1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862   case TargetOpcode::G_ADD:
863   case TargetOpcode::G_SUB:
864   case TargetOpcode::G_SADDO:
865   case TargetOpcode::G_SSUBO:
866   case TargetOpcode::G_SADDE:
867   case TargetOpcode::G_SSUBE:
868   case TargetOpcode::G_UADDO:
869   case TargetOpcode::G_USUBO:
870   case TargetOpcode::G_UADDE:
871   case TargetOpcode::G_USUBE:
872     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
873   case TargetOpcode::G_MUL:
874   case TargetOpcode::G_UMULH:
875     return narrowScalarMul(MI, NarrowTy);
876   case TargetOpcode::G_EXTRACT:
877     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_INSERT:
879     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
880   case TargetOpcode::G_LOAD: {
881     auto &MMO = **MI.memoperands_begin();
882     Register DstReg = MI.getOperand(0).getReg();
883     LLT DstTy = MRI.getType(DstReg);
884     if (DstTy.isVector())
885       return UnableToLegalize;
886 
887     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
888       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
889       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
890       MIRBuilder.buildAnyExt(DstReg, TmpReg);
891       MI.eraseFromParent();
892       return Legalized;
893     }
894 
895     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
896   }
897   case TargetOpcode::G_ZEXTLOAD:
898   case TargetOpcode::G_SEXTLOAD: {
899     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
900     Register DstReg = MI.getOperand(0).getReg();
901     Register PtrReg = MI.getOperand(1).getReg();
902 
903     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904     auto &MMO = **MI.memoperands_begin();
905     unsigned MemSize = MMO.getSizeInBits();
906 
907     if (MemSize == NarrowSize) {
908       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
909     } else if (MemSize < NarrowSize) {
910       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
911     } else if (MemSize > NarrowSize) {
912       // FIXME: Need to split the load.
913       return UnableToLegalize;
914     }
915 
916     if (ZExt)
917       MIRBuilder.buildZExt(DstReg, TmpReg);
918     else
919       MIRBuilder.buildSExt(DstReg, TmpReg);
920 
921     MI.eraseFromParent();
922     return Legalized;
923   }
924   case TargetOpcode::G_STORE: {
925     const auto &MMO = **MI.memoperands_begin();
926 
927     Register SrcReg = MI.getOperand(0).getReg();
928     LLT SrcTy = MRI.getType(SrcReg);
929     if (SrcTy.isVector())
930       return UnableToLegalize;
931 
932     int NumParts = SizeOp0 / NarrowSize;
933     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
934     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
935     if (SrcTy.isVector() && LeftoverBits != 0)
936       return UnableToLegalize;
937 
938     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
939       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
940       auto &MMO = **MI.memoperands_begin();
941       MIRBuilder.buildTrunc(TmpReg, SrcReg);
942       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
943       MI.eraseFromParent();
944       return Legalized;
945     }
946 
947     return reduceLoadStoreWidth(MI, 0, NarrowTy);
948   }
949   case TargetOpcode::G_SELECT:
950     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
951   case TargetOpcode::G_AND:
952   case TargetOpcode::G_OR:
953   case TargetOpcode::G_XOR: {
954     // Legalize bitwise operation:
955     // A = BinOp<Ty> B, C
956     // into:
957     // B1, ..., BN = G_UNMERGE_VALUES B
958     // C1, ..., CN = G_UNMERGE_VALUES C
959     // A1 = BinOp<Ty/N> B1, C2
960     // ...
961     // AN = BinOp<Ty/N> BN, CN
962     // A = G_MERGE_VALUES A1, ..., AN
963     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
964   }
965   case TargetOpcode::G_SHL:
966   case TargetOpcode::G_LSHR:
967   case TargetOpcode::G_ASHR:
968     return narrowScalarShift(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_CTLZ:
970   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
971   case TargetOpcode::G_CTTZ:
972   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
973   case TargetOpcode::G_CTPOP:
974     if (TypeIdx == 1)
975       switch (MI.getOpcode()) {
976       case TargetOpcode::G_CTLZ:
977       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
978         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
979       case TargetOpcode::G_CTTZ:
980       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
981         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
982       case TargetOpcode::G_CTPOP:
983         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
984       default:
985         return UnableToLegalize;
986       }
987 
988     Observer.changingInstr(MI);
989     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
990     Observer.changedInstr(MI);
991     return Legalized;
992   case TargetOpcode::G_INTTOPTR:
993     if (TypeIdx != 1)
994       return UnableToLegalize;
995 
996     Observer.changingInstr(MI);
997     narrowScalarSrc(MI, NarrowTy, 1);
998     Observer.changedInstr(MI);
999     return Legalized;
1000   case TargetOpcode::G_PTRTOINT:
1001     if (TypeIdx != 0)
1002       return UnableToLegalize;
1003 
1004     Observer.changingInstr(MI);
1005     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006     Observer.changedInstr(MI);
1007     return Legalized;
1008   case TargetOpcode::G_PHI: {
1009     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1010     // NarrowSize.
1011     if (SizeOp0 % NarrowSize != 0)
1012       return UnableToLegalize;
1013 
1014     unsigned NumParts = SizeOp0 / NarrowSize;
1015     SmallVector<Register, 2> DstRegs(NumParts);
1016     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1017     Observer.changingInstr(MI);
1018     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1019       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1020       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1021       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1022                    SrcRegs[i / 2]);
1023     }
1024     MachineBasicBlock &MBB = *MI.getParent();
1025     MIRBuilder.setInsertPt(MBB, MI);
1026     for (unsigned i = 0; i < NumParts; ++i) {
1027       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1028       MachineInstrBuilder MIB =
1029           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1030       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1031         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1032     }
1033     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1034     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1035     Observer.changedInstr(MI);
1036     MI.eraseFromParent();
1037     return Legalized;
1038   }
1039   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1041     if (TypeIdx != 2)
1042       return UnableToLegalize;
1043 
1044     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1045     Observer.changingInstr(MI);
1046     narrowScalarSrc(MI, NarrowTy, OpIdx);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   }
1050   case TargetOpcode::G_ICMP: {
1051     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1052     if (NarrowSize * 2 != SrcSize)
1053       return UnableToLegalize;
1054 
1055     Observer.changingInstr(MI);
1056     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1057     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1058     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1059 
1060     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1061     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1062     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1063 
1064     CmpInst::Predicate Pred =
1065         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1066     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1067 
1068     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1069       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1070       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1071       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1072       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1073       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1074     } else {
1075       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1076       MachineInstrBuilder CmpHEQ =
1077           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1078       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1079           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1080       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1081     }
1082     Observer.changedInstr(MI);
1083     MI.eraseFromParent();
1084     return Legalized;
1085   }
1086   case TargetOpcode::G_SEXT_INREG: {
1087     if (TypeIdx != 0)
1088       return UnableToLegalize;
1089 
1090     int64_t SizeInBits = MI.getOperand(2).getImm();
1091 
1092     // So long as the new type has more bits than the bits we're extending we
1093     // don't need to break it apart.
1094     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1095       Observer.changingInstr(MI);
1096       // We don't lose any non-extension bits by truncating the src and
1097       // sign-extending the dst.
1098       MachineOperand &MO1 = MI.getOperand(1);
1099       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1100       MO1.setReg(TruncMIB.getReg(0));
1101 
1102       MachineOperand &MO2 = MI.getOperand(0);
1103       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1104       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1105       MIRBuilder.buildSExt(MO2, DstExt);
1106       MO2.setReg(DstExt);
1107       Observer.changedInstr(MI);
1108       return Legalized;
1109     }
1110 
1111     // Break it apart. Components below the extension point are unmodified. The
1112     // component containing the extension point becomes a narrower SEXT_INREG.
1113     // Components above it are ashr'd from the component containing the
1114     // extension point.
1115     if (SizeOp0 % NarrowSize != 0)
1116       return UnableToLegalize;
1117     int NumParts = SizeOp0 / NarrowSize;
1118 
1119     // List the registers where the destination will be scattered.
1120     SmallVector<Register, 2> DstRegs;
1121     // List the registers where the source will be split.
1122     SmallVector<Register, 2> SrcRegs;
1123 
1124     // Create all the temporary registers.
1125     for (int i = 0; i < NumParts; ++i) {
1126       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1127 
1128       SrcRegs.push_back(SrcReg);
1129     }
1130 
1131     // Explode the big arguments into smaller chunks.
1132     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1133 
1134     Register AshrCstReg =
1135         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1136             .getReg(0);
1137     Register FullExtensionReg = 0;
1138     Register PartialExtensionReg = 0;
1139 
1140     // Do the operation on each small part.
1141     for (int i = 0; i < NumParts; ++i) {
1142       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1143         DstRegs.push_back(SrcRegs[i]);
1144       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1145         assert(PartialExtensionReg &&
1146                "Expected to visit partial extension before full");
1147         if (FullExtensionReg) {
1148           DstRegs.push_back(FullExtensionReg);
1149           continue;
1150         }
1151         DstRegs.push_back(
1152             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1153                 .getReg(0));
1154         FullExtensionReg = DstRegs.back();
1155       } else {
1156         DstRegs.push_back(
1157             MIRBuilder
1158                 .buildInstr(
1159                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1160                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1161                 .getReg(0));
1162         PartialExtensionReg = DstRegs.back();
1163       }
1164     }
1165 
1166     // Gather the destination registers into the final destination.
1167     Register DstReg = MI.getOperand(0).getReg();
1168     MIRBuilder.buildMerge(DstReg, DstRegs);
1169     MI.eraseFromParent();
1170     return Legalized;
1171   }
1172   case TargetOpcode::G_BSWAP:
1173   case TargetOpcode::G_BITREVERSE: {
1174     if (SizeOp0 % NarrowSize != 0)
1175       return UnableToLegalize;
1176 
1177     Observer.changingInstr(MI);
1178     SmallVector<Register, 2> SrcRegs, DstRegs;
1179     unsigned NumParts = SizeOp0 / NarrowSize;
1180     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1181 
1182     for (unsigned i = 0; i < NumParts; ++i) {
1183       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1184                                            {SrcRegs[NumParts - 1 - i]});
1185       DstRegs.push_back(DstPart.getReg(0));
1186     }
1187 
1188     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1189 
1190     Observer.changedInstr(MI);
1191     MI.eraseFromParent();
1192     return Legalized;
1193   }
1194   case TargetOpcode::G_PTR_ADD:
1195   case TargetOpcode::G_PTRMASK: {
1196     if (TypeIdx != 1)
1197       return UnableToLegalize;
1198     Observer.changingInstr(MI);
1199     narrowScalarSrc(MI, NarrowTy, 2);
1200     Observer.changedInstr(MI);
1201     return Legalized;
1202   }
1203   case TargetOpcode::G_FPTOUI: {
1204     if (TypeIdx != 0)
1205       return UnableToLegalize;
1206     Observer.changingInstr(MI);
1207     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1208     Observer.changedInstr(MI);
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_FPTOSI: {
1212     if (TypeIdx != 0)
1213       return UnableToLegalize;
1214     Observer.changingInstr(MI);
1215     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1216     Observer.changedInstr(MI);
1217     return Legalized;
1218   }
1219   case TargetOpcode::G_FPEXT:
1220     if (TypeIdx != 0)
1221       return UnableToLegalize;
1222     Observer.changingInstr(MI);
1223     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1224     Observer.changedInstr(MI);
1225     return Legalized;
1226   }
1227 }
1228 
1229 Register LegalizerHelper::coerceToScalar(Register Val) {
1230   LLT Ty = MRI.getType(Val);
1231   if (Ty.isScalar())
1232     return Val;
1233 
1234   const DataLayout &DL = MIRBuilder.getDataLayout();
1235   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1236   if (Ty.isPointer()) {
1237     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1238       return Register();
1239     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1240   }
1241 
1242   Register NewVal = Val;
1243 
1244   assert(Ty.isVector());
1245   LLT EltTy = Ty.getElementType();
1246   if (EltTy.isPointer())
1247     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1248   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1249 }
1250 
1251 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1252                                      unsigned OpIdx, unsigned ExtOpcode) {
1253   MachineOperand &MO = MI.getOperand(OpIdx);
1254   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1255   MO.setReg(ExtB.getReg(0));
1256 }
1257 
1258 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1259                                       unsigned OpIdx) {
1260   MachineOperand &MO = MI.getOperand(OpIdx);
1261   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1262   MO.setReg(ExtB.getReg(0));
1263 }
1264 
1265 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1266                                      unsigned OpIdx, unsigned TruncOpcode) {
1267   MachineOperand &MO = MI.getOperand(OpIdx);
1268   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1269   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1270   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1271   MO.setReg(DstExt);
1272 }
1273 
1274 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1275                                       unsigned OpIdx, unsigned ExtOpcode) {
1276   MachineOperand &MO = MI.getOperand(OpIdx);
1277   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1278   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1279   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1280   MO.setReg(DstTrunc);
1281 }
1282 
1283 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1284                                             unsigned OpIdx) {
1285   MachineOperand &MO = MI.getOperand(OpIdx);
1286   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1287   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1288 }
1289 
1290 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1291                                             unsigned OpIdx) {
1292   MachineOperand &MO = MI.getOperand(OpIdx);
1293 
1294   LLT OldTy = MRI.getType(MO.getReg());
1295   unsigned OldElts = OldTy.getNumElements();
1296   unsigned NewElts = MoreTy.getNumElements();
1297 
1298   unsigned NumParts = NewElts / OldElts;
1299 
1300   // Use concat_vectors if the result is a multiple of the number of elements.
1301   if (NumParts * OldElts == NewElts) {
1302     SmallVector<Register, 8> Parts;
1303     Parts.push_back(MO.getReg());
1304 
1305     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1306     for (unsigned I = 1; I != NumParts; ++I)
1307       Parts.push_back(ImpDef);
1308 
1309     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1310     MO.setReg(Concat.getReg(0));
1311     return;
1312   }
1313 
1314   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1315   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1316   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1317   MO.setReg(MoreReg);
1318 }
1319 
1320 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1321   MachineOperand &Op = MI.getOperand(OpIdx);
1322   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1323 }
1324 
1325 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1328   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1329   MIRBuilder.buildBitcast(MO, CastDst);
1330   MO.setReg(CastDst);
1331 }
1332 
1333 LegalizerHelper::LegalizeResult
1334 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1335                                         LLT WideTy) {
1336   if (TypeIdx != 1)
1337     return UnableToLegalize;
1338 
1339   Register DstReg = MI.getOperand(0).getReg();
1340   LLT DstTy = MRI.getType(DstReg);
1341   if (DstTy.isVector())
1342     return UnableToLegalize;
1343 
1344   Register Src1 = MI.getOperand(1).getReg();
1345   LLT SrcTy = MRI.getType(Src1);
1346   const int DstSize = DstTy.getSizeInBits();
1347   const int SrcSize = SrcTy.getSizeInBits();
1348   const int WideSize = WideTy.getSizeInBits();
1349   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1350 
1351   unsigned NumOps = MI.getNumOperands();
1352   unsigned NumSrc = MI.getNumOperands() - 1;
1353   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1354 
1355   if (WideSize >= DstSize) {
1356     // Directly pack the bits in the target type.
1357     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1358 
1359     for (unsigned I = 2; I != NumOps; ++I) {
1360       const unsigned Offset = (I - 1) * PartSize;
1361 
1362       Register SrcReg = MI.getOperand(I).getReg();
1363       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1364 
1365       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1366 
1367       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1368         MRI.createGenericVirtualRegister(WideTy);
1369 
1370       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1371       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1372       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1373       ResultReg = NextResult;
1374     }
1375 
1376     if (WideSize > DstSize)
1377       MIRBuilder.buildTrunc(DstReg, ResultReg);
1378     else if (DstTy.isPointer())
1379       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1380 
1381     MI.eraseFromParent();
1382     return Legalized;
1383   }
1384 
1385   // Unmerge the original values to the GCD type, and recombine to the next
1386   // multiple greater than the original type.
1387   //
1388   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1389   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1390   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1391   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1392   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1393   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1394   // %12:_(s12) = G_MERGE_VALUES %10, %11
1395   //
1396   // Padding with undef if necessary:
1397   //
1398   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1399   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1400   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1401   // %7:_(s2) = G_IMPLICIT_DEF
1402   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1403   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1404   // %10:_(s12) = G_MERGE_VALUES %8, %9
1405 
1406   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1407   LLT GCDTy = LLT::scalar(GCD);
1408 
1409   SmallVector<Register, 8> Parts;
1410   SmallVector<Register, 8> NewMergeRegs;
1411   SmallVector<Register, 8> Unmerges;
1412   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1413 
1414   // Decompose the original operands if they don't evenly divide.
1415   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1416     Register SrcReg = MI.getOperand(I).getReg();
1417     if (GCD == SrcSize) {
1418       Unmerges.push_back(SrcReg);
1419     } else {
1420       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1421       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1422         Unmerges.push_back(Unmerge.getReg(J));
1423     }
1424   }
1425 
1426   // Pad with undef to the next size that is a multiple of the requested size.
1427   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1428     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1429     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1430       Unmerges.push_back(UndefReg);
1431   }
1432 
1433   const int PartsPerGCD = WideSize / GCD;
1434 
1435   // Build merges of each piece.
1436   ArrayRef<Register> Slicer(Unmerges);
1437   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1438     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1439     NewMergeRegs.push_back(Merge.getReg(0));
1440   }
1441 
1442   // A truncate may be necessary if the requested type doesn't evenly divide the
1443   // original result type.
1444   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1445     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1446   } else {
1447     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1448     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1449   }
1450 
1451   MI.eraseFromParent();
1452   return Legalized;
1453 }
1454 
1455 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1456   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1457   LLT OrigTy = MRI.getType(OrigReg);
1458   LLT LCMTy = getLCMType(WideTy, OrigTy);
1459 
1460   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1461   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1462 
1463   Register UnmergeSrc = WideReg;
1464 
1465   // Create a merge to the LCM type, padding with undef
1466   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1467   // =>
1468   // %1:_(<4 x s32>) = G_FOO
1469   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1470   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1471   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1472   if (NumMergeParts > 1) {
1473     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1474     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1475     MergeParts[0] = WideReg;
1476     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1477   }
1478 
1479   // Unmerge to the original register and pad with dead defs.
1480   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1481   UnmergeResults[0] = OrigReg;
1482   for (int I = 1; I != NumUnmergeParts; ++I)
1483     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1484 
1485   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1486   return WideReg;
1487 }
1488 
1489 LegalizerHelper::LegalizeResult
1490 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1491                                           LLT WideTy) {
1492   if (TypeIdx != 0)
1493     return UnableToLegalize;
1494 
1495   int NumDst = MI.getNumOperands() - 1;
1496   Register SrcReg = MI.getOperand(NumDst).getReg();
1497   LLT SrcTy = MRI.getType(SrcReg);
1498   if (SrcTy.isVector())
1499     return UnableToLegalize;
1500 
1501   Register Dst0Reg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(Dst0Reg);
1503   if (!DstTy.isScalar())
1504     return UnableToLegalize;
1505 
1506   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1507     if (SrcTy.isPointer()) {
1508       const DataLayout &DL = MIRBuilder.getDataLayout();
1509       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1510         LLVM_DEBUG(
1511             dbgs() << "Not casting non-integral address space integer\n");
1512         return UnableToLegalize;
1513       }
1514 
1515       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1516       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1517     }
1518 
1519     // Widen SrcTy to WideTy. This does not affect the result, but since the
1520     // user requested this size, it is probably better handled than SrcTy and
1521     // should reduce the total number of legalization artifacts
1522     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1523       SrcTy = WideTy;
1524       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1525     }
1526 
1527     // Theres no unmerge type to target. Directly extract the bits from the
1528     // source type
1529     unsigned DstSize = DstTy.getSizeInBits();
1530 
1531     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1532     for (int I = 1; I != NumDst; ++I) {
1533       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1534       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1535       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1536     }
1537 
1538     MI.eraseFromParent();
1539     return Legalized;
1540   }
1541 
1542   // Extend the source to a wider type.
1543   LLT LCMTy = getLCMType(SrcTy, WideTy);
1544 
1545   Register WideSrc = SrcReg;
1546   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1547     // TODO: If this is an integral address space, cast to integer and anyext.
1548     if (SrcTy.isPointer()) {
1549       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1550       return UnableToLegalize;
1551     }
1552 
1553     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1554   }
1555 
1556   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1557 
1558   // Create a sequence of unmerges and merges to the original results. Since we
1559   // may have widened the source, we will need to pad the results with dead defs
1560   // to cover the source register.
