1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   MachineBasicBlock &MBB = *MI.getParent();
466   const Function &F = MBB.getParent()->getFunction();
467 
468   // Conservatively require the attributes of the call to match those of
469   // the return. Ignore NoAlias and NonNull because they don't affect the
470   // call sequence.
471   AttributeList CallerAttrs = F.getAttributes();
472   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
473           .removeAttribute(Attribute::NoAlias)
474           .removeAttribute(Attribute::NonNull)
475           .hasAttributes())
476     return false;
477 
478   // It's not safe to eliminate the sign / zero extension of the return value.
479   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
480       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
481     return false;
482 
483   // Only tail call if the following instruction is a standard return.
484   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
485   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
486   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
487     return false;
488 
489   return true;
490 }
491 
492 LegalizerHelper::LegalizeResult
493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
494                     const CallLowering::ArgInfo &Result,
495                     ArrayRef<CallLowering::ArgInfo> Args,
496                     const CallingConv::ID CC) {
497   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
498 
499   CallLowering::CallLoweringInfo Info;
500   Info.CallConv = CC;
501   Info.Callee = MachineOperand::CreateES(Name);
502   Info.OrigRet = Result;
503   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
504   if (!CLI.lowerCall(MIRBuilder, Info))
505     return LegalizerHelper::UnableToLegalize;
506 
507   return LegalizerHelper::Legalized;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args) {
514   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
515   const char *Name = TLI.getLibcallName(Libcall);
516   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
517   return createLibcall(MIRBuilder, Name, Result, Args, CC);
518 }
519 
520 // Useful for libcalls where all operands have the same type.
521 static LegalizerHelper::LegalizeResult
522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
523               Type *OpType) {
524   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
525 
526   SmallVector<CallLowering::ArgInfo, 3> Args;
527   for (unsigned i = 1; i < MI.getNumOperands(); i++)
528     Args.push_back({MI.getOperand(i).getReg(), OpType});
529   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
530                        Args);
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
535                        MachineInstr &MI) {
536   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
537   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
538 
539   SmallVector<CallLowering::ArgInfo, 3> Args;
540   // Add all the args, except for the last which is an imm denoting 'tail'.
541   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
542     Register Reg = MI.getOperand(i).getReg();
543 
544     // Need derive an IR type for call lowering.
545     LLT OpLLT = MRI.getType(Reg);
546     Type *OpTy = nullptr;
547     if (OpLLT.isPointer())
548       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
549     else
550       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
551     Args.push_back({Reg, OpTy});
552   }
553 
554   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
555   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
556   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
557   RTLIB::Libcall RTLibcall;
558   switch (ID) {
559   case Intrinsic::memcpy:
560     RTLibcall = RTLIB::MEMCPY;
561     break;
562   case Intrinsic::memset:
563     RTLibcall = RTLIB::MEMSET;
564     break;
565   case Intrinsic::memmove:
566     RTLibcall = RTLIB::MEMMOVE;
567     break;
568   default:
569     return LegalizerHelper::UnableToLegalize;
570   }
571   const char *Name = TLI.getLibcallName(RTLibcall);
572 
573   MIRBuilder.setInstrAndDebugLoc(MI);
574 
575   CallLowering::CallLoweringInfo Info;
576   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
577   Info.Callee = MachineOperand::CreateES(Name);
578   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
579   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
580                     isLibCallInTailPosition(MI);
581 
582   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
583   if (!CLI.lowerCall(MIRBuilder, Info))
584     return LegalizerHelper::UnableToLegalize;
585 
586   if (Info.LoweredTailCall) {
587     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
588     // We must have a return following the call (or debug insts) to get past
589     // isLibCallInTailPosition.
590     do {
591       MachineInstr *Next = MI.getNextNode();
592       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
593              "Expected instr following MI to be return or debug inst?");
594       // We lowered a tail call, so the call is now the return from the block.
595       // Delete the old return.
596       Next->eraseFromParent();
597     } while (MI.getNextNode());
598   }
599 
600   return LegalizerHelper::Legalized;
601 }
602 
603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
604                                        Type *FromType) {
605   auto ToMVT = MVT::getVT(ToType);
606   auto FromMVT = MVT::getVT(FromType);
607 
608   switch (Opcode) {
609   case TargetOpcode::G_FPEXT:
610     return RTLIB::getFPEXT(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTRUNC:
612     return RTLIB::getFPROUND(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOSI:
614     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
615   case TargetOpcode::G_FPTOUI:
616     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
617   case TargetOpcode::G_SITOFP:
618     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
619   case TargetOpcode::G_UITOFP:
620     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
621   }
622   llvm_unreachable("Unsupported libcall function");
623 }
624 
625 static LegalizerHelper::LegalizeResult
626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
627                   Type *FromType) {
628   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
629   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
630                        {{MI.getOperand(1).getReg(), FromType}});
631 }
632 
633 LegalizerHelper::LegalizeResult
634 LegalizerHelper::libcall(MachineInstr &MI) {
635   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
636   unsigned Size = LLTy.getSizeInBits();
637   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
638 
639   MIRBuilder.setInstrAndDebugLoc(MI);
640 
641   switch (MI.getOpcode()) {
642   default:
643     return UnableToLegalize;
644   case TargetOpcode::G_SDIV:
645   case TargetOpcode::G_UDIV:
646   case TargetOpcode::G_SREM:
647   case TargetOpcode::G_UREM:
648   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
649     Type *HLTy = IntegerType::get(Ctx, Size);
650     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
651     if (Status != Legalized)
652       return Status;
653     break;
654   }
655   case TargetOpcode::G_FADD:
656   case TargetOpcode::G_FSUB:
657   case TargetOpcode::G_FMUL:
658   case TargetOpcode::G_FDIV:
659   case TargetOpcode::G_FMA:
660   case TargetOpcode::G_FPOW:
661   case TargetOpcode::G_FREM:
662   case TargetOpcode::G_FCOS:
663   case TargetOpcode::G_FSIN:
664   case TargetOpcode::G_FLOG10:
665   case TargetOpcode::G_FLOG:
666   case TargetOpcode::G_FLOG2:
667   case TargetOpcode::G_FEXP:
668   case TargetOpcode::G_FEXP2:
669   case TargetOpcode::G_FCEIL:
670   case TargetOpcode::G_FFLOOR:
671   case TargetOpcode::G_FMINNUM:
672   case TargetOpcode::G_FMAXNUM:
673   case TargetOpcode::G_FSQRT:
674   case TargetOpcode::G_FRINT:
675   case TargetOpcode::G_FNEARBYINT: {
676     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
677     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
678       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
679       return UnableToLegalize;
680     }
681     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
682     if (Status != Legalized)
683       return Status;
684     break;
685   }
686   case TargetOpcode::G_FPEXT:
687   case TargetOpcode::G_FPTRUNC: {
688     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
689     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
690     if (!FromTy || !ToTy)
691       return UnableToLegalize;
692     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
693     if (Status != Legalized)
694       return Status;
695     break;
696   }
697   case TargetOpcode::G_FPTOSI:
698   case TargetOpcode::G_FPTOUI: {
699     // FIXME: Support other types
700     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
701     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
702     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
703       return UnableToLegalize;
704     LegalizeResult Status = conversionLibcall(
705         MI, MIRBuilder,
706         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
707         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
708     if (Status != Legalized)
709       return Status;
710     break;
711   }
712   case TargetOpcode::G_SITOFP:
713   case TargetOpcode::G_UITOFP: {
714     // FIXME: Support other types
715     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
716     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
717     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(
720         MI, MIRBuilder,
721         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
722         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
723     if (Status != Legalized)
724       return Status;
725     break;
726   }
727   }
728 
729   MI.eraseFromParent();
730   return Legalized;
731 }
732 
733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
734                                                               unsigned TypeIdx,
735                                                               LLT NarrowTy) {
736   MIRBuilder.setInstrAndDebugLoc(MI);
737 
738   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
739   uint64_t NarrowSize = NarrowTy.getSizeInBits();
740 
741   switch (MI.getOpcode()) {
742   default:
743     return UnableToLegalize;
744   case TargetOpcode::G_IMPLICIT_DEF: {
745     Register DstReg = MI.getOperand(0).getReg();
746     LLT DstTy = MRI.getType(DstReg);
747 
748     // If SizeOp0 is not an exact multiple of NarrowSize, emit
749     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
750     // FIXME: Although this would also be legal for the general case, it causes
751     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
752     //  combines not being hit). This seems to be a problem related to the
753     //  artifact combiner.
754     if (SizeOp0 % NarrowSize != 0) {
755       LLT ImplicitTy = NarrowTy;
756       if (DstTy.isVector())
757         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
758 
759       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
760       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
761 
762       MI.eraseFromParent();
763       return Legalized;
764     }
765 
766     int NumParts = SizeOp0 / NarrowSize;
767 
768     SmallVector<Register, 2> DstRegs;
769     for (int i = 0; i < NumParts; ++i)
770       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
771 
772     if (DstTy.isVector())
773       MIRBuilder.buildBuildVector(DstReg, DstRegs);
774     else
775       MIRBuilder.buildMerge(DstReg, DstRegs);
776     MI.eraseFromParent();
777     return Legalized;
778   }
779   case TargetOpcode::G_CONSTANT: {
780     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
781     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
782     unsigned TotalSize = Ty.getSizeInBits();
783     unsigned NarrowSize = NarrowTy.getSizeInBits();
784     int NumParts = TotalSize / NarrowSize;
785 
786     SmallVector<Register, 4> PartRegs;
787     for (int I = 0; I != NumParts; ++I) {
788       unsigned Offset = I * NarrowSize;
789       auto K = MIRBuilder.buildConstant(NarrowTy,
790                                         Val.lshr(Offset).trunc(NarrowSize));
791       PartRegs.push_back(K.getReg(0));
792     }
793 
794     LLT LeftoverTy;
795     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
796     SmallVector<Register, 1> LeftoverRegs;
797     if (LeftoverBits != 0) {
798       LeftoverTy = LLT::scalar(LeftoverBits);
799       auto K = MIRBuilder.buildConstant(
800         LeftoverTy,
801         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
802       LeftoverRegs.push_back(K.getReg(0));
803     }
804 
805     insertParts(MI.getOperand(0).getReg(),
806                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
807 
808     MI.eraseFromParent();
809     return Legalized;
810   }
811   case TargetOpcode::G_SEXT:
812   case TargetOpcode::G_ZEXT:
813   case TargetOpcode::G_ANYEXT:
814     return narrowScalarExt(MI, TypeIdx, NarrowTy);
815   case TargetOpcode::G_TRUNC: {
816     if (TypeIdx != 1)
817       return UnableToLegalize;
818 
819     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
820     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
821       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
822       return UnableToLegalize;
823     }
824 
825     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
826     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
827     MI.eraseFromParent();
828     return Legalized;
829   }
830 
831   case TargetOpcode::G_FREEZE:
832     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
833 
834   case TargetOpcode::G_ADD: {
835     // FIXME: add support for when SizeOp0 isn't an exact multiple of
836     // NarrowSize.
837     if (SizeOp0 % NarrowSize != 0)
838       return UnableToLegalize;
839     // Expand in terms of carry-setting/consuming G_ADDE instructions.
840     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
841 
842     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
843     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
844     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
845 
846     Register CarryIn;
847     for (int i = 0; i < NumParts; ++i) {
848       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
849       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
850 
851       if (i == 0)
852         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
853       else {
854         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
855                               Src2Regs[i], CarryIn);
856       }
857 
858       DstRegs.push_back(DstReg);
859       CarryIn = CarryOut;
860     }
861     Register DstReg = MI.getOperand(0).getReg();
862     if(MRI.getType(DstReg).isVector())
863       MIRBuilder.buildBuildVector(DstReg, DstRegs);
864     else
865       MIRBuilder.buildMerge(DstReg, DstRegs);
866     MI.eraseFromParent();
867     return Legalized;
868   }
869   case TargetOpcode::G_SUB: {
870     // FIXME: add support for when SizeOp0 isn't an exact multiple of
871     // NarrowSize.
872     if (SizeOp0 % NarrowSize != 0)
873       return UnableToLegalize;
874 
875     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
876 
877     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
878     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
879     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
880 
881     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
882     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
883     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
884                           {Src1Regs[0], Src2Regs[0]});
885     DstRegs.push_back(DstReg);
886     Register BorrowIn = BorrowOut;
887     for (int i = 1; i < NumParts; ++i) {
888       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
889       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
890 
891       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
892                             {Src1Regs[i], Src2Regs[i], BorrowIn});
893 
894       DstRegs.push_back(DstReg);
895       BorrowIn = BorrowOut;
896     }
897     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
898     MI.eraseFromParent();
899     return Legalized;
900   }
901   case TargetOpcode::G_MUL:
902   case TargetOpcode::G_UMULH:
903     return narrowScalarMul(MI, NarrowTy);
904   case TargetOpcode::G_EXTRACT:
905     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
906   case TargetOpcode::G_INSERT:
907     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
908   case TargetOpcode::G_LOAD: {
909     const auto &MMO = **MI.memoperands_begin();
910     Register DstReg = MI.getOperand(0).getReg();
911     LLT DstTy = MRI.getType(DstReg);
912     if (DstTy.isVector())
913       return UnableToLegalize;
914 
915     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
916       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
917       auto &MMO = **MI.memoperands_begin();
918       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
919       MIRBuilder.buildAnyExt(DstReg, TmpReg);
920       MI.eraseFromParent();
921       return Legalized;
922     }
923 
924     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
925   }
926   case TargetOpcode::G_ZEXTLOAD:
927   case TargetOpcode::G_SEXTLOAD: {
928     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
929     Register DstReg = MI.getOperand(0).getReg();
930     Register PtrReg = MI.getOperand(1).getReg();
931 
932     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
933     auto &MMO = **MI.memoperands_begin();
934     if (MMO.getSizeInBits() == NarrowSize) {
935       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
936     } else {
937       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
938     }
939 
940     if (ZExt)
941       MIRBuilder.buildZExt(DstReg, TmpReg);
942     else
943       MIRBuilder.buildSExt(DstReg, TmpReg);
944 
945     MI.eraseFromParent();
946     return Legalized;
947   }
948   case TargetOpcode::G_STORE: {
949     const auto &MMO = **MI.memoperands_begin();
950 
951     Register SrcReg = MI.getOperand(0).getReg();
952     LLT SrcTy = MRI.getType(SrcReg);
953     if (SrcTy.isVector())
954       return UnableToLegalize;
955 
956     int NumParts = SizeOp0 / NarrowSize;
957     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
958     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
959     if (SrcTy.isVector() && LeftoverBits != 0)
960       return UnableToLegalize;
961 
962     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
963       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
964       auto &MMO = **MI.memoperands_begin();
965       MIRBuilder.buildTrunc(TmpReg, SrcReg);
966       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
967       MI.eraseFromParent();
968       return Legalized;
969     }
970 
971     return reduceLoadStoreWidth(MI, 0, NarrowTy);
972   }
973   case TargetOpcode::G_SELECT:
974     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
975   case TargetOpcode::G_AND:
976   case TargetOpcode::G_OR:
977   case TargetOpcode::G_XOR: {
978     // Legalize bitwise operation:
979     // A = BinOp<Ty> B, C
980     // into:
981     // B1, ..., BN = G_UNMERGE_VALUES B
982     // C1, ..., CN = G_UNMERGE_VALUES C
983     // A1 = BinOp<Ty/N> B1, C2
984     // ...
985     // AN = BinOp<Ty/N> BN, CN
986     // A = G_MERGE_VALUES A1, ..., AN
987     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
988   }
989   case TargetOpcode::G_SHL:
990   case TargetOpcode::G_LSHR:
991   case TargetOpcode::G_ASHR:
992     return narrowScalarShift(MI, TypeIdx, NarrowTy);
993   case TargetOpcode::G_CTLZ:
994   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
995   case TargetOpcode::G_CTTZ:
996   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
997   case TargetOpcode::G_CTPOP:
998     if (TypeIdx == 1)
999       switch (MI.getOpcode()) {
1000       case TargetOpcode::G_CTLZ:
1001       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1002         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1003       case TargetOpcode::G_CTTZ:
1004       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1005         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1006       case TargetOpcode::G_CTPOP:
1007         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1008       default:
1009         return UnableToLegalize;
1010       }
1011 
1012     Observer.changingInstr(MI);
1013     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1014     Observer.changedInstr(MI);
1015     return Legalized;
1016   case TargetOpcode::G_INTTOPTR:
1017     if (TypeIdx != 1)
1018       return UnableToLegalize;
1019 
1020     Observer.changingInstr(MI);
1021     narrowScalarSrc(MI, NarrowTy, 1);
1022     Observer.changedInstr(MI);
1023     return Legalized;
1024   case TargetOpcode::G_PTRTOINT:
1025     if (TypeIdx != 0)
1026       return UnableToLegalize;
1027 
1028     Observer.changingInstr(MI);
1029     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1030     Observer.changedInstr(MI);
1031     return Legalized;
1032   case TargetOpcode::G_PHI: {
1033     unsigned NumParts = SizeOp0 / NarrowSize;
1034     SmallVector<Register, 2> DstRegs(NumParts);
1035     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1036     Observer.changingInstr(MI);
1037     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1038       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1039       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1040       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1041                    SrcRegs[i / 2]);
1042     }
1043     MachineBasicBlock &MBB = *MI.getParent();
1044     MIRBuilder.setInsertPt(MBB, MI);
1045     for (unsigned i = 0; i < NumParts; ++i) {
1046       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1047       MachineInstrBuilder MIB =
1048           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1049       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1050         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1051     }
1052     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1053     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1054     Observer.changedInstr(MI);
1055     MI.eraseFromParent();
1056     return Legalized;
1057   }
1058   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1059   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1060     if (TypeIdx != 2)
1061       return UnableToLegalize;
1062 
1063     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1064     Observer.changingInstr(MI);
1065     narrowScalarSrc(MI, NarrowTy, OpIdx);
1066     Observer.changedInstr(MI);
1067     return Legalized;
1068   }
1069   case TargetOpcode::G_ICMP: {
1070     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1071     if (NarrowSize * 2 != SrcSize)
1072       return UnableToLegalize;
1073 
1074     Observer.changingInstr(MI);
1075     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1078 
1079     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1080     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1081     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1082 
1083     CmpInst::Predicate Pred =
1084         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1085     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1086 
1087     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1088       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1089       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1090       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1091       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1092       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1093     } else {
1094       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1095       MachineInstrBuilder CmpHEQ =
1096           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1097       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1098           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1099       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1100     }
1101     Observer.changedInstr(MI);
1102     MI.eraseFromParent();
1103     return Legalized;
1104   }
1105   case TargetOpcode::G_SEXT_INREG: {
1106     if (TypeIdx != 0)
1107       return UnableToLegalize;
1108 
1109     int64_t SizeInBits = MI.getOperand(2).getImm();
1110 
1111     // So long as the new type has more bits than the bits we're extending we
1112     // don't need to break it apart.
