1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 const Function &F = MI.getParent()->getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 484 MachineInstr *Next = MI.getNextNode(); 485 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 486 return false; 487 488 return true; 489 } 490 491 LegalizerHelper::LegalizeResult 492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 493 const CallLowering::ArgInfo &Result, 494 ArrayRef<CallLowering::ArgInfo> Args, 495 const CallingConv::ID CC) { 496 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 497 498 CallLowering::CallLoweringInfo Info; 499 Info.CallConv = CC; 500 Info.Callee = MachineOperand::CreateES(Name); 501 Info.OrigRet = Result; 502 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 503 if (!CLI.lowerCall(MIRBuilder, Info)) 504 return LegalizerHelper::UnableToLegalize; 505 506 return LegalizerHelper::Legalized; 507 } 508 509 LegalizerHelper::LegalizeResult 510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 511 const CallLowering::ArgInfo &Result, 512 ArrayRef<CallLowering::ArgInfo> Args) { 513 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 514 const char *Name = TLI.getLibcallName(Libcall); 515 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 516 return createLibcall(MIRBuilder, Name, Result, Args, CC); 517 } 518 519 // Useful for libcalls where all operands have the same type. 520 static LegalizerHelper::LegalizeResult 521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 522 Type *OpType) { 523 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 524 525 SmallVector<CallLowering::ArgInfo, 3> Args; 526 for (unsigned i = 1; i < MI.getNumOperands(); i++) 527 Args.push_back({MI.getOperand(i).getReg(), OpType}); 528 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 529 Args); 530 } 531 532 LegalizerHelper::LegalizeResult 533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 534 MachineInstr &MI) { 535 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 536 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 537 538 SmallVector<CallLowering::ArgInfo, 3> Args; 539 // Add all the args, except for the last which is an imm denoting 'tail'. 540 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 541 Register Reg = MI.getOperand(i).getReg(); 542 543 // Need derive an IR type for call lowering. 544 LLT OpLLT = MRI.getType(Reg); 545 Type *OpTy = nullptr; 546 if (OpLLT.isPointer()) 547 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 548 else 549 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 550 Args.push_back({Reg, OpTy}); 551 } 552 553 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 554 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 555 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 556 RTLIB::Libcall RTLibcall; 557 switch (ID) { 558 case Intrinsic::memcpy: 559 RTLibcall = RTLIB::MEMCPY; 560 break; 561 case Intrinsic::memset: 562 RTLibcall = RTLIB::MEMSET; 563 break; 564 case Intrinsic::memmove: 565 RTLibcall = RTLIB::MEMMOVE; 566 break; 567 default: 568 return LegalizerHelper::UnableToLegalize; 569 } 570 const char *Name = TLI.getLibcallName(RTLibcall); 571 572 MIRBuilder.setInstr(MI); 573 574 CallLowering::CallLoweringInfo Info; 575 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 576 Info.Callee = MachineOperand::CreateES(Name); 577 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 578 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 579 isLibCallInTailPosition(MI); 580 581 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 582 if (!CLI.lowerCall(MIRBuilder, Info)) 583 return LegalizerHelper::UnableToLegalize; 584 585 if (Info.LoweredTailCall) { 586 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 587 // We must have a return following the call to get past 588 // isLibCallInTailPosition. 589 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 590 "Expected instr following MI to be a return?"); 591 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 MI.getNextNode()->eraseFromParent(); 595 } 596 597 return LegalizerHelper::Legalized; 598 } 599 600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 601 Type *FromType) { 602 auto ToMVT = MVT::getVT(ToType); 603 auto FromMVT = MVT::getVT(FromType); 604 605 switch (Opcode) { 606 case TargetOpcode::G_FPEXT: 607 return RTLIB::getFPEXT(FromMVT, ToMVT); 608 case TargetOpcode::G_FPTRUNC: 609 return RTLIB::getFPROUND(FromMVT, ToMVT); 610 case TargetOpcode::G_FPTOSI: 611 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 612 case TargetOpcode::G_FPTOUI: 613 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 614 case TargetOpcode::G_SITOFP: 615 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 616 case TargetOpcode::G_UITOFP: 617 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 618 } 619 llvm_unreachable("Unsupported libcall function"); 620 } 621 622 static LegalizerHelper::LegalizeResult 623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 624 Type *FromType) { 625 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 626 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 627 {{MI.getOperand(1).getReg(), FromType}}); 628 } 629 630 LegalizerHelper::LegalizeResult 631 LegalizerHelper::libcall(MachineInstr &MI) { 632 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 633 unsigned Size = LLTy.getSizeInBits(); 634 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 635 636 MIRBuilder.setInstr(MI); 637 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 638 639 switch (MI.getOpcode()) { 640 default: 641 return UnableToLegalize; 642 case TargetOpcode::G_SDIV: 643 case TargetOpcode::G_UDIV: 644 case TargetOpcode::G_SREM: 645 case TargetOpcode::G_UREM: 646 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 647 Type *HLTy = IntegerType::get(Ctx, Size); 648 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 649 if (Status != Legalized) 650 return Status; 651 break; 652 } 653 case TargetOpcode::G_FADD: 654 case TargetOpcode::G_FSUB: 655 case TargetOpcode::G_FMUL: 656 case TargetOpcode::G_FDIV: 657 case TargetOpcode::G_FMA: 658 case TargetOpcode::G_FPOW: 659 case TargetOpcode::G_FREM: 660 case TargetOpcode::G_FCOS: 661 case TargetOpcode::G_FSIN: 662 case TargetOpcode::G_FLOG10: 663 case TargetOpcode::G_FLOG: 664 case TargetOpcode::G_FLOG2: 665 case TargetOpcode::G_FEXP: 666 case TargetOpcode::G_FEXP2: 667 case TargetOpcode::G_FCEIL: 668 case TargetOpcode::G_FFLOOR: 669 case TargetOpcode::G_FMINNUM: 670 case TargetOpcode::G_FMAXNUM: 671 case TargetOpcode::G_FSQRT: 672 case TargetOpcode::G_FRINT: 673 case TargetOpcode::G_FNEARBYINT: { 674 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 675 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 676 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 677 return UnableToLegalize; 678 } 679 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 680 if (Status != Legalized) 681 return Status; 682 break; 683 } 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: { 686 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 687 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 688 if (!FromTy || !ToTy) 689 return UnableToLegalize; 690 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 691 if (Status != Legalized) 692 return Status; 693 break; 694 } 695 case TargetOpcode::G_FPTOSI: 696 case TargetOpcode::G_FPTOUI: { 697 // FIXME: Support other types 698 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 700 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 701 return UnableToLegalize; 702 LegalizeResult Status = conversionLibcall( 703 MI, MIRBuilder, 704 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 705 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_SITOFP: 711 case TargetOpcode::G_UITOFP: { 712 // FIXME: Support other types 713 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 714 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 715 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 716 return UnableToLegalize; 717 LegalizeResult Status = conversionLibcall( 718 MI, MIRBuilder, 719 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 720 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 721 if (Status != Legalized) 722 return Status; 723 break; 724 } 725 } 726 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 732 unsigned TypeIdx, 733 LLT NarrowTy) { 734 MIRBuilder.setInstr(MI); 735 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 736 737 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 738 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 739 740 switch (MI.getOpcode()) { 741 default: 742 return UnableToLegalize; 743 case TargetOpcode::G_IMPLICIT_DEF: { 744 // FIXME: add support for when SizeOp0 isn't an exact multiple of 745 // NarrowSize. 746 if (SizeOp0 % NarrowSize != 0) 747 return UnableToLegalize; 748 int NumParts = SizeOp0 / NarrowSize; 749 750 SmallVector<Register, 2> DstRegs; 751 for (int i = 0; i < NumParts; ++i) 752 DstRegs.push_back( 753 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 754 755 Register DstReg = MI.getOperand(0).getReg(); 756 if(MRI.getType(DstReg).isVector()) 757 MIRBuilder.buildBuildVector(DstReg, DstRegs); 758 else 759 MIRBuilder.buildMerge(DstReg, DstRegs); 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 case TargetOpcode::G_CONSTANT: { 764 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 765 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 766 unsigned TotalSize = Ty.getSizeInBits(); 767 unsigned NarrowSize = NarrowTy.getSizeInBits(); 768 int NumParts = TotalSize / NarrowSize; 769 770 SmallVector<Register, 4> PartRegs; 771 for (int I = 0; I != NumParts; ++I) { 772 unsigned Offset = I * NarrowSize; 773 auto K = MIRBuilder.buildConstant(NarrowTy, 774 Val.lshr(Offset).trunc(NarrowSize)); 775 PartRegs.push_back(K.getReg(0)); 776 } 777 778 LLT LeftoverTy; 779 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 780 SmallVector<Register, 1> LeftoverRegs; 781 if (LeftoverBits != 0) { 782 LeftoverTy = LLT::scalar(LeftoverBits); 783 auto K = MIRBuilder.buildConstant( 784 LeftoverTy, 785 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 786 LeftoverRegs.push_back(K.getReg(0)); 787 } 788 789 insertParts(MI.getOperand(0).getReg(), 790 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 791 792 MI.eraseFromParent(); 793 return Legalized; 794 } 795 case TargetOpcode::G_SEXT: 796 case TargetOpcode::G_ZEXT: 797 case TargetOpcode::G_ANYEXT: 798 return narrowScalarExt(MI, TypeIdx, NarrowTy); 799 case TargetOpcode::G_TRUNC: { 800 if (TypeIdx != 1) 801 return UnableToLegalize; 802 803 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 804 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 805 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 806 return UnableToLegalize; 807 } 808 809 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 810 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 811 MI.eraseFromParent(); 812 return Legalized; 813 } 814 815 case TargetOpcode::G_ADD: { 816 // FIXME: add support for when SizeOp0 isn't an exact multiple of 817 // NarrowSize. 818 if (SizeOp0 % NarrowSize != 0) 819 return UnableToLegalize; 820 // Expand in terms of carry-setting/consuming G_ADDE instructions. 821 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 822 823 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 824 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 825 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 826 827 Register CarryIn; 828 for (int i = 0; i < NumParts; ++i) { 829 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 830 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 831 832 if (i == 0) 833 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 834 else { 835 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 836 Src2Regs[i], CarryIn); 837 } 838 839 DstRegs.push_back(DstReg); 840 CarryIn = CarryOut; 841 } 842 Register DstReg = MI.getOperand(0).getReg(); 843 if(MRI.getType(DstReg).isVector()) 844 MIRBuilder.buildBuildVector(DstReg, DstRegs); 845 else 846 MIRBuilder.buildMerge(DstReg, DstRegs); 847 MI.eraseFromParent(); 848 return Legalized; 849 } 850 case TargetOpcode::G_SUB: { 851 // FIXME: add support for when SizeOp0 isn't an exact multiple of 852 // NarrowSize. 853 if (SizeOp0 % NarrowSize != 0) 854 return UnableToLegalize; 855 856 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 857 858 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 859 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 860 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 861 862 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 863 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 864 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 865 {Src1Regs[0], Src2Regs[0]}); 866 DstRegs.push_back(DstReg); 867 Register BorrowIn = BorrowOut; 868 for (int i = 1; i < NumParts; ++i) { 869 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 870 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 871 872 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 873 {Src1Regs[i], Src2Regs[i], BorrowIn}); 874 875 DstRegs.push_back(DstReg); 876 BorrowIn = BorrowOut; 877 } 878 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 879 MI.eraseFromParent(); 880 return Legalized; 881 } 882 case TargetOpcode::G_MUL: 883 case TargetOpcode::G_UMULH: 884 return narrowScalarMul(MI, NarrowTy); 885 case TargetOpcode::G_EXTRACT: 886 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 887 case TargetOpcode::G_INSERT: 888 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 889 case TargetOpcode::G_LOAD: { 890 const auto &MMO = **MI.memoperands_begin(); 891 Register DstReg = MI.getOperand(0).getReg(); 892 LLT DstTy = MRI.getType(DstReg); 893 if (DstTy.isVector()) 894 return UnableToLegalize; 895 896 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 897 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 898 auto &MMO = **MI.memoperands_begin(); 899 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 900 MIRBuilder.buildAnyExt(DstReg, TmpReg); 901 MI.eraseFromParent(); 902 return Legalized; 903 } 904 905 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 906 } 907 case TargetOpcode::G_ZEXTLOAD: 908 case TargetOpcode::G_SEXTLOAD: { 909 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 910 Register DstReg = MI.getOperand(0).getReg(); 911 Register PtrReg = MI.getOperand(1).getReg(); 912 913 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 914 auto &MMO = **MI.memoperands_begin(); 915 if (MMO.getSizeInBits() == NarrowSize) { 916 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 917 } else { 918 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 919 } 920 921 if (ZExt) 922 MIRBuilder.buildZExt(DstReg, TmpReg); 923 else 924 MIRBuilder.buildSExt(DstReg, TmpReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 case TargetOpcode::G_STORE: { 930 const auto &MMO = **MI.memoperands_begin(); 931 932 Register SrcReg = MI.getOperand(0).getReg(); 933 LLT SrcTy = MRI.getType(SrcReg); 934 if (SrcTy.isVector()) 935 return UnableToLegalize; 936 937 int NumParts = SizeOp0 / NarrowSize; 938 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 939 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 940 if (SrcTy.isVector() && LeftoverBits != 0) 941 return UnableToLegalize; 942 943 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 944 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 945 auto &MMO = **MI.memoperands_begin(); 946 MIRBuilder.buildTrunc(TmpReg, SrcReg); 947 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 952 return reduceLoadStoreWidth(MI, 0, NarrowTy); 953 } 954 case TargetOpcode::G_SELECT: 955 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 956 case TargetOpcode::G_AND: 957 case TargetOpcode::G_OR: 958 case TargetOpcode::G_XOR: { 959 // Legalize bitwise operation: 960 // A = BinOp<Ty> B, C 961 // into: 962 // B1, ..., BN = G_UNMERGE_VALUES B 963 // C1, ..., CN = G_UNMERGE_VALUES C 964 // A1 = BinOp<Ty/N> B1, C2 965 // ... 966 // AN = BinOp<Ty/N> BN, CN 967 // A = G_MERGE_VALUES A1, ..., AN 968 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 969 } 970 case TargetOpcode::G_SHL: 971 case TargetOpcode::G_LSHR: 972 case TargetOpcode::G_ASHR: 973 return narrowScalarShift(MI, TypeIdx, NarrowTy); 974 case TargetOpcode::G_CTLZ: 975 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 976 case TargetOpcode::G_CTTZ: 977 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 978 case TargetOpcode::G_CTPOP: 979 if (TypeIdx == 1) 980 switch (MI.getOpcode()) { 981 case TargetOpcode::G_CTLZ: 982 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 983 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 984 case TargetOpcode::G_CTTZ: 985 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 986 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTPOP: 988 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 989 default: 990 return UnableToLegalize; 991 } 992 993 Observer.changingInstr(MI); 994 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 995 Observer.changedInstr(MI); 996 return Legalized; 997 case TargetOpcode::G_INTTOPTR: 998 if (TypeIdx != 1) 999 return UnableToLegalize; 1000 1001 Observer.changingInstr(MI); 1002 narrowScalarSrc(MI, NarrowTy, 1); 1003 Observer.changedInstr(MI); 1004 return Legalized; 1005 case TargetOpcode::G_PTRTOINT: 1006 if (TypeIdx != 0) 1007 return UnableToLegalize; 1008 1009 Observer.changingInstr(MI); 1010 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1011 Observer.changedInstr(MI); 1012 return Legalized; 1013 case TargetOpcode::G_PHI: { 1014 unsigned NumParts = SizeOp0 / NarrowSize; 1015 SmallVector<Register, 2> DstRegs(NumParts); 1016 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1017 Observer.changingInstr(MI); 1018 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1019 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1020 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1021 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1022 SrcRegs[i / 2]); 1023 } 1024 MachineBasicBlock &MBB = *MI.getParent(); 1025 MIRBuilder.setInsertPt(MBB, MI); 1026 for (unsigned i = 0; i < NumParts; ++i) { 1027 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1028 MachineInstrBuilder MIB = 1029 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1030 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1031 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1032 } 1033 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1034 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1035 Observer.changedInstr(MI); 1036 MI.eraseFromParent(); 1037 return Legalized; 1038 } 1039 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1040 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1041 if (TypeIdx != 2) 1042 return UnableToLegalize; 1043 1044 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1045 Observer.changingInstr(MI); 1046 narrowScalarSrc(MI, NarrowTy, OpIdx); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 } 1050 case TargetOpcode::G_ICMP: { 1051 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1052 if (NarrowSize * 2 != SrcSize) 1053 return UnableToLegalize; 1054 1055 Observer.changingInstr(MI); 1056 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1057 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1058 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1059 1060 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1061 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1062 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1063 1064 CmpInst::Predicate Pred = 1065 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1066 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1067 1068 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1069 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1070 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1071 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1072 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1073 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1074 } else { 1075 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1076 MachineInstrBuilder CmpHEQ = 1077 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1078 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1079 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1080 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1081 } 1082 Observer.changedInstr(MI); 1083 MI.eraseFromParent(); 1084 return Legalized; 1085 } 1086 case TargetOpcode::G_SEXT_INREG: { 1087 if (TypeIdx != 0) 1088 return UnableToLegalize; 1089 1090 int64_t SizeInBits = MI.getOperand(2).getImm(); 1091 1092 // So long as the new type has more bits than the bits we're extending we 1093 // don't need to break it apart. 