1561   // e.g. widen s48 to s64:
1562   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1563   //
1564   // =>
1565   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1566   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1567   //  ; unpack to GCD type, with extra dead defs
1568   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1569   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1570   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1571   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1572   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1573   const LLT GCDTy = getGCDType(WideTy, DstTy);
1574   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1575   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1576 
1577   // Directly unmerge to the destination without going through a GCD type
1578   // if possible
1579   if (PartsPerRemerge == 1) {
1580     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1581 
1582     for (int I = 0; I != NumUnmerge; ++I) {
1583       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1584 
1585       for (int J = 0; J != PartsPerUnmerge; ++J) {
1586         int Idx = I * PartsPerUnmerge + J;
1587         if (Idx < NumDst)
1588           MIB.addDef(MI.getOperand(Idx).getReg());
1589         else {
1590           // Create dead def for excess components.
1591           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1592         }
1593       }
1594 
1595       MIB.addUse(Unmerge.getReg(I));
1596     }
1597   } else {
1598     SmallVector<Register, 16> Parts;
1599     for (int J = 0; J != NumUnmerge; ++J)
1600       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1601 
1602     SmallVector<Register, 8> RemergeParts;
1603     for (int I = 0; I != NumDst; ++I) {
1604       for (int J = 0; J < PartsPerRemerge; ++J) {
1605         const int Idx = I * PartsPerRemerge + J;
1606         RemergeParts.emplace_back(Parts[Idx]);
1607       }
1608 
1609       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1610       RemergeParts.clear();
1611     }
1612   }
1613 
1614   MI.eraseFromParent();
1615   return Legalized;
1616 }
1617 
1618 LegalizerHelper::LegalizeResult
1619 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1620                                     LLT WideTy) {
1621   Register DstReg = MI.getOperand(0).getReg();
1622   Register SrcReg = MI.getOperand(1).getReg();
1623   LLT SrcTy = MRI.getType(SrcReg);
1624 
1625   LLT DstTy = MRI.getType(DstReg);
1626   unsigned Offset = MI.getOperand(2).getImm();
1627 
1628   if (TypeIdx == 0) {
1629     if (SrcTy.isVector() || DstTy.isVector())
1630       return UnableToLegalize;
1631 
1632     SrcOp Src(SrcReg);
1633     if (SrcTy.isPointer()) {
1634       // Extracts from pointers can be handled only if they are really just
1635       // simple integers.
1636       const DataLayout &DL = MIRBuilder.getDataLayout();
1637       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1638         return UnableToLegalize;
1639 
1640       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1641       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1642       SrcTy = SrcAsIntTy;
1643     }
1644 
1645     if (DstTy.isPointer())
1646       return UnableToLegalize;
1647 
1648     if (Offset == 0) {
1649       // Avoid a shift in the degenerate case.
1650       MIRBuilder.buildTrunc(DstReg,
1651                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1652       MI.eraseFromParent();
1653       return Legalized;
1654     }
1655 
1656     // Do a shift in the source type.
1657     LLT ShiftTy = SrcTy;
1658     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1659       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1660       ShiftTy = WideTy;
1661     }
1662 
1663     auto LShr = MIRBuilder.buildLShr(
1664       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1665     MIRBuilder.buildTrunc(DstReg, LShr);
1666     MI.eraseFromParent();
1667     return Legalized;
1668   }
1669 
1670   if (SrcTy.isScalar()) {
1671     Observer.changingInstr(MI);
1672     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1673     Observer.changedInstr(MI);
1674     return Legalized;
1675   }
1676 
1677   if (!SrcTy.isVector())
1678     return UnableToLegalize;
1679 
1680   if (DstTy != SrcTy.getElementType())
1681     return UnableToLegalize;
1682 
1683   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1684     return UnableToLegalize;
1685 
1686   Observer.changingInstr(MI);
1687   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688 
1689   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1690                           Offset);
1691   widenScalarDst(MI, WideTy.getScalarType(), 0);
1692   Observer.changedInstr(MI);
1693   return Legalized;
1694 }
1695 
1696 LegalizerHelper::LegalizeResult
1697 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1698                                    LLT WideTy) {
1699   if (TypeIdx != 0 || WideTy.isVector())
1700     return UnableToLegalize;
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703   widenScalarDst(MI, WideTy);
1704   Observer.changedInstr(MI);
1705   return Legalized;
1706 }
1707 
1708 LegalizerHelper::LegalizeResult
1709 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1710                                            LLT WideTy) {
1711   if (TypeIdx == 1)
1712     return UnableToLegalize; // TODO
1713 
1714   unsigned Opcode;
1715   unsigned ExtOpcode;
1716   Optional<Register> CarryIn = None;
1717   switch (MI.getOpcode()) {
1718   default:
1719     llvm_unreachable("Unexpected opcode!");
1720   case TargetOpcode::G_SADDO:
1721     Opcode = TargetOpcode::G_ADD;
1722     ExtOpcode = TargetOpcode::G_SEXT;
1723     break;
1724   case TargetOpcode::G_SSUBO:
1725     Opcode = TargetOpcode::G_SUB;
1726     ExtOpcode = TargetOpcode::G_SEXT;
1727     break;
1728   case TargetOpcode::G_UADDO:
1729     Opcode = TargetOpcode::G_ADD;
1730     ExtOpcode = TargetOpcode::G_ZEXT;
1731     break;
1732   case TargetOpcode::G_USUBO:
1733     Opcode = TargetOpcode::G_SUB;
1734     ExtOpcode = TargetOpcode::G_ZEXT;
1735     break;
1736   case TargetOpcode::G_SADDE:
1737     Opcode = TargetOpcode::G_UADDE;
1738     ExtOpcode = TargetOpcode::G_SEXT;
1739     CarryIn = MI.getOperand(4).getReg();
1740     break;
1741   case TargetOpcode::G_SSUBE:
1742     Opcode = TargetOpcode::G_USUBE;
1743     ExtOpcode = TargetOpcode::G_SEXT;
1744     CarryIn = MI.getOperand(4).getReg();
1745     break;
1746   case TargetOpcode::G_UADDE:
1747     Opcode = TargetOpcode::G_UADDE;
1748     ExtOpcode = TargetOpcode::G_ZEXT;
1749     CarryIn = MI.getOperand(4).getReg();
1750     break;
1751   case TargetOpcode::G_USUBE:
1752     Opcode = TargetOpcode::G_USUBE;
1753     ExtOpcode = TargetOpcode::G_ZEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   }
1757 
1758   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1759   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1760   // Do the arithmetic in the larger type.
1761   Register NewOp;
1762   if (CarryIn) {
1763     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1764     NewOp = MIRBuilder
1765                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1766                             {LHSExt, RHSExt, *CarryIn})
1767                 .getReg(0);
1768   } else {
1769     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1770   }
1771   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1772   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1773   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1774   // There is no overflow if the ExtOp is the same as NewOp.
1775   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1776   // Now trunc the NewOp to the original result.
1777   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1778   MI.eraseFromParent();
1779   return Legalized;
1780 }
1781 
1782 LegalizerHelper::LegalizeResult
1783 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1784                                          LLT WideTy) {
1785   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1786                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1787                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1788   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1789                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1790   // We can convert this to:
1791   //   1. Any extend iN to iM
1792   //   2. SHL by M-N
1793   //   3. [US][ADD|SUB|SHL]SAT
1794   //   4. L/ASHR by M-N
1795   //
1796   // It may be more efficient to lower this to a min and a max operation in
1797   // the higher precision arithmetic if the promoted operation isn't legal,
1798   // but this decision is up to the target's lowering request.
1799   Register DstReg = MI.getOperand(0).getReg();
1800 
1801   unsigned NewBits = WideTy.getScalarSizeInBits();
1802   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1803 
1804   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1805   // must not left shift the RHS to preserve the shift amount.
1806   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1807   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1808                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1809   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1810   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1811   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1812 
1813   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1814                                         {ShiftL, ShiftR}, MI.getFlags());
1815 
1816   // Use a shift that will preserve the number of sign bits when the trunc is
1817   // folded away.
1818   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1819                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1820 
1821   MIRBuilder.buildTrunc(DstReg, Result);
1822   MI.eraseFromParent();
1823   return Legalized;
1824 }
1825 
1826 LegalizerHelper::LegalizeResult
1827 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1828                                  LLT WideTy) {
1829   if (TypeIdx == 1)
1830     return UnableToLegalize;
1831 
1832   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1833   Register Result = MI.getOperand(0).getReg();
1834   Register OriginalOverflow = MI.getOperand(1).getReg();
1835   Register LHS = MI.getOperand(2).getReg();
1836   Register RHS = MI.getOperand(3).getReg();
1837   LLT SrcTy = MRI.getType(LHS);
1838   LLT OverflowTy = MRI.getType(OriginalOverflow);
1839   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1840 
1841   // To determine if the result overflowed in the larger type, we extend the
1842   // input to the larger type, do the multiply (checking if it overflows),
1843   // then also check the high bits of the result to see if overflow happened
1844   // there.
1845   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1846   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1847   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1848 
1849   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1850                                     {LeftOperand, RightOperand});
1851   auto Mul = Mulo->getOperand(0);
1852   MIRBuilder.buildTrunc(Result, Mul);
1853 
1854   MachineInstrBuilder ExtResult;
1855   // Overflow occurred if it occurred in the larger type, or if the high part
1856   // of the result does not zero/sign-extend the low part.  Check this second
1857   // possibility first.
1858   if (IsSigned) {
1859     // For signed, overflow occurred when the high part does not sign-extend
1860     // the low part.
1861     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1862   } else {
1863     // Unsigned overflow occurred when the high part does not zero-extend the
1864     // low part.
1865     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1866   }
1867 
1868   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1869   // so we don't need to check the overflow result of larger type Mulo.
1870   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1871     auto Overflow =
1872         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1873     // Finally check if the multiplication in the larger type itself overflowed.
1874     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1875   } else {
1876     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1877   }
1878   MI.eraseFromParent();
1879   return Legalized;
1880 }
1881 
1882 LegalizerHelper::LegalizeResult
1883 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1884   switch (MI.getOpcode()) {
1885   default:
1886     return UnableToLegalize;
1887   case TargetOpcode::G_EXTRACT:
1888     return widenScalarExtract(MI, TypeIdx, WideTy);
1889   case TargetOpcode::G_INSERT:
1890     return widenScalarInsert(MI, TypeIdx, WideTy);
1891   case TargetOpcode::G_MERGE_VALUES:
1892     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_UNMERGE_VALUES:
1894     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_SADDO:
1896   case TargetOpcode::G_SSUBO:
1897   case TargetOpcode::G_UADDO:
1898   case TargetOpcode::G_USUBO:
1899   case TargetOpcode::G_SADDE:
1900   case TargetOpcode::G_SSUBE:
1901   case TargetOpcode::G_UADDE:
1902   case TargetOpcode::G_USUBE:
1903     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1904   case TargetOpcode::G_UMULO:
1905   case TargetOpcode::G_SMULO:
1906     return widenScalarMulo(MI, TypeIdx, WideTy);
1907   case TargetOpcode::G_SADDSAT:
1908   case TargetOpcode::G_SSUBSAT:
1909   case TargetOpcode::G_SSHLSAT:
1910   case TargetOpcode::G_UADDSAT:
1911   case TargetOpcode::G_USUBSAT:
1912   case TargetOpcode::G_USHLSAT:
1913     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1914   case TargetOpcode::G_CTTZ:
1915   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1916   case TargetOpcode::G_CTLZ:
1917   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1918   case TargetOpcode::G_CTPOP: {
1919     if (TypeIdx == 0) {
1920       Observer.changingInstr(MI);
1921       widenScalarDst(MI, WideTy, 0);
1922       Observer.changedInstr(MI);
1923       return Legalized;
1924     }
1925 
1926     Register SrcReg = MI.getOperand(1).getReg();
1927 
1928     // First ZEXT the input.
1929     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1930     LLT CurTy = MRI.getType(SrcReg);
1931     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1932       // The count is the same in the larger type except if the original
1933       // value was zero.  This can be handled by setting the bit just off
1934       // the top of the original type.
1935       auto TopBit =
1936           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1937       MIBSrc = MIRBuilder.buildOr(
1938         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1939     }
1940 
1941     // Perform the operation at the larger size.
1942     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1943     // This is already the correct result for CTPOP and CTTZs
1944     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1945         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1946       // The correct result is NewOp - (Difference in widety and current ty).
1947       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1948       MIBNewOp = MIRBuilder.buildSub(
1949           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1950     }
1951 
1952     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1953     MI.eraseFromParent();
1954     return Legalized;
1955   }
1956   case TargetOpcode::G_BSWAP: {
1957     Observer.changingInstr(MI);
1958     Register DstReg = MI.getOperand(0).getReg();
1959 
1960     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1961     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1962     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1963     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1964 
1965     MI.getOperand(0).setReg(DstExt);
1966 
1967     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1968 
1969     LLT Ty = MRI.getType(DstReg);
1970     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1971     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1972     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1973 
1974     MIRBuilder.buildTrunc(DstReg, ShrReg);
1975     Observer.changedInstr(MI);
1976     return Legalized;
1977   }
1978   case TargetOpcode::G_BITREVERSE: {
1979     Observer.changingInstr(MI);
1980 
1981     Register DstReg = MI.getOperand(0).getReg();
1982     LLT Ty = MRI.getType(DstReg);
1983     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1984 
1985     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1986     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1987     MI.getOperand(0).setReg(DstExt);
1988     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1989 
1990     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1991     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1992     MIRBuilder.buildTrunc(DstReg, Shift);
1993     Observer.changedInstr(MI);
1994     return Legalized;
1995   }
1996   case TargetOpcode::G_FREEZE:
1997     Observer.changingInstr(MI);
1998     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1999     widenScalarDst(MI, WideTy);
2000     Observer.changedInstr(MI);
2001     return Legalized;
2002 
2003   case TargetOpcode::G_ADD:
2004   case TargetOpcode::G_AND:
2005   case TargetOpcode::G_MUL:
2006   case TargetOpcode::G_OR:
2007   case TargetOpcode::G_XOR:
2008   case TargetOpcode::G_SUB:
2009     // Perform operation at larger width (any extension is fines here, high bits
2010     // don't affect the result) and then truncate the result back to the
2011     // original type.
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2014     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2015     widenScalarDst(MI, WideTy);
2016     Observer.changedInstr(MI);
2017     return Legalized;
2018 
2019   case TargetOpcode::G_SHL:
2020     Observer.changingInstr(MI);
2021 
2022     if (TypeIdx == 0) {
2023       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2024       widenScalarDst(MI, WideTy);
2025     } else {
2026       assert(TypeIdx == 1);
2027       // The "number of bits to shift" operand must preserve its value as an
2028       // unsigned integer:
2029       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2030     }
2031 
2032     Observer.changedInstr(MI);
2033     return Legalized;
2034 
2035   case TargetOpcode::G_SDIV:
2036   case TargetOpcode::G_SREM:
2037   case TargetOpcode::G_SMIN:
2038   case TargetOpcode::G_SMAX:
2039     Observer.changingInstr(MI);
2040     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2041     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2042     widenScalarDst(MI, WideTy);
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045 
2046   case TargetOpcode::G_ASHR:
2047   case TargetOpcode::G_LSHR:
2048     Observer.changingInstr(MI);
2049 
2050     if (TypeIdx == 0) {
2051       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2052         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2053 
2054       widenScalarSrc(MI, WideTy, 1, CvtOp);
2055       widenScalarDst(MI, WideTy);
2056     } else {
2057       assert(TypeIdx == 1);
2058       // The "number of bits to shift" operand must preserve its value as an
2059       // unsigned integer:
2060       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2061     }
2062 
2063     Observer.changedInstr(MI);
2064     return Legalized;
2065   case TargetOpcode::G_UDIV:
2066   case TargetOpcode::G_UREM:
2067   case TargetOpcode::G_UMIN:
2068   case TargetOpcode::G_UMAX:
2069     Observer.changingInstr(MI);
2070     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2071     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2072     widenScalarDst(MI, WideTy);
2073     Observer.changedInstr(MI);
2074     return Legalized;
2075 
2076   case TargetOpcode::G_SELECT:
2077     Observer.changingInstr(MI);
2078     if (TypeIdx == 0) {
2079       // Perform operation at larger width (any extension is fine here, high
2080       // bits don't affect the result) and then truncate the result back to the
2081       // original type.
2082       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2083       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2084       widenScalarDst(MI, WideTy);
2085     } else {
2086       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2087       // Explicit extension is required here since high bits affect the result.
2088       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2089     }
2090     Observer.changedInstr(MI);
2091     return Legalized;
2092 
2093   case TargetOpcode::G_FPTOSI:
2094   case TargetOpcode::G_FPTOUI:
2095     Observer.changingInstr(MI);
2096 
2097     if (TypeIdx == 0)
2098       widenScalarDst(MI, WideTy);
2099     else
2100       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2101 
2102     Observer.changedInstr(MI);
2103     return Legalized;
2104   case TargetOpcode::G_SITOFP:
2105     Observer.changingInstr(MI);
2106 
2107     if (TypeIdx == 0)
2108       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2109     else
2110       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2111 
2112     Observer.changedInstr(MI);
2113     return Legalized;
2114   case TargetOpcode::G_UITOFP:
2115     Observer.changingInstr(MI);
2116 
2117     if (TypeIdx == 0)
2118       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2119     else
2120       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2121 
2122     Observer.changedInstr(MI);
2123     return Legalized;
2124   case TargetOpcode::G_LOAD:
2125   case TargetOpcode::G_SEXTLOAD:
2126   case TargetOpcode::G_ZEXTLOAD:
2127     Observer.changingInstr(MI);
2128     widenScalarDst(MI, WideTy);
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131 
2132   case TargetOpcode::G_STORE: {
2133     if (TypeIdx != 0)
2134       return UnableToLegalize;
2135 
2136     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2137     if (!Ty.isScalar())
2138       return UnableToLegalize;
2139 
2140     Observer.changingInstr(MI);
2141 
2142     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2143       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2144     widenScalarSrc(MI, WideTy, 0, ExtType);
2145 
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   }
2149   case TargetOpcode::G_CONSTANT: {
2150     MachineOperand &SrcMO = MI.getOperand(1);
2151     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2152     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2153         MRI.getType(MI.getOperand(0).getReg()));
2154     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2155             ExtOpc == TargetOpcode::G_ANYEXT) &&
2156            "Illegal Extend");
2157     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2158     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2159                            ? SrcVal.sext(WideTy.getSizeInBits())
2160                            : SrcVal.zext(WideTy.getSizeInBits());
2161     Observer.changingInstr(MI);
2162     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2163 
2164     widenScalarDst(MI, WideTy);
2165     Observer.changedInstr(MI);
2166     return Legalized;
2167   }
2168   case TargetOpcode::G_FCONSTANT: {
2169     MachineOperand &SrcMO = MI.getOperand(1);
2170     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2171     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2172     bool LosesInfo;
2173     switch (WideTy.getSizeInBits()) {
2174     case 32:
2175       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2176                   &LosesInfo);
2177       break;
2178     case 64:
2179       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2180                   &LosesInfo);
2181       break;
2182     default:
2183       return UnableToLegalize;
2184     }
2185 
2186     assert(!LosesInfo && "extend should always be lossless");
2187 
2188     Observer.changingInstr(MI);
2189     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2190 
2191     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2192     Observer.changedInstr(MI);
2193     return Legalized;
2194   }
2195   case TargetOpcode::G_IMPLICIT_DEF: {
2196     Observer.changingInstr(MI);
2197     widenScalarDst(MI, WideTy);
2198     Observer.changedInstr(MI);
2199     return Legalized;
2200   }
2201   case TargetOpcode::G_BRCOND:
2202     Observer.changingInstr(MI);
2203     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2204     Observer.changedInstr(MI);
2205     return Legalized;
2206 
2207   case TargetOpcode::G_FCMP:
2208     Observer.changingInstr(MI);
2209     if (TypeIdx == 0)
2210       widenScalarDst(MI, WideTy);
2211     else {
2212       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2213       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2214     }
2215     Observer.changedInstr(MI);
2216     return Legalized;
2217 
2218   case TargetOpcode::G_ICMP:
2219     Observer.changingInstr(MI);
2220     if (TypeIdx == 0)
2221       widenScalarDst(MI, WideTy);
2222     else {
2223       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2224                                MI.getOperand(1).getPredicate()))
2225                                ? TargetOpcode::G_SEXT
2226                                : TargetOpcode::G_ZEXT;
2227       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2228       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2229     }
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232 
2233   case TargetOpcode::G_PTR_ADD:
2234     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2235     Observer.changingInstr(MI);
2236     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239 
2240   case TargetOpcode::G_PHI: {
2241     assert(TypeIdx == 0 && "Expecting only Idx 0");
2242 
2243     Observer.changingInstr(MI);
2244     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2245       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2246       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2247       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2248     }
2249 
2250     MachineBasicBlock &MBB = *MI.getParent();
2251     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2252     widenScalarDst(MI, WideTy);
2253     Observer.changedInstr(MI);
2254     return Legalized;
2255   }
2256   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2257     if (TypeIdx == 0) {
2258       Register VecReg = MI.getOperand(1).getReg();
2259       LLT VecTy = MRI.getType(VecReg);
2260       Observer.changingInstr(MI);
2261 
2262       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2263                                      WideTy.getSizeInBits()),
2264                      1, TargetOpcode::G_SEXT);
2265 
2266       widenScalarDst(MI, WideTy, 0);
2267       Observer.changedInstr(MI);
2268       return Legalized;
2269     }
2270 
2271     if (TypeIdx != 2)
2272       return UnableToLegalize;
2273     Observer.changingInstr(MI);
2274     // TODO: Probably should be zext
2275     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278   }
2279   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2280     if (TypeIdx == 1) {
2281       Observer.changingInstr(MI);
2282 
2283       Register VecReg = MI.getOperand(1).getReg();
2284       LLT VecTy = MRI.getType(VecReg);
2285       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2286 
2287       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2288       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2289       widenScalarDst(MI, WideVecTy, 0);
2290       Observer.changedInstr(MI);
2291       return Legalized;
2292     }
2293 
2294     if (TypeIdx == 2) {
2295       Observer.changingInstr(MI);
2296       // TODO: Probably should be zext
2297       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2298       Observer.changedInstr(MI);
2299       return Legalized;
2300     }
2301 
2302     return UnableToLegalize;
2303   }
2304   case TargetOpcode::G_FADD:
2305   case TargetOpcode::G_FMUL:
2306   case TargetOpcode::G_FSUB:
2307   case TargetOpcode::G_FMA:
2308   case TargetOpcode::G_FMAD:
2309   case TargetOpcode::G_FNEG:
2310   case TargetOpcode::G_FABS:
2311   case TargetOpcode::G_FCANONICALIZE:
2312   case TargetOpcode::G_FMINNUM:
2313   case TargetOpcode::G_FMAXNUM:
2314   case TargetOpcode::G_FMINNUM_IEEE:
2315   case TargetOpcode::G_FMAXNUM_IEEE:
2316   case TargetOpcode::G_FMINIMUM:
2317   case TargetOpcode::G_FMAXIMUM:
2318   case TargetOpcode::G_FDIV:
2319   case TargetOpcode::G_FREM:
2320   case TargetOpcode::G_FCEIL:
2321   case TargetOpcode::G_FFLOOR:
2322   case TargetOpcode::G_FCOS:
2323   case TargetOpcode::G_FSIN:
2324   case TargetOpcode::G_FLOG10:
2325   case TargetOpcode::G_FLOG:
2326   case TargetOpcode::G_FLOG2:
2327   case TargetOpcode::G_FRINT:
2328   case TargetOpcode::G_FNEARBYINT:
2329   case TargetOpcode::G_FSQRT:
2330   case TargetOpcode::G_FEXP:
2331   case TargetOpcode::G_FEXP2:
2332   case TargetOpcode::G_FPOW:
2333   case TargetOpcode::G_INTRINSIC_TRUNC:
2334   case TargetOpcode::G_INTRINSIC_ROUND:
2335   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2336     assert(TypeIdx == 0);
2337     Observer.changingInstr(MI);
2338 
2339     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2340       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2341 
2342     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2343     Observer.changedInstr(MI);
2344     return Legalized;
2345   case TargetOpcode::G_FPOWI: {
2346     if (TypeIdx != 0)
2347       return UnableToLegalize;
2348     Observer.changingInstr(MI);
2349     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2350     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2351     Observer.changedInstr(MI);
2352     return Legalized;
2353   }
2354   case TargetOpcode::G_INTTOPTR:
2355     if (TypeIdx != 1)
2356       return UnableToLegalize;
2357 
2358     Observer.changingInstr(MI);
2359     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2360     Observer.changedInstr(MI);
2361     return Legalized;
2362   case TargetOpcode::G_PTRTOINT:
2363     if (TypeIdx != 0)
2364       return UnableToLegalize;
2365 
2366     Observer.changingInstr(MI);
2367     widenScalarDst(MI, WideTy, 0);
2368     Observer.changedInstr(MI);
2369     return Legalized;
2370   case TargetOpcode::G_BUILD_VECTOR: {
2371     Observer.changingInstr(MI);
2372 
2373     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2374     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2375       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2376 
2377     // Avoid changing the result vector type if the source element type was
2378     // requested.
