1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args,
495                     const CallingConv::ID CC) {
496   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
497 
498   CallLowering::CallLoweringInfo Info;
499   Info.CallConv = CC;
500   Info.Callee = MachineOperand::CreateES(Name);
501   Info.OrigRet = Result;
502   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
503   if (!CLI.lowerCall(MIRBuilder, Info))
504     return LegalizerHelper::UnableToLegalize;
505 
506   return LegalizerHelper::Legalized;
507 }
508 
509 LegalizerHelper::LegalizeResult
510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
511                     const CallLowering::ArgInfo &Result,
512                     ArrayRef<CallLowering::ArgInfo> Args) {
513   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
514   const char *Name = TLI.getLibcallName(Libcall);
515   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
516   return createLibcall(MIRBuilder, Name, Result, Args, CC);
517 }
518 
519 // Useful for libcalls where all operands have the same type.
520 static LegalizerHelper::LegalizeResult
521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
522               Type *OpType) {
523   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
524 
525   SmallVector<CallLowering::ArgInfo, 3> Args;
526   for (unsigned i = 1; i < MI.getNumOperands(); i++)
527     Args.push_back({MI.getOperand(i).getReg(), OpType});
528   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
529                        Args);
530 }
531 
532 LegalizerHelper::LegalizeResult
533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
534                        MachineInstr &MI) {
535   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
536   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
537 
538   SmallVector<CallLowering::ArgInfo, 3> Args;
539   // Add all the args, except for the last which is an imm denoting 'tail'.
540   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
541     Register Reg = MI.getOperand(i).getReg();
542 
543     // Need derive an IR type for call lowering.
544     LLT OpLLT = MRI.getType(Reg);
545     Type *OpTy = nullptr;
546     if (OpLLT.isPointer())
547       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
548     else
549       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
550     Args.push_back({Reg, OpTy});
551   }
552 
553   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
554   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
555   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
556   RTLIB::Libcall RTLibcall;
557   switch (ID) {
558   case Intrinsic::memcpy:
559     RTLibcall = RTLIB::MEMCPY;
560     break;
561   case Intrinsic::memset:
562     RTLibcall = RTLIB::MEMSET;
563     break;
564   case Intrinsic::memmove:
565     RTLibcall = RTLIB::MEMMOVE;
566     break;
567   default:
568     return LegalizerHelper::UnableToLegalize;
569   }
570   const char *Name = TLI.getLibcallName(RTLibcall);
571 
572   MIRBuilder.setInstr(MI);
573 
574   CallLowering::CallLoweringInfo Info;
575   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
576   Info.Callee = MachineOperand::CreateES(Name);
577   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
578   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
579                     isLibCallInTailPosition(MI);
580 
581   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
582   if (!CLI.lowerCall(MIRBuilder, Info))
583     return LegalizerHelper::UnableToLegalize;
584 
585   if (Info.LoweredTailCall) {
586     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
587     // We must have a return following the call to get past
588     // isLibCallInTailPosition.
589     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
590            "Expected instr following MI to be a return?");
591 
592     // We lowered a tail call, so the call is now the return from the block.
593     // Delete the old return.
594     MI.getNextNode()->eraseFromParent();
595   }
596 
597   return LegalizerHelper::Legalized;
598 }
599 
600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
601                                        Type *FromType) {
602   auto ToMVT = MVT::getVT(ToType);
603   auto FromMVT = MVT::getVT(FromType);
604 
605   switch (Opcode) {
606   case TargetOpcode::G_FPEXT:
607     return RTLIB::getFPEXT(FromMVT, ToMVT);
608   case TargetOpcode::G_FPTRUNC:
609     return RTLIB::getFPROUND(FromMVT, ToMVT);
610   case TargetOpcode::G_FPTOSI:
611     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTOUI:
613     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
614   case TargetOpcode::G_SITOFP:
615     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
616   case TargetOpcode::G_UITOFP:
617     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
618   }
619   llvm_unreachable("Unsupported libcall function");
620 }
621 
622 static LegalizerHelper::LegalizeResult
623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
624                   Type *FromType) {
625   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
626   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
627                        {{MI.getOperand(1).getReg(), FromType}});
628 }
629 
630 LegalizerHelper::LegalizeResult
631 LegalizerHelper::libcall(MachineInstr &MI) {
632   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
633   unsigned Size = LLTy.getSizeInBits();
634   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
635 
636   MIRBuilder.setInstr(MI);
637   MIRBuilder.setDebugLoc(MI.getDebugLoc());
638 
639   switch (MI.getOpcode()) {
640   default:
641     return UnableToLegalize;
642   case TargetOpcode::G_SDIV:
643   case TargetOpcode::G_UDIV:
644   case TargetOpcode::G_SREM:
645   case TargetOpcode::G_UREM:
646   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
647     Type *HLTy = IntegerType::get(Ctx, Size);
648     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
649     if (Status != Legalized)
650       return Status;
651     break;
652   }
653   case TargetOpcode::G_FADD:
654   case TargetOpcode::G_FSUB:
655   case TargetOpcode::G_FMUL:
656   case TargetOpcode::G_FDIV:
657   case TargetOpcode::G_FMA:
658   case TargetOpcode::G_FPOW:
659   case TargetOpcode::G_FREM:
660   case TargetOpcode::G_FCOS:
661   case TargetOpcode::G_FSIN:
662   case TargetOpcode::G_FLOG10:
663   case TargetOpcode::G_FLOG:
664   case TargetOpcode::G_FLOG2:
665   case TargetOpcode::G_FEXP:
666   case TargetOpcode::G_FEXP2:
667   case TargetOpcode::G_FCEIL:
668   case TargetOpcode::G_FFLOOR:
669   case TargetOpcode::G_FMINNUM:
670   case TargetOpcode::G_FMAXNUM:
671   case TargetOpcode::G_FSQRT:
672   case TargetOpcode::G_FRINT:
673   case TargetOpcode::G_FNEARBYINT: {
674     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
675     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
676       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
677       return UnableToLegalize;
678     }
679     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
680     if (Status != Legalized)
681       return Status;
682     break;
683   }
684   case TargetOpcode::G_FPEXT:
685   case TargetOpcode::G_FPTRUNC: {
686     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
687     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
688     if (!FromTy || !ToTy)
689       return UnableToLegalize;
690     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
691     if (Status != Legalized)
692       return Status;
693     break;
694   }
695   case TargetOpcode::G_FPTOSI:
696   case TargetOpcode::G_FPTOUI: {
697     // FIXME: Support other types
698     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
699     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
700     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
701       return UnableToLegalize;
702     LegalizeResult Status = conversionLibcall(
703         MI, MIRBuilder,
704         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
705         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_SITOFP:
711   case TargetOpcode::G_UITOFP: {
712     // FIXME: Support other types
713     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
714     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
715     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
716       return UnableToLegalize;
717     LegalizeResult Status = conversionLibcall(
718         MI, MIRBuilder,
719         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
720         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
721     if (Status != Legalized)
722       return Status;
723     break;
724   }
725   }
726 
727   MI.eraseFromParent();
728   return Legalized;
729 }
730 
731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
732                                                               unsigned TypeIdx,
733                                                               LLT NarrowTy) {
734   MIRBuilder.setInstr(MI);
735   MIRBuilder.setDebugLoc(MI.getDebugLoc());
736 
737   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
738   uint64_t NarrowSize = NarrowTy.getSizeInBits();
739 
740   switch (MI.getOpcode()) {
741   default:
742     return UnableToLegalize;
743   case TargetOpcode::G_IMPLICIT_DEF: {
744     // FIXME: add support for when SizeOp0 isn't an exact multiple of
745     // NarrowSize.
746     if (SizeOp0 % NarrowSize != 0)
747       return UnableToLegalize;
748     int NumParts = SizeOp0 / NarrowSize;
749 
750     SmallVector<Register, 2> DstRegs;
751     for (int i = 0; i < NumParts; ++i)
752       DstRegs.push_back(
753           MIRBuilder.buildUndef(NarrowTy).getReg(0));
754 
755     Register DstReg = MI.getOperand(0).getReg();
756     if(MRI.getType(DstReg).isVector())
757       MIRBuilder.buildBuildVector(DstReg, DstRegs);
758     else
759       MIRBuilder.buildMerge(DstReg, DstRegs);
760     MI.eraseFromParent();
761     return Legalized;
762   }
763   case TargetOpcode::G_CONSTANT: {
764     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
765     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
766     unsigned TotalSize = Ty.getSizeInBits();
767     unsigned NarrowSize = NarrowTy.getSizeInBits();
768     int NumParts = TotalSize / NarrowSize;
769 
770     SmallVector<Register, 4> PartRegs;
771     for (int I = 0; I != NumParts; ++I) {
772       unsigned Offset = I * NarrowSize;
773       auto K = MIRBuilder.buildConstant(NarrowTy,
774                                         Val.lshr(Offset).trunc(NarrowSize));
775       PartRegs.push_back(K.getReg(0));
776     }
777 
778     LLT LeftoverTy;
779     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
780     SmallVector<Register, 1> LeftoverRegs;
781     if (LeftoverBits != 0) {
782       LeftoverTy = LLT::scalar(LeftoverBits);
783       auto K = MIRBuilder.buildConstant(
784         LeftoverTy,
785         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
786       LeftoverRegs.push_back(K.getReg(0));
787     }
788 
789     insertParts(MI.getOperand(0).getReg(),
790                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
791 
792     MI.eraseFromParent();
793     return Legalized;
794   }
795   case TargetOpcode::G_SEXT:
796   case TargetOpcode::G_ZEXT:
797   case TargetOpcode::G_ANYEXT:
798     return narrowScalarExt(MI, TypeIdx, NarrowTy);
799   case TargetOpcode::G_TRUNC: {
800     if (TypeIdx != 1)
801       return UnableToLegalize;
802 
803     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
804     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
805       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
806       return UnableToLegalize;
807     }
808 
809     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
810     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
811     MI.eraseFromParent();
812     return Legalized;
813   }
814 
815   case TargetOpcode::G_ADD: {
816     // FIXME: add support for when SizeOp0 isn't an exact multiple of
817     // NarrowSize.
818     if (SizeOp0 % NarrowSize != 0)
819       return UnableToLegalize;
820     // Expand in terms of carry-setting/consuming G_ADDE instructions.
821     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
822 
823     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
824     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
825     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
826 
827     Register CarryIn;
828     for (int i = 0; i < NumParts; ++i) {
829       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
830       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
831 
832       if (i == 0)
833         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
834       else {
835         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
836                               Src2Regs[i], CarryIn);
837       }
838 
839       DstRegs.push_back(DstReg);
840       CarryIn = CarryOut;
841     }
842     Register DstReg = MI.getOperand(0).getReg();
843     if(MRI.getType(DstReg).isVector())
844       MIRBuilder.buildBuildVector(DstReg, DstRegs);
845     else
846       MIRBuilder.buildMerge(DstReg, DstRegs);
847     MI.eraseFromParent();
848     return Legalized;
849   }
850   case TargetOpcode::G_SUB: {
851     // FIXME: add support for when SizeOp0 isn't an exact multiple of
852     // NarrowSize.
853     if (SizeOp0 % NarrowSize != 0)
854       return UnableToLegalize;
855 
856     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
857 
858     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
859     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
860     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
861 
862     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
863     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
864     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
865                           {Src1Regs[0], Src2Regs[0]});
866     DstRegs.push_back(DstReg);
867     Register BorrowIn = BorrowOut;
868     for (int i = 1; i < NumParts; ++i) {
869       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
870       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
871 
872       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
873                             {Src1Regs[i], Src2Regs[i], BorrowIn});
874 
875       DstRegs.push_back(DstReg);
876       BorrowIn = BorrowOut;
877     }
878     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
879     MI.eraseFromParent();
880     return Legalized;
881   }
882   case TargetOpcode::G_MUL:
883   case TargetOpcode::G_UMULH:
884     return narrowScalarMul(MI, NarrowTy);
885   case TargetOpcode::G_EXTRACT:
886     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
887   case TargetOpcode::G_INSERT:
888     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
889   case TargetOpcode::G_LOAD: {
890     const auto &MMO = **MI.memoperands_begin();
891     Register DstReg = MI.getOperand(0).getReg();
892     LLT DstTy = MRI.getType(DstReg);
893     if (DstTy.isVector())
894       return UnableToLegalize;
895 
896     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
897       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
898       auto &MMO = **MI.memoperands_begin();
899       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
900       MIRBuilder.buildAnyExt(DstReg, TmpReg);
901       MI.eraseFromParent();
902       return Legalized;
903     }
904 
905     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
906   }
907   case TargetOpcode::G_ZEXTLOAD:
908   case TargetOpcode::G_SEXTLOAD: {
909     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
910     Register DstReg = MI.getOperand(0).getReg();
911     Register PtrReg = MI.getOperand(1).getReg();
912 
913     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
914     auto &MMO = **MI.memoperands_begin();
915     if (MMO.getSizeInBits() == NarrowSize) {
916       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
917     } else {
918       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
919     }
920 
921     if (ZExt)
922       MIRBuilder.buildZExt(DstReg, TmpReg);
923     else
924       MIRBuilder.buildSExt(DstReg, TmpReg);
925 
926     MI.eraseFromParent();
927     return Legalized;
928   }
929   case TargetOpcode::G_STORE: {
930     const auto &MMO = **MI.memoperands_begin();
931 
932     Register SrcReg = MI.getOperand(0).getReg();
933     LLT SrcTy = MRI.getType(SrcReg);
934     if (SrcTy.isVector())
935       return UnableToLegalize;
936 
937     int NumParts = SizeOp0 / NarrowSize;
938     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
939     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
940     if (SrcTy.isVector() && LeftoverBits != 0)
941       return UnableToLegalize;
942 
943     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
944       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
945       auto &MMO = **MI.memoperands_begin();
946       MIRBuilder.buildTrunc(TmpReg, SrcReg);
947       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, 0, NarrowTy);
953   }
954   case TargetOpcode::G_SELECT:
955     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
956   case TargetOpcode::G_AND:
957   case TargetOpcode::G_OR:
958   case TargetOpcode::G_XOR: {
959     // Legalize bitwise operation:
960     // A = BinOp<Ty> B, C
961     // into:
962     // B1, ..., BN = G_UNMERGE_VALUES B
963     // C1, ..., CN = G_UNMERGE_VALUES C
964     // A1 = BinOp<Ty/N> B1, C2
965     // ...
966     // AN = BinOp<Ty/N> BN, CN
967     // A = G_MERGE_VALUES A1, ..., AN
968     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
969   }
970   case TargetOpcode::G_SHL:
971   case TargetOpcode::G_LSHR:
972   case TargetOpcode::G_ASHR:
973     return narrowScalarShift(MI, TypeIdx, NarrowTy);
974   case TargetOpcode::G_CTLZ:
975   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
976   case TargetOpcode::G_CTTZ:
977   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
978   case TargetOpcode::G_CTPOP:
979     if (TypeIdx == 1)
980       switch (MI.getOpcode()) {
981       case TargetOpcode::G_CTLZ:
982       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
983         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
984       case TargetOpcode::G_CTTZ:
985       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
986         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
987       case TargetOpcode::G_CTPOP:
988         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
989       default:
990         return UnableToLegalize;
991       }
992 
993     Observer.changingInstr(MI);
994     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
995     Observer.changedInstr(MI);
996     return Legalized;
997   case TargetOpcode::G_INTTOPTR:
998     if (TypeIdx != 1)
999       return UnableToLegalize;
1000 
1001     Observer.changingInstr(MI);
1002     narrowScalarSrc(MI, NarrowTy, 1);
1003     Observer.changedInstr(MI);
1004     return Legalized;
1005   case TargetOpcode::G_PTRTOINT:
1006     if (TypeIdx != 0)
1007       return UnableToLegalize;
1008 
1009     Observer.changingInstr(MI);
1010     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1011     Observer.changedInstr(MI);
1012     return Legalized;
1013   case TargetOpcode::G_PHI: {
1014     unsigned NumParts = SizeOp0 / NarrowSize;
1015     SmallVector<Register, 2> DstRegs(NumParts);
1016     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1017     Observer.changingInstr(MI);
1018     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1019       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1020       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1021       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1022                    SrcRegs[i / 2]);
1023     }
1024     MachineBasicBlock &MBB = *MI.getParent();
1025     MIRBuilder.setInsertPt(MBB, MI);
1026     for (unsigned i = 0; i < NumParts; ++i) {
1027       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1028       MachineInstrBuilder MIB =
1029           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1030       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1031         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1032     }
1033     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1034     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1035     Observer.changedInstr(MI);
1036     MI.eraseFromParent();
1037     return Legalized;
1038   }
1039   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1041     if (TypeIdx != 2)
1042       return UnableToLegalize;
1043 
1044     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1045     Observer.changingInstr(MI);
1046     narrowScalarSrc(MI, NarrowTy, OpIdx);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   }
1050   case TargetOpcode::G_ICMP: {
1051     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1052     if (NarrowSize * 2 != SrcSize)
1053       return UnableToLegalize;
1054 
1055     Observer.changingInstr(MI);
1056     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1057     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1058     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1059 
1060     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1061     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1062     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1063 
1064     CmpInst::Predicate Pred =
1065         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1066     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1067 
1068     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1069       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1070       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1071       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1072       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1073       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1074     } else {
1075       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1076       MachineInstrBuilder CmpHEQ =
1077           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1078       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1079           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1080       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1081     }
1082     Observer.changedInstr(MI);
1083     MI.eraseFromParent();
1084     return Legalized;
1085   }
1086   case TargetOpcode::G_SEXT_INREG: {
1087     if (TypeIdx != 0)
1088       return UnableToLegalize;
1089 
1090     int64_t SizeInBits = MI.getOperand(2).getImm();
1091 
1092     // So long as the new type has more bits than the bits we're extending we
1093     // don't need to break it apart.