1094 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1095 Observer.changingInstr(MI); 1096 // We don't lose any non-extension bits by truncating the src and 1097 // sign-extending the dst. 1098 MachineOperand &MO1 = MI.getOperand(1); 1099 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1100 MO1.setReg(TruncMIB.getReg(0)); 1101 1102 MachineOperand &MO2 = MI.getOperand(0); 1103 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1104 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1105 MIRBuilder.buildSExt(MO2, DstExt); 1106 MO2.setReg(DstExt); 1107 Observer.changedInstr(MI); 1108 return Legalized; 1109 } 1110 1111 // Break it apart. Components below the extension point are unmodified. The 1112 // component containing the extension point becomes a narrower SEXT_INREG. 1113 // Components above it are ashr'd from the component containing the 1114 // extension point. 1115 if (SizeOp0 % NarrowSize != 0) 1116 return UnableToLegalize; 1117 int NumParts = SizeOp0 / NarrowSize; 1118 1119 // List the registers where the destination will be scattered. 1120 SmallVector<Register, 2> DstRegs; 1121 // List the registers where the source will be split. 1122 SmallVector<Register, 2> SrcRegs; 1123 1124 // Create all the temporary registers. 1125 for (int i = 0; i < NumParts; ++i) { 1126 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1127 1128 SrcRegs.push_back(SrcReg); 1129 } 1130 1131 // Explode the big arguments into smaller chunks. 1132 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1133 1134 Register AshrCstReg = 1135 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1136 .getReg(0); 1137 Register FullExtensionReg = 0; 1138 Register PartialExtensionReg = 0; 1139 1140 // Do the operation on each small part. 1141 for (int i = 0; i < NumParts; ++i) { 1142 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1143 DstRegs.push_back(SrcRegs[i]); 1144 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1145 assert(PartialExtensionReg && 1146 "Expected to visit partial extension before full"); 1147 if (FullExtensionReg) { 1148 DstRegs.push_back(FullExtensionReg); 1149 continue; 1150 } 1151 DstRegs.push_back( 1152 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1153 .getReg(0)); 1154 FullExtensionReg = DstRegs.back(); 1155 } else { 1156 DstRegs.push_back( 1157 MIRBuilder 1158 .buildInstr( 1159 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1160 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1161 .getReg(0)); 1162 PartialExtensionReg = DstRegs.back(); 1163 } 1164 } 1165 1166 // Gather the destination registers into the final destination. 1167 Register DstReg = MI.getOperand(0).getReg(); 1168 MIRBuilder.buildMerge(DstReg, DstRegs); 1169 MI.eraseFromParent(); 1170 return Legalized; 1171 } 1172 case TargetOpcode::G_BSWAP: 1173 case TargetOpcode::G_BITREVERSE: { 1174 if (SizeOp0 % NarrowSize != 0) 1175 return UnableToLegalize; 1176 1177 Observer.changingInstr(MI); 1178 SmallVector<Register, 2> SrcRegs, DstRegs; 1179 unsigned NumParts = SizeOp0 / NarrowSize; 1180 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1181 1182 for (unsigned i = 0; i < NumParts; ++i) { 1183 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1184 {SrcRegs[NumParts - 1 - i]}); 1185 DstRegs.push_back(DstPart.getReg(0)); 1186 } 1187 1188 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1189 1190 Observer.changedInstr(MI); 1191 MI.eraseFromParent(); 1192 return Legalized; 1193 } 1194 } 1195 } 1196 1197 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1198 unsigned OpIdx, unsigned ExtOpcode) { 1199 MachineOperand &MO = MI.getOperand(OpIdx); 1200 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1201 MO.setReg(ExtB.getReg(0)); 1202 } 1203 1204 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1205 unsigned OpIdx) { 1206 MachineOperand &MO = MI.getOperand(OpIdx); 1207 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1208 MO.setReg(ExtB.getReg(0)); 1209 } 1210 1211 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1212 unsigned OpIdx, unsigned TruncOpcode) { 1213 MachineOperand &MO = MI.getOperand(OpIdx); 1214 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1215 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1216 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1217 MO.setReg(DstExt); 1218 } 1219 1220 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1221 unsigned OpIdx, unsigned ExtOpcode) { 1222 MachineOperand &MO = MI.getOperand(OpIdx); 1223 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1224 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1225 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1226 MO.setReg(DstTrunc); 1227 } 1228 1229 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1230 unsigned OpIdx) { 1231 MachineOperand &MO = MI.getOperand(OpIdx); 1232 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1233 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1234 MIRBuilder.buildExtract(MO, DstExt, 0); 1235 MO.setReg(DstExt); 1236 } 1237 1238 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1239 unsigned OpIdx) { 1240 MachineOperand &MO = MI.getOperand(OpIdx); 1241 1242 LLT OldTy = MRI.getType(MO.getReg()); 1243 unsigned OldElts = OldTy.getNumElements(); 1244 unsigned NewElts = MoreTy.getNumElements(); 1245 1246 unsigned NumParts = NewElts / OldElts; 1247 1248 // Use concat_vectors if the result is a multiple of the number of elements. 1249 if (NumParts * OldElts == NewElts) { 1250 SmallVector<Register, 8> Parts; 1251 Parts.push_back(MO.getReg()); 1252 1253 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1254 for (unsigned I = 1; I != NumParts; ++I) 1255 Parts.push_back(ImpDef); 1256 1257 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1258 MO.setReg(Concat.getReg(0)); 1259 return; 1260 } 1261 1262 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1263 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1264 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1265 MO.setReg(MoreReg); 1266 } 1267 1268 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1269 MachineOperand &Op = MI.getOperand(OpIdx); 1270 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1271 } 1272 1273 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1274 MachineOperand &MO = MI.getOperand(OpIdx); 1275 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 MIRBuilder.buildBitcast(MO, CastDst); 1278 MO.setReg(CastDst); 1279 } 1280 1281 LegalizerHelper::LegalizeResult 1282 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1283 LLT WideTy) { 1284 if (TypeIdx != 1) 1285 return UnableToLegalize; 1286 1287 Register DstReg = MI.getOperand(0).getReg(); 1288 LLT DstTy = MRI.getType(DstReg); 1289 if (DstTy.isVector()) 1290 return UnableToLegalize; 1291 1292 Register Src1 = MI.getOperand(1).getReg(); 1293 LLT SrcTy = MRI.getType(Src1); 1294 const int DstSize = DstTy.getSizeInBits(); 1295 const int SrcSize = SrcTy.getSizeInBits(); 1296 const int WideSize = WideTy.getSizeInBits(); 1297 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1298 1299 unsigned NumOps = MI.getNumOperands(); 1300 unsigned NumSrc = MI.getNumOperands() - 1; 1301 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1302 1303 if (WideSize >= DstSize) { 1304 // Directly pack the bits in the target type. 1305 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1306 1307 for (unsigned I = 2; I != NumOps; ++I) { 1308 const unsigned Offset = (I - 1) * PartSize; 1309 1310 Register SrcReg = MI.getOperand(I).getReg(); 1311 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1312 1313 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1314 1315 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1316 MRI.createGenericVirtualRegister(WideTy); 1317 1318 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1319 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1320 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1321 ResultReg = NextResult; 1322 } 1323 1324 if (WideSize > DstSize) 1325 MIRBuilder.buildTrunc(DstReg, ResultReg); 1326 else if (DstTy.isPointer()) 1327 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1328 1329 MI.eraseFromParent(); 1330 return Legalized; 1331 } 1332 1333 // Unmerge the original values to the GCD type, and recombine to the next 1334 // multiple greater than the original type. 1335 // 1336 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1337 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1338 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1339 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1340 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1341 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1342 // %12:_(s12) = G_MERGE_VALUES %10, %11 1343 // 1344 // Padding with undef if necessary: 1345 // 1346 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1347 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1348 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1349 // %7:_(s2) = G_IMPLICIT_DEF 1350 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1351 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1352 // %10:_(s12) = G_MERGE_VALUES %8, %9 1353 1354 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1355 LLT GCDTy = LLT::scalar(GCD); 1356 1357 SmallVector<Register, 8> Parts; 1358 SmallVector<Register, 8> NewMergeRegs; 1359 SmallVector<Register, 8> Unmerges; 1360 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1361 1362 // Decompose the original operands if they don't evenly divide. 1363 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1364 Register SrcReg = MI.getOperand(I).getReg(); 1365 if (GCD == SrcSize) { 1366 Unmerges.push_back(SrcReg); 1367 } else { 1368 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1369 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1370 Unmerges.push_back(Unmerge.getReg(J)); 1371 } 1372 } 1373 1374 // Pad with undef to the next size that is a multiple of the requested size. 1375 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1376 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1377 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1378 Unmerges.push_back(UndefReg); 1379 } 1380 1381 const int PartsPerGCD = WideSize / GCD; 1382 1383 // Build merges of each piece. 1384 ArrayRef<Register> Slicer(Unmerges); 1385 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1386 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1387 NewMergeRegs.push_back(Merge.getReg(0)); 1388 } 1389 1390 // A truncate may be necessary if the requested type doesn't evenly divide the 1391 // original result type. 1392 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1393 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1394 } else { 1395 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1396 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1397 } 1398 1399 MI.eraseFromParent(); 1400 return Legalized; 1401 } 1402 1403 LegalizerHelper::LegalizeResult 1404 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1405 LLT WideTy) { 1406 if (TypeIdx != 0) 1407 return UnableToLegalize; 1408 1409 int NumDst = MI.getNumOperands() - 1; 1410 Register SrcReg = MI.getOperand(NumDst).getReg(); 1411 LLT SrcTy = MRI.getType(SrcReg); 1412 if (SrcTy.isVector()) 1413 return UnableToLegalize; 1414 1415 Register Dst0Reg = MI.getOperand(0).getReg(); 1416 LLT DstTy = MRI.getType(Dst0Reg); 1417 if (!DstTy.isScalar()) 1418 return UnableToLegalize; 1419 1420 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1421 if (SrcTy.isPointer()) { 1422 const DataLayout &DL = MIRBuilder.getDataLayout(); 1423 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1424 LLVM_DEBUG( 1425 dbgs() << "Not casting non-integral address space integer\n"); 1426 return UnableToLegalize; 1427 } 1428 1429 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1430 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1431 } 1432 1433 // Widen SrcTy to WideTy. This does not affect the result, but since the 1434 // user requested this size, it is probably better handled than SrcTy and 1435 // should reduce the total number of legalization artifacts 1436 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1437 SrcTy = WideTy; 1438 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1439 } 1440 1441 // Theres no unmerge type to target. Directly extract the bits from the 1442 // source type 1443 unsigned DstSize = DstTy.getSizeInBits(); 1444 1445 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1446 for (int I = 1; I != NumDst; ++I) { 1447 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1448 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1449 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1450 } 1451 1452 MI.eraseFromParent(); 1453 return Legalized; 1454 } 1455 1456 // Extend the source to a wider type. 1457 LLT LCMTy = getLCMType(SrcTy, WideTy); 1458 1459 Register WideSrc = SrcReg; 1460 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1461 // TODO: If this is an integral address space, cast to integer and anyext. 1462 if (SrcTy.isPointer()) { 1463 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1464 return UnableToLegalize; 1465 } 1466 1467 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1468 } 1469 1470 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1471 1472 // Create a sequence of unmerges to the original results. since we may have 1473 // widened the source, we will need to pad the results with dead defs to cover 1474 // the source register. 1475 // e.g. widen s16 to s32: 1476 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1477 // 1478 // => 1479 // %4:_(s64) = G_ANYEXT %0:_(s48) 1480 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1481 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1482 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1483 1484 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1485 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1486 1487 for (int I = 0; I != NumUnmerge; ++I) { 1488 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1489 1490 for (int J = 0; J != PartsPerUnmerge; ++J) { 1491 int Idx = I * PartsPerUnmerge + J; 1492 if (Idx < NumDst) 1493 MIB.addDef(MI.getOperand(Idx).getReg()); 1494 else { 1495 // Create dead def for excess components. 1496 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1497 } 1498 } 1499 1500 MIB.addUse(Unmerge.getReg(I)); 1501 } 1502 1503 MI.eraseFromParent(); 1504 return Legalized; 1505 } 1506 1507 LegalizerHelper::LegalizeResult 1508 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1509 LLT WideTy) { 1510 Register DstReg = MI.getOperand(0).getReg(); 1511 Register SrcReg = MI.getOperand(1).getReg(); 1512 LLT SrcTy = MRI.getType(SrcReg); 1513 1514 LLT DstTy = MRI.getType(DstReg); 1515 unsigned Offset = MI.getOperand(2).getImm(); 1516 1517 if (TypeIdx == 0) { 1518 if (SrcTy.isVector() || DstTy.isVector()) 1519 return UnableToLegalize; 1520 1521 SrcOp Src(SrcReg); 1522 if (SrcTy.isPointer()) { 1523 // Extracts from pointers can be handled only if they are really just 1524 // simple integers. 1525 const DataLayout &DL = MIRBuilder.getDataLayout(); 1526 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1527 return UnableToLegalize; 1528 1529 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1530 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1531 SrcTy = SrcAsIntTy; 1532 } 1533 1534 if (DstTy.isPointer()) 1535 return UnableToLegalize; 1536 1537 if (Offset == 0) { 1538 // Avoid a shift in the degenerate case. 1539 MIRBuilder.buildTrunc(DstReg, 1540 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1541 MI.eraseFromParent(); 1542 return Legalized; 1543 } 1544 1545 // Do a shift in the source type. 1546 LLT ShiftTy = SrcTy; 1547 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1548 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1549 ShiftTy = WideTy; 1550 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1551 return UnableToLegalize; 1552 1553 auto LShr = MIRBuilder.buildLShr( 1554 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1555 MIRBuilder.buildTrunc(DstReg, LShr); 1556 MI.eraseFromParent(); 1557 return Legalized; 1558 } 1559 1560 if (SrcTy.isScalar()) { 1561 Observer.changingInstr(MI); 1562 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1563 Observer.changedInstr(MI); 1564 return Legalized; 1565 } 1566 1567 if (!SrcTy.isVector()) 1568 return UnableToLegalize; 1569 1570 if (DstTy != SrcTy.getElementType()) 1571 return UnableToLegalize; 1572 1573 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1574 return UnableToLegalize; 1575 1576 Observer.changingInstr(MI); 1577 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1578 1579 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1580 Offset); 1581 widenScalarDst(MI, WideTy.getScalarType(), 0); 1582 Observer.changedInstr(MI); 1583 return Legalized; 1584 } 1585 1586 LegalizerHelper::LegalizeResult 1587 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1588 LLT WideTy) { 1589 if (TypeIdx != 0) 1590 return UnableToLegalize; 1591 Observer.changingInstr(MI); 1592 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1593 widenScalarDst(MI, WideTy); 1594 Observer.changedInstr(MI); 1595 return Legalized; 1596 } 1597 1598 LegalizerHelper::LegalizeResult 1599 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1600 MIRBuilder.setInstr(MI); 1601 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 1602 1603 switch (MI.getOpcode()) { 1604 default: 1605 return UnableToLegalize; 1606 case TargetOpcode::G_EXTRACT: 1607 return widenScalarExtract(MI, TypeIdx, WideTy); 1608 case TargetOpcode::G_INSERT: 1609 return widenScalarInsert(MI, TypeIdx, WideTy); 1610 case TargetOpcode::G_MERGE_VALUES: 1611 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1612 case TargetOpcode::G_UNMERGE_VALUES: 1613 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1614 case TargetOpcode::G_UADDO: 1615 case TargetOpcode::G_USUBO: { 1616 if (TypeIdx == 1) 1617 return UnableToLegalize; // TODO 1618 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1619 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1620 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1621 ? TargetOpcode::G_ADD 1622 : TargetOpcode::G_SUB; 1623 // Do the arithmetic in the larger type. 1624 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1625 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1626 APInt Mask = 1627 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1628 auto AndOp = MIRBuilder.buildAnd( 1629 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1630 // There is no overflow if the AndOp is the same as NewOp. 1631 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1632 // Now trunc the NewOp to the original result. 1633 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1634 MI.eraseFromParent(); 1635 return Legalized; 1636 } 1637 case TargetOpcode::G_CTTZ: 1638 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1639 case TargetOpcode::G_CTLZ: 1640 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1641 case TargetOpcode::G_CTPOP: { 1642 if (TypeIdx == 0) { 1643 Observer.changingInstr(MI); 1644 widenScalarDst(MI, WideTy, 0); 1645 Observer.changedInstr(MI); 1646 return Legalized; 1647 } 1648 1649 Register SrcReg = MI.getOperand(1).getReg(); 1650 1651 // First ZEXT the input. 