2379     if (TypeIdx == 1) {
2380       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2381     } else {
2382       widenScalarDst(MI, WideTy, 0);
2383     }
2384 
2385     Observer.changedInstr(MI);
2386     return Legalized;
2387   }
2388   case TargetOpcode::G_SEXT_INREG:
2389     if (TypeIdx != 0)
2390       return UnableToLegalize;
2391 
2392     Observer.changingInstr(MI);
2393     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2394     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   case TargetOpcode::G_PTRMASK: {
2398     if (TypeIdx != 1)
2399       return UnableToLegalize;
2400     Observer.changingInstr(MI);
2401     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2402     Observer.changedInstr(MI);
2403     return Legalized;
2404   }
2405   }
2406 }
2407 
2408 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2409                              MachineIRBuilder &B, Register Src, LLT Ty) {
2410   auto Unmerge = B.buildUnmerge(Ty, Src);
2411   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2412     Pieces.push_back(Unmerge.getReg(I));
2413 }
2414 
2415 LegalizerHelper::LegalizeResult
2416 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2417   Register Dst = MI.getOperand(0).getReg();
2418   Register Src = MI.getOperand(1).getReg();
2419   LLT DstTy = MRI.getType(Dst);
2420   LLT SrcTy = MRI.getType(Src);
2421 
2422   if (SrcTy.isVector()) {
2423     LLT SrcEltTy = SrcTy.getElementType();
2424     SmallVector<Register, 8> SrcRegs;
2425 
2426     if (DstTy.isVector()) {
2427       int NumDstElt = DstTy.getNumElements();
2428       int NumSrcElt = SrcTy.getNumElements();
2429 
2430       LLT DstEltTy = DstTy.getElementType();
2431       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2432       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2433 
2434       // If there's an element size mismatch, insert intermediate casts to match
2435       // the result element type.
2436       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2437         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2438         //
2439         // =>
2440         //
2441         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2442         // %3:_(<2 x s8>) = G_BITCAST %2
2443         // %4:_(<2 x s8>) = G_BITCAST %3
2444         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2445         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2446         SrcPartTy = SrcEltTy;
2447       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2448         //
2449         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2450         //
2451         // =>
2452         //
2453         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2454         // %3:_(s16) = G_BITCAST %2
2455         // %4:_(s16) = G_BITCAST %3
2456         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2457         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2458         DstCastTy = DstEltTy;
2459       }
2460 
2461       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2462       for (Register &SrcReg : SrcRegs)
2463         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2464     } else
2465       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2466 
2467     MIRBuilder.buildMerge(Dst, SrcRegs);
2468     MI.eraseFromParent();
2469     return Legalized;
2470   }
2471 
2472   if (DstTy.isVector()) {
2473     SmallVector<Register, 8> SrcRegs;
2474     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2475     MIRBuilder.buildMerge(Dst, SrcRegs);
2476     MI.eraseFromParent();
2477     return Legalized;
2478   }
2479 
2480   return UnableToLegalize;
2481 }
2482 
2483 /// Figure out the bit offset into a register when coercing a vector index for
2484 /// the wide element type. This is only for the case when promoting vector to
2485 /// one with larger elements.
2486 //
2487 ///
2488 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2489 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2490 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2491                                                    Register Idx,
2492                                                    unsigned NewEltSize,
2493                                                    unsigned OldEltSize) {
2494   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2495   LLT IdxTy = B.getMRI()->getType(Idx);
2496 
2497   // Now figure out the amount we need to shift to get the target bits.
2498   auto OffsetMask = B.buildConstant(
2499     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2500   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2501   return B.buildShl(IdxTy, OffsetIdx,
2502                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2503 }
2504 
2505 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2506 /// is casting to a vector with a smaller element size, perform multiple element
2507 /// extracts and merge the results. If this is coercing to a vector with larger
2508 /// elements, index the bitcasted vector and extract the target element with bit
2509 /// operations. This is intended to force the indexing in the native register
2510 /// size for architectures that can dynamically index the register file.
2511 LegalizerHelper::LegalizeResult
2512 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2513                                          LLT CastTy) {
2514   if (TypeIdx != 1)
2515     return UnableToLegalize;
2516 
2517   Register Dst = MI.getOperand(0).getReg();
2518   Register SrcVec = MI.getOperand(1).getReg();
2519   Register Idx = MI.getOperand(2).getReg();
2520   LLT SrcVecTy = MRI.getType(SrcVec);
2521   LLT IdxTy = MRI.getType(Idx);
2522 
2523   LLT SrcEltTy = SrcVecTy.getElementType();
2524   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2525   unsigned OldNumElts = SrcVecTy.getNumElements();
2526 
2527   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2528   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2529 
2530   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2531   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2532   if (NewNumElts > OldNumElts) {
2533     // Decreasing the vector element size
2534     //
2535     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2536     //  =>
2537     //  v4i32:castx = bitcast x:v2i64
2538     //
2539     // i64 = bitcast
2540     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2541     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2542     //
2543     if (NewNumElts % OldNumElts != 0)
2544       return UnableToLegalize;
2545 
2546     // Type of the intermediate result vector.
2547     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2548     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2549 
2550     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2551 
2552     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2553     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2554 
2555     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2556       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2557       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2558       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2559       NewOps[I] = Elt.getReg(0);
2560     }
2561 
2562     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2563     MIRBuilder.buildBitcast(Dst, NewVec);
2564     MI.eraseFromParent();
2565     return Legalized;
2566   }
2567 
2568   if (NewNumElts < OldNumElts) {
2569     if (NewEltSize % OldEltSize != 0)
2570       return UnableToLegalize;
2571 
2572     // This only depends on powers of 2 because we use bit tricks to figure out
2573     // the bit offset we need to shift to get the target element. A general
2574     // expansion could emit division/multiply.
2575     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2576       return UnableToLegalize;
2577 
2578     // Increasing the vector element size.
2579     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2580     //
2581     //   =>
2582     //
2583     // %cast = G_BITCAST %vec
2584     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2585     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2586     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2587     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2588     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2589     // %elt = G_TRUNC %elt_bits
2590 
2591     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2592     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2593 
2594     // Divide to get the index in the wider element type.
2595     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2596 
2597     Register WideElt = CastVec;
2598     if (CastTy.isVector()) {
2599       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2600                                                      ScaledIdx).getReg(0);
2601     }
2602 
2603     // Compute the bit offset into the register of the target element.
2604     Register OffsetBits = getBitcastWiderVectorElementOffset(
2605       MIRBuilder, Idx, NewEltSize, OldEltSize);
2606 
2607     // Shift the wide element to get the target element.
2608     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2609     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2610     MI.eraseFromParent();
2611     return Legalized;
2612   }
2613 
2614   return UnableToLegalize;
2615 }
2616 
2617 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2618 /// TargetReg, while preserving other bits in \p TargetReg.
2619 ///
2620 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2621 static Register buildBitFieldInsert(MachineIRBuilder &B,
2622                                     Register TargetReg, Register InsertReg,
2623                                     Register OffsetBits) {
2624   LLT TargetTy = B.getMRI()->getType(TargetReg);
2625   LLT InsertTy = B.getMRI()->getType(InsertReg);
2626   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2627   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2628 
2629   // Produce a bitmask of the value to insert
2630   auto EltMask = B.buildConstant(
2631     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2632                                    InsertTy.getSizeInBits()));
2633   // Shift it into position
2634   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2635   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2636 
2637   // Clear out the bits in the wide element
2638   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2639 
2640   // The value to insert has all zeros already, so stick it into the masked
2641   // wide element.
2642   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2643 }
2644 
2645 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2646 /// is increasing the element size, perform the indexing in the target element
2647 /// type, and use bit operations to insert at the element position. This is
2648 /// intended for architectures that can dynamically index the register file and
2649 /// want to force indexing in the native register size.
2650 LegalizerHelper::LegalizeResult
2651 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2652                                         LLT CastTy) {
2653   if (TypeIdx != 0)
2654     return UnableToLegalize;
2655 
2656   Register Dst = MI.getOperand(0).getReg();
2657   Register SrcVec = MI.getOperand(1).getReg();
2658   Register Val = MI.getOperand(2).getReg();
2659   Register Idx = MI.getOperand(3).getReg();
2660 
2661   LLT VecTy = MRI.getType(Dst);
2662   LLT IdxTy = MRI.getType(Idx);
2663 
2664   LLT VecEltTy = VecTy.getElementType();
2665   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2666   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2667   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2668 
2669   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2670   unsigned OldNumElts = VecTy.getNumElements();
2671 
2672   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2673   if (NewNumElts < OldNumElts) {
2674     if (NewEltSize % OldEltSize != 0)
2675       return UnableToLegalize;
2676 
2677     // This only depends on powers of 2 because we use bit tricks to figure out
2678     // the bit offset we need to shift to get the target element. A general
2679     // expansion could emit division/multiply.
2680     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2681       return UnableToLegalize;
2682 
2683     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2684     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2685 
2686     // Divide to get the index in the wider element type.
2687     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2688 
2689     Register ExtractedElt = CastVec;
2690     if (CastTy.isVector()) {
2691       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2692                                                           ScaledIdx).getReg(0);
2693     }
2694 
2695     // Compute the bit offset into the register of the target element.
2696     Register OffsetBits = getBitcastWiderVectorElementOffset(
2697       MIRBuilder, Idx, NewEltSize, OldEltSize);
2698 
2699     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2700                                                Val, OffsetBits);
2701     if (CastTy.isVector()) {
2702       InsertedElt = MIRBuilder.buildInsertVectorElement(
2703         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2704     }
2705 
2706     MIRBuilder.buildBitcast(Dst, InsertedElt);
2707     MI.eraseFromParent();
2708     return Legalized;
2709   }
2710 
2711   return UnableToLegalize;
2712 }
2713 
2714 LegalizerHelper::LegalizeResult
2715 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2716   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2717   Register DstReg = MI.getOperand(0).getReg();
2718   Register PtrReg = MI.getOperand(1).getReg();
2719   LLT DstTy = MRI.getType(DstReg);
2720   auto &MMO = **MI.memoperands_begin();
2721 
2722   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2723     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2724       // This load needs splitting into power of 2 sized loads.
2725       if (DstTy.isVector())
2726         return UnableToLegalize;
2727       if (isPowerOf2_32(DstTy.getSizeInBits()))
2728         return UnableToLegalize; // Don't know what we're being asked to do.
2729 
2730       // Our strategy here is to generate anyextending loads for the smaller
2731       // types up to next power-2 result type, and then combine the two larger
2732       // result values together, before truncating back down to the non-pow-2
2733       // type.
2734       // E.g. v1 = i24 load =>
2735       // v2 = i32 zextload (2 byte)
2736       // v3 = i32 load (1 byte)
2737       // v4 = i32 shl v3, 16
2738       // v5 = i32 or v4, v2
2739       // v1 = i24 trunc v5
2740       // By doing this we generate the correct truncate which should get
2741       // combined away as an artifact with a matching extend.
2742       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2743       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2744 
2745       MachineFunction &MF = MIRBuilder.getMF();
2746       MachineMemOperand *LargeMMO =
2747         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2748       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2749         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2750 
2751       LLT PtrTy = MRI.getType(PtrReg);
2752       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2753       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2754       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2755       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2756       auto LargeLoad = MIRBuilder.buildLoadInstr(
2757         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2758 
2759       auto OffsetCst = MIRBuilder.buildConstant(
2760         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2761       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2762       auto SmallPtr =
2763         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2764       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2765                                             *SmallMMO);
2766 
2767       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2768       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2769       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2770       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2771       MI.eraseFromParent();
2772       return Legalized;
2773     }
2774 
2775     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2776     MI.eraseFromParent();
2777     return Legalized;
2778   }
2779 
2780   if (DstTy.isScalar()) {
2781     Register TmpReg =
2782       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2783     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2784     switch (MI.getOpcode()) {
2785     default:
2786       llvm_unreachable("Unexpected opcode");
2787     case TargetOpcode::G_LOAD:
2788       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2789       break;
2790     case TargetOpcode::G_SEXTLOAD:
2791       MIRBuilder.buildSExt(DstReg, TmpReg);
2792       break;
2793     case TargetOpcode::G_ZEXTLOAD:
2794       MIRBuilder.buildZExt(DstReg, TmpReg);
2795       break;
2796     }
2797 
2798     MI.eraseFromParent();
2799     return Legalized;
2800   }
2801 
2802   return UnableToLegalize;
2803 }
2804 
2805 LegalizerHelper::LegalizeResult
2806 LegalizerHelper::lowerStore(MachineInstr &MI) {
2807   // Lower a non-power of 2 store into multiple pow-2 stores.
2808   // E.g. split an i24 store into an i16 store + i8 store.
2809   // We do this by first extending the stored value to the next largest power
2810   // of 2 type, and then using truncating stores to store the components.
2811   // By doing this, likewise with G_LOAD, generate an extend that can be
2812   // artifact-combined away instead of leaving behind extracts.
2813   Register SrcReg = MI.getOperand(0).getReg();
2814   Register PtrReg = MI.getOperand(1).getReg();
2815   LLT SrcTy = MRI.getType(SrcReg);
2816   MachineMemOperand &MMO = **MI.memoperands_begin();
2817   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2818     return UnableToLegalize;
2819   if (SrcTy.isVector())
2820     return UnableToLegalize;
2821   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2822     return UnableToLegalize; // Don't know what we're being asked to do.
2823 
2824   // Extend to the next pow-2.
2825   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2826   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2827 
2828   // Obtain the smaller value by shifting away the larger value.
2829   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2830   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2831   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2832   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2833 
2834   // Generate the PtrAdd and truncating stores.
2835   LLT PtrTy = MRI.getType(PtrReg);
2836   auto OffsetCst = MIRBuilder.buildConstant(
2837     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2838   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2839   auto SmallPtr =
2840     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2841 
2842   MachineFunction &MF = MIRBuilder.getMF();
2843   MachineMemOperand *LargeMMO =
2844     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2845   MachineMemOperand *SmallMMO =
2846     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2847   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2848   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2849   MI.eraseFromParent();
2850   return Legalized;
2851 }
2852 
2853 LegalizerHelper::LegalizeResult
2854 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2855   switch (MI.getOpcode()) {
2856   case TargetOpcode::G_LOAD: {
2857     if (TypeIdx != 0)
2858       return UnableToLegalize;
2859 
2860     Observer.changingInstr(MI);
2861     bitcastDst(MI, CastTy, 0);
2862     Observer.changedInstr(MI);
2863     return Legalized;
2864   }
2865   case TargetOpcode::G_STORE: {
2866     if (TypeIdx != 0)
2867       return UnableToLegalize;
2868 
2869     Observer.changingInstr(MI);
2870     bitcastSrc(MI, CastTy, 0);
2871     Observer.changedInstr(MI);
2872     return Legalized;
2873   }
2874   case TargetOpcode::G_SELECT: {
2875     if (TypeIdx != 0)
2876       return UnableToLegalize;
2877 
2878     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2879       LLVM_DEBUG(
2880           dbgs() << "bitcast action not implemented for vector select\n");
2881       return UnableToLegalize;
2882     }
2883 
2884     Observer.changingInstr(MI);
2885     bitcastSrc(MI, CastTy, 2);
2886     bitcastSrc(MI, CastTy, 3);
2887     bitcastDst(MI, CastTy, 0);
2888     Observer.changedInstr(MI);
2889     return Legalized;
2890   }
2891   case TargetOpcode::G_AND:
2892   case TargetOpcode::G_OR:
2893   case TargetOpcode::G_XOR: {
2894     Observer.changingInstr(MI);
2895     bitcastSrc(MI, CastTy, 1);
2896     bitcastSrc(MI, CastTy, 2);
2897     bitcastDst(MI, CastTy, 0);
2898     Observer.changedInstr(MI);
2899     return Legalized;
2900   }
2901   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2902     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2903   case TargetOpcode::G_INSERT_VECTOR_ELT:
2904     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2905   default:
2906     return UnableToLegalize;
2907   }
2908 }
2909 
2910 // Legalize an instruction by changing the opcode in place.