1113     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1114       Observer.changingInstr(MI);
1115       // We don't lose any non-extension bits by truncating the src and
1116       // sign-extending the dst.
1117       MachineOperand &MO1 = MI.getOperand(1);
1118       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1119       MO1.setReg(TruncMIB.getReg(0));
1120 
1121       MachineOperand &MO2 = MI.getOperand(0);
1122       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1123       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1124       MIRBuilder.buildSExt(MO2, DstExt);
1125       MO2.setReg(DstExt);
1126       Observer.changedInstr(MI);
1127       return Legalized;
1128     }
1129 
1130     // Break it apart. Components below the extension point are unmodified. The
1131     // component containing the extension point becomes a narrower SEXT_INREG.
1132     // Components above it are ashr'd from the component containing the
1133     // extension point.
1134     if (SizeOp0 % NarrowSize != 0)
1135       return UnableToLegalize;
1136     int NumParts = SizeOp0 / NarrowSize;
1137 
1138     // List the registers where the destination will be scattered.
1139     SmallVector<Register, 2> DstRegs;
1140     // List the registers where the source will be split.
1141     SmallVector<Register, 2> SrcRegs;
1142 
1143     // Create all the temporary registers.
1144     for (int i = 0; i < NumParts; ++i) {
1145       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1146 
1147       SrcRegs.push_back(SrcReg);
1148     }
1149 
1150     // Explode the big arguments into smaller chunks.
1151     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1152 
1153     Register AshrCstReg =
1154         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1155             .getReg(0);
1156     Register FullExtensionReg = 0;
1157     Register PartialExtensionReg = 0;
1158 
1159     // Do the operation on each small part.
1160     for (int i = 0; i < NumParts; ++i) {
1161       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1162         DstRegs.push_back(SrcRegs[i]);
1163       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1164         assert(PartialExtensionReg &&
1165                "Expected to visit partial extension before full");
1166         if (FullExtensionReg) {
1167           DstRegs.push_back(FullExtensionReg);
1168           continue;
1169         }
1170         DstRegs.push_back(
1171             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1172                 .getReg(0));
1173         FullExtensionReg = DstRegs.back();
1174       } else {
1175         DstRegs.push_back(
1176             MIRBuilder
1177                 .buildInstr(
1178                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1179                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1180                 .getReg(0));
1181         PartialExtensionReg = DstRegs.back();
1182       }
1183     }
1184 
1185     // Gather the destination registers into the final destination.
1186     Register DstReg = MI.getOperand(0).getReg();
1187     MIRBuilder.buildMerge(DstReg, DstRegs);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_BSWAP:
1192   case TargetOpcode::G_BITREVERSE: {
1193     if (SizeOp0 % NarrowSize != 0)
1194       return UnableToLegalize;
1195 
1196     Observer.changingInstr(MI);
1197     SmallVector<Register, 2> SrcRegs, DstRegs;
1198     unsigned NumParts = SizeOp0 / NarrowSize;
1199     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1200 
1201     for (unsigned i = 0; i < NumParts; ++i) {
1202       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1203                                            {SrcRegs[NumParts - 1 - i]});
1204       DstRegs.push_back(DstPart.getReg(0));
1205     }
1206 
1207     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1208 
1209     Observer.changedInstr(MI);
1210     MI.eraseFromParent();
1211     return Legalized;
1212   }
1213   }
1214 }
1215 
1216 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1217                                      unsigned OpIdx, unsigned ExtOpcode) {
1218   MachineOperand &MO = MI.getOperand(OpIdx);
1219   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1220   MO.setReg(ExtB.getReg(0));
1221 }
1222 
1223 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1224                                       unsigned OpIdx) {
1225   MachineOperand &MO = MI.getOperand(OpIdx);
1226   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1227   MO.setReg(ExtB.getReg(0));
1228 }
1229 
1230 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1231                                      unsigned OpIdx, unsigned TruncOpcode) {
1232   MachineOperand &MO = MI.getOperand(OpIdx);
1233   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1234   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1235   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1236   MO.setReg(DstExt);
1237 }
1238 
1239 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1240                                       unsigned OpIdx, unsigned ExtOpcode) {
1241   MachineOperand &MO = MI.getOperand(OpIdx);
1242   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1243   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1244   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1245   MO.setReg(DstTrunc);
1246 }
1247 
1248 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1249                                             unsigned OpIdx) {
1250   MachineOperand &MO = MI.getOperand(OpIdx);
1251   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1252   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1253   MIRBuilder.buildExtract(MO, DstExt, 0);
1254   MO.setReg(DstExt);
1255 }
1256 
1257 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1258                                             unsigned OpIdx) {
1259   MachineOperand &MO = MI.getOperand(OpIdx);
1260 
1261   LLT OldTy = MRI.getType(MO.getReg());
1262   unsigned OldElts = OldTy.getNumElements();
1263   unsigned NewElts = MoreTy.getNumElements();
1264 
1265   unsigned NumParts = NewElts / OldElts;
1266 
1267   // Use concat_vectors if the result is a multiple of the number of elements.
1268   if (NumParts * OldElts == NewElts) {
1269     SmallVector<Register, 8> Parts;
1270     Parts.push_back(MO.getReg());
1271 
1272     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1273     for (unsigned I = 1; I != NumParts; ++I)
1274       Parts.push_back(ImpDef);
1275 
1276     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1277     MO.setReg(Concat.getReg(0));
1278     return;
1279   }
1280 
1281   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1282   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1283   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1284   MO.setReg(MoreReg);
1285 }
1286 
1287 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1288   MachineOperand &Op = MI.getOperand(OpIdx);
1289   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1290 }
1291 
1292 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1293   MachineOperand &MO = MI.getOperand(OpIdx);
1294   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1295   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1296   MIRBuilder.buildBitcast(MO, CastDst);
1297   MO.setReg(CastDst);
1298 }
1299 
1300 LegalizerHelper::LegalizeResult
1301 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1302                                         LLT WideTy) {
1303   if (TypeIdx != 1)
1304     return UnableToLegalize;
1305 
1306   Register DstReg = MI.getOperand(0).getReg();
1307   LLT DstTy = MRI.getType(DstReg);
1308   if (DstTy.isVector())
1309     return UnableToLegalize;
1310 
1311   Register Src1 = MI.getOperand(1).getReg();
1312   LLT SrcTy = MRI.getType(Src1);
1313   const int DstSize = DstTy.getSizeInBits();
1314   const int SrcSize = SrcTy.getSizeInBits();
1315   const int WideSize = WideTy.getSizeInBits();
1316   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1317 
1318   unsigned NumOps = MI.getNumOperands();
1319   unsigned NumSrc = MI.getNumOperands() - 1;
1320   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1321 
1322   if (WideSize >= DstSize) {
1323     // Directly pack the bits in the target type.
1324     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1325 
1326     for (unsigned I = 2; I != NumOps; ++I) {
1327       const unsigned Offset = (I - 1) * PartSize;
1328 
1329       Register SrcReg = MI.getOperand(I).getReg();
1330       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1331 
1332       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1333 
1334       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1335         MRI.createGenericVirtualRegister(WideTy);
1336 
1337       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1338       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1339       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1340       ResultReg = NextResult;
1341     }
1342 
1343     if (WideSize > DstSize)
1344       MIRBuilder.buildTrunc(DstReg, ResultReg);
1345     else if (DstTy.isPointer())
1346       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1347 
1348     MI.eraseFromParent();
1349     return Legalized;
1350   }
1351 
1352   // Unmerge the original values to the GCD type, and recombine to the next
1353   // multiple greater than the original type.
1354   //
1355   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1356   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1357   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1358   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1359   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1360   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1361   // %12:_(s12) = G_MERGE_VALUES %10, %11
1362   //
1363   // Padding with undef if necessary:
1364   //
1365   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1366   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1367   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1368   // %7:_(s2) = G_IMPLICIT_DEF
1369   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1370   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1371   // %10:_(s12) = G_MERGE_VALUES %8, %9
1372 
1373   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1374   LLT GCDTy = LLT::scalar(GCD);
1375 
1376   SmallVector<Register, 8> Parts;
1377   SmallVector<Register, 8> NewMergeRegs;
1378   SmallVector<Register, 8> Unmerges;
1379   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1380 
1381   // Decompose the original operands if they don't evenly divide.
1382   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1383     Register SrcReg = MI.getOperand(I).getReg();
1384     if (GCD == SrcSize) {
1385       Unmerges.push_back(SrcReg);
1386     } else {
1387       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1388       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1389         Unmerges.push_back(Unmerge.getReg(J));
1390     }
1391   }
1392 
1393   // Pad with undef to the next size that is a multiple of the requested size.
1394   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1395     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1396     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1397       Unmerges.push_back(UndefReg);
1398   }
1399 
1400   const int PartsPerGCD = WideSize / GCD;
1401 
1402   // Build merges of each piece.
1403   ArrayRef<Register> Slicer(Unmerges);
1404   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1405     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1406     NewMergeRegs.push_back(Merge.getReg(0));
1407   }
1408 
1409   // A truncate may be necessary if the requested type doesn't evenly divide the
1410   // original result type.
1411   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1412     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1413   } else {
1414     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1415     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1416   }
1417 
1418   MI.eraseFromParent();
1419   return Legalized;
1420 }
1421 
1422 LegalizerHelper::LegalizeResult
1423 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1424                                           LLT WideTy) {
1425   if (TypeIdx != 0)
1426     return UnableToLegalize;
1427 
1428   int NumDst = MI.getNumOperands() - 1;
1429   Register SrcReg = MI.getOperand(NumDst).getReg();
1430   LLT SrcTy = MRI.getType(SrcReg);
1431   if (SrcTy.isVector())
1432     return UnableToLegalize;
1433 
1434   Register Dst0Reg = MI.getOperand(0).getReg();
1435   LLT DstTy = MRI.getType(Dst0Reg);
1436   if (!DstTy.isScalar())
1437     return UnableToLegalize;
1438 
1439   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1440     if (SrcTy.isPointer()) {
1441       const DataLayout &DL = MIRBuilder.getDataLayout();
1442       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1443         LLVM_DEBUG(
1444             dbgs() << "Not casting non-integral address space integer\n");
1445         return UnableToLegalize;
1446       }
1447 
1448       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1449       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1450     }
1451 
1452     // Widen SrcTy to WideTy. This does not affect the result, but since the
1453     // user requested this size, it is probably better handled than SrcTy and
1454     // should reduce the total number of legalization artifacts
1455     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1456       SrcTy = WideTy;
1457       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1458     }
1459 
1460     // Theres no unmerge type to target. Directly extract the bits from the
1461     // source type
1462     unsigned DstSize = DstTy.getSizeInBits();
1463 
1464     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1465     for (int I = 1; I != NumDst; ++I) {
1466       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1467       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1468       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1469     }
1470 
1471     MI.eraseFromParent();
1472     return Legalized;
1473   }
1474 
1475   // Extend the source to a wider type.
1476   LLT LCMTy = getLCMType(SrcTy, WideTy);
1477 
1478   Register WideSrc = SrcReg;
1479   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1480     // TODO: If this is an integral address space, cast to integer and anyext.
1481     if (SrcTy.isPointer()) {
1482       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1483       return UnableToLegalize;
1484     }
1485 
1486     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1487   }
1488 
1489   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1490 
1491   // Create a sequence of unmerges to the original results. since we may have
1492   // widened the source, we will need to pad the results with dead defs to cover
1493   // the source register.
1494   // e.g. widen s16 to s32:
1495   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1496   //
1497   // =>
1498   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1499   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1500   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1501   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1502 
1503   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1504   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1505 
1506   for (int I = 0; I != NumUnmerge; ++I) {
1507     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1508 
1509     for (int J = 0; J != PartsPerUnmerge; ++J) {
1510       int Idx = I * PartsPerUnmerge + J;
1511       if (Idx < NumDst)
1512         MIB.addDef(MI.getOperand(Idx).getReg());
1513       else {
1514         // Create dead def for excess components.
1515         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1516       }
1517     }
1518 
1519     MIB.addUse(Unmerge.getReg(I));
1520   }
1521 
1522   MI.eraseFromParent();
1523   return Legalized;
1524 }
1525 
1526 LegalizerHelper::LegalizeResult
1527 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1528                                     LLT WideTy) {
1529   Register DstReg = MI.getOperand(0).getReg();
1530   Register SrcReg = MI.getOperand(1).getReg();
1531   LLT SrcTy = MRI.getType(SrcReg);
1532 
1533   LLT DstTy = MRI.getType(DstReg);
1534   unsigned Offset = MI.getOperand(2).getImm();
1535 
1536   if (TypeIdx == 0) {
1537     if (SrcTy.isVector() || DstTy.isVector())
1538       return UnableToLegalize;
1539 
1540     SrcOp Src(SrcReg);
1541     if (SrcTy.isPointer()) {
1542       // Extracts from pointers can be handled only if they are really just
1543       // simple integers.
1544       const DataLayout &DL = MIRBuilder.getDataLayout();
1545       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1546         return UnableToLegalize;
1547 
1548       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1549       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1550       SrcTy = SrcAsIntTy;
1551     }
1552 
1553     if (DstTy.isPointer())
1554       return UnableToLegalize;
1555 
1556     if (Offset == 0) {
1557       // Avoid a shift in the degenerate case.
1558       MIRBuilder.buildTrunc(DstReg,
1559                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1560       MI.eraseFromParent();
1561       return Legalized;
1562     }
1563 
1564     // Do a shift in the source type.
1565     LLT ShiftTy = SrcTy;
1566     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1567       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1568       ShiftTy = WideTy;
1569     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1570       return UnableToLegalize;
1571 
1572     auto LShr = MIRBuilder.buildLShr(
1573       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1574     MIRBuilder.buildTrunc(DstReg, LShr);
1575     MI.eraseFromParent();
1576     return Legalized;
1577   }
1578 
1579   if (SrcTy.isScalar()) {
1580     Observer.changingInstr(MI);
1581     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1582     Observer.changedInstr(MI);
1583     return Legalized;
1584   }
1585 
1586   if (!SrcTy.isVector())
1587     return UnableToLegalize;
1588 
1589   if (DstTy != SrcTy.getElementType())
1590     return UnableToLegalize;
1591 
1592   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1593     return UnableToLegalize;
1594 
1595   Observer.changingInstr(MI);
1596   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1597 
1598   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1599                           Offset);
1600   widenScalarDst(MI, WideTy.getScalarType(), 0);
1601   Observer.changedInstr(MI);
1602   return Legalized;
1603 }
1604 
1605 LegalizerHelper::LegalizeResult
1606 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1607                                    LLT WideTy) {
1608   if (TypeIdx != 0)
1609     return UnableToLegalize;
1610   Observer.changingInstr(MI);
1611   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1612   widenScalarDst(MI, WideTy);
1613   Observer.changedInstr(MI);
1614   return Legalized;
1615 }
1616 
1617 LegalizerHelper::LegalizeResult
1618 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1619   MIRBuilder.setInstrAndDebugLoc(MI);
1620 
1621   switch (MI.getOpcode()) {
1622   default:
1623     return UnableToLegalize;
1624   case TargetOpcode::G_EXTRACT:
1625     return widenScalarExtract(MI, TypeIdx, WideTy);
1626   case TargetOpcode::G_INSERT:
1627     return widenScalarInsert(MI, TypeIdx, WideTy);
1628   case TargetOpcode::G_MERGE_VALUES:
1629     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1630   case TargetOpcode::G_UNMERGE_VALUES:
1631     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1632   case TargetOpcode::G_UADDO:
1633   case TargetOpcode::G_USUBO: {
1634     if (TypeIdx == 1)
1635       return UnableToLegalize; // TODO
1636     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1637     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1638     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1639                           ? TargetOpcode::G_ADD
1640                           : TargetOpcode::G_SUB;
1641     // Do the arithmetic in the larger type.
1642     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1643     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1644     APInt Mask =
1645         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1646     auto AndOp = MIRBuilder.buildAnd(
1647         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1648     // There is no overflow if the AndOp is the same as NewOp.
1649     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1650     // Now trunc the NewOp to the original result.
1651     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1652     MI.eraseFromParent();
1653     return Legalized;
1654   }
1655   case TargetOpcode::G_CTTZ:
1656   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1657   case TargetOpcode::G_CTLZ:
1658   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1659   case TargetOpcode::G_CTPOP: {
1660     if (TypeIdx == 0) {
1661       Observer.changingInstr(MI);
1662       widenScalarDst(MI, WideTy, 0);
1663       Observer.changedInstr(MI);
1664       return Legalized;
1665     }
1666 
1667     Register SrcReg = MI.getOperand(1).getReg();
1668 
1669     // First ZEXT the input.