1652 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1653 LLT CurTy = MRI.getType(SrcReg); 1654 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1655 // The count is the same in the larger type except if the original 1656 // value was zero. This can be handled by setting the bit just off 1657 // the top of the original type. 1658 auto TopBit = 1659 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1660 MIBSrc = MIRBuilder.buildOr( 1661 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1662 } 1663 1664 // Perform the operation at the larger size. 1665 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1666 // This is already the correct result for CTPOP and CTTZs 1667 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1668 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1669 // The correct result is NewOp - (Difference in widety and current ty). 1670 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1671 MIBNewOp = MIRBuilder.buildSub( 1672 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1673 } 1674 1675 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1676 MI.eraseFromParent(); 1677 return Legalized; 1678 } 1679 case TargetOpcode::G_BSWAP: { 1680 Observer.changingInstr(MI); 1681 Register DstReg = MI.getOperand(0).getReg(); 1682 1683 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1684 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1685 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1686 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1687 1688 MI.getOperand(0).setReg(DstExt); 1689 1690 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1691 1692 LLT Ty = MRI.getType(DstReg); 1693 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1694 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1695 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1696 1697 MIRBuilder.buildTrunc(DstReg, ShrReg); 1698 Observer.changedInstr(MI); 1699 return Legalized; 1700 } 1701 case TargetOpcode::G_BITREVERSE: { 1702 Observer.changingInstr(MI); 1703 1704 Register DstReg = MI.getOperand(0).getReg(); 1705 LLT Ty = MRI.getType(DstReg); 1706 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1707 1708 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1709 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1710 MI.getOperand(0).setReg(DstExt); 1711 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1712 1713 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1714 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1715 MIRBuilder.buildTrunc(DstReg, Shift); 1716 Observer.changedInstr(MI); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_ADD: 1720 case TargetOpcode::G_AND: 1721 case TargetOpcode::G_MUL: 1722 case TargetOpcode::G_OR: 1723 case TargetOpcode::G_XOR: 1724 case TargetOpcode::G_SUB: 1725 // Perform operation at larger width (any extension is fines here, high bits 1726 // don't affect the result) and then truncate the result back to the 1727 // original type. 1728 Observer.changingInstr(MI); 1729 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1730 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1731 widenScalarDst(MI, WideTy); 1732 Observer.changedInstr(MI); 1733 return Legalized; 1734 1735 case TargetOpcode::G_SHL: 1736 Observer.changingInstr(MI); 1737 1738 if (TypeIdx == 0) { 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 widenScalarDst(MI, WideTy); 1741 } else { 1742 assert(TypeIdx == 1); 1743 // The "number of bits to shift" operand must preserve its value as an 1744 // unsigned integer: 1745 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1746 } 1747 1748 Observer.changedInstr(MI); 1749 return Legalized; 1750 1751 case TargetOpcode::G_SDIV: 1752 case TargetOpcode::G_SREM: 1753 case TargetOpcode::G_SMIN: 1754 case TargetOpcode::G_SMAX: 1755 Observer.changingInstr(MI); 1756 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1757 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1758 widenScalarDst(MI, WideTy); 1759 Observer.changedInstr(MI); 1760 return Legalized; 1761 1762 case TargetOpcode::G_ASHR: 1763 case TargetOpcode::G_LSHR: 1764 Observer.changingInstr(MI); 1765 1766 if (TypeIdx == 0) { 1767 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1768 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1769 1770 widenScalarSrc(MI, WideTy, 1, CvtOp); 1771 widenScalarDst(MI, WideTy); 1772 } else { 1773 assert(TypeIdx == 1); 1774 // The "number of bits to shift" operand must preserve its value as an 1775 // unsigned integer: 1776 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1777 } 1778 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 case TargetOpcode::G_UDIV: 1782 case TargetOpcode::G_UREM: 1783 case TargetOpcode::G_UMIN: 1784 case TargetOpcode::G_UMAX: 1785 Observer.changingInstr(MI); 1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1787 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1788 widenScalarDst(MI, WideTy); 1789 Observer.changedInstr(MI); 1790 return Legalized; 1791 1792 case TargetOpcode::G_SELECT: 1793 Observer.changingInstr(MI); 1794 if (TypeIdx == 0) { 1795 // Perform operation at larger width (any extension is fine here, high 1796 // bits don't affect the result) and then truncate the result back to the 1797 // original type. 1798 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1799 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1800 widenScalarDst(MI, WideTy); 1801 } else { 1802 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1803 // Explicit extension is required here since high bits affect the result. 1804 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1805 } 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 1809 case TargetOpcode::G_FPTOSI: 1810 case TargetOpcode::G_FPTOUI: 1811 Observer.changingInstr(MI); 1812 1813 if (TypeIdx == 0) 1814 widenScalarDst(MI, WideTy); 1815 else 1816 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1817 1818 Observer.changedInstr(MI); 1819 return Legalized; 1820 case TargetOpcode::G_SITOFP: 1821 if (TypeIdx != 1) 1822 return UnableToLegalize; 1823 Observer.changingInstr(MI); 1824 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1825 Observer.changedInstr(MI); 1826 return Legalized; 1827 1828 case TargetOpcode::G_UITOFP: 1829 if (TypeIdx != 1) 1830 return UnableToLegalize; 1831 Observer.changingInstr(MI); 1832 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1833 Observer.changedInstr(MI); 1834 return Legalized; 1835 1836 case TargetOpcode::G_LOAD: 1837 case TargetOpcode::G_SEXTLOAD: 1838 case TargetOpcode::G_ZEXTLOAD: 1839 Observer.changingInstr(MI); 1840 widenScalarDst(MI, WideTy); 1841 Observer.changedInstr(MI); 1842 return Legalized; 1843 1844 case TargetOpcode::G_STORE: { 1845 if (TypeIdx != 0) 1846 return UnableToLegalize; 1847 1848 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1849 if (!isPowerOf2_32(Ty.getSizeInBits())) 1850 return UnableToLegalize; 1851 1852 Observer.changingInstr(MI); 1853 1854 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1855 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1856 widenScalarSrc(MI, WideTy, 0, ExtType); 1857 1858 Observer.changedInstr(MI); 1859 return Legalized; 1860 } 1861 case TargetOpcode::G_CONSTANT: { 1862 MachineOperand &SrcMO = MI.getOperand(1); 1863 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1864 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1865 MRI.getType(MI.getOperand(0).getReg())); 1866 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1867 ExtOpc == TargetOpcode::G_ANYEXT) && 1868 "Illegal Extend"); 1869 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1870 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1871 ? SrcVal.sext(WideTy.getSizeInBits()) 1872 : SrcVal.zext(WideTy.getSizeInBits()); 1873 Observer.changingInstr(MI); 1874 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1875 1876 widenScalarDst(MI, WideTy); 1877 Observer.changedInstr(MI); 1878 return Legalized; 1879 } 1880 case TargetOpcode::G_FCONSTANT: { 1881 MachineOperand &SrcMO = MI.getOperand(1); 1882 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1883 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1884 bool LosesInfo; 1885 switch (WideTy.getSizeInBits()) { 1886 case 32: 1887 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1888 &LosesInfo); 1889 break; 1890 case 64: 1891 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1892 &LosesInfo); 1893 break; 1894 default: 1895 return UnableToLegalize; 1896 } 1897 1898 assert(!LosesInfo && "extend should always be lossless"); 1899 1900 Observer.changingInstr(MI); 1901 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1902 1903 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1904 Observer.changedInstr(MI); 1905 return Legalized; 1906 } 1907 case TargetOpcode::G_IMPLICIT_DEF: { 1908 Observer.changingInstr(MI); 1909 widenScalarDst(MI, WideTy); 1910 Observer.changedInstr(MI); 1911 return Legalized; 1912 } 1913 case TargetOpcode::G_BRCOND: 1914 Observer.changingInstr(MI); 1915 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1916 Observer.changedInstr(MI); 1917 return Legalized; 1918 1919 case TargetOpcode::G_FCMP: 1920 Observer.changingInstr(MI); 1921 if (TypeIdx == 0) 1922 widenScalarDst(MI, WideTy); 1923 else { 1924 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1925 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1926 } 1927 Observer.changedInstr(MI); 1928 return Legalized; 1929 1930 case TargetOpcode::G_ICMP: 1931 Observer.changingInstr(MI); 1932 if (TypeIdx == 0) 1933 widenScalarDst(MI, WideTy); 1934 else { 1935 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1936 MI.getOperand(1).getPredicate())) 1937 ? TargetOpcode::G_SEXT 1938 : TargetOpcode::G_ZEXT; 1939 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1940 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1941 } 1942 Observer.changedInstr(MI); 1943 return Legalized; 1944 1945 case TargetOpcode::G_PTR_ADD: 1946 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1947 Observer.changingInstr(MI); 1948 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1949 Observer.changedInstr(MI); 1950 return Legalized; 1951 1952 case TargetOpcode::G_PHI: { 1953 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1954 1955 Observer.changingInstr(MI); 1956 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1957 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1958 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1959 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1960 } 1961 1962 MachineBasicBlock &MBB = *MI.getParent(); 1963 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1964 widenScalarDst(MI, WideTy); 1965 Observer.changedInstr(MI); 1966 return Legalized; 1967 } 1968 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1969 if (TypeIdx == 0) { 1970 Register VecReg = MI.getOperand(1).getReg(); 1971 LLT VecTy = MRI.getType(VecReg); 1972 Observer.changingInstr(MI); 1973 1974 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1975 WideTy.getSizeInBits()), 1976 1, TargetOpcode::G_SEXT); 1977 1978 widenScalarDst(MI, WideTy, 0); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 } 1982 1983 if (TypeIdx != 2) 1984 return UnableToLegalize; 1985 Observer.changingInstr(MI); 1986 // TODO: Probably should be zext 1987 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1988 Observer.changedInstr(MI); 1989 return Legalized; 1990 } 1991 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1992 if (TypeIdx == 1) { 1993 Observer.changingInstr(MI); 1994 1995 Register VecReg = MI.getOperand(1).getReg(); 1996 LLT VecTy = MRI.getType(VecReg); 1997 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1998 1999 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2000 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2001 widenScalarDst(MI, WideVecTy, 0); 2002 Observer.changedInstr(MI); 2003 return Legalized; 2004 } 2005 2006 if (TypeIdx == 2) { 2007 Observer.changingInstr(MI); 2008 // TODO: Probably should be zext 2009 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2010 Observer.changedInstr(MI); 2011 } 2012 2013 return Legalized; 2014 } 2015 case TargetOpcode::G_FADD: 2016 case TargetOpcode::G_FMUL: 2017 case TargetOpcode::G_FSUB: 2018 case TargetOpcode::G_FMA: 2019 case TargetOpcode::G_FMAD: 2020 case TargetOpcode::G_FNEG: 2021 case TargetOpcode::G_FABS: 2022 case TargetOpcode::G_FCANONICALIZE: 2023 case TargetOpcode::G_FMINNUM: 2024 case TargetOpcode::G_FMAXNUM: 2025 case TargetOpcode::G_FMINNUM_IEEE: 2026 case TargetOpcode::G_FMAXNUM_IEEE: 2027 case TargetOpcode::G_FMINIMUM: 2028 case TargetOpcode::G_FMAXIMUM: 2029 case TargetOpcode::G_FDIV: 2030 case TargetOpcode::G_FREM: 2031 case TargetOpcode::G_FCEIL: 2032 case TargetOpcode::G_FFLOOR: 2033 case TargetOpcode::G_FCOS: 2034 case TargetOpcode::G_FSIN: 2035 case TargetOpcode::G_FLOG10: 2036 case TargetOpcode::G_FLOG: 2037 case TargetOpcode::G_FLOG2: 2038 case TargetOpcode::G_FRINT: 2039 case TargetOpcode::G_FNEARBYINT: 2040 case TargetOpcode::G_FSQRT: 2041 case TargetOpcode::G_FEXP: 2042 case TargetOpcode::G_FEXP2: 2043 case TargetOpcode::G_FPOW: 2044 case TargetOpcode::G_INTRINSIC_TRUNC: 2045 case TargetOpcode::G_INTRINSIC_ROUND: 2046 assert(TypeIdx == 0); 2047 Observer.changingInstr(MI); 2048 2049 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2050 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2051 2052 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2053 Observer.changedInstr(MI); 2054 return Legalized; 2055 case TargetOpcode::G_INTTOPTR: 2056 if (TypeIdx != 1) 2057 return UnableToLegalize; 2058 2059 Observer.changingInstr(MI); 2060 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2061 Observer.changedInstr(MI); 2062 return Legalized; 2063 case TargetOpcode::G_PTRTOINT: 2064 if (TypeIdx != 0) 2065 return UnableToLegalize; 2066 2067 Observer.changingInstr(MI); 2068 widenScalarDst(MI, WideTy, 0); 2069 Observer.changedInstr(MI); 2070 return Legalized; 2071 case TargetOpcode::G_BUILD_VECTOR: { 2072 Observer.changingInstr(MI); 2073 2074 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2075 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2076 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2077 2078 // Avoid changing the result vector type if the source element type was 2079 // requested. 2080 if (TypeIdx == 1) { 2081 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2082 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2083 } else { 2084 widenScalarDst(MI, WideTy, 0); 2085 } 2086 2087 Observer.changedInstr(MI); 2088 return Legalized; 2089 } 2090 case TargetOpcode::G_SEXT_INREG: 2091 if (TypeIdx != 0) 2092 return UnableToLegalize; 2093 2094 Observer.changingInstr(MI); 2095 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2096 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 } 2100 } 2101 2102 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2103 MachineIRBuilder &B, Register Src, LLT Ty) { 2104 auto Unmerge = B.buildUnmerge(Ty, Src); 2105 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2106 Pieces.push_back(Unmerge.getReg(I)); 2107 } 2108 2109 LegalizerHelper::LegalizeResult 2110 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2111 Register Dst = MI.getOperand(0).getReg(); 2112 Register Src = MI.getOperand(1).getReg(); 2113 LLT DstTy = MRI.getType(Dst); 2114 LLT SrcTy = MRI.getType(Src); 2115 2116 if (SrcTy.isVector() && !DstTy.isVector()) { 2117 SmallVector<Register, 8> SrcRegs; 2118 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2119 MIRBuilder.buildMerge(Dst, SrcRegs); 2120 MI.eraseFromParent(); 2121 return Legalized; 2122 } 2123 2124 if (DstTy.isVector() && !SrcTy.isVector()) { 2125 SmallVector<Register, 8> SrcRegs; 2126 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2127 MIRBuilder.buildMerge(Dst, SrcRegs); 2128 MI.eraseFromParent(); 2129 return Legalized; 2130 } 2131 2132 return UnableToLegalize; 2133 } 2134 2135 LegalizerHelper::LegalizeResult 2136 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2137 MIRBuilder.setInstr(MI); 2138 2139 switch (MI.getOpcode()) { 2140 case TargetOpcode::G_LOAD: { 2141 if (TypeIdx != 0) 2142 return UnableToLegalize; 2143 2144 Observer.changingInstr(MI); 2145 bitcastDst(MI, CastTy, 0); 2146 Observer.changedInstr(MI); 2147 return Legalized; 2148 } 2149 case TargetOpcode::G_STORE: { 2150 if (TypeIdx != 0) 2151 return UnableToLegalize; 2152 2153 Observer.changingInstr(MI); 2154 bitcastSrc(MI, CastTy, 0); 2155 Observer.changedInstr(MI); 2156 return Legalized; 2157 } 2158 case TargetOpcode::G_SELECT: { 2159 if (TypeIdx != 0) 2160 return UnableToLegalize; 2161 2162 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2163 LLVM_DEBUG( 2164 dbgs() << "bitcast action not implemented for vector select\n"); 2165 return UnableToLegalize; 2166 } 2167 2168 Observer.changingInstr(MI); 2169 bitcastSrc(MI, CastTy, 2); 2170 bitcastSrc(MI, CastTy, 3); 2171 bitcastDst(MI, CastTy, 0); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 } 2175 case TargetOpcode::G_AND: 2176 case TargetOpcode::G_OR: 2177 case TargetOpcode::G_XOR: { 2178 Observer.changingInstr(MI); 2179 bitcastSrc(MI, CastTy, 1); 2180 bitcastSrc(MI, CastTy, 2); 2181 bitcastDst(MI, CastTy, 0); 2182 Observer.changedInstr(MI); 2183 return Legalized; 2184 } 2185 default: 2186 return UnableToLegalize; 2187 } 2188 } 2189 2190 LegalizerHelper::LegalizeResult 2191 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2192 using namespace TargetOpcode; 2193 MIRBuilder.setInstr(MI); 2194 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 2195 2196 switch(MI.getOpcode()) { 2197 default: 2198 return UnableToLegalize; 2199 case TargetOpcode::G_BITCAST: 2200 return lowerBitcast(MI); 2201 case TargetOpcode::G_SREM: 2202 case TargetOpcode::G_UREM: { 2203 auto Quot = 2204 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2205 {MI.getOperand(1), MI.getOperand(2)}); 2206 2207 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2208 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2209 MI.eraseFromParent(); 2210 return Legalized; 2211 } 2212 case TargetOpcode::G_SADDO: 2213 case TargetOpcode::G_SSUBO: 2214 return lowerSADDO_SSUBO(MI); 2215 case TargetOpcode::G_SMULO: 2216 case TargetOpcode::G_UMULO: { 2217 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2218 // result. 2219 Register Res = MI.getOperand(0).getReg(); 2220 Register Overflow = MI.getOperand(1).getReg(); 2221 Register LHS = MI.getOperand(2).getReg(); 2222 Register RHS = MI.getOperand(3).getReg(); 2223 2224 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2225 ? TargetOpcode::G_SMULH 2226 : TargetOpcode::G_UMULH; 2227 2228 Observer.changingInstr(MI); 2229 const auto &TII = MIRBuilder.getTII(); 2230 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2231 MI.RemoveOperand(1); 2232 Observer.changedInstr(MI); 2233 2234 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2235 2236 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2237 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2238 2239 // For *signed* multiply, overflow is detected by checking: 2240 // (hi != (lo >> bitwidth-1)) 2241 if (Opcode == TargetOpcode::G_SMULH) { 2242 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2243 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2244 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2245 } else { 2246 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2247 } 2248 return Legalized; 2249 } 2250 case TargetOpcode::G_FNEG: { 2251 // TODO: Handle vector types once we are able to 2252 // represent them. 2253 if (Ty.isVector()) 2254 return UnableToLegalize; 2255 Register Res = MI.getOperand(0).getReg(); 2256 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2257 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2258 if (!ZeroTy) 2259 return UnableToLegalize; 2260 ConstantFP &ZeroForNegation = 2261 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2262 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2263 Register SubByReg = MI.getOperand(1).getReg(); 2264 Register ZeroReg = Zero.getReg(0); 2265 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2266 MI.eraseFromParent(); 2267 return Legalized; 2268 } 2269 case TargetOpcode::G_FSUB: { 2270 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2271 // First, check if G_FNEG is marked as Lower. If so, we may 2272 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2273 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2274 return UnableToLegalize; 2275 Register Res = MI.getOperand(0).getReg(); 2276 Register LHS = MI.getOperand(1).getReg(); 2277 Register RHS = MI.getOperand(2).getReg(); 2278 Register Neg = MRI.createGenericVirtualRegister(Ty); 2279 MIRBuilder.buildFNeg(Neg, RHS); 2280 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2281 MI.eraseFromParent(); 2282 return Legalized; 2283 } 2284 case TargetOpcode::G_FMAD: 2285 return lowerFMad(MI); 2286 case TargetOpcode::G_FFLOOR: 2287 return lowerFFloor(MI); 2288 case TargetOpcode::G_INTRINSIC_ROUND: 2289 return lowerIntrinsicRound(MI); 2290 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2291 Register OldValRes = MI.getOperand(0).getReg(); 2292 Register SuccessRes = MI.getOperand(1).getReg(); 2293 Register Addr = MI.getOperand(2).getReg(); 2294 Register CmpVal = MI.getOperand(3).getReg(); 2295 Register NewVal = MI.getOperand(4).getReg(); 2296 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2297 **MI.memoperands_begin()); 2298 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2299 MI.eraseFromParent(); 2300 return Legalized; 2301 } 2302 case TargetOpcode::G_LOAD: 2303 case TargetOpcode::G_SEXTLOAD: 2304 case TargetOpcode::G_ZEXTLOAD: { 2305 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2306 Register DstReg = MI.getOperand(0).getReg(); 2307 Register PtrReg = MI.getOperand(1).getReg(); 2308 LLT DstTy = MRI.getType(DstReg); 2309 auto &MMO = **MI.memoperands_begin(); 2310 2311 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2312 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2313 // This load needs splitting into power of 2 sized loads. 