2911 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2912     Observer.changingInstr(MI);
2913     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2914     Observer.changedInstr(MI);
2915 }
2916 
2917 LegalizerHelper::LegalizeResult
2918 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2919   using namespace TargetOpcode;
2920 
2921   switch(MI.getOpcode()) {
2922   default:
2923     return UnableToLegalize;
2924   case TargetOpcode::G_BITCAST:
2925     return lowerBitcast(MI);
2926   case TargetOpcode::G_SREM:
2927   case TargetOpcode::G_UREM: {
2928     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2929     auto Quot =
2930         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2931                               {MI.getOperand(1), MI.getOperand(2)});
2932 
2933     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2934     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2935     MI.eraseFromParent();
2936     return Legalized;
2937   }
2938   case TargetOpcode::G_SADDO:
2939   case TargetOpcode::G_SSUBO:
2940     return lowerSADDO_SSUBO(MI);
2941   case TargetOpcode::G_UMULH:
2942   case TargetOpcode::G_SMULH:
2943     return lowerSMULH_UMULH(MI);
2944   case TargetOpcode::G_SMULO:
2945   case TargetOpcode::G_UMULO: {
2946     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2947     // result.
2948     Register Res = MI.getOperand(0).getReg();
2949     Register Overflow = MI.getOperand(1).getReg();
2950     Register LHS = MI.getOperand(2).getReg();
2951     Register RHS = MI.getOperand(3).getReg();
2952     LLT Ty = MRI.getType(Res);
2953 
2954     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2955                           ? TargetOpcode::G_SMULH
2956                           : TargetOpcode::G_UMULH;
2957 
2958     Observer.changingInstr(MI);
2959     const auto &TII = MIRBuilder.getTII();
2960     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2961     MI.RemoveOperand(1);
2962     Observer.changedInstr(MI);
2963 
2964     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2965     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2966 
2967     // Move insert point forward so we can use the Res register if needed.
2968     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2969 
2970     // For *signed* multiply, overflow is detected by checking:
2971     // (hi != (lo >> bitwidth-1))
2972     if (Opcode == TargetOpcode::G_SMULH) {
2973       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2974       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2975       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2976     } else {
2977       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2978     }
2979     return Legalized;
2980   }
2981   case TargetOpcode::G_FNEG: {
2982     Register Res = MI.getOperand(0).getReg();
2983     LLT Ty = MRI.getType(Res);
2984 
2985     // TODO: Handle vector types once we are able to
2986     // represent them.
2987     if (Ty.isVector())
2988       return UnableToLegalize;
2989     auto SignMask =
2990         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2991     Register SubByReg = MI.getOperand(1).getReg();
2992     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2993     MI.eraseFromParent();
2994     return Legalized;
2995   }
2996   case TargetOpcode::G_FSUB: {
2997     Register Res = MI.getOperand(0).getReg();
2998     LLT Ty = MRI.getType(Res);
2999 
3000     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3001     // First, check if G_FNEG is marked as Lower. If so, we may
3002     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3003     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3004       return UnableToLegalize;
3005     Register LHS = MI.getOperand(1).getReg();
3006     Register RHS = MI.getOperand(2).getReg();
3007     Register Neg = MRI.createGenericVirtualRegister(Ty);
3008     MIRBuilder.buildFNeg(Neg, RHS);
3009     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3010     MI.eraseFromParent();
3011     return Legalized;
3012   }
3013   case TargetOpcode::G_FMAD:
3014     return lowerFMad(MI);
3015   case TargetOpcode::G_FFLOOR:
3016     return lowerFFloor(MI);
3017   case TargetOpcode::G_INTRINSIC_ROUND:
3018     return lowerIntrinsicRound(MI);
3019   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3020     // Since round even is the assumed rounding mode for unconstrained FP
3021     // operations, rint and roundeven are the same operation.
3022     changeOpcode(MI, TargetOpcode::G_FRINT);
3023     return Legalized;
3024   }
3025   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3026     Register OldValRes = MI.getOperand(0).getReg();
3027     Register SuccessRes = MI.getOperand(1).getReg();
3028     Register Addr = MI.getOperand(2).getReg();
3029     Register CmpVal = MI.getOperand(3).getReg();
3030     Register NewVal = MI.getOperand(4).getReg();
3031     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3032                                   **MI.memoperands_begin());
3033     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3034     MI.eraseFromParent();
3035     return Legalized;
3036   }
3037   case TargetOpcode::G_LOAD:
3038   case TargetOpcode::G_SEXTLOAD:
3039   case TargetOpcode::G_ZEXTLOAD:
3040     return lowerLoad(MI);
3041   case TargetOpcode::G_STORE:
3042     return lowerStore(MI);
3043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3044   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3045   case TargetOpcode::G_CTLZ:
3046   case TargetOpcode::G_CTTZ:
3047   case TargetOpcode::G_CTPOP:
3048     return lowerBitCount(MI);
3049   case G_UADDO: {
3050     Register Res = MI.getOperand(0).getReg();
3051     Register CarryOut = MI.getOperand(1).getReg();
3052     Register LHS = MI.getOperand(2).getReg();
3053     Register RHS = MI.getOperand(3).getReg();
3054 
3055     MIRBuilder.buildAdd(Res, LHS, RHS);
3056     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3057 
3058     MI.eraseFromParent();
3059     return Legalized;
3060   }
3061   case G_UADDE: {
3062     Register Res = MI.getOperand(0).getReg();
3063     Register CarryOut = MI.getOperand(1).getReg();
3064     Register LHS = MI.getOperand(2).getReg();
3065     Register RHS = MI.getOperand(3).getReg();
3066     Register CarryIn = MI.getOperand(4).getReg();
3067     LLT Ty = MRI.getType(Res);
3068 
3069     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3070     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3071     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3072     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3073 
3074     MI.eraseFromParent();
3075     return Legalized;
3076   }
3077   case G_USUBO: {
3078     Register Res = MI.getOperand(0).getReg();
3079     Register BorrowOut = MI.getOperand(1).getReg();
3080     Register LHS = MI.getOperand(2).getReg();
3081     Register RHS = MI.getOperand(3).getReg();
3082 
3083     MIRBuilder.buildSub(Res, LHS, RHS);
3084     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3085 
3086     MI.eraseFromParent();
3087     return Legalized;
3088   }
3089   case G_USUBE: {
3090     Register Res = MI.getOperand(0).getReg();
3091     Register BorrowOut = MI.getOperand(1).getReg();
3092     Register LHS = MI.getOperand(2).getReg();
3093     Register RHS = MI.getOperand(3).getReg();
3094     Register BorrowIn = MI.getOperand(4).getReg();
3095     const LLT CondTy = MRI.getType(BorrowOut);
3096     const LLT Ty = MRI.getType(Res);
3097 
3098     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3099     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3100     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3101 
3102     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3103     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3104     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3105 
3106     MI.eraseFromParent();
3107     return Legalized;
3108   }
3109   case G_UITOFP:
3110     return lowerUITOFP(MI);
3111   case G_SITOFP:
3112     return lowerSITOFP(MI);
3113   case G_FPTOUI:
3114     return lowerFPTOUI(MI);
3115   case G_FPTOSI:
3116     return lowerFPTOSI(MI);
3117   case G_FPTRUNC:
3118     return lowerFPTRUNC(MI);
3119   case G_FPOWI:
3120     return lowerFPOWI(MI);
3121   case G_SMIN:
3122   case G_SMAX:
3123   case G_UMIN:
3124   case G_UMAX:
3125     return lowerMinMax(MI);
3126   case G_FCOPYSIGN:
3127     return lowerFCopySign(MI);
3128   case G_FMINNUM:
3129   case G_FMAXNUM:
3130     return lowerFMinNumMaxNum(MI);
3131   case G_MERGE_VALUES:
3132     return lowerMergeValues(MI);
3133   case G_UNMERGE_VALUES:
3134     return lowerUnmergeValues(MI);
3135   case TargetOpcode::G_SEXT_INREG: {
3136     assert(MI.getOperand(2).isImm() && "Expected immediate");
3137     int64_t SizeInBits = MI.getOperand(2).getImm();
3138 
3139     Register DstReg = MI.getOperand(0).getReg();
3140     Register SrcReg = MI.getOperand(1).getReg();
3141     LLT DstTy = MRI.getType(DstReg);
3142     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3143 
3144     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3145     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3146     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3147     MI.eraseFromParent();
3148     return Legalized;
3149   }
3150   case G_EXTRACT_VECTOR_ELT:
3151   case G_INSERT_VECTOR_ELT:
3152     return lowerExtractInsertVectorElt(MI);
3153   case G_SHUFFLE_VECTOR:
3154     return lowerShuffleVector(MI);
3155   case G_DYN_STACKALLOC:
3156     return lowerDynStackAlloc(MI);
3157   case G_EXTRACT:
3158     return lowerExtract(MI);
3159   case G_INSERT:
3160     return lowerInsert(MI);
3161   case G_BSWAP:
3162     return lowerBswap(MI);
3163   case G_BITREVERSE:
3164     return lowerBitreverse(MI);
3165   case G_READ_REGISTER:
3166   case G_WRITE_REGISTER:
3167     return lowerReadWriteRegister(MI);
3168   case G_UADDSAT:
3169   case G_USUBSAT: {
3170     // Try to make a reasonable guess about which lowering strategy to use. The
3171     // target can override this with custom lowering and calling the
3172     // implementation functions.
3173     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3174     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3175       return lowerAddSubSatToMinMax(MI);
3176     return lowerAddSubSatToAddoSubo(MI);
3177   }
3178   case G_SADDSAT:
3179   case G_SSUBSAT: {
3180     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3181 
3182     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3183     // since it's a shorter expansion. However, we would need to figure out the
3184     // preferred boolean type for the carry out for the query.
3185     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3186       return lowerAddSubSatToMinMax(MI);
3187     return lowerAddSubSatToAddoSubo(MI);
3188   }
3189   case G_SSHLSAT:
3190   case G_USHLSAT:
3191     return lowerShlSat(MI);
3192   case G_ABS: {
3193     // Expand %res = G_ABS %a into:
3194     // %v1 = G_ASHR %a, scalar_size-1
3195     // %v2 = G_ADD %a, %v1
3196     // %res = G_XOR %v2, %v1
3197     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3198     Register OpReg = MI.getOperand(1).getReg();
3199     auto ShiftAmt =
3200         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3201     auto Shift =
3202         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3203     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3204     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3205     MI.eraseFromParent();
3206     return Legalized;
3207   }
3208   case G_SELECT:
3209     return lowerSelect(MI);
3210   case G_SDIVREM:
3211   case G_UDIVREM:
3212     return lowerDIVREM(MI);
3213   case G_FSHL:
3214   case G_FSHR:
3215     return lowerFunnelShift(MI);
3216   }
3217 }
3218 
3219 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3220                                                   Align MinAlign) const {
3221   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3222   // datalayout for the preferred alignment. Also there should be a target hook
3223   // for this to allow targets to reduce the alignment and ignore the
3224   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3225   // the type.
3226   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3227 }
3228 
3229 MachineInstrBuilder
3230 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3231                                       MachinePointerInfo &PtrInfo) {
3232   MachineFunction &MF = MIRBuilder.getMF();
3233   const DataLayout &DL = MIRBuilder.getDataLayout();
3234   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3235 
3236   unsigned AddrSpace = DL.getAllocaAddrSpace();
3237   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3238 
3239   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3240   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3241 }
3242 
3243 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3244                                         LLT VecTy) {
3245   int64_t IdxVal;
3246   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3247     return IdxReg;
3248 
3249   LLT IdxTy = B.getMRI()->getType(IdxReg);
3250   unsigned NElts = VecTy.getNumElements();
3251   if (isPowerOf2_32(NElts)) {
3252     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3253     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3254   }
3255 
3256   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3257       .getReg(0);
3258 }
3259 
3260 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3261                                                   Register Index) {
3262   LLT EltTy = VecTy.getElementType();
3263 
3264   // Calculate the element offset and add it to the pointer.
3265   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3266   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3267          "Converting bits to bytes lost precision");
3268 
3269   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3270 
3271   LLT IdxTy = MRI.getType(Index);
3272   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3273                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3274 
3275   LLT PtrTy = MRI.getType(VecPtr);
3276   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3277 }
3278 
3279 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3280     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3281   Register DstReg = MI.getOperand(0).getReg();
3282   LLT DstTy = MRI.getType(DstReg);
3283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3284 
3285   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3286 
3287   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3288   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3289 
3290   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3291   MI.eraseFromParent();
3292   return Legalized;
3293 }
3294 
3295 // Handle splitting vector operations which need to have the same number of
3296 // elements in each type index, but each type index may have a different element
3297 // type.
3298 //
3299 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3300 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3301 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3302 //
3303 // Also handles some irregular breakdown cases, e.g.
3304 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3305 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3306 //             s64 = G_SHL s64, s32
3307 LegalizerHelper::LegalizeResult
3308 LegalizerHelper::fewerElementsVectorMultiEltType(
3309   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3310   if (TypeIdx != 0)
3311     return UnableToLegalize;
3312 
3313   const LLT NarrowTy0 = NarrowTyArg;
3314   const unsigned NewNumElts =
3315       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3316 
3317   const Register DstReg = MI.getOperand(0).getReg();
3318   LLT DstTy = MRI.getType(DstReg);
3319   LLT LeftoverTy0;
3320 
3321   // All of the operands need to have the same number of elements, so if we can
3322   // determine a type breakdown for the result type, we can for all of the
3323   // source types.
3324   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3325   if (NumParts < 0)
3326     return UnableToLegalize;
3327 
3328   SmallVector<MachineInstrBuilder, 4> NewInsts;
3329 
3330   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3331   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3332 
3333   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3334     Register SrcReg = MI.getOperand(I).getReg();
3335     LLT SrcTyI = MRI.getType(SrcReg);
3336     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3337     LLT LeftoverTyI;
3338 
3339     // Split this operand into the requested typed registers, and any leftover
3340     // required to reproduce the original type.
3341     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3342                       LeftoverRegs))
3343       return UnableToLegalize;
3344 
3345     if (I == 1) {
3346       // For the first operand, create an instruction for each part and setup
3347       // the result.
3348       for (Register PartReg : PartRegs) {
3349         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3350         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3351                                .addDef(PartDstReg)
3352                                .addUse(PartReg));
3353         DstRegs.push_back(PartDstReg);
3354       }
3355 
3356       for (Register LeftoverReg : LeftoverRegs) {
3357         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3358         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3359                                .addDef(PartDstReg)
3360                                .addUse(LeftoverReg));
3361         LeftoverDstRegs.push_back(PartDstReg);
3362       }
3363     } else {
3364       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3365 
3366       // Add the newly created operand splits to the existing instructions. The
3367       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3368       // pieces.
3369       unsigned InstCount = 0;
3370       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3371         NewInsts[InstCount++].addUse(PartRegs[J]);
3372       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3373         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3374     }
3375 
3376     PartRegs.clear();
3377     LeftoverRegs.clear();
3378   }
3379 
3380   // Insert the newly built operations and rebuild the result register.
3381   for (auto &MIB : NewInsts)
3382     MIRBuilder.insertInstr(MIB);
3383 
3384   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3385 
3386   MI.eraseFromParent();
3387   return Legalized;
3388 }
3389 
3390 LegalizerHelper::LegalizeResult
3391 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3392                                           LLT NarrowTy) {
3393   if (TypeIdx != 0)
3394     return UnableToLegalize;
3395 
3396   Register DstReg = MI.getOperand(0).getReg();
3397   Register SrcReg = MI.getOperand(1).getReg();
3398   LLT DstTy = MRI.getType(DstReg);
3399   LLT SrcTy = MRI.getType(SrcReg);
3400 
3401   LLT NarrowTy0 = NarrowTy;
3402   LLT NarrowTy1;
3403   unsigned NumParts;
3404 
3405   if (NarrowTy.isVector()) {
3406     // Uneven breakdown not handled.
3407     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3408     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3409       return UnableToLegalize;
3410 
3411     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3412   } else {
3413     NumParts = DstTy.getNumElements();
3414     NarrowTy1 = SrcTy.getElementType();
3415   }
3416 
3417   SmallVector<Register, 4> SrcRegs, DstRegs;
3418   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3419 
3420   for (unsigned I = 0; I < NumParts; ++I) {
3421     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3422     MachineInstr *NewInst =
3423         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3424 
3425     NewInst->setFlags(MI.getFlags());
3426     DstRegs.push_back(DstReg);
3427   }
3428 
3429   if (NarrowTy.isVector())
3430     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3431   else
3432     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3433 
3434   MI.eraseFromParent();
3435   return Legalized;
3436 }
3437 
3438 LegalizerHelper::LegalizeResult
3439 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3440                                         LLT NarrowTy) {
3441   Register DstReg = MI.getOperand(0).getReg();
3442   Register Src0Reg = MI.getOperand(2).getReg();
3443   LLT DstTy = MRI.getType(DstReg);
3444   LLT SrcTy = MRI.getType(Src0Reg);
3445 
3446   unsigned NumParts;
3447   LLT NarrowTy0, NarrowTy1;
3448 
3449   if (TypeIdx == 0) {
3450     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3451     unsigned OldElts = DstTy.getNumElements();
3452 
3453     NarrowTy0 = NarrowTy;
3454     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3455     NarrowTy1 = NarrowTy.isVector() ?
3456       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3457       SrcTy.getElementType();
3458 
3459   } else {
3460     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3461     unsigned OldElts = SrcTy.getNumElements();
3462 
3463     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3464       NarrowTy.getNumElements();
3465     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3466                             DstTy.getScalarSizeInBits());
3467     NarrowTy1 = NarrowTy;
3468   }
3469 
3470   // FIXME: Don't know how to handle the situation where the small vectors
3471   // aren't all the same size yet.
3472   if (NarrowTy1.isVector() &&
3473       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3474     return UnableToLegalize;
3475 
3476   CmpInst::Predicate Pred
3477     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3478 
3479   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3480   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3481   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3482 
3483   for (unsigned I = 0; I < NumParts; ++I) {
3484     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3485     DstRegs.push_back(DstReg);
3486 
3487     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3488       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3489     else {
3490       MachineInstr *NewCmp
3491         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3492       NewCmp->setFlags(MI.getFlags());
3493     }
3494   }
3495 
3496   if (NarrowTy1.isVector())
3497     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3498   else
3499     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3500 
3501   MI.eraseFromParent();
3502   return Legalized;
3503 }
3504 
3505 LegalizerHelper::LegalizeResult
3506 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3507                                            LLT NarrowTy) {
3508   Register DstReg = MI.getOperand(0).getReg();
3509   Register CondReg = MI.getOperand(1).getReg();
3510 
3511   unsigned NumParts = 0;
3512   LLT NarrowTy0, NarrowTy1;
3513 
3514   LLT DstTy = MRI.getType(DstReg);
3515   LLT CondTy = MRI.getType(CondReg);
3516   unsigned Size = DstTy.getSizeInBits();
3517 
3518   assert(TypeIdx == 0 || CondTy.isVector());
3519 
3520   if (TypeIdx == 0) {
3521     NarrowTy0 = NarrowTy;
3522     NarrowTy1 = CondTy;
3523 
3524     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3525     // FIXME: Don't know how to handle the situation where the small vectors
3526     // aren't all the same size yet.
3527     if (Size % NarrowSize != 0)
3528       return UnableToLegalize;
3529 
3530     NumParts = Size / NarrowSize;
3531 
3532     // Need to break down the condition type
3533     if (CondTy.isVector()) {
3534       if (CondTy.getNumElements() == NumParts)
3535         NarrowTy1 = CondTy.getElementType();
3536       else
3537         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3538                                 CondTy.getScalarSizeInBits());
3539     }
3540   } else {
3541     NumParts = CondTy.getNumElements();
3542     if (NarrowTy.isVector()) {
3543       // TODO: Handle uneven breakdown.
3544       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3545         return UnableToLegalize;
3546 
3547       return UnableToLegalize;
3548     } else {
3549       NarrowTy0 = DstTy.getElementType();
3550       NarrowTy1 = NarrowTy;
3551     }
3552   }
3553 
3554   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3555   if (CondTy.isVector())
3556     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3557 
3558   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3559   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3560 
3561   for (unsigned i = 0; i < NumParts; ++i) {
3562     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3563     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3564                            Src1Regs[i], Src2Regs[i]);
3565     DstRegs.push_back(DstReg);
3566   }
3567 
3568   if (NarrowTy0.isVector())
3569     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3570   else
3571     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3572 
3573   MI.eraseFromParent();
3574   return Legalized;
3575 }
3576 
3577 LegalizerHelper::LegalizeResult
3578 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3579                                         LLT NarrowTy) {
3580   const Register DstReg = MI.getOperand(0).getReg();
3581   LLT PhiTy = MRI.getType(DstReg);
3582   LLT LeftoverTy;
3583 
3584   // All of the operands need to have the same number of elements, so if we can
3585   // determine a type breakdown for the result type, we can for all of the
3586   // source types.