1094     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1095       Observer.changingInstr(MI);
1096       // We don't lose any non-extension bits by truncating the src and
1097       // sign-extending the dst.
1098       MachineOperand &MO1 = MI.getOperand(1);
1099       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1100       MO1.setReg(TruncMIB.getReg(0));
1101 
1102       MachineOperand &MO2 = MI.getOperand(0);
1103       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1104       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1105       MIRBuilder.buildSExt(MO2, DstExt);
1106       MO2.setReg(DstExt);
1107       Observer.changedInstr(MI);
1108       return Legalized;
1109     }
1110 
1111     // Break it apart. Components below the extension point are unmodified. The
1112     // component containing the extension point becomes a narrower SEXT_INREG.
1113     // Components above it are ashr'd from the component containing the
1114     // extension point.
1115     if (SizeOp0 % NarrowSize != 0)
1116       return UnableToLegalize;
1117     int NumParts = SizeOp0 / NarrowSize;
1118 
1119     // List the registers where the destination will be scattered.
1120     SmallVector<Register, 2> DstRegs;
1121     // List the registers where the source will be split.
1122     SmallVector<Register, 2> SrcRegs;
1123 
1124     // Create all the temporary registers.
1125     for (int i = 0; i < NumParts; ++i) {
1126       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1127 
1128       SrcRegs.push_back(SrcReg);
1129     }
1130 
1131     // Explode the big arguments into smaller chunks.
1132     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1133 
1134     Register AshrCstReg =
1135         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1136             .getReg(0);
1137     Register FullExtensionReg = 0;
1138     Register PartialExtensionReg = 0;
1139 
1140     // Do the operation on each small part.
1141     for (int i = 0; i < NumParts; ++i) {
1142       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1143         DstRegs.push_back(SrcRegs[i]);
1144       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1145         assert(PartialExtensionReg &&
1146                "Expected to visit partial extension before full");
1147         if (FullExtensionReg) {
1148           DstRegs.push_back(FullExtensionReg);
1149           continue;
1150         }
1151         DstRegs.push_back(
1152             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1153                 .getReg(0));
1154         FullExtensionReg = DstRegs.back();
1155       } else {
1156         DstRegs.push_back(
1157             MIRBuilder
1158                 .buildInstr(
1159                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1160                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1161                 .getReg(0));
1162         PartialExtensionReg = DstRegs.back();
1163       }
1164     }
1165 
1166     // Gather the destination registers into the final destination.
1167     Register DstReg = MI.getOperand(0).getReg();
1168     MIRBuilder.buildMerge(DstReg, DstRegs);
1169     MI.eraseFromParent();
1170     return Legalized;
1171   }
1172   case TargetOpcode::G_BSWAP:
1173   case TargetOpcode::G_BITREVERSE: {
1174     if (SizeOp0 % NarrowSize != 0)
1175       return UnableToLegalize;
1176 
1177     Observer.changingInstr(MI);
1178     SmallVector<Register, 2> SrcRegs, DstRegs;
1179     unsigned NumParts = SizeOp0 / NarrowSize;
1180     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1181 
1182     for (unsigned i = 0; i < NumParts; ++i) {
1183       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1184                                            {SrcRegs[NumParts - 1 - i]});
1185       DstRegs.push_back(DstPart.getReg(0));
1186     }
1187 
1188     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1189 
1190     Observer.changedInstr(MI);
1191     MI.eraseFromParent();
1192     return Legalized;
1193   }
1194   }
1195 }
1196 
1197 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1198                                      unsigned OpIdx, unsigned ExtOpcode) {
1199   MachineOperand &MO = MI.getOperand(OpIdx);
1200   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1201   MO.setReg(ExtB.getReg(0));
1202 }
1203 
1204 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1205                                       unsigned OpIdx) {
1206   MachineOperand &MO = MI.getOperand(OpIdx);
1207   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1208   MO.setReg(ExtB.getReg(0));
1209 }
1210 
1211 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1212                                      unsigned OpIdx, unsigned TruncOpcode) {
1213   MachineOperand &MO = MI.getOperand(OpIdx);
1214   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1215   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1216   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1217   MO.setReg(DstExt);
1218 }
1219 
1220 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1221                                       unsigned OpIdx, unsigned ExtOpcode) {
1222   MachineOperand &MO = MI.getOperand(OpIdx);
1223   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1224   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1225   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1226   MO.setReg(DstTrunc);
1227 }
1228 
1229 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1230                                             unsigned OpIdx) {
1231   MachineOperand &MO = MI.getOperand(OpIdx);
1232   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1233   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1234   MIRBuilder.buildExtract(MO, DstExt, 0);
1235   MO.setReg(DstExt);
1236 }
1237 
1238 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1239                                             unsigned OpIdx) {
1240   MachineOperand &MO = MI.getOperand(OpIdx);
1241 
1242   LLT OldTy = MRI.getType(MO.getReg());
1243   unsigned OldElts = OldTy.getNumElements();
1244   unsigned NewElts = MoreTy.getNumElements();
1245 
1246   unsigned NumParts = NewElts / OldElts;
1247 
1248   // Use concat_vectors if the result is a multiple of the number of elements.
1249   if (NumParts * OldElts == NewElts) {
1250     SmallVector<Register, 8> Parts;
1251     Parts.push_back(MO.getReg());
1252 
1253     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1254     for (unsigned I = 1; I != NumParts; ++I)
1255       Parts.push_back(ImpDef);
1256 
1257     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1258     MO.setReg(Concat.getReg(0));
1259     return;
1260   }
1261 
1262   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1263   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1264   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1265   MO.setReg(MoreReg);
1266 }
1267 
1268 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1269   MachineOperand &Op = MI.getOperand(OpIdx);
1270   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1271 }
1272 
1273 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1274   MachineOperand &MO = MI.getOperand(OpIdx);
1275   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1276   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1277   MIRBuilder.buildBitcast(MO, CastDst);
1278   MO.setReg(CastDst);
1279 }
1280 
1281 LegalizerHelper::LegalizeResult
1282 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1283                                         LLT WideTy) {
1284   if (TypeIdx != 1)
1285     return UnableToLegalize;
1286 
1287   Register DstReg = MI.getOperand(0).getReg();
1288   LLT DstTy = MRI.getType(DstReg);
1289   if (DstTy.isVector())
1290     return UnableToLegalize;
1291 
1292   Register Src1 = MI.getOperand(1).getReg();
1293   LLT SrcTy = MRI.getType(Src1);
1294   const int DstSize = DstTy.getSizeInBits();
1295   const int SrcSize = SrcTy.getSizeInBits();
1296   const int WideSize = WideTy.getSizeInBits();
1297   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1298 
1299   unsigned NumOps = MI.getNumOperands();
1300   unsigned NumSrc = MI.getNumOperands() - 1;
1301   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1302 
1303   if (WideSize >= DstSize) {
1304     // Directly pack the bits in the target type.
1305     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1306 
1307     for (unsigned I = 2; I != NumOps; ++I) {
1308       const unsigned Offset = (I - 1) * PartSize;
1309 
1310       Register SrcReg = MI.getOperand(I).getReg();
1311       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1312 
1313       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1314 
1315       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1316         MRI.createGenericVirtualRegister(WideTy);
1317 
1318       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1319       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1320       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1321       ResultReg = NextResult;
1322     }
1323 
1324     if (WideSize > DstSize)
1325       MIRBuilder.buildTrunc(DstReg, ResultReg);
1326     else if (DstTy.isPointer())
1327       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1328 
1329     MI.eraseFromParent();
1330     return Legalized;
1331   }
1332 
1333   // Unmerge the original values to the GCD type, and recombine to the next
1334   // multiple greater than the original type.
1335   //
1336   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1337   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1338   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1339   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1340   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1341   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1342   // %12:_(s12) = G_MERGE_VALUES %10, %11
1343   //
1344   // Padding with undef if necessary:
1345   //
1346   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1347   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1348   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1349   // %7:_(s2) = G_IMPLICIT_DEF
1350   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1351   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1352   // %10:_(s12) = G_MERGE_VALUES %8, %9
1353 
1354   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1355   LLT GCDTy = LLT::scalar(GCD);
1356 
1357   SmallVector<Register, 8> Parts;
1358   SmallVector<Register, 8> NewMergeRegs;
1359   SmallVector<Register, 8> Unmerges;
1360   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1361 
1362   // Decompose the original operands if they don't evenly divide.
1363   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1364     Register SrcReg = MI.getOperand(I).getReg();
1365     if (GCD == SrcSize) {
1366       Unmerges.push_back(SrcReg);
1367     } else {
1368       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1369       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1370         Unmerges.push_back(Unmerge.getReg(J));
1371     }
1372   }
1373 
1374   // Pad with undef to the next size that is a multiple of the requested size.
1375   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1376     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1377     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1378       Unmerges.push_back(UndefReg);
1379   }
1380 
1381   const int PartsPerGCD = WideSize / GCD;
1382 
1383   // Build merges of each piece.
1384   ArrayRef<Register> Slicer(Unmerges);
1385   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1386     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1387     NewMergeRegs.push_back(Merge.getReg(0));
1388   }
1389 
1390   // A truncate may be necessary if the requested type doesn't evenly divide the
1391   // original result type.
1392   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1393     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1394   } else {
1395     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1396     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1397   }
1398 
1399   MI.eraseFromParent();
1400   return Legalized;
1401 }
1402 
1403 LegalizerHelper::LegalizeResult
1404 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1405                                           LLT WideTy) {
1406   if (TypeIdx != 0)
1407     return UnableToLegalize;
1408 
1409   int NumDst = MI.getNumOperands() - 1;
1410   Register SrcReg = MI.getOperand(NumDst).getReg();
1411   LLT SrcTy = MRI.getType(SrcReg);
1412   if (SrcTy.isVector())
1413     return UnableToLegalize;
1414 
1415   Register Dst0Reg = MI.getOperand(0).getReg();
1416   LLT DstTy = MRI.getType(Dst0Reg);
1417   if (!DstTy.isScalar())
1418     return UnableToLegalize;
1419 
1420   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1421     if (SrcTy.isPointer()) {
1422       const DataLayout &DL = MIRBuilder.getDataLayout();
1423       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1424         LLVM_DEBUG(
1425             dbgs() << "Not casting non-integral address space integer\n");
1426         return UnableToLegalize;
1427       }
1428 
1429       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1430       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1431     }
1432 
1433     // Widen SrcTy to WideTy. This does not affect the result, but since the
1434     // user requested this size, it is probably better handled than SrcTy and
1435     // should reduce the total number of legalization artifacts
1436     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1437       SrcTy = WideTy;
1438       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1439     }
1440 
1441     // Theres no unmerge type to target. Directly extract the bits from the
1442     // source type
1443     unsigned DstSize = DstTy.getSizeInBits();
1444 
1445     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1446     for (int I = 1; I != NumDst; ++I) {
1447       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1448       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1449       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1450     }
1451 
1452     MI.eraseFromParent();
1453     return Legalized;
1454   }
1455 
1456   // Extend the source to a wider type.
1457   LLT LCMTy = getLCMType(SrcTy, WideTy);
1458 
1459   Register WideSrc = SrcReg;
1460   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1461     // TODO: If this is an integral address space, cast to integer and anyext.
1462     if (SrcTy.isPointer()) {
1463       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1464       return UnableToLegalize;
1465     }
1466 
1467     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1468   }
1469 
1470   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1471 
1472   // Create a sequence of unmerges to the original results. since we may have
1473   // widened the source, we will need to pad the results with dead defs to cover
1474   // the source register.
1475   // e.g. widen s16 to s32:
1476   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1477   //
1478   // =>
1479   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1480   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1481   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1482   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1483 
1484   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1485   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1486 
1487   for (int I = 0; I != NumUnmerge; ++I) {
1488     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1489 
1490     for (int J = 0; J != PartsPerUnmerge; ++J) {
1491       int Idx = I * PartsPerUnmerge + J;
1492       if (Idx < NumDst)
1493         MIB.addDef(MI.getOperand(Idx).getReg());
1494       else {
1495         // Create dead def for excess components.
1496         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1497       }
1498     }
1499 
1500     MIB.addUse(Unmerge.getReg(I));
1501   }
1502 
1503   MI.eraseFromParent();
1504   return Legalized;
1505 }
1506 
1507 LegalizerHelper::LegalizeResult
1508 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1509                                     LLT WideTy) {
1510   Register DstReg = MI.getOperand(0).getReg();
1511   Register SrcReg = MI.getOperand(1).getReg();
1512   LLT SrcTy = MRI.getType(SrcReg);
1513 
1514   LLT DstTy = MRI.getType(DstReg);
1515   unsigned Offset = MI.getOperand(2).getImm();
1516 
1517   if (TypeIdx == 0) {
1518     if (SrcTy.isVector() || DstTy.isVector())
1519       return UnableToLegalize;
1520 
1521     SrcOp Src(SrcReg);
1522     if (SrcTy.isPointer()) {
1523       // Extracts from pointers can be handled only if they are really just
1524       // simple integers.
1525       const DataLayout &DL = MIRBuilder.getDataLayout();
1526       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1527         return UnableToLegalize;
1528 
1529       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1530       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1531       SrcTy = SrcAsIntTy;
1532     }
1533 
1534     if (DstTy.isPointer())
1535       return UnableToLegalize;
1536 
1537     if (Offset == 0) {
1538       // Avoid a shift in the degenerate case.
1539       MIRBuilder.buildTrunc(DstReg,
1540                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1541       MI.eraseFromParent();
1542       return Legalized;
1543     }
1544 
1545     // Do a shift in the source type.
1546     LLT ShiftTy = SrcTy;
1547     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1548       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1549       ShiftTy = WideTy;
1550     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1551       return UnableToLegalize;
1552 
1553     auto LShr = MIRBuilder.buildLShr(
1554       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1555     MIRBuilder.buildTrunc(DstReg, LShr);
1556     MI.eraseFromParent();
1557     return Legalized;
1558   }
1559 
1560   if (SrcTy.isScalar()) {
1561     Observer.changingInstr(MI);
1562     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1563     Observer.changedInstr(MI);
1564     return Legalized;
1565   }
1566 
1567   if (!SrcTy.isVector())
1568     return UnableToLegalize;
1569 
1570   if (DstTy != SrcTy.getElementType())
1571     return UnableToLegalize;
1572 
1573   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1574     return UnableToLegalize;
1575 
1576   Observer.changingInstr(MI);
1577   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1578 
1579   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1580                           Offset);
1581   widenScalarDst(MI, WideTy.getScalarType(), 0);
1582   Observer.changedInstr(MI);
1583   return Legalized;
1584 }
1585 
1586 LegalizerHelper::LegalizeResult
1587 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1588                                    LLT WideTy) {
1589   if (TypeIdx != 0)
1590     return UnableToLegalize;
1591   Observer.changingInstr(MI);
1592   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1593   widenScalarDst(MI, WideTy);
1594   Observer.changedInstr(MI);
1595   return Legalized;
1596 }
1597 
1598 LegalizerHelper::LegalizeResult
1599 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1600   MIRBuilder.setInstr(MI);
1601   MIRBuilder.setDebugLoc(MI.getDebugLoc());
1602 
1603   switch (MI.getOpcode()) {
1604   default:
1605     return UnableToLegalize;
1606   case TargetOpcode::G_EXTRACT:
1607     return widenScalarExtract(MI, TypeIdx, WideTy);
1608   case TargetOpcode::G_INSERT:
1609     return widenScalarInsert(MI, TypeIdx, WideTy);
1610   case TargetOpcode::G_MERGE_VALUES:
1611     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1612   case TargetOpcode::G_UNMERGE_VALUES:
1613     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1614   case TargetOpcode::G_UADDO:
1615   case TargetOpcode::G_USUBO: {
1616     if (TypeIdx == 1)
1617       return UnableToLegalize; // TODO
1618     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1619     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1620     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1621                           ? TargetOpcode::G_ADD
1622                           : TargetOpcode::G_SUB;
1623     // Do the arithmetic in the larger type.
1624     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1625     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1626     APInt Mask =
1627         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1628     auto AndOp = MIRBuilder.buildAnd(
1629         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1630     // There is no overflow if the AndOp is the same as NewOp.
1631     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1632     // Now trunc the NewOp to the original result.
1633     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1634     MI.eraseFromParent();
1635     return Legalized;
1636   }
1637   case TargetOpcode::G_CTTZ:
1638   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1639   case TargetOpcode::G_CTLZ:
1640   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1641   case TargetOpcode::G_CTPOP: {
1642     if (TypeIdx == 0) {
1643       Observer.changingInstr(MI);
1644       widenScalarDst(MI, WideTy, 0);
1645       Observer.changedInstr(MI);
1646       return Legalized;
1647     }
1648 
1649     Register SrcReg = MI.getOperand(1).getReg();
1650 
1651     // First ZEXT the input.
1652     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1653     LLT CurTy = MRI.getType(SrcReg);
1654     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1655       // The count is the same in the larger type except if the original
1656       // value was zero.  This can be handled by setting the bit just off
1657       // the top of the original type.