2314 if (DstTy.isVector()) 2315 return UnableToLegalize; 2316 if (isPowerOf2_32(DstTy.getSizeInBits())) 2317 return UnableToLegalize; // Don't know what we're being asked to do. 2318 2319 // Our strategy here is to generate anyextending loads for the smaller 2320 // types up to next power-2 result type, and then combine the two larger 2321 // result values together, before truncating back down to the non-pow-2 2322 // type. 2323 // E.g. v1 = i24 load => 2324 // v2 = i32 zextload (2 byte) 2325 // v3 = i32 load (1 byte) 2326 // v4 = i32 shl v3, 16 2327 // v5 = i32 or v4, v2 2328 // v1 = i24 trunc v5 2329 // By doing this we generate the correct truncate which should get 2330 // combined away as an artifact with a matching extend. 2331 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2332 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2333 2334 MachineFunction &MF = MIRBuilder.getMF(); 2335 MachineMemOperand *LargeMMO = 2336 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2337 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2338 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2339 2340 LLT PtrTy = MRI.getType(PtrReg); 2341 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2342 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2343 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2344 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2345 auto LargeLoad = MIRBuilder.buildLoadInstr( 2346 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2347 2348 auto OffsetCst = MIRBuilder.buildConstant( 2349 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2350 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2351 auto SmallPtr = 2352 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2353 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2354 *SmallMMO); 2355 2356 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2357 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2358 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2359 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2360 MI.eraseFromParent(); 2361 return Legalized; 2362 } 2363 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2364 MI.eraseFromParent(); 2365 return Legalized; 2366 } 2367 2368 if (DstTy.isScalar()) { 2369 Register TmpReg = 2370 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2371 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2372 switch (MI.getOpcode()) { 2373 default: 2374 llvm_unreachable("Unexpected opcode"); 2375 case TargetOpcode::G_LOAD: 2376 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2377 break; 2378 case TargetOpcode::G_SEXTLOAD: 2379 MIRBuilder.buildSExt(DstReg, TmpReg); 2380 break; 2381 case TargetOpcode::G_ZEXTLOAD: 2382 MIRBuilder.buildZExt(DstReg, TmpReg); 2383 break; 2384 } 2385 MI.eraseFromParent(); 2386 return Legalized; 2387 } 2388 2389 return UnableToLegalize; 2390 } 2391 case TargetOpcode::G_STORE: { 2392 // Lower a non-power of 2 store into multiple pow-2 stores. 2393 // E.g. split an i24 store into an i16 store + i8 store. 2394 // We do this by first extending the stored value to the next largest power 2395 // of 2 type, and then using truncating stores to store the components. 2396 // By doing this, likewise with G_LOAD, generate an extend that can be 2397 // artifact-combined away instead of leaving behind extracts. 2398 Register SrcReg = MI.getOperand(0).getReg(); 2399 Register PtrReg = MI.getOperand(1).getReg(); 2400 LLT SrcTy = MRI.getType(SrcReg); 2401 MachineMemOperand &MMO = **MI.memoperands_begin(); 2402 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2403 return UnableToLegalize; 2404 if (SrcTy.isVector()) 2405 return UnableToLegalize; 2406 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2407 return UnableToLegalize; // Don't know what we're being asked to do. 2408 2409 // Extend to the next pow-2. 2410 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2411 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2412 2413 // Obtain the smaller value by shifting away the larger value. 2414 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2415 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2416 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2417 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2418 2419 // Generate the PtrAdd and truncating stores. 2420 LLT PtrTy = MRI.getType(PtrReg); 2421 auto OffsetCst = MIRBuilder.buildConstant( 2422 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2423 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2424 auto SmallPtr = 2425 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2426 2427 MachineFunction &MF = MIRBuilder.getMF(); 2428 MachineMemOperand *LargeMMO = 2429 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2430 MachineMemOperand *SmallMMO = 2431 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2432 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2433 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2434 MI.eraseFromParent(); 2435 return Legalized; 2436 } 2437 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2438 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2439 case TargetOpcode::G_CTLZ: 2440 case TargetOpcode::G_CTTZ: 2441 case TargetOpcode::G_CTPOP: 2442 return lowerBitCount(MI, TypeIdx, Ty); 2443 case G_UADDO: { 2444 Register Res = MI.getOperand(0).getReg(); 2445 Register CarryOut = MI.getOperand(1).getReg(); 2446 Register LHS = MI.getOperand(2).getReg(); 2447 Register RHS = MI.getOperand(3).getReg(); 2448 2449 MIRBuilder.buildAdd(Res, LHS, RHS); 2450 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2451 2452 MI.eraseFromParent(); 2453 return Legalized; 2454 } 2455 case G_UADDE: { 2456 Register Res = MI.getOperand(0).getReg(); 2457 Register CarryOut = MI.getOperand(1).getReg(); 2458 Register LHS = MI.getOperand(2).getReg(); 2459 Register RHS = MI.getOperand(3).getReg(); 2460 Register CarryIn = MI.getOperand(4).getReg(); 2461 LLT Ty = MRI.getType(Res); 2462 2463 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2464 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2465 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2466 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2467 2468 MI.eraseFromParent(); 2469 return Legalized; 2470 } 2471 case G_USUBO: { 2472 Register Res = MI.getOperand(0).getReg(); 2473 Register BorrowOut = MI.getOperand(1).getReg(); 2474 Register LHS = MI.getOperand(2).getReg(); 2475 Register RHS = MI.getOperand(3).getReg(); 2476 2477 MIRBuilder.buildSub(Res, LHS, RHS); 2478 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2479 2480 MI.eraseFromParent(); 2481 return Legalized; 2482 } 2483 case G_USUBE: { 2484 Register Res = MI.getOperand(0).getReg(); 2485 Register BorrowOut = MI.getOperand(1).getReg(); 2486 Register LHS = MI.getOperand(2).getReg(); 2487 Register RHS = MI.getOperand(3).getReg(); 2488 Register BorrowIn = MI.getOperand(4).getReg(); 2489 const LLT CondTy = MRI.getType(BorrowOut); 2490 const LLT Ty = MRI.getType(Res); 2491 2492 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2493 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2494 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2495 2496 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2497 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2498 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2499 2500 MI.eraseFromParent(); 2501 return Legalized; 2502 } 2503 case G_UITOFP: 2504 return lowerUITOFP(MI, TypeIdx, Ty); 2505 case G_SITOFP: 2506 return lowerSITOFP(MI, TypeIdx, Ty); 2507 case G_FPTOUI: 2508 return lowerFPTOUI(MI, TypeIdx, Ty); 2509 case G_FPTOSI: 2510 return lowerFPTOSI(MI); 2511 case G_FPTRUNC: 2512 return lowerFPTRUNC(MI, TypeIdx, Ty); 2513 case G_SMIN: 2514 case G_SMAX: 2515 case G_UMIN: 2516 case G_UMAX: 2517 return lowerMinMax(MI, TypeIdx, Ty); 2518 case G_FCOPYSIGN: 2519 return lowerFCopySign(MI, TypeIdx, Ty); 2520 case G_FMINNUM: 2521 case G_FMAXNUM: 2522 return lowerFMinNumMaxNum(MI); 2523 case G_UNMERGE_VALUES: 2524 return lowerUnmergeValues(MI); 2525 case TargetOpcode::G_SEXT_INREG: { 2526 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2527 int64_t SizeInBits = MI.getOperand(2).getImm(); 2528 2529 Register DstReg = MI.getOperand(0).getReg(); 2530 Register SrcReg = MI.getOperand(1).getReg(); 2531 LLT DstTy = MRI.getType(DstReg); 2532 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2533 2534 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2535 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2536 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2537 MI.eraseFromParent(); 2538 return Legalized; 2539 } 2540 case G_SHUFFLE_VECTOR: 2541 return lowerShuffleVector(MI); 2542 case G_DYN_STACKALLOC: 2543 return lowerDynStackAlloc(MI); 2544 case G_EXTRACT: 2545 return lowerExtract(MI); 2546 case G_INSERT: 2547 return lowerInsert(MI); 2548 case G_BSWAP: 2549 return lowerBswap(MI); 2550 case G_BITREVERSE: 2551 return lowerBitreverse(MI); 2552 case G_READ_REGISTER: 2553 case G_WRITE_REGISTER: 2554 return lowerReadWriteRegister(MI); 2555 } 2556 } 2557 2558 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2559 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2560 SmallVector<Register, 2> DstRegs; 2561 2562 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2563 Register DstReg = MI.getOperand(0).getReg(); 2564 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2565 int NumParts = Size / NarrowSize; 2566 // FIXME: Don't know how to handle the situation where the small vectors 2567 // aren't all the same size yet. 2568 if (Size % NarrowSize != 0) 2569 return UnableToLegalize; 2570 2571 for (int i = 0; i < NumParts; ++i) { 2572 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2573 MIRBuilder.buildUndef(TmpReg); 2574 DstRegs.push_back(TmpReg); 2575 } 2576 2577 if (NarrowTy.isVector()) 2578 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2579 else 2580 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2581 2582 MI.eraseFromParent(); 2583 return Legalized; 2584 } 2585 2586 // Handles operands with different types, but all must have the same number of 2587 // elements. There will be multiple type indexes. NarrowTy is expected to have 2588 // the result element type. 2589 LegalizerHelper::LegalizeResult 2590 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2591 LLT NarrowTy) { 2592 assert(TypeIdx == 0 && "only one type index expected"); 2593 2594 const unsigned Opc = MI.getOpcode(); 2595 const int NumOps = MI.getNumOperands() - 1; 2596 const Register DstReg = MI.getOperand(0).getReg(); 2597 const unsigned Flags = MI.getFlags(); 2598 2599 assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources"); 2600 2601 SmallVector<Register, 8> ExtractedRegs[3]; 2602 SmallVector<Register, 8> Parts; 2603 2604 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2605 2606 // Break down all the sources into NarrowTy pieces we can operate on. This may 2607 // involve creating merges to a wider type, padded with undef. 2608 for (int I = 0; I != NumOps; ++I) { 2609 Register SrcReg = MI.getOperand(I + 1).getReg(); 2610 LLT SrcTy = MRI.getType(SrcReg); 2611 2612 // Each operand may have its own type, but only the number of elements 2613 // matters. 2614 LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 2615 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 2616 2617 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2618 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, 2619 ExtractedRegs[I], TargetOpcode::G_ANYEXT); 2620 } 2621 2622 SmallVector<Register, 8> ResultRegs; 2623 2624 // Input operands for each sub-instruction. 2625 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2626 2627 int NumParts = ExtractedRegs[0].size(); 2628 const LLT DstTy = MRI.getType(DstReg); 2629 const unsigned DstSize = DstTy.getSizeInBits(); 2630 LLT DstLCMTy = getLCMType(DstTy, NarrowTy); 2631 2632 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2633 2634 // We widened the source registers to satisfy merge/unmerge size 2635 // constraints. We'll have some extra fully undef parts. 2636 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2637 2638 for (int I = 0; I != NumRealParts; ++I) { 2639 // Emit this instruction on each of the split pieces. 2640 for (int J = 0; J != NumOps; ++J) 2641 InputRegs[J] = ExtractedRegs[J][I]; 2642 2643 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2644 ResultRegs.push_back(Inst.getReg(0)); 2645 } 2646 2647 // Fill out the widened result with undef instead of creating instructions 2648 // with undef inputs. 2649 int NumUndefParts = NumParts - NumRealParts; 2650 if (NumUndefParts != 0) 2651 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2652 2653 // Extract the possibly padded result to the original result register. 2654 buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs); 2655 2656 MI.eraseFromParent(); 2657 return Legalized; 2658 } 2659 2660 // Handle splitting vector operations which need to have the same number of 2661 // elements in each type index, but each type index may have a different element 2662 // type. 2663 // 2664 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2665 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2666 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2667 // 2668 // Also handles some irregular breakdown cases, e.g. 2669 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2670 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2671 // s64 = G_SHL s64, s32 2672 LegalizerHelper::LegalizeResult 2673 LegalizerHelper::fewerElementsVectorMultiEltType( 2674 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2675 if (TypeIdx != 0) 2676 return UnableToLegalize; 2677 2678 const LLT NarrowTy0 = NarrowTyArg; 2679 const unsigned NewNumElts = 2680 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2681 2682 const Register DstReg = MI.getOperand(0).getReg(); 2683 LLT DstTy = MRI.getType(DstReg); 2684 LLT LeftoverTy0; 2685 2686 // All of the operands need to have the same number of elements, so if we can 2687 // determine a type breakdown for the result type, we can for all of the 2688 // source types. 2689 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2690 if (NumParts < 0) 2691 return UnableToLegalize; 2692 2693 SmallVector<MachineInstrBuilder, 4> NewInsts; 2694 2695 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2696 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2697 2698 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2699 LLT LeftoverTy; 2700 Register SrcReg = MI.getOperand(I).getReg(); 2701 LLT SrcTyI = MRI.getType(SrcReg); 2702 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2703 LLT LeftoverTyI; 2704 2705 // Split this operand into the requested typed registers, and any leftover 2706 // required to reproduce the original type. 2707 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2708 LeftoverRegs)) 2709 return UnableToLegalize; 2710 2711 if (I == 1) { 2712 // For the first operand, create an instruction for each part and setup 2713 // the result. 2714 for (Register PartReg : PartRegs) { 2715 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2716 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2717 .addDef(PartDstReg) 2718 .addUse(PartReg)); 2719 DstRegs.push_back(PartDstReg); 2720 } 2721 2722 for (Register LeftoverReg : LeftoverRegs) { 2723 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2724 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2725 .addDef(PartDstReg) 2726 .addUse(LeftoverReg)); 2727 LeftoverDstRegs.push_back(PartDstReg); 2728 } 2729 } else { 2730 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2731 2732 // Add the newly created operand splits to the existing instructions. The 2733 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2734 // pieces. 2735 unsigned InstCount = 0; 2736 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2737 NewInsts[InstCount++].addUse(PartRegs[J]); 2738 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2739 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2740 } 2741 2742 PartRegs.clear(); 2743 LeftoverRegs.clear(); 2744 } 2745 2746 // Insert the newly built operations and rebuild the result register. 2747 for (auto &MIB : NewInsts) 2748 MIRBuilder.insertInstr(MIB); 2749 2750 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2751 2752 MI.eraseFromParent(); 2753 return Legalized; 2754 } 2755 2756 LegalizerHelper::LegalizeResult 2757 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2758 LLT NarrowTy) { 2759 if (TypeIdx != 0) 2760 return UnableToLegalize; 2761 2762 Register DstReg = MI.getOperand(0).getReg(); 2763 Register SrcReg = MI.getOperand(1).getReg(); 2764 LLT DstTy = MRI.getType(DstReg); 2765 LLT SrcTy = MRI.getType(SrcReg); 2766 2767 LLT NarrowTy0 = NarrowTy; 2768 LLT NarrowTy1; 2769 unsigned NumParts; 2770 2771 if (NarrowTy.isVector()) { 2772 // Uneven breakdown not handled. 2773 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2774 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2775 return UnableToLegalize; 2776 2777 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2778 } else { 2779 NumParts = DstTy.getNumElements(); 2780 NarrowTy1 = SrcTy.getElementType(); 2781 } 2782 2783 SmallVector<Register, 4> SrcRegs, DstRegs; 2784 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2785 2786 for (unsigned I = 0; I < NumParts; ++I) { 2787 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2788 MachineInstr *NewInst = 2789 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2790 2791 NewInst->setFlags(MI.getFlags()); 2792 DstRegs.push_back(DstReg); 2793 } 2794 2795 if (NarrowTy.isVector()) 2796 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2797 else 2798 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2799 2800 MI.eraseFromParent(); 2801 return Legalized; 2802 } 2803 2804 LegalizerHelper::LegalizeResult 2805 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2806 LLT NarrowTy) { 2807 Register DstReg = MI.getOperand(0).getReg(); 2808 Register Src0Reg = MI.getOperand(2).getReg(); 2809 LLT DstTy = MRI.getType(DstReg); 2810 LLT SrcTy = MRI.getType(Src0Reg); 2811 2812 unsigned NumParts; 2813 LLT NarrowTy0, NarrowTy1; 2814 2815 if (TypeIdx == 0) { 2816 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2817 unsigned OldElts = DstTy.getNumElements(); 2818 2819 NarrowTy0 = NarrowTy; 2820 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2821 NarrowTy1 = NarrowTy.isVector() ? 