1670     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1671     LLT CurTy = MRI.getType(SrcReg);
1672     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1673       // The count is the same in the larger type except if the original
1674       // value was zero.  This can be handled by setting the bit just off
1675       // the top of the original type.
1676       auto TopBit =
1677           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1678       MIBSrc = MIRBuilder.buildOr(
1679         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1680     }
1681 
1682     // Perform the operation at the larger size.
1683     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1684     // This is already the correct result for CTPOP and CTTZs
1685     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1686         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1687       // The correct result is NewOp - (Difference in widety and current ty).
1688       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1689       MIBNewOp = MIRBuilder.buildSub(
1690           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1691     }
1692 
1693     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1694     MI.eraseFromParent();
1695     return Legalized;
1696   }
1697   case TargetOpcode::G_BSWAP: {
1698     Observer.changingInstr(MI);
1699     Register DstReg = MI.getOperand(0).getReg();
1700 
1701     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1702     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1703     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1704     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1705 
1706     MI.getOperand(0).setReg(DstExt);
1707 
1708     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1709 
1710     LLT Ty = MRI.getType(DstReg);
1711     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1712     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1713     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1714 
1715     MIRBuilder.buildTrunc(DstReg, ShrReg);
1716     Observer.changedInstr(MI);
1717     return Legalized;
1718   }
1719   case TargetOpcode::G_BITREVERSE: {
1720     Observer.changingInstr(MI);
1721 
1722     Register DstReg = MI.getOperand(0).getReg();
1723     LLT Ty = MRI.getType(DstReg);
1724     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1725 
1726     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1727     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1728     MI.getOperand(0).setReg(DstExt);
1729     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1730 
1731     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1732     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1733     MIRBuilder.buildTrunc(DstReg, Shift);
1734     Observer.changedInstr(MI);
1735     return Legalized;
1736   }
1737   case TargetOpcode::G_FREEZE:
1738     Observer.changingInstr(MI);
1739     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740     widenScalarDst(MI, WideTy);
1741     Observer.changedInstr(MI);
1742     return Legalized;
1743 
1744   case TargetOpcode::G_ADD:
1745   case TargetOpcode::G_AND:
1746   case TargetOpcode::G_MUL:
1747   case TargetOpcode::G_OR:
1748   case TargetOpcode::G_XOR:
1749   case TargetOpcode::G_SUB:
1750     // Perform operation at larger width (any extension is fines here, high bits
1751     // don't affect the result) and then truncate the result back to the
1752     // original type.
1753     Observer.changingInstr(MI);
1754     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1756     widenScalarDst(MI, WideTy);
1757     Observer.changedInstr(MI);
1758     return Legalized;
1759 
1760   case TargetOpcode::G_SHL:
1761     Observer.changingInstr(MI);
1762 
1763     if (TypeIdx == 0) {
1764       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1765       widenScalarDst(MI, WideTy);
1766     } else {
1767       assert(TypeIdx == 1);
1768       // The "number of bits to shift" operand must preserve its value as an
1769       // unsigned integer:
1770       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1771     }
1772 
1773     Observer.changedInstr(MI);
1774     return Legalized;
1775 
1776   case TargetOpcode::G_SDIV:
1777   case TargetOpcode::G_SREM:
1778   case TargetOpcode::G_SMIN:
1779   case TargetOpcode::G_SMAX:
1780     Observer.changingInstr(MI);
1781     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1782     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1783     widenScalarDst(MI, WideTy);
1784     Observer.changedInstr(MI);
1785     return Legalized;
1786 
1787   case TargetOpcode::G_ASHR:
1788   case TargetOpcode::G_LSHR:
1789     Observer.changingInstr(MI);
1790 
1791     if (TypeIdx == 0) {
1792       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1793         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1794 
1795       widenScalarSrc(MI, WideTy, 1, CvtOp);
1796       widenScalarDst(MI, WideTy);
1797     } else {
1798       assert(TypeIdx == 1);
1799       // The "number of bits to shift" operand must preserve its value as an
1800       // unsigned integer:
1801       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1802     }
1803 
1804     Observer.changedInstr(MI);
1805     return Legalized;
1806   case TargetOpcode::G_UDIV:
1807   case TargetOpcode::G_UREM:
1808   case TargetOpcode::G_UMIN:
1809   case TargetOpcode::G_UMAX:
1810     Observer.changingInstr(MI);
1811     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1812     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1813     widenScalarDst(MI, WideTy);
1814     Observer.changedInstr(MI);
1815     return Legalized;
1816 
1817   case TargetOpcode::G_SELECT:
1818     Observer.changingInstr(MI);
1819     if (TypeIdx == 0) {
1820       // Perform operation at larger width (any extension is fine here, high
1821       // bits don't affect the result) and then truncate the result back to the
1822       // original type.
1823       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1824       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1825       widenScalarDst(MI, WideTy);
1826     } else {
1827       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1828       // Explicit extension is required here since high bits affect the result.
1829       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1830     }
1831     Observer.changedInstr(MI);
1832     return Legalized;
1833 
1834   case TargetOpcode::G_FPTOSI:
1835   case TargetOpcode::G_FPTOUI:
1836     Observer.changingInstr(MI);
1837 
1838     if (TypeIdx == 0)
1839       widenScalarDst(MI, WideTy);
1840     else
1841       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1842 
1843     Observer.changedInstr(MI);
1844     return Legalized;
1845   case TargetOpcode::G_SITOFP:
1846     if (TypeIdx != 1)
1847       return UnableToLegalize;
1848     Observer.changingInstr(MI);
1849     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1850     Observer.changedInstr(MI);
1851     return Legalized;
1852 
1853   case TargetOpcode::G_UITOFP:
1854     if (TypeIdx != 1)
1855       return UnableToLegalize;
1856     Observer.changingInstr(MI);
1857     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1858     Observer.changedInstr(MI);
1859     return Legalized;
1860 
1861   case TargetOpcode::G_LOAD:
1862   case TargetOpcode::G_SEXTLOAD:
1863   case TargetOpcode::G_ZEXTLOAD:
1864     Observer.changingInstr(MI);
1865     widenScalarDst(MI, WideTy);
1866     Observer.changedInstr(MI);
1867     return Legalized;
1868 
1869   case TargetOpcode::G_STORE: {
1870     if (TypeIdx != 0)
1871       return UnableToLegalize;
1872 
1873     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1874     if (!isPowerOf2_32(Ty.getSizeInBits()))
1875       return UnableToLegalize;
1876 
1877     Observer.changingInstr(MI);
1878 
1879     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1880       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1881     widenScalarSrc(MI, WideTy, 0, ExtType);
1882 
1883     Observer.changedInstr(MI);
1884     return Legalized;
1885   }
1886   case TargetOpcode::G_CONSTANT: {
1887     MachineOperand &SrcMO = MI.getOperand(1);
1888     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1889     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1890         MRI.getType(MI.getOperand(0).getReg()));
1891     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1892             ExtOpc == TargetOpcode::G_ANYEXT) &&
1893            "Illegal Extend");
1894     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1895     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1896                            ? SrcVal.sext(WideTy.getSizeInBits())
1897                            : SrcVal.zext(WideTy.getSizeInBits());
1898     Observer.changingInstr(MI);
1899     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1900 
1901     widenScalarDst(MI, WideTy);
1902     Observer.changedInstr(MI);
1903     return Legalized;
1904   }
1905   case TargetOpcode::G_FCONSTANT: {
1906     MachineOperand &SrcMO = MI.getOperand(1);
1907     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1908     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1909     bool LosesInfo;
1910     switch (WideTy.getSizeInBits()) {
1911     case 32:
1912       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1913                   &LosesInfo);
1914       break;
1915     case 64:
1916       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1917                   &LosesInfo);
1918       break;
1919     default:
1920       return UnableToLegalize;
1921     }
1922 
1923     assert(!LosesInfo && "extend should always be lossless");
1924 
1925     Observer.changingInstr(MI);
1926     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1927 
1928     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1929     Observer.changedInstr(MI);
1930     return Legalized;
1931   }
1932   case TargetOpcode::G_IMPLICIT_DEF: {
1933     Observer.changingInstr(MI);
1934     widenScalarDst(MI, WideTy);
1935     Observer.changedInstr(MI);
1936     return Legalized;
1937   }
1938   case TargetOpcode::G_BRCOND:
1939     Observer.changingInstr(MI);
1940     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1941     Observer.changedInstr(MI);
1942     return Legalized;
1943 
1944   case TargetOpcode::G_FCMP:
1945     Observer.changingInstr(MI);
1946     if (TypeIdx == 0)
1947       widenScalarDst(MI, WideTy);
1948     else {
1949       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1950       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1951     }
1952     Observer.changedInstr(MI);
1953     return Legalized;
1954 
1955   case TargetOpcode::G_ICMP:
1956     Observer.changingInstr(MI);
1957     if (TypeIdx == 0)
1958       widenScalarDst(MI, WideTy);
1959     else {
1960       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1961                                MI.getOperand(1).getPredicate()))
1962                                ? TargetOpcode::G_SEXT
1963                                : TargetOpcode::G_ZEXT;
1964       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1965       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1966     }
1967     Observer.changedInstr(MI);
1968     return Legalized;
1969 
1970   case TargetOpcode::G_PTR_ADD:
1971     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1972     Observer.changingInstr(MI);
1973     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1974     Observer.changedInstr(MI);
1975     return Legalized;
1976 
1977   case TargetOpcode::G_PHI: {
1978     assert(TypeIdx == 0 && "Expecting only Idx 0");
1979 
1980     Observer.changingInstr(MI);
1981     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1982       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1983       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1984       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1985     }
1986 
1987     MachineBasicBlock &MBB = *MI.getParent();
1988     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1989     widenScalarDst(MI, WideTy);
1990     Observer.changedInstr(MI);
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1994     if (TypeIdx == 0) {
1995       Register VecReg = MI.getOperand(1).getReg();
1996       LLT VecTy = MRI.getType(VecReg);
1997       Observer.changingInstr(MI);
1998 
1999       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2000                                      WideTy.getSizeInBits()),
2001                      1, TargetOpcode::G_SEXT);
2002 
2003       widenScalarDst(MI, WideTy, 0);
2004       Observer.changedInstr(MI);
2005       return Legalized;
2006     }
2007 
2008     if (TypeIdx != 2)
2009       return UnableToLegalize;
2010     Observer.changingInstr(MI);
2011     // TODO: Probably should be zext
2012     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2013     Observer.changedInstr(MI);
2014     return Legalized;
2015   }
2016   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2017     if (TypeIdx == 1) {
2018       Observer.changingInstr(MI);
2019 
2020       Register VecReg = MI.getOperand(1).getReg();
2021       LLT VecTy = MRI.getType(VecReg);
2022       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2023 
2024       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2025       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2026       widenScalarDst(MI, WideVecTy, 0);
2027       Observer.changedInstr(MI);
2028       return Legalized;
2029     }
2030 
2031     if (TypeIdx == 2) {
2032       Observer.changingInstr(MI);
2033       // TODO: Probably should be zext
2034       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2035       Observer.changedInstr(MI);
2036     }
2037 
2038     return Legalized;
2039   }
2040   case TargetOpcode::G_FADD:
2041   case TargetOpcode::G_FMUL:
2042   case TargetOpcode::G_FSUB:
2043   case TargetOpcode::G_FMA:
2044   case TargetOpcode::G_FMAD:
2045   case TargetOpcode::G_FNEG:
2046   case TargetOpcode::G_FABS:
2047   case TargetOpcode::G_FCANONICALIZE:
2048   case TargetOpcode::G_FMINNUM:
2049   case TargetOpcode::G_FMAXNUM:
2050   case TargetOpcode::G_FMINNUM_IEEE:
2051   case TargetOpcode::G_FMAXNUM_IEEE:
2052   case TargetOpcode::G_FMINIMUM:
2053   case TargetOpcode::G_FMAXIMUM:
2054   case TargetOpcode::G_FDIV:
2055   case TargetOpcode::G_FREM:
2056   case TargetOpcode::G_FCEIL:
2057   case TargetOpcode::G_FFLOOR:
2058   case TargetOpcode::G_FCOS:
2059   case TargetOpcode::G_FSIN:
2060   case TargetOpcode::G_FLOG10:
2061   case TargetOpcode::G_FLOG:
2062   case TargetOpcode::G_FLOG2:
2063   case TargetOpcode::G_FRINT:
2064   case TargetOpcode::G_FNEARBYINT:
2065   case TargetOpcode::G_FSQRT:
2066   case TargetOpcode::G_FEXP:
2067   case TargetOpcode::G_FEXP2:
2068   case TargetOpcode::G_FPOW:
2069   case TargetOpcode::G_INTRINSIC_TRUNC:
2070   case TargetOpcode::G_INTRINSIC_ROUND:
2071     assert(TypeIdx == 0);
2072     Observer.changingInstr(MI);
2073 
2074     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2075       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2076 
2077     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2078     Observer.changedInstr(MI);
2079     return Legalized;
2080   case TargetOpcode::G_INTTOPTR:
2081     if (TypeIdx != 1)
2082       return UnableToLegalize;
2083 
2084     Observer.changingInstr(MI);
2085     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2086     Observer.changedInstr(MI);
2087     return Legalized;
2088   case TargetOpcode::G_PTRTOINT:
2089     if (TypeIdx != 0)
2090       return UnableToLegalize;
2091 
2092     Observer.changingInstr(MI);
2093     widenScalarDst(MI, WideTy, 0);
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096   case TargetOpcode::G_BUILD_VECTOR: {
2097     Observer.changingInstr(MI);
2098 
2099     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2100     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2101       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2102 
2103     // Avoid changing the result vector type if the source element type was
2104     // requested.
2105     if (TypeIdx == 1) {
2106       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2107       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2108     } else {
2109       widenScalarDst(MI, WideTy, 0);
2110     }
2111 
2112     Observer.changedInstr(MI);
2113     return Legalized;
2114   }
2115   case TargetOpcode::G_SEXT_INREG:
2116     if (TypeIdx != 0)
2117       return UnableToLegalize;
2118 
2119     Observer.changingInstr(MI);
2120     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2121     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2122     Observer.changedInstr(MI);
2123     return Legalized;
2124   }
2125 }
2126 
2127 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2128                              MachineIRBuilder &B, Register Src, LLT Ty) {
2129   auto Unmerge = B.buildUnmerge(Ty, Src);
2130   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2131     Pieces.push_back(Unmerge.getReg(I));
2132 }
2133 
2134 LegalizerHelper::LegalizeResult
2135 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2136   Register Dst = MI.getOperand(0).getReg();
2137   Register Src = MI.getOperand(1).getReg();
2138   LLT DstTy = MRI.getType(Dst);
2139   LLT SrcTy = MRI.getType(Src);
2140 
2141   if (SrcTy.isVector() && !DstTy.isVector()) {
2142     SmallVector<Register, 8> SrcRegs;
2143     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2144     MIRBuilder.buildMerge(Dst, SrcRegs);
2145     MI.eraseFromParent();
2146     return Legalized;
2147   }
2148 
2149   if (DstTy.isVector() && !SrcTy.isVector()) {
2150     SmallVector<Register, 8> SrcRegs;
2151     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2152     MIRBuilder.buildMerge(Dst, SrcRegs);
2153     MI.eraseFromParent();
2154     return Legalized;
2155   }
2156 
2157   return UnableToLegalize;
2158 }
2159 
2160 LegalizerHelper::LegalizeResult
2161 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2162   MIRBuilder.setInstr(MI);
2163 
2164   switch (MI.getOpcode()) {
2165   case TargetOpcode::G_LOAD: {
2166     if (TypeIdx != 0)
2167       return UnableToLegalize;
2168 
2169     Observer.changingInstr(MI);
2170     bitcastDst(MI, CastTy, 0);
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173   }
2174   case TargetOpcode::G_STORE: {
2175     if (TypeIdx != 0)
2176       return UnableToLegalize;
2177 
2178     Observer.changingInstr(MI);
2179     bitcastSrc(MI, CastTy, 0);
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182   }
2183   case TargetOpcode::G_SELECT: {
2184     if (TypeIdx != 0)
2185       return UnableToLegalize;
2186 
2187     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2188       LLVM_DEBUG(
2189           dbgs() << "bitcast action not implemented for vector select\n");
2190       return UnableToLegalize;
2191     }
2192 
2193     Observer.changingInstr(MI);
2194     bitcastSrc(MI, CastTy, 2);
2195     bitcastSrc(MI, CastTy, 3);
2196     bitcastDst(MI, CastTy, 0);
2197     Observer.changedInstr(MI);
2198     return Legalized;
2199   }
2200   case TargetOpcode::G_AND:
2201   case TargetOpcode::G_OR:
2202   case TargetOpcode::G_XOR: {
2203     Observer.changingInstr(MI);
2204     bitcastSrc(MI, CastTy, 1);
2205     bitcastSrc(MI, CastTy, 2);
2206     bitcastDst(MI, CastTy, 0);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209   }
2210   default:
2211     return UnableToLegalize;
2212   }
2213 }
2214 
2215 LegalizerHelper::LegalizeResult
2216 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2217   using namespace TargetOpcode;
2218   MIRBuilder.setInstrAndDebugLoc(MI);
2219 
2220   switch(MI.getOpcode()) {
2221   default:
2222     return UnableToLegalize;
2223   case TargetOpcode::G_BITCAST:
2224     return lowerBitcast(MI);
2225   case TargetOpcode::G_SREM:
2226   case TargetOpcode::G_UREM: {
2227     auto Quot =
2228         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2229                               {MI.getOperand(1), MI.getOperand(2)});
2230 
2231     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2232     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2233     MI.eraseFromParent();
2234     return Legalized;
2235   }
2236   case TargetOpcode::G_SADDO:
2237   case TargetOpcode::G_SSUBO:
2238     return lowerSADDO_SSUBO(MI);
2239   case TargetOpcode::G_SMULO:
2240   case TargetOpcode::G_UMULO: {
2241     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2242     // result.