3587   int NumParts, NumLeftover;
3588   std::tie(NumParts, NumLeftover)
3589     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3590   if (NumParts < 0)
3591     return UnableToLegalize;
3592 
3593   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3594   SmallVector<MachineInstrBuilder, 4> NewInsts;
3595 
3596   const int TotalNumParts = NumParts + NumLeftover;
3597 
3598   // Insert the new phis in the result block first.
3599   for (int I = 0; I != TotalNumParts; ++I) {
3600     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3601     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3602     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3603                        .addDef(PartDstReg));
3604     if (I < NumParts)
3605       DstRegs.push_back(PartDstReg);
3606     else
3607       LeftoverDstRegs.push_back(PartDstReg);
3608   }
3609 
3610   MachineBasicBlock *MBB = MI.getParent();
3611   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3612   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3613 
3614   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3615 
3616   // Insert code to extract the incoming values in each predecessor block.
3617   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3618     PartRegs.clear();
3619     LeftoverRegs.clear();
3620 
3621     Register SrcReg = MI.getOperand(I).getReg();
3622     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3623     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3624 
3625     LLT Unused;
3626     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3627                       LeftoverRegs))
3628       return UnableToLegalize;
3629 
3630     // Add the newly created operand splits to the existing instructions. The
3631     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3632     // pieces.
3633     for (int J = 0; J != TotalNumParts; ++J) {
3634       MachineInstrBuilder MIB = NewInsts[J];
3635       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3636       MIB.addMBB(&OpMBB);
3637     }
3638   }
3639 
3640   MI.eraseFromParent();
3641   return Legalized;
3642 }
3643 
3644 LegalizerHelper::LegalizeResult
3645 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3646                                                   unsigned TypeIdx,
3647                                                   LLT NarrowTy) {
3648   if (TypeIdx != 1)
3649     return UnableToLegalize;
3650 
3651   const int NumDst = MI.getNumOperands() - 1;
3652   const Register SrcReg = MI.getOperand(NumDst).getReg();
3653   LLT SrcTy = MRI.getType(SrcReg);
3654 
3655   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3656 
3657   // TODO: Create sequence of extracts.
3658   if (DstTy == NarrowTy)
3659     return UnableToLegalize;
3660 
3661   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3662   if (DstTy == GCDTy) {
3663     // This would just be a copy of the same unmerge.
3664     // TODO: Create extracts, pad with undef and create intermediate merges.
3665     return UnableToLegalize;
3666   }
3667 
3668   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3669   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3670   const int PartsPerUnmerge = NumDst / NumUnmerge;
3671 
3672   for (int I = 0; I != NumUnmerge; ++I) {
3673     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3674 
3675     for (int J = 0; J != PartsPerUnmerge; ++J)
3676       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3677     MIB.addUse(Unmerge.getReg(I));
3678   }
3679 
3680   MI.eraseFromParent();
3681   return Legalized;
3682 }
3683 
3684 LegalizerHelper::LegalizeResult
3685 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3686                                          LLT NarrowTy) {
3687   Register Result = MI.getOperand(0).getReg();
3688   Register Overflow = MI.getOperand(1).getReg();
3689   Register LHS = MI.getOperand(2).getReg();
3690   Register RHS = MI.getOperand(3).getReg();
3691 
3692   LLT SrcTy = MRI.getType(LHS);
3693   if (!SrcTy.isVector())
3694     return UnableToLegalize;
3695 
3696   LLT ElementType = SrcTy.getElementType();
3697   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3698   const int NumResult = SrcTy.getNumElements();
3699   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3700 
3701   // Unmerge the operands to smaller parts of GCD type.
3702   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3703   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3704 
3705   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3706   const int PartsPerUnmerge = NumResult / NumOps;
3707   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3708   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3709 
3710   // Perform the operation over unmerged parts.
3711   SmallVector<Register, 8> ResultParts;
3712   SmallVector<Register, 8> OverflowParts;
3713   for (int I = 0; I != NumOps; ++I) {
3714     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3715     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3716     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3717                                          {Operand1, Operand2});
3718     ResultParts.push_back(PartMul->getOperand(0).getReg());
3719     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3720   }
3721 
3722   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3723   LLT OverflowLCMTy =
3724       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3725 
3726   // Recombine the pieces to the original result and overflow registers.
3727   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3728   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3729   MI.eraseFromParent();
3730   return Legalized;
3731 }
3732 
3733 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3734 // a vector
3735 //
3736 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3737 // undef as necessary.
3738 //
3739 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3740 //   -> <2 x s16>
3741 //
3742 // %4:_(s16) = G_IMPLICIT_DEF
3743 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3744 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3745 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3746 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3747 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3748 LegalizerHelper::LegalizeResult
3749 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3750                                           LLT NarrowTy) {
3751   Register DstReg = MI.getOperand(0).getReg();
3752   LLT DstTy = MRI.getType(DstReg);
3753   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3754   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3755 
3756   // Break into a common type
3757   SmallVector<Register, 16> Parts;
3758   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3759     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3760 
3761   // Build the requested new merge, padding with undef.
3762   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3763                                   TargetOpcode::G_ANYEXT);
3764 
3765   // Pack into the original result register.
3766   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3767 
3768   MI.eraseFromParent();
3769   return Legalized;
3770 }
3771 
3772 LegalizerHelper::LegalizeResult
3773 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3774                                                            unsigned TypeIdx,
3775                                                            LLT NarrowVecTy) {
3776   Register DstReg = MI.getOperand(0).getReg();
3777   Register SrcVec = MI.getOperand(1).getReg();
3778   Register InsertVal;
3779   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3780 
3781   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3782   if (IsInsert)
3783     InsertVal = MI.getOperand(2).getReg();
3784 
3785   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3786 
3787   // TODO: Handle total scalarization case.
3788   if (!NarrowVecTy.isVector())
3789     return UnableToLegalize;
3790 
3791   LLT VecTy = MRI.getType(SrcVec);
3792 
3793   // If the index is a constant, we can really break this down as you would
3794   // expect, and index into the target size pieces.
3795   int64_t IdxVal;
3796   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3797     // Avoid out of bounds indexing the pieces.
3798     if (IdxVal >= VecTy.getNumElements()) {
3799       MIRBuilder.buildUndef(DstReg);
3800       MI.eraseFromParent();
3801       return Legalized;
3802     }
3803 
3804     SmallVector<Register, 8> VecParts;
3805     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3806 
3807     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3808     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3809                                     TargetOpcode::G_ANYEXT);
3810 
3811     unsigned NewNumElts = NarrowVecTy.getNumElements();
3812 
3813     LLT IdxTy = MRI.getType(Idx);
3814     int64_t PartIdx = IdxVal / NewNumElts;
3815     auto NewIdx =
3816         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3817 
3818     if (IsInsert) {
3819       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3820 
3821       // Use the adjusted index to insert into one of the subvectors.
3822       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3823           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3824       VecParts[PartIdx] = InsertPart.getReg(0);
3825 
3826       // Recombine the inserted subvector with the others to reform the result
3827       // vector.
3828       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3829     } else {
3830       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3831     }
3832 
3833     MI.eraseFromParent();
3834     return Legalized;
3835   }
3836 
3837   // With a variable index, we can't perform the operation in a smaller type, so
3838   // we're forced to expand this.
3839   //
3840   // TODO: We could emit a chain of compare/select to figure out which piece to
3841   // index.
3842   return lowerExtractInsertVectorElt(MI);
3843 }
3844 
3845 LegalizerHelper::LegalizeResult
3846 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3847                                       LLT NarrowTy) {
3848   // FIXME: Don't know how to handle secondary types yet.
3849   if (TypeIdx != 0)
3850     return UnableToLegalize;
3851 
3852   MachineMemOperand *MMO = *MI.memoperands_begin();
3853 
3854   // This implementation doesn't work for atomics. Give up instead of doing
3855   // something invalid.
3856   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3857       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3858     return UnableToLegalize;
3859 
3860   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3861   Register ValReg = MI.getOperand(0).getReg();
3862   Register AddrReg = MI.getOperand(1).getReg();
3863   LLT ValTy = MRI.getType(ValReg);
3864 
3865   // FIXME: Do we need a distinct NarrowMemory legalize action?
3866   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3867     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3868     return UnableToLegalize;
3869   }
3870 
3871   int NumParts = -1;
3872   int NumLeftover = -1;
3873   LLT LeftoverTy;
3874   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3875   if (IsLoad) {
3876     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3877   } else {
3878     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3879                      NarrowLeftoverRegs)) {
3880       NumParts = NarrowRegs.size();
3881       NumLeftover = NarrowLeftoverRegs.size();
3882     }
3883   }
3884 
3885   if (NumParts == -1)
3886     return UnableToLegalize;
3887 
3888   LLT PtrTy = MRI.getType(AddrReg);
3889   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3890 
3891   unsigned TotalSize = ValTy.getSizeInBits();
3892 
3893   // Split the load/store into PartTy sized pieces starting at Offset. If this
3894   // is a load, return the new registers in ValRegs. For a store, each elements
3895   // of ValRegs should be PartTy. Returns the next offset that needs to be
3896   // handled.
3897   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3898                              unsigned Offset) -> unsigned {
3899     MachineFunction &MF = MIRBuilder.getMF();
3900     unsigned PartSize = PartTy.getSizeInBits();
3901     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3902          Offset += PartSize, ++Idx) {
3903       unsigned ByteSize = PartSize / 8;
3904       unsigned ByteOffset = Offset / 8;
3905       Register NewAddrReg;
3906 
3907       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3908 
3909       MachineMemOperand *NewMMO =
3910         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3911 
3912       if (IsLoad) {
3913         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3914         ValRegs.push_back(Dst);
3915         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3916       } else {
3917         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3918       }
3919     }
3920 
3921     return Offset;
3922   };
3923 
3924   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3925 
3926   // Handle the rest of the register if this isn't an even type breakdown.
3927   if (LeftoverTy.isValid())
3928     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3929 
3930   if (IsLoad) {
3931     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3932                 LeftoverTy, NarrowLeftoverRegs);
3933   }
3934 
3935   MI.eraseFromParent();
3936   return Legalized;
3937 }
3938 
3939 LegalizerHelper::LegalizeResult
3940 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3941                                       LLT NarrowTy) {
3942   assert(TypeIdx == 0 && "only one type index expected");
3943 
3944   const unsigned Opc = MI.getOpcode();
3945   const int NumOps = MI.getNumOperands() - 1;
3946   const Register DstReg = MI.getOperand(0).getReg();
3947   const unsigned Flags = MI.getFlags();
3948   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3949   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3950 
3951   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3952 
3953   // First of all check whether we are narrowing (changing the element type)
3954   // or reducing the vector elements
3955   const LLT DstTy = MRI.getType(DstReg);
3956   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3957 
3958   SmallVector<Register, 8> ExtractedRegs[3];
3959   SmallVector<Register, 8> Parts;
3960 
3961   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3962 
3963   // Break down all the sources into NarrowTy pieces we can operate on. This may
3964   // involve creating merges to a wider type, padded with undef.
3965   for (int I = 0; I != NumOps; ++I) {
3966     Register SrcReg = MI.getOperand(I + 1).getReg();
3967     LLT SrcTy = MRI.getType(SrcReg);
3968 
3969     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3970     // For fewerElements, this is a smaller vector with the same element type.
3971     LLT OpNarrowTy;
3972     if (IsNarrow) {
3973       OpNarrowTy = NarrowScalarTy;
3974 
3975       // In case of narrowing, we need to cast vectors to scalars for this to
3976       // work properly
3977       // FIXME: Can we do without the bitcast here if we're narrowing?
3978       if (SrcTy.isVector()) {
3979         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3980         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3981       }
3982     } else {
3983       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3984     }
3985 
3986     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3987 
3988     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3989     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3990                         TargetOpcode::G_ANYEXT);
3991   }
3992 
3993   SmallVector<Register, 8> ResultRegs;
3994 
3995   // Input operands for each sub-instruction.
3996   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3997 
3998   int NumParts = ExtractedRegs[0].size();
3999   const unsigned DstSize = DstTy.getSizeInBits();
4000   const LLT DstScalarTy = LLT::scalar(DstSize);
4001 
4002   // Narrowing needs to use scalar types
4003   LLT DstLCMTy, NarrowDstTy;
4004   if (IsNarrow) {
4005     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4006     NarrowDstTy = NarrowScalarTy;
4007   } else {
4008     DstLCMTy = getLCMType(DstTy, NarrowTy);
4009     NarrowDstTy = NarrowTy;
4010   }
4011 
4012   // We widened the source registers to satisfy merge/unmerge size
4013   // constraints. We'll have some extra fully undef parts.
4014   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4015 
4016   for (int I = 0; I != NumRealParts; ++I) {
4017     // Emit this instruction on each of the split pieces.
4018     for (int J = 0; J != NumOps; ++J)
4019       InputRegs[J] = ExtractedRegs[J][I];
4020 
4021     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4022     ResultRegs.push_back(Inst.getReg(0));
4023   }
4024 
4025   // Fill out the widened result with undef instead of creating instructions
4026   // with undef inputs.
4027   int NumUndefParts = NumParts - NumRealParts;
4028   if (NumUndefParts != 0)
4029     ResultRegs.append(NumUndefParts,
4030                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
4031 
4032   // Extract the possibly padded result. Use a scratch register if we need to do
4033   // a final bitcast, otherwise use the original result register.
4034   Register MergeDstReg;
4035   if (IsNarrow && DstTy.isVector())
4036     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4037   else
4038     MergeDstReg = DstReg;
4039 
4040   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
4041 
4042   // Recast to vector if we narrowed a vector
4043   if (IsNarrow && DstTy.isVector())
4044     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
4045 
4046   MI.eraseFromParent();
4047   return Legalized;
4048 }
4049 
4050 LegalizerHelper::LegalizeResult
4051 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4052                                               LLT NarrowTy) {
4053   Register DstReg = MI.getOperand(0).getReg();
4054   Register SrcReg = MI.getOperand(1).getReg();
4055   int64_t Imm = MI.getOperand(2).getImm();
4056 
4057   LLT DstTy = MRI.getType(DstReg);
4058 
4059   SmallVector<Register, 8> Parts;
4060   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4061   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4062 
4063   for (Register &R : Parts)
4064     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4065 
4066   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4067 
4068   MI.eraseFromParent();
4069   return Legalized;
4070 }
4071 
4072 LegalizerHelper::LegalizeResult
4073 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4074                                      LLT NarrowTy) {
4075   using namespace TargetOpcode;
4076 
4077   switch (MI.getOpcode()) {
4078   case G_IMPLICIT_DEF:
4079     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4080   case G_TRUNC:
4081   case G_AND:
4082   case G_OR:
4083   case G_XOR:
4084   case G_ADD:
4085   case G_SUB:
4086   case G_MUL:
4087   case G_PTR_ADD:
4088   case G_SMULH:
4089   case G_UMULH:
4090   case G_FADD:
4091   case G_FMUL:
4092   case G_FSUB:
4093   case G_FNEG:
4094   case G_FABS:
4095   case G_FCANONICALIZE:
4096   case G_FDIV:
4097   case G_FREM:
4098   case G_FMA:
4099   case G_FMAD:
4100   case G_FPOW:
4101   case G_FEXP:
4102   case G_FEXP2:
4103   case G_FLOG:
4104   case G_FLOG2:
4105   case G_FLOG10:
4106   case G_FNEARBYINT:
4107   case G_FCEIL:
4108   case G_FFLOOR:
4109   case G_FRINT:
4110   case G_INTRINSIC_ROUND:
4111   case G_INTRINSIC_ROUNDEVEN:
4112   case G_INTRINSIC_TRUNC:
4113   case G_FCOS:
4114   case G_FSIN:
4115   case G_FSQRT:
4116   case G_BSWAP:
4117   case G_BITREVERSE:
4118   case G_SDIV:
4119   case G_UDIV:
4120   case G_SREM:
4121   case G_UREM:
4122   case G_SMIN:
4123   case G_SMAX:
4124   case G_UMIN:
4125   case G_UMAX:
4126   case G_FMINNUM:
4127   case G_FMAXNUM:
4128   case G_FMINNUM_IEEE:
4129   case G_FMAXNUM_IEEE:
4130   case G_FMINIMUM:
4131   case G_FMAXIMUM:
4132   case G_FSHL:
4133   case G_FSHR:
4134   case G_FREEZE:
4135   case G_SADDSAT:
4136   case G_SSUBSAT:
4137   case G_UADDSAT:
4138   case G_USUBSAT:
4139     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4140   case G_UMULO:
4141   case G_SMULO:
4142     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4143   case G_SHL:
4144   case G_LSHR:
4145   case G_ASHR:
4146   case G_SSHLSAT:
4147   case G_USHLSAT:
4148   case G_CTLZ:
4149   case G_CTLZ_ZERO_UNDEF:
4150   case G_CTTZ:
4151   case G_CTTZ_ZERO_UNDEF:
4152   case G_CTPOP:
4153   case G_FCOPYSIGN:
4154     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4155   case G_ZEXT:
4156   case G_SEXT:
4157   case G_ANYEXT:
4158   case G_FPEXT:
4159   case G_FPTRUNC:
4160   case G_SITOFP:
4161   case G_UITOFP:
4162   case G_FPTOSI:
4163   case G_FPTOUI:
4164   case G_INTTOPTR:
4165   case G_PTRTOINT:
4166   case G_ADDRSPACE_CAST:
4167     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4168   case G_ICMP:
4169   case G_FCMP:
4170     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4171   case G_SELECT:
4172     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4173   case G_PHI:
4174     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4175   case G_UNMERGE_VALUES:
4176     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4177   case G_BUILD_VECTOR:
4178     assert(TypeIdx == 0 && "not a vector type index");
4179     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4180   case G_CONCAT_VECTORS:
4181     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4182       return UnableToLegalize;
4183     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4184   case G_EXTRACT_VECTOR_ELT:
4185   case G_INSERT_VECTOR_ELT:
4186     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4187   case G_LOAD:
4188   case G_STORE:
4189     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4190   case G_SEXT_INREG:
4191     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4192   default:
4193     return UnableToLegalize;
4194   }
4195 }
4196 
4197 LegalizerHelper::LegalizeResult
4198 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4199                                              const LLT HalfTy, const LLT AmtTy) {
4200 
4201   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4202   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4203   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4204 
4205   if (Amt.isNullValue()) {
4206     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4207     MI.eraseFromParent();
4208     return Legalized;
4209   }
4210 
4211   LLT NVT = HalfTy;
4212   unsigned NVTBits = HalfTy.getSizeInBits();
4213   unsigned VTBits = 2 * NVTBits;
4214 
4215   SrcOp Lo(Register(0)), Hi(Register(0));
4216   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4217     if (Amt.ugt(VTBits)) {
4218       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4219     } else if (Amt.ugt(NVTBits)) {
4220       Lo = MIRBuilder.buildConstant(NVT, 0);
4221       Hi = MIRBuilder.buildShl(NVT, InL,
4222                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4223     } else if (Amt == NVTBits) {
4224       Lo = MIRBuilder.buildConstant(NVT, 0);
4225       Hi = InL;
4226     } else {
4227       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4228       auto OrLHS =
4229           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4230       auto OrRHS = MIRBuilder.buildLShr(
4231           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4232       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4233     }
4234   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4235     if (Amt.ugt(VTBits)) {
4236       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4237     } else if (Amt.ugt(NVTBits)) {
4238       Lo = MIRBuilder.buildLShr(NVT, InH,
4239                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4240       Hi = MIRBuilder.buildConstant(NVT, 0);
4241     } else if (Amt == NVTBits) {
4242       Lo = InH;
4243       Hi = MIRBuilder.buildConstant(NVT, 0);
4244     } else {
4245       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4246 
4247       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4248       auto OrRHS = MIRBuilder.buildShl(
4249           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4250 
4251       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4252       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4253     }
4254   } else {
4255     if (Amt.ugt(VTBits)) {
4256       Hi = Lo = MIRBuilder.buildAShr(
4257           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4258     } else if (Amt.ugt(NVTBits)) {
4259       Lo = MIRBuilder.buildAShr(NVT, InH,
4260                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4261       Hi = MIRBuilder.buildAShr(NVT, InH,
4262                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4263     } else if (Amt == NVTBits) {
4264       Lo = InH;
4265       Hi = MIRBuilder.buildAShr(NVT, InH,
4266                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4267     } else {
4268       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4269 
4270       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4271       auto OrRHS = MIRBuilder.buildShl(
4272           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4273 
4274       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4275       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4276     }
4277   }
4278 
4279   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4280   MI.eraseFromParent();
4281 
4282   return Legalized;
4283 }
4284 
4285 // TODO: Optimize if constant shift amount.
