1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 MachineBasicBlock &MBB = *MI.getParent(); 466 const Function &F = MBB.getParent()->getFunction(); 467 468 // Conservatively require the attributes of the call to match those of 469 // the return. Ignore NoAlias and NonNull because they don't affect the 470 // call sequence. 471 AttributeList CallerAttrs = F.getAttributes(); 472 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 473 .removeAttribute(Attribute::NoAlias) 474 .removeAttribute(Attribute::NonNull) 475 .hasAttributes()) 476 return false; 477 478 // It's not safe to eliminate the sign / zero extension of the return value. 479 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 480 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 481 return false; 482 483 // Only tail call if the following instruction is a standard return. 484 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 MIRBuilder.setInstrAndDebugLoc(MI); 640 641 switch (MI.getOpcode()) { 642 default: 643 return UnableToLegalize; 644 case TargetOpcode::G_SDIV: 645 case TargetOpcode::G_UDIV: 646 case TargetOpcode::G_SREM: 647 case TargetOpcode::G_UREM: 648 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 649 Type *HLTy = IntegerType::get(Ctx, Size); 650 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 651 if (Status != Legalized) 652 return Status; 653 break; 654 } 655 case TargetOpcode::G_FADD: 656 case TargetOpcode::G_FSUB: 657 case TargetOpcode::G_FMUL: 658 case TargetOpcode::G_FDIV: 659 case TargetOpcode::G_FMA: 660 case TargetOpcode::G_FPOW: 661 case TargetOpcode::G_FREM: 662 case TargetOpcode::G_FCOS: 663 case TargetOpcode::G_FSIN: 664 case TargetOpcode::G_FLOG10: 665 case TargetOpcode::G_FLOG: 666 case TargetOpcode::G_FLOG2: 667 case TargetOpcode::G_FEXP: 668 case TargetOpcode::G_FEXP2: 669 case TargetOpcode::G_FCEIL: 670 case TargetOpcode::G_FFLOOR: 671 case TargetOpcode::G_FMINNUM: 672 case TargetOpcode::G_FMAXNUM: 673 case TargetOpcode::G_FSQRT: 674 case TargetOpcode::G_FRINT: 675 case TargetOpcode::G_FNEARBYINT: { 676 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 677 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 678 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 679 return UnableToLegalize; 680 } 681 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 682 if (Status != Legalized) 683 return Status; 684 break; 685 } 686 case TargetOpcode::G_FPEXT: 687 case TargetOpcode::G_FPTRUNC: { 688 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 689 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 690 if (!FromTy || !ToTy) 691 return UnableToLegalize; 692 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_FPTOSI: 698 case TargetOpcode::G_FPTOUI: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 707 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 case TargetOpcode::G_SITOFP: 713 case TargetOpcode::G_UITOFP: { 714 // FIXME: Support other types 715 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 716 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 717 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall( 720 MI, MIRBuilder, 721 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 722 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 } 728 729 MI.eraseFromParent(); 730 return Legalized; 731 } 732 733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 734 unsigned TypeIdx, 735 LLT NarrowTy) { 736 MIRBuilder.setInstrAndDebugLoc(MI); 737 738 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 740 741 switch (MI.getOpcode()) { 742 default: 743 return UnableToLegalize; 744 case TargetOpcode::G_IMPLICIT_DEF: { 745 Register DstReg = MI.getOperand(0).getReg(); 746 LLT DstTy = MRI.getType(DstReg); 747 748 // If SizeOp0 is not an exact multiple of NarrowSize, emit 749 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 750 // FIXME: Although this would also be legal for the general case, it causes 751 // a lot of regressions in the emitted code (superfluous COPYs, artifact 752 // combines not being hit). This seems to be a problem related to the 753 // artifact combiner. 754 if (SizeOp0 % NarrowSize != 0) { 755 LLT ImplicitTy = NarrowTy; 756 if (DstTy.isVector()) 757 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 758 759 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 760 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 761 762 MI.eraseFromParent(); 763 return Legalized; 764 } 765 766 int NumParts = SizeOp0 / NarrowSize; 767 768 SmallVector<Register, 2> DstRegs; 769 for (int i = 0; i < NumParts; ++i) 770 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 771 772 if (DstTy.isVector()) 773 MIRBuilder.buildBuildVector(DstReg, DstRegs); 774 else 775 MIRBuilder.buildMerge(DstReg, DstRegs); 776 MI.eraseFromParent(); 777 return Legalized; 778 } 779 case TargetOpcode::G_CONSTANT: { 780 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 781 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 782 unsigned TotalSize = Ty.getSizeInBits(); 783 unsigned NarrowSize = NarrowTy.getSizeInBits(); 784 int NumParts = TotalSize / NarrowSize; 785 786 SmallVector<Register, 4> PartRegs; 787 for (int I = 0; I != NumParts; ++I) { 788 unsigned Offset = I * NarrowSize; 789 auto K = MIRBuilder.buildConstant(NarrowTy, 790 Val.lshr(Offset).trunc(NarrowSize)); 791 PartRegs.push_back(K.getReg(0)); 792 } 793 794 LLT LeftoverTy; 795 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 796 SmallVector<Register, 1> LeftoverRegs; 797 if (LeftoverBits != 0) { 798 LeftoverTy = LLT::scalar(LeftoverBits); 799 auto K = MIRBuilder.buildConstant( 800 LeftoverTy, 801 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 802 LeftoverRegs.push_back(K.getReg(0)); 803 } 804 805 insertParts(MI.getOperand(0).getReg(), 806 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 case TargetOpcode::G_SEXT: 812 case TargetOpcode::G_ZEXT: 813 case TargetOpcode::G_ANYEXT: 814 return narrowScalarExt(MI, TypeIdx, NarrowTy); 815 case TargetOpcode::G_TRUNC: { 816 if (TypeIdx != 1) 817 return UnableToLegalize; 818 819 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 820 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 821 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 822 return UnableToLegalize; 823 } 824 825 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 826 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 827 MI.eraseFromParent(); 828 return Legalized; 829 } 830 831 case TargetOpcode::G_FREEZE: 832 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 833 834 case TargetOpcode::G_ADD: { 835 // FIXME: add support for when SizeOp0 isn't an exact multiple of 836 // NarrowSize. 837 if (SizeOp0 % NarrowSize != 0) 838 return UnableToLegalize; 839 // Expand in terms of carry-setting/consuming G_ADDE instructions. 840 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 841 842 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 843 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 844 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 845 846 Register CarryIn; 847 for (int i = 0; i < NumParts; ++i) { 848 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 849 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 850 851 if (i == 0) 852 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 853 else { 854 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 855 Src2Regs[i], CarryIn); 856 } 857 858 DstRegs.push_back(DstReg); 859 CarryIn = CarryOut; 860 } 861 Register DstReg = MI.getOperand(0).getReg(); 862 if(MRI.getType(DstReg).isVector()) 863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 864 else 865 MIRBuilder.buildMerge(DstReg, DstRegs); 866 MI.eraseFromParent(); 867 return Legalized; 868 } 869 case TargetOpcode::G_SUB: { 870 // FIXME: add support for when SizeOp0 isn't an exact multiple of 871 // NarrowSize. 872 if (SizeOp0 % NarrowSize != 0) 873 return UnableToLegalize; 874 875 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 876 877 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 878 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 879 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 880 881 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 882 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 883 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 884 {Src1Regs[0], Src2Regs[0]}); 885 DstRegs.push_back(DstReg); 886 Register BorrowIn = BorrowOut; 887 for (int i = 1; i < NumParts; ++i) { 888 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 889 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 890 891 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 892 {Src1Regs[i], Src2Regs[i], BorrowIn}); 893 894 DstRegs.push_back(DstReg); 895 BorrowIn = BorrowOut; 896 } 897 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 898 MI.eraseFromParent(); 899 return Legalized; 900 } 901 case TargetOpcode::G_MUL: 902 case TargetOpcode::G_UMULH: 903 return narrowScalarMul(MI, NarrowTy); 904 case TargetOpcode::G_EXTRACT: 905 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 906 case TargetOpcode::G_INSERT: 907 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 908 case TargetOpcode::G_LOAD: { 909 const auto &MMO = **MI.memoperands_begin(); 910 Register DstReg = MI.getOperand(0).getReg(); 911 LLT DstTy = MRI.getType(DstReg); 912 if (DstTy.isVector()) 913 return UnableToLegalize; 914 915 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 916 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 917 auto &MMO = **MI.memoperands_begin(); 918 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 919 MIRBuilder.buildAnyExt(DstReg, TmpReg); 920 MI.eraseFromParent(); 921 return Legalized; 922 } 923 924 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 925 } 926 case TargetOpcode::G_ZEXTLOAD: 927 case TargetOpcode::G_SEXTLOAD: { 928 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 929 Register DstReg = MI.getOperand(0).getReg(); 930 Register PtrReg = MI.getOperand(1).getReg(); 931 932 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 933 auto &MMO = **MI.memoperands_begin(); 934 if (MMO.getSizeInBits() == NarrowSize) { 935 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 936 } else { 937 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 938 } 939 940 if (ZExt) 941 MIRBuilder.buildZExt(DstReg, TmpReg); 942 else 943 MIRBuilder.buildSExt(DstReg, TmpReg); 944 945 MI.eraseFromParent(); 946 return Legalized; 947 } 948 case TargetOpcode::G_STORE: { 949 const auto &MMO = **MI.memoperands_begin(); 950 951 Register SrcReg = MI.getOperand(0).getReg(); 952 LLT SrcTy = MRI.getType(SrcReg); 953 if (SrcTy.isVector()) 954 return UnableToLegalize; 955 956 int NumParts = SizeOp0 / NarrowSize; 957 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 958 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 959 if (SrcTy.isVector() && LeftoverBits != 0) 960 return UnableToLegalize; 961 962 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 963 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 964 auto &MMO = **MI.memoperands_begin(); 965 MIRBuilder.buildTrunc(TmpReg, SrcReg); 966 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 967 MI.eraseFromParent(); 968 return Legalized; 969 } 970 971 return reduceLoadStoreWidth(MI, 0, NarrowTy); 972 } 973 case TargetOpcode::G_SELECT: 974 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 975 case TargetOpcode::G_AND: 976 case TargetOpcode::G_OR: 977 case TargetOpcode::G_XOR: { 978 // Legalize bitwise operation: 979 // A = BinOp<Ty> B, C 980 // into: 981 // B1, ..., BN = G_UNMERGE_VALUES B 982 // C1, ..., CN = G_UNMERGE_VALUES C 983 // A1 = BinOp<Ty/N> B1, C2 984 // ... 985 // AN = BinOp<Ty/N> BN, CN 986 // A = G_MERGE_VALUES A1, ..., AN 987 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 988 } 989 case TargetOpcode::G_SHL: 990 case TargetOpcode::G_LSHR: 991 case TargetOpcode::G_ASHR: 992 return narrowScalarShift(MI, TypeIdx, NarrowTy); 993 case TargetOpcode::G_CTLZ: 994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 995 case TargetOpcode::G_CTTZ: 996 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 997 case TargetOpcode::G_CTPOP: 998 if (TypeIdx == 1) 999 switch (MI.getOpcode()) { 1000 case TargetOpcode::G_CTLZ: 1001 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1002 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1003 case TargetOpcode::G_CTTZ: 1004 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1005 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1006 case TargetOpcode::G_CTPOP: 1007 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1008 default: 1009 return UnableToLegalize; 1010 } 1011 1012 Observer.changingInstr(MI); 1013 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1014 Observer.changedInstr(MI); 1015 return Legalized; 1016 case TargetOpcode::G_INTTOPTR: 1017 if (TypeIdx != 1) 1018 return UnableToLegalize; 1019 1020 Observer.changingInstr(MI); 1021 narrowScalarSrc(MI, NarrowTy, 1); 1022 Observer.changedInstr(MI); 1023 return Legalized; 1024 case TargetOpcode::G_PTRTOINT: 1025 if (TypeIdx != 0) 1026 return UnableToLegalize; 1027 1028 Observer.changingInstr(MI); 1029 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1030 Observer.changedInstr(MI); 1031 return Legalized; 1032 case TargetOpcode::G_PHI: { 1033 unsigned NumParts = SizeOp0 / NarrowSize; 1034 SmallVector<Register, 2> DstRegs(NumParts); 1035 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1036 Observer.changingInstr(MI); 1037 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1038 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1039 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1040 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1041 SrcRegs[i / 2]); 1042 } 1043 MachineBasicBlock &MBB = *MI.getParent(); 1044 MIRBuilder.setInsertPt(MBB, MI); 1045 for (unsigned i = 0; i < NumParts; ++i) { 1046 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1047 MachineInstrBuilder MIB = 1048 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1049 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1050 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1051 } 1052 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1053 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1054 Observer.changedInstr(MI); 1055 MI.eraseFromParent(); 1056 return Legalized; 1057 } 1058 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1059 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1060 if (TypeIdx != 2) 1061 return UnableToLegalize; 1062 1063 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1064 Observer.changingInstr(MI); 1065 narrowScalarSrc(MI, NarrowTy, OpIdx); 1066 Observer.changedInstr(MI); 1067 return Legalized; 1068 } 1069 case TargetOpcode::G_ICMP: { 1070 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1071 if (NarrowSize * 2 != SrcSize) 1072 return UnableToLegalize; 1073 1074 Observer.changingInstr(MI); 1075 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1078 1079 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1080 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1081 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1082 1083 CmpInst::Predicate Pred = 1084 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1085 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1086 1087 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1088 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1089 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1090 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1091 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1092 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1093 } else { 1094 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1095 MachineInstrBuilder CmpHEQ = 1096 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1097 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1098 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1099 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1100 } 1101 Observer.changedInstr(MI); 1102 MI.eraseFromParent(); 1103 return Legalized; 1104 } 1105 case TargetOpcode::G_SEXT_INREG: { 1106 if (TypeIdx != 0) 1107 return UnableToLegalize; 1108 1109 int64_t SizeInBits = MI.getOperand(2).getImm(); 1110 1111 // So long as the new type has more bits than the bits we're extending we 1112 // don't need to break it apart. 1113 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1114 Observer.changingInstr(MI); 1115 // We don't lose any non-extension bits by truncating the src and 1116 // sign-extending the dst. 1117 MachineOperand &MO1 = MI.getOperand(1); 1118 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1119 MO1.setReg(TruncMIB.getReg(0)); 1120 1121 MachineOperand &MO2 = MI.getOperand(0); 1122 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1123 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1124 MIRBuilder.buildSExt(MO2, DstExt); 1125 MO2.setReg(DstExt); 1126 Observer.changedInstr(MI); 1127 return Legalized; 1128 } 1129 1130 // Break it apart. Components below the extension point are unmodified. The 1131 // component containing the extension point becomes a narrower SEXT_INREG. 1132 // Components above it are ashr'd from the component containing the 1133 // extension point. 1134 if (SizeOp0 % NarrowSize != 0) 1135 return UnableToLegalize; 1136 int NumParts = SizeOp0 / NarrowSize; 1137 1138 // List the registers where the destination will be scattered. 1139 SmallVector<Register, 2> DstRegs; 1140 // List the registers where the source will be split. 1141 SmallVector<Register, 2> SrcRegs; 1142 1143 // Create all the temporary registers. 1144 for (int i = 0; i < NumParts; ++i) { 1145 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1146 1147 SrcRegs.push_back(SrcReg); 1148 } 1149 1150 // Explode the big arguments into smaller chunks. 1151 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1152 1153 Register AshrCstReg = 1154 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1155 .getReg(0); 1156 Register FullExtensionReg = 0; 1157 Register PartialExtensionReg = 0; 1158 1159 // Do the operation on each small part. 1160 for (int i = 0; i < NumParts; ++i) { 1161 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1162 DstRegs.push_back(SrcRegs[i]); 1163 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1164 assert(PartialExtensionReg && 1165 "Expected to visit partial extension before full"); 1166 if (FullExtensionReg) { 1167 DstRegs.push_back(FullExtensionReg); 1168 continue; 1169 } 1170 DstRegs.push_back( 1171 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1172 .getReg(0)); 1173 FullExtensionReg = DstRegs.back(); 1174 } else { 1175 DstRegs.push_back( 1176 MIRBuilder 1177 .buildInstr( 1178 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1179 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1180 .getReg(0)); 1181 PartialExtensionReg = DstRegs.back(); 1182 } 1183 } 1184 1185 // Gather the destination registers into the final destination. 