1658       auto TopBit =
1659           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1660       MIBSrc = MIRBuilder.buildOr(
1661         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1662     }
1663 
1664     // Perform the operation at the larger size.
1665     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1666     // This is already the correct result for CTPOP and CTTZs
1667     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1668         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1669       // The correct result is NewOp - (Difference in widety and current ty).
1670       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1671       MIBNewOp = MIRBuilder.buildSub(
1672           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1673     }
1674 
1675     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1676     MI.eraseFromParent();
1677     return Legalized;
1678   }
1679   case TargetOpcode::G_BSWAP: {
1680     Observer.changingInstr(MI);
1681     Register DstReg = MI.getOperand(0).getReg();
1682 
1683     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1684     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1685     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1686     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1687 
1688     MI.getOperand(0).setReg(DstExt);
1689 
1690     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1691 
1692     LLT Ty = MRI.getType(DstReg);
1693     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1694     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1695     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1696 
1697     MIRBuilder.buildTrunc(DstReg, ShrReg);
1698     Observer.changedInstr(MI);
1699     return Legalized;
1700   }
1701   case TargetOpcode::G_BITREVERSE: {
1702     Observer.changingInstr(MI);
1703 
1704     Register DstReg = MI.getOperand(0).getReg();
1705     LLT Ty = MRI.getType(DstReg);
1706     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1707 
1708     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1709     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1710     MI.getOperand(0).setReg(DstExt);
1711     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1712 
1713     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1714     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1715     MIRBuilder.buildTrunc(DstReg, Shift);
1716     Observer.changedInstr(MI);
1717     return Legalized;
1718   }
1719   case TargetOpcode::G_ADD:
1720   case TargetOpcode::G_AND:
1721   case TargetOpcode::G_MUL:
1722   case TargetOpcode::G_OR:
1723   case TargetOpcode::G_XOR:
1724   case TargetOpcode::G_SUB:
1725     // Perform operation at larger width (any extension is fines here, high bits
1726     // don't affect the result) and then truncate the result back to the
1727     // original type.
1728     Observer.changingInstr(MI);
1729     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1730     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1731     widenScalarDst(MI, WideTy);
1732     Observer.changedInstr(MI);
1733     return Legalized;
1734 
1735   case TargetOpcode::G_SHL:
1736     Observer.changingInstr(MI);
1737 
1738     if (TypeIdx == 0) {
1739       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740       widenScalarDst(MI, WideTy);
1741     } else {
1742       assert(TypeIdx == 1);
1743       // The "number of bits to shift" operand must preserve its value as an
1744       // unsigned integer:
1745       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1746     }
1747 
1748     Observer.changedInstr(MI);
1749     return Legalized;
1750 
1751   case TargetOpcode::G_SDIV:
1752   case TargetOpcode::G_SREM:
1753   case TargetOpcode::G_SMIN:
1754   case TargetOpcode::G_SMAX:
1755     Observer.changingInstr(MI);
1756     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1757     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1758     widenScalarDst(MI, WideTy);
1759     Observer.changedInstr(MI);
1760     return Legalized;
1761 
1762   case TargetOpcode::G_ASHR:
1763   case TargetOpcode::G_LSHR:
1764     Observer.changingInstr(MI);
1765 
1766     if (TypeIdx == 0) {
1767       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1768         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1769 
1770       widenScalarSrc(MI, WideTy, 1, CvtOp);
1771       widenScalarDst(MI, WideTy);
1772     } else {
1773       assert(TypeIdx == 1);
1774       // The "number of bits to shift" operand must preserve its value as an
1775       // unsigned integer:
1776       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1777     }
1778 
1779     Observer.changedInstr(MI);
1780     return Legalized;
1781   case TargetOpcode::G_UDIV:
1782   case TargetOpcode::G_UREM:
1783   case TargetOpcode::G_UMIN:
1784   case TargetOpcode::G_UMAX:
1785     Observer.changingInstr(MI);
1786     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1787     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1788     widenScalarDst(MI, WideTy);
1789     Observer.changedInstr(MI);
1790     return Legalized;
1791 
1792   case TargetOpcode::G_SELECT:
1793     Observer.changingInstr(MI);
1794     if (TypeIdx == 0) {
1795       // Perform operation at larger width (any extension is fine here, high
1796       // bits don't affect the result) and then truncate the result back to the
1797       // original type.
1798       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1799       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1800       widenScalarDst(MI, WideTy);
1801     } else {
1802       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1803       // Explicit extension is required here since high bits affect the result.
1804       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1805     }
1806     Observer.changedInstr(MI);
1807     return Legalized;
1808 
1809   case TargetOpcode::G_FPTOSI:
1810   case TargetOpcode::G_FPTOUI:
1811     Observer.changingInstr(MI);
1812 
1813     if (TypeIdx == 0)
1814       widenScalarDst(MI, WideTy);
1815     else
1816       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1817 
1818     Observer.changedInstr(MI);
1819     return Legalized;
1820   case TargetOpcode::G_SITOFP:
1821     if (TypeIdx != 1)
1822       return UnableToLegalize;
1823     Observer.changingInstr(MI);
1824     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1825     Observer.changedInstr(MI);
1826     return Legalized;
1827 
1828   case TargetOpcode::G_UITOFP:
1829     if (TypeIdx != 1)
1830       return UnableToLegalize;
1831     Observer.changingInstr(MI);
1832     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1833     Observer.changedInstr(MI);
1834     return Legalized;
1835 
1836   case TargetOpcode::G_LOAD:
1837   case TargetOpcode::G_SEXTLOAD:
1838   case TargetOpcode::G_ZEXTLOAD:
1839     Observer.changingInstr(MI);
1840     widenScalarDst(MI, WideTy);
1841     Observer.changedInstr(MI);
1842     return Legalized;
1843 
1844   case TargetOpcode::G_STORE: {
1845     if (TypeIdx != 0)
1846       return UnableToLegalize;
1847 
1848     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1849     if (!isPowerOf2_32(Ty.getSizeInBits()))
1850       return UnableToLegalize;
1851 
1852     Observer.changingInstr(MI);
1853 
1854     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1855       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1856     widenScalarSrc(MI, WideTy, 0, ExtType);
1857 
1858     Observer.changedInstr(MI);
1859     return Legalized;
1860   }
1861   case TargetOpcode::G_CONSTANT: {
1862     MachineOperand &SrcMO = MI.getOperand(1);
1863     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1864     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1865         MRI.getType(MI.getOperand(0).getReg()));
1866     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1867             ExtOpc == TargetOpcode::G_ANYEXT) &&
1868            "Illegal Extend");
1869     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1870     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1871                            ? SrcVal.sext(WideTy.getSizeInBits())
1872                            : SrcVal.zext(WideTy.getSizeInBits());
1873     Observer.changingInstr(MI);
1874     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1875 
1876     widenScalarDst(MI, WideTy);
1877     Observer.changedInstr(MI);
1878     return Legalized;
1879   }
1880   case TargetOpcode::G_FCONSTANT: {
1881     MachineOperand &SrcMO = MI.getOperand(1);
1882     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1883     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1884     bool LosesInfo;
1885     switch (WideTy.getSizeInBits()) {
1886     case 32:
1887       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1888                   &LosesInfo);
1889       break;
1890     case 64:
1891       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1892                   &LosesInfo);
1893       break;
1894     default:
1895       return UnableToLegalize;
1896     }
1897 
1898     assert(!LosesInfo && "extend should always be lossless");
1899 
1900     Observer.changingInstr(MI);
1901     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1902 
1903     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1904     Observer.changedInstr(MI);
1905     return Legalized;
1906   }
1907   case TargetOpcode::G_IMPLICIT_DEF: {
1908     Observer.changingInstr(MI);
1909     widenScalarDst(MI, WideTy);
1910     Observer.changedInstr(MI);
1911     return Legalized;
1912   }
1913   case TargetOpcode::G_BRCOND:
1914     Observer.changingInstr(MI);
1915     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1916     Observer.changedInstr(MI);
1917     return Legalized;
1918 
1919   case TargetOpcode::G_FCMP:
1920     Observer.changingInstr(MI);
1921     if (TypeIdx == 0)
1922       widenScalarDst(MI, WideTy);
1923     else {
1924       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1925       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1926     }
1927     Observer.changedInstr(MI);
1928     return Legalized;
1929 
1930   case TargetOpcode::G_ICMP:
1931     Observer.changingInstr(MI);
1932     if (TypeIdx == 0)
1933       widenScalarDst(MI, WideTy);
1934     else {
1935       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1936                                MI.getOperand(1).getPredicate()))
1937                                ? TargetOpcode::G_SEXT
1938                                : TargetOpcode::G_ZEXT;
1939       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1940       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1941     }
1942     Observer.changedInstr(MI);
1943     return Legalized;
1944 
1945   case TargetOpcode::G_PTR_ADD:
1946     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1947     Observer.changingInstr(MI);
1948     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1949     Observer.changedInstr(MI);
1950     return Legalized;
1951 
1952   case TargetOpcode::G_PHI: {
1953     assert(TypeIdx == 0 && "Expecting only Idx 0");
1954 
1955     Observer.changingInstr(MI);
1956     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1957       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1958       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1959       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1960     }
1961 
1962     MachineBasicBlock &MBB = *MI.getParent();
1963     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1964     widenScalarDst(MI, WideTy);
1965     Observer.changedInstr(MI);
1966     return Legalized;
1967   }
1968   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1969     if (TypeIdx == 0) {
1970       Register VecReg = MI.getOperand(1).getReg();
1971       LLT VecTy = MRI.getType(VecReg);
1972       Observer.changingInstr(MI);
1973 
1974       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1975                                      WideTy.getSizeInBits()),
1976                      1, TargetOpcode::G_SEXT);
1977 
1978       widenScalarDst(MI, WideTy, 0);
1979       Observer.changedInstr(MI);
1980       return Legalized;
1981     }
1982 
1983     if (TypeIdx != 2)
1984       return UnableToLegalize;
1985     Observer.changingInstr(MI);
1986     // TODO: Probably should be zext
1987     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   }
1991   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1992     if (TypeIdx == 1) {
1993       Observer.changingInstr(MI);
1994 
1995       Register VecReg = MI.getOperand(1).getReg();
1996       LLT VecTy = MRI.getType(VecReg);
1997       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1998 
1999       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2000       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2001       widenScalarDst(MI, WideVecTy, 0);
2002       Observer.changedInstr(MI);
2003       return Legalized;
2004     }
2005 
2006     if (TypeIdx == 2) {
2007       Observer.changingInstr(MI);
2008       // TODO: Probably should be zext
2009       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2010       Observer.changedInstr(MI);
2011     }
2012 
2013     return Legalized;
2014   }
2015   case TargetOpcode::G_FADD:
2016   case TargetOpcode::G_FMUL:
2017   case TargetOpcode::G_FSUB:
2018   case TargetOpcode::G_FMA:
2019   case TargetOpcode::G_FMAD:
2020   case TargetOpcode::G_FNEG:
2021   case TargetOpcode::G_FABS:
2022   case TargetOpcode::G_FCANONICALIZE:
2023   case TargetOpcode::G_FMINNUM:
2024   case TargetOpcode::G_FMAXNUM:
2025   case TargetOpcode::G_FMINNUM_IEEE:
2026   case TargetOpcode::G_FMAXNUM_IEEE:
2027   case TargetOpcode::G_FMINIMUM:
2028   case TargetOpcode::G_FMAXIMUM:
2029   case TargetOpcode::G_FDIV:
2030   case TargetOpcode::G_FREM:
2031   case TargetOpcode::G_FCEIL:
2032   case TargetOpcode::G_FFLOOR:
2033   case TargetOpcode::G_FCOS:
2034   case TargetOpcode::G_FSIN:
2035   case TargetOpcode::G_FLOG10:
2036   case TargetOpcode::G_FLOG:
2037   case TargetOpcode::G_FLOG2:
2038   case TargetOpcode::G_FRINT:
2039   case TargetOpcode::G_FNEARBYINT:
2040   case TargetOpcode::G_FSQRT:
2041   case TargetOpcode::G_FEXP:
2042   case TargetOpcode::G_FEXP2:
2043   case TargetOpcode::G_FPOW:
2044   case TargetOpcode::G_INTRINSIC_TRUNC:
2045   case TargetOpcode::G_INTRINSIC_ROUND:
2046     assert(TypeIdx == 0);
2047     Observer.changingInstr(MI);
2048 
2049     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2050       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2051 
2052     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055   case TargetOpcode::G_INTTOPTR:
2056     if (TypeIdx != 1)
2057       return UnableToLegalize;
2058 
2059     Observer.changingInstr(MI);
2060     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2061     Observer.changedInstr(MI);
2062     return Legalized;
2063   case TargetOpcode::G_PTRTOINT:
2064     if (TypeIdx != 0)
2065       return UnableToLegalize;
2066 
2067     Observer.changingInstr(MI);
2068     widenScalarDst(MI, WideTy, 0);
2069     Observer.changedInstr(MI);
2070     return Legalized;
2071   case TargetOpcode::G_BUILD_VECTOR: {
2072     Observer.changingInstr(MI);
2073 
2074     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2075     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2076       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2077 
2078     // Avoid changing the result vector type if the source element type was
2079     // requested.
2080     if (TypeIdx == 1) {
2081       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2082       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2083     } else {
2084       widenScalarDst(MI, WideTy, 0);
2085     }
2086 
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   }
2090   case TargetOpcode::G_SEXT_INREG:
2091     if (TypeIdx != 0)
2092       return UnableToLegalize;
2093 
2094     Observer.changingInstr(MI);
2095     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2096     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2097     Observer.changedInstr(MI);
2098     return Legalized;
2099   }
2100 }
2101 
2102 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2103                              MachineIRBuilder &B, Register Src, LLT Ty) {
2104   auto Unmerge = B.buildUnmerge(Ty, Src);
2105   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2106     Pieces.push_back(Unmerge.getReg(I));
2107 }
2108 
2109 LegalizerHelper::LegalizeResult
2110 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2111   Register Dst = MI.getOperand(0).getReg();
2112   Register Src = MI.getOperand(1).getReg();
2113   LLT DstTy = MRI.getType(Dst);
2114   LLT SrcTy = MRI.getType(Src);
2115 
2116   if (SrcTy.isVector() && !DstTy.isVector()) {
2117     SmallVector<Register, 8> SrcRegs;
2118     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2119     MIRBuilder.buildMerge(Dst, SrcRegs);
2120     MI.eraseFromParent();
2121     return Legalized;
2122   }
2123 
2124   if (DstTy.isVector() && !SrcTy.isVector()) {
2125     SmallVector<Register, 8> SrcRegs;
2126     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2127     MIRBuilder.buildMerge(Dst, SrcRegs);
2128     MI.eraseFromParent();
2129     return Legalized;
2130   }
2131 
2132   return UnableToLegalize;
2133 }
2134 
2135 LegalizerHelper::LegalizeResult
2136 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2137   MIRBuilder.setInstr(MI);
2138 
2139   switch (MI.getOpcode()) {
2140   case TargetOpcode::G_LOAD: {
2141     if (TypeIdx != 0)
2142       return UnableToLegalize;
2143 
2144     Observer.changingInstr(MI);
2145     bitcastDst(MI, CastTy, 0);
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   }
2149   case TargetOpcode::G_STORE: {
2150     if (TypeIdx != 0)
2151       return UnableToLegalize;
2152 
2153     Observer.changingInstr(MI);
2154     bitcastSrc(MI, CastTy, 0);
2155     Observer.changedInstr(MI);
2156     return Legalized;
2157   }
2158   case TargetOpcode::G_SELECT: {
2159     if (TypeIdx != 0)
2160       return UnableToLegalize;
2161 
2162     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2163       LLVM_DEBUG(
2164           dbgs() << "bitcast action not implemented for vector select\n");
2165       return UnableToLegalize;
2166     }
2167 
2168     Observer.changingInstr(MI);
2169     bitcastSrc(MI, CastTy, 2);
2170     bitcastSrc(MI, CastTy, 3);
2171     bitcastDst(MI, CastTy, 0);
2172     Observer.changedInstr(MI);
2173     return Legalized;
2174   }
2175   case TargetOpcode::G_AND:
2176   case TargetOpcode::G_OR:
2177   case TargetOpcode::G_XOR: {
2178     Observer.changingInstr(MI);
2179     bitcastSrc(MI, CastTy, 1);
2180     bitcastSrc(MI, CastTy, 2);
2181     bitcastDst(MI, CastTy, 0);
2182     Observer.changedInstr(MI);
2183     return Legalized;
2184   }
2185   default:
2186     return UnableToLegalize;
2187   }
2188 }
2189 
2190 LegalizerHelper::LegalizeResult
2191 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2192   using namespace TargetOpcode;
2193   MIRBuilder.setInstr(MI);
2194   MIRBuilder.setDebugLoc(MI.getDebugLoc());
2195 
2196   switch(MI.getOpcode()) {
2197   default:
2198     return UnableToLegalize;
2199   case TargetOpcode::G_BITCAST:
2200     return lowerBitcast(MI);
2201   case TargetOpcode::G_SREM:
2202   case TargetOpcode::G_UREM: {
2203     auto Quot =
2204         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2205                               {MI.getOperand(1), MI.getOperand(2)});
2206 
2207     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2208     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2209     MI.eraseFromParent();
2210     return Legalized;
2211   }
2212   case TargetOpcode::G_SADDO:
2213   case TargetOpcode::G_SSUBO:
2214     return lowerSADDO_SSUBO(MI);
2215   case TargetOpcode::G_SMULO:
2216   case TargetOpcode::G_UMULO: {
2217     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2218     // result.