2243     Register Res = MI.getOperand(0).getReg();
2244     Register Overflow = MI.getOperand(1).getReg();
2245     Register LHS = MI.getOperand(2).getReg();
2246     Register RHS = MI.getOperand(3).getReg();
2247 
2248     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2249                           ? TargetOpcode::G_SMULH
2250                           : TargetOpcode::G_UMULH;
2251 
2252     Observer.changingInstr(MI);
2253     const auto &TII = MIRBuilder.getTII();
2254     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2255     MI.RemoveOperand(1);
2256     Observer.changedInstr(MI);
2257 
2258     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2259 
2260     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2261     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2262 
2263     // For *signed* multiply, overflow is detected by checking:
2264     // (hi != (lo >> bitwidth-1))
2265     if (Opcode == TargetOpcode::G_SMULH) {
2266       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2267       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2268       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2269     } else {
2270       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2271     }
2272     return Legalized;
2273   }
2274   case TargetOpcode::G_FNEG: {
2275     // TODO: Handle vector types once we are able to
2276     // represent them.
2277     if (Ty.isVector())
2278       return UnableToLegalize;
2279     Register Res = MI.getOperand(0).getReg();
2280     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2281     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2282     if (!ZeroTy)
2283       return UnableToLegalize;
2284     ConstantFP &ZeroForNegation =
2285         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2286     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2287     Register SubByReg = MI.getOperand(1).getReg();
2288     Register ZeroReg = Zero.getReg(0);
2289     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2290     MI.eraseFromParent();
2291     return Legalized;
2292   }
2293   case TargetOpcode::G_FSUB: {
2294     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2295     // First, check if G_FNEG is marked as Lower. If so, we may
2296     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2297     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2298       return UnableToLegalize;
2299     Register Res = MI.getOperand(0).getReg();
2300     Register LHS = MI.getOperand(1).getReg();
2301     Register RHS = MI.getOperand(2).getReg();
2302     Register Neg = MRI.createGenericVirtualRegister(Ty);
2303     MIRBuilder.buildFNeg(Neg, RHS);
2304     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2305     MI.eraseFromParent();
2306     return Legalized;
2307   }
2308   case TargetOpcode::G_FMAD:
2309     return lowerFMad(MI);
2310   case TargetOpcode::G_FFLOOR:
2311     return lowerFFloor(MI);
2312   case TargetOpcode::G_INTRINSIC_ROUND:
2313     return lowerIntrinsicRound(MI);
2314   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2315     Register OldValRes = MI.getOperand(0).getReg();
2316     Register SuccessRes = MI.getOperand(1).getReg();
2317     Register Addr = MI.getOperand(2).getReg();
2318     Register CmpVal = MI.getOperand(3).getReg();
2319     Register NewVal = MI.getOperand(4).getReg();
2320     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2321                                   **MI.memoperands_begin());
2322     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2323     MI.eraseFromParent();
2324     return Legalized;
2325   }
2326   case TargetOpcode::G_LOAD:
2327   case TargetOpcode::G_SEXTLOAD:
2328   case TargetOpcode::G_ZEXTLOAD: {
2329     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2330     Register DstReg = MI.getOperand(0).getReg();
2331     Register PtrReg = MI.getOperand(1).getReg();
2332     LLT DstTy = MRI.getType(DstReg);
2333     auto &MMO = **MI.memoperands_begin();
2334 
2335     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2336       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2337         // This load needs splitting into power of 2 sized loads.
2338         if (DstTy.isVector())
2339           return UnableToLegalize;
2340         if (isPowerOf2_32(DstTy.getSizeInBits()))
2341           return UnableToLegalize; // Don't know what we're being asked to do.
2342 
2343         // Our strategy here is to generate anyextending loads for the smaller
2344         // types up to next power-2 result type, and then combine the two larger
2345         // result values together, before truncating back down to the non-pow-2
2346         // type.
2347         // E.g. v1 = i24 load =>
2348         // v2 = i32 zextload (2 byte)
2349         // v3 = i32 load (1 byte)
2350         // v4 = i32 shl v3, 16
2351         // v5 = i32 or v4, v2
2352         // v1 = i24 trunc v5
2353         // By doing this we generate the correct truncate which should get
2354         // combined away as an artifact with a matching extend.
2355         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2356         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2357 
2358         MachineFunction &MF = MIRBuilder.getMF();
2359         MachineMemOperand *LargeMMO =
2360             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2361         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2362             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2363 
2364         LLT PtrTy = MRI.getType(PtrReg);
2365         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2366         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2367         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2368         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2369         auto LargeLoad = MIRBuilder.buildLoadInstr(
2370             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2371 
2372         auto OffsetCst = MIRBuilder.buildConstant(
2373             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2374         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2375         auto SmallPtr =
2376             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2377         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2378                                               *SmallMMO);
2379 
2380         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2381         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2382         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2383         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2384         MI.eraseFromParent();
2385         return Legalized;
2386       }
2387       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2388       MI.eraseFromParent();
2389       return Legalized;
2390     }
2391 
2392     if (DstTy.isScalar()) {
2393       Register TmpReg =
2394           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2395       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2396       switch (MI.getOpcode()) {
2397       default:
2398         llvm_unreachable("Unexpected opcode");
2399       case TargetOpcode::G_LOAD:
2400         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2401         break;
2402       case TargetOpcode::G_SEXTLOAD:
2403         MIRBuilder.buildSExt(DstReg, TmpReg);
2404         break;
2405       case TargetOpcode::G_ZEXTLOAD:
2406         MIRBuilder.buildZExt(DstReg, TmpReg);
2407         break;
2408       }
2409       MI.eraseFromParent();
2410       return Legalized;
2411     }
2412 
2413     return UnableToLegalize;
2414   }
2415   case TargetOpcode::G_STORE: {
2416     // Lower a non-power of 2 store into multiple pow-2 stores.
2417     // E.g. split an i24 store into an i16 store + i8 store.
2418     // We do this by first extending the stored value to the next largest power
2419     // of 2 type, and then using truncating stores to store the components.
2420     // By doing this, likewise with G_LOAD, generate an extend that can be
2421     // artifact-combined away instead of leaving behind extracts.
2422     Register SrcReg = MI.getOperand(0).getReg();
2423     Register PtrReg = MI.getOperand(1).getReg();
2424     LLT SrcTy = MRI.getType(SrcReg);
2425     MachineMemOperand &MMO = **MI.memoperands_begin();
2426     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2427       return UnableToLegalize;
2428     if (SrcTy.isVector())
2429       return UnableToLegalize;
2430     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2431       return UnableToLegalize; // Don't know what we're being asked to do.
2432 
2433     // Extend to the next pow-2.
2434     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2435     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2436 
2437     // Obtain the smaller value by shifting away the larger value.
2438     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2439     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2440     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2441     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2442 
2443     // Generate the PtrAdd and truncating stores.
2444     LLT PtrTy = MRI.getType(PtrReg);
2445     auto OffsetCst = MIRBuilder.buildConstant(
2446             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2447     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2448     auto SmallPtr =
2449         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2450 
2451     MachineFunction &MF = MIRBuilder.getMF();
2452     MachineMemOperand *LargeMMO =
2453         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2454     MachineMemOperand *SmallMMO =
2455         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2456     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2457     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2458     MI.eraseFromParent();
2459     return Legalized;
2460   }
2461   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2462   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2463   case TargetOpcode::G_CTLZ:
2464   case TargetOpcode::G_CTTZ:
2465   case TargetOpcode::G_CTPOP:
2466     return lowerBitCount(MI, TypeIdx, Ty);
2467   case G_UADDO: {
2468     Register Res = MI.getOperand(0).getReg();
2469     Register CarryOut = MI.getOperand(1).getReg();
2470     Register LHS = MI.getOperand(2).getReg();
2471     Register RHS = MI.getOperand(3).getReg();
2472 
2473     MIRBuilder.buildAdd(Res, LHS, RHS);
2474     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2475 
2476     MI.eraseFromParent();
2477     return Legalized;
2478   }
2479   case G_UADDE: {
2480     Register Res = MI.getOperand(0).getReg();
2481     Register CarryOut = MI.getOperand(1).getReg();
2482     Register LHS = MI.getOperand(2).getReg();
2483     Register RHS = MI.getOperand(3).getReg();
2484     Register CarryIn = MI.getOperand(4).getReg();
2485     LLT Ty = MRI.getType(Res);
2486 
2487     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2488     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2489     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2490     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2491 
2492     MI.eraseFromParent();
2493     return Legalized;
2494   }
2495   case G_USUBO: {
2496     Register Res = MI.getOperand(0).getReg();
2497     Register BorrowOut = MI.getOperand(1).getReg();
2498     Register LHS = MI.getOperand(2).getReg();
2499     Register RHS = MI.getOperand(3).getReg();
2500 
2501     MIRBuilder.buildSub(Res, LHS, RHS);
2502     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2503 
2504     MI.eraseFromParent();
2505     return Legalized;
2506   }
2507   case G_USUBE: {
2508     Register Res = MI.getOperand(0).getReg();
2509     Register BorrowOut = MI.getOperand(1).getReg();
2510     Register LHS = MI.getOperand(2).getReg();
2511     Register RHS = MI.getOperand(3).getReg();
2512     Register BorrowIn = MI.getOperand(4).getReg();
2513     const LLT CondTy = MRI.getType(BorrowOut);
2514     const LLT Ty = MRI.getType(Res);
2515 
2516     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2517     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2518     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2519 
2520     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2521     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2522     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2523 
2524     MI.eraseFromParent();
2525     return Legalized;
2526   }
2527   case G_UITOFP:
2528     return lowerUITOFP(MI, TypeIdx, Ty);
2529   case G_SITOFP:
2530     return lowerSITOFP(MI, TypeIdx, Ty);
2531   case G_FPTOUI:
2532     return lowerFPTOUI(MI, TypeIdx, Ty);
2533   case G_FPTOSI:
2534     return lowerFPTOSI(MI);
2535   case G_FPTRUNC:
2536     return lowerFPTRUNC(MI, TypeIdx, Ty);
2537   case G_SMIN:
2538   case G_SMAX:
2539   case G_UMIN:
2540   case G_UMAX:
2541     return lowerMinMax(MI, TypeIdx, Ty);
2542   case G_FCOPYSIGN:
2543     return lowerFCopySign(MI, TypeIdx, Ty);
2544   case G_FMINNUM:
2545   case G_FMAXNUM:
2546     return lowerFMinNumMaxNum(MI);
2547   case G_UNMERGE_VALUES:
2548     return lowerUnmergeValues(MI);
2549   case TargetOpcode::G_SEXT_INREG: {
2550     assert(MI.getOperand(2).isImm() && "Expected immediate");
2551     int64_t SizeInBits = MI.getOperand(2).getImm();
2552 
2553     Register DstReg = MI.getOperand(0).getReg();
2554     Register SrcReg = MI.getOperand(1).getReg();
2555     LLT DstTy = MRI.getType(DstReg);
2556     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2557 
2558     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2559     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2560     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2561     MI.eraseFromParent();
2562     return Legalized;
2563   }
2564   case G_SHUFFLE_VECTOR:
2565     return lowerShuffleVector(MI);
2566   case G_DYN_STACKALLOC:
2567     return lowerDynStackAlloc(MI);
2568   case G_EXTRACT:
2569     return lowerExtract(MI);
2570   case G_INSERT:
2571     return lowerInsert(MI);
2572   case G_BSWAP:
2573     return lowerBswap(MI);
2574   case G_BITREVERSE:
2575     return lowerBitreverse(MI);
2576   case G_READ_REGISTER:
2577   case G_WRITE_REGISTER:
2578     return lowerReadWriteRegister(MI);
2579   }
2580 }
2581 
2582 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2583     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2584   SmallVector<Register, 2> DstRegs;
2585 
2586   unsigned NarrowSize = NarrowTy.getSizeInBits();
2587   Register DstReg = MI.getOperand(0).getReg();
2588   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2589   int NumParts = Size / NarrowSize;
2590   // FIXME: Don't know how to handle the situation where the small vectors
2591   // aren't all the same size yet.
2592   if (Size % NarrowSize != 0)
2593     return UnableToLegalize;
2594 
2595   for (int i = 0; i < NumParts; ++i) {
2596     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2597     MIRBuilder.buildUndef(TmpReg);
2598     DstRegs.push_back(TmpReg);
2599   }
2600 
2601   if (NarrowTy.isVector())
2602     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2603   else
2604     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2605 
2606   MI.eraseFromParent();
2607   return Legalized;
2608 }
2609 
2610 // Handle splitting vector operations which need to have the same number of
2611 // elements in each type index, but each type index may have a different element
2612 // type.
2613 //
2614 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2615 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2616 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2617 //
2618 // Also handles some irregular breakdown cases, e.g.
2619 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2620 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2621 //             s64 = G_SHL s64, s32
2622 LegalizerHelper::LegalizeResult
2623 LegalizerHelper::fewerElementsVectorMultiEltType(
2624   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2625   if (TypeIdx != 0)
2626     return UnableToLegalize;
2627 
2628   const LLT NarrowTy0 = NarrowTyArg;
2629   const unsigned NewNumElts =
2630       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2631 
2632   const Register DstReg = MI.getOperand(0).getReg();
2633   LLT DstTy = MRI.getType(DstReg);
2634   LLT LeftoverTy0;
2635 
2636   // All of the operands need to have the same number of elements, so if we can
2637   // determine a type breakdown for the result type, we can for all of the
2638   // source types.
2639   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2640   if (NumParts < 0)
2641     return UnableToLegalize;
2642 
2643   SmallVector<MachineInstrBuilder, 4> NewInsts;
2644 
2645   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2646   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2647 
2648   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2649     LLT LeftoverTy;
2650     Register SrcReg = MI.getOperand(I).getReg();
2651     LLT SrcTyI = MRI.getType(SrcReg);
2652     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2653     LLT LeftoverTyI;
2654 
2655     // Split this operand into the requested typed registers, and any leftover
2656     // required to reproduce the original type.
2657     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2658                       LeftoverRegs))
2659       return UnableToLegalize;
2660 
2661     if (I == 1) {
2662       // For the first operand, create an instruction for each part and setup
2663       // the result.
2664       for (Register PartReg : PartRegs) {
2665         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2666         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2667                                .addDef(PartDstReg)
2668                                .addUse(PartReg));
2669         DstRegs.push_back(PartDstReg);
2670       }
2671 
2672       for (Register LeftoverReg : LeftoverRegs) {
2673         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2674         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2675                                .addDef(PartDstReg)
2676                                .addUse(LeftoverReg));
2677         LeftoverDstRegs.push_back(PartDstReg);
2678       }
2679     } else {
2680       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2681 
2682       // Add the newly created operand splits to the existing instructions. The
2683       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2684       // pieces.
2685       unsigned InstCount = 0;
2686       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2687         NewInsts[InstCount++].addUse(PartRegs[J]);
2688       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2689         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2690     }
2691 
2692     PartRegs.clear();
2693     LeftoverRegs.clear();
2694   }
2695 
2696   // Insert the newly built operations and rebuild the result register.
2697   for (auto &MIB : NewInsts)
2698     MIRBuilder.insertInstr(MIB);
2699 
2700   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2701 
2702   MI.eraseFromParent();
2703   return Legalized;
2704 }
2705 
2706 LegalizerHelper::LegalizeResult
2707 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2708                                           LLT NarrowTy) {
2709   if (TypeIdx != 0)
2710     return UnableToLegalize;
2711 
2712   Register DstReg = MI.getOperand(0).getReg();
2713   Register SrcReg = MI.getOperand(1).getReg();
2714   LLT DstTy = MRI.getType(DstReg);
2715   LLT SrcTy = MRI.getType(SrcReg);
2716 
2717   LLT NarrowTy0 = NarrowTy;
2718   LLT NarrowTy1;
2719   unsigned NumParts;
2720 
2721   if (NarrowTy.isVector()) {
2722     // Uneven breakdown not handled.
2723     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2724     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2725       return UnableToLegalize;
2726 
2727     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2728   } else {
2729     NumParts = DstTy.getNumElements();
2730     NarrowTy1 = SrcTy.getElementType();
2731   }
2732 
2733   SmallVector<Register, 4> SrcRegs, DstRegs;
2734   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2735 
2736   for (unsigned I = 0; I < NumParts; ++I) {
2737     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2738     MachineInstr *NewInst =
2739         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2740 
2741     NewInst->setFlags(MI.getFlags());
2742     DstRegs.push_back(DstReg);
2743   }
2744 
2745   if (NarrowTy.isVector())
2746     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2747   else
2748     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2749 
2750   MI.eraseFromParent();
2751   return Legalized;
2752 }
2753 
2754 LegalizerHelper::LegalizeResult
2755 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2756                                         LLT NarrowTy) {
2757   Register DstReg = MI.getOperand(0).getReg();
2758   Register Src0Reg = MI.getOperand(2).getReg();
2759   LLT DstTy = MRI.getType(DstReg);
2760   LLT SrcTy = MRI.getType(Src0Reg);
2761 
2762   unsigned NumParts;
2763   LLT NarrowTy0, NarrowTy1;
2764 
2765   if (TypeIdx == 0) {
2766     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2767     unsigned OldElts = DstTy.getNumElements();
2768 
2769     NarrowTy0 = NarrowTy;
2770     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2771     NarrowTy1 = NarrowTy.isVector() ?