1186 Register DstReg = MI.getOperand(0).getReg(); 1187 MIRBuilder.buildMerge(DstReg, DstRegs); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_BSWAP: 1192 case TargetOpcode::G_BITREVERSE: { 1193 if (SizeOp0 % NarrowSize != 0) 1194 return UnableToLegalize; 1195 1196 Observer.changingInstr(MI); 1197 SmallVector<Register, 2> SrcRegs, DstRegs; 1198 unsigned NumParts = SizeOp0 / NarrowSize; 1199 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1200 1201 for (unsigned i = 0; i < NumParts; ++i) { 1202 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1203 {SrcRegs[NumParts - 1 - i]}); 1204 DstRegs.push_back(DstPart.getReg(0)); 1205 } 1206 1207 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1208 1209 Observer.changedInstr(MI); 1210 MI.eraseFromParent(); 1211 return Legalized; 1212 } 1213 } 1214 } 1215 1216 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1217 unsigned OpIdx, unsigned ExtOpcode) { 1218 MachineOperand &MO = MI.getOperand(OpIdx); 1219 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1220 MO.setReg(ExtB.getReg(0)); 1221 } 1222 1223 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1224 unsigned OpIdx) { 1225 MachineOperand &MO = MI.getOperand(OpIdx); 1226 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1227 MO.setReg(ExtB.getReg(0)); 1228 } 1229 1230 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1231 unsigned OpIdx, unsigned TruncOpcode) { 1232 MachineOperand &MO = MI.getOperand(OpIdx); 1233 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1234 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1235 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1236 MO.setReg(DstExt); 1237 } 1238 1239 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1240 unsigned OpIdx, unsigned ExtOpcode) { 1241 MachineOperand &MO = MI.getOperand(OpIdx); 1242 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1243 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1244 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1245 MO.setReg(DstTrunc); 1246 } 1247 1248 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1249 unsigned OpIdx) { 1250 MachineOperand &MO = MI.getOperand(OpIdx); 1251 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1252 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1253 MIRBuilder.buildExtract(MO, DstExt, 0); 1254 MO.setReg(DstExt); 1255 } 1256 1257 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1258 unsigned OpIdx) { 1259 MachineOperand &MO = MI.getOperand(OpIdx); 1260 1261 LLT OldTy = MRI.getType(MO.getReg()); 1262 unsigned OldElts = OldTy.getNumElements(); 1263 unsigned NewElts = MoreTy.getNumElements(); 1264 1265 unsigned NumParts = NewElts / OldElts; 1266 1267 // Use concat_vectors if the result is a multiple of the number of elements. 1268 if (NumParts * OldElts == NewElts) { 1269 SmallVector<Register, 8> Parts; 1270 Parts.push_back(MO.getReg()); 1271 1272 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1273 for (unsigned I = 1; I != NumParts; ++I) 1274 Parts.push_back(ImpDef); 1275 1276 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1277 MO.setReg(Concat.getReg(0)); 1278 return; 1279 } 1280 1281 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1282 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1283 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1284 MO.setReg(MoreReg); 1285 } 1286 1287 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1288 MachineOperand &Op = MI.getOperand(OpIdx); 1289 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1290 } 1291 1292 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1293 MachineOperand &MO = MI.getOperand(OpIdx); 1294 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1295 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1296 MIRBuilder.buildBitcast(MO, CastDst); 1297 MO.setReg(CastDst); 1298 } 1299 1300 LegalizerHelper::LegalizeResult 1301 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1302 LLT WideTy) { 1303 if (TypeIdx != 1) 1304 return UnableToLegalize; 1305 1306 Register DstReg = MI.getOperand(0).getReg(); 1307 LLT DstTy = MRI.getType(DstReg); 1308 if (DstTy.isVector()) 1309 return UnableToLegalize; 1310 1311 Register Src1 = MI.getOperand(1).getReg(); 1312 LLT SrcTy = MRI.getType(Src1); 1313 const int DstSize = DstTy.getSizeInBits(); 1314 const int SrcSize = SrcTy.getSizeInBits(); 1315 const int WideSize = WideTy.getSizeInBits(); 1316 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1317 1318 unsigned NumOps = MI.getNumOperands(); 1319 unsigned NumSrc = MI.getNumOperands() - 1; 1320 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1321 1322 if (WideSize >= DstSize) { 1323 // Directly pack the bits in the target type. 1324 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1325 1326 for (unsigned I = 2; I != NumOps; ++I) { 1327 const unsigned Offset = (I - 1) * PartSize; 1328 1329 Register SrcReg = MI.getOperand(I).getReg(); 1330 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1331 1332 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1333 1334 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1335 MRI.createGenericVirtualRegister(WideTy); 1336 1337 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1338 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1339 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1340 ResultReg = NextResult; 1341 } 1342 1343 if (WideSize > DstSize) 1344 MIRBuilder.buildTrunc(DstReg, ResultReg); 1345 else if (DstTy.isPointer()) 1346 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1347 1348 MI.eraseFromParent(); 1349 return Legalized; 1350 } 1351 1352 // Unmerge the original values to the GCD type, and recombine to the next 1353 // multiple greater than the original type. 1354 // 1355 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1356 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1357 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1358 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1359 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1360 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1361 // %12:_(s12) = G_MERGE_VALUES %10, %11 1362 // 1363 // Padding with undef if necessary: 1364 // 1365 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1366 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1367 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1368 // %7:_(s2) = G_IMPLICIT_DEF 1369 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1370 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1371 // %10:_(s12) = G_MERGE_VALUES %8, %9 1372 1373 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1374 LLT GCDTy = LLT::scalar(GCD); 1375 1376 SmallVector<Register, 8> Parts; 1377 SmallVector<Register, 8> NewMergeRegs; 1378 SmallVector<Register, 8> Unmerges; 1379 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1380 1381 // Decompose the original operands if they don't evenly divide. 1382 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1383 Register SrcReg = MI.getOperand(I).getReg(); 1384 if (GCD == SrcSize) { 1385 Unmerges.push_back(SrcReg); 1386 } else { 1387 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1388 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1389 Unmerges.push_back(Unmerge.getReg(J)); 1390 } 1391 } 1392 1393 // Pad with undef to the next size that is a multiple of the requested size. 1394 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1395 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1396 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1397 Unmerges.push_back(UndefReg); 1398 } 1399 1400 const int PartsPerGCD = WideSize / GCD; 1401 1402 // Build merges of each piece. 1403 ArrayRef<Register> Slicer(Unmerges); 1404 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1405 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1406 NewMergeRegs.push_back(Merge.getReg(0)); 1407 } 1408 1409 // A truncate may be necessary if the requested type doesn't evenly divide the 1410 // original result type. 1411 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1412 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1413 } else { 1414 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1415 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1416 } 1417 1418 MI.eraseFromParent(); 1419 return Legalized; 1420 } 1421 1422 LegalizerHelper::LegalizeResult 1423 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1424 LLT WideTy) { 1425 if (TypeIdx != 0) 1426 return UnableToLegalize; 1427 1428 int NumDst = MI.getNumOperands() - 1; 1429 Register SrcReg = MI.getOperand(NumDst).getReg(); 1430 LLT SrcTy = MRI.getType(SrcReg); 1431 if (SrcTy.isVector()) 1432 return UnableToLegalize; 1433 1434 Register Dst0Reg = MI.getOperand(0).getReg(); 1435 LLT DstTy = MRI.getType(Dst0Reg); 1436 if (!DstTy.isScalar()) 1437 return UnableToLegalize; 1438 1439 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1440 if (SrcTy.isPointer()) { 1441 const DataLayout &DL = MIRBuilder.getDataLayout(); 1442 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1443 LLVM_DEBUG( 1444 dbgs() << "Not casting non-integral address space integer\n"); 1445 return UnableToLegalize; 1446 } 1447 1448 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1449 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1450 } 1451 1452 // Widen SrcTy to WideTy. This does not affect the result, but since the 1453 // user requested this size, it is probably better handled than SrcTy and 1454 // should reduce the total number of legalization artifacts 1455 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1456 SrcTy = WideTy; 1457 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1458 } 1459 1460 // Theres no unmerge type to target. Directly extract the bits from the 1461 // source type 1462 unsigned DstSize = DstTy.getSizeInBits(); 1463 1464 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1465 for (int I = 1; I != NumDst; ++I) { 1466 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1467 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1468 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1469 } 1470 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 1475 // Extend the source to a wider type. 1476 LLT LCMTy = getLCMType(SrcTy, WideTy); 1477 1478 Register WideSrc = SrcReg; 1479 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1480 // TODO: If this is an integral address space, cast to integer and anyext. 1481 if (SrcTy.isPointer()) { 1482 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1483 return UnableToLegalize; 1484 } 1485 1486 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1487 } 1488 1489 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1490 1491 // Create a sequence of unmerges to the original results. since we may have 1492 // widened the source, we will need to pad the results with dead defs to cover 1493 // the source register. 1494 // e.g. widen s16 to s32: 1495 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1496 // 1497 // => 1498 // %4:_(s64) = G_ANYEXT %0:_(s48) 1499 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1500 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1501 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1502 1503 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1504 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1505 1506 for (int I = 0; I != NumUnmerge; ++I) { 1507 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1508 1509 for (int J = 0; J != PartsPerUnmerge; ++J) { 1510 int Idx = I * PartsPerUnmerge + J; 1511 if (Idx < NumDst) 1512 MIB.addDef(MI.getOperand(Idx).getReg()); 1513 else { 1514 // Create dead def for excess components. 1515 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1516 } 1517 } 1518 1519 MIB.addUse(Unmerge.getReg(I)); 1520 } 1521 1522 MI.eraseFromParent(); 1523 return Legalized; 1524 } 1525 1526 LegalizerHelper::LegalizeResult 1527 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1528 LLT WideTy) { 1529 Register DstReg = MI.getOperand(0).getReg(); 1530 Register SrcReg = MI.getOperand(1).getReg(); 1531 LLT SrcTy = MRI.getType(SrcReg); 1532 1533 LLT DstTy = MRI.getType(DstReg); 1534 unsigned Offset = MI.getOperand(2).getImm(); 1535 1536 if (TypeIdx == 0) { 1537 if (SrcTy.isVector() || DstTy.isVector()) 1538 return UnableToLegalize; 1539 1540 SrcOp Src(SrcReg); 1541 if (SrcTy.isPointer()) { 1542 // Extracts from pointers can be handled only if they are really just 1543 // simple integers. 1544 const DataLayout &DL = MIRBuilder.getDataLayout(); 1545 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1546 return UnableToLegalize; 1547 1548 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1549 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1550 SrcTy = SrcAsIntTy; 1551 } 1552 1553 if (DstTy.isPointer()) 1554 return UnableToLegalize; 1555 1556 if (Offset == 0) { 1557 // Avoid a shift in the degenerate case. 1558 MIRBuilder.buildTrunc(DstReg, 1559 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1560 MI.eraseFromParent(); 1561 return Legalized; 1562 } 1563 1564 // Do a shift in the source type. 1565 LLT ShiftTy = SrcTy; 1566 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1567 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1568 ShiftTy = WideTy; 1569 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1570 return UnableToLegalize; 1571 1572 auto LShr = MIRBuilder.buildLShr( 1573 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1574 MIRBuilder.buildTrunc(DstReg, LShr); 1575 MI.eraseFromParent(); 1576 return Legalized; 1577 } 1578 1579 if (SrcTy.isScalar()) { 1580 Observer.changingInstr(MI); 1581 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1582 Observer.changedInstr(MI); 1583 return Legalized; 1584 } 1585 1586 if (!SrcTy.isVector()) 1587 return UnableToLegalize; 1588 1589 if (DstTy != SrcTy.getElementType()) 1590 return UnableToLegalize; 1591 1592 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1593 return UnableToLegalize; 1594 1595 Observer.changingInstr(MI); 1596 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1597 1598 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1599 Offset); 1600 widenScalarDst(MI, WideTy.getScalarType(), 0); 1601 Observer.changedInstr(MI); 1602 return Legalized; 1603 } 1604 1605 LegalizerHelper::LegalizeResult 1606 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1607 LLT WideTy) { 1608 if (TypeIdx != 0) 1609 return UnableToLegalize; 1610 Observer.changingInstr(MI); 1611 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1612 widenScalarDst(MI, WideTy); 1613 Observer.changedInstr(MI); 1614 return Legalized; 1615 } 1616 1617 LegalizerHelper::LegalizeResult 1618 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1619 MIRBuilder.setInstrAndDebugLoc(MI); 1620 1621 switch (MI.getOpcode()) { 1622 default: 1623 return UnableToLegalize; 1624 case TargetOpcode::G_EXTRACT: 1625 return widenScalarExtract(MI, TypeIdx, WideTy); 1626 case TargetOpcode::G_INSERT: 1627 return widenScalarInsert(MI, TypeIdx, WideTy); 1628 case TargetOpcode::G_MERGE_VALUES: 1629 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1630 case TargetOpcode::G_UNMERGE_VALUES: 1631 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1632 case TargetOpcode::G_UADDO: 1633 case TargetOpcode::G_USUBO: { 1634 if (TypeIdx == 1) 1635 return UnableToLegalize; // TODO 1636 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1637 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1638 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1639 ? TargetOpcode::G_ADD 1640 : TargetOpcode::G_SUB; 1641 // Do the arithmetic in the larger type. 1642 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1643 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1644 APInt Mask = 1645 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1646 auto AndOp = MIRBuilder.buildAnd( 1647 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1648 // There is no overflow if the AndOp is the same as NewOp. 1649 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1650 // Now trunc the NewOp to the original result. 1651 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1652 MI.eraseFromParent(); 1653 return Legalized; 1654 } 1655 case TargetOpcode::G_CTTZ: 1656 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1657 case TargetOpcode::G_CTLZ: 1658 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1659 case TargetOpcode::G_CTPOP: { 1660 if (TypeIdx == 0) { 1661 Observer.changingInstr(MI); 1662 widenScalarDst(MI, WideTy, 0); 1663 Observer.changedInstr(MI); 1664 return Legalized; 1665 } 1666 1667 Register SrcReg = MI.getOperand(1).getReg(); 1668 1669 // First ZEXT the input. 1670 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1671 LLT CurTy = MRI.getType(SrcReg); 1672 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1673 // The count is the same in the larger type except if the original 1674 // value was zero. This can be handled by setting the bit just off 1675 // the top of the original type. 1676 auto TopBit = 1677 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1678 MIBSrc = MIRBuilder.buildOr( 1679 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1680 } 1681 1682 // Perform the operation at the larger size. 1683 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1684 // This is already the correct result for CTPOP and CTTZs 1685 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1686 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1687 // The correct result is NewOp - (Difference in widety and current ty). 1688 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1689 MIBNewOp = MIRBuilder.buildSub( 1690 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1691 } 1692 1693 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1694 MI.eraseFromParent(); 1695 return Legalized; 1696 } 1697 case TargetOpcode::G_BSWAP: { 1698 Observer.changingInstr(MI); 1699 Register DstReg = MI.getOperand(0).getReg(); 1700 1701 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1702 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1703 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1704 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1705 1706 MI.getOperand(0).setReg(DstExt); 1707 1708 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1709 1710 LLT Ty = MRI.getType(DstReg); 1711 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1712 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1713 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1714 1715 MIRBuilder.buildTrunc(DstReg, ShrReg); 1716 Observer.changedInstr(MI); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_BITREVERSE: { 1720 Observer.changingInstr(MI); 1721 1722 Register DstReg = MI.getOperand(0).getReg(); 1723 LLT Ty = MRI.getType(DstReg); 1724 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1725 1726 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1727 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1728 MI.getOperand(0).setReg(DstExt); 1729 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1730 1731 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1732 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1733 MIRBuilder.buildTrunc(DstReg, Shift); 1734 Observer.changedInstr(MI); 1735 return Legalized; 1736 } 1737 case TargetOpcode::G_FREEZE: 1738 Observer.changingInstr(MI); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 widenScalarDst(MI, WideTy); 1741 Observer.changedInstr(MI); 1742 return Legalized; 1743 1744 case TargetOpcode::G_ADD: 1745 case TargetOpcode::G_AND: 1746 case TargetOpcode::G_MUL: 1747 case TargetOpcode::G_OR: 1748 case TargetOpcode::G_XOR: 1749 case TargetOpcode::G_SUB: 1750 // Perform operation at larger width (any extension is fines here, high bits 1751 // don't affect the result) and then truncate the result back to the 1752 // original type. 