2219     Register Res = MI.getOperand(0).getReg();
2220     Register Overflow = MI.getOperand(1).getReg();
2221     Register LHS = MI.getOperand(2).getReg();
2222     Register RHS = MI.getOperand(3).getReg();
2223 
2224     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2225                           ? TargetOpcode::G_SMULH
2226                           : TargetOpcode::G_UMULH;
2227 
2228     Observer.changingInstr(MI);
2229     const auto &TII = MIRBuilder.getTII();
2230     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2231     MI.RemoveOperand(1);
2232     Observer.changedInstr(MI);
2233 
2234     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2235 
2236     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2237     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2238 
2239     // For *signed* multiply, overflow is detected by checking:
2240     // (hi != (lo >> bitwidth-1))
2241     if (Opcode == TargetOpcode::G_SMULH) {
2242       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2243       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2244       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2245     } else {
2246       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2247     }
2248     return Legalized;
2249   }
2250   case TargetOpcode::G_FNEG: {
2251     // TODO: Handle vector types once we are able to
2252     // represent them.
2253     if (Ty.isVector())
2254       return UnableToLegalize;
2255     Register Res = MI.getOperand(0).getReg();
2256     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2257     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2258     if (!ZeroTy)
2259       return UnableToLegalize;
2260     ConstantFP &ZeroForNegation =
2261         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2262     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2263     Register SubByReg = MI.getOperand(1).getReg();
2264     Register ZeroReg = Zero.getReg(0);
2265     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2266     MI.eraseFromParent();
2267     return Legalized;
2268   }
2269   case TargetOpcode::G_FSUB: {
2270     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2271     // First, check if G_FNEG is marked as Lower. If so, we may
2272     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2273     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2274       return UnableToLegalize;
2275     Register Res = MI.getOperand(0).getReg();
2276     Register LHS = MI.getOperand(1).getReg();
2277     Register RHS = MI.getOperand(2).getReg();
2278     Register Neg = MRI.createGenericVirtualRegister(Ty);
2279     MIRBuilder.buildFNeg(Neg, RHS);
2280     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2281     MI.eraseFromParent();
2282     return Legalized;
2283   }
2284   case TargetOpcode::G_FMAD:
2285     return lowerFMad(MI);
2286   case TargetOpcode::G_FFLOOR:
2287     return lowerFFloor(MI);
2288   case TargetOpcode::G_INTRINSIC_ROUND:
2289     return lowerIntrinsicRound(MI);
2290   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2291     Register OldValRes = MI.getOperand(0).getReg();
2292     Register SuccessRes = MI.getOperand(1).getReg();
2293     Register Addr = MI.getOperand(2).getReg();
2294     Register CmpVal = MI.getOperand(3).getReg();
2295     Register NewVal = MI.getOperand(4).getReg();
2296     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2297                                   **MI.memoperands_begin());
2298     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2299     MI.eraseFromParent();
2300     return Legalized;
2301   }
2302   case TargetOpcode::G_LOAD:
2303   case TargetOpcode::G_SEXTLOAD:
2304   case TargetOpcode::G_ZEXTLOAD: {
2305     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2306     Register DstReg = MI.getOperand(0).getReg();
2307     Register PtrReg = MI.getOperand(1).getReg();
2308     LLT DstTy = MRI.getType(DstReg);
2309     auto &MMO = **MI.memoperands_begin();
2310 
2311     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2312       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2313         // This load needs splitting into power of 2 sized loads.
2314         if (DstTy.isVector())
2315           return UnableToLegalize;
2316         if (isPowerOf2_32(DstTy.getSizeInBits()))
2317           return UnableToLegalize; // Don't know what we're being asked to do.
2318 
2319         // Our strategy here is to generate anyextending loads for the smaller
2320         // types up to next power-2 result type, and then combine the two larger
2321         // result values together, before truncating back down to the non-pow-2
2322         // type.
2323         // E.g. v1 = i24 load =>
2324         // v2 = i32 zextload (2 byte)
2325         // v3 = i32 load (1 byte)
2326         // v4 = i32 shl v3, 16
2327         // v5 = i32 or v4, v2
2328         // v1 = i24 trunc v5
2329         // By doing this we generate the correct truncate which should get
2330         // combined away as an artifact with a matching extend.
2331         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2332         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2333 
2334         MachineFunction &MF = MIRBuilder.getMF();
2335         MachineMemOperand *LargeMMO =
2336             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2337         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2338             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2339 
2340         LLT PtrTy = MRI.getType(PtrReg);
2341         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2342         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2343         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2344         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2345         auto LargeLoad = MIRBuilder.buildLoadInstr(
2346             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2347 
2348         auto OffsetCst = MIRBuilder.buildConstant(
2349             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2350         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2351         auto SmallPtr =
2352             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2353         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2354                                               *SmallMMO);
2355 
2356         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2357         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2358         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2359         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2360         MI.eraseFromParent();
2361         return Legalized;
2362       }
2363       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2364       MI.eraseFromParent();
2365       return Legalized;
2366     }
2367 
2368     if (DstTy.isScalar()) {
2369       Register TmpReg =
2370           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2371       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2372       switch (MI.getOpcode()) {
2373       default:
2374         llvm_unreachable("Unexpected opcode");
2375       case TargetOpcode::G_LOAD:
2376         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2377         break;
2378       case TargetOpcode::G_SEXTLOAD:
2379         MIRBuilder.buildSExt(DstReg, TmpReg);
2380         break;
2381       case TargetOpcode::G_ZEXTLOAD:
2382         MIRBuilder.buildZExt(DstReg, TmpReg);
2383         break;
2384       }
2385       MI.eraseFromParent();
2386       return Legalized;
2387     }
2388 
2389     return UnableToLegalize;
2390   }
2391   case TargetOpcode::G_STORE: {
2392     // Lower a non-power of 2 store into multiple pow-2 stores.
2393     // E.g. split an i24 store into an i16 store + i8 store.
2394     // We do this by first extending the stored value to the next largest power
2395     // of 2 type, and then using truncating stores to store the components.
2396     // By doing this, likewise with G_LOAD, generate an extend that can be
2397     // artifact-combined away instead of leaving behind extracts.
2398     Register SrcReg = MI.getOperand(0).getReg();
2399     Register PtrReg = MI.getOperand(1).getReg();
2400     LLT SrcTy = MRI.getType(SrcReg);
2401     MachineMemOperand &MMO = **MI.memoperands_begin();
2402     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2403       return UnableToLegalize;
2404     if (SrcTy.isVector())
2405       return UnableToLegalize;
2406     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2407       return UnableToLegalize; // Don't know what we're being asked to do.
2408 
2409     // Extend to the next pow-2.
2410     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2411     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2412 
2413     // Obtain the smaller value by shifting away the larger value.
2414     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2415     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2416     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2417     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2418 
2419     // Generate the PtrAdd and truncating stores.
2420     LLT PtrTy = MRI.getType(PtrReg);
2421     auto OffsetCst = MIRBuilder.buildConstant(
2422             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2423     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2424     auto SmallPtr =
2425         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2426 
2427     MachineFunction &MF = MIRBuilder.getMF();
2428     MachineMemOperand *LargeMMO =
2429         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2430     MachineMemOperand *SmallMMO =
2431         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2432     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2433     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2434     MI.eraseFromParent();
2435     return Legalized;
2436   }
2437   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2438   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2439   case TargetOpcode::G_CTLZ:
2440   case TargetOpcode::G_CTTZ:
2441   case TargetOpcode::G_CTPOP:
2442     return lowerBitCount(MI, TypeIdx, Ty);
2443   case G_UADDO: {
2444     Register Res = MI.getOperand(0).getReg();
2445     Register CarryOut = MI.getOperand(1).getReg();
2446     Register LHS = MI.getOperand(2).getReg();
2447     Register RHS = MI.getOperand(3).getReg();
2448 
2449     MIRBuilder.buildAdd(Res, LHS, RHS);
2450     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2451 
2452     MI.eraseFromParent();
2453     return Legalized;
2454   }
2455   case G_UADDE: {
2456     Register Res = MI.getOperand(0).getReg();
2457     Register CarryOut = MI.getOperand(1).getReg();
2458     Register LHS = MI.getOperand(2).getReg();
2459     Register RHS = MI.getOperand(3).getReg();
2460     Register CarryIn = MI.getOperand(4).getReg();
2461     LLT Ty = MRI.getType(Res);
2462 
2463     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2464     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2465     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2466     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2467 
2468     MI.eraseFromParent();
2469     return Legalized;
2470   }
2471   case G_USUBO: {
2472     Register Res = MI.getOperand(0).getReg();
2473     Register BorrowOut = MI.getOperand(1).getReg();
2474     Register LHS = MI.getOperand(2).getReg();
2475     Register RHS = MI.getOperand(3).getReg();
2476 
2477     MIRBuilder.buildSub(Res, LHS, RHS);
2478     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2479 
2480     MI.eraseFromParent();
2481     return Legalized;
2482   }
2483   case G_USUBE: {
2484     Register Res = MI.getOperand(0).getReg();
2485     Register BorrowOut = MI.getOperand(1).getReg();
2486     Register LHS = MI.getOperand(2).getReg();
2487     Register RHS = MI.getOperand(3).getReg();
2488     Register BorrowIn = MI.getOperand(4).getReg();
2489     const LLT CondTy = MRI.getType(BorrowOut);
2490     const LLT Ty = MRI.getType(Res);
2491 
2492     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2493     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2494     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2495 
2496     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2497     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2498     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2499 
2500     MI.eraseFromParent();
2501     return Legalized;
2502   }
2503   case G_UITOFP:
2504     return lowerUITOFP(MI, TypeIdx, Ty);
2505   case G_SITOFP:
2506     return lowerSITOFP(MI, TypeIdx, Ty);
2507   case G_FPTOUI:
2508     return lowerFPTOUI(MI, TypeIdx, Ty);
2509   case G_FPTOSI:
2510     return lowerFPTOSI(MI);
2511   case G_FPTRUNC:
2512     return lowerFPTRUNC(MI, TypeIdx, Ty);
2513   case G_SMIN:
2514   case G_SMAX:
2515   case G_UMIN:
2516   case G_UMAX:
2517     return lowerMinMax(MI, TypeIdx, Ty);
2518   case G_FCOPYSIGN:
2519     return lowerFCopySign(MI, TypeIdx, Ty);
2520   case G_FMINNUM:
2521   case G_FMAXNUM:
2522     return lowerFMinNumMaxNum(MI);
2523   case G_UNMERGE_VALUES:
2524     return lowerUnmergeValues(MI);
2525   case TargetOpcode::G_SEXT_INREG: {
2526     assert(MI.getOperand(2).isImm() && "Expected immediate");
2527     int64_t SizeInBits = MI.getOperand(2).getImm();
2528 
2529     Register DstReg = MI.getOperand(0).getReg();
2530     Register SrcReg = MI.getOperand(1).getReg();
2531     LLT DstTy = MRI.getType(DstReg);
2532     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2533 
2534     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2535     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2536     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2537     MI.eraseFromParent();
2538     return Legalized;
2539   }
2540   case G_SHUFFLE_VECTOR:
2541     return lowerShuffleVector(MI);
2542   case G_DYN_STACKALLOC:
2543     return lowerDynStackAlloc(MI);
2544   case G_EXTRACT:
2545     return lowerExtract(MI);
2546   case G_INSERT:
2547     return lowerInsert(MI);
2548   case G_BSWAP:
2549     return lowerBswap(MI);
2550   case G_BITREVERSE:
2551     return lowerBitreverse(MI);
2552   case G_READ_REGISTER:
2553   case G_WRITE_REGISTER:
2554     return lowerReadWriteRegister(MI);
2555   }
2556 }
2557 
2558 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2559     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2560   SmallVector<Register, 2> DstRegs;
2561 
2562   unsigned NarrowSize = NarrowTy.getSizeInBits();
2563   Register DstReg = MI.getOperand(0).getReg();
2564   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2565   int NumParts = Size / NarrowSize;
2566   // FIXME: Don't know how to handle the situation where the small vectors
2567   // aren't all the same size yet.
2568   if (Size % NarrowSize != 0)
2569     return UnableToLegalize;
2570 
2571   for (int i = 0; i < NumParts; ++i) {
2572     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2573     MIRBuilder.buildUndef(TmpReg);
2574     DstRegs.push_back(TmpReg);
2575   }
2576 
2577   if (NarrowTy.isVector())
2578     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2579   else
2580     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2581 
2582   MI.eraseFromParent();
2583   return Legalized;
2584 }
2585 
2586 // Handles operands with different types, but all must have the same number of
2587 // elements. There will be multiple type indexes. NarrowTy is expected to have
2588 // the result element type.
2589 LegalizerHelper::LegalizeResult
2590 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2591                                           LLT NarrowTy) {
2592   assert(TypeIdx == 0 && "only one type index expected");
2593 
2594   const unsigned Opc = MI.getOpcode();
2595   const int NumOps = MI.getNumOperands() - 1;
2596   const Register DstReg = MI.getOperand(0).getReg();
2597   const unsigned Flags = MI.getFlags();
2598 
2599   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2600 
2601   SmallVector<Register, 8> ExtractedRegs[3];
2602   SmallVector<Register, 8> Parts;
2603 
2604   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2605 
2606   // Break down all the sources into NarrowTy pieces we can operate on. This may
2607   // involve creating merges to a wider type, padded with undef.
2608   for (int I = 0; I != NumOps; ++I) {
2609     Register SrcReg =  MI.getOperand(I + 1).getReg();
2610     LLT SrcTy = MRI.getType(SrcReg);
2611 
2612     // Each operand may have its own type, but only the number of elements
2613     // matters.
2614     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2615     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2616 
2617     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2618     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2619                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2620   }
2621 
2622   SmallVector<Register, 8> ResultRegs;
2623 
2624   // Input operands for each sub-instruction.
2625   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2626 
2627   int NumParts = ExtractedRegs[0].size();
2628   const LLT DstTy = MRI.getType(DstReg);
2629   const unsigned DstSize = DstTy.getSizeInBits();
2630   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2631 
2632   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2633 
2634   // We widened the source registers to satisfy merge/unmerge size
2635   // constraints. We'll have some extra fully undef parts.
2636   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2637 
2638   for (int I = 0; I != NumRealParts; ++I) {
2639     // Emit this instruction on each of the split pieces.
2640     for (int J = 0; J != NumOps; ++J)
2641       InputRegs[J] = ExtractedRegs[J][I];
2642 
2643     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2644     ResultRegs.push_back(Inst.getReg(0));
2645   }
2646 
2647   // Fill out the widened result with undef instead of creating instructions
2648   // with undef inputs.
2649   int NumUndefParts = NumParts - NumRealParts;
2650   if (NumUndefParts != 0)
2651     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2652 
2653   // Extract the possibly padded result to the original result register.
2654   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2655 
2656   MI.eraseFromParent();
2657   return Legalized;
2658 }
2659 
2660 // Handle splitting vector operations which need to have the same number of
2661 // elements in each type index, but each type index may have a different element
2662 // type.
2663 //
2664 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2665 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2666 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2667 //
2668 // Also handles some irregular breakdown cases, e.g.
2669 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2670 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2671 //             s64 = G_SHL s64, s32
2672 LegalizerHelper::LegalizeResult
2673 LegalizerHelper::fewerElementsVectorMultiEltType(
2674   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2675   if (TypeIdx != 0)
2676     return UnableToLegalize;
2677 
2678   const LLT NarrowTy0 = NarrowTyArg;
2679   const unsigned NewNumElts =
2680       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2681 
2682   const Register DstReg = MI.getOperand(0).getReg();
2683   LLT DstTy = MRI.getType(DstReg);
2684   LLT LeftoverTy0;
2685 
2686   // All of the operands need to have the same number of elements, so if we can
2687   // determine a type breakdown for the result type, we can for all of the
2688   // source types.
2689   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2690   if (NumParts < 0)
2691     return UnableToLegalize;
2692 
2693   SmallVector<MachineInstrBuilder, 4> NewInsts;
2694 
2695   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2696   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2697 
2698   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2699     LLT LeftoverTy;
2700     Register SrcReg = MI.getOperand(I).getReg();
2701     LLT SrcTyI = MRI.getType(SrcReg);
2702     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2703     LLT LeftoverTyI;
2704 
2705     // Split this operand into the requested typed registers, and any leftover
2706     // required to reproduce the original type.
2707     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2708                       LeftoverRegs))
2709       return UnableToLegalize;
2710 
2711     if (I == 1) {
2712       // For the first operand, create an instruction for each part and setup
2713       // the result.
2714       for (Register PartReg : PartRegs) {
2715         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2716         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2717                                .addDef(PartDstReg)
2718                                .addUse(PartReg));
2719         DstRegs.push_back(PartDstReg);
2720       }
2721 
2722       for (Register LeftoverReg : LeftoverRegs) {
2723         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2724         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2725                                .addDef(PartDstReg)
2726                                .addUse(LeftoverReg));
2727         LeftoverDstRegs.push_back(PartDstReg);
2728       }
2729     } else {
2730       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2731 
2732       // Add the newly created operand splits to the existing instructions. The
2733       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2734       // pieces.