2772       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2773       SrcTy.getElementType();
2774 
2775   } else {
2776     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2777     unsigned OldElts = SrcTy.getNumElements();
2778 
2779     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2780       NarrowTy.getNumElements();
2781     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2782                             DstTy.getScalarSizeInBits());
2783     NarrowTy1 = NarrowTy;
2784   }
2785 
2786   // FIXME: Don't know how to handle the situation where the small vectors
2787   // aren't all the same size yet.
2788   if (NarrowTy1.isVector() &&
2789       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2790     return UnableToLegalize;
2791 
2792   CmpInst::Predicate Pred
2793     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2794 
2795   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2796   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2797   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2798 
2799   for (unsigned I = 0; I < NumParts; ++I) {
2800     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2801     DstRegs.push_back(DstReg);
2802 
2803     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2804       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2805     else {
2806       MachineInstr *NewCmp
2807         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2808       NewCmp->setFlags(MI.getFlags());
2809     }
2810   }
2811 
2812   if (NarrowTy1.isVector())
2813     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2814   else
2815     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2816 
2817   MI.eraseFromParent();
2818   return Legalized;
2819 }
2820 
2821 LegalizerHelper::LegalizeResult
2822 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2823                                            LLT NarrowTy) {
2824   Register DstReg = MI.getOperand(0).getReg();
2825   Register CondReg = MI.getOperand(1).getReg();
2826 
2827   unsigned NumParts = 0;
2828   LLT NarrowTy0, NarrowTy1;
2829 
2830   LLT DstTy = MRI.getType(DstReg);
2831   LLT CondTy = MRI.getType(CondReg);
2832   unsigned Size = DstTy.getSizeInBits();
2833 
2834   assert(TypeIdx == 0 || CondTy.isVector());
2835 
2836   if (TypeIdx == 0) {
2837     NarrowTy0 = NarrowTy;
2838     NarrowTy1 = CondTy;
2839 
2840     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2841     // FIXME: Don't know how to handle the situation where the small vectors
2842     // aren't all the same size yet.
2843     if (Size % NarrowSize != 0)
2844       return UnableToLegalize;
2845 
2846     NumParts = Size / NarrowSize;
2847 
2848     // Need to break down the condition type
2849     if (CondTy.isVector()) {
2850       if (CondTy.getNumElements() == NumParts)
2851         NarrowTy1 = CondTy.getElementType();
2852       else
2853         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2854                                 CondTy.getScalarSizeInBits());
2855     }
2856   } else {
2857     NumParts = CondTy.getNumElements();
2858     if (NarrowTy.isVector()) {
2859       // TODO: Handle uneven breakdown.
2860       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2861         return UnableToLegalize;
2862 
2863       return UnableToLegalize;
2864     } else {
2865       NarrowTy0 = DstTy.getElementType();
2866       NarrowTy1 = NarrowTy;
2867     }
2868   }
2869 
2870   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2871   if (CondTy.isVector())
2872     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2873 
2874   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2875   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2876 
2877   for (unsigned i = 0; i < NumParts; ++i) {
2878     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2879     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2880                            Src1Regs[i], Src2Regs[i]);
2881     DstRegs.push_back(DstReg);
2882   }
2883 
2884   if (NarrowTy0.isVector())
2885     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2886   else
2887     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2888 
2889   MI.eraseFromParent();
2890   return Legalized;
2891 }
2892 
2893 LegalizerHelper::LegalizeResult
2894 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2895                                         LLT NarrowTy) {
2896   const Register DstReg = MI.getOperand(0).getReg();
2897   LLT PhiTy = MRI.getType(DstReg);
2898   LLT LeftoverTy;
2899 
2900   // All of the operands need to have the same number of elements, so if we can
2901   // determine a type breakdown for the result type, we can for all of the
2902   // source types.
2903   int NumParts, NumLeftover;
2904   std::tie(NumParts, NumLeftover)
2905     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2906   if (NumParts < 0)
2907     return UnableToLegalize;
2908 
2909   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2910   SmallVector<MachineInstrBuilder, 4> NewInsts;
2911 
2912   const int TotalNumParts = NumParts + NumLeftover;
2913 
2914   // Insert the new phis in the result block first.
2915   for (int I = 0; I != TotalNumParts; ++I) {
2916     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2917     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2918     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2919                        .addDef(PartDstReg));
2920     if (I < NumParts)
2921       DstRegs.push_back(PartDstReg);
2922     else
2923       LeftoverDstRegs.push_back(PartDstReg);
2924   }
2925 
2926   MachineBasicBlock *MBB = MI.getParent();
2927   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2928   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2929 
2930   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2931 
2932   // Insert code to extract the incoming values in each predecessor block.
2933   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2934     PartRegs.clear();
2935     LeftoverRegs.clear();
2936 
2937     Register SrcReg = MI.getOperand(I).getReg();
2938     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2939     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2940 
2941     LLT Unused;
2942     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2943                       LeftoverRegs))
2944       return UnableToLegalize;
2945 
2946     // Add the newly created operand splits to the existing instructions. The
2947     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2948     // pieces.
2949     for (int J = 0; J != TotalNumParts; ++J) {
2950       MachineInstrBuilder MIB = NewInsts[J];
2951       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2952       MIB.addMBB(&OpMBB);
2953     }
2954   }
2955 
2956   MI.eraseFromParent();
2957   return Legalized;
2958 }
2959 
2960 LegalizerHelper::LegalizeResult
2961 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2962                                                   unsigned TypeIdx,
2963                                                   LLT NarrowTy) {
2964   if (TypeIdx != 1)
2965     return UnableToLegalize;
2966 
2967   const int NumDst = MI.getNumOperands() - 1;
2968   const Register SrcReg = MI.getOperand(NumDst).getReg();
2969   LLT SrcTy = MRI.getType(SrcReg);
2970 
2971   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2972 
2973   // TODO: Create sequence of extracts.
2974   if (DstTy == NarrowTy)
2975     return UnableToLegalize;
2976 
2977   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2978   if (DstTy == GCDTy) {
2979     // This would just be a copy of the same unmerge.
2980     // TODO: Create extracts, pad with undef and create intermediate merges.
2981     return UnableToLegalize;
2982   }
2983 
2984   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2985   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2986   const int PartsPerUnmerge = NumDst / NumUnmerge;
2987 
2988   for (int I = 0; I != NumUnmerge; ++I) {
2989     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2990 
2991     for (int J = 0; J != PartsPerUnmerge; ++J)
2992       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2993     MIB.addUse(Unmerge.getReg(I));
2994   }
2995 
2996   MI.eraseFromParent();
2997   return Legalized;
2998 }
2999 
3000 LegalizerHelper::LegalizeResult
3001 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3002                                                 unsigned TypeIdx,
3003                                                 LLT NarrowTy) {
3004   assert(TypeIdx == 0 && "not a vector type index");
3005   Register DstReg = MI.getOperand(0).getReg();
3006   LLT DstTy = MRI.getType(DstReg);
3007   LLT SrcTy = DstTy.getElementType();
3008 
3009   int DstNumElts = DstTy.getNumElements();
3010   int NarrowNumElts = NarrowTy.getNumElements();
3011   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3012   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3013 
3014   SmallVector<Register, 8> ConcatOps;
3015   SmallVector<Register, 8> SubBuildVector;
3016 
3017   Register UndefReg;
3018   if (WidenedDstTy != DstTy)
3019     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3020 
3021   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3022   // necessary.
3023   //
3024   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3025   //   -> <2 x s16>
3026   //
3027   // %4:_(s16) = G_IMPLICIT_DEF
3028   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3029   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3030   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3031   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3032   for (int I = 0; I != NumConcat; ++I) {
3033     for (int J = 0; J != NarrowNumElts; ++J) {
3034       int SrcIdx = NarrowNumElts * I + J;
3035 
3036       if (SrcIdx < DstNumElts) {
3037         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3038         SubBuildVector.push_back(SrcReg);
3039       } else
3040         SubBuildVector.push_back(UndefReg);
3041     }
3042 
3043     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3044     ConcatOps.push_back(BuildVec.getReg(0));
3045     SubBuildVector.clear();
3046   }
3047 
3048   if (DstTy == WidenedDstTy)
3049     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3050   else {
3051     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3052     MIRBuilder.buildExtract(DstReg, Concat, 0);
3053   }
3054 
3055   MI.eraseFromParent();
3056   return Legalized;
3057 }
3058 
3059 LegalizerHelper::LegalizeResult
3060 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3061                                       LLT NarrowTy) {
3062   // FIXME: Don't know how to handle secondary types yet.
3063   if (TypeIdx != 0)
3064     return UnableToLegalize;
3065 
3066   MachineMemOperand *MMO = *MI.memoperands_begin();
3067 
3068   // This implementation doesn't work for atomics. Give up instead of doing
3069   // something invalid.
3070   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3071       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3072     return UnableToLegalize;
3073 
3074   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3075   Register ValReg = MI.getOperand(0).getReg();
3076   Register AddrReg = MI.getOperand(1).getReg();
3077   LLT ValTy = MRI.getType(ValReg);
3078 
3079   // FIXME: Do we need a distinct NarrowMemory legalize action?
3080   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3081     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3082     return UnableToLegalize;
3083   }
3084 
3085   int NumParts = -1;
3086   int NumLeftover = -1;
3087   LLT LeftoverTy;
3088   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3089   if (IsLoad) {
3090     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3091   } else {
3092     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3093                      NarrowLeftoverRegs)) {
3094       NumParts = NarrowRegs.size();
3095       NumLeftover = NarrowLeftoverRegs.size();
3096     }
3097   }
3098 
3099   if (NumParts == -1)
3100     return UnableToLegalize;
3101 
3102   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3103 
3104   unsigned TotalSize = ValTy.getSizeInBits();
3105 
3106   // Split the load/store into PartTy sized pieces starting at Offset. If this
3107   // is a load, return the new registers in ValRegs. For a store, each elements
3108   // of ValRegs should be PartTy. Returns the next offset that needs to be
3109   // handled.
3110   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3111                              unsigned Offset) -> unsigned {
3112     MachineFunction &MF = MIRBuilder.getMF();
3113     unsigned PartSize = PartTy.getSizeInBits();
3114     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3115          Offset += PartSize, ++Idx) {
3116       unsigned ByteSize = PartSize / 8;
3117       unsigned ByteOffset = Offset / 8;
3118       Register NewAddrReg;
3119 
3120       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3121 
3122       MachineMemOperand *NewMMO =
3123         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3124 
3125       if (IsLoad) {
3126         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3127         ValRegs.push_back(Dst);
3128         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3129       } else {
3130         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3131       }
3132     }
3133 
3134     return Offset;
3135   };
3136 
3137   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3138 
3139   // Handle the rest of the register if this isn't an even type breakdown.
3140   if (LeftoverTy.isValid())
3141     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3142 
3143   if (IsLoad) {
3144     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3145                 LeftoverTy, NarrowLeftoverRegs);
3146   }
3147 
3148   MI.eraseFromParent();
3149   return Legalized;
3150 }
3151 
3152 LegalizerHelper::LegalizeResult
3153 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3154                                       LLT NarrowTy) {
3155   assert(TypeIdx == 0 && "only one type index expected");
3156 
3157   const unsigned Opc = MI.getOpcode();
3158   const int NumOps = MI.getNumOperands() - 1;
3159   const Register DstReg = MI.getOperand(0).getReg();
3160   const unsigned Flags = MI.getFlags();
3161   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3162   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3163 
3164   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3165 
3166   // First of all check whether we are narrowing (changing the element type)
3167   // or reducing the vector elements
3168   const LLT DstTy = MRI.getType(DstReg);
3169   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3170 
3171   SmallVector<Register, 8> ExtractedRegs[3];
3172   SmallVector<Register, 8> Parts;
3173 
3174   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3175 
3176   // Break down all the sources into NarrowTy pieces we can operate on. This may
3177   // involve creating merges to a wider type, padded with undef.
3178   for (int I = 0; I != NumOps; ++I) {
3179     Register SrcReg = MI.getOperand(I + 1).getReg();
3180     LLT SrcTy = MRI.getType(SrcReg);
3181 
3182     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3183     // For fewerElements, this is a smaller vector with the same element type.
3184     LLT OpNarrowTy;
3185     if (IsNarrow) {
3186       OpNarrowTy = NarrowScalarTy;
3187 
3188       // In case of narrowing, we need to cast vectors to scalars for this to
3189       // work properly
3190       // FIXME: Can we do without the bitcast here if we're narrowing?
3191       if (SrcTy.isVector()) {
3192         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3193         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3194       }
3195     } else {
3196       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3197     }
3198 
3199     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3200 
3201     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3202     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3203                         TargetOpcode::G_ANYEXT);
3204   }
3205 
3206   SmallVector<Register, 8> ResultRegs;
3207 
3208   // Input operands for each sub-instruction.
3209   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3210 
3211   int NumParts = ExtractedRegs[0].size();
3212   const unsigned DstSize = DstTy.getSizeInBits();
3213   const LLT DstScalarTy = LLT::scalar(DstSize);
3214 
3215   // Narrowing needs to use scalar types
3216   LLT DstLCMTy, NarrowDstTy;
3217   if (IsNarrow) {
3218     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3219     NarrowDstTy = NarrowScalarTy;
3220   } else {
3221     DstLCMTy = getLCMType(DstTy, NarrowTy);
3222     NarrowDstTy = NarrowTy;
3223   }
3224 
3225   // We widened the source registers to satisfy merge/unmerge size
3226   // constraints. We'll have some extra fully undef parts.
3227   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3228 
3229   for (int I = 0; I != NumRealParts; ++I) {
3230     // Emit this instruction on each of the split pieces.
3231     for (int J = 0; J != NumOps; ++J)
3232       InputRegs[J] = ExtractedRegs[J][I];
3233 
3234     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3235     ResultRegs.push_back(Inst.getReg(0));
3236   }
3237 
3238   // Fill out the widened result with undef instead of creating instructions
3239   // with undef inputs.
3240   int NumUndefParts = NumParts - NumRealParts;
3241   if (NumUndefParts != 0)
3242     ResultRegs.append(NumUndefParts,
3243                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3244 
3245   // Extract the possibly padded result. Use a scratch register if we need to do
3246   // a final bitcast, otherwise use the original result register.