2822 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2823 SrcTy.getElementType(); 2824 2825 } else { 2826 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2827 unsigned OldElts = SrcTy.getNumElements(); 2828 2829 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2830 NarrowTy.getNumElements(); 2831 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2832 DstTy.getScalarSizeInBits()); 2833 NarrowTy1 = NarrowTy; 2834 } 2835 2836 // FIXME: Don't know how to handle the situation where the small vectors 2837 // aren't all the same size yet. 2838 if (NarrowTy1.isVector() && 2839 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2840 return UnableToLegalize; 2841 2842 CmpInst::Predicate Pred 2843 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2844 2845 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2846 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2847 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2848 2849 for (unsigned I = 0; I < NumParts; ++I) { 2850 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2851 DstRegs.push_back(DstReg); 2852 2853 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2854 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2855 else { 2856 MachineInstr *NewCmp 2857 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2858 NewCmp->setFlags(MI.getFlags()); 2859 } 2860 } 2861 2862 if (NarrowTy1.isVector()) 2863 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2864 else 2865 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2866 2867 MI.eraseFromParent(); 2868 return Legalized; 2869 } 2870 2871 LegalizerHelper::LegalizeResult 2872 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2873 LLT NarrowTy) { 2874 Register DstReg = MI.getOperand(0).getReg(); 2875 Register CondReg = MI.getOperand(1).getReg(); 2876 2877 unsigned NumParts = 0; 2878 LLT NarrowTy0, NarrowTy1; 2879 2880 LLT DstTy = MRI.getType(DstReg); 2881 LLT CondTy = MRI.getType(CondReg); 2882 unsigned Size = DstTy.getSizeInBits(); 2883 2884 assert(TypeIdx == 0 || CondTy.isVector()); 2885 2886 if (TypeIdx == 0) { 2887 NarrowTy0 = NarrowTy; 2888 NarrowTy1 = CondTy; 2889 2890 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2891 // FIXME: Don't know how to handle the situation where the small vectors 2892 // aren't all the same size yet. 2893 if (Size % NarrowSize != 0) 2894 return UnableToLegalize; 2895 2896 NumParts = Size / NarrowSize; 2897 2898 // Need to break down the condition type 2899 if (CondTy.isVector()) { 2900 if (CondTy.getNumElements() == NumParts) 2901 NarrowTy1 = CondTy.getElementType(); 2902 else 2903 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2904 CondTy.getScalarSizeInBits()); 2905 } 2906 } else { 2907 NumParts = CondTy.getNumElements(); 2908 if (NarrowTy.isVector()) { 2909 // TODO: Handle uneven breakdown. 2910 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2911 return UnableToLegalize; 2912 2913 return UnableToLegalize; 2914 } else { 2915 NarrowTy0 = DstTy.getElementType(); 2916 NarrowTy1 = NarrowTy; 2917 } 2918 } 2919 2920 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2921 if (CondTy.isVector()) 2922 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2923 2924 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2925 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2926 2927 for (unsigned i = 0; i < NumParts; ++i) { 2928 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2929 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2930 Src1Regs[i], Src2Regs[i]); 2931 DstRegs.push_back(DstReg); 2932 } 2933 2934 if (NarrowTy0.isVector()) 2935 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2936 else 2937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2938 2939 MI.eraseFromParent(); 2940 return Legalized; 2941 } 2942 2943 LegalizerHelper::LegalizeResult 2944 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2945 LLT NarrowTy) { 2946 const Register DstReg = MI.getOperand(0).getReg(); 2947 LLT PhiTy = MRI.getType(DstReg); 2948 LLT LeftoverTy; 2949 2950 // All of the operands need to have the same number of elements, so if we can 2951 // determine a type breakdown for the result type, we can for all of the 2952 // source types. 2953 int NumParts, NumLeftover; 2954 std::tie(NumParts, NumLeftover) 2955 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2956 if (NumParts < 0) 2957 return UnableToLegalize; 2958 2959 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2960 SmallVector<MachineInstrBuilder, 4> NewInsts; 2961 2962 const int TotalNumParts = NumParts + NumLeftover; 2963 2964 // Insert the new phis in the result block first. 2965 for (int I = 0; I != TotalNumParts; ++I) { 2966 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2967 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2968 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2969 .addDef(PartDstReg)); 2970 if (I < NumParts) 2971 DstRegs.push_back(PartDstReg); 2972 else 2973 LeftoverDstRegs.push_back(PartDstReg); 2974 } 2975 2976 MachineBasicBlock *MBB = MI.getParent(); 2977 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2978 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2979 2980 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2981 2982 // Insert code to extract the incoming values in each predecessor block. 2983 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2984 PartRegs.clear(); 2985 LeftoverRegs.clear(); 2986 2987 Register SrcReg = MI.getOperand(I).getReg(); 2988 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2989 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2990 2991 LLT Unused; 2992 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2993 LeftoverRegs)) 2994 return UnableToLegalize; 2995 2996 // Add the newly created operand splits to the existing instructions. The 2997 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2998 // pieces. 2999 for (int J = 0; J != TotalNumParts; ++J) { 3000 MachineInstrBuilder MIB = NewInsts[J]; 3001 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3002 MIB.addMBB(&OpMBB); 3003 } 3004 } 3005 3006 MI.eraseFromParent(); 3007 return Legalized; 3008 } 3009 3010 LegalizerHelper::LegalizeResult 3011 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3012 unsigned TypeIdx, 3013 LLT NarrowTy) { 3014 if (TypeIdx != 1) 3015 return UnableToLegalize; 3016 3017 const int NumDst = MI.getNumOperands() - 1; 3018 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3019 LLT SrcTy = MRI.getType(SrcReg); 3020 3021 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3022 3023 // TODO: Create sequence of extracts. 3024 if (DstTy == NarrowTy) 3025 return UnableToLegalize; 3026 3027 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3028 if (DstTy == GCDTy) { 3029 // This would just be a copy of the same unmerge. 3030 // TODO: Create extracts, pad with undef and create intermediate merges. 3031 return UnableToLegalize; 3032 } 3033 3034 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3035 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3036 const int PartsPerUnmerge = NumDst / NumUnmerge; 3037 3038 for (int I = 0; I != NumUnmerge; ++I) { 3039 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3040 3041 for (int J = 0; J != PartsPerUnmerge; ++J) 3042 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3043 MIB.addUse(Unmerge.getReg(I)); 3044 } 3045 3046 MI.eraseFromParent(); 3047 return Legalized; 3048 } 3049 3050 LegalizerHelper::LegalizeResult 3051 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3052 unsigned TypeIdx, 3053 LLT NarrowTy) { 3054 assert(TypeIdx == 0 && "not a vector type index"); 3055 Register DstReg = MI.getOperand(0).getReg(); 3056 LLT DstTy = MRI.getType(DstReg); 3057 LLT SrcTy = DstTy.getElementType(); 3058 3059 int DstNumElts = DstTy.getNumElements(); 3060 int NarrowNumElts = NarrowTy.getNumElements(); 3061 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3062 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3063 3064 SmallVector<Register, 8> ConcatOps; 3065 SmallVector<Register, 8> SubBuildVector; 3066 3067 Register UndefReg; 3068 if (WidenedDstTy != DstTy) 3069 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3070 3071 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3072 // necessary. 3073 // 3074 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3075 // -> <2 x s16> 3076 // 3077 // %4:_(s16) = G_IMPLICIT_DEF 3078 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3079 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3080 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3081 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3082 for (int I = 0; I != NumConcat; ++I) { 3083 for (int J = 0; J != NarrowNumElts; ++J) { 3084 int SrcIdx = NarrowNumElts * I + J; 3085 3086 if (SrcIdx < DstNumElts) { 3087 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3088 SubBuildVector.push_back(SrcReg); 3089 } else 3090 SubBuildVector.push_back(UndefReg); 3091 } 3092 3093 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3094 ConcatOps.push_back(BuildVec.getReg(0)); 3095 SubBuildVector.clear(); 3096 } 3097 3098 if (DstTy == WidenedDstTy) 3099 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3100 else { 3101 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3102 MIRBuilder.buildExtract(DstReg, Concat, 0); 3103 } 3104 3105 MI.eraseFromParent(); 3106 return Legalized; 3107 } 3108 3109 LegalizerHelper::LegalizeResult 3110 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3111 LLT NarrowTy) { 3112 // FIXME: Don't know how to handle secondary types yet. 3113 if (TypeIdx != 0) 3114 return UnableToLegalize; 3115 3116 MachineMemOperand *MMO = *MI.memoperands_begin(); 3117 3118 // This implementation doesn't work for atomics. Give up instead of doing 3119 // something invalid. 3120 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3121 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3122 return UnableToLegalize; 3123 3124 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3125 Register ValReg = MI.getOperand(0).getReg(); 3126 Register AddrReg = MI.getOperand(1).getReg(); 3127 LLT ValTy = MRI.getType(ValReg); 3128 3129 // FIXME: Do we need a distinct NarrowMemory legalize action? 3130 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3131 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3132 return UnableToLegalize; 3133 } 3134 3135 int NumParts = -1; 3136 int NumLeftover = -1; 3137 LLT LeftoverTy; 3138 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3139 if (IsLoad) { 3140 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3141 } else { 3142 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3143 NarrowLeftoverRegs)) { 3144 NumParts = NarrowRegs.size(); 3145 NumLeftover = NarrowLeftoverRegs.size(); 3146 } 3147 } 3148 3149 if (NumParts == -1) 3150 return UnableToLegalize; 3151 3152 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3153 3154 unsigned TotalSize = ValTy.getSizeInBits(); 3155 3156 // Split the load/store into PartTy sized pieces starting at Offset. If this 3157 // is a load, return the new registers in ValRegs. For a store, each elements 3158 // of ValRegs should be PartTy. Returns the next offset that needs to be 3159 // handled. 3160 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3161 unsigned Offset) -> unsigned { 3162 MachineFunction &MF = MIRBuilder.getMF(); 3163 unsigned PartSize = PartTy.getSizeInBits(); 3164 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3165 Offset += PartSize, ++Idx) { 3166 unsigned ByteSize = PartSize / 8; 3167 unsigned ByteOffset = Offset / 8; 3168 Register NewAddrReg; 3169 3170 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3171 3172 MachineMemOperand *NewMMO = 3173 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3174 3175 if (IsLoad) { 3176 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3177 ValRegs.push_back(Dst); 3178 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3179 } else { 3180 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3181 } 3182 } 3183 3184 return Offset; 3185 }; 3186 3187 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3188 3189 // Handle the rest of the register if this isn't an even type breakdown. 3190 if (LeftoverTy.isValid()) 3191 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3192 3193 if (IsLoad) { 3194 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3195 LeftoverTy, NarrowLeftoverRegs); 3196 } 3197 3198 MI.eraseFromParent(); 3199 return Legalized; 3200 } 3201 3202 LegalizerHelper::LegalizeResult 3203 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3204 LLT NarrowTy) { 3205 Register DstReg = MI.getOperand(0).getReg(); 3206 Register SrcReg = MI.getOperand(1).getReg(); 3207 int64_t Imm = MI.getOperand(2).getImm(); 3208 3209 LLT DstTy = MRI.getType(DstReg); 3210 3211 SmallVector<Register, 8> Parts; 3212 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3213 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3214 3215 for (Register &R : Parts) 3216 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3217 3218 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3219 3220 MI.eraseFromParent(); 3221 return Legalized; 3222 } 3223 3224 LegalizerHelper::LegalizeResult 3225 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3226 LLT NarrowTy) { 3227 using namespace TargetOpcode; 3228 3229 MIRBuilder.setInstr(MI); 3230 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 3231 switch (MI.getOpcode()) { 3232 case G_IMPLICIT_DEF: 3233 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3234 case G_TRUNC: 3235 case G_AND: 3236 case G_OR: 3237 case G_XOR: 3238 case G_ADD: 3239 case G_SUB: 3240 case G_MUL: 3241 case G_SMULH: 3242 case G_UMULH: 3243 case G_FADD: 3244 case G_FMUL: 3245 case G_FSUB: 3246 case G_FNEG: 3247 case G_FABS: 3248 case G_FCANONICALIZE: 3249 case G_FDIV: 3250 case G_FREM: 3251 case G_FMA: 3252 case G_FMAD: 3253 case G_FPOW: 3254 case G_FEXP: 3255 case G_FEXP2: 3256 case G_FLOG: 3257 case G_FLOG2: 3258 case G_FLOG10: 3259 case G_FNEARBYINT: 3260 case G_FCEIL: 3261 case G_FFLOOR: 3262 case G_FRINT: 3263 case G_INTRINSIC_ROUND: 3264 case G_INTRINSIC_TRUNC: 3265 case G_FCOS: 3266 case G_FSIN: 3267 case G_FSQRT: 3268 case G_BSWAP: 3269 case G_BITREVERSE: 3270 case G_SDIV: 3271 case G_UDIV: 3272 case G_SREM: 3273 case G_UREM: 3274 case G_SMIN: 3275 case G_SMAX: 3276 case G_UMIN: 3277 case G_UMAX: 3278 case G_FMINNUM: 3279 case G_FMAXNUM: 3280 case G_FMINNUM_IEEE: 3281 case G_FMAXNUM_IEEE: 3282 case G_FMINIMUM: 3283 case G_FMAXIMUM: 3284 case G_FSHL: 3285 case G_FSHR: 3286 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3287 case G_SHL: 3288 case G_LSHR: 3289 case G_ASHR: 3290 case G_CTLZ: 3291 case G_CTLZ_ZERO_UNDEF: 3292 case G_CTTZ: 3293 case G_CTTZ_ZERO_UNDEF: 3294 case G_CTPOP: 3295 case G_FCOPYSIGN: 3296 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3297 case G_ZEXT: 3298 case G_SEXT: 3299 case G_ANYEXT: 3300 case G_FPEXT: 3301 case G_FPTRUNC: 3302 case G_SITOFP: 3303 case G_UITOFP: 3304 case G_FPTOSI: 3305 case G_FPTOUI: 3306 case G_INTTOPTR: 3307 case G_PTRTOINT: 3308 case G_ADDRSPACE_CAST: 3309 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3310 case G_ICMP: 3311 case G_FCMP: 3312 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3313 case G_SELECT: 3314 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3315 case G_PHI: 3316 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3317 case G_UNMERGE_VALUES: 3318 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3319 case G_BUILD_VECTOR: 3320 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3321 case G_LOAD: 3322 case G_STORE: 3323 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3324 case G_SEXT_INREG: 3325 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3326 default: 3327 return UnableToLegalize; 3328 } 3329 } 3330 3331 LegalizerHelper::LegalizeResult 3332 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3333 const LLT HalfTy, const LLT AmtTy) { 3334 3335 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3336 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3337 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3338 3339 if (Amt.isNullValue()) { 3340 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3341 MI.eraseFromParent(); 3342 return Legalized; 3343 } 3344 3345 LLT NVT = HalfTy; 3346 unsigned NVTBits = HalfTy.getSizeInBits(); 3347 unsigned VTBits = 2 * NVTBits; 3348 3349 SrcOp Lo(Register(0)), Hi(Register(0)); 3350 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3351 if (Amt.ugt(VTBits)) { 3352 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3353 } else if (Amt.ugt(NVTBits)) { 3354 Lo = MIRBuilder.buildConstant(NVT, 0); 3355 Hi = MIRBuilder.buildShl(NVT, InL, 3356 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3357 } else if (Amt == NVTBits) { 3358 Lo = MIRBuilder.buildConstant(NVT, 0); 3359 Hi = InL; 3360 } else { 3361 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3362 auto OrLHS = 3363 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3364 auto OrRHS = MIRBuilder.buildLShr( 3365 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3366 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3367 } 3368 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3369 if (Amt.ugt(VTBits)) { 3370 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3371 } else if (Amt.ugt(NVTBits)) { 3372 Lo = MIRBuilder.buildLShr(NVT, InH, 3373 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3374 Hi = MIRBuilder.buildConstant(NVT, 0); 3375 } else if (Amt == NVTBits) { 3376 Lo = InH; 3377 Hi = MIRBuilder.buildConstant(NVT, 0); 3378 } else { 3379 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3380 3381 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3382 auto OrRHS = MIRBuilder.buildShl( 3383 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3384 3385 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3386 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3387 } 3388 } else { 3389 if (Amt.ugt(VTBits)) { 3390 Hi = Lo = MIRBuilder.buildAShr( 3391 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3392 } else if (Amt.ugt(NVTBits)) { 3393 Lo = MIRBuilder.buildAShr(NVT, InH, 3394 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3395 Hi = MIRBuilder.buildAShr(NVT, InH, 3396 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3397 } else if (Amt == NVTBits) { 3398 Lo = InH; 3399 Hi = MIRBuilder.buildAShr(NVT, InH, 3400 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3401 } else { 3402 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3403 3404 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3405 auto OrRHS = MIRBuilder.buildShl( 3406 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3407 3408 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3409 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3410 } 3411 } 3412 3413 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3414 MI.eraseFromParent(); 3415 3416 return Legalized; 3417 } 3418 3419 // TODO: Optimize if constant shift amount. 3420 LegalizerHelper::LegalizeResult 3421 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3422 LLT RequestedTy) { 3423 if (TypeIdx == 1) { 3424 Observer.changingInstr(MI); 3425 narrowScalarSrc(MI, RequestedTy, 2); 3426 Observer.changedInstr(MI); 3427 return Legalized; 3428 } 3429 3430 Register DstReg = MI.getOperand(0).getReg(); 3431 LLT DstTy = MRI.getType(DstReg); 3432 if (DstTy.isVector()) 3433 return UnableToLegalize; 3434 3435 Register Amt = MI.getOperand(2).getReg(); 3436 LLT ShiftAmtTy = MRI.getType(Amt); 3437 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3438 if (DstEltSize % 2 != 0) 3439 return UnableToLegalize; 3440 3441 // Ignore the input type. We can only go to exactly half the size of the 3442 // input. If that isn't small enough, the resulting pieces will be further 3443 // legalized. 3444 const unsigned NewBitSize = DstEltSize / 2; 3445 const LLT HalfTy = LLT::scalar(NewBitSize); 3446 const LLT CondTy = LLT::scalar(1); 3447 3448 if (const MachineInstr *KShiftAmt = 3449 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3450 return narrowScalarShiftByConstant( 3451 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3452 } 3453 3454 // TODO: Expand with known bits. 3455 3456 // Handle the fully general expansion by an unknown amount. 