2735       unsigned InstCount = 0;
2736       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2737         NewInsts[InstCount++].addUse(PartRegs[J]);
2738       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2739         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2740     }
2741 
2742     PartRegs.clear();
2743     LeftoverRegs.clear();
2744   }
2745 
2746   // Insert the newly built operations and rebuild the result register.
2747   for (auto &MIB : NewInsts)
2748     MIRBuilder.insertInstr(MIB);
2749 
2750   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2751 
2752   MI.eraseFromParent();
2753   return Legalized;
2754 }
2755 
2756 LegalizerHelper::LegalizeResult
2757 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2758                                           LLT NarrowTy) {
2759   if (TypeIdx != 0)
2760     return UnableToLegalize;
2761 
2762   Register DstReg = MI.getOperand(0).getReg();
2763   Register SrcReg = MI.getOperand(1).getReg();
2764   LLT DstTy = MRI.getType(DstReg);
2765   LLT SrcTy = MRI.getType(SrcReg);
2766 
2767   LLT NarrowTy0 = NarrowTy;
2768   LLT NarrowTy1;
2769   unsigned NumParts;
2770 
2771   if (NarrowTy.isVector()) {
2772     // Uneven breakdown not handled.
2773     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2774     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2775       return UnableToLegalize;
2776 
2777     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2778   } else {
2779     NumParts = DstTy.getNumElements();
2780     NarrowTy1 = SrcTy.getElementType();
2781   }
2782 
2783   SmallVector<Register, 4> SrcRegs, DstRegs;
2784   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2785 
2786   for (unsigned I = 0; I < NumParts; ++I) {
2787     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2788     MachineInstr *NewInst =
2789         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2790 
2791     NewInst->setFlags(MI.getFlags());
2792     DstRegs.push_back(DstReg);
2793   }
2794 
2795   if (NarrowTy.isVector())
2796     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2797   else
2798     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2799 
2800   MI.eraseFromParent();
2801   return Legalized;
2802 }
2803 
2804 LegalizerHelper::LegalizeResult
2805 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2806                                         LLT NarrowTy) {
2807   Register DstReg = MI.getOperand(0).getReg();
2808   Register Src0Reg = MI.getOperand(2).getReg();
2809   LLT DstTy = MRI.getType(DstReg);
2810   LLT SrcTy = MRI.getType(Src0Reg);
2811 
2812   unsigned NumParts;
2813   LLT NarrowTy0, NarrowTy1;
2814 
2815   if (TypeIdx == 0) {
2816     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2817     unsigned OldElts = DstTy.getNumElements();
2818 
2819     NarrowTy0 = NarrowTy;
2820     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2821     NarrowTy1 = NarrowTy.isVector() ?
2822       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2823       SrcTy.getElementType();
2824 
2825   } else {
2826     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2827     unsigned OldElts = SrcTy.getNumElements();
2828 
2829     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2830       NarrowTy.getNumElements();
2831     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2832                             DstTy.getScalarSizeInBits());
2833     NarrowTy1 = NarrowTy;
2834   }
2835 
2836   // FIXME: Don't know how to handle the situation where the small vectors
2837   // aren't all the same size yet.
2838   if (NarrowTy1.isVector() &&
2839       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2840     return UnableToLegalize;
2841 
2842   CmpInst::Predicate Pred
2843     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2844 
2845   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2846   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2847   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2848 
2849   for (unsigned I = 0; I < NumParts; ++I) {
2850     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2851     DstRegs.push_back(DstReg);
2852 
2853     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2854       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2855     else {
2856       MachineInstr *NewCmp
2857         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2858       NewCmp->setFlags(MI.getFlags());
2859     }
2860   }
2861 
2862   if (NarrowTy1.isVector())
2863     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2864   else
2865     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2866 
2867   MI.eraseFromParent();
2868   return Legalized;
2869 }
2870 
2871 LegalizerHelper::LegalizeResult
2872 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2873                                            LLT NarrowTy) {
2874   Register DstReg = MI.getOperand(0).getReg();
2875   Register CondReg = MI.getOperand(1).getReg();
2876 
2877   unsigned NumParts = 0;
2878   LLT NarrowTy0, NarrowTy1;
2879 
2880   LLT DstTy = MRI.getType(DstReg);
2881   LLT CondTy = MRI.getType(CondReg);
2882   unsigned Size = DstTy.getSizeInBits();
2883 
2884   assert(TypeIdx == 0 || CondTy.isVector());
2885 
2886   if (TypeIdx == 0) {
2887     NarrowTy0 = NarrowTy;
2888     NarrowTy1 = CondTy;
2889 
2890     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2891     // FIXME: Don't know how to handle the situation where the small vectors
2892     // aren't all the same size yet.
2893     if (Size % NarrowSize != 0)
2894       return UnableToLegalize;
2895 
2896     NumParts = Size / NarrowSize;
2897 
2898     // Need to break down the condition type
2899     if (CondTy.isVector()) {
2900       if (CondTy.getNumElements() == NumParts)
2901         NarrowTy1 = CondTy.getElementType();
2902       else
2903         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2904                                 CondTy.getScalarSizeInBits());
2905     }
2906   } else {
2907     NumParts = CondTy.getNumElements();
2908     if (NarrowTy.isVector()) {
2909       // TODO: Handle uneven breakdown.
2910       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2911         return UnableToLegalize;
2912 
2913       return UnableToLegalize;
2914     } else {
2915       NarrowTy0 = DstTy.getElementType();
2916       NarrowTy1 = NarrowTy;
2917     }
2918   }
2919 
2920   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2921   if (CondTy.isVector())
2922     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2923 
2924   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2925   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2926 
2927   for (unsigned i = 0; i < NumParts; ++i) {
2928     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2929     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2930                            Src1Regs[i], Src2Regs[i]);
2931     DstRegs.push_back(DstReg);
2932   }
2933 
2934   if (NarrowTy0.isVector())
2935     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2936   else
2937     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2938 
2939   MI.eraseFromParent();
2940   return Legalized;
2941 }
2942 
2943 LegalizerHelper::LegalizeResult
2944 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2945                                         LLT NarrowTy) {
2946   const Register DstReg = MI.getOperand(0).getReg();
2947   LLT PhiTy = MRI.getType(DstReg);
2948   LLT LeftoverTy;
2949 
2950   // All of the operands need to have the same number of elements, so if we can
2951   // determine a type breakdown for the result type, we can for all of the
2952   // source types.
2953   int NumParts, NumLeftover;
2954   std::tie(NumParts, NumLeftover)
2955     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2956   if (NumParts < 0)
2957     return UnableToLegalize;
2958 
2959   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2960   SmallVector<MachineInstrBuilder, 4> NewInsts;
2961 
2962   const int TotalNumParts = NumParts + NumLeftover;
2963 
2964   // Insert the new phis in the result block first.
2965   for (int I = 0; I != TotalNumParts; ++I) {
2966     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2967     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2968     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2969                        .addDef(PartDstReg));
2970     if (I < NumParts)
2971       DstRegs.push_back(PartDstReg);
2972     else
2973       LeftoverDstRegs.push_back(PartDstReg);
2974   }
2975 
2976   MachineBasicBlock *MBB = MI.getParent();
2977   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2978   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2979 
2980   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2981 
2982   // Insert code to extract the incoming values in each predecessor block.
2983   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2984     PartRegs.clear();
2985     LeftoverRegs.clear();
2986 
2987     Register SrcReg = MI.getOperand(I).getReg();
2988     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2989     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2990 
2991     LLT Unused;
2992     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2993                       LeftoverRegs))
2994       return UnableToLegalize;
2995 
2996     // Add the newly created operand splits to the existing instructions. The
2997     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2998     // pieces.
2999     for (int J = 0; J != TotalNumParts; ++J) {
3000       MachineInstrBuilder MIB = NewInsts[J];
3001       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3002       MIB.addMBB(&OpMBB);
3003     }
3004   }
3005 
3006   MI.eraseFromParent();
3007   return Legalized;
3008 }
3009 
3010 LegalizerHelper::LegalizeResult
3011 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3012                                                   unsigned TypeIdx,
3013                                                   LLT NarrowTy) {
3014   if (TypeIdx != 1)
3015     return UnableToLegalize;
3016 
3017   const int NumDst = MI.getNumOperands() - 1;
3018   const Register SrcReg = MI.getOperand(NumDst).getReg();
3019   LLT SrcTy = MRI.getType(SrcReg);
3020 
3021   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3022 
3023   // TODO: Create sequence of extracts.
3024   if (DstTy == NarrowTy)
3025     return UnableToLegalize;
3026 
3027   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3028   if (DstTy == GCDTy) {
3029     // This would just be a copy of the same unmerge.
3030     // TODO: Create extracts, pad with undef and create intermediate merges.
3031     return UnableToLegalize;
3032   }
3033 
3034   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3035   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3036   const int PartsPerUnmerge = NumDst / NumUnmerge;
3037 
3038   for (int I = 0; I != NumUnmerge; ++I) {
3039     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3040 
3041     for (int J = 0; J != PartsPerUnmerge; ++J)
3042       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3043     MIB.addUse(Unmerge.getReg(I));
3044   }
3045 
3046   MI.eraseFromParent();
3047   return Legalized;
3048 }
3049 
3050 LegalizerHelper::LegalizeResult
3051 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3052                                                 unsigned TypeIdx,
3053                                                 LLT NarrowTy) {
3054   assert(TypeIdx == 0 && "not a vector type index");
3055   Register DstReg = MI.getOperand(0).getReg();
3056   LLT DstTy = MRI.getType(DstReg);
3057   LLT SrcTy = DstTy.getElementType();
3058 
3059   int DstNumElts = DstTy.getNumElements();
3060   int NarrowNumElts = NarrowTy.getNumElements();
3061   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3062   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3063 
3064   SmallVector<Register, 8> ConcatOps;
3065   SmallVector<Register, 8> SubBuildVector;
3066 
3067   Register UndefReg;
3068   if (WidenedDstTy != DstTy)
3069     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3070 
3071   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3072   // necessary.
3073   //
3074   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3075   //   -> <2 x s16>
3076   //
3077   // %4:_(s16) = G_IMPLICIT_DEF
3078   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3079   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3080   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3081   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3082   for (int I = 0; I != NumConcat; ++I) {
3083     for (int J = 0; J != NarrowNumElts; ++J) {
3084       int SrcIdx = NarrowNumElts * I + J;
3085 
3086       if (SrcIdx < DstNumElts) {
3087         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3088         SubBuildVector.push_back(SrcReg);
3089       } else
3090         SubBuildVector.push_back(UndefReg);
3091     }
3092 
3093     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3094     ConcatOps.push_back(BuildVec.getReg(0));
3095     SubBuildVector.clear();
3096   }
3097 
3098   if (DstTy == WidenedDstTy)
3099     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3100   else {
3101     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3102     MIRBuilder.buildExtract(DstReg, Concat, 0);
3103   }
3104 
3105   MI.eraseFromParent();
3106   return Legalized;
3107 }
3108 
3109 LegalizerHelper::LegalizeResult
3110 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3111                                       LLT NarrowTy) {
3112   // FIXME: Don't know how to handle secondary types yet.
3113   if (TypeIdx != 0)
3114     return UnableToLegalize;
3115 
3116   MachineMemOperand *MMO = *MI.memoperands_begin();
3117 
3118   // This implementation doesn't work for atomics. Give up instead of doing
3119   // something invalid.
3120   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3121       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3122     return UnableToLegalize;
3123 
3124   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3125   Register ValReg = MI.getOperand(0).getReg();
3126   Register AddrReg = MI.getOperand(1).getReg();
3127   LLT ValTy = MRI.getType(ValReg);
3128 
3129   // FIXME: Do we need a distinct NarrowMemory legalize action?
3130   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3131     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3132     return UnableToLegalize;
3133   }
3134 
3135   int NumParts = -1;
3136   int NumLeftover = -1;
3137   LLT LeftoverTy;
3138   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3139   if (IsLoad) {
3140     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3141   } else {
3142     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3143                      NarrowLeftoverRegs)) {
3144       NumParts = NarrowRegs.size();
3145       NumLeftover = NarrowLeftoverRegs.size();
3146     }
3147   }
3148 
3149   if (NumParts == -1)
3150     return UnableToLegalize;
3151 
3152   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3153 
3154   unsigned TotalSize = ValTy.getSizeInBits();
3155 
3156   // Split the load/store into PartTy sized pieces starting at Offset. If this
3157   // is a load, return the new registers in ValRegs. For a store, each elements
3158   // of ValRegs should be PartTy. Returns the next offset that needs to be
3159   // handled.
3160   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3161                              unsigned Offset) -> unsigned {
3162     MachineFunction &MF = MIRBuilder.getMF();
3163     unsigned PartSize = PartTy.getSizeInBits();
3164     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3165          Offset += PartSize, ++Idx) {
3166       unsigned ByteSize = PartSize / 8;
3167       unsigned ByteOffset = Offset / 8;
3168       Register NewAddrReg;
3169 
3170       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3171 
3172       MachineMemOperand *NewMMO =
3173         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3174 
3175       if (IsLoad) {
3176         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3177         ValRegs.push_back(Dst);
3178         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3179       } else {
3180         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3181       }
3182     }
3183 
3184     return Offset;
3185   };
3186 
3187   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3188 
3189   // Handle the rest of the register if this isn't an even type breakdown.
3190   if (LeftoverTy.isValid())
3191     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3192 
3193   if (IsLoad) {
3194     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3195                 LeftoverTy, NarrowLeftoverRegs);
3196   }
3197 
3198   MI.eraseFromParent();
3199   return Legalized;
3200 }
3201 
3202 LegalizerHelper::LegalizeResult
3203 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3204                                               LLT NarrowTy) {
3205   Register DstReg = MI.getOperand(0).getReg();
3206   Register SrcReg = MI.getOperand(1).getReg();
3207   int64_t Imm = MI.getOperand(2).getImm();
3208 
3209   LLT DstTy = MRI.getType(DstReg);
3210 
3211   SmallVector<Register, 8> Parts;
3212   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3213   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3214 
3215   for (Register &R : Parts)
3216     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3217 
3218   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3219 
3220   MI.eraseFromParent();
3221   return Legalized;
3222 }
3223 
3224 LegalizerHelper::LegalizeResult
3225 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3226                                      LLT NarrowTy) {
3227   using namespace TargetOpcode;
3228 
3229   MIRBuilder.setInstr(MI);
3230   MIRBuilder.setDebugLoc(MI.getDebugLoc());
3231   switch (MI.getOpcode()) {
3232   case G_IMPLICIT_DEF:
3233     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3234   case G_TRUNC:
3235   case G_AND:
3236   case G_OR:
3237   case G_XOR:
3238   case G_ADD:
3239   case G_SUB:
3240   case G_MUL:
3241   case G_SMULH:
3242   case G_UMULH:
3243   case G_FADD:
3244   case G_FMUL:
3245   case G_FSUB:
3246   case G_FNEG:
3247   case G_FABS:
3248   case G_FCANONICALIZE:
3249   case G_FDIV:
3250   case G_FREM:
3251   case G_FMA:
3252   case G_FMAD:
3253   case G_FPOW:
3254   case G_FEXP:
3255   case G_FEXP2:
3256   case G_FLOG:
3257   case G_FLOG2:
3258   case G_FLOG10:
3259   case G_FNEARBYINT:
3260   case G_FCEIL:
3261   case G_FFLOOR:
3262   case G_FRINT:
3263   case G_INTRINSIC_ROUND:
3264   case G_INTRINSIC_TRUNC:
3265   case G_FCOS:
3266   case G_FSIN:
3267   case G_FSQRT:
3268   case G_BSWAP:
3269   case G_BITREVERSE:
3270   case G_SDIV:
3271   case G_UDIV:
3272   case G_SREM:
3273   case G_UREM:
3274   case G_SMIN:
3275   case G_SMAX:
3276   case G_UMIN:
3277   case G_UMAX:
3278   case G_FMINNUM:
3279   case G_FMAXNUM:
3280   case G_FMINNUM_IEEE:
3281   case G_FMAXNUM_IEEE:
3282   case G_FMINIMUM:
3283   case G_FMAXIMUM:
3284   case G_FSHL:
3285   case G_FSHR:
3286     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3287   case G_SHL:
3288   case G_LSHR:
3289   case G_ASHR:
3290   case G_CTLZ:
3291   case G_CTLZ_ZERO_UNDEF:
3292   case G_CTTZ:
3293   case G_CTTZ_ZERO_UNDEF:
3294   case G_CTPOP:
3295   case G_FCOPYSIGN:
3296     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3297   case G_ZEXT:
3298   case G_SEXT:
3299   case G_ANYEXT:
3300   case G_FPEXT:
3301   case G_FPTRUNC:
3302   case G_SITOFP:
3303   case G_UITOFP:
3304   case G_FPTOSI:
3305   case G_FPTOUI:
3306   case G_INTTOPTR:
3307   case G_PTRTOINT:
3308   case G_ADDRSPACE_CAST:
3309     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3310   case G_ICMP:
3311   case G_FCMP:
3312     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3313   case G_SELECT:
3314     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3315   case G_PHI:
3316     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3317   case G_UNMERGE_VALUES:
3318     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3319   case G_BUILD_VECTOR:
3320     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3321   case G_LOAD:
3322   case G_STORE:
3323     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3324   case G_SEXT_INREG:
3325     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3326   default:
3327     return UnableToLegalize;
3328   }
3329 }
3330 
3331 LegalizerHelper::LegalizeResult
3332 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3333                                              const LLT HalfTy, const LLT AmtTy) {
3334 
3335   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3336   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3337   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3338 
3339   if (Amt.isNullValue()) {
3340     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3341     MI.eraseFromParent();
3342     return Legalized;
3343   }
3344 
3345   LLT NVT = HalfTy;
3346   unsigned NVTBits = HalfTy.getSizeInBits();
3347   unsigned VTBits = 2 * NVTBits;
3348 
3349   SrcOp Lo(Register(0)), Hi(Register(0));
3350   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3351     if (Amt.ugt(VTBits)) {
3352       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3353     } else if (Amt.ugt(NVTBits)) {
3354       Lo = MIRBuilder.buildConstant(NVT, 0);
3355       Hi = MIRBuilder.buildShl(NVT, InL,
3356                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3357     } else if (Amt == NVTBits) {
3358       Lo = MIRBuilder.buildConstant(NVT, 0);
3359       Hi = InL;
3360     } else {
3361       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3362       auto OrLHS =
3363           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3364       auto OrRHS = MIRBuilder.buildLShr(
3365           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3366       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3367     }
3368   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3369     if (Amt.ugt(VTBits)) {
3370       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3371     } else if (Amt.ugt(NVTBits)) {
3372       Lo = MIRBuilder.buildLShr(NVT, InH,
3373                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3374       Hi = MIRBuilder.buildConstant(NVT, 0);
3375     } else if (Amt == NVTBits) {
3376       Lo = InH;
3377       Hi = MIRBuilder.buildConstant(NVT, 0);
3378     } else {
3379       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3380 
3381       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3382       auto OrRHS = MIRBuilder.buildShl(
3383           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3384 
3385       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3386       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3387     }
3388   } else {
3389     if (Amt.ugt(VTBits)) {
3390       Hi = Lo = MIRBuilder.buildAShr(
3391           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3392     } else if (Amt.ugt(NVTBits)) {
3393       Lo = MIRBuilder.buildAShr(NVT, InH,
3394                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3395       Hi = MIRBuilder.buildAShr(NVT, InH,
3396                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3397     } else if (Amt == NVTBits) {
3398       Lo = InH;
3399       Hi = MIRBuilder.buildAShr(NVT, InH,
3400                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3401     } else {
3402       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3403 
3404       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3405       auto OrRHS = MIRBuilder.buildShl(
3406           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3407 
3408       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3409       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3410     }
3411   }
3412 
3413   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3414   MI.eraseFromParent();
3415 
3416   return Legalized;
3417 }
3418 
3419 // TODO: Optimize if constant shift amount.