4286 LegalizerHelper::LegalizeResult
4287 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4288                                    LLT RequestedTy) {
4289   if (TypeIdx == 1) {
4290     Observer.changingInstr(MI);
4291     narrowScalarSrc(MI, RequestedTy, 2);
4292     Observer.changedInstr(MI);
4293     return Legalized;
4294   }
4295 
4296   Register DstReg = MI.getOperand(0).getReg();
4297   LLT DstTy = MRI.getType(DstReg);
4298   if (DstTy.isVector())
4299     return UnableToLegalize;
4300 
4301   Register Amt = MI.getOperand(2).getReg();
4302   LLT ShiftAmtTy = MRI.getType(Amt);
4303   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4304   if (DstEltSize % 2 != 0)
4305     return UnableToLegalize;
4306 
4307   // Ignore the input type. We can only go to exactly half the size of the
4308   // input. If that isn't small enough, the resulting pieces will be further
4309   // legalized.
4310   const unsigned NewBitSize = DstEltSize / 2;
4311   const LLT HalfTy = LLT::scalar(NewBitSize);
4312   const LLT CondTy = LLT::scalar(1);
4313 
4314   if (const MachineInstr *KShiftAmt =
4315           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4316     return narrowScalarShiftByConstant(
4317         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4318   }
4319 
4320   // TODO: Expand with known bits.
4321 
4322   // Handle the fully general expansion by an unknown amount.
4323   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4324 
4325   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4326   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4327   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4328 
4329   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4330   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4331 
4332   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4333   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4334   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4335 
4336   Register ResultRegs[2];
4337   switch (MI.getOpcode()) {
4338   case TargetOpcode::G_SHL: {
4339     // Short: ShAmt < NewBitSize
4340     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4341 
4342     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4343     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4344     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4345 
4346     // Long: ShAmt >= NewBitSize
4347     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4348     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4349 
4350     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4351     auto Hi = MIRBuilder.buildSelect(
4352         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4353 
4354     ResultRegs[0] = Lo.getReg(0);
4355     ResultRegs[1] = Hi.getReg(0);
4356     break;
4357   }
4358   case TargetOpcode::G_LSHR:
4359   case TargetOpcode::G_ASHR: {
4360     // Short: ShAmt < NewBitSize
4361     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4362 
4363     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4364     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4365     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4366 
4367     // Long: ShAmt >= NewBitSize
4368     MachineInstrBuilder HiL;
4369     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4370       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4371     } else {
4372       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4373       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4374     }
4375     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4376                                      {InH, AmtExcess});     // Lo from Hi part.
4377 
4378     auto Lo = MIRBuilder.buildSelect(
4379         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4380 
4381     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4382 
4383     ResultRegs[0] = Lo.getReg(0);
4384     ResultRegs[1] = Hi.getReg(0);
4385     break;
4386   }
4387   default:
4388     llvm_unreachable("not a shift");
4389   }
4390 
4391   MIRBuilder.buildMerge(DstReg, ResultRegs);
4392   MI.eraseFromParent();
4393   return Legalized;
4394 }
4395 
4396 LegalizerHelper::LegalizeResult
4397 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4398                                        LLT MoreTy) {
4399   assert(TypeIdx == 0 && "Expecting only Idx 0");
4400 
4401   Observer.changingInstr(MI);
4402   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4403     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4404     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4405     moreElementsVectorSrc(MI, MoreTy, I);
4406   }
4407 
4408   MachineBasicBlock &MBB = *MI.getParent();
4409   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4410   moreElementsVectorDst(MI, MoreTy, 0);
4411   Observer.changedInstr(MI);
4412   return Legalized;
4413 }
4414 
4415 LegalizerHelper::LegalizeResult
4416 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4417                                     LLT MoreTy) {
4418   unsigned Opc = MI.getOpcode();
4419   switch (Opc) {
4420   case TargetOpcode::G_IMPLICIT_DEF:
4421   case TargetOpcode::G_LOAD: {
4422     if (TypeIdx != 0)
4423       return UnableToLegalize;
4424     Observer.changingInstr(MI);
4425     moreElementsVectorDst(MI, MoreTy, 0);
4426     Observer.changedInstr(MI);
4427     return Legalized;
4428   }
4429   case TargetOpcode::G_STORE:
4430     if (TypeIdx != 0)
4431       return UnableToLegalize;
4432     Observer.changingInstr(MI);
4433     moreElementsVectorSrc(MI, MoreTy, 0);
4434     Observer.changedInstr(MI);
4435     return Legalized;
4436   case TargetOpcode::G_AND:
4437   case TargetOpcode::G_OR:
4438   case TargetOpcode::G_XOR:
4439   case TargetOpcode::G_SMIN:
4440   case TargetOpcode::G_SMAX:
4441   case TargetOpcode::G_UMIN:
4442   case TargetOpcode::G_UMAX:
4443   case TargetOpcode::G_FMINNUM:
4444   case TargetOpcode::G_FMAXNUM:
4445   case TargetOpcode::G_FMINNUM_IEEE:
4446   case TargetOpcode::G_FMAXNUM_IEEE:
4447   case TargetOpcode::G_FMINIMUM:
4448   case TargetOpcode::G_FMAXIMUM: {
4449     Observer.changingInstr(MI);
4450     moreElementsVectorSrc(MI, MoreTy, 1);
4451     moreElementsVectorSrc(MI, MoreTy, 2);
4452     moreElementsVectorDst(MI, MoreTy, 0);
4453     Observer.changedInstr(MI);
4454     return Legalized;
4455   }
4456   case TargetOpcode::G_EXTRACT:
4457     if (TypeIdx != 1)
4458       return UnableToLegalize;
4459     Observer.changingInstr(MI);
4460     moreElementsVectorSrc(MI, MoreTy, 1);
4461     Observer.changedInstr(MI);
4462     return Legalized;
4463   case TargetOpcode::G_INSERT:
4464   case TargetOpcode::G_FREEZE:
4465     if (TypeIdx != 0)
4466       return UnableToLegalize;
4467     Observer.changingInstr(MI);
4468     moreElementsVectorSrc(MI, MoreTy, 1);
4469     moreElementsVectorDst(MI, MoreTy, 0);
4470     Observer.changedInstr(MI);
4471     return Legalized;
4472   case TargetOpcode::G_SELECT:
4473     if (TypeIdx != 0)
4474       return UnableToLegalize;
4475     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4476       return UnableToLegalize;
4477 
4478     Observer.changingInstr(MI);
4479     moreElementsVectorSrc(MI, MoreTy, 2);
4480     moreElementsVectorSrc(MI, MoreTy, 3);
4481     moreElementsVectorDst(MI, MoreTy, 0);
4482     Observer.changedInstr(MI);
4483     return Legalized;
4484   case TargetOpcode::G_UNMERGE_VALUES: {
4485     if (TypeIdx != 1)
4486       return UnableToLegalize;
4487 
4488     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4489     int NumDst = MI.getNumOperands() - 1;
4490     moreElementsVectorSrc(MI, MoreTy, NumDst);
4491 
4492     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4493     for (int I = 0; I != NumDst; ++I)
4494       MIB.addDef(MI.getOperand(I).getReg());
4495 
4496     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4497     for (int I = NumDst; I != NewNumDst; ++I)
4498       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4499 
4500     MIB.addUse(MI.getOperand(NumDst).getReg());
4501     MI.eraseFromParent();
4502     return Legalized;
4503   }
4504   case TargetOpcode::G_PHI:
4505     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4506   default:
4507     return UnableToLegalize;
4508   }
4509 }
4510 
4511 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4512                                         ArrayRef<Register> Src1Regs,
4513                                         ArrayRef<Register> Src2Regs,
4514                                         LLT NarrowTy) {
4515   MachineIRBuilder &B = MIRBuilder;
4516   unsigned SrcParts = Src1Regs.size();
4517   unsigned DstParts = DstRegs.size();
4518 
4519   unsigned DstIdx = 0; // Low bits of the result.
4520   Register FactorSum =
4521       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4522   DstRegs[DstIdx] = FactorSum;
4523 
4524   unsigned CarrySumPrevDstIdx;
4525   SmallVector<Register, 4> Factors;
4526 
4527   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4528     // Collect low parts of muls for DstIdx.
4529     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4530          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4531       MachineInstrBuilder Mul =
4532           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4533       Factors.push_back(Mul.getReg(0));
4534     }
4535     // Collect high parts of muls from previous DstIdx.
4536     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4537          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4538       MachineInstrBuilder Umulh =
4539           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4540       Factors.push_back(Umulh.getReg(0));
4541     }
4542     // Add CarrySum from additions calculated for previous DstIdx.
4543     if (DstIdx != 1) {
4544       Factors.push_back(CarrySumPrevDstIdx);
4545     }
4546 
4547     Register CarrySum;
4548     // Add all factors and accumulate all carries into CarrySum.
4549     if (DstIdx != DstParts - 1) {
4550       MachineInstrBuilder Uaddo =
4551           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4552       FactorSum = Uaddo.getReg(0);
4553       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4554       for (unsigned i = 2; i < Factors.size(); ++i) {
4555         MachineInstrBuilder Uaddo =
4556             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4557         FactorSum = Uaddo.getReg(0);
4558         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4559         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4560       }
4561     } else {
4562       // Since value for the next index is not calculated, neither is CarrySum.
4563       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4564       for (unsigned i = 2; i < Factors.size(); ++i)
4565         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4566     }
4567 
4568     CarrySumPrevDstIdx = CarrySum;
4569     DstRegs[DstIdx] = FactorSum;
4570     Factors.clear();
4571   }
4572 }
4573 
4574 LegalizerHelper::LegalizeResult
4575 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4576                                     LLT NarrowTy) {
4577   if (TypeIdx != 0)
4578     return UnableToLegalize;
4579 
4580   Register DstReg = MI.getOperand(0).getReg();
4581   LLT DstType = MRI.getType(DstReg);
4582   // FIXME: add support for vector types
4583   if (DstType.isVector())
4584     return UnableToLegalize;
4585 
4586   uint64_t SizeOp0 = DstType.getSizeInBits();
4587   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4588 
4589   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4590   // NarrowSize.
4591   if (SizeOp0 % NarrowSize != 0)
4592     return UnableToLegalize;
4593 
4594   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4595   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4596 
4597   unsigned Opcode = MI.getOpcode();
4598   unsigned OpO, OpE, OpF;
4599   switch (Opcode) {
4600   case TargetOpcode::G_SADDO:
4601   case TargetOpcode::G_SADDE:
4602   case TargetOpcode::G_UADDO:
4603   case TargetOpcode::G_UADDE:
4604   case TargetOpcode::G_ADD:
4605     OpO = TargetOpcode::G_UADDO;
4606     OpE = TargetOpcode::G_UADDE;
4607     OpF = TargetOpcode::G_UADDE;
4608     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4609       OpF = TargetOpcode::G_SADDE;
4610     break;
4611   case TargetOpcode::G_SSUBO:
4612   case TargetOpcode::G_SSUBE:
4613   case TargetOpcode::G_USUBO:
4614   case TargetOpcode::G_USUBE:
4615   case TargetOpcode::G_SUB:
4616     OpO = TargetOpcode::G_USUBO;
4617     OpE = TargetOpcode::G_USUBE;
4618     OpF = TargetOpcode::G_USUBE;
4619     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4620       OpF = TargetOpcode::G_SSUBE;
4621     break;
4622   default:
4623     llvm_unreachable("Unexpected add/sub opcode!");
4624   }
4625 
4626   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4627   unsigned NumDefs = MI.getNumExplicitDefs();
4628   Register Src1 = MI.getOperand(NumDefs).getReg();
4629   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4630   Register CarryDst;
4631   if (NumDefs == 2)
4632     CarryDst = MI.getOperand(1).getReg();
4633   Register CarryIn;
4634   if (MI.getNumOperands() == NumDefs + 3)
4635     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4636 
4637   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4638   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4639   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4640 
4641   for (int i = 0; i < NumParts; ++i) {
4642     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4643     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4644     // Forward the final carry-out to the destination register
4645     if (i == NumParts - 1 && CarryDst)
4646       CarryOut = CarryDst;
4647 
4648     if (!CarryIn) {
4649       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4650                             {Src1Regs[i], Src2Regs[i]});
4651     } else if (i == NumParts - 1) {
4652       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4653                             {Src1Regs[i], Src2Regs[i], CarryIn});
4654     } else {
4655       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4656                             {Src1Regs[i], Src2Regs[i], CarryIn});
4657     }
4658 
4659     DstRegs.push_back(DstReg);
4660     CarryIn = CarryOut;
4661   }
4662   MIRBuilder.buildMerge(DstReg, DstRegs);
4663   MI.eraseFromParent();
4664   return Legalized;
4665 }
4666 
4667 LegalizerHelper::LegalizeResult
4668 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4669   Register DstReg = MI.getOperand(0).getReg();
4670   Register Src1 = MI.getOperand(1).getReg();
4671   Register Src2 = MI.getOperand(2).getReg();
4672 
4673   LLT Ty = MRI.getType(DstReg);
4674   if (Ty.isVector())
4675     return UnableToLegalize;
4676 
4677   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4678   unsigned DstSize = Ty.getSizeInBits();
4679   unsigned NarrowSize = NarrowTy.getSizeInBits();
4680   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4681     return UnableToLegalize;
4682 
4683   unsigned NumDstParts = DstSize / NarrowSize;
4684   unsigned NumSrcParts = SrcSize / NarrowSize;
4685   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4686   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4687 
4688   SmallVector<Register, 2> Src1Parts, Src2Parts;
4689   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4690   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4691   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4692   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4693 
4694   // Take only high half of registers if this is high mul.
4695   ArrayRef<Register> DstRegs(
4696       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4697   MIRBuilder.buildMerge(DstReg, DstRegs);
4698   MI.eraseFromParent();
4699   return Legalized;
4700 }
4701 
4702 LegalizerHelper::LegalizeResult
4703 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4704                                      LLT NarrowTy) {
4705   if (TypeIdx != 1)
4706     return UnableToLegalize;
4707 
4708   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4709 
4710   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4711   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4712   // NarrowSize.
4713   if (SizeOp1 % NarrowSize != 0)
4714     return UnableToLegalize;
4715   int NumParts = SizeOp1 / NarrowSize;
4716 
4717   SmallVector<Register, 2> SrcRegs, DstRegs;
4718   SmallVector<uint64_t, 2> Indexes;
4719   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4720 
4721   Register OpReg = MI.getOperand(0).getReg();
4722   uint64_t OpStart = MI.getOperand(2).getImm();
4723   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4724   for (int i = 0; i < NumParts; ++i) {
4725     unsigned SrcStart = i * NarrowSize;
4726 
4727     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4728       // No part of the extract uses this subregister, ignore it.
4729       continue;
4730     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4731       // The entire subregister is extracted, forward the value.
4732       DstRegs.push_back(SrcRegs[i]);
4733       continue;
4734     }
4735 
4736     // OpSegStart is where this destination segment would start in OpReg if it
4737     // extended infinitely in both directions.
4738     int64_t ExtractOffset;
4739     uint64_t SegSize;
4740     if (OpStart < SrcStart) {
4741       ExtractOffset = 0;
4742       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4743     } else {
4744       ExtractOffset = OpStart - SrcStart;
4745       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4746     }
4747 
4748     Register SegReg = SrcRegs[i];
4749     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4750       // A genuine extract is needed.
4751       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4752       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4753     }
4754 
4755     DstRegs.push_back(SegReg);
4756   }
4757 
4758   Register DstReg = MI.getOperand(0).getReg();
4759   if (MRI.getType(DstReg).isVector())
4760     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4761   else if (DstRegs.size() > 1)
4762     MIRBuilder.buildMerge(DstReg, DstRegs);
4763   else
4764     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4765   MI.eraseFromParent();
4766   return Legalized;
4767 }
4768 
4769 LegalizerHelper::LegalizeResult
4770 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4771                                     LLT NarrowTy) {
4772   // FIXME: Don't know how to handle secondary types yet.
4773   if (TypeIdx != 0)
4774     return UnableToLegalize;
4775 
4776   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4777   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4778 
4779   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4780   // NarrowSize.
4781   if (SizeOp0 % NarrowSize != 0)
4782     return UnableToLegalize;
4783 
4784   int NumParts = SizeOp0 / NarrowSize;
4785 
4786   SmallVector<Register, 2> SrcRegs, DstRegs;
4787   SmallVector<uint64_t, 2> Indexes;
4788   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4789 
4790   Register OpReg = MI.getOperand(2).getReg();
4791   uint64_t OpStart = MI.getOperand(3).getImm();
4792   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4793   for (int i = 0; i < NumParts; ++i) {
4794     unsigned DstStart = i * NarrowSize;
4795 
4796     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4797       // No part of the insert affects this subregister, forward the original.
4798       DstRegs.push_back(SrcRegs[i]);
4799       continue;
4800     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4801       // The entire subregister is defined by this insert, forward the new
4802       // value.
4803       DstRegs.push_back(OpReg);
4804       continue;
4805     }
4806 
4807     // OpSegStart is where this destination segment would start in OpReg if it
4808     // extended infinitely in both directions.
4809     int64_t ExtractOffset, InsertOffset;
4810     uint64_t SegSize;
4811     if (OpStart < DstStart) {
4812       InsertOffset = 0;
4813       ExtractOffset = DstStart - OpStart;
4814       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4815     } else {
4816       InsertOffset = OpStart - DstStart;
4817       ExtractOffset = 0;
4818       SegSize =
4819         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4820     }
4821 
4822     Register SegReg = OpReg;
4823     if (ExtractOffset != 0 || SegSize != OpSize) {
4824       // A genuine extract is needed.
4825       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4826       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4827     }
4828 
4829     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4830     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4831     DstRegs.push_back(DstReg);
4832   }
4833 
4834   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4835   Register DstReg = MI.getOperand(0).getReg();
4836   if(MRI.getType(DstReg).isVector())
4837     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4838   else
4839     MIRBuilder.buildMerge(DstReg, DstRegs);
4840   MI.eraseFromParent();
4841   return Legalized;
4842 }
4843 
4844 LegalizerHelper::LegalizeResult
4845 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4846                                    LLT NarrowTy) {
4847   Register DstReg = MI.getOperand(0).getReg();
4848   LLT DstTy = MRI.getType(DstReg);
4849 
4850   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4851 
4852   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4853   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4854   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4855   LLT LeftoverTy;
4856   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4857                     Src0Regs, Src0LeftoverRegs))
4858     return UnableToLegalize;
4859 
4860   LLT Unused;
4861   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4862                     Src1Regs, Src1LeftoverRegs))
4863     llvm_unreachable("inconsistent extractParts result");
4864 
4865   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4866     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4867                                         {Src0Regs[I], Src1Regs[I]});
4868     DstRegs.push_back(Inst.getReg(0));
4869   }
4870 
4871   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4872     auto Inst = MIRBuilder.buildInstr(
4873       MI.getOpcode(),
4874       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4875     DstLeftoverRegs.push_back(Inst.getReg(0));
4876   }
4877 
4878   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4879               LeftoverTy, DstLeftoverRegs);
4880 
4881   MI.eraseFromParent();
4882   return Legalized;
4883 }
4884 
4885 LegalizerHelper::LegalizeResult
4886 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4887                                  LLT NarrowTy) {
4888   if (TypeIdx != 0)
4889     return UnableToLegalize;
4890 
4891   Register DstReg = MI.getOperand(0).getReg();
4892   Register SrcReg = MI.getOperand(1).getReg();
4893 
4894   LLT DstTy = MRI.getType(DstReg);
4895   if (DstTy.isVector())
4896     return UnableToLegalize;
4897 
4898   SmallVector<Register, 8> Parts;
4899   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4900   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4901   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4902 
4903   MI.eraseFromParent();
4904   return Legalized;
4905 }
4906 
4907 LegalizerHelper::LegalizeResult
4908 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4909                                     LLT NarrowTy) {
4910   if (TypeIdx != 0)
4911     return UnableToLegalize;
4912 
4913   Register CondReg = MI.getOperand(1).getReg();
4914   LLT CondTy = MRI.getType(CondReg);
4915   if (CondTy.isVector()) // TODO: Handle vselect
4916     return UnableToLegalize;
4917 
4918   Register DstReg = MI.getOperand(0).getReg();
4919   LLT DstTy = MRI.getType(DstReg);
4920 
4921   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4922   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4923   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4924   LLT LeftoverTy;
4925   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4926                     Src1Regs, Src1LeftoverRegs))
4927     return UnableToLegalize;
4928 
4929   LLT Unused;
4930   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4931                     Src2Regs, Src2LeftoverRegs))
4932     llvm_unreachable("inconsistent extractParts result");
4933 
4934   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4935     auto Select = MIRBuilder.buildSelect(NarrowTy,
4936                                          CondReg, Src1Regs[I], Src2Regs[I]);
4937     DstRegs.push_back(Select.getReg(0));
4938   }
4939 
4940   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4941     auto Select = MIRBuilder.buildSelect(
4942       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4943     DstLeftoverRegs.push_back(Select.getReg(0));
4944   }
4945 
4946   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4947               LeftoverTy, DstLeftoverRegs);
4948 
4949   MI.eraseFromParent();
4950   return Legalized;
4951 }
4952 
4953 LegalizerHelper::LegalizeResult
4954 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4955                                   LLT NarrowTy) {
4956   if (TypeIdx != 1)
4957     return UnableToLegalize;
4958 
4959   Register DstReg = MI.getOperand(0).getReg();
4960   Register SrcReg = MI.getOperand(1).getReg();
4961   LLT DstTy = MRI.getType(DstReg);
4962   LLT SrcTy = MRI.getType(SrcReg);
4963   unsigned NarrowSize = NarrowTy.getSizeInBits();
4964 
4965   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4966     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4967 
4968     MachineIRBuilder &B = MIRBuilder;
4969     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4970     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4971     auto C_0 = B.buildConstant(NarrowTy, 0);
4972     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4973                                 UnmergeSrc.getReg(1), C_0);
4974     auto LoCTLZ = IsUndef ?