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1755 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1756 widenScalarDst(MI, WideTy); 1757 Observer.changedInstr(MI); 1758 return Legalized; 1759 1760 case TargetOpcode::G_SHL: 1761 Observer.changingInstr(MI); 1762 1763 if (TypeIdx == 0) { 1764 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1765 widenScalarDst(MI, WideTy); 1766 } else { 1767 assert(TypeIdx == 1); 1768 // The "number of bits to shift" operand must preserve its value as an 1769 // unsigned integer: 1770 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1771 } 1772 1773 Observer.changedInstr(MI); 1774 return Legalized; 1775 1776 case TargetOpcode::G_SDIV: 1777 case TargetOpcode::G_SREM: 1778 case TargetOpcode::G_SMIN: 1779 case TargetOpcode::G_SMAX: 1780 Observer.changingInstr(MI); 1781 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1782 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1783 widenScalarDst(MI, WideTy); 1784 Observer.changedInstr(MI); 1785 return Legalized; 1786 1787 case TargetOpcode::G_ASHR: 1788 case TargetOpcode::G_LSHR: 1789 Observer.changingInstr(MI); 1790 1791 if (TypeIdx == 0) { 1792 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1793 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1794 1795 widenScalarSrc(MI, WideTy, 1, CvtOp); 1796 widenScalarDst(MI, WideTy); 1797 } else { 1798 assert(TypeIdx == 1); 1799 // The "number of bits to shift" operand must preserve its value as an 1800 // unsigned integer: 1801 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1802 } 1803 1804 Observer.changedInstr(MI); 1805 return Legalized; 1806 case TargetOpcode::G_UDIV: 1807 case TargetOpcode::G_UREM: 1808 case TargetOpcode::G_UMIN: 1809 case TargetOpcode::G_UMAX: 1810 Observer.changingInstr(MI); 1811 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1812 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1813 widenScalarDst(MI, WideTy); 1814 Observer.changedInstr(MI); 1815 return Legalized; 1816 1817 case TargetOpcode::G_SELECT: 1818 Observer.changingInstr(MI); 1819 if (TypeIdx == 0) { 1820 // Perform operation at larger width (any extension is fine here, high 1821 // bits don't affect the result) and then truncate the result back to the 1822 // original type. 1823 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1824 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1825 widenScalarDst(MI, WideTy); 1826 } else { 1827 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1828 // Explicit extension is required here since high bits affect the result. 1829 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1830 } 1831 Observer.changedInstr(MI); 1832 return Legalized; 1833 1834 case TargetOpcode::G_FPTOSI: 1835 case TargetOpcode::G_FPTOUI: 1836 Observer.changingInstr(MI); 1837 1838 if (TypeIdx == 0) 1839 widenScalarDst(MI, WideTy); 1840 else 1841 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1842 1843 Observer.changedInstr(MI); 1844 return Legalized; 1845 case TargetOpcode::G_SITOFP: 1846 if (TypeIdx != 1) 1847 return UnableToLegalize; 1848 Observer.changingInstr(MI); 1849 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1850 Observer.changedInstr(MI); 1851 return Legalized; 1852 1853 case TargetOpcode::G_UITOFP: 1854 if (TypeIdx != 1) 1855 return UnableToLegalize; 1856 Observer.changingInstr(MI); 1857 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1858 Observer.changedInstr(MI); 1859 return Legalized; 1860 1861 case TargetOpcode::G_LOAD: 1862 case TargetOpcode::G_SEXTLOAD: 1863 case TargetOpcode::G_ZEXTLOAD: 1864 Observer.changingInstr(MI); 1865 widenScalarDst(MI, WideTy); 1866 Observer.changedInstr(MI); 1867 return Legalized; 1868 1869 case TargetOpcode::G_STORE: { 1870 if (TypeIdx != 0) 1871 return UnableToLegalize; 1872 1873 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1874 if (!isPowerOf2_32(Ty.getSizeInBits())) 1875 return UnableToLegalize; 1876 1877 Observer.changingInstr(MI); 1878 1879 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1880 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1881 widenScalarSrc(MI, WideTy, 0, ExtType); 1882 1883 Observer.changedInstr(MI); 1884 return Legalized; 1885 } 1886 case TargetOpcode::G_CONSTANT: { 1887 MachineOperand &SrcMO = MI.getOperand(1); 1888 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1889 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1890 MRI.getType(MI.getOperand(0).getReg())); 1891 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1892 ExtOpc == TargetOpcode::G_ANYEXT) && 1893 "Illegal Extend"); 1894 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1895 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1896 ? SrcVal.sext(WideTy.getSizeInBits()) 1897 : SrcVal.zext(WideTy.getSizeInBits()); 1898 Observer.changingInstr(MI); 1899 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1900 1901 widenScalarDst(MI, WideTy); 1902 Observer.changedInstr(MI); 1903 return Legalized; 1904 } 1905 case TargetOpcode::G_FCONSTANT: { 1906 MachineOperand &SrcMO = MI.getOperand(1); 1907 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1908 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1909 bool LosesInfo; 1910 switch (WideTy.getSizeInBits()) { 1911 case 32: 1912 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1913 &LosesInfo); 1914 break; 1915 case 64: 1916 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1917 &LosesInfo); 1918 break; 1919 default: 1920 return UnableToLegalize; 1921 } 1922 1923 assert(!LosesInfo && "extend should always be lossless"); 1924 1925 Observer.changingInstr(MI); 1926 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1927 1928 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1929 Observer.changedInstr(MI); 1930 return Legalized; 1931 } 1932 case TargetOpcode::G_IMPLICIT_DEF: { 1933 Observer.changingInstr(MI); 1934 widenScalarDst(MI, WideTy); 1935 Observer.changedInstr(MI); 1936 return Legalized; 1937 } 1938 case TargetOpcode::G_BRCOND: 1939 Observer.changingInstr(MI); 1940 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1941 Observer.changedInstr(MI); 1942 return Legalized; 1943 1944 case TargetOpcode::G_FCMP: 1945 Observer.changingInstr(MI); 1946 if (TypeIdx == 0) 1947 widenScalarDst(MI, WideTy); 1948 else { 1949 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1950 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1951 } 1952 Observer.changedInstr(MI); 1953 return Legalized; 1954 1955 case TargetOpcode::G_ICMP: 1956 Observer.changingInstr(MI); 1957 if (TypeIdx == 0) 1958 widenScalarDst(MI, WideTy); 1959 else { 1960 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1961 MI.getOperand(1).getPredicate())) 1962 ? TargetOpcode::G_SEXT 1963 : TargetOpcode::G_ZEXT; 1964 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1965 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1966 } 1967 Observer.changedInstr(MI); 1968 return Legalized; 1969 1970 case TargetOpcode::G_PTR_ADD: 1971 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1972 Observer.changingInstr(MI); 1973 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1974 Observer.changedInstr(MI); 1975 return Legalized; 1976 1977 case TargetOpcode::G_PHI: { 1978 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1979 1980 Observer.changingInstr(MI); 1981 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1982 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1983 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1984 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1985 } 1986 1987 MachineBasicBlock &MBB = *MI.getParent(); 1988 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1989 widenScalarDst(MI, WideTy); 1990 Observer.changedInstr(MI); 1991 return Legalized; 1992 } 1993 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1994 if (TypeIdx == 0) { 1995 Register VecReg = MI.getOperand(1).getReg(); 1996 LLT VecTy = MRI.getType(VecReg); 1997 Observer.changingInstr(MI); 1998 1999 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2000 WideTy.getSizeInBits()), 2001 1, TargetOpcode::G_SEXT); 2002 2003 widenScalarDst(MI, WideTy, 0); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 } 2007 2008 if (TypeIdx != 2) 2009 return UnableToLegalize; 2010 Observer.changingInstr(MI); 2011 // TODO: Probably should be zext 2012 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2013 Observer.changedInstr(MI); 2014 return Legalized; 2015 } 2016 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2017 if (TypeIdx == 1) { 2018 Observer.changingInstr(MI); 2019 2020 Register VecReg = MI.getOperand(1).getReg(); 2021 LLT VecTy = MRI.getType(VecReg); 2022 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2023 2024 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2025 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2026 widenScalarDst(MI, WideVecTy, 0); 2027 Observer.changedInstr(MI); 2028 return Legalized; 2029 } 2030 2031 if (TypeIdx == 2) { 2032 Observer.changingInstr(MI); 2033 // TODO: Probably should be zext 2034 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2035 Observer.changedInstr(MI); 2036 } 2037 2038 return Legalized; 2039 } 2040 case TargetOpcode::G_FADD: 2041 case TargetOpcode::G_FMUL: 2042 case TargetOpcode::G_FSUB: 2043 case TargetOpcode::G_FMA: 2044 case TargetOpcode::G_FMAD: 2045 case TargetOpcode::G_FNEG: 2046 case TargetOpcode::G_FABS: 2047 case TargetOpcode::G_FCANONICALIZE: 2048 case TargetOpcode::G_FMINNUM: 2049 case TargetOpcode::G_FMAXNUM: 2050 case TargetOpcode::G_FMINNUM_IEEE: 2051 case TargetOpcode::G_FMAXNUM_IEEE: 2052 case TargetOpcode::G_FMINIMUM: 2053 case TargetOpcode::G_FMAXIMUM: 2054 case TargetOpcode::G_FDIV: 2055 case TargetOpcode::G_FREM: 2056 case TargetOpcode::G_FCEIL: 2057 case TargetOpcode::G_FFLOOR: 2058 case TargetOpcode::G_FCOS: 2059 case TargetOpcode::G_FSIN: 2060 case TargetOpcode::G_FLOG10: 2061 case TargetOpcode::G_FLOG: 2062 case TargetOpcode::G_FLOG2: 2063 case TargetOpcode::G_FRINT: 2064 case TargetOpcode::G_FNEARBYINT: 2065 case TargetOpcode::G_FSQRT: 2066 case TargetOpcode::G_FEXP: 2067 case TargetOpcode::G_FEXP2: 2068 case TargetOpcode::G_FPOW: 2069 case TargetOpcode::G_INTRINSIC_TRUNC: 2070 case TargetOpcode::G_INTRINSIC_ROUND: 2071 assert(TypeIdx == 0); 2072 Observer.changingInstr(MI); 2073 2074 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2075 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2076 2077 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2078 Observer.changedInstr(MI); 2079 return Legalized; 2080 case TargetOpcode::G_INTTOPTR: 2081 if (TypeIdx != 1) 2082 return UnableToLegalize; 2083 2084 Observer.changingInstr(MI); 2085 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2086 Observer.changedInstr(MI); 2087 return Legalized; 2088 case TargetOpcode::G_PTRTOINT: 2089 if (TypeIdx != 0) 2090 return UnableToLegalize; 2091 2092 Observer.changingInstr(MI); 2093 widenScalarDst(MI, WideTy, 0); 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 case TargetOpcode::G_BUILD_VECTOR: { 2097 Observer.changingInstr(MI); 2098 2099 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2100 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2101 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2102 2103 // Avoid changing the result vector type if the source element type was 2104 // requested. 2105 if (TypeIdx == 1) { 2106 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2107 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2108 } else { 2109 widenScalarDst(MI, WideTy, 0); 2110 } 2111 2112 Observer.changedInstr(MI); 2113 return Legalized; 2114 } 2115 case TargetOpcode::G_SEXT_INREG: 2116 if (TypeIdx != 0) 2117 return UnableToLegalize; 2118 2119 Observer.changingInstr(MI); 2120 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2121 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2122 Observer.changedInstr(MI); 2123 return Legalized; 2124 } 2125 } 2126 2127 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2128 MachineIRBuilder &B, Register Src, LLT Ty) { 2129 auto Unmerge = B.buildUnmerge(Ty, Src); 2130 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2131 Pieces.push_back(Unmerge.getReg(I)); 2132 } 2133 2134 LegalizerHelper::LegalizeResult 2135 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2136 Register Dst = MI.getOperand(0).getReg(); 2137 Register Src = MI.getOperand(1).getReg(); 2138 LLT DstTy = MRI.getType(Dst); 2139 LLT SrcTy = MRI.getType(Src); 2140 2141 if (SrcTy.isVector() && !DstTy.isVector()) { 2142 SmallVector<Register, 8> SrcRegs; 2143 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2144 MIRBuilder.buildMerge(Dst, SrcRegs); 2145 MI.eraseFromParent(); 2146 return Legalized; 2147 } 2148 2149 if (DstTy.isVector() && !SrcTy.isVector()) { 2150 SmallVector<Register, 8> SrcRegs; 2151 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2152 MIRBuilder.buildMerge(Dst, SrcRegs); 2153 MI.eraseFromParent(); 2154 return Legalized; 2155 } 2156 2157 return UnableToLegalize; 2158 } 2159 2160 LegalizerHelper::LegalizeResult 2161 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2162 MIRBuilder.setInstr(MI); 2163 2164 switch (MI.getOpcode()) { 2165 case TargetOpcode::G_LOAD: { 2166 if (TypeIdx != 0) 2167 return UnableToLegalize; 2168 2169 Observer.changingInstr(MI); 2170 bitcastDst(MI, CastTy, 0); 2171 Observer.changedInstr(MI); 2172 return Legalized; 2173 } 2174 case TargetOpcode::G_STORE: { 2175 if (TypeIdx != 0) 2176 return UnableToLegalize; 2177 2178 Observer.changingInstr(MI); 2179 bitcastSrc(MI, CastTy, 0); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_SELECT: { 2184 if (TypeIdx != 0) 2185 return UnableToLegalize; 2186 2187 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2188 LLVM_DEBUG( 2189 dbgs() << "bitcast action not implemented for vector select\n"); 2190 return UnableToLegalize; 2191 } 2192 2193 Observer.changingInstr(MI); 2194 bitcastSrc(MI, CastTy, 2); 2195 bitcastSrc(MI, CastTy, 3); 2196 bitcastDst(MI, CastTy, 0); 2197 Observer.changedInstr(MI); 2198 return Legalized; 2199 } 2200 case TargetOpcode::G_AND: 2201 case TargetOpcode::G_OR: 2202 case TargetOpcode::G_XOR: { 2203 Observer.changingInstr(MI); 2204 bitcastSrc(MI, CastTy, 1); 2205 bitcastSrc(MI, CastTy, 2); 2206 bitcastDst(MI, CastTy, 0); 2207 Observer.changedInstr(MI); 2208 return Legalized; 2209 } 2210 default: 2211 return UnableToLegalize; 2212 } 2213 } 2214 2215 LegalizerHelper::LegalizeResult 2216 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2217 using namespace TargetOpcode; 2218 MIRBuilder.setInstrAndDebugLoc(MI); 2219 2220 switch(MI.getOpcode()) { 2221 default: 2222 return UnableToLegalize; 2223 case TargetOpcode::G_BITCAST: 2224 return lowerBitcast(MI); 2225 case TargetOpcode::G_SREM: 2226 case TargetOpcode::G_UREM: { 2227 auto Quot = 2228 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2229 {MI.getOperand(1), MI.getOperand(2)}); 2230 2231 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2232 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2233 MI.eraseFromParent(); 2234 return Legalized; 2235 } 2236 case TargetOpcode::G_SADDO: 2237 case TargetOpcode::G_SSUBO: 2238 return lowerSADDO_SSUBO(MI); 2239 case TargetOpcode::G_SMULO: 2240 case TargetOpcode::G_UMULO: { 2241 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2242 // result. 2243 Register Res = MI.getOperand(0).getReg(); 2244 Register Overflow = MI.getOperand(1).getReg(); 2245 Register LHS = MI.getOperand(2).getReg(); 2246 Register RHS = MI.getOperand(3).getReg(); 2247 2248 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2249 ? TargetOpcode::G_SMULH 2250 : TargetOpcode::G_UMULH; 2251 2252 Observer.changingInstr(MI); 2253 const auto &TII = MIRBuilder.getTII(); 2254 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2255 MI.RemoveOperand(1); 2256 Observer.changedInstr(MI); 2257 2258 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2259 2260 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2261 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2262 2263 // For *signed* multiply, overflow is detected by checking: 2264 // (hi != (lo >> bitwidth-1)) 2265 if (Opcode == TargetOpcode::G_SMULH) { 2266 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2267 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2268 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2269 } else { 2270 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2271 } 2272 return Legalized; 2273 } 2274 case TargetOpcode::G_FNEG: { 2275 // TODO: Handle vector types once we are able to 2276 // represent them. 2277 if (Ty.isVector()) 2278 return UnableToLegalize; 2279 Register Res = MI.getOperand(0).getReg(); 2280 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2281 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2282 if (!ZeroTy) 2283 return UnableToLegalize; 2284 ConstantFP &ZeroForNegation = 2285 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2286 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2287 Register SubByReg = MI.getOperand(1).getReg(); 2288 Register ZeroReg = Zero.getReg(0); 2289 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2290 MI.eraseFromParent(); 2291 return Legalized; 2292 } 2293 case TargetOpcode::G_FSUB: { 2294 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2295 // First, check if G_FNEG is marked as Lower. If so, we may 2296 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2297 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2298 return UnableToLegalize; 2299 Register Res = MI.getOperand(0).getReg(); 2300 Register LHS = MI.getOperand(1).getReg(); 2301 Register RHS = MI.getOperand(2).getReg(); 2302 Register Neg = MRI.createGenericVirtualRegister(Ty); 2303 MIRBuilder.buildFNeg(Neg, RHS); 2304 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2305 MI.eraseFromParent(); 2306 return Legalized; 2307 } 2308 case TargetOpcode::G_FMAD: 2309 return lowerFMad(MI); 2310 case TargetOpcode::G_FFLOOR: 2311 return lowerFFloor(MI); 2312 case TargetOpcode::G_INTRINSIC_ROUND: 2313 return lowerIntrinsicRound(MI); 2314 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2315 Register OldValRes = MI.getOperand(0).getReg(); 2316 Register SuccessRes = MI.getOperand(1).getReg(); 2317 Register Addr = MI.getOperand(2).getReg(); 2318 Register CmpVal = MI.getOperand(3).getReg(); 2319 Register NewVal = MI.getOperand(4).getReg(); 2320 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2321 **MI.memoperands_begin()); 2322 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2323 MI.eraseFromParent(); 2324 return Legalized; 2325 } 2326 case TargetOpcode::G_LOAD: 2327 case TargetOpcode::G_SEXTLOAD: 2328 case TargetOpcode::G_ZEXTLOAD: { 2329 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2330 Register DstReg = MI.getOperand(0).getReg(); 2331 Register PtrReg = MI.getOperand(1).getReg(); 2332 LLT DstTy = MRI.getType(DstReg); 2333 auto &MMO = **MI.memoperands_begin(); 2334 2335 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2336 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2337 // This load needs splitting into power of 2 sized loads. 2338 if (DstTy.isVector()) 2339 return UnableToLegalize; 2340 if (isPowerOf2_32(DstTy.getSizeInBits())) 2341 return UnableToLegalize; // Don't know what we're being asked to do. 2342 2343 // Our strategy here is to generate anyextending loads for the smaller 2344 // types up to next power-2 result type, and then combine the two larger 2345 // result values together, before truncating back down to the non-pow-2 2346 // type. 2347 // E.g. v1 = i24 load => 2348 // v2 = i32 zextload (2 byte) 2349 // v3 = i32 load (1 byte) 2350 // v4 = i32 shl v3, 16 2351 // v5 = i32 or v4, v2 2352 // v1 = i24 trunc v5 2353 // By doing this we generate the correct truncate which should get 2354 // combined away as an artifact with a matching extend. 