3420 LegalizerHelper::LegalizeResult
3421 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3422                                    LLT RequestedTy) {
3423   if (TypeIdx == 1) {
3424     Observer.changingInstr(MI);
3425     narrowScalarSrc(MI, RequestedTy, 2);
3426     Observer.changedInstr(MI);
3427     return Legalized;
3428   }
3429 
3430   Register DstReg = MI.getOperand(0).getReg();
3431   LLT DstTy = MRI.getType(DstReg);
3432   if (DstTy.isVector())
3433     return UnableToLegalize;
3434 
3435   Register Amt = MI.getOperand(2).getReg();
3436   LLT ShiftAmtTy = MRI.getType(Amt);
3437   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3438   if (DstEltSize % 2 != 0)
3439     return UnableToLegalize;
3440 
3441   // Ignore the input type. We can only go to exactly half the size of the
3442   // input. If that isn't small enough, the resulting pieces will be further
3443   // legalized.
3444   const unsigned NewBitSize = DstEltSize / 2;
3445   const LLT HalfTy = LLT::scalar(NewBitSize);
3446   const LLT CondTy = LLT::scalar(1);
3447 
3448   if (const MachineInstr *KShiftAmt =
3449           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3450     return narrowScalarShiftByConstant(
3451         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3452   }
3453 
3454   // TODO: Expand with known bits.
3455 
3456   // Handle the fully general expansion by an unknown amount.
3457   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3458 
3459   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3460   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3461   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3462 
3463   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3464   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3465 
3466   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3467   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3468   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3469 
3470   Register ResultRegs[2];
3471   switch (MI.getOpcode()) {
3472   case TargetOpcode::G_SHL: {
3473     // Short: ShAmt < NewBitSize
3474     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3475 
3476     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3477     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3478     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3479 
3480     // Long: ShAmt >= NewBitSize
3481     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3482     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3483 
3484     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3485     auto Hi = MIRBuilder.buildSelect(
3486         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3487 
3488     ResultRegs[0] = Lo.getReg(0);
3489     ResultRegs[1] = Hi.getReg(0);
3490     break;
3491   }
3492   case TargetOpcode::G_LSHR:
3493   case TargetOpcode::G_ASHR: {
3494     // Short: ShAmt < NewBitSize
3495     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3496 
3497     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3498     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3499     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3500 
3501     // Long: ShAmt >= NewBitSize
3502     MachineInstrBuilder HiL;
3503     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3504       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3505     } else {
3506       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3507       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3508     }
3509     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3510                                      {InH, AmtExcess});     // Lo from Hi part.
3511 
3512     auto Lo = MIRBuilder.buildSelect(
3513         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3514 
3515     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3516 
3517     ResultRegs[0] = Lo.getReg(0);
3518     ResultRegs[1] = Hi.getReg(0);
3519     break;
3520   }
3521   default:
3522     llvm_unreachable("not a shift");
3523   }
3524 
3525   MIRBuilder.buildMerge(DstReg, ResultRegs);
3526   MI.eraseFromParent();
3527   return Legalized;
3528 }
3529 
3530 LegalizerHelper::LegalizeResult
3531 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3532                                        LLT MoreTy) {
3533   assert(TypeIdx == 0 && "Expecting only Idx 0");
3534 
3535   Observer.changingInstr(MI);
3536   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3537     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3538     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3539     moreElementsVectorSrc(MI, MoreTy, I);
3540   }
3541 
3542   MachineBasicBlock &MBB = *MI.getParent();
3543   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3544   moreElementsVectorDst(MI, MoreTy, 0);
3545   Observer.changedInstr(MI);
3546   return Legalized;
3547 }
3548 
3549 LegalizerHelper::LegalizeResult
3550 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3551                                     LLT MoreTy) {
3552   MIRBuilder.setInstr(MI);
3553   unsigned Opc = MI.getOpcode();
3554   switch (Opc) {
3555   case TargetOpcode::G_IMPLICIT_DEF:
3556   case TargetOpcode::G_LOAD: {
3557     if (TypeIdx != 0)
3558       return UnableToLegalize;
3559     Observer.changingInstr(MI);
3560     moreElementsVectorDst(MI, MoreTy, 0);
3561     Observer.changedInstr(MI);
3562     return Legalized;
3563   }
3564   case TargetOpcode::G_STORE:
3565     if (TypeIdx != 0)
3566       return UnableToLegalize;
3567     Observer.changingInstr(MI);
3568     moreElementsVectorSrc(MI, MoreTy, 0);
3569     Observer.changedInstr(MI);
3570     return Legalized;
3571   case TargetOpcode::G_AND:
3572   case TargetOpcode::G_OR:
3573   case TargetOpcode::G_XOR:
3574   case TargetOpcode::G_SMIN:
3575   case TargetOpcode::G_SMAX:
3576   case TargetOpcode::G_UMIN:
3577   case TargetOpcode::G_UMAX:
3578   case TargetOpcode::G_FMINNUM:
3579   case TargetOpcode::G_FMAXNUM:
3580   case TargetOpcode::G_FMINNUM_IEEE:
3581   case TargetOpcode::G_FMAXNUM_IEEE:
3582   case TargetOpcode::G_FMINIMUM:
3583   case TargetOpcode::G_FMAXIMUM: {
3584     Observer.changingInstr(MI);
3585     moreElementsVectorSrc(MI, MoreTy, 1);
3586     moreElementsVectorSrc(MI, MoreTy, 2);
3587     moreElementsVectorDst(MI, MoreTy, 0);
3588     Observer.changedInstr(MI);
3589     return Legalized;
3590   }
3591   case TargetOpcode::G_EXTRACT:
3592     if (TypeIdx != 1)
3593       return UnableToLegalize;
3594     Observer.changingInstr(MI);
3595     moreElementsVectorSrc(MI, MoreTy, 1);
3596     Observer.changedInstr(MI);
3597     return Legalized;
3598   case TargetOpcode::G_INSERT:
3599     if (TypeIdx != 0)
3600       return UnableToLegalize;
3601     Observer.changingInstr(MI);
3602     moreElementsVectorSrc(MI, MoreTy, 1);
3603     moreElementsVectorDst(MI, MoreTy, 0);
3604     Observer.changedInstr(MI);
3605     return Legalized;
3606   case TargetOpcode::G_SELECT:
3607     if (TypeIdx != 0)
3608       return UnableToLegalize;
3609     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3610       return UnableToLegalize;
3611 
3612     Observer.changingInstr(MI);
3613     moreElementsVectorSrc(MI, MoreTy, 2);
3614     moreElementsVectorSrc(MI, MoreTy, 3);
3615     moreElementsVectorDst(MI, MoreTy, 0);
3616     Observer.changedInstr(MI);
3617     return Legalized;
3618   case TargetOpcode::G_UNMERGE_VALUES: {
3619     if (TypeIdx != 1)
3620       return UnableToLegalize;
3621 
3622     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3623     int NumDst = MI.getNumOperands() - 1;
3624     moreElementsVectorSrc(MI, MoreTy, NumDst);
3625 
3626     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3627     for (int I = 0; I != NumDst; ++I)
3628       MIB.addDef(MI.getOperand(I).getReg());
3629 
3630     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3631     for (int I = NumDst; I != NewNumDst; ++I)
3632       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3633 
3634     MIB.addUse(MI.getOperand(NumDst).getReg());
3635     MI.eraseFromParent();
3636     return Legalized;
3637   }
3638   case TargetOpcode::G_PHI:
3639     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3640   default:
3641     return UnableToLegalize;
3642   }
3643 }
3644 
3645 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3646                                         ArrayRef<Register> Src1Regs,
3647                                         ArrayRef<Register> Src2Regs,
3648                                         LLT NarrowTy) {
3649   MachineIRBuilder &B = MIRBuilder;
3650   unsigned SrcParts = Src1Regs.size();
3651   unsigned DstParts = DstRegs.size();
3652 
3653   unsigned DstIdx = 0; // Low bits of the result.
3654   Register FactorSum =
3655       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3656   DstRegs[DstIdx] = FactorSum;
3657 
3658   unsigned CarrySumPrevDstIdx;
3659   SmallVector<Register, 4> Factors;
3660 
3661   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3662     // Collect low parts of muls for DstIdx.
3663     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3664          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3665       MachineInstrBuilder Mul =
3666           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3667       Factors.push_back(Mul.getReg(0));
3668     }
3669     // Collect high parts of muls from previous DstIdx.
3670     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3671          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3672       MachineInstrBuilder Umulh =
3673           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3674       Factors.push_back(Umulh.getReg(0));
3675     }
3676     // Add CarrySum from additions calculated for previous DstIdx.
3677     if (DstIdx != 1) {
3678       Factors.push_back(CarrySumPrevDstIdx);
3679     }
3680 
3681     Register CarrySum;
3682     // Add all factors and accumulate all carries into CarrySum.
3683     if (DstIdx != DstParts - 1) {
3684       MachineInstrBuilder Uaddo =
3685           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3686       FactorSum = Uaddo.getReg(0);
3687       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3688       for (unsigned i = 2; i < Factors.size(); ++i) {
3689         MachineInstrBuilder Uaddo =
3690             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3691         FactorSum = Uaddo.getReg(0);
3692         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3693         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3694       }
3695     } else {
3696       // Since value for the next index is not calculated, neither is CarrySum.
3697       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3698       for (unsigned i = 2; i < Factors.size(); ++i)
3699         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3700     }
3701 
3702     CarrySumPrevDstIdx = CarrySum;
3703     DstRegs[DstIdx] = FactorSum;
3704     Factors.clear();
3705   }
3706 }
3707 
3708 LegalizerHelper::LegalizeResult
3709 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3710   Register DstReg = MI.getOperand(0).getReg();
3711   Register Src1 = MI.getOperand(1).getReg();
3712   Register Src2 = MI.getOperand(2).getReg();
3713 
3714   LLT Ty = MRI.getType(DstReg);
3715   if (Ty.isVector())
3716     return UnableToLegalize;
3717 
3718   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3719   unsigned DstSize = Ty.getSizeInBits();
3720   unsigned NarrowSize = NarrowTy.getSizeInBits();
3721   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3722     return UnableToLegalize;
3723 
3724   unsigned NumDstParts = DstSize / NarrowSize;
3725   unsigned NumSrcParts = SrcSize / NarrowSize;
3726   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3727   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3728 
3729   SmallVector<Register, 2> Src1Parts, Src2Parts;
3730   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3731   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3732   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3733   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3734 
3735   // Take only high half of registers if this is high mul.
3736   ArrayRef<Register> DstRegs(
3737       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3738   MIRBuilder.buildMerge(DstReg, DstRegs);
3739   MI.eraseFromParent();
3740   return Legalized;
3741 }
3742 
3743 LegalizerHelper::LegalizeResult
3744 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3745                                      LLT NarrowTy) {
3746   if (TypeIdx != 1)
3747     return UnableToLegalize;
3748 
3749   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3750 
3751   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3752   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3753   // NarrowSize.
3754   if (SizeOp1 % NarrowSize != 0)
3755     return UnableToLegalize;
3756   int NumParts = SizeOp1 / NarrowSize;
3757 
3758   SmallVector<Register, 2> SrcRegs, DstRegs;
3759   SmallVector<uint64_t, 2> Indexes;
3760   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3761 
3762   Register OpReg = MI.getOperand(0).getReg();
3763   uint64_t OpStart = MI.getOperand(2).getImm();
3764   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3765   for (int i = 0; i < NumParts; ++i) {
3766     unsigned SrcStart = i * NarrowSize;
3767 
3768     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3769       // No part of the extract uses this subregister, ignore it.
3770       continue;
3771     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3772       // The entire subregister is extracted, forward the value.
3773       DstRegs.push_back(SrcRegs[i]);
3774       continue;
3775     }
3776 
3777     // OpSegStart is where this destination segment would start in OpReg if it
3778     // extended infinitely in both directions.
3779     int64_t ExtractOffset;
3780     uint64_t SegSize;
3781     if (OpStart < SrcStart) {
3782       ExtractOffset = 0;
3783       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3784     } else {
3785       ExtractOffset = OpStart - SrcStart;
3786       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3787     }
3788 
3789     Register SegReg = SrcRegs[i];
3790     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3791       // A genuine extract is needed.
3792       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3793       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3794     }
3795 
3796     DstRegs.push_back(SegReg);
3797   }
3798 
3799   Register DstReg = MI.getOperand(0).getReg();
3800   if (MRI.getType(DstReg).isVector())
3801     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3802   else if (DstRegs.size() > 1)
3803     MIRBuilder.buildMerge(DstReg, DstRegs);
3804   else
3805     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3806   MI.eraseFromParent();
3807   return Legalized;
3808 }
3809 
3810 LegalizerHelper::LegalizeResult
3811 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3812                                     LLT NarrowTy) {
3813   // FIXME: Don't know how to handle secondary types yet.
3814   if (TypeIdx != 0)
3815     return UnableToLegalize;
3816 
3817   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3818   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3819 
3820   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3821   // NarrowSize.
3822   if (SizeOp0 % NarrowSize != 0)
3823     return UnableToLegalize;
3824 
3825   int NumParts = SizeOp0 / NarrowSize;
3826 
3827   SmallVector<Register, 2> SrcRegs, DstRegs;
3828   SmallVector<uint64_t, 2> Indexes;
3829   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3830 
3831   Register OpReg = MI.getOperand(2).getReg();
3832   uint64_t OpStart = MI.getOperand(3).getImm();
3833   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3834   for (int i = 0; i < NumParts; ++i) {
3835     unsigned DstStart = i * NarrowSize;
3836 
3837     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3838       // No part of the insert affects this subregister, forward the original.
3839       DstRegs.push_back(SrcRegs[i]);
3840       continue;
3841     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3842       // The entire subregister is defined by this insert, forward the new
3843       // value.
3844       DstRegs.push_back(OpReg);
3845       continue;
3846     }
3847 
3848     // OpSegStart is where this destination segment would start in OpReg if it
3849     // extended infinitely in both directions.
3850     int64_t ExtractOffset, InsertOffset;
3851     uint64_t SegSize;
3852     if (OpStart < DstStart) {
3853       InsertOffset = 0;
3854       ExtractOffset = DstStart - OpStart;
3855       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3856     } else {
3857       InsertOffset = OpStart - DstStart;
3858       ExtractOffset = 0;
3859       SegSize =
3860         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3861     }
3862 
3863     Register SegReg = OpReg;
3864     if (ExtractOffset != 0 || SegSize != OpSize) {
3865       // A genuine extract is needed.
