);
4583   }
4584 
4585   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4586   // constants are a nan and -0.0, but the final result should preserve
4587   // everything.
4588   if (unsigned Flags = MI.getFlags())
4589     Or->setFlags(Flags);
4590 
4591   MI.eraseFromParent();
4592   return Legalized;
4593 }
4594 
4595 LegalizerHelper::LegalizeResult
4596 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4597   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4598     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4599 
4600   Register Dst = MI.getOperand(0).getReg();
4601   Register Src0 = MI.getOperand(1).getReg();
4602   Register Src1 = MI.getOperand(2).getReg();
4603   LLT Ty = MRI.getType(Dst);
4604 
4605   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4606     // Insert canonicalizes if it's possible we need to quiet to get correct
4607     // sNaN behavior.
4608 
4609     // Note this must be done here, and not as an optimization combine in the
4610     // absence of a dedicate quiet-snan instruction as we're using an
4611     // omni-purpose G_FCANONICALIZE.
4612     if (!isKnownNeverSNaN(Src0, MRI))
4613       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4614 
4615     if (!isKnownNeverSNaN(Src1, MRI))
4616       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4617   }
4618 
4619   // If there are no nans, it's safe to simply replace this with the non-IEEE
4620   // version.
4621   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4622   MI.eraseFromParent();
4623   return Legalized;
4624 }
4625 
4626 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4627   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4628   Register DstReg = MI.getOperand(0).getReg();
4629   LLT Ty = MRI.getType(DstReg);
4630   unsigned Flags = MI.getFlags();
4631 
4632   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4633                                   Flags);
4634   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4635   MI.eraseFromParent();
4636   return Legalized;
4637 }
4638 
4639 LegalizerHelper::LegalizeResult
4640 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4641   Register DstReg = MI.getOperand(0).getReg();
4642   Register SrcReg = MI.getOperand(1).getReg();
4643   unsigned Flags = MI.getFlags();
4644   LLT Ty = MRI.getType(DstReg);
4645   const LLT CondTy = Ty.changeElementSize(1);
4646 
4647   // result = trunc(src);
4648   // if (src < 0.0 && src != result)
4649   //   result += -1.0.
4650 
4651   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4652   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4653 
4654   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4655                                   SrcReg, Zero, Flags);
4656   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4657                                       SrcReg, Trunc, Flags);
4658   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4659   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4660 
4661   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal);
4662   MI.eraseFromParent();
4663   return Legalized;
4664 }
4665 
4666 LegalizerHelper::LegalizeResult
4667 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4668   const unsigned NumDst = MI.getNumOperands() - 1;
4669   const Register SrcReg = MI.getOperand(NumDst).getReg();
4670   LLT SrcTy = MRI.getType(SrcReg);
4671 
4672   Register Dst0Reg = MI.getOperand(0).getReg();
4673   LLT DstTy = MRI.getType(Dst0Reg);
4674 
4675 
4676   // Expand scalarizing unmerge as bitcast to integer and shift.
4677   if (!DstTy.isVector() && SrcTy.isVector() &&
4678       SrcTy.getElementType() == DstTy) {
4679     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4680     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4681 
4682     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4683 
4684     const unsigned DstSize = DstTy.getSizeInBits();
4685     unsigned Offset = DstSize;
4686     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4687       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4688       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4689       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4690     }
4691 
4692     MI.eraseFromParent();
4693     return Legalized;
4694   }
4695 
4696   return UnableToLegalize;
4697 }
4698 
4699 LegalizerHelper::LegalizeResult
4700 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4701   Register DstReg = MI.getOperand(0).getReg();
4702   Register Src0Reg = MI.getOperand(1).getReg();
4703   Register Src1Reg = MI.getOperand(2).getReg();
4704   LLT Src0Ty = MRI.getType(Src0Reg);
4705   LLT DstTy = MRI.getType(DstReg);
4706   LLT IdxTy = LLT::scalar(32);
4707 
4708   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4709 
4710   if (DstTy.isScalar()) {
4711     if (Src0Ty.isVector())
4712       return UnableToLegalize;
4713 
4714     // This is just a SELECT.