2355 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2356 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2357 2358 MachineFunction &MF = MIRBuilder.getMF(); 2359 MachineMemOperand *LargeMMO = 2360 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2361 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2362 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2363 2364 LLT PtrTy = MRI.getType(PtrReg); 2365 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2366 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2367 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2368 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2369 auto LargeLoad = MIRBuilder.buildLoadInstr( 2370 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2371 2372 auto OffsetCst = MIRBuilder.buildConstant( 2373 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2374 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2375 auto SmallPtr = 2376 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2377 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2378 *SmallMMO); 2379 2380 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2381 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2382 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2383 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2384 MI.eraseFromParent(); 2385 return Legalized; 2386 } 2387 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2388 MI.eraseFromParent(); 2389 return Legalized; 2390 } 2391 2392 if (DstTy.isScalar()) { 2393 Register TmpReg = 2394 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2395 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2396 switch (MI.getOpcode()) { 2397 default: 2398 llvm_unreachable("Unexpected opcode"); 2399 case TargetOpcode::G_LOAD: 2400 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2401 break; 2402 case TargetOpcode::G_SEXTLOAD: 2403 MIRBuilder.buildSExt(DstReg, TmpReg); 2404 break; 2405 case TargetOpcode::G_ZEXTLOAD: 2406 MIRBuilder.buildZExt(DstReg, TmpReg); 2407 break; 2408 } 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 2413 return UnableToLegalize; 2414 } 2415 case TargetOpcode::G_STORE: { 2416 // Lower a non-power of 2 store into multiple pow-2 stores. 2417 // E.g. split an i24 store into an i16 store + i8 store. 2418 // We do this by first extending the stored value to the next largest power 2419 // of 2 type, and then using truncating stores to store the components. 2420 // By doing this, likewise with G_LOAD, generate an extend that can be 2421 // artifact-combined away instead of leaving behind extracts. 2422 Register SrcReg = MI.getOperand(0).getReg(); 2423 Register PtrReg = MI.getOperand(1).getReg(); 2424 LLT SrcTy = MRI.getType(SrcReg); 2425 MachineMemOperand &MMO = **MI.memoperands_begin(); 2426 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2427 return UnableToLegalize; 2428 if (SrcTy.isVector()) 2429 return UnableToLegalize; 2430 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2431 return UnableToLegalize; // Don't know what we're being asked to do. 2432 2433 // Extend to the next pow-2. 2434 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2435 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2436 2437 // Obtain the smaller value by shifting away the larger value. 2438 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2439 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2440 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2441 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2442 2443 // Generate the PtrAdd and truncating stores. 2444 LLT PtrTy = MRI.getType(PtrReg); 2445 auto OffsetCst = MIRBuilder.buildConstant( 2446 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2447 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2448 auto SmallPtr = 2449 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2450 2451 MachineFunction &MF = MIRBuilder.getMF(); 2452 MachineMemOperand *LargeMMO = 2453 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2454 MachineMemOperand *SmallMMO = 2455 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2456 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2457 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2458 MI.eraseFromParent(); 2459 return Legalized; 2460 } 2461 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2462 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2463 case TargetOpcode::G_CTLZ: 2464 case TargetOpcode::G_CTTZ: 2465 case TargetOpcode::G_CTPOP: 2466 return lowerBitCount(MI, TypeIdx, Ty); 2467 case G_UADDO: { 2468 Register Res = MI.getOperand(0).getReg(); 2469 Register CarryOut = MI.getOperand(1).getReg(); 2470 Register LHS = MI.getOperand(2).getReg(); 2471 Register RHS = MI.getOperand(3).getReg(); 2472 2473 MIRBuilder.buildAdd(Res, LHS, RHS); 2474 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2475 2476 MI.eraseFromParent(); 2477 return Legalized; 2478 } 2479 case G_UADDE: { 2480 Register Res = MI.getOperand(0).getReg(); 2481 Register CarryOut = MI.getOperand(1).getReg(); 2482 Register LHS = MI.getOperand(2).getReg(); 2483 Register RHS = MI.getOperand(3).getReg(); 2484 Register CarryIn = MI.getOperand(4).getReg(); 2485 LLT Ty = MRI.getType(Res); 2486 2487 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2488 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2489 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2490 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2491 2492 MI.eraseFromParent(); 2493 return Legalized; 2494 } 2495 case G_USUBO: { 2496 Register Res = MI.getOperand(0).getReg(); 2497 Register BorrowOut = MI.getOperand(1).getReg(); 2498 Register LHS = MI.getOperand(2).getReg(); 2499 Register RHS = MI.getOperand(3).getReg(); 2500 2501 MIRBuilder.buildSub(Res, LHS, RHS); 2502 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2503 2504 MI.eraseFromParent(); 2505 return Legalized; 2506 } 2507 case G_USUBE: { 2508 Register Res = MI.getOperand(0).getReg(); 2509 Register BorrowOut = MI.getOperand(1).getReg(); 2510 Register LHS = MI.getOperand(2).getReg(); 2511 Register RHS = MI.getOperand(3).getReg(); 2512 Register BorrowIn = MI.getOperand(4).getReg(); 2513 const LLT CondTy = MRI.getType(BorrowOut); 2514 const LLT Ty = MRI.getType(Res); 2515 2516 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2517 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2518 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2519 2520 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2521 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2522 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2523 2524 MI.eraseFromParent(); 2525 return Legalized; 2526 } 2527 case G_UITOFP: 2528 return lowerUITOFP(MI, TypeIdx, Ty); 2529 case G_SITOFP: 2530 return lowerSITOFP(MI, TypeIdx, Ty); 2531 case G_FPTOUI: 2532 return lowerFPTOUI(MI, TypeIdx, Ty); 2533 case G_FPTOSI: 2534 return lowerFPTOSI(MI); 2535 case G_FPTRUNC: 2536 return lowerFPTRUNC(MI, TypeIdx, Ty); 2537 case G_SMIN: 2538 case G_SMAX: 2539 case G_UMIN: 2540 case G_UMAX: 2541 return lowerMinMax(MI, TypeIdx, Ty); 2542 case G_FCOPYSIGN: 2543 return lowerFCopySign(MI, TypeIdx, Ty); 2544 case G_FMINNUM: 2545 case G_FMAXNUM: 2546 return lowerFMinNumMaxNum(MI); 2547 case G_UNMERGE_VALUES: 2548 return lowerUnmergeValues(MI); 2549 case TargetOpcode::G_SEXT_INREG: { 2550 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2551 int64_t SizeInBits = MI.getOperand(2).getImm(); 2552 2553 Register DstReg = MI.getOperand(0).getReg(); 2554 Register SrcReg = MI.getOperand(1).getReg(); 2555 LLT DstTy = MRI.getType(DstReg); 2556 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2557 2558 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2559 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2560 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2561 MI.eraseFromParent(); 2562 return Legalized; 2563 } 2564 case G_SHUFFLE_VECTOR: 2565 return lowerShuffleVector(MI); 2566 case G_DYN_STACKALLOC: 2567 return lowerDynStackAlloc(MI); 2568 case G_EXTRACT: 2569 return lowerExtract(MI); 2570 case G_INSERT: 2571 return lowerInsert(MI); 2572 case G_BSWAP: 2573 return lowerBswap(MI); 2574 case G_BITREVERSE: 2575 return lowerBitreverse(MI); 2576 case G_READ_REGISTER: 2577 case G_WRITE_REGISTER: 2578 return lowerReadWriteRegister(MI); 2579 } 2580 } 2581 2582 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2583 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2584 SmallVector<Register, 2> DstRegs; 2585 2586 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2587 Register DstReg = MI.getOperand(0).getReg(); 2588 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2589 int NumParts = Size / NarrowSize; 2590 // FIXME: Don't know how to handle the situation where the small vectors 2591 // aren't all the same size yet. 2592 if (Size % NarrowSize != 0) 2593 return UnableToLegalize; 2594 2595 for (int i = 0; i < NumParts; ++i) { 2596 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2597 MIRBuilder.buildUndef(TmpReg); 2598 DstRegs.push_back(TmpReg); 2599 } 2600 2601 if (NarrowTy.isVector()) 2602 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2603 else 2604 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2605 2606 MI.eraseFromParent(); 2607 return Legalized; 2608 } 2609 2610 // Handle splitting vector operations which need to have the same number of 2611 // elements in each type index, but each type index may have a different element 2612 // type. 2613 // 2614 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2615 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2616 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2617 // 2618 // Also handles some irregular breakdown cases, e.g. 2619 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2620 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2621 // s64 = G_SHL s64, s32 2622 LegalizerHelper::LegalizeResult 2623 LegalizerHelper::fewerElementsVectorMultiEltType( 2624 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2625 if (TypeIdx != 0) 2626 return UnableToLegalize; 2627 2628 const LLT NarrowTy0 = NarrowTyArg; 2629 const unsigned NewNumElts = 2630 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2631 2632 const Register DstReg = MI.getOperand(0).getReg(); 2633 LLT DstTy = MRI.getType(DstReg); 2634 LLT LeftoverTy0; 2635 2636 // All of the operands need to have the same number of elements, so if we can 2637 // determine a type breakdown for the result type, we can for all of the 2638 // source types. 2639 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2640 if (NumParts < 0) 2641 return UnableToLegalize; 2642 2643 SmallVector<MachineInstrBuilder, 4> NewInsts; 2644 2645 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2646 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2647 2648 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2649 LLT LeftoverTy; 2650 Register SrcReg = MI.getOperand(I).getReg(); 2651 LLT SrcTyI = MRI.getType(SrcReg); 2652 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2653 LLT LeftoverTyI; 2654 2655 // Split this operand into the requested typed registers, and any leftover 2656 // required to reproduce the original type. 2657 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2658 LeftoverRegs)) 2659 return UnableToLegalize; 2660 2661 if (I == 1) { 2662 // For the first operand, create an instruction for each part and setup 2663 // the result. 2664 for (Register PartReg : PartRegs) { 2665 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2666 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2667 .addDef(PartDstReg) 2668 .addUse(PartReg)); 2669 DstRegs.push_back(PartDstReg); 2670 } 2671 2672 for (Register LeftoverReg : LeftoverRegs) { 2673 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2674 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2675 .addDef(PartDstReg) 2676 .addUse(LeftoverReg)); 2677 LeftoverDstRegs.push_back(PartDstReg); 2678 } 2679 } else { 2680 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2681 2682 // Add the newly created operand splits to the existing instructions. The 2683 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2684 // pieces. 2685 unsigned InstCount = 0; 2686 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2687 NewInsts[InstCount++].addUse(PartRegs[J]); 2688 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2689 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2690 } 2691 2692 PartRegs.clear(); 2693 LeftoverRegs.clear(); 2694 } 2695 2696 // Insert the newly built operations and rebuild the result register. 2697 for (auto &MIB : NewInsts) 2698 MIRBuilder.insertInstr(MIB); 2699 2700 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2701 2702 MI.eraseFromParent(); 2703 return Legalized; 2704 } 2705 2706 LegalizerHelper::LegalizeResult 2707 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2708 LLT NarrowTy) { 2709 if (TypeIdx != 0) 2710 return UnableToLegalize; 2711 2712 Register DstReg = MI.getOperand(0).getReg(); 2713 Register SrcReg = MI.getOperand(1).getReg(); 2714 LLT DstTy = MRI.getType(DstReg); 2715 LLT SrcTy = MRI.getType(SrcReg); 2716 2717 LLT NarrowTy0 = NarrowTy; 2718 LLT NarrowTy1; 2719 unsigned NumParts; 2720 2721 if (NarrowTy.isVector()) { 2722 // Uneven breakdown not handled. 2723 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2724 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2725 return UnableToLegalize; 2726 2727 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2728 } else { 2729 NumParts = DstTy.getNumElements(); 2730 NarrowTy1 = SrcTy.getElementType(); 2731 } 2732 2733 SmallVector<Register, 4> SrcRegs, DstRegs; 2734 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2735 2736 for (unsigned I = 0; I < NumParts; ++I) { 2737 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2738 MachineInstr *NewInst = 2739 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2740 2741 NewInst->setFlags(MI.getFlags()); 2742 DstRegs.push_back(DstReg); 2743 } 2744 2745 if (NarrowTy.isVector()) 2746 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2747 else 2748 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2749 2750 MI.eraseFromParent(); 2751 return Legalized; 2752 } 2753 2754 LegalizerHelper::LegalizeResult 2755 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2756 LLT NarrowTy) { 2757 Register DstReg = MI.getOperand(0).getReg(); 2758 Register Src0Reg = MI.getOperand(2).getReg(); 2759 LLT DstTy = MRI.getType(DstReg); 2760 LLT SrcTy = MRI.getType(Src0Reg); 2761 2762 unsigned NumParts; 2763 LLT NarrowTy0, NarrowTy1; 2764 2765 if (TypeIdx == 0) { 2766 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2767 unsigned OldElts = DstTy.getNumElements(); 2768 2769 NarrowTy0 = NarrowTy; 2770 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2771 NarrowTy1 = NarrowTy.isVector() ? 2772 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2773 SrcTy.getElementType(); 2774 2775 } else { 2776 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2777 unsigned OldElts = SrcTy.getNumElements(); 2778 2779 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2780 NarrowTy.getNumElements(); 2781 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2782 DstTy.getScalarSizeInBits()); 2783 NarrowTy1 = NarrowTy; 2784 } 2785 2786 // FIXME: Don't know how to handle the situation where the small vectors 2787 // aren't all the same size yet. 2788 if (NarrowTy1.isVector() && 2789 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2790 return UnableToLegalize; 2791 2792 CmpInst::Predicate Pred 2793 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2794 2795 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2796 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2797 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2798 2799 for (unsigned I = 0; I < NumParts; ++I) { 2800 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2801 DstRegs.push_back(DstReg); 2802 2803 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2804 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2805 else { 2806 MachineInstr *NewCmp 2807 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2808 NewCmp->setFlags(MI.getFlags()); 2809 } 2810 } 2811 2812 if (NarrowTy1.isVector()) 2813 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2814 else 2815 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2816 2817 MI.eraseFromParent(); 2818 return Legalized; 2819 } 2820 2821 LegalizerHelper::LegalizeResult 2822 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2823 LLT NarrowTy) { 2824 Register DstReg = MI.getOperand(0).getReg(); 2825 Register CondReg = MI.getOperand(1).getReg(); 2826 2827 unsigned NumParts = 0; 2828 LLT NarrowTy0, NarrowTy1; 2829 2830 LLT DstTy = MRI.getType(DstReg); 2831 LLT CondTy = MRI.getType(CondReg); 2832 unsigned Size = DstTy.getSizeInBits(); 2833 2834 assert(TypeIdx == 0 || CondTy.isVector()); 2835 2836 if (TypeIdx == 0) { 2837 NarrowTy0 = NarrowTy; 2838 NarrowTy1 = CondTy; 2839 2840 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2841 // FIXME: Don't know how to handle the situation where the small vectors 2842 // aren't all the same size yet. 2843 if (Size % NarrowSize != 0) 2844 return UnableToLegalize; 2845 2846 NumParts = Size / NarrowSize; 2847 2848 // Need to break down the condition type 2849 if (CondTy.isVector()) { 2850 if (CondTy.getNumElements() == NumParts) 2851 NarrowTy1 = CondTy.getElementType(); 2852 else 2853 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2854 CondTy.getScalarSizeInBits()); 2855 } 2856 } else { 2857 NumParts = CondTy.getNumElements(); 2858 if (NarrowTy.isVector()) { 2859 // TODO: Handle uneven breakdown. 2860 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2861 return UnableToLegalize; 2862 2863 return UnableToLegalize; 2864 } else { 2865 NarrowTy0 = DstTy.getElementType(); 2866 NarrowTy1 = NarrowTy; 2867 } 2868 } 2869 2870 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2871 if (CondTy.isVector()) 2872 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2873 2874 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2875 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2876 2877 for (unsigned i = 0; i < NumParts; ++i) { 2878 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2879 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2880 Src1Regs[i], Src2Regs[i]); 2881 DstRegs.push_back(DstReg); 2882 } 2883 2884 if (NarrowTy0.isVector()) 2885 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2886 else 2887 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2888 2889 MI.eraseFromParent(); 2890 return Legalized; 2891 } 2892 2893 LegalizerHelper::LegalizeResult 2894 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2895 LLT NarrowTy) { 2896 const Register DstReg = MI.getOperand(0).getReg(); 2897 LLT PhiTy = MRI.getType(DstReg); 2898 LLT LeftoverTy; 2899 2900 // All of the operands need to have the same number of elements, so if we can 2901 // determine a type breakdown for the result type, we can for all of the 2902 // source types. 2903 int NumParts, NumLeftover; 2904 std::tie(NumParts, NumLeftover) 2905 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2906 if (NumParts < 0) 2907 return UnableToLegalize; 2908 2909 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2910 SmallVector<MachineInstrBuilder, 4> NewInsts; 2911 2912 const int TotalNumParts = NumParts + NumLeftover; 2913 2914 // Insert the new phis in the result block first. 2915 for (int I = 0; I != TotalNumParts; ++I) { 2916 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2917 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2918 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2919 .addDef(PartDstReg)); 2920 if (I < NumParts) 2921 DstRegs.push_back(PartDstReg); 2922 else 2923 LeftoverDstRegs.push_back(PartDstReg); 2924 } 2925 2926 MachineBasicBlock *MBB = MI.getParent(); 2927 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2928 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2929 2930 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2931 2932 // Insert code to extract the incoming values in each predecessor block. 2933 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2934 PartRegs.clear(); 2935 LeftoverRegs.clear(); 2936 2937 Register SrcReg = MI.getOperand(I).getReg(); 2938 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2939 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2940 2941 LLT Unused; 2942 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2943 LeftoverRegs)) 2944 return UnableToLegalize; 2945 2946 // Add the newly created operand splits to the existing instructions. The 2947 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2948 // pieces. 