4975       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4976       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4977     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4978     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4979     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4980     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4981 
4982     MI.eraseFromParent();
4983     return Legalized;
4984   }
4985 
4986   return UnableToLegalize;
4987 }
4988 
4989 LegalizerHelper::LegalizeResult
4990 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4991                                   LLT NarrowTy) {
4992   if (TypeIdx != 1)
4993     return UnableToLegalize;
4994 
4995   Register DstReg = MI.getOperand(0).getReg();
4996   Register SrcReg = MI.getOperand(1).getReg();
4997   LLT DstTy = MRI.getType(DstReg);
4998   LLT SrcTy = MRI.getType(SrcReg);
4999   unsigned NarrowSize = NarrowTy.getSizeInBits();
5000 
5001   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5002     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5003 
5004     MachineIRBuilder &B = MIRBuilder;
5005     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5006     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5007     auto C_0 = B.buildConstant(NarrowTy, 0);
5008     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5009                                 UnmergeSrc.getReg(0), C_0);
5010     auto HiCTTZ = IsUndef ?
5011       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5012       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5013     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5014     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5015     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5016     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5017 
5018     MI.eraseFromParent();
5019     return Legalized;
5020   }
5021 
5022   return UnableToLegalize;
5023 }
5024 
5025 LegalizerHelper::LegalizeResult
5026 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5027                                    LLT NarrowTy) {
5028   if (TypeIdx != 1)
5029     return UnableToLegalize;
5030 
5031   Register DstReg = MI.getOperand(0).getReg();
5032   LLT DstTy = MRI.getType(DstReg);
5033   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5034   unsigned NarrowSize = NarrowTy.getSizeInBits();
5035 
5036   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5037     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5038 
5039     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5040     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5041     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5042 
5043     MI.eraseFromParent();
5044     return Legalized;
5045   }
5046 
5047   return UnableToLegalize;
5048 }
5049 
5050 LegalizerHelper::LegalizeResult
5051 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5052   unsigned Opc = MI.getOpcode();
5053   const auto &TII = MIRBuilder.getTII();
5054   auto isSupported = [this](const LegalityQuery &Q) {
5055     auto QAction = LI.getAction(Q).Action;
5056     return QAction == Legal || QAction == Libcall || QAction == Custom;
5057   };
5058   switch (Opc) {
5059   default:
5060     return UnableToLegalize;
5061   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5062     // This trivially expands to CTLZ.
5063     Observer.changingInstr(MI);
5064     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5065     Observer.changedInstr(MI);
5066     return Legalized;
5067   }
5068   case TargetOpcode::G_CTLZ: {
5069     Register DstReg = MI.getOperand(0).getReg();
5070     Register SrcReg = MI.getOperand(1).getReg();
5071     LLT DstTy = MRI.getType(DstReg);
5072     LLT SrcTy = MRI.getType(SrcReg);
5073     unsigned Len = SrcTy.getSizeInBits();
5074 
5075     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5076       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5077       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5078       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5079       auto ICmp = MIRBuilder.buildICmp(
5080           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5081       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5082       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5083       MI.eraseFromParent();
5084       return Legalized;
5085     }
5086     // for now, we do this:
5087     // NewLen = NextPowerOf2(Len);
5088     // x = x | (x >> 1);
5089     // x = x | (x >> 2);
5090     // ...
5091     // x = x | (x >>16);
5092     // x = x | (x >>32); // for 64-bit input
5093     // Upto NewLen/2
5094     // return Len - popcount(x);
5095     //
5096     // Ref: "Hacker's Delight" by Henry Warren
5097     Register Op = SrcReg;
5098     unsigned NewLen = PowerOf2Ceil(Len);
5099     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5100       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5101       auto MIBOp = MIRBuilder.buildOr(
5102           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5103       Op = MIBOp.getReg(0);
5104     }
5105     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5106     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5107                         MIBPop);
5108     MI.eraseFromParent();
5109     return Legalized;
5110   }
5111   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5112     // This trivially expands to CTTZ.
5113     Observer.changingInstr(MI);
5114     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5115     Observer.changedInstr(MI);
5116     return Legalized;
5117   }
5118   case TargetOpcode::G_CTTZ: {
5119     Register DstReg = MI.getOperand(0).getReg();
5120     Register SrcReg = MI.getOperand(1).getReg();
5121     LLT DstTy = MRI.getType(DstReg);
5122     LLT SrcTy = MRI.getType(SrcReg);
5123 
5124     unsigned Len = SrcTy.getSizeInBits();
5125     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5126       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5127       // zero.
5128       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5129       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5130       auto ICmp = MIRBuilder.buildICmp(
5131           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5132       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5133       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5134       MI.eraseFromParent();
5135       return Legalized;
5136     }
5137     // for now, we use: { return popcount(~x & (x - 1)); }
5138     // unless the target has ctlz but not ctpop, in which case we use:
5139     // { return 32 - nlz(~x & (x-1)); }
5140     // Ref: "Hacker's Delight" by Henry Warren
5141     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5142     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5143     auto MIBTmp = MIRBuilder.buildAnd(
5144         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5145     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5146         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5147       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5148       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5149                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5150       MI.eraseFromParent();
5151       return Legalized;
5152     }
5153     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5154     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5155     return Legalized;
5156   }
5157   case TargetOpcode::G_CTPOP: {
5158     Register SrcReg = MI.getOperand(1).getReg();
5159     LLT Ty = MRI.getType(SrcReg);
5160     unsigned Size = Ty.getSizeInBits();
5161     MachineIRBuilder &B = MIRBuilder;
5162 
5163     // Count set bits in blocks of 2 bits. Default approach would be
5164     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5165     // We use following formula instead:
5166     // B2Count = val - { (val >> 1) & 0x55555555 }
5167     // since it gives same result in blocks of 2 with one instruction less.
5168     auto C_1 = B.buildConstant(Ty, 1);
5169     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5170     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5171     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5172     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5173     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5174 
5175     // In order to get count in blocks of 4 add values from adjacent block of 2.
5176     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5177     auto C_2 = B.buildConstant(Ty, 2);
5178     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5179     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5180     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5181     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5182     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5183     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5184 
5185     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5186     // addition since count value sits in range {0,...,8} and 4 bits are enough
5187     // to hold such binary values. After addition high 4 bits still hold count
5188     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5189     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5190     auto C_4 = B.buildConstant(Ty, 4);
5191     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5192     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5193     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5194     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5195     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5196 
5197     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5198     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5199     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5200     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5201     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5202 
5203     // Shift count result from 8 high bits to low bits.
5204     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5205     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5206 
5207     MI.eraseFromParent();
5208     return Legalized;
5209   }
5210   }
5211 }
5212 
5213 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5214 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5215                                         Register Reg, unsigned BW) {
5216   return matchUnaryPredicate(
5217       MRI, Reg,
5218       [=](const Constant *C) {
5219         // Null constant here means an undef.
5220         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5221         return !CI || CI->getValue().urem(BW) != 0;
5222       },
5223       /*AllowUndefs*/ true);
5224 }
5225 
5226 LegalizerHelper::LegalizeResult
5227 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5228   Register Dst = MI.getOperand(0).getReg();
5229   Register X = MI.getOperand(1).getReg();
5230   Register Y = MI.getOperand(2).getReg();
5231   Register Z = MI.getOperand(3).getReg();
5232   LLT Ty = MRI.getType(Dst);
5233   LLT ShTy = MRI.getType(Z);
5234 
5235   unsigned BW = Ty.getScalarSizeInBits();
5236   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5237   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5238 
5239   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5240     // fshl X, Y, Z -> fshr X, Y, -Z
5241     // fshr X, Y, Z -> fshl X, Y, -Z
5242     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5243     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5244   } else {
5245     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5246     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5247     auto One = MIRBuilder.buildConstant(ShTy, 1);
5248     if (IsFSHL) {
5249       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5250       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5251     } else {
5252       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5253       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5254     }
5255 
5256     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5257   }
5258 
5259   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5260   MI.eraseFromParent();
5261   return Legalized;
5262 }
5263 
5264 LegalizerHelper::LegalizeResult
5265 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5266   Register Dst = MI.getOperand(0).getReg();
5267   Register X = MI.getOperand(1).getReg();
5268   Register Y = MI.getOperand(2).getReg();
5269   Register Z = MI.getOperand(3).getReg();
5270   LLT Ty = MRI.getType(Dst);
5271   LLT ShTy = MRI.getType(Z);
5272 
5273   const unsigned BW = Ty.getScalarSizeInBits();
5274   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5275 
5276   Register ShX, ShY;
5277   Register ShAmt, InvShAmt;
5278 
5279   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5280   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5281     // fshl: X << C | Y >> (BW - C)
5282     // fshr: X << (BW - C) | Y >> C
5283     // where C = Z % BW is not zero
5284     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5285     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5286     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5287     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5288     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5289   } else {
5290     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5291     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5292     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5293     if (isPowerOf2_32(BW)) {
5294       // Z % BW -> Z & (BW - 1)
5295       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5296       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5297       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5298       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5299     } else {
5300       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5301       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5302       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5303     }
5304 
5305     auto One = MIRBuilder.buildConstant(ShTy, 1);
5306     if (IsFSHL) {
5307       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5308       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5309       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5310     } else {
5311       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5312       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5313       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5314     }
5315   }
5316 
5317   MIRBuilder.buildOr(Dst, ShX, ShY);
5318   MI.eraseFromParent();
5319   return Legalized;
5320 }
5321 
5322 LegalizerHelper::LegalizeResult
5323 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5324   // These operations approximately do the following (while avoiding undefined
5325   // shifts by BW):
5326   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5327   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5328   Register Dst = MI.getOperand(0).getReg();
5329   LLT Ty = MRI.getType(Dst);
5330   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5331 
5332   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5333   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5334   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5335     return lowerFunnelShiftAsShifts(MI);
5336   return lowerFunnelShiftWithInverse(MI);
5337 }
5338 
5339 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5340 // representation.
5341 LegalizerHelper::LegalizeResult
5342 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5343   Register Dst = MI.getOperand(0).getReg();
5344   Register Src = MI.getOperand(1).getReg();
5345   const LLT S64 = LLT::scalar(64);
5346   const LLT S32 = LLT::scalar(32);
5347   const LLT S1 = LLT::scalar(1);
5348 
5349   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5350 
5351   // unsigned cul2f(ulong u) {
5352   //   uint lz = clz(u);
5353   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5354   //   u = (u << lz) & 0x7fffffffffffffffUL;
5355   //   ulong t = u & 0xffffffffffUL;
5356   //   uint v = (e << 23) | (uint)(u >> 40);
5357   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5358   //   return as_float(v + r);
5359   // }
5360 
5361   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5362   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5363 
5364   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5365 
5366   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5367   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5368 
5369   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5370   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5371 
5372   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5373   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5374 
5375   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5376 
5377   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5378   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5379 
5380   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5381   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5382   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5383 
5384   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5385   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5386   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5387   auto One = MIRBuilder.buildConstant(S32, 1);
5388 
5389   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5390   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5391   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5392   MIRBuilder.buildAdd(Dst, V, R);
5393 
5394   MI.eraseFromParent();
5395   return Legalized;
5396 }
5397 
5398 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5399   Register Dst = MI.getOperand(0).getReg();
5400   Register Src = MI.getOperand(1).getReg();
5401   LLT DstTy = MRI.getType(Dst);
5402   LLT SrcTy = MRI.getType(Src);
5403 
5404   if (SrcTy == LLT::scalar(1)) {
5405     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5406     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5407     MIRBuilder.buildSelect(Dst, Src, True, False);
5408     MI.eraseFromParent();
5409     return Legalized;
5410   }
5411 
5412   if (SrcTy != LLT::scalar(64))
5413     return UnableToLegalize;
5414 
5415   if (DstTy == LLT::scalar(32)) {
5416     // TODO: SelectionDAG has several alternative expansions to port which may
5417     // be more reasonble depending on the available instructions. If a target
5418     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5419     // intermediate type, this is probably worse.
5420     return lowerU64ToF32BitOps(MI);
5421   }
5422 
5423   return UnableToLegalize;
5424 }
5425 
5426 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5427   Register Dst = MI.getOperand(0).getReg();
5428   Register Src = MI.getOperand(1).getReg();
5429   LLT DstTy = MRI.getType(Dst);
5430   LLT SrcTy = MRI.getType(Src);
5431 
5432   const LLT S64 = LLT::scalar(64);
5433   const LLT S32 = LLT::scalar(32);
5434   const LLT S1 = LLT::scalar(1);
5435 
5436   if (SrcTy == S1) {
5437     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5438     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5439     MIRBuilder.buildSelect(Dst, Src, True, False);
5440     MI.eraseFromParent();
5441     return Legalized;
5442   }
5443 
5444   if (SrcTy != S64)
5445     return UnableToLegalize;
5446 
5447   if (DstTy == S32) {
5448     // signed cl2f(long l) {
5449     //   long s = l >> 63;
5450     //   float r = cul2f((l + s) ^ s);
5451     //   return s ? -r : r;
5452     // }
5453     Register L = Src;
5454     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5455     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5456 
5457     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5458     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5459     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5460 
5461     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5462     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5463                                             MIRBuilder.buildConstant(S64, 0));
5464     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5465     MI.eraseFromParent();
5466     return Legalized;
5467   }
5468 
5469   return UnableToLegalize;
5470 }
5471 
5472 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5473   Register Dst = MI.getOperand(0).getReg();
5474   Register Src = MI.getOperand(1).getReg();
5475   LLT DstTy = MRI.getType(Dst);
5476   LLT SrcTy = MRI.getType(Src);
5477   const LLT S64 = LLT::scalar(64);
5478   const LLT S32 = LLT::scalar(32);
5479 
5480   if (SrcTy != S64 && SrcTy != S32)
5481     return UnableToLegalize;
5482   if (DstTy != S32 && DstTy != S64)
5483     return UnableToLegalize;
5484 
5485   // FPTOSI gives same result as FPTOUI for positive signed integers.
5486   // FPTOUI needs to deal with fp values that convert to unsigned integers
5487   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5488 
5489   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5490   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5491                                                 : APFloat::IEEEdouble(),
5492                     APInt::getNullValue(SrcTy.getSizeInBits()));
5493   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5494 
5495   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5496 
5497   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5498   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5499   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5500   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5501   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5502   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5503   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5504 
5505   const LLT S1 = LLT::scalar(1);
5506 
5507   MachineInstrBuilder FCMP =
5508       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5509   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5510 
5511   MI.eraseFromParent();
5512   return Legalized;
5513 }
5514 
5515 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5516   Register Dst = MI.getOperand(0).getReg();
5517   Register Src = MI.getOperand(1).getReg();
5518   LLT DstTy = MRI.getType(Dst);
5519   LLT SrcTy = MRI.getType(Src);
5520   const LLT S64 = LLT::scalar(64);
5521   const LLT S32 = LLT::scalar(32);
5522 
5523   // FIXME: Only f32 to i64 conversions are supported.
5524   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5525     return UnableToLegalize;
5526 
5527   // Expand f32 -> i64 conversion
5528   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5529   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5530 
5531   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5532 
5533   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5534   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5535 
5536   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5537   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5538 
5539   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5540                                            APInt::getSignMask(SrcEltBits));
5541   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5542   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5543   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5544   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5545 
5546   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5547   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5548   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5549 
5550   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5551   R = MIRBuilder.buildZExt(DstTy, R);
5552 
5553   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5554   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5555   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5556   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5557 
5558   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5559   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5560 
5561   const LLT S1 = LLT::scalar(1);
5562   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5563                                     S1, Exponent, ExponentLoBit);
5564 
5565   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5566 
5567   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5568   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5569 
5570   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5571 
5572   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5573                                           S1, Exponent, ZeroSrcTy);
5574 
5575   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5576   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5577 
5578   MI.eraseFromParent();
5579   return Legalized;
5580 }
5581 
5582 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5583 LegalizerHelper::LegalizeResult
5584 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5585   Register Dst = MI.getOperand(0).getReg();
5586   Register Src = MI.getOperand(1).getReg();
5587 
5588   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5589     return UnableToLegalize;
5590 
5591   const unsigned ExpMask = 0x7ff;
5592   const unsigned ExpBiasf64 = 1023;
5593   const unsigned ExpBiasf16 = 15;
5594   const LLT S32 = LLT::scalar(32);
5595   const LLT S1 = LLT::scalar(1);
5596 
5597   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5598   Register U = Unmerge.getReg(0);
5599   Register UH = Unmerge.getReg(1);
5600 
5601   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5602   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5603 
5604   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5605   // add the f16 bias (15) to get the biased exponent for the f16 format.
5606   E = MIRBuilder.buildAdd(
5607     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5608 
5609   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5610   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5611 
5612   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5613                                        MIRBuilder.buildConstant(S32, 0x1ff));
5614   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5615 
5616   auto Zero = MIRBuilder.buildConstant(S32, 0);
5617   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5618   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5619   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5620 
5621   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5622   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5623   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5624   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5625 
5626   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5627   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5628 
5629   // N = M | (E << 12);
5630   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5631   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5632 
5633   // B = clamp(1-E, 0, 13);
5634   auto One = MIRBuilder.buildConstant(S32, 1);
5635   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5636   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5637   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5638 
5639   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5640                                        MIRBuilder.buildConstant(S32, 0x1000));
5641 
5642   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5643   auto D0 = MIRBuilder.buildShl(S32, D, B);
5644 
5645   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5646                                              D0, SigSetHigh);
5647   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5648   D = MIRBuilder.buildOr(S32, D, D1);
5649 
5650   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5651   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5652 
5653   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5654   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5655 
5656   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5657                                        MIRBuilder.buildConstant(S32, 3));
5658   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5659 
5660   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5661                                        MIRBuilder.buildConstant(S32, 5));
5662   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5663 
5664   V1 = MIRBuilder.buildOr(S32, V0, V1);
5665   V = MIRBuilder.buildAdd(S32, V, V1);
5666 
5667   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5668                                        E, MIRBuilder.buildConstant(S32, 30));
5669   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5670                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5671 
5672   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5673                                          E, MIRBuilder.buildConstant(S32, 1039));
5674   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5675 
5676   // Extract the sign bit.
5677   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5678   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5679 
5680   // Insert the sign bit
5681   V = MIRBuilder.buildOr(S32, Sign, V);
5682 
5683   MIRBuilder.buildTrunc(Dst, V);
5684   MI.eraseFromParent();
5685   return Legalized;
5686 }
5687 
5688 LegalizerHelper::LegalizeResult
5689 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5690   Register Dst = MI.getOperand(0).getReg();
5691   Register Src = MI.getOperand(1).getReg();
5692 
5693   LLT DstTy = MRI.getType(Dst);
5694   LLT SrcTy = MRI.getType(Src);
5695   const LLT S64 = LLT::scalar(64);
5696   const LLT S16 = LLT::scalar(16);
5697 
5698   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5699     return lowerFPTRUNC_F64_TO_F16(MI);
5700 
5701   return UnableToLegalize;
5702 }
5703 
5704 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5705 // multiplication tree.