3247   Register MergeDstReg;
3248   if (IsNarrow && DstTy.isVector())
3249     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3250   else
3251     MergeDstReg = DstReg;
3252 
3253   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3254 
3255   // Recast to vector if we narrowed a vector
3256   if (IsNarrow && DstTy.isVector())
3257     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3258 
3259   MI.eraseFromParent();
3260   return Legalized;
3261 }
3262 
3263 LegalizerHelper::LegalizeResult
3264 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3265                                               LLT NarrowTy) {
3266   Register DstReg = MI.getOperand(0).getReg();
3267   Register SrcReg = MI.getOperand(1).getReg();
3268   int64_t Imm = MI.getOperand(2).getImm();
3269 
3270   LLT DstTy = MRI.getType(DstReg);
3271 
3272   SmallVector<Register, 8> Parts;
3273   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3274   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3275 
3276   for (Register &R : Parts)
3277     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3278 
3279   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3280 
3281   MI.eraseFromParent();
3282   return Legalized;
3283 }
3284 
3285 LegalizerHelper::LegalizeResult
3286 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3287                                      LLT NarrowTy) {
3288   using namespace TargetOpcode;
3289 
3290   MIRBuilder.setInstrAndDebugLoc(MI);
3291   switch (MI.getOpcode()) {
3292   case G_IMPLICIT_DEF:
3293     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3294   case G_TRUNC:
3295   case G_AND:
3296   case G_OR:
3297   case G_XOR:
3298   case G_ADD:
3299   case G_SUB:
3300   case G_MUL:
3301   case G_SMULH:
3302   case G_UMULH:
3303   case G_FADD:
3304   case G_FMUL:
3305   case G_FSUB:
3306   case G_FNEG:
3307   case G_FABS:
3308   case G_FCANONICALIZE:
3309   case G_FDIV:
3310   case G_FREM:
3311   case G_FMA:
3312   case G_FMAD:
3313   case G_FPOW:
3314   case G_FEXP:
3315   case G_FEXP2:
3316   case G_FLOG:
3317   case G_FLOG2:
3318   case G_FLOG10:
3319   case G_FNEARBYINT:
3320   case G_FCEIL:
3321   case G_FFLOOR:
3322   case G_FRINT:
3323   case G_INTRINSIC_ROUND:
3324   case G_INTRINSIC_TRUNC:
3325   case G_FCOS:
3326   case G_FSIN:
3327   case G_FSQRT:
3328   case G_BSWAP:
3329   case G_BITREVERSE:
3330   case G_SDIV:
3331   case G_UDIV:
3332   case G_SREM:
3333   case G_UREM:
3334   case G_SMIN:
3335   case G_SMAX:
3336   case G_UMIN:
3337   case G_UMAX:
3338   case G_FMINNUM:
3339   case G_FMAXNUM:
3340   case G_FMINNUM_IEEE:
3341   case G_FMAXNUM_IEEE:
3342   case G_FMINIMUM:
3343   case G_FMAXIMUM:
3344   case G_FSHL:
3345   case G_FSHR:
3346   case G_FREEZE:
3347     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3348   case G_SHL:
3349   case G_LSHR:
3350   case G_ASHR:
3351   case G_CTLZ:
3352   case G_CTLZ_ZERO_UNDEF:
3353   case G_CTTZ:
3354   case G_CTTZ_ZERO_UNDEF:
3355   case G_CTPOP:
3356   case G_FCOPYSIGN:
3357     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3358   case G_ZEXT:
3359   case G_SEXT:
3360   case G_ANYEXT:
3361   case G_FPEXT:
3362   case G_FPTRUNC:
3363   case G_SITOFP:
3364   case G_UITOFP:
3365   case G_FPTOSI:
3366   case G_FPTOUI:
3367   case G_INTTOPTR:
3368   case G_PTRTOINT:
3369   case G_ADDRSPACE_CAST:
3370     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3371   case G_ICMP:
3372   case G_FCMP:
3373     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3374   case G_SELECT:
3375     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3376   case G_PHI:
3377     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3378   case G_UNMERGE_VALUES:
3379     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3380   case G_BUILD_VECTOR:
3381     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3382   case G_LOAD:
3383   case G_STORE:
3384     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3385   case G_SEXT_INREG:
3386     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3387   default:
3388     return UnableToLegalize;
3389   }
3390 }
3391 
3392 LegalizerHelper::LegalizeResult
3393 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3394                                              const LLT HalfTy, const LLT AmtTy) {
3395 
3396   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3397   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3398   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3399 
3400   if (Amt.isNullValue()) {
3401     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3402     MI.eraseFromParent();
3403     return Legalized;
3404   }
3405 
3406   LLT NVT = HalfTy;
3407   unsigned NVTBits = HalfTy.getSizeInBits();
3408   unsigned VTBits = 2 * NVTBits;
3409 
3410   SrcOp Lo(Register(0)), Hi(Register(0));
3411   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3412     if (Amt.ugt(VTBits)) {
3413       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3414     } else if (Amt.ugt(NVTBits)) {
3415       Lo = MIRBuilder.buildConstant(NVT, 0);
3416       Hi = MIRBuilder.buildShl(NVT, InL,
3417                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3418     } else if (Amt == NVTBits) {
3419       Lo = MIRBuilder.buildConstant(NVT, 0);
3420       Hi = InL;
3421     } else {
3422       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3423       auto OrLHS =
3424           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3425       auto OrRHS = MIRBuilder.buildLShr(
3426           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3427       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3428     }
3429   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3430     if (Amt.ugt(VTBits)) {
3431       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3432     } else if (Amt.ugt(NVTBits)) {
3433       Lo = MIRBuilder.buildLShr(NVT, InH,
3434                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3435       Hi = MIRBuilder.buildConstant(NVT, 0);
3436     } else if (Amt == NVTBits) {
3437       Lo = InH;
3438       Hi = MIRBuilder.buildConstant(NVT, 0);
3439     } else {
3440       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3441 
3442       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3443       auto OrRHS = MIRBuilder.buildShl(
3444           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3445 
3446       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3447       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3448     }
3449   } else {
3450     if (Amt.ugt(VTBits)) {
3451       Hi = Lo = MIRBuilder.buildAShr(
3452           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3453     } else if (Amt.ugt(NVTBits)) {
3454       Lo = MIRBuilder.buildAShr(NVT, InH,
3455                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3456       Hi = MIRBuilder.buildAShr(NVT, InH,
3457                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3458     } else if (Amt == NVTBits) {
3459       Lo = InH;
3460       Hi = MIRBuilder.buildAShr(NVT, InH,
3461                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3462     } else {
3463       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3464 
3465       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3466       auto OrRHS = MIRBuilder.buildShl(
3467           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3468 
3469       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3470       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3471     }
3472   }
3473 
3474   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3475   MI.eraseFromParent();
3476 
3477   return Legalized;
3478 }
3479 
3480 // TODO: Optimize if constant shift amount.
3481 LegalizerHelper::LegalizeResult
3482 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3483                                    LLT RequestedTy) {
3484   if (TypeIdx == 1) {
3485     Observer.changingInstr(MI);
3486     narrowScalarSrc(MI, RequestedTy, 2);
3487     Observer.changedInstr(MI);
3488     return Legalized;
3489   }
3490 
3491   Register DstReg = MI.getOperand(0).getReg();
3492   LLT DstTy = MRI.getType(DstReg);
3493   if (DstTy.isVector())
3494     return UnableToLegalize;
3495 
3496   Register Amt = MI.getOperand(2).getReg();
3497   LLT ShiftAmtTy = MRI.getType(Amt);
3498   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3499   if (DstEltSize % 2 != 0)
3500     return UnableToLegalize;
3501 
3502   // Ignore the input type. We can only go to exactly half the size of the
3503   // input. If that isn't small enough, the resulting pieces will be further
3504   // legalized.
3505   const unsigned NewBitSize = DstEltSize / 2;
3506   const LLT HalfTy = LLT::scalar(NewBitSize);
3507   const LLT CondTy = LLT::scalar(1);
3508 
3509   if (const MachineInstr *KShiftAmt =
3510           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3511     return narrowScalarShiftByConstant(
3512         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3513   }
3514 
3515   // TODO: Expand with known bits.
3516 
3517   // Handle the fully general expansion by an unknown amount.
3518   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3519 
3520   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3521   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3522   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3523 
3524   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3525   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3526 
3527   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3528   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3529   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3530 
3531   Register ResultRegs[2];
3532   switch (MI.getOpcode()) {
3533   case TargetOpcode::G_SHL: {
3534     // Short: ShAmt < NewBitSize
3535     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3536 
3537     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3538     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3539     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3540 
3541     // Long: ShAmt >= NewBitSize
3542     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3543     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3544 
3545     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3546     auto Hi = MIRBuilder.buildSelect(
3547         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3548 
3549     ResultRegs[0] = Lo.getReg(0);
3550     ResultRegs[1] = Hi.getReg(0);
3551     break;
3552   }
3553   case TargetOpcode::G_LSHR:
3554   case TargetOpcode::G_ASHR: {
3555     // Short: ShAmt < NewBitSize
3556     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3557 
3558     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3559     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3560     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3561 
3562     // Long: ShAmt >= NewBitSize
3563     MachineInstrBuilder HiL;
3564     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3565       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3566     } else {
3567       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3568       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3569     }
3570     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3571                                      {InH, AmtExcess});     // Lo from Hi part.
3572 
3573     auto Lo = MIRBuilder.buildSelect(
3574         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3575 
3576     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3577 
3578     ResultRegs[0] = Lo.getReg(0);
3579     ResultRegs[1] = Hi.getReg(0);
3580     break;
3581   }
3582   default:
3583     llvm_unreachable("not a shift");
3584   }
3585 
3586   MIRBuilder.buildMerge(DstReg, ResultRegs);
3587   MI.eraseFromParent();
3588   return Legalized;
3589 }
3590 
3591 LegalizerHelper::LegalizeResult
3592 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3593                                        LLT MoreTy) {
3594   assert(TypeIdx == 0 && "Expecting only Idx 0");
3595 
3596   Observer.changingInstr(MI);
3597   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3598     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3599     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3600     moreElementsVectorSrc(MI, MoreTy, I);
3601   }
3602 
3603   MachineBasicBlock &MBB = *MI.getParent();
3604   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3605   moreElementsVectorDst(MI, MoreTy, 0);
3606   Observer.changedInstr(MI);
3607   return Legalized;
3608 }
3609 
3610 LegalizerHelper::LegalizeResult
3611 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3612                                     LLT MoreTy) {
3613   MIRBuilder.setInstrAndDebugLoc(MI);
3614   unsigned Opc = MI.getOpcode();
3615   switch (Opc) {
3616   case TargetOpcode::G_IMPLICIT_DEF:
3617   case TargetOpcode::G_LOAD: {
3618     if (TypeIdx != 0)
3619       return UnableToLegalize;
3620     Observer.changingInstr(MI);
3621     moreElementsVectorDst(MI, MoreTy, 0);
3622     Observer.changedInstr(MI);
3623     return Legalized;
3624   }
3625   case TargetOpcode::G_STORE:
3626     if (TypeIdx != 0)
3627       return UnableToLegalize;
3628     Observer.changingInstr(MI);
3629     moreElementsVectorSrc(MI, MoreTy, 0);
3630     Observer.changedInstr(MI);
3631     return Legalized;
3632   case TargetOpcode::G_AND:
3633   case TargetOpcode::G_OR:
3634   case TargetOpcode::G_XOR:
3635   case TargetOpcode::G_SMIN:
3636   case TargetOpcode::G_SMAX:
3637   case TargetOpcode::G_UMIN:
3638   case TargetOpcode::G_UMAX:
3639   case TargetOpcode::G_FMINNUM:
3640   case TargetOpcode::G_FMAXNUM:
3641   case TargetOpcode::G_FMINNUM_IEEE:
3642   case TargetOpcode::G_FMAXNUM_IEEE:
3643   case TargetOpcode::G_FMINIMUM:
3644   case TargetOpcode::G_FMAXIMUM: {
3645     Observer.changingInstr(MI);
3646     moreElementsVectorSrc(MI, MoreTy, 1);
3647     moreElementsVectorSrc(MI, MoreTy, 2);
3648     moreElementsVectorDst(MI, MoreTy, 0);
3649     Observer.changedInstr(MI);
3650     return Legalized;
3651   }
3652   case TargetOpcode::G_EXTRACT:
3653     if (TypeIdx != 1)
3654       return UnableToLegalize;
3655     Observer.changingInstr(MI);
3656     moreElementsVectorSrc(MI, MoreTy, 1);
3657     Observer.changedInstr(MI);
3658     return Legalized;
3659   case TargetOpcode::G_INSERT:
3660   case TargetOpcode::G_FREEZE:
3661     if (TypeIdx != 0)
3662       return UnableToLegalize;
3663     Observer.changingInstr(MI);
3664     moreElementsVectorSrc(MI, MoreTy, 1);
3665     moreElementsVectorDst(MI, MoreTy, 0);
3666     Observer.changedInstr(MI);
3667     return Legalized;
3668   case TargetOpcode::G_SELECT:
3669     if (TypeIdx != 0)
3670       return UnableToLegalize;
3671     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3672       return UnableToLegalize;
3673 
3674     Observer.changingInstr(MI);
3675     moreElementsVectorSrc(MI, MoreTy, 2);
3676     moreElementsVectorSrc(MI, MoreTy, 3);
3677     moreElementsVectorDst(MI, MoreTy, 0);
3678     Observer.changedInstr(MI);
3679     return Legalized;
3680   case TargetOpcode::G_UNMERGE_VALUES: {
3681     if (TypeIdx != 1)
3682       return UnableToLegalize;
3683 
3684     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3685     int NumDst = MI.getNumOperands() - 1;
3686     moreElementsVectorSrc(MI, MoreTy, NumDst);
3687 
3688     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3689     for (int I = 0; I != NumDst; ++I)
3690       MIB.addDef(MI.getOperand(I).getReg());
3691 
3692     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3693     for (int I = NumDst; I != NewNumDst; ++I)
3694       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3695 
3696     MIB.addUse(MI.getOperand(NumDst).getReg());
3697     MI.eraseFromParent();
3698     return Legalized;
3699   }
3700   case TargetOpcode::G_PHI:
3701     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3702   default:
3703     return UnableToLegalize;
3704   }
3705 }
3706 
3707 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3708                                         ArrayRef<Register> Src1Regs,
3709                                         ArrayRef<Register> Src2Regs,
3710                                         LLT NarrowTy) {
3711   MachineIRBuilder &B = MIRBuilder;
3712   unsigned SrcParts = Src1Regs.size();
3713   unsigned DstParts = DstRegs.size();
3714 
3715   unsigned DstIdx = 0; // Low bits of the result.
3716   Register FactorSum =
3717       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3718   DstRegs[DstIdx] = FactorSum;
3719 
3720   unsigned CarrySumPrevDstIdx;
3721   SmallVector<Register, 4> Factors;
3722 
3723   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3724     // Collect low parts of muls for DstIdx.
3725     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3726          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3727       MachineInstrBuilder Mul =
3728           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3729       Factors.push_back(Mul.getReg(0));
3730     }
3731     // Collect high parts of muls from previous DstIdx.
3732     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3733          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3734       MachineInstrBuilder Umulh =
3735           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3736       Factors.push_back(Umulh.getReg(0));
3737     }
3738     // Add CarrySum from additions calculated for previous DstIdx.
3739     if (DstIdx != 1) {
3740       Factors.push_back(CarrySumPrevDstIdx);
3741     }
3742 
3743     Register CarrySum;
3744     // Add all factors and accumulate all carries into CarrySum.
3745     if (DstIdx != DstParts - 1) {
3746       MachineInstrBuilder Uaddo =
3747           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3748       FactorSum = Uaddo.getReg(0);
3749       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3750       for (unsigned i = 2; i < Factors.size(); ++i) {
3751         MachineInstrBuilder Uaddo =
3752             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3753         FactorSum = Uaddo.getReg(0);
3754         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3755         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3756       }
3757     } else {
3758       // Since value for the next index is not calculated, neither is CarrySum.
3759       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3760       for (unsigned i = 2; i < Factors.size(); ++i)
3761         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3762     }
3763 
3764     CarrySumPrevDstIdx = CarrySum;
3765     DstRegs[DstIdx] = FactorSum;
3766     Factors.clear();
3767   }
3768 }
3769 
3770 LegalizerHelper::LegalizeResult
3771 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3772   Register DstReg = MI.getOperand(0).getReg();
3773   Register Src1 = MI.getOperand(1).getReg();
3774   Register Src2 = MI.getOperand(2).getReg();
3775 
3776   LLT Ty = MRI.getType(DstReg);
3777   if (Ty.isVector())
3778     return UnableToLegalize;
3779 
3780   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3781   unsigned DstSize = Ty.getSizeInBits();
3782   unsigned NarrowSize = NarrowTy.getSizeInBits();
3783   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3784     return UnableToLegalize;
3785 
3786   unsigned NumDstParts = DstSize / NarrowSize;
3787   unsigned NumSrcParts = SrcSize / NarrowSize;
3788   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3789   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3790 
3791   SmallVector<Register, 2> Src1Parts, Src2Parts;
3792   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3793   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3794   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3795   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3796 
3797   // Take only high half of registers if this is high mul.
3798   ArrayRef<Register> DstRegs(
3799       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3800   MIRBuilder.buildMerge(DstReg, DstRegs);
3801   MI.eraseFromParent();
3802   return Legalized;
3803 }
3804 
3805 LegalizerHelper::LegalizeResult
3806 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3807                                      LLT NarrowTy) {
3808   if (TypeIdx != 1)
3809     return UnableToLegalize;
3810 
3811   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3812 
3813   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3814   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3815   // NarrowSize.
3816   if (SizeOp1 % NarrowSize != 0)
3817     return UnableToLegalize;
3818   int NumParts = SizeOp1 / NarrowSize;
3819 
3820   SmallVector<Register, 2> SrcRegs, DstRegs;
3821   SmallVector<uint64_t, 2> Indexes;
3822   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3823 
3824   Register OpReg = MI.getOperand(0).getReg();
3825   uint64_t OpStart = MI.getOperand(2).getImm();
3826   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3827   for (int i = 0; i < NumParts; ++i) {
3828     unsigned SrcStart = i * NarrowSize;
3829 
3830     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3831       // No part of the extract uses this subregister, ignore it.
3832       continue;
3833     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3834       // The entire subregister is extracted, forward the value.
3835       DstRegs.push_back(SrcRegs[i]);
3836       continue;
3837     }
3838 
3839     // OpSegStart is where this destination segment would start in OpReg if it
3840     // extended infinitely in both directions.
3841     int64_t ExtractOffset;
3842     uint64_t SegSize;
3843     if (OpStart < SrcStart) {
3844       ExtractOffset = 0;
3845       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3846     } else {
3847       ExtractOffset = OpStart - SrcStart;
3848       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3849     }
3850 
3851     Register SegReg = SrcRegs[i];
3852     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3853       // A genuine extract is needed.
3854       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3855       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3856     }
3857 
3858     DstRegs.push_back(SegReg);
3859   }
3860 
3861   Register DstReg = MI.getOperand(0).getReg();
3862   if (MRI.getType(DstReg).isVector())
3863     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3864   else if (DstRegs.size() > 1)
3865     MIRBuilder.buildMerge(DstReg, DstRegs);
3866   else
3867     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3868   MI.eraseFromParent();
3869   return Legalized;
3870 }
3871 
3872 LegalizerHelper::LegalizeResult
3873 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3874                                     LLT NarrowTy) {
3875   // FIXME: Don't know how to handle secondary types yet.
3876   if (TypeIdx != 0)
3877     return UnableToLegalize;
3878 
3879   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3880   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3881 
3882   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3883   // NarrowSize.
3884   if (SizeOp0 % NarrowSize != 0)
3885     return UnableToLegalize;
3886 
3887   int NumParts = SizeOp0 / NarrowSize;
3888 
3889   SmallVector<Register, 2> SrcRegs, DstRegs;
3890   SmallVector<uint64_t, 2> Indexes;
3891   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3892 
3893   Register OpReg = MI.getOperand(2).getReg();
3894   uint64_t OpStart = MI.getOperand(3).getImm();
3895   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3896   for (int i = 0; i < NumParts; ++i) {
3897     unsigned DstStart = i * NarrowSize;
3898 
3899     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3900       // No part of the insert affects this subregister, forward the original.
3901       DstRegs.push_back(SrcRegs[i]);
3902       continue;
3903     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3904       // The entire subregister is defined by this insert, forward the new
3905       // value.
3906       DstRegs.push_back(OpReg);
3907       continue;
3908     }
3909 
3910     // OpSegStart is where this destination segment would start in OpReg if it
3911     // extended infinitely in both directions.