2949 for (int J = 0; J != TotalNumParts; ++J) { 2950 MachineInstrBuilder MIB = NewInsts[J]; 2951 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2952 MIB.addMBB(&OpMBB); 2953 } 2954 } 2955 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 2960 LegalizerHelper::LegalizeResult 2961 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2962 unsigned TypeIdx, 2963 LLT NarrowTy) { 2964 if (TypeIdx != 1) 2965 return UnableToLegalize; 2966 2967 const int NumDst = MI.getNumOperands() - 1; 2968 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2969 LLT SrcTy = MRI.getType(SrcReg); 2970 2971 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2972 2973 // TODO: Create sequence of extracts. 2974 if (DstTy == NarrowTy) 2975 return UnableToLegalize; 2976 2977 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2978 if (DstTy == GCDTy) { 2979 // This would just be a copy of the same unmerge. 2980 // TODO: Create extracts, pad with undef and create intermediate merges. 2981 return UnableToLegalize; 2982 } 2983 2984 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2985 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2986 const int PartsPerUnmerge = NumDst / NumUnmerge; 2987 2988 for (int I = 0; I != NumUnmerge; ++I) { 2989 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2990 2991 for (int J = 0; J != PartsPerUnmerge; ++J) 2992 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2993 MIB.addUse(Unmerge.getReg(I)); 2994 } 2995 2996 MI.eraseFromParent(); 2997 return Legalized; 2998 } 2999 3000 LegalizerHelper::LegalizeResult 3001 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3002 unsigned TypeIdx, 3003 LLT NarrowTy) { 3004 assert(TypeIdx == 0 && "not a vector type index"); 3005 Register DstReg = MI.getOperand(0).getReg(); 3006 LLT DstTy = MRI.getType(DstReg); 3007 LLT SrcTy = DstTy.getElementType(); 3008 3009 int DstNumElts = DstTy.getNumElements(); 3010 int NarrowNumElts = NarrowTy.getNumElements(); 3011 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3012 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3013 3014 SmallVector<Register, 8> ConcatOps; 3015 SmallVector<Register, 8> SubBuildVector; 3016 3017 Register UndefReg; 3018 if (WidenedDstTy != DstTy) 3019 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3020 3021 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3022 // necessary. 3023 // 3024 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3025 // -> <2 x s16> 3026 // 3027 // %4:_(s16) = G_IMPLICIT_DEF 3028 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3029 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3030 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3031 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3032 for (int I = 0; I != NumConcat; ++I) { 3033 for (int J = 0; J != NarrowNumElts; ++J) { 3034 int SrcIdx = NarrowNumElts * I + J; 3035 3036 if (SrcIdx < DstNumElts) { 3037 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3038 SubBuildVector.push_back(SrcReg); 3039 } else 3040 SubBuildVector.push_back(UndefReg); 3041 } 3042 3043 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3044 ConcatOps.push_back(BuildVec.getReg(0)); 3045 SubBuildVector.clear(); 3046 } 3047 3048 if (DstTy == WidenedDstTy) 3049 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3050 else { 3051 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3052 MIRBuilder.buildExtract(DstReg, Concat, 0); 3053 } 3054 3055 MI.eraseFromParent(); 3056 return Legalized; 3057 } 3058 3059 LegalizerHelper::LegalizeResult 3060 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3061 LLT NarrowTy) { 3062 // FIXME: Don't know how to handle secondary types yet. 3063 if (TypeIdx != 0) 3064 return UnableToLegalize; 3065 3066 MachineMemOperand *MMO = *MI.memoperands_begin(); 3067 3068 // This implementation doesn't work for atomics. Give up instead of doing 3069 // something invalid. 3070 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3071 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3072 return UnableToLegalize; 3073 3074 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3075 Register ValReg = MI.getOperand(0).getReg(); 3076 Register AddrReg = MI.getOperand(1).getReg(); 3077 LLT ValTy = MRI.getType(ValReg); 3078 3079 // FIXME: Do we need a distinct NarrowMemory legalize action? 3080 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3081 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3082 return UnableToLegalize; 3083 } 3084 3085 int NumParts = -1; 3086 int NumLeftover = -1; 3087 LLT LeftoverTy; 3088 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3089 if (IsLoad) { 3090 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3091 } else { 3092 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3093 NarrowLeftoverRegs)) { 3094 NumParts = NarrowRegs.size(); 3095 NumLeftover = NarrowLeftoverRegs.size(); 3096 } 3097 } 3098 3099 if (NumParts == -1) 3100 return UnableToLegalize; 3101 3102 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3103 3104 unsigned TotalSize = ValTy.getSizeInBits(); 3105 3106 // Split the load/store into PartTy sized pieces starting at Offset. If this 3107 // is a load, return the new registers in ValRegs. For a store, each elements 3108 // of ValRegs should be PartTy. Returns the next offset that needs to be 3109 // handled. 3110 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3111 unsigned Offset) -> unsigned { 3112 MachineFunction &MF = MIRBuilder.getMF(); 3113 unsigned PartSize = PartTy.getSizeInBits(); 3114 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3115 Offset += PartSize, ++Idx) { 3116 unsigned ByteSize = PartSize / 8; 3117 unsigned ByteOffset = Offset / 8; 3118 Register NewAddrReg; 3119 3120 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3121 3122 MachineMemOperand *NewMMO = 3123 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3124 3125 if (IsLoad) { 3126 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3127 ValRegs.push_back(Dst); 3128 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3129 } else { 3130 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3131 } 3132 } 3133 3134 return Offset; 3135 }; 3136 3137 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3138 3139 // Handle the rest of the register if this isn't an even type breakdown. 3140 if (LeftoverTy.isValid()) 3141 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3142 3143 if (IsLoad) { 3144 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3145 LeftoverTy, NarrowLeftoverRegs); 3146 } 3147 3148 MI.eraseFromParent(); 3149 return Legalized; 3150 } 3151 3152 LegalizerHelper::LegalizeResult 3153 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3154 LLT NarrowTy) { 3155 assert(TypeIdx == 0 && "only one type index expected"); 3156 3157 const unsigned Opc = MI.getOpcode(); 3158 const int NumOps = MI.getNumOperands() - 1; 3159 const Register DstReg = MI.getOperand(0).getReg(); 3160 const unsigned Flags = MI.getFlags(); 3161 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3162 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3163 3164 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3165 3166 // First of all check whether we are narrowing (changing the element type) 3167 // or reducing the vector elements 3168 const LLT DstTy = MRI.getType(DstReg); 3169 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3170 3171 SmallVector<Register, 8> ExtractedRegs[3]; 3172 SmallVector<Register, 8> Parts; 3173 3174 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3175 3176 // Break down all the sources into NarrowTy pieces we can operate on. This may 3177 // involve creating merges to a wider type, padded with undef. 3178 for (int I = 0; I != NumOps; ++I) { 3179 Register SrcReg = MI.getOperand(I + 1).getReg(); 3180 LLT SrcTy = MRI.getType(SrcReg); 3181 3182 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3183 // For fewerElements, this is a smaller vector with the same element type. 3184 LLT OpNarrowTy; 3185 if (IsNarrow) { 3186 OpNarrowTy = NarrowScalarTy; 3187 3188 // In case of narrowing, we need to cast vectors to scalars for this to 3189 // work properly 3190 // FIXME: Can we do without the bitcast here if we're narrowing? 3191 if (SrcTy.isVector()) { 3192 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3193 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3194 } 3195 } else { 3196 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3197 } 3198 3199 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3200 3201 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3202 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3203 TargetOpcode::G_ANYEXT); 3204 } 3205 3206 SmallVector<Register, 8> ResultRegs; 3207 3208 // Input operands for each sub-instruction. 3209 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3210 3211 int NumParts = ExtractedRegs[0].size(); 3212 const unsigned DstSize = DstTy.getSizeInBits(); 3213 const LLT DstScalarTy = LLT::scalar(DstSize); 3214 3215 // Narrowing needs to use scalar types 3216 LLT DstLCMTy, NarrowDstTy; 3217 if (IsNarrow) { 3218 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3219 NarrowDstTy = NarrowScalarTy; 3220 } else { 3221 DstLCMTy = getLCMType(DstTy, NarrowTy); 3222 NarrowDstTy = NarrowTy; 3223 } 3224 3225 // We widened the source registers to satisfy merge/unmerge size 3226 // constraints. We'll have some extra fully undef parts. 3227 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3228 3229 for (int I = 0; I != NumRealParts; ++I) { 3230 // Emit this instruction on each of the split pieces. 3231 for (int J = 0; J != NumOps; ++J) 3232 InputRegs[J] = ExtractedRegs[J][I]; 3233 3234 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3235 ResultRegs.push_back(Inst.getReg(0)); 3236 } 3237 3238 // Fill out the widened result with undef instead of creating instructions 3239 // with undef inputs. 3240 int NumUndefParts = NumParts - NumRealParts; 3241 if (NumUndefParts != 0) 3242 ResultRegs.append(NumUndefParts, 3243 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3244 3245 // Extract the possibly padded result. Use a scratch register if we need to do 3246 // a final bitcast, otherwise use the original result register. 3247 Register MergeDstReg; 3248 if (IsNarrow && DstTy.isVector()) 3249 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3250 else 3251 MergeDstReg = DstReg; 3252 3253 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3254 3255 // Recast to vector if we narrowed a vector 3256 if (IsNarrow && DstTy.isVector()) 3257 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3258 3259 MI.eraseFromParent(); 3260 return Legalized; 3261 } 3262 3263 LegalizerHelper::LegalizeResult 3264 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3265 LLT NarrowTy) { 3266 Register DstReg = MI.getOperand(0).getReg(); 3267 Register SrcReg = MI.getOperand(1).getReg(); 3268 int64_t Imm = MI.getOperand(2).getImm(); 3269 3270 LLT DstTy = MRI.getType(DstReg); 3271 3272 SmallVector<Register, 8> Parts; 3273 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3274 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3275 3276 for (Register &R : Parts) 3277 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3278 3279 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3280 3281 MI.eraseFromParent(); 3282 return Legalized; 3283 } 3284 3285 LegalizerHelper::LegalizeResult 3286 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3287 LLT NarrowTy) { 3288 using namespace TargetOpcode; 3289 3290 MIRBuilder.setInstrAndDebugLoc(MI); 3291 switch (MI.getOpcode()) { 3292 case G_IMPLICIT_DEF: 3293 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3294 case G_TRUNC: 3295 case G_AND: 3296 case G_OR: 3297 case G_XOR: 3298 case G_ADD: 3299 case G_SUB: 3300 case G_MUL: 3301 case G_SMULH: 3302 case G_UMULH: 3303 case G_FADD: 3304 case G_FMUL: 3305 case G_FSUB: 3306 case G_FNEG: 3307 case G_FABS: 3308 case G_FCANONICALIZE: 3309 case G_FDIV: 3310 case G_FREM: 3311 case G_FMA: 3312 case G_FMAD: 3313 case G_FPOW: 3314 case G_FEXP: 3315 case G_FEXP2: 3316 case G_FLOG: 3317 case G_FLOG2: 3318 case G_FLOG10: 3319 case G_FNEARBYINT: 3320 case G_FCEIL: 3321 case G_FFLOOR: 3322 case G_FRINT: 3323 case G_INTRINSIC_ROUND: 3324 case G_INTRINSIC_TRUNC: 3325 case G_FCOS: 3326 case G_FSIN: 3327 case G_FSQRT: 3328 case G_BSWAP: 3329 case G_BITREVERSE: 3330 case G_SDIV: 3331 case G_UDIV: 3332 case G_SREM: 3333 case G_UREM: 3334 case G_SMIN: 3335 case G_SMAX: 3336 case G_UMIN: 3337 case G_UMAX: 3338 case G_FMINNUM: 3339 case G_FMAXNUM: 3340 case G_FMINNUM_IEEE: 3341 case G_FMAXNUM_IEEE: 3342 case G_FMINIMUM: 3343 case G_FMAXIMUM: 3344 case G_FSHL: 3345 case G_FSHR: 3346 case G_FREEZE: 3347 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3348 case G_SHL: 3349 case G_LSHR: 3350 case G_ASHR: 3351 case G_CTLZ: 3352 case G_CTLZ_ZERO_UNDEF: 3353 case G_CTTZ: 3354 case G_CTTZ_ZERO_UNDEF: 3355 case G_CTPOP: 3356 case G_FCOPYSIGN: 3357 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3358 case G_ZEXT: 3359 case G_SEXT: 3360 case G_ANYEXT: 3361 case G_FPEXT: 3362 case G_FPTRUNC: 3363 case G_SITOFP: 3364 case G_UITOFP: 3365 case G_FPTOSI: 3366 case G_FPTOUI: 3367 case G_INTTOPTR: 3368 case G_PTRTOINT: 3369 case G_ADDRSPACE_CAST: 3370 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3371 case G_ICMP: 3372 case G_FCMP: 3373 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3374 case G_SELECT: 3375 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3376 case G_PHI: 3377 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3378 case G_UNMERGE_VALUES: 3379 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3380 case G_BUILD_VECTOR: 3381 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3382 case G_LOAD: 3383 case G_STORE: 3384 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3385 case G_SEXT_INREG: 3386 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3387 default: 3388 return UnableToLegalize; 3389 } 3390 } 3391 3392 LegalizerHelper::LegalizeResult 3393 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3394 const LLT HalfTy, const LLT AmtTy) { 3395 3396 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3397 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3398 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3399 3400 if (Amt.isNullValue()) { 3401 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3402 MI.eraseFromParent(); 3403 return Legalized; 3404 } 3405 3406 LLT NVT = HalfTy; 3407 unsigned NVTBits = HalfTy.getSizeInBits(); 3408 unsigned VTBits = 2 * NVTBits; 3409 3410 SrcOp Lo(Register(0)), Hi(Register(0)); 3411 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3412 if (Amt.ugt(VTBits)) { 3413 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3414 } else if (Amt.ugt(NVTBits)) { 3415 Lo = MIRBuilder.buildConstant(NVT, 0); 3416 Hi = MIRBuilder.buildShl(NVT, InL, 3417 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3418 } else if (Amt == NVTBits) { 3419 Lo = MIRBuilder.buildConstant(NVT, 0); 3420 Hi = InL; 3421 } else { 3422 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3423 auto OrLHS = 3424 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3425 auto OrRHS = MIRBuilder.buildLShr( 3426 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3427 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3428 } 3429 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3430 if (Amt.ugt(VTBits)) { 3431 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3432 } else if (Amt.ugt(NVTBits)) { 3433 Lo = MIRBuilder.buildLShr(NVT, InH, 3434 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3435 Hi = MIRBuilder.buildConstant(NVT, 0); 3436 } else if (Amt == NVTBits) { 3437 Lo = InH; 3438 Hi = MIRBuilder.buildConstant(NVT, 0); 3439 } else { 3440 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3441 3442 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3443 auto OrRHS = MIRBuilder.buildShl( 3444 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3445 3446 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3447 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3448 } 3449 } else { 3450 if (Amt.ugt(VTBits)) { 3451 Hi = Lo = MIRBuilder.buildAShr( 3452 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3453 } else if (Amt.ugt(NVTBits)) { 3454 Lo = MIRBuilder.buildAShr(NVT, InH, 3455 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3456 Hi = MIRBuilder.buildAShr(NVT, InH, 3457 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3458 } else if (Amt == NVTBits) { 3459 Lo = InH; 3460 Hi = MIRBuilder.buildAShr(NVT, InH, 3461 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3462 } else { 3463 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3464 3465 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3466 auto OrRHS = MIRBuilder.buildShl( 3467 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3468 3469 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3470 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3471 } 3472 } 3473 3474 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3475 MI.eraseFromParent(); 3476 3477 return Legalized; 3478 } 3479 3480 // TODO: Optimize if constant shift amount. 3481 LegalizerHelper::LegalizeResult 3482 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3483 LLT RequestedTy) { 3484 if (TypeIdx == 1) { 3485 Observer.changingInstr(MI); 3486 narrowScalarSrc(MI, RequestedTy, 2); 3487 Observer.changedInstr(MI); 3488 return Legalized; 3489 } 3490 3491 Register DstReg = MI.getOperand(0).getReg(); 3492 LLT DstTy = MRI.getType(DstReg); 3493 if (DstTy.isVector()) 3494 return UnableToLegalize; 3495 3496 Register Amt = MI.getOperand(2).getReg(); 3497 LLT ShiftAmtTy = MRI.getType(Amt); 3498 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3499 if (DstEltSize % 2 != 0) 3500 return UnableToLegalize; 3501 3502 // Ignore the input type. We can only go to exactly half the size of the 3503 // input. If that isn't small enough, the resulting pieces will be further 3504 // legalized. 3505 const unsigned NewBitSize = DstEltSize / 2; 3506 const LLT HalfTy = LLT::scalar(NewBitSize); 3507 const LLT CondTy = LLT::scalar(1); 3508 3509 if (const MachineInstr *KShiftAmt = 3510 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3511 return narrowScalarShiftByConstant( 3512 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3513 } 3514 3515 // TODO: Expand with known bits. 3516 3517 // Handle the fully general expansion by an unknown amount. 