4715     assert(Mask.size() == 1 && "Expected a single mask element");
4716     Register Val;
4717     if (Mask[0] < 0 || Mask[0] > 1)
4718       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4719     else
4720       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4721     MIRBuilder.buildCopy(DstReg, Val);
4722     MI.eraseFromParent();
4723     return Legalized;
4724   }
4725 
4726   Register Undef;
4727   SmallVector<Register, 32> BuildVec;
4728   LLT EltTy = DstTy.getElementType();
4729 
4730   for (int Idx : Mask) {
4731     if (Idx < 0) {
4732       if (!Undef.isValid())
4733         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4734       BuildVec.push_back(Undef);
4735       continue;
4736     }
4737 
4738     if (Src0Ty.isScalar()) {
4739       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4740     } else {
4741       int NumElts = Src0Ty.getNumElements();
4742       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4743       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4744       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4745       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4746       BuildVec.push_back(Extract.getReg(0));
4747     }
4748   }
4749 
4750   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4751   MI.eraseFromParent();
4752   return Legalized;
4753 }
4754 
4755 LegalizerHelper::LegalizeResult
4756 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4757   Register Dst = MI.getOperand(0).getReg();
4758   Register AllocSize = MI.getOperand(1).getReg();
4759   unsigned Align = MI.getOperand(2).getImm();
4760 
4761   const auto &MF = *MI.getMF();
4762   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4763 
4764   LLT PtrTy = MRI.getType(Dst);
4765   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4766 
4767   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4768   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4769   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4770 
4771   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4772   // have to generate an extra instruction to negate the alloc and then use
4773   // G_PTR_ADD to add the negative offset.
4774   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4775   if (Align) {
4776     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4777     AlignMask.negate();
4778     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4779     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4780   }
4781 
4782   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4783   MIRBuilder.buildCopy(SPReg, SPTmp);
4784   MIRBuilder.buildCopy(Dst, SPTmp);
4785 
4786   MI.eraseFromParent();
4787   return Legalized;
4788 }
4789 
4790 LegalizerHelper::LegalizeResult
4791 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4792   Register Dst = MI.getOperand(0).getReg();
4793   Register Src = MI.getOperand(1).getReg();
4794   unsigned Offset = MI.getOperand(2).getImm();
4795 
4796   LLT DstTy = MRI.getType(Dst);
4797   LLT SrcTy = MRI.getType(Src);
4798 
4799   if (DstTy.isScalar() &&
4800       (SrcTy.isScalar() ||
4801        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4802     LLT SrcIntTy = SrcTy;
4803     if (!SrcTy.isScalar()) {
4804       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4805       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4806     }
4807 
4808     if (Offset == 0)
4809       MIRBuilder.buildTrunc(Dst, Src);
4810     else {
4811       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4812       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4813       MIRBuilder.buildTrunc(Dst, Shr);
4814     }
4815 
4816     MI.eraseFromParent();
4817     return Legalized;
4818   }
4819 
4820   return UnableToLegalize;
4821 }
4822 
4823 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4824   Register Dst = MI.getOperand(0).getReg();
4825   Register Src = MI.getOperand(1).getReg();
4826   Register InsertSrc = MI.getOperand(2).getReg();
4827   uint64_t Offset = MI.getOperand(3).getImm();
4828 
4829   LLT DstTy = MRI.getType(Src);
4830   LLT InsertTy = MRI.getType(InsertSrc);
4831 
4832   if (InsertTy.isScalar() &&
4833       (DstTy.isScalar() ||
4834        (DstTy.isVector() && DstTy.getElementType() == InsertTy))) {
4835     LLT IntDstTy = DstTy;
4836     if (!DstTy.isScalar()) {
4837       IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4838       Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0);
4839     }
4840 
4841     Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4842     if (Offset != 0) {
4843       auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4844       ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4845     }
4846 
4847     APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(),
4848                                               Offset + InsertTy.getSizeInBits(),
4849                                               Offset);
4850 
4851     auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4852     auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4853     auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4854 
4855     MIRBuilder.buildBitcast(Dst, Or);
4856     MI.eraseFromParent();
4857     return Legalized;
4858   }
4859 
4860   return UnableToLegalize;
4861 }
4862 
4863 LegalizerHelper::LegalizeResult
4864 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
4865   Register Dst0 = MI.getOperand(0).getReg();
4866   Register Dst1 = MI.getOperand(1).getReg();
4867   Register LHS = MI.getOperand(2).getReg();
4868   Register RHS = MI.getOperand(3).getReg();
4869   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
4870 
4871   LLT Ty = MRI.getType(Dst0);
4872   LLT BoolTy = MRI.getType(Dst1);
4873 
4874   if (IsAdd)
4875     MIRBuilder.buildAdd(Dst0, LHS, RHS);
4876   else
4877     MIRBuilder.buildSub(Dst0, LHS, RHS);
4878 
4879   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
4880 
4881   auto Zero = MIRBuilder.buildConstant(Ty, 0);
4882 
4883   // For an addition, the result should be less than one of the operands (LHS)
4884   // if and only if the other operand (RHS) is negative, otherwise there will
4885   // be overflow.