3912     int64_t ExtractOffset, InsertOffset;
3913     uint64_t SegSize;
3914     if (OpStart < DstStart) {
3915       InsertOffset = 0;
3916       ExtractOffset = DstStart - OpStart;
3917       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3918     } else {
3919       InsertOffset = OpStart - DstStart;
3920       ExtractOffset = 0;
3921       SegSize =
3922         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3923     }
3924 
3925     Register SegReg = OpReg;
3926     if (ExtractOffset != 0 || SegSize != OpSize) {
3927       // A genuine extract is needed.
3928       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3929       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3930     }
3931 
3932     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3933     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3934     DstRegs.push_back(DstReg);
3935   }
3936 
3937   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3938   Register DstReg = MI.getOperand(0).getReg();
3939   if(MRI.getType(DstReg).isVector())
3940     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3941   else
3942     MIRBuilder.buildMerge(DstReg, DstRegs);
3943   MI.eraseFromParent();
3944   return Legalized;
3945 }
3946 
3947 LegalizerHelper::LegalizeResult
3948 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3949                                    LLT NarrowTy) {
3950   Register DstReg = MI.getOperand(0).getReg();
3951   LLT DstTy = MRI.getType(DstReg);
3952 
3953   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3954 
3955   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3956   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3957   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3958   LLT LeftoverTy;
3959   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3960                     Src0Regs, Src0LeftoverRegs))
3961     return UnableToLegalize;
3962 
3963   LLT Unused;
3964   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3965                     Src1Regs, Src1LeftoverRegs))
3966     llvm_unreachable("inconsistent extractParts result");
3967 
3968   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3969     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3970                                         {Src0Regs[I], Src1Regs[I]});
3971     DstRegs.push_back(Inst.getReg(0));
3972   }
3973 
3974   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3975     auto Inst = MIRBuilder.buildInstr(
3976       MI.getOpcode(),
3977       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3978     DstLeftoverRegs.push_back(Inst.getReg(0));
3979   }
3980 
3981   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3982               LeftoverTy, DstLeftoverRegs);
3983 
3984   MI.eraseFromParent();
3985   return Legalized;
3986 }
3987 
3988 LegalizerHelper::LegalizeResult
3989 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3990                                  LLT NarrowTy) {
3991   if (TypeIdx != 0)
3992     return UnableToLegalize;
3993 
3994   Register DstReg = MI.getOperand(0).getReg();
3995   Register SrcReg = MI.getOperand(1).getReg();
3996 
3997   LLT DstTy = MRI.getType(DstReg);
3998   if (DstTy.isVector())
3999     return UnableToLegalize;
4000 
4001   SmallVector<Register, 8> Parts;
4002   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4003   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4004   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4005 
4006   MI.eraseFromParent();
4007   return Legalized;
4008 }
4009 
4010 LegalizerHelper::LegalizeResult
4011 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4012                                     LLT NarrowTy) {
4013   if (TypeIdx != 0)
4014     return UnableToLegalize;
4015 
4016   Register CondReg = MI.getOperand(1).getReg();
4017   LLT CondTy = MRI.getType(CondReg);
4018   if (CondTy.isVector()) // TODO: Handle vselect
4019     return UnableToLegalize;
4020 
4021   Register DstReg = MI.getOperand(0).getReg();
4022   LLT DstTy = MRI.getType(DstReg);
4023 
4024   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4025   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4026   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4027   LLT LeftoverTy;
4028   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4029                     Src1Regs, Src1LeftoverRegs))
4030     return UnableToLegalize;
4031 
4032   LLT Unused;
4033   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4034                     Src2Regs, Src2LeftoverRegs))
4035     llvm_unreachable("inconsistent extractParts result");
4036 
4037   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4038     auto Select = MIRBuilder.buildSelect(NarrowTy,
4039                                          CondReg, Src1Regs[I], Src2Regs[I]);
4040     DstRegs.push_back(Select.getReg(0));
4041   }
4042 
4043   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4044     auto Select = MIRBuilder.buildSelect(
4045       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4046     DstLeftoverRegs.push_back(Select.getReg(0));
4047   }
4048 
4049   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4050               LeftoverTy, DstLeftoverRegs);
4051 
4052   MI.eraseFromParent();
4053   return Legalized;
4054 }
4055 
4056 LegalizerHelper::LegalizeResult
4057 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4058                                   LLT NarrowTy) {
4059   if (TypeIdx != 1)
4060     return UnableToLegalize;
4061 
4062   Register DstReg = MI.getOperand(0).getReg();
4063   Register SrcReg = MI.getOperand(1).getReg();
4064   LLT DstTy = MRI.getType(DstReg);
4065   LLT SrcTy = MRI.getType(SrcReg);
4066   unsigned NarrowSize = NarrowTy.getSizeInBits();
4067 
4068   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4069     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4070 
4071     MachineIRBuilder &B = MIRBuilder;
4072     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4073     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4074     auto C_0 = B.buildConstant(NarrowTy, 0);
4075     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4076                                 UnmergeSrc.getReg(1), C_0);
4077     auto LoCTLZ = IsUndef ?
4078       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4079       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4080     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4081     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4082     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4083     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4084 
4085     MI.eraseFromParent();
4086     return Legalized;
4087   }
4088 
4089   return UnableToLegalize;
4090 }
4091 
4092 LegalizerHelper::LegalizeResult
4093 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4094                                   LLT NarrowTy) {
4095   if (TypeIdx != 1)
4096     return UnableToLegalize;
4097 
4098   Register DstReg = MI.getOperand(0).getReg();
4099   Register SrcReg = MI.getOperand(1).getReg();
4100   LLT DstTy = MRI.getType(DstReg);
4101   LLT SrcTy = MRI.getType(SrcReg);
4102   unsigned NarrowSize = NarrowTy.getSizeInBits();
4103 
4104   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4105     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4106 
4107     MachineIRBuilder &B = MIRBuilder;
4108     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4109     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4110     auto C_0 = B.buildConstant(NarrowTy, 0);
4111     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4112                                 UnmergeSrc.getReg(0), C_0);
4113     auto HiCTTZ = IsUndef ?
4114       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4115       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4116     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4117     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4118     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4119     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4120 
4121     MI.eraseFromParent();
4122     return Legalized;
4123   }
4124 
4125   return UnableToLegalize;
4126 }
4127 
4128 LegalizerHelper::LegalizeResult
4129 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4130                                    LLT NarrowTy) {
4131   if (TypeIdx != 1)
4132     return UnableToLegalize;
4133 
4134   Register DstReg = MI.getOperand(0).getReg();
4135   LLT DstTy = MRI.getType(DstReg);
4136   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4137   unsigned NarrowSize = NarrowTy.getSizeInBits();
4138 
4139   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4140     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4141 
4142     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4143     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4144     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4145 
4146     MI.eraseFromParent();
4147     return Legalized;
4148   }
4149 
4150   return UnableToLegalize;
4151 }
4152 
4153 LegalizerHelper::LegalizeResult
4154 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4155   unsigned Opc = MI.getOpcode();
4156   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4157   auto isSupported = [this](const LegalityQuery &Q) {
4158     auto QAction = LI.getAction(Q).Action;
4159     return QAction == Legal || QAction == Libcall || QAction == Custom;
4160   };
4161   switch (Opc) {
4162   default:
4163     return UnableToLegalize;
4164   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4165     // This trivially expands to CTLZ.
4166     Observer.changingInstr(MI);
4167     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4168     Observer.changedInstr(MI);
4169     return Legalized;
4170   }
4171   case TargetOpcode::G_CTLZ: {
4172     Register DstReg = MI.getOperand(0).getReg();
4173     Register SrcReg = MI.getOperand(1).getReg();
4174     LLT DstTy = MRI.getType(DstReg);
4175     LLT SrcTy = MRI.getType(SrcReg);
4176     unsigned Len = SrcTy.getSizeInBits();
4177 
4178     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4179       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4180       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4181       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4182       auto ICmp = MIRBuilder.buildICmp(
4183           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4184       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4185       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4186       MI.eraseFromParent();
4187       return Legalized;
4188     }
4189     // for now, we do this:
4190     // NewLen = NextPowerOf2(Len);
4191     // x = x | (x >> 1);
4192     // x = x | (x >> 2);
4193     // ...
4194     // x = x | (x >>16);
4195     // x = x | (x >>32); // for 64-bit input
4196     // Upto NewLen/2
4197     // return Len - popcount(x);
4198     //
4199     // Ref: "Hacker's Delight" by Henry Warren
4200     Register Op = SrcReg;
4201     unsigned NewLen = PowerOf2Ceil(Len);
4202     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4203       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4204       auto MIBOp = MIRBuilder.buildOr(
4205           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4206       Op = MIBOp.getReg(0);
4207     }
4208     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4209     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4210                         MIBPop);
4211     MI.eraseFromParent();
4212     return Legalized;
4213   }
4214   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4215     // This trivially expands to CTTZ.
4216     Observer.changingInstr(MI);
4217     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4218     Observer.changedInstr(MI);
4219     return Legalized;
4220   }
4221   case TargetOpcode::G_CTTZ: {
4222     Register DstReg = MI.getOperand(0).getReg();
4223     Register SrcReg = MI.getOperand(1).getReg();
4224     LLT DstTy = MRI.getType(DstReg);
4225     LLT SrcTy = MRI.getType(SrcReg);
4226 
4227     unsigned Len = SrcTy.getSizeInBits();
4228     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4229       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4230       // zero.
4231       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4232       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4233       auto ICmp = MIRBuilder.buildICmp(
4234           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4235       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4236       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4237       MI.eraseFromParent();
4238       return Legalized;
4239     }
4240     // for now, we use: { return popcount(~x & (x - 1)); }
4241     // unless the target has ctlz but not ctpop, in which case we use:
4242     // { return 32 - nlz(~x & (x-1)); }
4243     // Ref: "Hacker's Delight" by Henry Warren
4244     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4245     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4246     auto MIBTmp = MIRBuilder.buildAnd(
4247         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4248     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4249         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4250       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4251       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4252                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4253       MI.eraseFromParent();
4254       return Legalized;
4255     }
4256     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4257     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4258     return Legalized;
4259   }
4260   case TargetOpcode::G_CTPOP: {
4261     unsigned Size = Ty.getSizeInBits();
4262     MachineIRBuilder &B = MIRBuilder;
4263 
4264     // Count set bits in blocks of 2 bits. Default approach would be
4265     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4266     // We use following formula instead:
4267     // B2Count = val - { (val >> 1) & 0x55555555 }
4268     // since it gives same result in blocks of 2 with one instruction less.
4269     auto C_1 = B.buildConstant(Ty, 1);
4270     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4271     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4272     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4273     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4274     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4275 
4276     // In order to get count in blocks of 4 add values from adjacent block of 2.
4277     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4278     auto C_2 = B.buildConstant(Ty, 2);
4279     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4280     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4281     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4282     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4283     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4284     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4285 
4286     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4287     // addition since count value sits in range {0,...,8} and 4 bits are enough
4288     // to hold such binary values. After addition high 4 bits still hold count
4289     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4290     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4291     auto C_4 = B.buildConstant(Ty, 4);
4292     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4293     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4294     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4295     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4296     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4297 
4298     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4299     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4300     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4301     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4302     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4303 
4304     // Shift count result from 8 high bits to low bits.
4305     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4306     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4307 
4308     MI.eraseFromParent();
4309     return Legalized;
4310   }
4311   }
4312 }
4313 
4314 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4315 // representation.
4316 LegalizerHelper::LegalizeResult
4317 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4318   Register Dst = MI.getOperand(0).getReg();
4319   Register Src = MI.getOperand(1).getReg();
4320   const LLT S64 = LLT::scalar(64);
4321   const LLT S32 = LLT::scalar(32);
4322   const LLT S1 = LLT::scalar(1);
4323 
4324   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4325 
4326   // unsigned cul2f(ulong u) {
4327   //   uint lz = clz(u);
4328   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4329   //   u = (u << lz) & 0x7fffffffffffffffUL;
4330   //   ulong t = u & 0xffffffffffUL;
4331   //   uint v = (e << 23) | (uint)(u >> 40);
4332   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4333   //   return as_float(v + r);
4334   // }
4335 
4336   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4337   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4338 
4339   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4340 
4341   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4342   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4343 
4344   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4345   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4346 
4347   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4348   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4349 
4350   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4351 
4352   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4353   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4354 
4355   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4356   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4357   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4358 
4359   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4360   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4361   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4362   auto One = MIRBuilder.buildConstant(S32, 1);
4363 
4364   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4365   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4366   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4367   MIRBuilder.buildAdd(Dst, V, R);
4368 
4369   return Legalized;
4370 }
4371 
4372 LegalizerHelper::LegalizeResult
4373 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4374   Register Dst = MI.getOperand(0).getReg();
4375   Register Src = MI.getOperand(1).getReg();
4376   LLT DstTy = MRI.getType(Dst);
4377   LLT SrcTy = MRI.getType(Src);
4378 
4379   if (SrcTy == LLT::scalar(1)) {
4380     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4381     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4382     MIRBuilder.buildSelect(Dst, Src, True, False);
4383     MI.eraseFromParent();
4384     return Legalized;
4385   }
4386 
4387   if (SrcTy != LLT::scalar(64))
4388     return UnableToLegalize;
4389 
4390   if (DstTy == LLT::scalar(32)) {
4391     // TODO: SelectionDAG has several alternative expansions to port which may
4392     // be more reasonble depending on the available instructions. If a target
4393     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4394     // intermediate type, this is probably worse.
4395     return lowerU64ToF32BitOps(MI);
4396   }
4397 
4398   return UnableToLegalize;
4399 }
4400 
4401 LegalizerHelper::LegalizeResult
4402 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4403   Register Dst = MI.getOperand(0).getReg();
4404   Register Src = MI.getOperand(1).getReg();
4405   LLT DstTy = MRI.getType(Dst);
4406   LLT SrcTy = MRI.getType(Src);
4407 
4408   const LLT S64 = LLT::scalar(64);
4409   const LLT S32 = LLT::scalar(32);
4410   const LLT S1 = LLT::scalar(1);
4411 
4412   if (SrcTy == S1) {
4413     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4414     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4415     MIRBuilder.buildSelect(Dst, Src, True, False);
4416     MI.eraseFromParent();
4417     return Legalized;
4418   }
4419 
4420   if (SrcTy != S64)
4421     return UnableToLegalize;
4422 
4423   if (DstTy == S32) {
4424     // signed cl2f(long l) {
4425     //   long s = l >> 63;
4426     //   float r = cul2f((l + s) ^ s);
4427     //   return s ? -r : r;
4428     // }
4429     Register L = Src;
4430     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4431     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4432 
4433     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4434     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4435     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4436 
4437     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4438     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4439                                             MIRBuilder.buildConstant(S64, 0));
4440     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4441     return Legalized;
4442   }
4443 
4444   return UnableToLegalize;
4445 }
4446 
4447 LegalizerHelper::LegalizeResult
4448 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4449   Register Dst = MI.getOperand(0).getReg();
4450   Register Src = MI.getOperand(1).getReg();
4451   LLT DstTy = MRI.getType(Dst);
4452   LLT SrcTy = MRI.getType(Src);
4453   const LLT S64 = LLT::scalar(64);
4454   const LLT S32 = LLT::scalar(32);
4455 
4456   if (SrcTy != S64 && SrcTy != S32)
4457     return UnableToLegalize;
4458   if (DstTy != S32 && DstTy != S64)
4459     return UnableToLegalize;
4460 
4461   // FPTOSI gives same result as FPTOUI for positive signed integers.
4462   // FPTOUI needs to deal with fp values that convert to unsigned integers
4463   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4464 
4465   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4466   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4467                                                 : APFloat::IEEEdouble(),
4468                     APInt::getNullValue(SrcTy.getSizeInBits()));
4469   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4470 
4471   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4472 
4473   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4474   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4475   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4476   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4477   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4478   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4479   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4480 
4481   const LLT S1 = LLT::scalar(1);
4482 
4483   MachineInstrBuilder FCMP =
4484       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4485   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4486 
4487   MI.eraseFromParent();
4488   return Legalized;
4489 }
4490 
4491 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4492   Register Dst = MI.getOperand(0).getReg();
4493   Register Src = MI.getOperand(1).getReg();
4494   LLT DstTy = MRI.getType(Dst);
4495   LLT SrcTy = MRI.getType(Src);
4496   const LLT S64 = LLT::scalar(64);
4497   const LLT S32 = LLT::scalar(32);
4498 
4499   // FIXME: Only f32 to i64 conversions are supported.
4500   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4501     return UnableToLegalize;
4502 
4503   // Expand f32 -> i64 conversion
4504   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4505   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4506 
4507   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4508 
4509   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4510   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4511 
4512   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4513   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4514 
4515   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4516                                            APInt::getSignMask(SrcEltBits));
4517   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4518   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4519   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4520   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4521 
4522   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4523   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4524   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4525 
4526   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4527   R = MIRBuilder.buildZExt(DstTy, R);
4528 
4529   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4530   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4531   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4532   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4533 
4534   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4535   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4536 
4537   const LLT S1 = LLT::scalar(1);
4538   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4539                                     S1, Exponent, ExponentLoBit);
4540 
4541   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4542 
4543   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4544   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4545 
4546   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4547 
4548   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4549                                           S1, Exponent, ZeroSrcTy);
4550 
4551   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4552   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4553 
4554   MI.eraseFromParent();
4555   return Legalized;
4556 }
4557 
4558 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4559 LegalizerHelper::LegalizeResult
4560 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4561   Register Dst = MI.getOperand(0).getReg();
4562   Register Src = MI.getOperand(1).getReg();
4563 
4564   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4565     return UnableToLegalize;
4566 
4567   const unsigned ExpMask = 0x7ff;
4568   const unsigned ExpBiasf64 = 1023;
4569   const unsigned ExpBiasf16 = 15;
4570   const LLT S32 = LLT::scalar(32);
4571   const LLT S1 = LLT::scalar(1);
4572 
4573   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4574   Register U = Unmerge.getReg(0);
4575   Register UH = Unmerge.getReg(1);
4576 
4577   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4578 
4579   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4580   // add the f16 bias (15) to get the biased exponent for the f16 format.