3518 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3519 3520 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3521 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3522 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3523 3524 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3525 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3526 3527 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3528 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3529 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3530 3531 Register ResultRegs[2]; 3532 switch (MI.getOpcode()) { 3533 case TargetOpcode::G_SHL: { 3534 // Short: ShAmt < NewBitSize 3535 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3536 3537 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3538 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3539 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3540 3541 // Long: ShAmt >= NewBitSize 3542 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3543 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3544 3545 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3546 auto Hi = MIRBuilder.buildSelect( 3547 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3548 3549 ResultRegs[0] = Lo.getReg(0); 3550 ResultRegs[1] = Hi.getReg(0); 3551 break; 3552 } 3553 case TargetOpcode::G_LSHR: 3554 case TargetOpcode::G_ASHR: { 3555 // Short: ShAmt < NewBitSize 3556 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3557 3558 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3559 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3560 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3561 3562 // Long: ShAmt >= NewBitSize 3563 MachineInstrBuilder HiL; 3564 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3565 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3566 } else { 3567 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3568 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3569 } 3570 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3571 {InH, AmtExcess}); // Lo from Hi part. 3572 3573 auto Lo = MIRBuilder.buildSelect( 3574 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3575 3576 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3577 3578 ResultRegs[0] = Lo.getReg(0); 3579 ResultRegs[1] = Hi.getReg(0); 3580 break; 3581 } 3582 default: 3583 llvm_unreachable("not a shift"); 3584 } 3585 3586 MIRBuilder.buildMerge(DstReg, ResultRegs); 3587 MI.eraseFromParent(); 3588 return Legalized; 3589 } 3590 3591 LegalizerHelper::LegalizeResult 3592 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3593 LLT MoreTy) { 3594 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3595 3596 Observer.changingInstr(MI); 3597 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3598 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3599 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3600 moreElementsVectorSrc(MI, MoreTy, I); 3601 } 3602 3603 MachineBasicBlock &MBB = *MI.getParent(); 3604 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3605 moreElementsVectorDst(MI, MoreTy, 0); 3606 Observer.changedInstr(MI); 3607 return Legalized; 3608 } 3609 3610 LegalizerHelper::LegalizeResult 3611 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3612 LLT MoreTy) { 3613 MIRBuilder.setInstrAndDebugLoc(MI); 3614 unsigned Opc = MI.getOpcode(); 3615 switch (Opc) { 3616 case TargetOpcode::G_IMPLICIT_DEF: 3617 case TargetOpcode::G_LOAD: { 3618 if (TypeIdx != 0) 3619 return UnableToLegalize; 3620 Observer.changingInstr(MI); 3621 moreElementsVectorDst(MI, MoreTy, 0); 3622 Observer.changedInstr(MI); 3623 return Legalized; 3624 } 3625 case TargetOpcode::G_STORE: 3626 if (TypeIdx != 0) 3627 return UnableToLegalize; 3628 Observer.changingInstr(MI); 3629 moreElementsVectorSrc(MI, MoreTy, 0); 3630 Observer.changedInstr(MI); 3631 return Legalized; 3632 case TargetOpcode::G_AND: 3633 case TargetOpcode::G_OR: 3634 case TargetOpcode::G_XOR: 3635 case TargetOpcode::G_SMIN: 3636 case TargetOpcode::G_SMAX: 3637 case TargetOpcode::G_UMIN: 3638 case TargetOpcode::G_UMAX: 3639 case TargetOpcode::G_FMINNUM: 3640 case TargetOpcode::G_FMAXNUM: 3641 case TargetOpcode::G_FMINNUM_IEEE: 3642 case TargetOpcode::G_FMAXNUM_IEEE: 3643 case TargetOpcode::G_FMINIMUM: 3644 case TargetOpcode::G_FMAXIMUM: { 3645 Observer.changingInstr(MI); 3646 moreElementsVectorSrc(MI, MoreTy, 1); 3647 moreElementsVectorSrc(MI, MoreTy, 2); 3648 moreElementsVectorDst(MI, MoreTy, 0); 3649 Observer.changedInstr(MI); 3650 return Legalized; 3651 } 3652 case TargetOpcode::G_EXTRACT: 3653 if (TypeIdx != 1) 3654 return UnableToLegalize; 3655 Observer.changingInstr(MI); 3656 moreElementsVectorSrc(MI, MoreTy, 1); 3657 Observer.changedInstr(MI); 3658 return Legalized; 3659 case TargetOpcode::G_INSERT: 3660 case TargetOpcode::G_FREEZE: 3661 if (TypeIdx != 0) 3662 return UnableToLegalize; 3663 Observer.changingInstr(MI); 3664 moreElementsVectorSrc(MI, MoreTy, 1); 3665 moreElementsVectorDst(MI, MoreTy, 0); 3666 Observer.changedInstr(MI); 3667 return Legalized; 3668 case TargetOpcode::G_SELECT: 3669 if (TypeIdx != 0) 3670 return UnableToLegalize; 3671 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3672 return UnableToLegalize; 3673 3674 Observer.changingInstr(MI); 3675 moreElementsVectorSrc(MI, MoreTy, 2); 3676 moreElementsVectorSrc(MI, MoreTy, 3); 3677 moreElementsVectorDst(MI, MoreTy, 0); 3678 Observer.changedInstr(MI); 3679 return Legalized; 3680 case TargetOpcode::G_UNMERGE_VALUES: { 3681 if (TypeIdx != 1) 3682 return UnableToLegalize; 3683 3684 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3685 int NumDst = MI.getNumOperands() - 1; 3686 moreElementsVectorSrc(MI, MoreTy, NumDst); 3687 3688 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3689 for (int I = 0; I != NumDst; ++I) 3690 MIB.addDef(MI.getOperand(I).getReg()); 3691 3692 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3693 for (int I = NumDst; I != NewNumDst; ++I) 3694 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3695 3696 MIB.addUse(MI.getOperand(NumDst).getReg()); 3697 MI.eraseFromParent(); 3698 return Legalized; 3699 } 3700 case TargetOpcode::G_PHI: 3701 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3702 default: 3703 return UnableToLegalize; 3704 } 3705 } 3706 3707 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3708 ArrayRef<Register> Src1Regs, 3709 ArrayRef<Register> Src2Regs, 3710 LLT NarrowTy) { 3711 MachineIRBuilder &B = MIRBuilder; 3712 unsigned SrcParts = Src1Regs.size(); 3713 unsigned DstParts = DstRegs.size(); 3714 3715 unsigned DstIdx = 0; // Low bits of the result. 3716 Register FactorSum = 3717 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3718 DstRegs[DstIdx] = FactorSum; 3719 3720 unsigned CarrySumPrevDstIdx; 3721 SmallVector<Register, 4> Factors; 3722 3723 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3724 // Collect low parts of muls for DstIdx. 3725 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3726 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3727 MachineInstrBuilder Mul = 3728 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3729 Factors.push_back(Mul.getReg(0)); 3730 } 3731 // Collect high parts of muls from previous DstIdx. 3732 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3733 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3734 MachineInstrBuilder Umulh = 3735 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3736 Factors.push_back(Umulh.getReg(0)); 3737 } 3738 // Add CarrySum from additions calculated for previous DstIdx. 3739 if (DstIdx != 1) { 3740 Factors.push_back(CarrySumPrevDstIdx); 3741 } 3742 3743 Register CarrySum; 3744 // Add all factors and accumulate all carries into CarrySum. 3745 if (DstIdx != DstParts - 1) { 3746 MachineInstrBuilder Uaddo = 3747 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3748 FactorSum = Uaddo.getReg(0); 3749 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3750 for (unsigned i = 2; i < Factors.size(); ++i) { 3751 MachineInstrBuilder Uaddo = 3752 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3753 FactorSum = Uaddo.getReg(0); 3754 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3755 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3756 } 3757 } else { 3758 // Since value for the next index is not calculated, neither is CarrySum. 3759 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3760 for (unsigned i = 2; i < Factors.size(); ++i) 3761 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3762 } 3763 3764 CarrySumPrevDstIdx = CarrySum; 3765 DstRegs[DstIdx] = FactorSum; 3766 Factors.clear(); 3767 } 3768 } 3769 3770 LegalizerHelper::LegalizeResult 3771 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3772 Register DstReg = MI.getOperand(0).getReg(); 3773 Register Src1 = MI.getOperand(1).getReg(); 3774 Register Src2 = MI.getOperand(2).getReg(); 3775 3776 LLT Ty = MRI.getType(DstReg); 3777 if (Ty.isVector()) 3778 return UnableToLegalize; 3779 3780 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3781 unsigned DstSize = Ty.getSizeInBits(); 3782 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3783 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3784 return UnableToLegalize; 3785 3786 unsigned NumDstParts = DstSize / NarrowSize; 3787 unsigned NumSrcParts = SrcSize / NarrowSize; 3788 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3789 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3790 3791 SmallVector<Register, 2> Src1Parts, Src2Parts; 3792 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3793 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3794 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3795 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3796 3797 // Take only high half of registers if this is high mul. 3798 ArrayRef<Register> DstRegs( 3799 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3800 MIRBuilder.buildMerge(DstReg, DstRegs); 3801 MI.eraseFromParent(); 3802 return Legalized; 3803 } 3804 3805 LegalizerHelper::LegalizeResult 3806 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3807 LLT NarrowTy) { 3808 if (TypeIdx != 1) 3809 return UnableToLegalize; 3810 3811 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3812 3813 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3814 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3815 // NarrowSize. 3816 if (SizeOp1 % NarrowSize != 0) 3817 return UnableToLegalize; 3818 int NumParts = SizeOp1 / NarrowSize; 3819 3820 SmallVector<Register, 2> SrcRegs, DstRegs; 3821 SmallVector<uint64_t, 2> Indexes; 3822 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3823 3824 Register OpReg = MI.getOperand(0).getReg(); 3825 uint64_t OpStart = MI.getOperand(2).getImm(); 3826 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3827 for (int i = 0; i < NumParts; ++i) { 3828 unsigned SrcStart = i * NarrowSize; 3829 3830 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3831 // No part of the extract uses this subregister, ignore it. 3832 continue; 3833 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3834 // The entire subregister is extracted, forward the value. 3835 DstRegs.push_back(SrcRegs[i]); 3836 continue; 3837 } 3838 3839 // OpSegStart is where this destination segment would start in OpReg if it 3840 // extended infinitely in both directions. 3841 int64_t ExtractOffset; 3842 uint64_t SegSize; 3843 if (OpStart < SrcStart) { 3844 ExtractOffset = 0; 3845 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3846 } else { 3847 ExtractOffset = OpStart - SrcStart; 3848 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3849 } 3850 3851 Register SegReg = SrcRegs[i]; 3852 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3853 // A genuine extract is needed. 3854 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3855 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3856 } 3857 3858 DstRegs.push_back(SegReg); 3859 } 3860 3861 Register DstReg = MI.getOperand(0).getReg(); 3862 if (MRI.getType(DstReg).isVector()) 3863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3864 else if (DstRegs.size() > 1) 3865 MIRBuilder.buildMerge(DstReg, DstRegs); 3866 else 3867 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3868 MI.eraseFromParent(); 3869 return Legalized; 3870 } 3871 3872 LegalizerHelper::LegalizeResult 3873 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3874 LLT NarrowTy) { 3875 // FIXME: Don't know how to handle secondary types yet. 3876 if (TypeIdx != 0) 3877 return UnableToLegalize; 3878 3879 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3880 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3881 3882 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3883 // NarrowSize. 3884 if (SizeOp0 % NarrowSize != 0) 3885 return UnableToLegalize; 3886 3887 int NumParts = SizeOp0 / NarrowSize; 3888 3889 SmallVector<Register, 2> SrcRegs, DstRegs; 3890 SmallVector<uint64_t, 2> Indexes; 3891 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3892 3893 Register OpReg = MI.getOperand(2).getReg(); 3894 uint64_t OpStart = MI.getOperand(3).getImm(); 3895 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3896 for (int i = 0; i < NumParts; ++i) { 3897 unsigned DstStart = i * NarrowSize; 3898 3899 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3900 // No part of the insert affects this subregister, forward the original. 3901 DstRegs.push_back(SrcRegs[i]); 3902 continue; 3903 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3904 // The entire subregister is defined by this insert, forward the new 3905 // value. 3906 DstRegs.push_back(OpReg); 3907 continue; 3908 } 3909 3910 // OpSegStart is where this destination segment would start in OpReg if it 3911 // extended infinitely in both directions. 3912 int64_t ExtractOffset, InsertOffset; 3913 uint64_t SegSize; 3914 if (OpStart < DstStart) { 3915 InsertOffset = 0; 3916 ExtractOffset = DstStart - OpStart; 3917 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3918 } else { 3919 InsertOffset = OpStart - DstStart; 3920 ExtractOffset = 0; 3921 SegSize = 3922 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3923 } 3924 3925 Register SegReg = OpReg; 3926 if (ExtractOffset != 0 || SegSize != OpSize) { 3927 // A genuine extract is needed. 3928 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3929 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3930 } 3931 3932 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3933 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3934 DstRegs.push_back(DstReg); 3935 } 3936 3937 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3938 Register DstReg = MI.getOperand(0).getReg(); 3939 if(MRI.getType(DstReg).isVector()) 3940 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3941 else 3942 MIRBuilder.buildMerge(DstReg, DstRegs); 3943 MI.eraseFromParent(); 3944 return Legalized; 3945 } 3946 3947 LegalizerHelper::LegalizeResult 3948 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3949 LLT NarrowTy) { 3950 Register DstReg = MI.getOperand(0).getReg(); 3951 LLT DstTy = MRI.getType(DstReg); 3952 3953 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3954 3955 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3956 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3957 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3958 LLT LeftoverTy; 3959 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3960 Src0Regs, Src0LeftoverRegs)) 3961 return UnableToLegalize; 3962 3963 LLT Unused; 3964 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3965 Src1Regs, Src1LeftoverRegs)) 3966 llvm_unreachable("inconsistent extractParts result"); 3967 3968 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3969 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3970 {Src0Regs[I], Src1Regs[I]}); 3971 DstRegs.push_back(Inst.getReg(0)); 3972 } 3973 3974 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3975 auto Inst = MIRBuilder.buildInstr( 3976 MI.getOpcode(), 3977 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3978 DstLeftoverRegs.push_back(Inst.getReg(0)); 3979 } 3980 3981 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3982 LeftoverTy, DstLeftoverRegs); 3983 3984 MI.eraseFromParent(); 3985 return Legalized; 3986 } 3987 3988 LegalizerHelper::LegalizeResult 3989 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3990 LLT NarrowTy) { 3991 if (TypeIdx != 0) 3992 return UnableToLegalize; 3993 3994 Register DstReg = MI.getOperand(0).getReg(); 3995 Register SrcReg = MI.getOperand(1).getReg(); 3996 3997 LLT DstTy = MRI.getType(DstReg); 3998 if (DstTy.isVector()) 3999 return UnableToLegalize; 4000 4001 SmallVector<Register, 8> Parts; 4002 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4003 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4004 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4005 4006 MI.eraseFromParent(); 4007 return Legalized; 4008 } 4009 4010 LegalizerHelper::LegalizeResult 4011 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4012 LLT NarrowTy) { 4013 if (TypeIdx != 0) 4014 return UnableToLegalize; 4015 4016 Register CondReg = MI.getOperand(1).getReg(); 4017 LLT CondTy = MRI.getType(CondReg); 4018 if (CondTy.isVector()) // TODO: Handle vselect 4019 return UnableToLegalize; 4020 4021 Register DstReg = MI.getOperand(0).getReg(); 4022 LLT DstTy = MRI.getType(DstReg); 4023 4024 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4025 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4026 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4027 LLT LeftoverTy; 4028 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4029 Src1Regs, Src1LeftoverRegs)) 4030 return UnableToLegalize; 4031 4032 LLT Unused; 4033 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4034 Src2Regs, Src2LeftoverRegs)) 4035 llvm_unreachable("inconsistent extractParts result"); 4036 4037 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4038 auto Select = MIRBuilder.buildSelect(NarrowTy, 4039 CondReg, Src1Regs[I], Src2Regs[I]); 4040 DstRegs.push_back(Select.getReg(0)); 4041 } 4042 4043 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4044 auto Select = MIRBuilder.buildSelect( 4045 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4046 DstLeftoverRegs.push_back(Select.getReg(0)); 4047 } 4048 4049 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4050 LeftoverTy, DstLeftoverRegs); 4051 4052 MI.eraseFromParent(); 4053 return Legalized; 4054 } 4055 4056 LegalizerHelper::LegalizeResult 4057 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4058 LLT NarrowTy) { 4059 if (TypeIdx != 1) 4060 return UnableToLegalize; 4061 4062 Register DstReg = MI.getOperand(0).getReg(); 4063 Register SrcReg = MI.getOperand(1).getReg(); 4064 LLT DstTy = MRI.getType(DstReg); 4065 LLT SrcTy = MRI.getType(SrcReg); 4066 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4067 4068 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4069 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4070 4071 MachineIRBuilder &B = MIRBuilder; 4072 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4073 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4074 auto C_0 = B.buildConstant(NarrowTy, 0); 4075 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4076 UnmergeSrc.getReg(1), C_0); 4077 auto LoCTLZ = IsUndef ? 4078 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4079 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4080 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4081 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4082 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4083 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4084 4085 MI.eraseFromParent(); 4086 return Legalized; 4087 } 4088 4089 return UnableToLegalize; 4090 } 4091 4092 LegalizerHelper::LegalizeResult 4093 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4094 LLT NarrowTy) { 4095 if (TypeIdx != 1) 4096 return UnableToLegalize; 4097 4098 Register DstReg = MI.getOperand(0).getReg(); 4099 Register SrcReg = MI.getOperand(1).getReg(); 4100 LLT DstTy = MRI.getType(DstReg); 4101 LLT SrcTy = MRI.getType(SrcReg); 4102 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4103 4104 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4105 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4106 4107 MachineIRBuilder &B = MIRBuilder; 4108 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4109 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4110 auto C_0 = B.buildConstant(NarrowTy, 0); 4111 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4112 UnmergeSrc.getReg(0), C_0); 4113 auto HiCTTZ = IsUndef ? 