3866       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3867       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3868     }
3869 
3870     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3871     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3872     DstRegs.push_back(DstReg);
3873   }
3874 
3875   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3876   Register DstReg = MI.getOperand(0).getReg();
3877   if(MRI.getType(DstReg).isVector())
3878     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3879   else
3880     MIRBuilder.buildMerge(DstReg, DstRegs);
3881   MI.eraseFromParent();
3882   return Legalized;
3883 }
3884 
3885 LegalizerHelper::LegalizeResult
3886 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3887                                    LLT NarrowTy) {
3888   Register DstReg = MI.getOperand(0).getReg();
3889   LLT DstTy = MRI.getType(DstReg);
3890 
3891   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3892 
3893   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3894   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3895   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3896   LLT LeftoverTy;
3897   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3898                     Src0Regs, Src0LeftoverRegs))
3899     return UnableToLegalize;
3900 
3901   LLT Unused;
3902   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3903                     Src1Regs, Src1LeftoverRegs))
3904     llvm_unreachable("inconsistent extractParts result");
3905 
3906   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3907     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3908                                         {Src0Regs[I], Src1Regs[I]});
3909     DstRegs.push_back(Inst.getReg(0));
3910   }
3911 
3912   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3913     auto Inst = MIRBuilder.buildInstr(
3914       MI.getOpcode(),
3915       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3916     DstLeftoverRegs.push_back(Inst.getReg(0));
3917   }
3918 
3919   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3920               LeftoverTy, DstLeftoverRegs);
3921 
3922   MI.eraseFromParent();
3923   return Legalized;
3924 }
3925 
3926 LegalizerHelper::LegalizeResult
3927 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3928                                  LLT NarrowTy) {
3929   if (TypeIdx != 0)
3930     return UnableToLegalize;
3931 
3932   Register DstReg = MI.getOperand(0).getReg();
3933   Register SrcReg = MI.getOperand(1).getReg();
3934 
3935   LLT DstTy = MRI.getType(DstReg);
3936   if (DstTy.isVector())
3937     return UnableToLegalize;
3938 
3939   SmallVector<Register, 8> Parts;
3940   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3941   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3942   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3943 
3944   MI.eraseFromParent();
3945   return Legalized;
3946 }
3947 
3948 LegalizerHelper::LegalizeResult
3949 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3950                                     LLT NarrowTy) {
3951   if (TypeIdx != 0)
3952     return UnableToLegalize;
3953 
3954   Register CondReg = MI.getOperand(1).getReg();
3955   LLT CondTy = MRI.getType(CondReg);
3956   if (CondTy.isVector()) // TODO: Handle vselect
3957     return UnableToLegalize;
3958 
3959   Register DstReg = MI.getOperand(0).getReg();
3960   LLT DstTy = MRI.getType(DstReg);
3961 
3962   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3963   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3964   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3965   LLT LeftoverTy;
3966   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3967                     Src1Regs, Src1LeftoverRegs))
3968     return UnableToLegalize;
3969 
3970   LLT Unused;
3971   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3972                     Src2Regs, Src2LeftoverRegs))
3973     llvm_unreachable("inconsistent extractParts result");
3974 
3975   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3976     auto Select = MIRBuilder.buildSelect(NarrowTy,
3977                                          CondReg, Src1Regs[I], Src2Regs[I]);
3978     DstRegs.push_back(Select.getReg(0));
3979   }
3980 
3981   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3982     auto Select = MIRBuilder.buildSelect(
3983       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3984     DstLeftoverRegs.push_back(Select.getReg(0));
3985   }
3986 
3987   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3988               LeftoverTy, DstLeftoverRegs);
3989 
3990   MI.eraseFromParent();
3991   return Legalized;
3992 }
3993 
3994 LegalizerHelper::LegalizeResult
3995 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
3996                                   LLT NarrowTy) {
3997   if (TypeIdx != 1)
3998     return UnableToLegalize;
3999 
4000   Register DstReg = MI.getOperand(0).getReg();
4001   Register SrcReg = MI.getOperand(1).getReg();
4002   LLT DstTy = MRI.getType(DstReg);
4003   LLT SrcTy = MRI.getType(SrcReg);
4004   unsigned NarrowSize = NarrowTy.getSizeInBits();
4005 
4006   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4007     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4008 
4009     MachineIRBuilder &B = MIRBuilder;
4010     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4011     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4012     auto C_0 = B.buildConstant(NarrowTy, 0);
4013     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4014                                 UnmergeSrc.getReg(1), C_0);
4015     auto LoCTLZ = IsUndef ?
4016       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4017       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4018     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4019     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4020     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4021     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4022 
4023     MI.eraseFromParent();
4024     return Legalized;
4025   }
4026 
4027   return UnableToLegalize;
4028 }
4029 
4030 LegalizerHelper::LegalizeResult
4031 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4032                                   LLT NarrowTy) {
4033   if (TypeIdx != 1)
4034     return UnableToLegalize;
4035 
4036   Register DstReg = MI.getOperand(0).getReg();
4037   Register SrcReg = MI.getOperand(1).getReg();
4038   LLT DstTy = MRI.getType(DstReg);
4039   LLT SrcTy = MRI.getType(SrcReg);
4040   unsigned NarrowSize = NarrowTy.getSizeInBits();
4041 
4042   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4043     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4044 
4045     MachineIRBuilder &B = MIRBuilder;
4046     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4047     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4048     auto C_0 = B.buildConstant(NarrowTy, 0);
4049     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4050                                 UnmergeSrc.getReg(0), C_0);
4051     auto HiCTTZ = IsUndef ?
4052       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4053       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4054     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4055     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4056     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4057     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4058 
4059     MI.eraseFromParent();
4060     return Legalized;
4061   }
4062 
4063   return UnableToLegalize;
4064 }
4065 
4066 LegalizerHelper::LegalizeResult
4067 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4068                                    LLT NarrowTy) {
4069   if (TypeIdx != 1)
4070     return UnableToLegalize;
4071 
4072   Register DstReg = MI.getOperand(0).getReg();
4073   LLT DstTy = MRI.getType(DstReg);
4074   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4075   unsigned NarrowSize = NarrowTy.getSizeInBits();
4076 
4077   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4078     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4079 
4080     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4081     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4082     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4083 
4084     MI.eraseFromParent();
4085     return Legalized;
4086   }
4087 
4088   return UnableToLegalize;
4089 }
4090 
4091 LegalizerHelper::LegalizeResult
4092 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4093   unsigned Opc = MI.getOpcode();
4094   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4095   auto isSupported = [this](const LegalityQuery &Q) {
4096     auto QAction = LI.getAction(Q).Action;
4097     return QAction == Legal || QAction == Libcall || QAction == Custom;
4098   };
4099   switch (Opc) {
4100   default:
4101     return UnableToLegalize;
4102   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4103     // This trivially expands to CTLZ.
4104     Observer.changingInstr(MI);
4105     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4106     Observer.changedInstr(MI);
4107     return Legalized;
4108   }
4109   case TargetOpcode::G_CTLZ: {
4110     Register DstReg = MI.getOperand(0).getReg();
4111     Register SrcReg = MI.getOperand(1).getReg();
4112     LLT DstTy = MRI.getType(DstReg);
4113     LLT SrcTy = MRI.getType(SrcReg);
4114     unsigned Len = SrcTy.getSizeInBits();
4115 
4116     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4117       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4118       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4119       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4120       auto ICmp = MIRBuilder.buildICmp(
4121           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4122       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4123       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4124       MI.eraseFromParent();
4125       return Legalized;
4126     }
4127     // for now, we do this:
4128     // NewLen = NextPowerOf2(Len);
4129     // x = x | (x >> 1);
4130     // x = x | (x >> 2);
4131     // ...
4132     // x = x | (x >>16);
4133     // x = x | (x >>32); // for 64-bit input
4134     // Upto NewLen/2
4135     // return Len - popcount(x);
4136     //
4137     // Ref: "Hacker's Delight" by Henry Warren
4138     Register Op = SrcReg;
4139     unsigned NewLen = PowerOf2Ceil(Len);
4140     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4141       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4142       auto MIBOp = MIRBuilder.buildOr(
4143           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4144       Op = MIBOp.getReg(0);
4145     }
4146     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4147     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4148                         MIBPop);
4149     MI.eraseFromParent();
4150     return Legalized;
4151   }
4152   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4153     // This trivially expands to CTTZ.
4154     Observer.changingInstr(MI);
4155     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4156     Observer.changedInstr(MI);
4157     return Legalized;
4158   }
4159   case TargetOpcode::G_CTTZ: {
4160     Register DstReg = MI.getOperand(0).getReg();
4161     Register SrcReg = MI.getOperand(1).getReg();
4162     LLT DstTy = MRI.getType(DstReg);
4163     LLT SrcTy = MRI.getType(SrcReg);
4164 
4165     unsigned Len = SrcTy.getSizeInBits();
4166     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4167       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4168       // zero.
4169       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4170       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4171       auto ICmp = MIRBuilder.buildICmp(
4172           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4173       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4174       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4175       MI.eraseFromParent();
4176       return Legalized;
4177     }
4178     // for now, we use: { return popcount(~x & (x - 1)); }
4179     // unless the target has ctlz but not ctpop, in which case we use:
4180     // { return 32 - nlz(~x & (x-1)); }
4181     // Ref: "Hacker's Delight" by Henry Warren
4182     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4183     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4184     auto MIBTmp = MIRBuilder.buildAnd(
4185         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4186     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4187         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4188       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4189       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4190                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4191       MI.eraseFromParent();
4192       return Legalized;
4193     }
4194     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4195     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4196     return Legalized;
4197   }
4198   case TargetOpcode::G_CTPOP: {
4199     unsigned Size = Ty.getSizeInBits();
4200     MachineIRBuilder &B = MIRBuilder;
4201 
4202     // Count set bits in blocks of 2 bits. Default approach would be
4203     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4204     // We use following formula instead:
4205     // B2Count = val - { (val >> 1) & 0x55555555 }
4206     // since it gives same result in blocks of 2 with one instruction less.
4207     auto C_1 = B.buildConstant(Ty, 1);
4208     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4209     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4210     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4211     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4212     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4213 
4214     // In order to get count in blocks of 4 add values from adjacent block of 2.
4215     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4216     auto C_2 = B.buildConstant(Ty, 2);
4217     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4218     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4219     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4220     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4221     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4222     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4223 
4224     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4225     // addition since count value sits in range {0,...,8} and 4 bits are enough
4226     // to hold such binary values. After addition high 4 bits still hold count
4227     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4228     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4229     auto C_4 = B.buildConstant(Ty, 4);
4230     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4231     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4232     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4233     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4234     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4235 
4236     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4237     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4238     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4239     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4240     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4241 
4242     // Shift count result from 8 high bits to low bits.
4243     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4244     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4245 
4246     MI.eraseFromParent();
4247     return Legalized;
4248   }
4249   }
4250 }
4251 
4252 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4253 // representation.
4254 LegalizerHelper::LegalizeResult
4255 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4256   Register Dst = MI.getOperand(0).getReg();
4257   Register Src = MI.getOperand(1).getReg();
4258   const LLT S64 = LLT::scalar(64);
4259   const LLT S32 = LLT::scalar(32);
4260   const LLT S1 = LLT::scalar(1);
4261 
4262   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4263 
4264   // unsigned cul2f(ulong u) {
4265   //   uint lz = clz(u);
4266   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4267   //   u = (u << lz) & 0x7fffffffffffffffUL;
4268   //   ulong t = u & 0xffffffffffUL;
4269   //   uint v = (e << 23) | (uint)(u >> 40);
4270   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4271   //   return as_float(v + r);
4272   // }
4273 
4274   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4275   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4276 
4277   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4278 
4279   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4280   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4281 
4282   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4283   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4284 
4285   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4286   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4287 
4288   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4289 
4290   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4291   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4292 
4293   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4294   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4295   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4296 
4297   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4298   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4299   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4300   auto One = MIRBuilder.buildConstant(S32, 1);
4301 
4302   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4303   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4304   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4305   MIRBuilder.buildAdd(Dst, V, R);
4306 
4307   return Legalized;
4308 }
4309 
4310 LegalizerHelper::LegalizeResult
4311 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4312   Register Dst = MI.getOperand(0).getReg();
4313   Register Src = MI.getOperand(1).getReg();
4314   LLT DstTy = MRI.getType(Dst);
4315   LLT SrcTy = MRI.getType(Src);
4316 
4317   if (SrcTy == LLT::scalar(1)) {
4318     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4319     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4320     MIRBuilder.buildSelect(Dst, Src, True, False);
4321     MI.eraseFromParent();
4322     return Legalized;
4323   }
4324 
4325   if (SrcTy != LLT::scalar(64))
4326     return UnableToLegalize;
4327 
4328   if (DstTy == LLT::scalar(32)) {
4329     // TODO: SelectionDAG has several alternative expansions to port which may
4330     // be more reasonble depending on the available instructions. If a target
4331     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4332     // intermediate type, this is probably worse.
4333     return lowerU64ToF32BitOps(MI);
4334   }
4335 
4336   return UnableToLegalize;
4337 }
4338 
4339 LegalizerHelper::LegalizeResult
4340 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4341   Register Dst = MI.getOperand(0).getReg();
4342   Register Src = MI.getOperand(1).getReg();
4343   LLT DstTy = MRI.getType(Dst);
4344   LLT SrcTy = MRI.getType(Src);
4345 
4346   const LLT S64 = LLT::scalar(64);
4347   const LLT S32 = LLT::scalar(32);
4348   const LLT S1 = LLT::scalar(1);
4349 
4350   if (SrcTy == S1) {
4351     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4352     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4353     MIRBuilder.buildSelect(Dst, Src, True, False);
4354     MI.eraseFromParent();
4355     return Legalized;
4356   }
4357 
4358   if (SrcTy != S64)
4359     return UnableToLegalize;
4360 
4361   if (DstTy == S32) {
4362     // signed cl2f(long l) {
4363     //   long s = l >> 63;
4364     //   float r = cul2f((l + s) ^ s);
4365     //   return s ? -r : r;
4366     // }
4367     Register L = Src;
4368     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4369     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4370 
4371     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4372     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4373     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4374 
4375     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4376     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4377                                             MIRBuilder.buildConstant(S64, 0));
4378     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4379     return Legalized;
4380   }
4381 
4382   return UnableToLegalize;
4383 }
4384 
4385 LegalizerHelper::LegalizeResult
4386 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4387   Register Dst = MI.getOperand(0).getReg();
4388   Register Src = MI.getOperand(1).getReg();
4389   LLT DstTy = MRI.getType(Dst);
4390   LLT SrcTy = MRI.getType(Src);
4391   const LLT S64 = LLT::scalar(64);
4392   const LLT S32 = LLT::scalar(32);
4393 
4394   if (SrcTy != S64 && SrcTy != S32)
4395     return UnableToLegalize;
4396   if (DstTy != S32 && DstTy != S64)
4397     return UnableToLegalize;
4398 
4399   // FPTOSI gives same result as FPTOUI for positive signed integers.
4400   // FPTOUI needs to deal with fp values that convert to unsigned integers
4401   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4402 
4403   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4404   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4405                                                 : APFloat::IEEEdouble(),
4406                     APInt::getNullValue(SrcTy.getSizeInBits()));
4407   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4408 
4409   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4410 
4411   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4412   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4413   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4414   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4415   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4416   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4417   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4418 
4419   const LLT S1 = LLT::scalar(1);
4420 
4421   MachineInstrBuilder FCMP =
4422       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4423   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4424 
4425   MI.eraseFromParent();
4426   return Legalized;
4427 }
4428 
4429 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4430   Register Dst = MI.getOperand(0).getReg();
4431   Register Src = MI.getOperand(1).getReg();
4432   LLT DstTy = MRI.getType(Dst);
4433   LLT SrcTy = MRI.getType(Src);
4434   const LLT S64 = LLT::scalar(64);
4435   const LLT S32 = LLT::scalar(32);
4436 
4437   // FIXME: Only f32 to i64 conversions are supported.
4438   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4439     return UnableToLegalize;
4440 
4441   // Expand f32 -> i64 conversion
4442   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4443   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4444 
4445   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4446 
4447   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4448   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4449 
4450   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4451   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4452 
4453   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4454                                            APInt::getSignMask(SrcEltBits));
4455   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4456   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4457   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4458   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4459 
4460   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4461   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4462   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4463 
4464   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4465   R = MIRBuilder.buildZExt(DstTy, R);
4466 
4467   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4468   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4469   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4470   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4471 
4472   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4473   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4474 
4475   const LLT S1 = LLT::scalar(1);
4476   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4477                                     S1, Exponent, ExponentLoBit);
4478 
4479   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4480 
4481   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4482   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4483 
4484   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4485 
4486   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4487                                           S1, Exponent, ZeroSrcTy);
4488 
4489   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4490   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4491 
4492   MI.eraseFromParent();
4493   return Legalized;
4494 }
4495 
4496 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4497 LegalizerHelper::LegalizeResult
4498 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4499   Register Dst = MI.getOperand(0).getReg();
4500   Register Src = MI.getOperand(1).getReg();
4501 
4502   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4503     return UnableToLegalize;
4504 
4505   const unsigned ExpMask = 0x7ff;
4506   const unsigned ExpBiasf64 = 1023;
4507   const unsigned ExpBiasf16 = 15;
4508   const LLT S32 = LLT::scalar(32);
4509   const LLT S1 = LLT::scalar(1);
4510 
4511   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4512   Register U = Unmerge.getReg(0);
4513   Register UH = Unmerge.getReg(1);
4514 
4515   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4516 
4517   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4518   // add the f16 bias (15) to get the biased exponent for the f16 format.