3457 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3458 3459 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3460 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3461 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3462 3463 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3464 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3465 3466 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3467 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3468 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3469 3470 Register ResultRegs[2]; 3471 switch (MI.getOpcode()) { 3472 case TargetOpcode::G_SHL: { 3473 // Short: ShAmt < NewBitSize 3474 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3475 3476 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3477 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3478 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3479 3480 // Long: ShAmt >= NewBitSize 3481 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3482 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3483 3484 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3485 auto Hi = MIRBuilder.buildSelect( 3486 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3487 3488 ResultRegs[0] = Lo.getReg(0); 3489 ResultRegs[1] = Hi.getReg(0); 3490 break; 3491 } 3492 case TargetOpcode::G_LSHR: 3493 case TargetOpcode::G_ASHR: { 3494 // Short: ShAmt < NewBitSize 3495 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3496 3497 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3498 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3499 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3500 3501 // Long: ShAmt >= NewBitSize 3502 MachineInstrBuilder HiL; 3503 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3504 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3505 } else { 3506 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3507 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3508 } 3509 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3510 {InH, AmtExcess}); // Lo from Hi part. 3511 3512 auto Lo = MIRBuilder.buildSelect( 3513 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3514 3515 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3516 3517 ResultRegs[0] = Lo.getReg(0); 3518 ResultRegs[1] = Hi.getReg(0); 3519 break; 3520 } 3521 default: 3522 llvm_unreachable("not a shift"); 3523 } 3524 3525 MIRBuilder.buildMerge(DstReg, ResultRegs); 3526 MI.eraseFromParent(); 3527 return Legalized; 3528 } 3529 3530 LegalizerHelper::LegalizeResult 3531 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3532 LLT MoreTy) { 3533 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3534 3535 Observer.changingInstr(MI); 3536 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3537 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3538 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3539 moreElementsVectorSrc(MI, MoreTy, I); 3540 } 3541 3542 MachineBasicBlock &MBB = *MI.getParent(); 3543 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3544 moreElementsVectorDst(MI, MoreTy, 0); 3545 Observer.changedInstr(MI); 3546 return Legalized; 3547 } 3548 3549 LegalizerHelper::LegalizeResult 3550 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3551 LLT MoreTy) { 3552 MIRBuilder.setInstr(MI); 3553 unsigned Opc = MI.getOpcode(); 3554 switch (Opc) { 3555 case TargetOpcode::G_IMPLICIT_DEF: 3556 case TargetOpcode::G_LOAD: { 3557 if (TypeIdx != 0) 3558 return UnableToLegalize; 3559 Observer.changingInstr(MI); 3560 moreElementsVectorDst(MI, MoreTy, 0); 3561 Observer.changedInstr(MI); 3562 return Legalized; 3563 } 3564 case TargetOpcode::G_STORE: 3565 if (TypeIdx != 0) 3566 return UnableToLegalize; 3567 Observer.changingInstr(MI); 3568 moreElementsVectorSrc(MI, MoreTy, 0); 3569 Observer.changedInstr(MI); 3570 return Legalized; 3571 case TargetOpcode::G_AND: 3572 case TargetOpcode::G_OR: 3573 case TargetOpcode::G_XOR: 3574 case TargetOpcode::G_SMIN: 3575 case TargetOpcode::G_SMAX: 3576 case TargetOpcode::G_UMIN: 3577 case TargetOpcode::G_UMAX: 3578 case TargetOpcode::G_FMINNUM: 3579 case TargetOpcode::G_FMAXNUM: 3580 case TargetOpcode::G_FMINNUM_IEEE: 3581 case TargetOpcode::G_FMAXNUM_IEEE: 3582 case TargetOpcode::G_FMINIMUM: 3583 case TargetOpcode::G_FMAXIMUM: { 3584 Observer.changingInstr(MI); 3585 moreElementsVectorSrc(MI, MoreTy, 1); 3586 moreElementsVectorSrc(MI, MoreTy, 2); 3587 moreElementsVectorDst(MI, MoreTy, 0); 3588 Observer.changedInstr(MI); 3589 return Legalized; 3590 } 3591 case TargetOpcode::G_EXTRACT: 3592 if (TypeIdx != 1) 3593 return UnableToLegalize; 3594 Observer.changingInstr(MI); 3595 moreElementsVectorSrc(MI, MoreTy, 1); 3596 Observer.changedInstr(MI); 3597 return Legalized; 3598 case TargetOpcode::G_INSERT: 3599 if (TypeIdx != 0) 3600 return UnableToLegalize; 3601 Observer.changingInstr(MI); 3602 moreElementsVectorSrc(MI, MoreTy, 1); 3603 moreElementsVectorDst(MI, MoreTy, 0); 3604 Observer.changedInstr(MI); 3605 return Legalized; 3606 case TargetOpcode::G_SELECT: 3607 if (TypeIdx != 0) 3608 return UnableToLegalize; 3609 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3610 return UnableToLegalize; 3611 3612 Observer.changingInstr(MI); 3613 moreElementsVectorSrc(MI, MoreTy, 2); 3614 moreElementsVectorSrc(MI, MoreTy, 3); 3615 moreElementsVectorDst(MI, MoreTy, 0); 3616 Observer.changedInstr(MI); 3617 return Legalized; 3618 case TargetOpcode::G_UNMERGE_VALUES: { 3619 if (TypeIdx != 1) 3620 return UnableToLegalize; 3621 3622 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3623 int NumDst = MI.getNumOperands() - 1; 3624 moreElementsVectorSrc(MI, MoreTy, NumDst); 3625 3626 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3627 for (int I = 0; I != NumDst; ++I) 3628 MIB.addDef(MI.getOperand(I).getReg()); 3629 3630 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3631 for (int I = NumDst; I != NewNumDst; ++I) 3632 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3633 3634 MIB.addUse(MI.getOperand(NumDst).getReg()); 3635 MI.eraseFromParent(); 3636 return Legalized; 3637 } 3638 case TargetOpcode::G_PHI: 3639 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3640 default: 3641 return UnableToLegalize; 3642 } 3643 } 3644 3645 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3646 ArrayRef<Register> Src1Regs, 3647 ArrayRef<Register> Src2Regs, 3648 LLT NarrowTy) { 3649 MachineIRBuilder &B = MIRBuilder; 3650 unsigned SrcParts = Src1Regs.size(); 3651 unsigned DstParts = DstRegs.size(); 3652 3653 unsigned DstIdx = 0; // Low bits of the result. 3654 Register FactorSum = 3655 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3656 DstRegs[DstIdx] = FactorSum; 3657 3658 unsigned CarrySumPrevDstIdx; 3659 SmallVector<Register, 4> Factors; 3660 3661 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3662 // Collect low parts of muls for DstIdx. 3663 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3664 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3665 MachineInstrBuilder Mul = 3666 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3667 Factors.push_back(Mul.getReg(0)); 3668 } 3669 // Collect high parts of muls from previous DstIdx. 3670 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3671 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3672 MachineInstrBuilder Umulh = 3673 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3674 Factors.push_back(Umulh.getReg(0)); 3675 } 3676 // Add CarrySum from additions calculated for previous DstIdx. 3677 if (DstIdx != 1) { 3678 Factors.push_back(CarrySumPrevDstIdx); 3679 } 3680 3681 Register CarrySum; 3682 // Add all factors and accumulate all carries into CarrySum. 3683 if (DstIdx != DstParts - 1) { 3684 MachineInstrBuilder Uaddo = 3685 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3686 FactorSum = Uaddo.getReg(0); 3687 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3688 for (unsigned i = 2; i < Factors.size(); ++i) { 3689 MachineInstrBuilder Uaddo = 3690 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3691 FactorSum = Uaddo.getReg(0); 3692 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3693 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3694 } 3695 } else { 3696 // Since value for the next index is not calculated, neither is CarrySum. 3697 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3698 for (unsigned i = 2; i < Factors.size(); ++i) 3699 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3700 } 3701 3702 CarrySumPrevDstIdx = CarrySum; 3703 DstRegs[DstIdx] = FactorSum; 3704 Factors.clear(); 3705 } 3706 } 3707 3708 LegalizerHelper::LegalizeResult 3709 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3710 Register DstReg = MI.getOperand(0).getReg(); 3711 Register Src1 = MI.getOperand(1).getReg(); 3712 Register Src2 = MI.getOperand(2).getReg(); 3713 3714 LLT Ty = MRI.getType(DstReg); 3715 if (Ty.isVector()) 3716 return UnableToLegalize; 3717 3718 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3719 unsigned DstSize = Ty.getSizeInBits(); 3720 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3721 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3722 return UnableToLegalize; 3723 3724 unsigned NumDstParts = DstSize / NarrowSize; 3725 unsigned NumSrcParts = SrcSize / NarrowSize; 3726 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3727 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3728 3729 SmallVector<Register, 2> Src1Parts, Src2Parts; 3730 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3731 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3732 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3733 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3734 3735 // Take only high half of registers if this is high mul. 3736 ArrayRef<Register> DstRegs( 3737 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3738 MIRBuilder.buildMerge(DstReg, DstRegs); 3739 MI.eraseFromParent(); 3740 return Legalized; 3741 } 3742 3743 LegalizerHelper::LegalizeResult 3744 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3745 LLT NarrowTy) { 3746 if (TypeIdx != 1) 3747 return UnableToLegalize; 3748 3749 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3750 3751 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3752 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3753 // NarrowSize. 3754 if (SizeOp1 % NarrowSize != 0) 3755 return UnableToLegalize; 3756 int NumParts = SizeOp1 / NarrowSize; 3757 3758 SmallVector<Register, 2> SrcRegs, DstRegs; 3759 SmallVector<uint64_t, 2> Indexes; 3760 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3761 3762 Register OpReg = MI.getOperand(0).getReg(); 3763 uint64_t OpStart = MI.getOperand(2).getImm(); 3764 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3765 for (int i = 0; i < NumParts; ++i) { 3766 unsigned SrcStart = i * NarrowSize; 3767 3768 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3769 // No part of the extract uses this subregister, ignore it. 3770 continue; 3771 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3772 // The entire subregister is extracted, forward the value. 3773 DstRegs.push_back(SrcRegs[i]); 3774 continue; 3775 } 3776 3777 // OpSegStart is where this destination segment would start in OpReg if it 3778 // extended infinitely in both directions. 3779 int64_t ExtractOffset; 3780 uint64_t SegSize; 3781 if (OpStart < SrcStart) { 3782 ExtractOffset = 0; 3783 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3784 } else { 3785 ExtractOffset = OpStart - SrcStart; 3786 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3787 } 3788 3789 Register SegReg = SrcRegs[i]; 3790 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3791 // A genuine extract is needed. 3792 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3793 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3794 } 3795 3796 DstRegs.push_back(SegReg); 3797 } 3798 3799 Register DstReg = MI.getOperand(0).getReg(); 3800 if (MRI.getType(DstReg).isVector()) 3801 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3802 else if (DstRegs.size() > 1) 3803 MIRBuilder.buildMerge(DstReg, DstRegs); 3804 else 3805 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3806 MI.eraseFromParent(); 3807 return Legalized; 3808 } 3809 3810 LegalizerHelper::LegalizeResult 3811 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3812 LLT NarrowTy) { 3813 // FIXME: Don't know how to handle secondary types yet. 3814 if (TypeIdx != 0) 3815 return UnableToLegalize; 3816 3817 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3818 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3819 3820 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3821 // NarrowSize. 3822 if (SizeOp0 % NarrowSize != 0) 3823 return UnableToLegalize; 3824 3825 int NumParts = SizeOp0 / NarrowSize; 3826 3827 SmallVector<Register, 2> SrcRegs, DstRegs; 3828 SmallVector<uint64_t, 2> Indexes; 3829 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3830 3831 Register OpReg = MI.getOperand(2).getReg(); 3832 uint64_t OpStart = MI.getOperand(3).getImm(); 3833 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3834 for (int i = 0; i < NumParts; ++i) { 3835 unsigned DstStart = i * NarrowSize; 3836 3837 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3838 // No part of the insert affects this subregister, forward the original. 3839 DstRegs.push_back(SrcRegs[i]); 3840 continue; 3841 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3842 // The entire subregister is defined by this insert, forward the new 3843 // value. 3844 DstRegs.push_back(OpReg); 3845 continue; 3846 } 3847 3848 // OpSegStart is where this destination segment would start in OpReg if it 3849 // extended infinitely in both directions. 3850 int64_t ExtractOffset, InsertOffset; 3851 uint64_t SegSize; 3852 if (OpStart < DstStart) { 3853 InsertOffset = 0; 3854 ExtractOffset = DstStart - OpStart; 3855 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3856 } else { 3857 InsertOffset = OpStart - DstStart; 3858 ExtractOffset = 0; 3859 SegSize = 3860 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3861 } 3862 3863 Register SegReg = OpReg; 3864 if (ExtractOffset != 0 || SegSize != OpSize) { 3865 // A genuine extract is needed. 3866 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3867 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3868 } 3869 3870 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3871 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3872 DstRegs.push_back(DstReg); 3873 } 3874 3875 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3876 Register DstReg = MI.getOperand(0).getReg(); 3877 if(MRI.getType(DstReg).isVector()) 3878 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3879 else 3880 MIRBuilder.buildMerge(DstReg, DstRegs); 3881 MI.eraseFromParent(); 3882 return Legalized; 3883 } 3884 3885 LegalizerHelper::LegalizeResult 3886 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3887 LLT NarrowTy) { 3888 Register DstReg = MI.getOperand(0).getReg(); 3889 LLT DstTy = MRI.getType(DstReg); 3890 3891 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3892 3893 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3894 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3895 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3896 LLT LeftoverTy; 3897 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3898 Src0Regs, Src0LeftoverRegs)) 3899 return UnableToLegalize; 3900 3901 LLT Unused; 3902 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3903 Src1Regs, Src1LeftoverRegs)) 3904 llvm_unreachable("inconsistent extractParts result"); 3905 3906 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3907 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3908 {Src0Regs[I], Src1Regs[I]}); 3909 DstRegs.push_back(Inst.getReg(0)); 3910 } 3911 3912 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3913 auto Inst = MIRBuilder.buildInstr( 3914 MI.getOpcode(), 3915 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3916 DstLeftoverRegs.push_back(Inst.getReg(0)); 3917 } 3918 3919 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3920 LeftoverTy, DstLeftoverRegs); 3921 3922 MI.eraseFromParent(); 3923 return Legalized; 3924 } 3925 3926 LegalizerHelper::LegalizeResult 3927 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3928 LLT NarrowTy) { 3929 if (TypeIdx != 0) 3930 return UnableToLegalize; 3931 3932 Register DstReg = MI.getOperand(0).getReg(); 3933 Register SrcReg = MI.getOperand(1).getReg(); 3934 3935 LLT DstTy = MRI.getType(DstReg); 3936 if (DstTy.isVector()) 3937 return UnableToLegalize; 3938 3939 SmallVector<Register, 8> Parts; 3940 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3941 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3942 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3943 3944 MI.eraseFromParent(); 3945 return Legalized; 3946 } 3947 3948 LegalizerHelper::LegalizeResult 3949 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3950 LLT NarrowTy) { 3951 if (TypeIdx != 0) 3952 return UnableToLegalize; 3953 3954 Register CondReg = MI.getOperand(1).getReg(); 3955 LLT CondTy = MRI.getType(CondReg); 3956 if (CondTy.isVector()) // TODO: Handle vselect 3957 return UnableToLegalize; 3958 3959 Register DstReg = MI.getOperand(0).getReg(); 3960 LLT DstTy = MRI.getType(DstReg); 3961 3962 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3963 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3964 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3965 LLT LeftoverTy; 3966 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3967 Src1Regs, Src1LeftoverRegs)) 3968 return UnableToLegalize; 3969 3970 LLT Unused; 3971 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3972 Src2Regs, Src2LeftoverRegs)) 3973 llvm_unreachable("inconsistent extractParts result"); 3974 3975 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3976 auto Select = MIRBuilder.buildSelect(NarrowTy, 3977 CondReg, Src1Regs[I], Src2Regs[I]); 3978 DstRegs.push_back(Select.getReg(0)); 3979 } 3980 3981 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3982 auto Select = MIRBuilder.buildSelect( 3983 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3984 DstLeftoverRegs.push_back(Select.getReg(0)); 3985 } 3986 3987 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3988 LeftoverTy, DstLeftoverRegs); 3989 3990 MI.eraseFromParent(); 3991 return Legalized; 3992 } 3993 3994 LegalizerHelper::LegalizeResult 3995 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3996 LLT NarrowTy) { 3997 if (TypeIdx != 1) 3998 return UnableToLegalize; 3999 4000 Register DstReg = MI.getOperand(0).getReg(); 4001 Register SrcReg = MI.getOperand(1).getReg(); 4002 LLT DstTy = MRI.getType(DstReg); 4003 LLT SrcTy = MRI.getType(SrcReg); 4004 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4005 4006 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4007 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4008 4009 MachineIRBuilder &B = MIRBuilder; 4010 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4011 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4012 auto C_0 = B.buildConstant(NarrowTy, 0); 4013 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4014 UnmergeSrc.getReg(1), C_0); 4015 auto LoCTLZ = IsUndef ? 4016 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4017 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4018 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4019 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4020 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4021 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4022 4023 MI.eraseFromParent(); 4024 return Legalized; 4025 } 4026 4027 return UnableToLegalize; 4028 } 4029 4030 LegalizerHelper::LegalizeResult 4031 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4032 LLT NarrowTy) { 4033 if (TypeIdx != 1) 4034 return UnableToLegalize; 4035 4036 Register DstReg = MI.getOperand(0).getReg(); 4037 Register SrcReg = MI.getOperand(1).getReg(); 4038 LLT DstTy = MRI.getType(DstReg); 4039 LLT SrcTy = MRI.getType(SrcReg); 4040 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4041 4042 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4043 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4044 4045 MachineIRBuilder &B = MIRBuilder; 4046 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4047 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4048 auto C_0 = B.buildConstant(NarrowTy, 0); 4049 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4050 UnmergeSrc.getReg(0), C_0); 4051 auto HiCTTZ = IsUndef ? 