4581   E = MIRBuilder.buildAdd(
4582     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4583   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4584 
4585   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4586   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4587 
4588   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4589                                        MIRBuilder.buildConstant(S32, 0x1ff));
4590   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4591 
4592   auto Zero = MIRBuilder.buildConstant(S32, 0);
4593   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4594   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4595   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4596 
4597   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4598   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4599   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4600   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4601 
4602   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4603   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4604 
4605   // N = M | (E << 12);
4606   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4607   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4608 
4609   // B = clamp(1-E, 0, 13);
4610   auto One = MIRBuilder.buildConstant(S32, 1);
4611   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4612   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4613   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4614 
4615   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4616                                        MIRBuilder.buildConstant(S32, 0x1000));
4617 
4618   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4619   auto D0 = MIRBuilder.buildShl(S32, D, B);
4620 
4621   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4622                                              D0, SigSetHigh);
4623   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4624   D = MIRBuilder.buildOr(S32, D, D1);
4625 
4626   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4627   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4628 
4629   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4630   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4631 
4632   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4633                                        MIRBuilder.buildConstant(S32, 3));
4634   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4635 
4636   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4637                                        MIRBuilder.buildConstant(S32, 5));
4638   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4639 
4640   V1 = MIRBuilder.buildOr(S32, V0, V1);
4641   V = MIRBuilder.buildAdd(S32, V, V1);
4642 
4643   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4644                                        E, MIRBuilder.buildConstant(S32, 30));
4645   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4646                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4647 
4648   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4649                                          E, MIRBuilder.buildConstant(S32, 1039));
4650   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4651 
4652   // Extract the sign bit.
4653   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4654   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4655 
4656   // Insert the sign bit
4657   V = MIRBuilder.buildOr(S32, Sign, V);
4658 
4659   MIRBuilder.buildTrunc(Dst, V);
4660   MI.eraseFromParent();
4661   return Legalized;
4662 }
4663 
4664 LegalizerHelper::LegalizeResult
4665 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4666   Register Dst = MI.getOperand(0).getReg();
4667   Register Src = MI.getOperand(1).getReg();
4668 
4669   LLT DstTy = MRI.getType(Dst);
4670   LLT SrcTy = MRI.getType(Src);
4671   const LLT S64 = LLT::scalar(64);
4672   const LLT S16 = LLT::scalar(16);
4673 
4674   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4675     return lowerFPTRUNC_F64_TO_F16(MI);
4676 
4677   return UnableToLegalize;
4678 }
4679 
4680 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4681   switch (Opc) {
4682   case TargetOpcode::G_SMIN:
4683     return CmpInst::ICMP_SLT;
4684   case TargetOpcode::G_SMAX:
4685     return CmpInst::ICMP_SGT;
4686   case TargetOpcode::G_UMIN:
4687     return CmpInst::ICMP_ULT;
4688   case TargetOpcode::G_UMAX:
4689     return CmpInst::ICMP_UGT;
4690   default:
4691     llvm_unreachable("not in integer min/max");
4692   }
4693 }
4694 
4695 LegalizerHelper::LegalizeResult
4696 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4697   Register Dst = MI.getOperand(0).getReg();
4698   Register Src0 = MI.getOperand(1).getReg();
4699   Register Src1 = MI.getOperand(2).getReg();
4700 
4701   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4702   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4703 
4704   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4705   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4706 
4707   MI.eraseFromParent();
4708   return Legalized;
4709 }
4710 
4711 LegalizerHelper::LegalizeResult
4712 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4713   Register Dst = MI.getOperand(0).getReg();
4714   Register Src0 = MI.getOperand(1).getReg();
4715   Register Src1 = MI.getOperand(2).getReg();
4716 
4717   const LLT Src0Ty = MRI.getType(Src0);
4718   const LLT Src1Ty = MRI.getType(Src1);
4719 
4720   const int Src0Size = Src0Ty.getScalarSizeInBits();
4721   const int Src1Size = Src1Ty.getScalarSizeInBits();
4722 
4723   auto SignBitMask = MIRBuilder.buildConstant(
4724     Src0Ty, APInt::getSignMask(Src0Size));
4725 
4726   auto NotSignBitMask = MIRBuilder.buildConstant(
4727     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4728 
4729   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4730   MachineInstr *Or;
4731 
4732   if (Src0Ty == Src1Ty) {
4733     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4734     Or = MIRBuilder.buildOr(Dst, And0, And1);
4735   } else if (Src0Size > Src1Size) {
4736     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4737     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4738     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4739     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4740     Or = MIRBuilder.buildOr(Dst, And0, And1);
4741   } else {
4742     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4743     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4744     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4745     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4746     Or = MIRBuilder.buildOr(Dst, And0, And1);
4747   }
4748 
4749   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4750   // constants are a nan and -0.0, but the final result should preserve
4751   // everything.
4752   if (unsigned Flags = MI.getFlags())
4753     Or->setFlags(Flags);
4754 
4755   MI.eraseFromParent();
4756   return Legalized;
4757 }
4758 
4759 LegalizerHelper::LegalizeResult
4760 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4761   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4762     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4763 
4764   Register Dst = MI.getOperand(0).getReg();
4765   Register Src0 = MI.getOperand(1).getReg();
4766   Register Src1 = MI.getOperand(2).getReg();
4767   LLT Ty = MRI.getType(Dst);
4768 
4769   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4770     // Insert canonicalizes if it's possible we need to quiet to get correct
4771     // sNaN behavior.
4772 
4773     // Note this must be done here, and not as an optimization combine in the
4774     // absence of a dedicate quiet-snan instruction as we're using an
4775     // omni-purpose G_FCANONICALIZE.
4776     if (!isKnownNeverSNaN(Src0, MRI))
4777       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4778 
4779     if (!isKnownNeverSNaN(Src1, MRI))
4780       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4781   }
4782 
4783   // If there are no nans, it's safe to simply replace this with the non-IEEE
4784   // version.
4785   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4786   MI.eraseFromParent();
4787   return Legalized;
4788 }
4789 
4790 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4791   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4792   Register DstReg = MI.getOperand(0).getReg();
4793   LLT Ty = MRI.getType(DstReg);
4794   unsigned Flags = MI.getFlags();
4795 
4796   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4797                                   Flags);
4798   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4799   MI.eraseFromParent();
4800   return Legalized;
4801 }
4802 
4803 LegalizerHelper::LegalizeResult
4804 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4805   Register DstReg = MI.getOperand(0).getReg();
4806   Register X = MI.getOperand(1).getReg();
4807   const unsigned Flags = MI.getFlags();
4808   const LLT Ty = MRI.getType(DstReg);
4809   const LLT CondTy = Ty.changeElementSize(1);
4810 
4811   // round(x) =>
4812   //  t = trunc(x);
4813   //  d = fabs(x - t);
4814   //  o = copysign(1.0f, x);
4815   //  return t + (d >= 0.5 ? o : 0.0);
4816 
4817   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4818 
4819   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4820   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4821   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4822   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4823   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4824   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4825 
4826   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4827                                   Flags);
4828   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4829 
4830   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4831 
4832   MI.eraseFromParent();
4833   return Legalized;
4834 }
4835 
4836 LegalizerHelper::LegalizeResult
4837 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4838   Register DstReg = MI.getOperand(0).getReg();
4839   Register SrcReg = MI.getOperand(1).getReg();
4840   unsigned Flags = MI.getFlags();
4841   LLT Ty = MRI.getType(DstReg);
4842   const LLT CondTy = Ty.changeElementSize(1);
4843 
4844   // result = trunc(src);
4845   // if (src < 0.0 && src != result)
4846   //   result += -1.0.
4847 
4848   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4849   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4850 
4851   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4852                                   SrcReg, Zero, Flags);
4853   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4854                                       SrcReg, Trunc, Flags);
4855   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4856   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4857 
4858   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4859   MI.eraseFromParent();
4860   return Legalized;
4861 }
4862 
4863 LegalizerHelper::LegalizeResult
4864 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4865   const unsigned NumDst = MI.getNumOperands() - 1;
4866   const Register SrcReg = MI.getOperand(NumDst).getReg();
4867   LLT SrcTy = MRI.getType(SrcReg);
4868 
4869   Register Dst0Reg = MI.getOperand(0).getReg();
4870   LLT DstTy = MRI.getType(Dst0Reg);
4871 
4872 
4873   // Expand scalarizing unmerge as bitcast to integer and shift.
4874   if (!DstTy.isVector() && SrcTy.isVector() &&
4875       SrcTy.getElementType() == DstTy) {
4876     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4877     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4878 
4879     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4880 
4881     const unsigned DstSize = DstTy.getSizeInBits();
4882     unsigned Offset = DstSize;
4883     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4884       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4885       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4886       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4887     }
4888 
4889     MI.eraseFromParent();
4890     return Legalized;
4891   }
4892 
4893   return UnableToLegalize;
4894 }
4895 
4896 LegalizerHelper::LegalizeResult
4897 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4898   Register DstReg = MI.getOperand(0).getReg();
4899   Register Src0Reg = MI.getOperand(1).getReg();
4900   Register Src1Reg = MI.getOperand(2).getReg();
4901   LLT Src0Ty = MRI.getType(Src0Reg);
4902   LLT DstTy = MRI.getType(DstReg);
4903   LLT IdxTy = LLT::scalar(32);
4904 
4905   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4906 
4907   if (DstTy.isScalar()) {
4908     if (Src0Ty.isVector())
4909       return UnableToLegalize;
4910 
4911     // This is just a SELECT.
4912     assert(Mask.size() == 1 && "Expected a single mask element");
4913     Register Val;
4914     if (Mask[0] < 0 || Mask[0] > 1)
4915       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4916     else
4917       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4918     MIRBuilder.buildCopy(DstReg, Val);
4919     MI.eraseFromParent();
4920     return Legalized;
4921   }
4922 
4923   Register Undef;
4924   SmallVector<Register, 32> BuildVec;
4925   LLT EltTy = DstTy.getElementType();
4926 
4927   for (int Idx : Mask) {
4928     if (Idx < 0) {
4929       if (!Undef.isValid())
4930         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4931       BuildVec.push_back(Undef);
4932       continue;
4933     }
4934 
4935     if (Src0Ty.isScalar()) {
4936       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4937     } else {
4938       int NumElts = Src0Ty.getNumElements();
4939       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4940       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4941       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4942       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4943       BuildVec.push_back(Extract.getReg(0));
4944     }
4945   }
4946 
4947   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4948   MI.eraseFromParent();
4949   return Legalized;
4950 }
4951 
4952 LegalizerHelper::LegalizeResult
4953 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4954   Register Dst = MI.getOperand(0).getReg();
4955   Register AllocSize = MI.getOperand(1).getReg();
4956   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
4957 
4958   const auto &MF = *MI.getMF();
4959   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4960 
4961   LLT PtrTy = MRI.getType(Dst);
4962   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4963 
4964   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4965   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4966   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4967 
4968   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4969   // have to generate an extra instruction to negate the alloc and then use
4970   // G_PTR_ADD to add the negative offset.
4971   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4972   if (Alignment > Align(1)) {
4973     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
4974     AlignMask.negate();
4975     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4976     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4977   }
4978 
4979   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4980   MIRBuilder.buildCopy(SPReg, SPTmp);
4981   MIRBuilder.buildCopy(Dst, SPTmp);
4982 
4983   MI.eraseFromParent();
4984   return Legalized;
4985 }
4986 
4987 LegalizerHelper::LegalizeResult
4988 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4989   Register Dst = MI.getOperand(0).getReg();
4990   Register Src = MI.getOperand(1).getReg();
4991   unsigned Offset = MI.getOperand(2).getImm();
4992 
4993   LLT DstTy = MRI.getType(Dst);
4994   LLT SrcTy = MRI.getType(Src);
4995 
4996   if (DstTy.isScalar() &&
4997       (SrcTy.isScalar() ||
4998        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4999     LLT SrcIntTy = SrcTy;
5000     if (!SrcTy.isScalar()) {
5001       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5002       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5003     }
5004 
5005     if (Offset == 0)
5006       MIRBuilder.buildTrunc(Dst, Src);
5007     else {
5008       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5009       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5010       MIRBuilder.buildTrunc(Dst, Shr);
5011     }
5012 
5013     MI.eraseFromParent();
5014     return Legalized;
5015   }
5016 
5017   return UnableToLegalize;
5018 }
5019 
5020 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5021   Register Dst = MI.getOperand(0).getReg();
5022   Register Src = MI.getOperand(1).getReg();
5023   Register InsertSrc = MI.getOperand(2).getReg();
5024   uint64_t Offset = MI.getOperand(3).getImm();
5025 
5026   LLT DstTy = MRI.getType(Src);
5027   LLT InsertTy = MRI.getType(InsertSrc);
5028 
5029   if (InsertTy.isVector() ||
5030       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5031     return UnableToLegalize;
5032 
5033   const DataLayout &DL = MIRBuilder.getDataLayout();
5034   if ((DstTy.isPointer() &&
5035        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5036       (InsertTy.isPointer() &&
5037        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5038     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5039     return UnableToLegalize;
5040   }
5041 
5042   LLT IntDstTy = DstTy;
5043 
5044   if (!DstTy.isScalar()) {
5045     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5046     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5047   }
5048 
5049   if (!InsertTy.isScalar()) {
5050     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5051     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5052   }
5053 
5054   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5055   if (Offset != 0) {
5056     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5057     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5058   }
5059 
5060   APInt MaskVal = APInt::getBitsSetWithWrap(
5061       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5062 
5063   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5064   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5065   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5066 
5067   MIRBuilder.buildCast(Dst, Or);
5068   MI.eraseFromParent();
5069   return Legalized;
5070 }
5071 
5072 LegalizerHelper::LegalizeResult
5073 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5074   Register Dst0 = MI.getOperand(0).getReg();
5075   Register Dst1 = MI.getOperand(1).getReg();
5076   Register LHS = MI.getOperand(2).getReg();
5077   Register RHS = MI.getOperand(3).getReg();
5078   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5079 
5080   LLT Ty = MRI.getType(Dst0);
5081   LLT BoolTy = MRI.getType(Dst1);
5082 
5083   if (IsAdd)
5084     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5085   else
5086     MIRBuilder.buildSub(Dst0, LHS, RHS);
5087 
5088   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5089 
5090   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5091 
5092   // For an addition, the result should be less than one of the operands (LHS)
5093   // if and only if the other operand (RHS) is negative, otherwise there will
5094   // be overflow.
5095   // For a subtraction, the result should be less than one of the operands
5096   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5097   // otherwise there will be overflow.
5098   auto ResultLowerThanLHS =
5099       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5100   auto ConditionRHS = MIRBuilder.buildICmp(
5101       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5102 
5103   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5104   MI.eraseFromParent();
5105   return Legalized;
5106 }
5107 
5108 LegalizerHelper::LegalizeResult
5109 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5110   Register Dst = MI.getOperand(0).getReg();
5111   Register Src = MI.getOperand(1).getReg();
5112   const LLT Ty = MRI.getType(Src);
5113   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5114   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5115 
5116   // Swap most and least significant byte, set remaining bytes in Res to zero.
5117   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5118   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5119   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5120   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5121 
5122   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5123   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5124     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5125     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5126     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5127     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5128     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5129     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5130     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5131     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5132     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5133     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5134     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5135     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5136   }
5137   Res.getInstr()->getOperand(0).setReg(Dst);
5138 
5139   MI.eraseFromParent();
5140   return Legalized;
5141 }
5142 
5143 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5144 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5145                                  MachineInstrBuilder Src, APInt Mask) {
5146   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5147   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5148   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5149   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5150   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5151   return B.buildOr(Dst, LHS, RHS);
5152 }
5153 
5154 LegalizerHelper::LegalizeResult
5155 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5156   Register Dst = MI.getOperand(0).getReg();
5157   Register Src = MI.getOperand(1).getReg();
5158   const LLT Ty = MRI.getType(Src);
5159   unsigned Size = Ty.getSizeInBits();
5160 
5161   MachineInstrBuilder BSWAP =
5162       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5163 
5164   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5165   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5166   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5167   MachineInstrBuilder Swap4 =
5168       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5169 
5170   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5171   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5172   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5173   MachineInstrBuilder Swap2 =
5174       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5175 
5176   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5177   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5178   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5179   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5180 
5181   MI.eraseFromParent();
5182   return Legalized;
5183 }
5184 
5185 LegalizerHelper::LegalizeResult
5186 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5187   MachineFunction &MF = MIRBuilder.getMF();
5188   const TargetSubtargetInfo &STI = MF.getSubtarget();
5189   const TargetLowering *TLI = STI.getTargetLowering();
5190 
5191   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5192   int NameOpIdx = IsRead ? 1 : 0;
5193   int ValRegIndex = IsRead ? 0 : 1;
5194 
5195   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5196   const LLT Ty = MRI.getType(ValReg);
5197   const MDString *RegStr = cast<MDString>(
5198     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5199 
5200   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5201   if (!PhysReg.isValid())
5202     return UnableToLegalize;
5203 
5204   if (IsRead)
5205     MIRBuilder.buildCopy(ValReg, PhysReg);
5206   else
5207     MIRBuilder.buildCopy(PhysReg, ValReg);
5208 
5209   MI.eraseFromParent();
5210   return Legalized;
5211 }
5212