4114 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4115 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4116 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4117 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4118 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4119 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4120 4121 MI.eraseFromParent(); 4122 return Legalized; 4123 } 4124 4125 return UnableToLegalize; 4126 } 4127 4128 LegalizerHelper::LegalizeResult 4129 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4130 LLT NarrowTy) { 4131 if (TypeIdx != 1) 4132 return UnableToLegalize; 4133 4134 Register DstReg = MI.getOperand(0).getReg(); 4135 LLT DstTy = MRI.getType(DstReg); 4136 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4137 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4138 4139 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4140 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4141 4142 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4143 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4144 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4145 4146 MI.eraseFromParent(); 4147 return Legalized; 4148 } 4149 4150 return UnableToLegalize; 4151 } 4152 4153 LegalizerHelper::LegalizeResult 4154 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4155 unsigned Opc = MI.getOpcode(); 4156 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4157 auto isSupported = [this](const LegalityQuery &Q) { 4158 auto QAction = LI.getAction(Q).Action; 4159 return QAction == Legal || QAction == Libcall || QAction == Custom; 4160 }; 4161 switch (Opc) { 4162 default: 4163 return UnableToLegalize; 4164 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4165 // This trivially expands to CTLZ. 4166 Observer.changingInstr(MI); 4167 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4168 Observer.changedInstr(MI); 4169 return Legalized; 4170 } 4171 case TargetOpcode::G_CTLZ: { 4172 Register DstReg = MI.getOperand(0).getReg(); 4173 Register SrcReg = MI.getOperand(1).getReg(); 4174 LLT DstTy = MRI.getType(DstReg); 4175 LLT SrcTy = MRI.getType(SrcReg); 4176 unsigned Len = SrcTy.getSizeInBits(); 4177 4178 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4179 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4180 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4181 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4182 auto ICmp = MIRBuilder.buildICmp( 4183 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4184 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4185 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4186 MI.eraseFromParent(); 4187 return Legalized; 4188 } 4189 // for now, we do this: 4190 // NewLen = NextPowerOf2(Len); 4191 // x = x | (x >> 1); 4192 // x = x | (x >> 2); 4193 // ... 4194 // x = x | (x >>16); 4195 // x = x | (x >>32); // for 64-bit input 4196 // Upto NewLen/2 4197 // return Len - popcount(x); 4198 // 4199 // Ref: "Hacker's Delight" by Henry Warren 4200 Register Op = SrcReg; 4201 unsigned NewLen = PowerOf2Ceil(Len); 4202 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4203 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4204 auto MIBOp = MIRBuilder.buildOr( 4205 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4206 Op = MIBOp.getReg(0); 4207 } 4208 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4209 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4210 MIBPop); 4211 MI.eraseFromParent(); 4212 return Legalized; 4213 } 4214 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4215 // This trivially expands to CTTZ. 4216 Observer.changingInstr(MI); 4217 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4218 Observer.changedInstr(MI); 4219 return Legalized; 4220 } 4221 case TargetOpcode::G_CTTZ: { 4222 Register DstReg = MI.getOperand(0).getReg(); 4223 Register SrcReg = MI.getOperand(1).getReg(); 4224 LLT DstTy = MRI.getType(DstReg); 4225 LLT SrcTy = MRI.getType(SrcReg); 4226 4227 unsigned Len = SrcTy.getSizeInBits(); 4228 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4229 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4230 // zero. 4231 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4232 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4233 auto ICmp = MIRBuilder.buildICmp( 4234 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4235 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4236 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4237 MI.eraseFromParent(); 4238 return Legalized; 4239 } 4240 // for now, we use: { return popcount(~x & (x - 1)); } 4241 // unless the target has ctlz but not ctpop, in which case we use: 4242 // { return 32 - nlz(~x & (x-1)); } 4243 // Ref: "Hacker's Delight" by Henry Warren 4244 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4245 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4246 auto MIBTmp = MIRBuilder.buildAnd( 4247 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4248 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4249 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4250 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4251 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4252 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4253 MI.eraseFromParent(); 4254 return Legalized; 4255 } 4256 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4257 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4258 return Legalized; 4259 } 4260 case TargetOpcode::G_CTPOP: { 4261 unsigned Size = Ty.getSizeInBits(); 4262 MachineIRBuilder &B = MIRBuilder; 4263 4264 // Count set bits in blocks of 2 bits. Default approach would be 4265 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4266 // We use following formula instead: 4267 // B2Count = val - { (val >> 1) & 0x55555555 } 4268 // since it gives same result in blocks of 2 with one instruction less. 4269 auto C_1 = B.buildConstant(Ty, 1); 4270 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4271 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4272 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4273 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4274 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4275 4276 // In order to get count in blocks of 4 add values from adjacent block of 2. 4277 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4278 auto C_2 = B.buildConstant(Ty, 2); 4279 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4280 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4281 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4282 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4283 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4284 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4285 4286 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4287 // addition since count value sits in range {0,...,8} and 4 bits are enough 4288 // to hold such binary values. After addition high 4 bits still hold count 4289 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4290 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4291 auto C_4 = B.buildConstant(Ty, 4); 4292 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4293 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4294 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4295 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4296 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4297 4298 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4299 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4300 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4301 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4302 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4303 4304 // Shift count result from 8 high bits to low bits. 4305 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4306 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4307 4308 MI.eraseFromParent(); 4309 return Legalized; 4310 } 4311 } 4312 } 4313 4314 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4315 // representation. 4316 LegalizerHelper::LegalizeResult 4317 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4318 Register Dst = MI.getOperand(0).getReg(); 4319 Register Src = MI.getOperand(1).getReg(); 4320 const LLT S64 = LLT::scalar(64); 4321 const LLT S32 = LLT::scalar(32); 4322 const LLT S1 = LLT::scalar(1); 4323 4324 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4325 4326 // unsigned cul2f(ulong u) { 4327 // uint lz = clz(u); 4328 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4329 // u = (u << lz) & 0x7fffffffffffffffUL; 4330 // ulong t = u & 0xffffffffffUL; 4331 // uint v = (e << 23) | (uint)(u >> 40); 4332 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4333 // return as_float(v + r); 4334 // } 4335 4336 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4337 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4338 4339 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4340 4341 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4342 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4343 4344 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4345 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4346 4347 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4348 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4349 4350 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4351 4352 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4353 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4354 4355 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4356 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4357 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4358 4359 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4360 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4361 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4362 auto One = MIRBuilder.buildConstant(S32, 1); 4363 4364 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4365 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4366 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4367 MIRBuilder.buildAdd(Dst, V, R); 4368 4369 return Legalized; 4370 } 4371 4372 LegalizerHelper::LegalizeResult 4373 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4374 Register Dst = MI.getOperand(0).getReg(); 4375 Register Src = MI.getOperand(1).getReg(); 4376 LLT DstTy = MRI.getType(Dst); 4377 LLT SrcTy = MRI.getType(Src); 4378 4379 if (SrcTy == LLT::scalar(1)) { 4380 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4381 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4382 MIRBuilder.buildSelect(Dst, Src, True, False); 4383 MI.eraseFromParent(); 4384 return Legalized; 4385 } 4386 4387 if (SrcTy != LLT::scalar(64)) 4388 return UnableToLegalize; 4389 4390 if (DstTy == LLT::scalar(32)) { 4391 // TODO: SelectionDAG has several alternative expansions to port which may 4392 // be more reasonble depending on the available instructions. If a target 4393 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4394 // intermediate type, this is probably worse. 4395 return lowerU64ToF32BitOps(MI); 4396 } 4397 4398 return UnableToLegalize; 4399 } 4400 4401 LegalizerHelper::LegalizeResult 4402 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4403 Register Dst = MI.getOperand(0).getReg(); 4404 Register Src = MI.getOperand(1).getReg(); 4405 LLT DstTy = MRI.getType(Dst); 4406 LLT SrcTy = MRI.getType(Src); 4407 4408 const LLT S64 = LLT::scalar(64); 4409 const LLT S32 = LLT::scalar(32); 4410 const LLT S1 = LLT::scalar(1); 4411 4412 if (SrcTy == S1) { 4413 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4414 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4415 MIRBuilder.buildSelect(Dst, Src, True, False); 4416 MI.eraseFromParent(); 4417 return Legalized; 4418 } 4419 4420 if (SrcTy != S64) 4421 return UnableToLegalize; 4422 4423 if (DstTy == S32) { 4424 // signed cl2f(long l) { 4425 // long s = l >> 63; 4426 // float r = cul2f((l + s) ^ s); 4427 // return s ? -r : r; 4428 // } 4429 Register L = Src; 4430 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4431 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4432 4433 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4434 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4435 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4436 4437 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4438 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4439 MIRBuilder.buildConstant(S64, 0)); 4440 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4441 return Legalized; 4442 } 4443 4444 return UnableToLegalize; 4445 } 4446 4447 LegalizerHelper::LegalizeResult 4448 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4449 Register Dst = MI.getOperand(0).getReg(); 4450 Register Src = MI.getOperand(1).getReg(); 4451 LLT DstTy = MRI.getType(Dst); 4452 LLT SrcTy = MRI.getType(Src); 4453 const LLT S64 = LLT::scalar(64); 4454 const LLT S32 = LLT::scalar(32); 4455 4456 if (SrcTy != S64 && SrcTy != S32) 4457 return UnableToLegalize; 4458 if (DstTy != S32 && DstTy != S64) 4459 return UnableToLegalize; 4460 4461 // FPTOSI gives same result as FPTOUI for positive signed integers. 4462 // FPTOUI needs to deal with fp values that convert to unsigned integers 4463 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4464 4465 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4466 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4467 : APFloat::IEEEdouble(), 4468 APInt::getNullValue(SrcTy.getSizeInBits())); 4469 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4470 4471 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4472 4473 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4474 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4475 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4476 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4477 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4478 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4479 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4480 4481 const LLT S1 = LLT::scalar(1); 4482 4483 MachineInstrBuilder FCMP = 4484 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4485 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4486 4487 MI.eraseFromParent(); 4488 return Legalized; 4489 } 4490 4491 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4492 Register Dst = MI.getOperand(0).getReg(); 4493 Register Src = MI.getOperand(1).getReg(); 4494 LLT DstTy = MRI.getType(Dst); 4495 LLT SrcTy = MRI.getType(Src); 4496 const LLT S64 = LLT::scalar(64); 4497 const LLT S32 = LLT::scalar(32); 4498 4499 // FIXME: Only f32 to i64 conversions are supported. 4500 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4501 return UnableToLegalize; 4502 4503 // Expand f32 -> i64 conversion 4504 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4505 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4506 4507 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4508 4509 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4510 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4511 4512 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4513 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4514 4515 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4516 APInt::getSignMask(SrcEltBits)); 4517 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4518 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4519 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4520 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4521 4522 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4523 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4524 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4525 4526 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4527 R = MIRBuilder.buildZExt(DstTy, R); 4528 4529 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4530 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4531 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4532 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4533 4534 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4535 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4536 4537 const LLT S1 = LLT::scalar(1); 4538 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4539 S1, Exponent, ExponentLoBit); 4540 4541 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4542 4543 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4544 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4545 4546 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4547 4548 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4549 S1, Exponent, ZeroSrcTy); 4550 4551 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4552 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4553 4554 MI.eraseFromParent(); 4555 return Legalized; 4556 } 4557 4558 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4559 LegalizerHelper::LegalizeResult 4560 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4561 Register Dst = MI.getOperand(0).getReg(); 4562 Register Src = MI.getOperand(1).getReg(); 4563 4564 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4565 return UnableToLegalize; 4566 4567 const unsigned ExpMask = 0x7ff; 4568 const unsigned ExpBiasf64 = 1023; 4569 const unsigned ExpBiasf16 = 15; 4570 const LLT S32 = LLT::scalar(32); 4571 const LLT S1 = LLT::scalar(1); 4572 4573 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4574 Register U = Unmerge.getReg(0); 4575 Register UH = Unmerge.getReg(1); 4576 4577 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4578 4579 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4580 // add the f16 bias (15) to get the biased exponent for the f16 format. 