4052 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4053 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4054 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4055 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4056 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4057 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4058 4059 MI.eraseFromParent(); 4060 return Legalized; 4061 } 4062 4063 return UnableToLegalize; 4064 } 4065 4066 LegalizerHelper::LegalizeResult 4067 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4068 LLT NarrowTy) { 4069 if (TypeIdx != 1) 4070 return UnableToLegalize; 4071 4072 Register DstReg = MI.getOperand(0).getReg(); 4073 LLT DstTy = MRI.getType(DstReg); 4074 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4075 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4076 4077 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4078 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4079 4080 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4081 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4082 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4083 4084 MI.eraseFromParent(); 4085 return Legalized; 4086 } 4087 4088 return UnableToLegalize; 4089 } 4090 4091 LegalizerHelper::LegalizeResult 4092 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4093 unsigned Opc = MI.getOpcode(); 4094 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4095 auto isSupported = [this](const LegalityQuery &Q) { 4096 auto QAction = LI.getAction(Q).Action; 4097 return QAction == Legal || QAction == Libcall || QAction == Custom; 4098 }; 4099 switch (Opc) { 4100 default: 4101 return UnableToLegalize; 4102 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4103 // This trivially expands to CTLZ. 4104 Observer.changingInstr(MI); 4105 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4106 Observer.changedInstr(MI); 4107 return Legalized; 4108 } 4109 case TargetOpcode::G_CTLZ: { 4110 Register DstReg = MI.getOperand(0).getReg(); 4111 Register SrcReg = MI.getOperand(1).getReg(); 4112 LLT DstTy = MRI.getType(DstReg); 4113 LLT SrcTy = MRI.getType(SrcReg); 4114 unsigned Len = SrcTy.getSizeInBits(); 4115 4116 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4117 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4118 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4119 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4120 auto ICmp = MIRBuilder.buildICmp( 4121 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4122 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4123 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4124 MI.eraseFromParent(); 4125 return Legalized; 4126 } 4127 // for now, we do this: 4128 // NewLen = NextPowerOf2(Len); 4129 // x = x | (x >> 1); 4130 // x = x | (x >> 2); 4131 // ... 4132 // x = x | (x >>16); 4133 // x = x | (x >>32); // for 64-bit input 4134 // Upto NewLen/2 4135 // return Len - popcount(x); 4136 // 4137 // Ref: "Hacker's Delight" by Henry Warren 4138 Register Op = SrcReg; 4139 unsigned NewLen = PowerOf2Ceil(Len); 4140 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4141 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4142 auto MIBOp = MIRBuilder.buildOr( 4143 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4144 Op = MIBOp.getReg(0); 4145 } 4146 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4147 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4148 MIBPop); 4149 MI.eraseFromParent(); 4150 return Legalized; 4151 } 4152 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4153 // This trivially expands to CTTZ. 4154 Observer.changingInstr(MI); 4155 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4156 Observer.changedInstr(MI); 4157 return Legalized; 4158 } 4159 case TargetOpcode::G_CTTZ: { 4160 Register DstReg = MI.getOperand(0).getReg(); 4161 Register SrcReg = MI.getOperand(1).getReg(); 4162 LLT DstTy = MRI.getType(DstReg); 4163 LLT SrcTy = MRI.getType(SrcReg); 4164 4165 unsigned Len = SrcTy.getSizeInBits(); 4166 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4167 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4168 // zero. 4169 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4170 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4171 auto ICmp = MIRBuilder.buildICmp( 4172 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4173 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4174 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4175 MI.eraseFromParent(); 4176 return Legalized; 4177 } 4178 // for now, we use: { return popcount(~x & (x - 1)); } 4179 // unless the target has ctlz but not ctpop, in which case we use: 4180 // { return 32 - nlz(~x & (x-1)); } 4181 // Ref: "Hacker's Delight" by Henry Warren 4182 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4183 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4184 auto MIBTmp = MIRBuilder.buildAnd( 4185 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4186 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4187 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4188 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4189 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4190 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4191 MI.eraseFromParent(); 4192 return Legalized; 4193 } 4194 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4195 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4196 return Legalized; 4197 } 4198 case TargetOpcode::G_CTPOP: { 4199 unsigned Size = Ty.getSizeInBits(); 4200 MachineIRBuilder &B = MIRBuilder; 4201 4202 // Count set bits in blocks of 2 bits. Default approach would be 4203 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4204 // We use following formula instead: 4205 // B2Count = val - { (val >> 1) & 0x55555555 } 4206 // since it gives same result in blocks of 2 with one instruction less. 4207 auto C_1 = B.buildConstant(Ty, 1); 4208 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4209 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4210 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4211 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4212 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4213 4214 // In order to get count in blocks of 4 add values from adjacent block of 2. 4215 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4216 auto C_2 = B.buildConstant(Ty, 2); 4217 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4218 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4219 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4220 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4221 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4222 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4223 4224 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4225 // addition since count value sits in range {0,...,8} and 4 bits are enough 4226 // to hold such binary values. After addition high 4 bits still hold count 4227 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4228 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4229 auto C_4 = B.buildConstant(Ty, 4); 4230 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4231 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4232 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4233 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4234 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4235 4236 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4237 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4238 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4239 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4240 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4241 4242 // Shift count result from 8 high bits to low bits. 4243 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4244 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4245 4246 MI.eraseFromParent(); 4247 return Legalized; 4248 } 4249 } 4250 } 4251 4252 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4253 // representation. 4254 LegalizerHelper::LegalizeResult 4255 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4256 Register Dst = MI.getOperand(0).getReg(); 4257 Register Src = MI.getOperand(1).getReg(); 4258 const LLT S64 = LLT::scalar(64); 4259 const LLT S32 = LLT::scalar(32); 4260 const LLT S1 = LLT::scalar(1); 4261 4262 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4263 4264 // unsigned cul2f(ulong u) { 4265 // uint lz = clz(u); 4266 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4267 // u = (u << lz) & 0x7fffffffffffffffUL; 4268 // ulong t = u & 0xffffffffffUL; 4269 // uint v = (e << 23) | (uint)(u >> 40); 4270 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4271 // return as_float(v + r); 4272 // } 4273 4274 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4275 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4276 4277 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4278 4279 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4280 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4281 4282 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4283 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4284 4285 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4286 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4287 4288 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4289 4290 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4291 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4292 4293 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4294 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4295 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4296 4297 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4298 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4299 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4300 auto One = MIRBuilder.buildConstant(S32, 1); 4301 4302 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4303 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4304 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4305 MIRBuilder.buildAdd(Dst, V, R); 4306 4307 return Legalized; 4308 } 4309 4310 LegalizerHelper::LegalizeResult 4311 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4312 Register Dst = MI.getOperand(0).getReg(); 4313 Register Src = MI.getOperand(1).getReg(); 4314 LLT DstTy = MRI.getType(Dst); 4315 LLT SrcTy = MRI.getType(Src); 4316 4317 if (SrcTy == LLT::scalar(1)) { 4318 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4319 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4320 MIRBuilder.buildSelect(Dst, Src, True, False); 4321 MI.eraseFromParent(); 4322 return Legalized; 4323 } 4324 4325 if (SrcTy != LLT::scalar(64)) 4326 return UnableToLegalize; 4327 4328 if (DstTy == LLT::scalar(32)) { 4329 // TODO: SelectionDAG has several alternative expansions to port which may 4330 // be more reasonble depending on the available instructions. If a target 4331 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4332 // intermediate type, this is probably worse. 4333 return lowerU64ToF32BitOps(MI); 4334 } 4335 4336 return UnableToLegalize; 4337 } 4338 4339 LegalizerHelper::LegalizeResult 4340 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4341 Register Dst = MI.getOperand(0).getReg(); 4342 Register Src = MI.getOperand(1).getReg(); 4343 LLT DstTy = MRI.getType(Dst); 4344 LLT SrcTy = MRI.getType(Src); 4345 4346 const LLT S64 = LLT::scalar(64); 4347 const LLT S32 = LLT::scalar(32); 4348 const LLT S1 = LLT::scalar(1); 4349 4350 if (SrcTy == S1) { 4351 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4352 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4353 MIRBuilder.buildSelect(Dst, Src, True, False); 4354 MI.eraseFromParent(); 4355 return Legalized; 4356 } 4357 4358 if (SrcTy != S64) 4359 return UnableToLegalize; 4360 4361 if (DstTy == S32) { 4362 // signed cl2f(long l) { 4363 // long s = l >> 63; 4364 // float r = cul2f((l + s) ^ s); 4365 // return s ? -r : r; 4366 // } 4367 Register L = Src; 4368 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4369 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4370 4371 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4372 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4373 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4374 4375 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4376 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4377 MIRBuilder.buildConstant(S64, 0)); 4378 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4379 return Legalized; 4380 } 4381 4382 return UnableToLegalize; 4383 } 4384 4385 LegalizerHelper::LegalizeResult 4386 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4387 Register Dst = MI.getOperand(0).getReg(); 4388 Register Src = MI.getOperand(1).getReg(); 4389 LLT DstTy = MRI.getType(Dst); 4390 LLT SrcTy = MRI.getType(Src); 4391 const LLT S64 = LLT::scalar(64); 4392 const LLT S32 = LLT::scalar(32); 4393 4394 if (SrcTy != S64 && SrcTy != S32) 4395 return UnableToLegalize; 4396 if (DstTy != S32 && DstTy != S64) 4397 return UnableToLegalize; 4398 4399 // FPTOSI gives same result as FPTOUI for positive signed integers. 4400 // FPTOUI needs to deal with fp values that convert to unsigned integers 4401 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4402 4403 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4404 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4405 : APFloat::IEEEdouble(), 4406 APInt::getNullValue(SrcTy.getSizeInBits())); 4407 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4408 4409 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4410 4411 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4412 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4413 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4414 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4415 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4416 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4417 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4418 4419 const LLT S1 = LLT::scalar(1); 4420 4421 MachineInstrBuilder FCMP = 4422 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4423 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4424 4425 MI.eraseFromParent(); 4426 return Legalized; 4427 } 4428 4429 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4430 Register Dst = MI.getOperand(0).getReg(); 4431 Register Src = MI.getOperand(1).getReg(); 4432 LLT DstTy = MRI.getType(Dst); 4433 LLT SrcTy = MRI.getType(Src); 4434 const LLT S64 = LLT::scalar(64); 4435 const LLT S32 = LLT::scalar(32); 4436 4437 // FIXME: Only f32 to i64 conversions are supported. 4438 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4439 return UnableToLegalize; 4440 4441 // Expand f32 -> i64 conversion 4442 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4443 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4444 4445 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4446 4447 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4448 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4449 4450 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4451 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4452 4453 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4454 APInt::getSignMask(SrcEltBits)); 4455 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4456 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4457 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4458 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4459 4460 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4461 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4462 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4463 4464 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4465 R = MIRBuilder.buildZExt(DstTy, R); 4466 4467 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4468 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4469 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4470 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4471 4472 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4473 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4474 4475 const LLT S1 = LLT::scalar(1); 4476 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4477 S1, Exponent, ExponentLoBit); 4478 4479 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4480 4481 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4482 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4483 4484 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4485 4486 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4487 S1, Exponent, ZeroSrcTy); 4488 4489 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4490 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4491 4492 MI.eraseFromParent(); 4493 return Legalized; 4494 } 4495 4496 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4497 LegalizerHelper::LegalizeResult 4498 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4499 Register Dst = MI.getOperand(0).getReg(); 4500 Register Src = MI.getOperand(1).getReg(); 4501 4502 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4503 return UnableToLegalize; 4504 4505 const unsigned ExpMask = 0x7ff; 4506 const unsigned ExpBiasf64 = 1023; 4507 const unsigned ExpBiasf16 = 15; 4508 const LLT S32 = LLT::scalar(32); 4509 const LLT S1 = LLT::scalar(1); 4510 4511 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4512 Register U = Unmerge.getReg(0); 4513 Register UH = Unmerge.getReg(1); 4514 4515 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4516 4517 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4518 // add the f16 bias (15) to get the biased exponent for the f16 format. 