4519   E = MIRBuilder.buildAdd(
4520     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4521   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4522 
4523   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4524   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4525 
4526   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4527                                        MIRBuilder.buildConstant(S32, 0x1ff));
4528   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4529 
4530   auto Zero = MIRBuilder.buildConstant(S32, 0);
4531   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4532   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4533   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4534 
4535   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4536   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4537   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4538   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4539 
4540   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4541   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4542 
4543   // N = M | (E << 12);
4544   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4545   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4546 
4547   // B = clamp(1-E, 0, 13);
4548   auto One = MIRBuilder.buildConstant(S32, 1);
4549   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4550   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4551   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4552 
4553   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4554                                        MIRBuilder.buildConstant(S32, 0x1000));
4555 
4556   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4557   auto D0 = MIRBuilder.buildShl(S32, D, B);
4558 
4559   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4560                                              D0, SigSetHigh);
4561   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4562   D = MIRBuilder.buildOr(S32, D, D1);
4563 
4564   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4565   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4566 
4567   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4568   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4569 
4570   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4571                                        MIRBuilder.buildConstant(S32, 3));
4572   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4573 
4574   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4575                                        MIRBuilder.buildConstant(S32, 5));
4576   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4577 
4578   V1 = MIRBuilder.buildOr(S32, V0, V1);
4579   V = MIRBuilder.buildAdd(S32, V, V1);
4580 
4581   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4582                                        E, MIRBuilder.buildConstant(S32, 30));
4583   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4584                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4585 
4586   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4587                                          E, MIRBuilder.buildConstant(S32, 1039));
4588   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4589 
4590   // Extract the sign bit.
4591   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4592   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4593 
4594   // Insert the sign bit
4595   V = MIRBuilder.buildOr(S32, Sign, V);
4596 
4597   MIRBuilder.buildTrunc(Dst, V);
4598   MI.eraseFromParent();
4599   return Legalized;
4600 }
4601 
4602 LegalizerHelper::LegalizeResult
4603 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4604   Register Dst = MI.getOperand(0).getReg();
4605   Register Src = MI.getOperand(1).getReg();
4606 
4607   LLT DstTy = MRI.getType(Dst);
4608   LLT SrcTy = MRI.getType(Src);
4609   const LLT S64 = LLT::scalar(64);
4610   const LLT S16 = LLT::scalar(16);
4611 
4612   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4613     return lowerFPTRUNC_F64_TO_F16(MI);
4614 
4615   return UnableToLegalize;
4616 }
4617 
4618 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4619   switch (Opc) {
4620   case TargetOpcode::G_SMIN:
4621     return CmpInst::ICMP_SLT;
4622   case TargetOpcode::G_SMAX:
4623     return CmpInst::ICMP_SGT;
4624   case TargetOpcode::G_UMIN:
4625     return CmpInst::ICMP_ULT;
4626   case TargetOpcode::G_UMAX:
4627     return CmpInst::ICMP_UGT;
4628   default:
4629     llvm_unreachable("not in integer min/max");
4630   }
4631 }
4632 
4633 LegalizerHelper::LegalizeResult
4634 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4635   Register Dst = MI.getOperand(0).getReg();
4636   Register Src0 = MI.getOperand(1).getReg();
4637   Register Src1 = MI.getOperand(2).getReg();
4638 
4639   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4640   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4641 
4642   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4643   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4644 
4645   MI.eraseFromParent();
4646   return Legalized;
4647 }
4648 
4649 LegalizerHelper::LegalizeResult
4650 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4651   Register Dst = MI.getOperand(0).getReg();
4652   Register Src0 = MI.getOperand(1).getReg();
4653   Register Src1 = MI.getOperand(2).getReg();
4654 
4655   const LLT Src0Ty = MRI.getType(Src0);
4656   const LLT Src1Ty = MRI.getType(Src1);
4657 
4658   const int Src0Size = Src0Ty.getScalarSizeInBits();
4659   const int Src1Size = Src1Ty.getScalarSizeInBits();
4660 
4661   auto SignBitMask = MIRBuilder.buildConstant(
4662     Src0Ty, APInt::getSignMask(Src0Size));
4663 
4664   auto NotSignBitMask = MIRBuilder.buildConstant(
4665     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4666 
4667   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4668   MachineInstr *Or;
4669 
4670   if (Src0Ty == Src1Ty) {
4671     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4672     Or = MIRBuilder.buildOr(Dst, And0, And1);
4673   } else if (Src0Size > Src1Size) {
4674     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4675     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4676     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4677     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4678     Or = MIRBuilder.buildOr(Dst, And0, And1);
4679   } else {
4680     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4681     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4682     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4683     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4684     Or = MIRBuilder.buildOr(Dst, And0, And1);
4685   }
4686 
4687   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4688   // constants are a nan and -0.0, but the final result should preserve
4689   // everything.
4690   if (unsigned Flags = MI.getFlags())
4691     Or->setFlags(Flags);
4692 
4693   MI.eraseFromParent();
4694   return Legalized;
4695 }
4696 
4697 LegalizerHelper::LegalizeResult
4698 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4699   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4700     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4701 
4702   Register Dst = MI.getOperand(0).getReg();
4703   Register Src0 = MI.getOperand(1).getReg();
4704   Register Src1 = MI.getOperand(2).getReg();
4705   LLT Ty = MRI.getType(Dst);
4706 
4707   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4708     // Insert canonicalizes if it's possible we need to quiet to get correct
4709     // sNaN behavior.
4710 
4711     // Note this must be done here, and not as an optimization combine in the
4712     // absence of a dedicate quiet-snan instruction as we're using an
4713     // omni-purpose G_FCANONICALIZE.
4714     if (!isKnownNeverSNaN(Src0, MRI))
4715       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4716 
4717     if (!isKnownNeverSNaN(Src1, MRI))
4718       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4719   }
4720 
4721   // If there are no nans, it's safe to simply replace this with the non-IEEE
4722   // version.
4723   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4724   MI.eraseFromParent();
4725   return Legalized;
4726 }
4727 
4728 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4729   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4730   Register DstReg = MI.getOperand(0).getReg();
4731   LLT Ty = MRI.getType(DstReg);
4732   unsigned Flags = MI.getFlags();
4733 
4734   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4735                                   Flags);
4736   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4737   MI.eraseFromParent();
4738   return Legalized;
4739 }
4740 
4741 LegalizerHelper::LegalizeResult
4742 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4743   Register DstReg = MI.getOperand(0).getReg();
4744   Register X = MI.getOperand(1).getReg();
4745   const unsigned Flags = MI.getFlags();
4746   const LLT Ty = MRI.getType(DstReg);
4747   const LLT CondTy = Ty.changeElementSize(1);
4748 
4749   // round(x) =>
4750   //  t = trunc(x);
4751   //  d = fabs(x - t);
4752   //  o = copysign(1.0f, x);
4753   //  return t + (d >= 0.5 ? o : 0.0);
4754 
4755   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4756 
4757   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4758   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4759   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4760   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4761   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4762   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4763 
4764   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4765                                   Flags);
4766   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4767 
4768   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4769 
4770   MI.eraseFromParent();
4771   return Legalized;
4772 }
4773 
4774 LegalizerHelper::LegalizeResult
4775 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4776   Register DstReg = MI.getOperand(0).getReg();
4777   Register SrcReg = MI.getOperand(1).getReg();
4778   unsigned Flags = MI.getFlags();
4779   LLT Ty = MRI.getType(DstReg);
4780   const LLT CondTy = Ty.changeElementSize(1);
4781 
4782   // result = trunc(src);
4783   // if (src < 0.0 && src != result)
4784   //   result += -1.0.
4785 
4786   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4787   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4788 
4789   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4790                                   SrcReg, Zero, Flags);
4791   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4792                                       SrcReg, Trunc, Flags);
4793   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4794   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4795 
4796   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4797   MI.eraseFromParent();
4798   return Legalized;
4799 }
4800 
4801 LegalizerHelper::LegalizeResult
4802 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4803   const unsigned NumDst = MI.getNumOperands() - 1;
4804   const Register SrcReg = MI.getOperand(NumDst).getReg();
4805   LLT SrcTy = MRI.getType(SrcReg);
4806 
4807   Register Dst0Reg = MI.getOperand(0).getReg();
4808   LLT DstTy = MRI.getType(Dst0Reg);
4809 
4810 
4811   // Expand scalarizing unmerge as bitcast to integer and shift.
4812   if (!DstTy.isVector() && SrcTy.isVector() &&
4813       SrcTy.getElementType() == DstTy) {
4814     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4815     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4816 
4817     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4818 
4819     const unsigned DstSize = DstTy.getSizeInBits();
4820     unsigned Offset = DstSize;
4821     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4822       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4823       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4824       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4825     }
4826 
4827     MI.eraseFromParent();
4828     return Legalized;
4829   }
4830 
4831   return UnableToLegalize;
4832 }
4833 
4834 LegalizerHelper::LegalizeResult
4835 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4836   Register DstReg = MI.getOperand(0).getReg();
4837   Register Src0Reg = MI.getOperand(1).getReg();
4838   Register Src1Reg = MI.getOperand(2).getReg();
4839   LLT Src0Ty = MRI.getType(Src0Reg);
4840   LLT DstTy = MRI.getType(DstReg);
4841   LLT IdxTy = LLT::scalar(32);
4842 
4843   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4844 
4845   if (DstTy.isScalar()) {
4846     if (Src0Ty.isVector())
4847       return UnableToLegalize;
4848 
4849     // This is just a SELECT.
4850     assert(Mask.size() == 1 && "Expected a single mask element");
4851     Register Val;
4852     if (Mask[0] < 0 || Mask[0] > 1)
4853       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4854     else
4855       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4856     MIRBuilder.buildCopy(DstReg, Val);
4857     MI.eraseFromParent();
4858     return Legalized;
4859   }
4860 
4861   Register Undef;
4862   SmallVector<Register, 32> BuildVec;
4863   LLT EltTy = DstTy.getElementType();
4864 
4865   for (int Idx : Mask) {
4866     if (Idx < 0) {
4867       if (!Undef.isValid())
4868         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4869       BuildVec.push_back(Undef);
4870       continue;
4871     }
4872 
4873     if (Src0Ty.isScalar()) {
4874       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4875     } else {
4876       int NumElts = Src0Ty.getNumElements();
4877       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4878       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4879       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4880       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4881       BuildVec.push_back(Extract.getReg(0));
4882     }
4883   }
4884 
4885   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4886   MI.eraseFromParent();
4887   return Legalized;
4888 }
4889 
4890 LegalizerHelper::LegalizeResult
4891 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4892   Register Dst = MI.getOperand(0).getReg();
4893   Register AllocSize = MI.getOperand(1).getReg();
4894   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
4895 
4896   const auto &MF = *MI.getMF();
4897   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4898 
4899   LLT PtrTy = MRI.getType(Dst);
4900   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4901 
4902   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4903   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4904   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4905 
4906   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4907   // have to generate an extra instruction to negate the alloc and then use
4908   // G_PTR_ADD to add the negative offset.
4909   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4910   if (Alignment > Align(1)) {
4911     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
4912     AlignMask.negate();
4913     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4914     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4915   }
4916 
4917   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4918   MIRBuilder.buildCopy(SPReg, SPTmp);
4919   MIRBuilder.buildCopy(Dst, SPTmp);
4920 
4921   MI.eraseFromParent();
4922   return Legalized;
4923 }
4924 
4925 LegalizerHelper::LegalizeResult
4926 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4927   Register Dst = MI.getOperand(0).getReg();
4928   Register Src = MI.getOperand(1).getReg();
4929   unsigned Offset = MI.getOperand(2).getImm();
4930 
4931   LLT DstTy = MRI.getType(Dst);
4932   LLT SrcTy = MRI.getType(Src);
4933 
4934   if (DstTy.isScalar() &&
4935       (SrcTy.isScalar() ||
4936        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4937     LLT SrcIntTy = SrcTy;
4938     if (!SrcTy.isScalar()) {
4939       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4940       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4941     }
4942 
4943     if (Offset == 0)
4944       MIRBuilder.buildTrunc(Dst, Src);
4945     else {
4946       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4947       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4948       MIRBuilder.buildTrunc(Dst, Shr);
4949     }
4950 
4951     MI.eraseFromParent();
4952     return Legalized;
4953   }
4954 
4955   return UnableToLegalize;
4956 }
4957 
4958 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4959   Register Dst = MI.getOperand(0).getReg();
4960   Register Src = MI.getOperand(1).getReg();
4961   Register InsertSrc = MI.getOperand(2).getReg();
4962   uint64_t Offset = MI.getOperand(3).getImm();
4963 
4964   LLT DstTy = MRI.getType(Src);
4965   LLT InsertTy = MRI.getType(InsertSrc);
4966 
4967   if (InsertTy.isVector() ||
4968       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
4969     return UnableToLegalize;
4970 
4971   const DataLayout &DL = MIRBuilder.getDataLayout();
4972   if ((DstTy.isPointer() &&
4973        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
4974       (InsertTy.isPointer() &&
4975        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
4976     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
4977     return UnableToLegalize;
4978   }
4979 
4980   LLT IntDstTy = DstTy;
4981 
4982   if (!DstTy.isScalar()) {
4983     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4984     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
4985   }
4986 
4987   if (!InsertTy.isScalar()) {
4988     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
4989     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
4990   }
4991 
4992   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4993   if (Offset != 0) {
4994     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4995     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4996   }
4997 
4998   APInt MaskVal = APInt::getBitsSetWithWrap(
4999       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5000 
5001   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5002   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5003   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5004 
5005   MIRBuilder.buildCast(Dst, Or);
5006   MI.eraseFromParent();
5007   return Legalized;
5008 }
5009 
5010 LegalizerHelper::LegalizeResult
5011 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5012   Register Dst0 = MI.getOperand(0).getReg();
5013   Register Dst1 = MI.getOperand(1).getReg();
5014   Register LHS = MI.getOperand(2).getReg();
5015   Register RHS = MI.getOperand(3).getReg();
5016   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5017 
5018   LLT Ty = MRI.getType(Dst0);
5019   LLT BoolTy = MRI.getType(Dst1);
5020 
5021   if (IsAdd)
5022     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5023   else
5024     MIRBuilder.buildSub(Dst0, LHS, RHS);
5025 
5026   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5027 
5028   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5029 
5030   // For an addition, the result should be less than one of the operands (LHS)
5031   // if and only if the other operand (RHS) is negative, otherwise there will
5032   // be overflow.
5033   // For a subtraction, the result should be less than one of the operands
5034   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5035   // otherwise there will be overflow.
5036   auto ResultLowerThanLHS =
5037       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5038   auto ConditionRHS = MIRBuilder.buildICmp(
5039       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5040 
5041   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5042   MI.eraseFromParent();
5043   return Legalized;
5044 }
5045 
5046 LegalizerHelper::LegalizeResult
5047 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5048   Register Dst = MI.getOperand(0).getReg();
5049   Register Src = MI.getOperand(1).getReg();
5050   const LLT Ty = MRI.getType(Src);
5051   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5052   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5053 
5054   // Swap most and least significant byte, set remaining bytes in Res to zero.
5055   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5056   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5057   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5058   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5059 
5060   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5061   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5062     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5063     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5064     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5065     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5066     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5067     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5068     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5069     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5070     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5071     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5072     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5073     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5074   }
5075   Res.getInstr()->getOperand(0).setReg(Dst);
5076 
5077   MI.eraseFromParent();
5078   return Legalized;
5079 }
5080 
5081 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5082 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5083                                  MachineInstrBuilder Src, APInt Mask) {
5084   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5085   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5086   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5087   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5088   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5089   return B.buildOr(Dst, LHS, RHS);
5090 }
5091 
5092 LegalizerHelper::LegalizeResult
5093 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5094   Register Dst = MI.getOperand(0).getReg();
5095   Register Src = MI.getOperand(1).getReg();
5096   const LLT Ty = MRI.getType(Src);
5097   unsigned Size = Ty.getSizeInBits();
5098 
5099   MachineInstrBuilder BSWAP =
5100       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5101 
5102   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5103   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5104   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5105   MachineInstrBuilder Swap4 =
5106       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5107 
5108   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5109   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5110   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5111   MachineInstrBuilder Swap2 =
5112       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5113 
5114   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5115   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5116   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5117   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5118 
5119   MI.eraseFromParent();
5120   return Legalized;
5121 }
5122 
5123 LegalizerHelper::LegalizeResult
5124 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5125   MachineFunction &MF = MIRBuilder.getMF();
5126   const TargetSubtargetInfo &STI = MF.getSubtarget();
5127   const TargetLowering *TLI = STI.getTargetLowering();
5128 
5129   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5130   int NameOpIdx = IsRead ? 1 : 0;
5131   int ValRegIndex = IsRead ? 0 : 1;
5132 
5133   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5134   const LLT Ty = MRI.getType(ValReg);
5135   const MDString *RegStr = cast<MDString>(
5136     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5137 
5138   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5139   if (!PhysReg.isValid())
5140     return UnableToLegalize;
5141 
5142   if (IsRead)
5143     MIRBuilder.buildCopy(ValReg, PhysReg);
5144   else
5145     MIRBuilder.buildCopy(PhysReg, ValReg);
5146 
5147   MI.eraseFromParent();
5148   return Legalized;
5149 }
5150