4581 E = MIRBuilder.buildAdd( 4582 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4583 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4584 4585 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4586 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4587 4588 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4589 MIRBuilder.buildConstant(S32, 0x1ff)); 4590 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4591 4592 auto Zero = MIRBuilder.buildConstant(S32, 0); 4593 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4594 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4595 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4596 4597 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4598 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4599 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4600 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4601 4602 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4603 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4604 4605 // N = M | (E << 12); 4606 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4607 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4608 4609 // B = clamp(1-E, 0, 13); 4610 auto One = MIRBuilder.buildConstant(S32, 1); 4611 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4612 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4613 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4614 4615 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4616 MIRBuilder.buildConstant(S32, 0x1000)); 4617 4618 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4619 auto D0 = MIRBuilder.buildShl(S32, D, B); 4620 4621 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4622 D0, SigSetHigh); 4623 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4624 D = MIRBuilder.buildOr(S32, D, D1); 4625 4626 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4627 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4628 4629 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4630 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4631 4632 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4633 MIRBuilder.buildConstant(S32, 3)); 4634 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4635 4636 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4637 MIRBuilder.buildConstant(S32, 5)); 4638 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4639 4640 V1 = MIRBuilder.buildOr(S32, V0, V1); 4641 V = MIRBuilder.buildAdd(S32, V, V1); 4642 4643 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4644 E, MIRBuilder.buildConstant(S32, 30)); 4645 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4646 MIRBuilder.buildConstant(S32, 0x7c00), V); 4647 4648 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4649 E, MIRBuilder.buildConstant(S32, 1039)); 4650 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4651 4652 // Extract the sign bit. 4653 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4654 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4655 4656 // Insert the sign bit 4657 V = MIRBuilder.buildOr(S32, Sign, V); 4658 4659 MIRBuilder.buildTrunc(Dst, V); 4660 MI.eraseFromParent(); 4661 return Legalized; 4662 } 4663 4664 LegalizerHelper::LegalizeResult 4665 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4666 Register Dst = MI.getOperand(0).getReg(); 4667 Register Src = MI.getOperand(1).getReg(); 4668 4669 LLT DstTy = MRI.getType(Dst); 4670 LLT SrcTy = MRI.getType(Src); 4671 const LLT S64 = LLT::scalar(64); 4672 const LLT S16 = LLT::scalar(16); 4673 4674 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4675 return lowerFPTRUNC_F64_TO_F16(MI); 4676 4677 return UnableToLegalize; 4678 } 4679 4680 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4681 switch (Opc) { 4682 case TargetOpcode::G_SMIN: 4683 return CmpInst::ICMP_SLT; 4684 case TargetOpcode::G_SMAX: 4685 return CmpInst::ICMP_SGT; 4686 case TargetOpcode::G_UMIN: 4687 return CmpInst::ICMP_ULT; 4688 case TargetOpcode::G_UMAX: 4689 return CmpInst::ICMP_UGT; 4690 default: 4691 llvm_unreachable("not in integer min/max"); 4692 } 4693 } 4694 4695 LegalizerHelper::LegalizeResult 4696 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4697 Register Dst = MI.getOperand(0).getReg(); 4698 Register Src0 = MI.getOperand(1).getReg(); 4699 Register Src1 = MI.getOperand(2).getReg(); 4700 4701 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4702 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4703 4704 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4705 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4706 4707 MI.eraseFromParent(); 4708 return Legalized; 4709 } 4710 4711 LegalizerHelper::LegalizeResult 4712 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4713 Register Dst = MI.getOperand(0).getReg(); 4714 Register Src0 = MI.getOperand(1).getReg(); 4715 Register Src1 = MI.getOperand(2).getReg(); 4716 4717 const LLT Src0Ty = MRI.getType(Src0); 4718 const LLT Src1Ty = MRI.getType(Src1); 4719 4720 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4721 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4722 4723 auto SignBitMask = MIRBuilder.buildConstant( 4724 Src0Ty, APInt::getSignMask(Src0Size)); 4725 4726 auto NotSignBitMask = MIRBuilder.buildConstant( 4727 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4728 4729 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4730 MachineInstr *Or; 4731 4732 if (Src0Ty == Src1Ty) { 4733 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4734 Or = MIRBuilder.buildOr(Dst, And0, And1); 4735 } else if (Src0Size > Src1Size) { 4736 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4737 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4738 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4739 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4740 Or = MIRBuilder.buildOr(Dst, And0, And1); 4741 } else { 4742 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4743 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4744 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4745 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4746 Or = MIRBuilder.buildOr(Dst, And0, And1); 4747 } 4748 4749 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4750 // constants are a nan and -0.0, but the final result should preserve 4751 // everything. 4752 if (unsigned Flags = MI.getFlags()) 4753 Or->setFlags(Flags); 4754 4755 MI.eraseFromParent(); 4756 return Legalized; 4757 } 4758 4759 LegalizerHelper::LegalizeResult 4760 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4761 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4762 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4763 4764 Register Dst = MI.getOperand(0).getReg(); 4765 Register Src0 = MI.getOperand(1).getReg(); 4766 Register Src1 = MI.getOperand(2).getReg(); 4767 LLT Ty = MRI.getType(Dst); 4768 4769 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4770 // Insert canonicalizes if it's possible we need to quiet to get correct 4771 // sNaN behavior. 4772 4773 // Note this must be done here, and not as an optimization combine in the 4774 // absence of a dedicate quiet-snan instruction as we're using an 4775 // omni-purpose G_FCANONICALIZE. 4776 if (!isKnownNeverSNaN(Src0, MRI)) 4777 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4778 4779 if (!isKnownNeverSNaN(Src1, MRI)) 4780 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4781 } 4782 4783 // If there are no nans, it's safe to simply replace this with the non-IEEE 4784 // version. 4785 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4786 MI.eraseFromParent(); 4787 return Legalized; 4788 } 4789 4790 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4791 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4792 Register DstReg = MI.getOperand(0).getReg(); 4793 LLT Ty = MRI.getType(DstReg); 4794 unsigned Flags = MI.getFlags(); 4795 4796 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4797 Flags); 4798 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4799 MI.eraseFromParent(); 4800 return Legalized; 4801 } 4802 4803 LegalizerHelper::LegalizeResult 4804 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4805 Register DstReg = MI.getOperand(0).getReg(); 4806 Register X = MI.getOperand(1).getReg(); 4807 const unsigned Flags = MI.getFlags(); 4808 const LLT Ty = MRI.getType(DstReg); 4809 const LLT CondTy = Ty.changeElementSize(1); 4810 4811 // round(x) => 4812 // t = trunc(x); 4813 // d = fabs(x - t); 4814 // o = copysign(1.0f, x); 4815 // return t + (d >= 0.5 ? o : 0.0); 4816 4817 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4818 4819 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4820 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4821 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4822 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4823 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4824 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4825 4826 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4827 Flags); 4828 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4829 4830 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4831 4832 MI.eraseFromParent(); 4833 return Legalized; 4834 } 4835 4836 LegalizerHelper::LegalizeResult 4837 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4838 Register DstReg = MI.getOperand(0).getReg(); 4839 Register SrcReg = MI.getOperand(1).getReg(); 4840 unsigned Flags = MI.getFlags(); 4841 LLT Ty = MRI.getType(DstReg); 4842 const LLT CondTy = Ty.changeElementSize(1); 4843 4844 // result = trunc(src); 4845 // if (src < 0.0 && src != result) 4846 // result += -1.0. 4847 4848 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4849 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4850 4851 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4852 SrcReg, Zero, Flags); 4853 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4854 SrcReg, Trunc, Flags); 4855 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4856 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4857 4858 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4859 MI.eraseFromParent(); 4860 return Legalized; 4861 } 4862 4863 LegalizerHelper::LegalizeResult 4864 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4865 const unsigned NumDst = MI.getNumOperands() - 1; 4866 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4867 LLT SrcTy = MRI.getType(SrcReg); 4868 4869 Register Dst0Reg = MI.getOperand(0).getReg(); 4870 LLT DstTy = MRI.getType(Dst0Reg); 4871 4872 4873 // Expand scalarizing unmerge as bitcast to integer and shift. 4874 if (!DstTy.isVector() && SrcTy.isVector() && 4875 SrcTy.getElementType() == DstTy) { 4876 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4877 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4878 4879 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4880 4881 const unsigned DstSize = DstTy.getSizeInBits(); 4882 unsigned Offset = DstSize; 4883 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4884 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4885 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4886 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4887 } 4888 4889 MI.eraseFromParent(); 4890 return Legalized; 4891 } 4892 4893 return UnableToLegalize; 4894 } 4895 4896 LegalizerHelper::LegalizeResult 4897 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4898 Register DstReg = MI.getOperand(0).getReg(); 4899 Register Src0Reg = MI.getOperand(1).getReg(); 4900 Register Src1Reg = MI.getOperand(2).getReg(); 4901 LLT Src0Ty = MRI.getType(Src0Reg); 4902 LLT DstTy = MRI.getType(DstReg); 4903 LLT IdxTy = LLT::scalar(32); 4904 4905 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4906 4907 if (DstTy.isScalar()) { 4908 if (Src0Ty.isVector()) 4909 return UnableToLegalize; 4910 4911 // This is just a SELECT. 4912 assert(Mask.size() == 1 && "Expected a single mask element"); 4913 Register Val; 4914 if (Mask[0] < 0 || Mask[0] > 1) 4915 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4916 else 4917 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4918 MIRBuilder.buildCopy(DstReg, Val); 4919 MI.eraseFromParent(); 4920 return Legalized; 4921 } 4922 4923 Register Undef; 4924 SmallVector<Register, 32> BuildVec; 4925 LLT EltTy = DstTy.getElementType(); 4926 4927 for (int Idx : Mask) { 4928 if (Idx < 0) { 4929 if (!Undef.isValid()) 4930 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4931 BuildVec.push_back(Undef); 4932 continue; 4933 } 4934 4935 if (Src0Ty.isScalar()) { 4936 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4937 } else { 4938 int NumElts = Src0Ty.getNumElements(); 4939 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4940 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4941 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4942 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4943 BuildVec.push_back(Extract.getReg(0)); 4944 } 4945 } 4946 4947 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4948 MI.eraseFromParent(); 4949 return Legalized; 4950 } 4951 4952 LegalizerHelper::LegalizeResult 4953 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4954 Register Dst = MI.getOperand(0).getReg(); 4955 Register AllocSize = MI.getOperand(1).getReg(); 4956 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 4957 4958 const auto &MF = *MI.getMF(); 4959 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4960 4961 LLT PtrTy = MRI.getType(Dst); 4962 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4963 4964 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4965 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4966 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4967 4968 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4969 // have to generate an extra instruction to negate the alloc and then use 4970 // G_PTR_ADD to add the negative offset. 4971 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4972 if (Alignment > Align(1)) { 4973 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 4974 AlignMask.negate(); 4975 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4976 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4977 } 4978 4979 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4980 MIRBuilder.buildCopy(SPReg, SPTmp); 4981 MIRBuilder.buildCopy(Dst, SPTmp); 4982 4983 MI.eraseFromParent(); 4984 return Legalized; 4985 } 4986 4987 LegalizerHelper::LegalizeResult 4988 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4989 Register Dst = MI.getOperand(0).getReg(); 4990 Register Src = MI.getOperand(1).getReg(); 4991 unsigned Offset = MI.getOperand(2).getImm(); 4992 4993 LLT DstTy = MRI.getType(Dst); 4994 LLT SrcTy = MRI.getType(Src); 4995 4996 if (DstTy.isScalar() && 4997 (SrcTy.isScalar() || 4998 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4999 LLT SrcIntTy = SrcTy; 5000 if (!SrcTy.isScalar()) { 5001 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5002 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5003 } 5004 5005 if (Offset == 0) 5006 MIRBuilder.buildTrunc(Dst, Src); 5007 else { 5008 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5009 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5010 MIRBuilder.buildTrunc(Dst, Shr); 5011 } 5012 5013 MI.eraseFromParent(); 5014 return Legalized; 5015 } 5016 5017 return UnableToLegalize; 5018 } 5019 5020 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5021 Register Dst = MI.getOperand(0).getReg(); 5022 Register Src = MI.getOperand(1).getReg(); 5023 Register InsertSrc = MI.getOperand(2).getReg(); 5024 uint64_t Offset = MI.getOperand(3).getImm(); 5025 5026 LLT DstTy = MRI.getType(Src); 5027 LLT InsertTy = MRI.getType(InsertSrc); 5028 5029 if (InsertTy.isVector() || 5030 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5031 return UnableToLegalize; 5032 5033 const DataLayout &DL = MIRBuilder.getDataLayout(); 5034 if ((DstTy.isPointer() && 5035 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5036 (InsertTy.isPointer() && 5037 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5038 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5039 return UnableToLegalize; 5040 } 5041 5042 LLT IntDstTy = DstTy; 5043 5044 if (!DstTy.isScalar()) { 5045 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5046 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5047 } 5048 5049 if (!InsertTy.isScalar()) { 5050 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5051 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5052 } 5053 5054 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5055 if (Offset != 0) { 5056 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5057 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5058 } 5059 5060 APInt MaskVal = APInt::getBitsSetWithWrap( 5061 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5062 5063 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5064 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5065 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5066 5067 MIRBuilder.buildCast(Dst, Or); 5068 MI.eraseFromParent(); 5069 return Legalized; 5070 } 5071 5072 LegalizerHelper::LegalizeResult 5073 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5074 Register Dst0 = MI.getOperand(0).getReg(); 5075 Register Dst1 = MI.getOperand(1).getReg(); 5076 Register LHS = MI.getOperand(2).getReg(); 5077 Register RHS = MI.getOperand(3).getReg(); 5078 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5079 5080 LLT Ty = MRI.getType(Dst0); 5081 LLT BoolTy = MRI.getType(Dst1); 5082 5083 if (IsAdd) 5084 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5085 else 5086 MIRBuilder.buildSub(Dst0, LHS, RHS); 5087 5088 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5089 5090 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5091 5092 // For an addition, the result should be less than one of the operands (LHS) 5093 // if and only if the other operand (RHS) is negative, otherwise there will 5094 // be overflow. 5095 // For a subtraction, the result should be less than one of the operands 5096 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5097 // otherwise there will be overflow. 5098 auto ResultLowerThanLHS = 5099 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5100 auto ConditionRHS = MIRBuilder.buildICmp( 5101 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5102 5103 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5104 MI.eraseFromParent(); 5105 return Legalized; 5106 } 5107 5108 LegalizerHelper::LegalizeResult 5109 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5110 Register Dst = MI.getOperand(0).getReg(); 5111 Register Src = MI.getOperand(1).getReg(); 5112 const LLT Ty = MRI.getType(Src); 5113 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5114 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5115 5116 // Swap most and least significant byte, set remaining bytes in Res to zero. 5117 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5118 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5119 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5120 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5121 5122 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5123 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5124 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5125 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5126 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5127 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5128 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5129 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5130 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5131 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5132 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5133 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5134 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5135 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5136 } 5137 Res.getInstr()->getOperand(0).setReg(Dst); 5138 5139 MI.eraseFromParent(); 5140 return Legalized; 5141 } 5142 5143 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5144 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5145 MachineInstrBuilder Src, APInt Mask) { 5146 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5147 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5148 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5149 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5150 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5151 return B.buildOr(Dst, LHS, RHS); 5152 } 5153 5154 LegalizerHelper::LegalizeResult 5155 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5156 Register Dst = MI.getOperand(0).getReg(); 5157 Register Src = MI.getOperand(1).getReg(); 5158 const LLT Ty = MRI.getType(Src); 5159 unsigned Size = Ty.getSizeInBits(); 5160 5161 MachineInstrBuilder BSWAP = 5162 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5163 5164 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5165 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5166 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5167 MachineInstrBuilder Swap4 = 5168 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5169 5170 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5171 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5172 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5173 MachineInstrBuilder Swap2 = 5174 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5175 5176 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5177 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5178 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5179 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5180 5181 MI.eraseFromParent(); 5182 return Legalized; 5183 } 5184 5185 LegalizerHelper::LegalizeResult 5186 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5187 MachineFunction &MF = MIRBuilder.getMF(); 5188 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5189 const TargetLowering *TLI = STI.getTargetLowering(); 5190 5191 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5192 int NameOpIdx = IsRead ? 1 : 0; 5193 int ValRegIndex = IsRead ? 0 : 1; 5194 5195 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5196 const LLT Ty = MRI.getType(ValReg); 5197 const MDString *RegStr = cast<MDString>( 5198 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5199 5200 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5201 if (!PhysReg.isValid()) 5202 return UnableToLegalize; 5203 5204 if (IsRead) 5205 MIRBuilder.buildCopy(ValReg, PhysReg); 5206 else 5207 MIRBuilder.buildCopy(PhysReg, ValReg); 5208 5209 MI.eraseFromParent(); 5210 return Legalized; 5211 } 5212