4519 E = MIRBuilder.buildAdd( 4520 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4521 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4522 4523 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4524 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4525 4526 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4527 MIRBuilder.buildConstant(S32, 0x1ff)); 4528 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4529 4530 auto Zero = MIRBuilder.buildConstant(S32, 0); 4531 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4532 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4533 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4534 4535 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4536 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4537 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4538 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4539 4540 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4541 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4542 4543 // N = M | (E << 12); 4544 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4545 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4546 4547 // B = clamp(1-E, 0, 13); 4548 auto One = MIRBuilder.buildConstant(S32, 1); 4549 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4550 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4551 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4552 4553 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4554 MIRBuilder.buildConstant(S32, 0x1000)); 4555 4556 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4557 auto D0 = MIRBuilder.buildShl(S32, D, B); 4558 4559 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4560 D0, SigSetHigh); 4561 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4562 D = MIRBuilder.buildOr(S32, D, D1); 4563 4564 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4565 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4566 4567 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4568 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4569 4570 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4571 MIRBuilder.buildConstant(S32, 3)); 4572 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4573 4574 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4575 MIRBuilder.buildConstant(S32, 5)); 4576 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4577 4578 V1 = MIRBuilder.buildOr(S32, V0, V1); 4579 V = MIRBuilder.buildAdd(S32, V, V1); 4580 4581 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4582 E, MIRBuilder.buildConstant(S32, 30)); 4583 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4584 MIRBuilder.buildConstant(S32, 0x7c00), V); 4585 4586 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4587 E, MIRBuilder.buildConstant(S32, 1039)); 4588 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4589 4590 // Extract the sign bit. 4591 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4592 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4593 4594 // Insert the sign bit 4595 V = MIRBuilder.buildOr(S32, Sign, V); 4596 4597 MIRBuilder.buildTrunc(Dst, V); 4598 MI.eraseFromParent(); 4599 return Legalized; 4600 } 4601 4602 LegalizerHelper::LegalizeResult 4603 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4604 Register Dst = MI.getOperand(0).getReg(); 4605 Register Src = MI.getOperand(1).getReg(); 4606 4607 LLT DstTy = MRI.getType(Dst); 4608 LLT SrcTy = MRI.getType(Src); 4609 const LLT S64 = LLT::scalar(64); 4610 const LLT S16 = LLT::scalar(16); 4611 4612 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4613 return lowerFPTRUNC_F64_TO_F16(MI); 4614 4615 return UnableToLegalize; 4616 } 4617 4618 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4619 switch (Opc) { 4620 case TargetOpcode::G_SMIN: 4621 return CmpInst::ICMP_SLT; 4622 case TargetOpcode::G_SMAX: 4623 return CmpInst::ICMP_SGT; 4624 case TargetOpcode::G_UMIN: 4625 return CmpInst::ICMP_ULT; 4626 case TargetOpcode::G_UMAX: 4627 return CmpInst::ICMP_UGT; 4628 default: 4629 llvm_unreachable("not in integer min/max"); 4630 } 4631 } 4632 4633 LegalizerHelper::LegalizeResult 4634 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4635 Register Dst = MI.getOperand(0).getReg(); 4636 Register Src0 = MI.getOperand(1).getReg(); 4637 Register Src1 = MI.getOperand(2).getReg(); 4638 4639 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4640 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4641 4642 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4643 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4644 4645 MI.eraseFromParent(); 4646 return Legalized; 4647 } 4648 4649 LegalizerHelper::LegalizeResult 4650 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4651 Register Dst = MI.getOperand(0).getReg(); 4652 Register Src0 = MI.getOperand(1).getReg(); 4653 Register Src1 = MI.getOperand(2).getReg(); 4654 4655 const LLT Src0Ty = MRI.getType(Src0); 4656 const LLT Src1Ty = MRI.getType(Src1); 4657 4658 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4659 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4660 4661 auto SignBitMask = MIRBuilder.buildConstant( 4662 Src0Ty, APInt::getSignMask(Src0Size)); 4663 4664 auto NotSignBitMask = MIRBuilder.buildConstant( 4665 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4666 4667 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4668 MachineInstr *Or; 4669 4670 if (Src0Ty == Src1Ty) { 4671 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4672 Or = MIRBuilder.buildOr(Dst, And0, And1); 4673 } else if (Src0Size > Src1Size) { 4674 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4675 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4676 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4677 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4678 Or = MIRBuilder.buildOr(Dst, And0, And1); 4679 } else { 4680 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4681 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4682 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4683 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4684 Or = MIRBuilder.buildOr(Dst, And0, And1); 4685 } 4686 4687 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4688 // constants are a nan and -0.0, but the final result should preserve 4689 // everything. 4690 if (unsigned Flags = MI.getFlags()) 4691 Or->setFlags(Flags); 4692 4693 MI.eraseFromParent(); 4694 return Legalized; 4695 } 4696 4697 LegalizerHelper::LegalizeResult 4698 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4699 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4700 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4701 4702 Register Dst = MI.getOperand(0).getReg(); 4703 Register Src0 = MI.getOperand(1).getReg(); 4704 Register Src1 = MI.getOperand(2).getReg(); 4705 LLT Ty = MRI.getType(Dst); 4706 4707 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4708 // Insert canonicalizes if it's possible we need to quiet to get correct 4709 // sNaN behavior. 4710 4711 // Note this must be done here, and not as an optimization combine in the 4712 // absence of a dedicate quiet-snan instruction as we're using an 4713 // omni-purpose G_FCANONICALIZE. 4714 if (!isKnownNeverSNaN(Src0, MRI)) 4715 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4716 4717 if (!isKnownNeverSNaN(Src1, MRI)) 4718 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4719 } 4720 4721 // If there are no nans, it's safe to simply replace this with the non-IEEE 4722 // version. 4723 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4724 MI.eraseFromParent(); 4725 return Legalized; 4726 } 4727 4728 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4729 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4730 Register DstReg = MI.getOperand(0).getReg(); 4731 LLT Ty = MRI.getType(DstReg); 4732 unsigned Flags = MI.getFlags(); 4733 4734 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4735 Flags); 4736 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4737 MI.eraseFromParent(); 4738 return Legalized; 4739 } 4740 4741 LegalizerHelper::LegalizeResult 4742 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4743 Register DstReg = MI.getOperand(0).getReg(); 4744 Register X = MI.getOperand(1).getReg(); 4745 const unsigned Flags = MI.getFlags(); 4746 const LLT Ty = MRI.getType(DstReg); 4747 const LLT CondTy = Ty.changeElementSize(1); 4748 4749 // round(x) => 4750 // t = trunc(x); 4751 // d = fabs(x - t); 4752 // o = copysign(1.0f, x); 4753 // return t + (d >= 0.5 ? o : 0.0); 4754 4755 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4756 4757 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4758 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4759 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4760 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4761 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4762 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4763 4764 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4765 Flags); 4766 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4767 4768 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4769 4770 MI.eraseFromParent(); 4771 return Legalized; 4772 } 4773 4774 LegalizerHelper::LegalizeResult 4775 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4776 Register DstReg = MI.getOperand(0).getReg(); 4777 Register SrcReg = MI.getOperand(1).getReg(); 4778 unsigned Flags = MI.getFlags(); 4779 LLT Ty = MRI.getType(DstReg); 4780 const LLT CondTy = Ty.changeElementSize(1); 4781 4782 // result = trunc(src); 4783 // if (src < 0.0 && src != result) 4784 // result += -1.0. 4785 4786 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4787 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4788 4789 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4790 SrcReg, Zero, Flags); 4791 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4792 SrcReg, Trunc, Flags); 4793 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4794 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4795 4796 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4797 MI.eraseFromParent(); 4798 return Legalized; 4799 } 4800 4801 LegalizerHelper::LegalizeResult 4802 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4803 const unsigned NumDst = MI.getNumOperands() - 1; 4804 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4805 LLT SrcTy = MRI.getType(SrcReg); 4806 4807 Register Dst0Reg = MI.getOperand(0).getReg(); 4808 LLT DstTy = MRI.getType(Dst0Reg); 4809 4810 4811 // Expand scalarizing unmerge as bitcast to integer and shift. 4812 if (!DstTy.isVector() && SrcTy.isVector() && 4813 SrcTy.getElementType() == DstTy) { 4814 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4815 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4816 4817 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4818 4819 const unsigned DstSize = DstTy.getSizeInBits(); 4820 unsigned Offset = DstSize; 4821 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4822 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4823 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4824 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4825 } 4826 4827 MI.eraseFromParent(); 4828 return Legalized; 4829 } 4830 4831 return UnableToLegalize; 4832 } 4833 4834 LegalizerHelper::LegalizeResult 4835 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4836 Register DstReg = MI.getOperand(0).getReg(); 4837 Register Src0Reg = MI.getOperand(1).getReg(); 4838 Register Src1Reg = MI.getOperand(2).getReg(); 4839 LLT Src0Ty = MRI.getType(Src0Reg); 4840 LLT DstTy = MRI.getType(DstReg); 4841 LLT IdxTy = LLT::scalar(32); 4842 4843 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4844 4845 if (DstTy.isScalar()) { 4846 if (Src0Ty.isVector()) 4847 return UnableToLegalize; 4848 4849 // This is just a SELECT. 4850 assert(Mask.size() == 1 && "Expected a single mask element"); 4851 Register Val; 4852 if (Mask[0] < 0 || Mask[0] > 1) 4853 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4854 else 4855 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4856 MIRBuilder.buildCopy(DstReg, Val); 4857 MI.eraseFromParent(); 4858 return Legalized; 4859 } 4860 4861 Register Undef; 4862 SmallVector<Register, 32> BuildVec; 4863 LLT EltTy = DstTy.getElementType(); 4864 4865 for (int Idx : Mask) { 4866 if (Idx < 0) { 4867 if (!Undef.isValid()) 4868 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4869 BuildVec.push_back(Undef); 4870 continue; 4871 } 4872 4873 if (Src0Ty.isScalar()) { 4874 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4875 } else { 4876 int NumElts = Src0Ty.getNumElements(); 4877 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4878 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4879 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4880 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4881 BuildVec.push_back(Extract.getReg(0)); 4882 } 4883 } 4884 4885 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4886 MI.eraseFromParent(); 4887 return Legalized; 4888 } 4889 4890 LegalizerHelper::LegalizeResult 4891 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4892 Register Dst = MI.getOperand(0).getReg(); 4893 Register AllocSize = MI.getOperand(1).getReg(); 4894 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 4895 4896 const auto &MF = *MI.getMF(); 4897 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4898 4899 LLT PtrTy = MRI.getType(Dst); 4900 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4901 4902 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4903 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4904 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4905 4906 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4907 // have to generate an extra instruction to negate the alloc and then use 4908 // G_PTR_ADD to add the negative offset. 4909 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4910 if (Alignment > Align(1)) { 4911 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 4912 AlignMask.negate(); 4913 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4914 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4915 } 4916 4917 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4918 MIRBuilder.buildCopy(SPReg, SPTmp); 4919 MIRBuilder.buildCopy(Dst, SPTmp); 4920 4921 MI.eraseFromParent(); 4922 return Legalized; 4923 } 4924 4925 LegalizerHelper::LegalizeResult 4926 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4927 Register Dst = MI.getOperand(0).getReg(); 4928 Register Src = MI.getOperand(1).getReg(); 4929 unsigned Offset = MI.getOperand(2).getImm(); 4930 4931 LLT DstTy = MRI.getType(Dst); 4932 LLT SrcTy = MRI.getType(Src); 4933 4934 if (DstTy.isScalar() && 4935 (SrcTy.isScalar() || 4936 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4937 LLT SrcIntTy = SrcTy; 4938 if (!SrcTy.isScalar()) { 4939 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4940 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4941 } 4942 4943 if (Offset == 0) 4944 MIRBuilder.buildTrunc(Dst, Src); 4945 else { 4946 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4947 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4948 MIRBuilder.buildTrunc(Dst, Shr); 4949 } 4950 4951 MI.eraseFromParent(); 4952 return Legalized; 4953 } 4954 4955 return UnableToLegalize; 4956 } 4957 4958 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4959 Register Dst = MI.getOperand(0).getReg(); 4960 Register Src = MI.getOperand(1).getReg(); 4961 Register InsertSrc = MI.getOperand(2).getReg(); 4962 uint64_t Offset = MI.getOperand(3).getImm(); 4963 4964 LLT DstTy = MRI.getType(Src); 4965 LLT InsertTy = MRI.getType(InsertSrc); 4966 4967 if (InsertTy.isVector() || 4968 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 4969 return UnableToLegalize; 4970 4971 const DataLayout &DL = MIRBuilder.getDataLayout(); 4972 if ((DstTy.isPointer() && 4973 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 4974 (InsertTy.isPointer() && 4975 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 4976 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 4977 return UnableToLegalize; 4978 } 4979 4980 LLT IntDstTy = DstTy; 4981 4982 if (!DstTy.isScalar()) { 4983 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4984 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 4985 } 4986 4987 if (!InsertTy.isScalar()) { 4988 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 4989 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 4990 } 4991 4992 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4993 if (Offset != 0) { 4994 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4995 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4996 } 4997 4998 APInt MaskVal = APInt::getBitsSetWithWrap( 4999 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5000 5001 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5002 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5003 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5004 5005 MIRBuilder.buildCast(Dst, Or); 5006 MI.eraseFromParent(); 5007 return Legalized; 5008 } 5009 5010 LegalizerHelper::LegalizeResult 5011 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5012 Register Dst0 = MI.getOperand(0).getReg(); 5013 Register Dst1 = MI.getOperand(1).getReg(); 5014 Register LHS = MI.getOperand(2).getReg(); 5015 Register RHS = MI.getOperand(3).getReg(); 5016 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5017 5018 LLT Ty = MRI.getType(Dst0); 5019 LLT BoolTy = MRI.getType(Dst1); 5020 5021 if (IsAdd) 5022 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5023 else 5024 MIRBuilder.buildSub(Dst0, LHS, RHS); 5025 5026 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5027 5028 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5029 5030 // For an addition, the result should be less than one of the operands (LHS) 5031 // if and only if the other operand (RHS) is negative, otherwise there will 5032 // be overflow. 5033 // For a subtraction, the result should be less than one of the operands 5034 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5035 // otherwise there will be overflow. 5036 auto ResultLowerThanLHS = 5037 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5038 auto ConditionRHS = MIRBuilder.buildICmp( 5039 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5040 5041 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5042 MI.eraseFromParent(); 5043 return Legalized; 5044 } 5045 5046 LegalizerHelper::LegalizeResult 5047 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5048 Register Dst = MI.getOperand(0).getReg(); 5049 Register Src = MI.getOperand(1).getReg(); 5050 const LLT Ty = MRI.getType(Src); 5051 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5052 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5053 5054 // Swap most and least significant byte, set remaining bytes in Res to zero. 5055 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5056 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5057 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5058 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5059 5060 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5061 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5062 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5063 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5064 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5065 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5066 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5067 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5068 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5069 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5070 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5071 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5072 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5073 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5074 } 5075 Res.getInstr()->getOperand(0).setReg(Dst); 5076 5077 MI.eraseFromParent(); 5078 return Legalized; 5079 } 5080 5081 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5082 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5083 MachineInstrBuilder Src, APInt Mask) { 5084 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5085 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5086 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5087 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5088 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5089 return B.buildOr(Dst, LHS, RHS); 5090 } 5091 5092 LegalizerHelper::LegalizeResult 5093 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5094 Register Dst = MI.getOperand(0).getReg(); 5095 Register Src = MI.getOperand(1).getReg(); 5096 const LLT Ty = MRI.getType(Src); 5097 unsigned Size = Ty.getSizeInBits(); 5098 5099 MachineInstrBuilder BSWAP = 5100 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5101 5102 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5103 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5104 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5105 MachineInstrBuilder Swap4 = 5106 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5107 5108 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5109 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5110 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5111 MachineInstrBuilder Swap2 = 5112 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5113 5114 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5115 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5116 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5117 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5118 5119 MI.eraseFromParent(); 5120 return Legalized; 5121 } 5122 5123 LegalizerHelper::LegalizeResult 5124 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5125 MachineFunction &MF = MIRBuilder.getMF(); 5126 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5127 const TargetLowering *TLI = STI.getTargetLowering(); 5128 5129 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5130 int NameOpIdx = IsRead ? 1 : 0; 5131 int ValRegIndex = IsRead ? 0 : 1; 5132 5133 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5134 const LLT Ty = MRI.getType(ValReg); 5135 const MDString *RegStr = cast<MDString>( 5136 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5137 5138 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5139 if (!PhysReg.isValid()) 5140 return UnableToLegalize; 5141 5142 if (IsRead) 5143 MIRBuilder.buildCopy(ValReg, PhysReg); 5144 else 5145 MIRBuilder.buildCopy(PhysReg, ValReg); 5146 5147 MI.eraseFromParent(); 5148 return Legalized; 5149 } 5150