4886   // For a subtraction, the result should be less than one of the operands
4887   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
4888   // otherwise there will be overflow.
4889   auto ResultLowerThanLHS =
4890       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
4891   auto ConditionRHS = MIRBuilder.buildICmp(
4892       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
4893 
4894   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
4895   MI.eraseFromParent();
4896   return Legalized;
4897 }
4898 
4899 LegalizerHelper::LegalizeResult
4900 LegalizerHelper::lowerBswap(MachineInstr &MI) {
4901   Register Dst = MI.getOperand(0).getReg();
4902   Register Src = MI.getOperand(1).getReg();
4903   const LLT Ty = MRI.getType(Src);
4904   unsigned SizeInBytes = Ty.getSizeInBytes();
4905   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
4906 
4907   // Swap most and least significant byte, set remaining bytes in Res to zero.
4908   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
4909   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
4910   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4911   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
4912 
4913   // Set i-th high/low byte in Res to i-th low/high byte from Src.
4914   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
4915     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
4916     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
4917     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
4918     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
4919     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
4920     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
4921     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
4922     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
4923     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
4924     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4925     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
4926     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
4927   }
4928   Res.getInstr()->getOperand(0).setReg(Dst);
4929 
4930   MI.eraseFromParent();
4931   return Legalized;
4932 }
4933 
4934 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
4935 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
4936                                  MachineInstrBuilder Src, APInt Mask) {
4937   const LLT Ty = Dst.getLLTTy(*B.getMRI());
4938   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
4939   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
4940   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
4941   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
4942   return B.buildOr(Dst, LHS, RHS);
4943 }
4944 
4945 LegalizerHelper::LegalizeResult
4946 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
4947   Register Dst = MI.getOperand(0).getReg();
4948   Register Src = MI.getOperand(1).getReg();
4949   const LLT Ty = MRI.getType(Src);
4950   unsigned Size = Ty.getSizeInBits();
4951 
4952   MachineInstrBuilder BSWAP =
4953       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
4954 
4955   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
4956   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
4957   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
4958   MachineInstrBuilder Swap4 =
4959       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
4960 
4961   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
4962   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
4963   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
4964   MachineInstrBuilder Swap2 =
4965       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
4966 
4967   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
4968   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
4969   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
4970   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
4971 
4972   MI.eraseFromParent();
4973   return Legalized;
4974 }
4975 
4976 LegalizerHelper::LegalizeResult
4977 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
4978   MachineFunction &MF = MIRBuilder.getMF();
4979   const TargetSubtargetInfo &STI = MF.getSubtarget();
4980   const TargetLowering *TLI = STI.getTargetLowering();
4981 
4982   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
4983   int NameOpIdx = IsRead ? 1 : 0;
4984   int ValRegIndex = IsRead ? 0 : 1;
4985 
4986   Register ValReg = MI.getOperand(ValRegIndex).getReg();
4987   const LLT Ty = MRI.getType(ValReg);
4988   const MDString *RegStr = cast<MDString>(
4989     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
4990 
4991   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
4992   if (!PhysReg.isValid())
4993     return UnableToLegalize;
4994 
4995   if (IsRead)
4996     MIRBuilder.buildCopy(ValReg, PhysReg);
4997   else
4998     MIRBuilder.buildCopy(PhysReg, ValReg);
4999 
5000   MI.eraseFromParent();
5001   return Legalized;
5002 }
5003