5706 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5707   Register Dst = MI.getOperand(0).getReg();
5708   Register Src0 = MI.getOperand(1).getReg();
5709   Register Src1 = MI.getOperand(2).getReg();
5710   LLT Ty = MRI.getType(Dst);
5711 
5712   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5713   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5714   MI.eraseFromParent();
5715   return Legalized;
5716 }
5717 
5718 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5719   switch (Opc) {
5720   case TargetOpcode::G_SMIN:
5721     return CmpInst::ICMP_SLT;
5722   case TargetOpcode::G_SMAX:
5723     return CmpInst::ICMP_SGT;
5724   case TargetOpcode::G_UMIN:
5725     return CmpInst::ICMP_ULT;
5726   case TargetOpcode::G_UMAX:
5727     return CmpInst::ICMP_UGT;
5728   default:
5729     llvm_unreachable("not in integer min/max");
5730   }
5731 }
5732 
5733 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5734   Register Dst = MI.getOperand(0).getReg();
5735   Register Src0 = MI.getOperand(1).getReg();
5736   Register Src1 = MI.getOperand(2).getReg();
5737 
5738   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5739   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5740 
5741   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5742   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5743 
5744   MI.eraseFromParent();
5745   return Legalized;
5746 }
5747 
5748 LegalizerHelper::LegalizeResult
5749 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5750   Register Dst = MI.getOperand(0).getReg();
5751   Register Src0 = MI.getOperand(1).getReg();
5752   Register Src1 = MI.getOperand(2).getReg();
5753 
5754   const LLT Src0Ty = MRI.getType(Src0);
5755   const LLT Src1Ty = MRI.getType(Src1);
5756 
5757   const int Src0Size = Src0Ty.getScalarSizeInBits();
5758   const int Src1Size = Src1Ty.getScalarSizeInBits();
5759 
5760   auto SignBitMask = MIRBuilder.buildConstant(
5761     Src0Ty, APInt::getSignMask(Src0Size));
5762 
5763   auto NotSignBitMask = MIRBuilder.buildConstant(
5764     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5765 
5766   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
5767   Register And1;
5768   if (Src0Ty == Src1Ty) {
5769     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
5770   } else if (Src0Size > Src1Size) {
5771     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5772     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5773     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5774     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
5775   } else {
5776     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5777     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5778     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5779     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
5780   }
5781 
5782   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5783   // constants are a nan and -0.0, but the final result should preserve
5784   // everything.
5785   unsigned Flags = MI.getFlags();
5786   MIRBuilder.buildOr(Dst, And0, And1, Flags);
5787 
5788   MI.eraseFromParent();
5789   return Legalized;
5790 }
5791 
5792 LegalizerHelper::LegalizeResult
5793 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5794   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5795     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5796 
5797   Register Dst = MI.getOperand(0).getReg();
5798   Register Src0 = MI.getOperand(1).getReg();
5799   Register Src1 = MI.getOperand(2).getReg();
5800   LLT Ty = MRI.getType(Dst);
5801 
5802   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5803     // Insert canonicalizes if it's possible we need to quiet to get correct
5804     // sNaN behavior.
5805 
5806     // Note this must be done here, and not as an optimization combine in the
5807     // absence of a dedicate quiet-snan instruction as we're using an
5808     // omni-purpose G_FCANONICALIZE.
5809     if (!isKnownNeverSNaN(Src0, MRI))
5810       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5811 
5812     if (!isKnownNeverSNaN(Src1, MRI))
5813       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5814   }
5815 
5816   // If there are no nans, it's safe to simply replace this with the non-IEEE
5817   // version.
5818   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5819   MI.eraseFromParent();
5820   return Legalized;
5821 }
5822 
5823 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5824   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5825   Register DstReg = MI.getOperand(0).getReg();
5826   LLT Ty = MRI.getType(DstReg);
5827   unsigned Flags = MI.getFlags();
5828 
5829   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5830                                   Flags);
5831   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5832   MI.eraseFromParent();
5833   return Legalized;
5834 }
5835 
5836 LegalizerHelper::LegalizeResult
5837 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5838   Register DstReg = MI.getOperand(0).getReg();
5839   Register X = MI.getOperand(1).getReg();
5840   const unsigned Flags = MI.getFlags();
5841   const LLT Ty = MRI.getType(DstReg);
5842   const LLT CondTy = Ty.changeElementSize(1);
5843 
5844   // round(x) =>
5845   //  t = trunc(x);
5846   //  d = fabs(x - t);
5847   //  o = copysign(1.0f, x);
5848   //  return t + (d >= 0.5 ? o : 0.0);
5849 
5850   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5851 
5852   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5853   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5854   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5855   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5856   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5857   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5858 
5859   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5860                                   Flags);
5861   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5862 
5863   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5864 
5865   MI.eraseFromParent();
5866   return Legalized;
5867 }
5868 
5869 LegalizerHelper::LegalizeResult
5870 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5871   Register DstReg = MI.getOperand(0).getReg();
5872   Register SrcReg = MI.getOperand(1).getReg();
5873   unsigned Flags = MI.getFlags();
5874   LLT Ty = MRI.getType(DstReg);
5875   const LLT CondTy = Ty.changeElementSize(1);
5876 
5877   // result = trunc(src);
5878   // if (src < 0.0 && src != result)
5879   //   result += -1.0.
5880 
5881   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5882   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5883 
5884   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5885                                   SrcReg, Zero, Flags);
5886   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5887                                       SrcReg, Trunc, Flags);
5888   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5889   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5890 
5891   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5892   MI.eraseFromParent();
5893   return Legalized;
5894 }
5895 
5896 LegalizerHelper::LegalizeResult
5897 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5898   const unsigned NumOps = MI.getNumOperands();
5899   Register DstReg = MI.getOperand(0).getReg();
5900   Register Src0Reg = MI.getOperand(1).getReg();
5901   LLT DstTy = MRI.getType(DstReg);
5902   LLT SrcTy = MRI.getType(Src0Reg);
5903   unsigned PartSize = SrcTy.getSizeInBits();
5904 
5905   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5906   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5907 
5908   for (unsigned I = 2; I != NumOps; ++I) {
5909     const unsigned Offset = (I - 1) * PartSize;
5910 
5911     Register SrcReg = MI.getOperand(I).getReg();
5912     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5913 
5914     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5915       MRI.createGenericVirtualRegister(WideTy);
5916 
5917     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5918     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5919     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5920     ResultReg = NextResult;
5921   }
5922 
5923   if (DstTy.isPointer()) {
5924     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5925           DstTy.getAddressSpace())) {
5926       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5927       return UnableToLegalize;
5928     }
5929 
5930     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5931   }
5932 
5933   MI.eraseFromParent();
5934   return Legalized;
5935 }
5936 
5937 LegalizerHelper::LegalizeResult
5938 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5939   const unsigned NumDst = MI.getNumOperands() - 1;
5940   Register SrcReg = MI.getOperand(NumDst).getReg();
5941   Register Dst0Reg = MI.getOperand(0).getReg();
5942   LLT DstTy = MRI.getType(Dst0Reg);
5943   if (DstTy.isPointer())
5944     return UnableToLegalize; // TODO
5945 
5946   SrcReg = coerceToScalar(SrcReg);
5947   if (!SrcReg)
5948     return UnableToLegalize;
5949 
5950   // Expand scalarizing unmerge as bitcast to integer and shift.
5951   LLT IntTy = MRI.getType(SrcReg);
5952 
5953   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5954 
5955   const unsigned DstSize = DstTy.getSizeInBits();
5956   unsigned Offset = DstSize;
5957   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5958     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5959     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5960     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5961   }
5962 
5963   MI.eraseFromParent();
5964   return Legalized;
5965 }
5966 
5967 /// Lower a vector extract or insert by writing the vector to a stack temporary
5968 /// and reloading the element or vector.
5969 ///
5970 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5971 ///  =>
5972 ///  %stack_temp = G_FRAME_INDEX
5973 ///  G_STORE %vec, %stack_temp
5974 ///  %idx = clamp(%idx, %vec.getNumElements())
5975 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5976 ///  %dst = G_LOAD %element_ptr
5977 LegalizerHelper::LegalizeResult
5978 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5979   Register DstReg = MI.getOperand(0).getReg();
5980   Register SrcVec = MI.getOperand(1).getReg();
5981   Register InsertVal;
5982   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5983     InsertVal = MI.getOperand(2).getReg();
5984 
5985   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5986 
5987   LLT VecTy = MRI.getType(SrcVec);
5988   LLT EltTy = VecTy.getElementType();
5989   if (!EltTy.isByteSized()) { // Not implemented.
5990     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5991     return UnableToLegalize;
5992   }
5993 
5994   unsigned EltBytes = EltTy.getSizeInBytes();
5995   Align VecAlign = getStackTemporaryAlignment(VecTy);
5996   Align EltAlign;
5997 
5998   MachinePointerInfo PtrInfo;
5999   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6000                                         VecAlign, PtrInfo);
6001   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6002 
6003   // Get the pointer to the element, and be sure not to hit undefined behavior
6004   // if the index is out of bounds.
6005   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6006 
6007   int64_t IdxVal;
6008   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6009     int64_t Offset = IdxVal * EltBytes;
6010     PtrInfo = PtrInfo.getWithOffset(Offset);
6011     EltAlign = commonAlignment(VecAlign, Offset);
6012   } else {
6013     // We lose information with a variable offset.
6014     EltAlign = getStackTemporaryAlignment(EltTy);
6015     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6016   }
6017 
6018   if (InsertVal) {
6019     // Write the inserted element
6020     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6021 
6022     // Reload the whole vector.
6023     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6024   } else {
6025     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6026   }
6027 
6028   MI.eraseFromParent();
6029   return Legalized;
6030 }
6031 
6032 LegalizerHelper::LegalizeResult
6033 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6034   Register DstReg = MI.getOperand(0).getReg();
6035   Register Src0Reg = MI.getOperand(1).getReg();
6036   Register Src1Reg = MI.getOperand(2).getReg();
6037   LLT Src0Ty = MRI.getType(Src0Reg);
6038   LLT DstTy = MRI.getType(DstReg);
6039   LLT IdxTy = LLT::scalar(32);
6040 
6041   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6042 
6043   if (DstTy.isScalar()) {
6044     if (Src0Ty.isVector())
6045       return UnableToLegalize;
6046 
6047     // This is just a SELECT.
6048     assert(Mask.size() == 1 && "Expected a single mask element");
6049     Register Val;
6050     if (Mask[0] < 0 || Mask[0] > 1)
6051       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6052     else
6053       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6054     MIRBuilder.buildCopy(DstReg, Val);
6055     MI.eraseFromParent();
6056     return Legalized;
6057   }
6058 
6059   Register Undef;
6060   SmallVector<Register, 32> BuildVec;
6061   LLT EltTy = DstTy.getElementType();
6062 
6063   for (int Idx : Mask) {
6064     if (Idx < 0) {
6065       if (!Undef.isValid())
6066         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6067       BuildVec.push_back(Undef);
6068       continue;
6069     }
6070 
6071     if (Src0Ty.isScalar()) {
6072       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6073     } else {
6074       int NumElts = Src0Ty.getNumElements();
6075       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6076       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6077       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6078       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6079       BuildVec.push_back(Extract.getReg(0));
6080     }
6081   }
6082 
6083   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6084   MI.eraseFromParent();
6085   return Legalized;
6086 }
6087 
6088 LegalizerHelper::LegalizeResult
6089 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6090   const auto &MF = *MI.getMF();
6091   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6092   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6093     return UnableToLegalize;
6094 
6095   Register Dst = MI.getOperand(0).getReg();
6096   Register AllocSize = MI.getOperand(1).getReg();
6097   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6098 
6099   LLT PtrTy = MRI.getType(Dst);
6100   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6101 
6102   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6103   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6104   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6105 
6106   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6107   // have to generate an extra instruction to negate the alloc and then use
6108   // G_PTR_ADD to add the negative offset.
6109   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6110   if (Alignment > Align(1)) {
6111     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6112     AlignMask.negate();
6113     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6114     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6115   }
6116 
6117   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6118   MIRBuilder.buildCopy(SPReg, SPTmp);
6119   MIRBuilder.buildCopy(Dst, SPTmp);
6120 
6121   MI.eraseFromParent();
6122   return Legalized;
6123 }
6124 
6125 LegalizerHelper::LegalizeResult
6126 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6127   Register Dst = MI.getOperand(0).getReg();
6128   Register Src = MI.getOperand(1).getReg();
6129   unsigned Offset = MI.getOperand(2).getImm();
6130 
6131   LLT DstTy = MRI.getType(Dst);
6132   LLT SrcTy = MRI.getType(Src);
6133 
6134   if (DstTy.isScalar() &&
6135       (SrcTy.isScalar() ||
6136        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6137     LLT SrcIntTy = SrcTy;
6138     if (!SrcTy.isScalar()) {
6139       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6140       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6141     }
6142 
6143     if (Offset == 0)
6144       MIRBuilder.buildTrunc(Dst, Src);
6145     else {
6146       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6147       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6148       MIRBuilder.buildTrunc(Dst, Shr);
6149     }
6150 
6151     MI.eraseFromParent();
6152     return Legalized;
6153   }
6154 
6155   return UnableToLegalize;
6156 }
6157 
6158 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6159   Register Dst = MI.getOperand(0).getReg();
6160   Register Src = MI.getOperand(1).getReg();
6161   Register InsertSrc = MI.getOperand(2).getReg();
6162   uint64_t Offset = MI.getOperand(3).getImm();
6163 
6164   LLT DstTy = MRI.getType(Src);
6165   LLT InsertTy = MRI.getType(InsertSrc);
6166 
6167   if (InsertTy.isVector() ||
6168       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6169     return UnableToLegalize;
6170 
6171   const DataLayout &DL = MIRBuilder.getDataLayout();
6172   if ((DstTy.isPointer() &&
6173        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6174       (InsertTy.isPointer() &&
6175        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6176     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6177     return UnableToLegalize;
6178   }
6179 
6180   LLT IntDstTy = DstTy;
6181 
6182   if (!DstTy.isScalar()) {
6183     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6184     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6185   }
6186 
6187   if (!InsertTy.isScalar()) {
6188     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6189     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6190   }
6191 
6192   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6193   if (Offset != 0) {
6194     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6195     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6196   }
6197 
6198   APInt MaskVal = APInt::getBitsSetWithWrap(
6199       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6200 
6201   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6202   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6203   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6204 
6205   MIRBuilder.buildCast(Dst, Or);
6206   MI.eraseFromParent();
6207   return Legalized;
6208 }
6209 
6210 LegalizerHelper::LegalizeResult
6211 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6212   Register Dst0 = MI.getOperand(0).getReg();
6213   Register Dst1 = MI.getOperand(1).getReg();
6214   Register LHS = MI.getOperand(2).getReg();
6215   Register RHS = MI.getOperand(3).getReg();
6216   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6217 
6218   LLT Ty = MRI.getType(Dst0);
6219   LLT BoolTy = MRI.getType(Dst1);
6220 
6221   if (IsAdd)
6222     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6223   else
6224     MIRBuilder.buildSub(Dst0, LHS, RHS);
6225 
6226   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6227 
6228   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6229 
6230   // For an addition, the result should be less than one of the operands (LHS)
6231   // if and only if the other operand (RHS) is negative, otherwise there will
6232   // be overflow.
6233   // For a subtraction, the result should be less than one of the operands
6234   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6235   // otherwise there will be overflow.
6236   auto ResultLowerThanLHS =
6237       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6238   auto ConditionRHS = MIRBuilder.buildICmp(
6239       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6240 
6241   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6242   MI.eraseFromParent();
6243   return Legalized;
6244 }
6245 
6246 LegalizerHelper::LegalizeResult
6247 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6248   Register Res = MI.getOperand(0).getReg();
6249   Register LHS = MI.getOperand(1).getReg();
6250   Register RHS = MI.getOperand(2).getReg();
6251   LLT Ty = MRI.getType(Res);
6252   bool IsSigned;
6253   bool IsAdd;
6254   unsigned BaseOp;
6255   switch (MI.getOpcode()) {
6256   default:
6257     llvm_unreachable("unexpected addsat/subsat opcode");
6258   case TargetOpcode::G_UADDSAT:
6259     IsSigned = false;
6260     IsAdd = true;
6261     BaseOp = TargetOpcode::G_ADD;
6262     break;
6263   case TargetOpcode::G_SADDSAT:
6264     IsSigned = true;
6265     IsAdd = true;
6266     BaseOp = TargetOpcode::G_ADD;
6267     break;
6268   case TargetOpcode::G_USUBSAT:
6269     IsSigned = false;
6270     IsAdd = false;
6271     BaseOp = TargetOpcode::G_SUB;
6272     break;
6273   case TargetOpcode::G_SSUBSAT:
6274     IsSigned = true;
6275     IsAdd = false;
6276     BaseOp = TargetOpcode::G_SUB;
6277     break;
6278   }
6279 
6280   if (IsSigned) {
6281     // sadd.sat(a, b) ->
6282     //   hi = 0x7fffffff - smax(a, 0)
6283     //   lo = 0x80000000 - smin(a, 0)
6284     //   a + smin(smax(lo, b), hi)
6285     // ssub.sat(a, b) ->
6286     //   lo = smax(a, -1) - 0x7fffffff
6287     //   hi = smin(a, -1) - 0x80000000
6288     //   a - smin(smax(lo, b), hi)
6289     // TODO: AMDGPU can use a "median of 3" instruction here:
6290     //   a +/- med3(lo, b, hi)
6291     uint64_t NumBits = Ty.getScalarSizeInBits();
6292     auto MaxVal =
6293         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6294     auto MinVal =
6295         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6296     MachineInstrBuilder Hi, Lo;
6297     if (IsAdd) {
6298       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6299       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6300       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6301     } else {
6302       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6303       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6304                                MaxVal);
6305       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6306                                MinVal);
6307     }
6308     auto RHSClamped =
6309         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6310     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6311   } else {
6312     // uadd.sat(a, b) -> a + umin(~a, b)
6313     // usub.sat(a, b) -> a - umin(a, b)
6314     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6315     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6316     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6317   }
6318 
6319   MI.eraseFromParent();
6320   return Legalized;
6321 }
6322 
6323 LegalizerHelper::LegalizeResult
6324 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6325   Register Res = MI.getOperand(0).getReg();
6326   Register LHS = MI.getOperand(1).getReg();
6327   Register RHS = MI.getOperand(2).getReg();
6328   LLT Ty = MRI.getType(Res);
6329   LLT BoolTy = Ty.changeElementSize(1);
6330   bool IsSigned;
6331   bool IsAdd;
6332   unsigned OverflowOp;
6333   switch (MI.getOpcode()) {
6334   default:
6335     llvm_unreachable("unexpected addsat/subsat opcode");
6336   case TargetOpcode::G_UADDSAT:
6337     IsSigned = false;
6338     IsAdd = true;
6339     OverflowOp = TargetOpcode::G_UADDO;
6340     break;
6341   case TargetOpcode::G_SADDSAT:
6342     IsSigned = true;
6343     IsAdd = true;
6344     OverflowOp = TargetOpcode::G_SADDO;
6345     break;
6346   case TargetOpcode::G_USUBSAT:
6347     IsSigned = false;
6348     IsAdd = false;
6349     OverflowOp = TargetOpcode::G_USUBO;
6350     break;
6351   case TargetOpcode::G_SSUBSAT:
6352     IsSigned = true;
6353     IsAdd = false;
6354     OverflowOp = TargetOpcode::G_SSUBO;
6355     break;
6356   }
6357 
6358   auto OverflowRes =
6359       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6360   Register Tmp = OverflowRes.getReg(0);
6361   Register Ov = OverflowRes.getReg(1);
6362   MachineInstrBuilder Clamp;
6363   if (IsSigned) {
6364     // sadd.sat(a, b) ->
6365     //   {tmp, ov} = saddo(a, b)
6366     //   ov ? (tmp >>s 31) + 0x80000000 : r
6367     // ssub.sat(a, b) ->
6368     //   {tmp, ov} = ssubo(a, b)
6369     //   ov ? (tmp >>s 31) + 0x80000000 : r
6370     uint64_t NumBits = Ty.getScalarSizeInBits();
6371     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6372     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6373     auto MinVal =
6374         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6375     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6376   } else {
6377     // uadd.sat(a, b) ->
6378     //   {tmp, ov} = uaddo(a, b)
6379     //   ov ? 0xffffffff : tmp
6380     // usub.sat(a, b) ->
6381     //   {tmp, ov} = usubo(a, b)
6382     //   ov ? 0 : tmp
6383     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6384   }
6385   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6386 
6387   MI.eraseFromParent();
6388   return Legalized;
6389 }
6390 
6391 LegalizerHelper::LegalizeResult
6392 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6393   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6394           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6395          "Expected shlsat opcode!");
6396   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6397   Register Res = MI.getOperand(0).getReg();
6398   Register LHS = MI.getOperand(1).getReg();
6399   Register RHS = MI.getOperand(2).getReg();
6400   LLT Ty = MRI.getType(Res);
6401   LLT BoolTy = Ty.changeElementSize(1);
6402 
6403   unsigned BW = Ty.getScalarSizeInBits();
6404   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6405   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6406                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6407 
6408   MachineInstrBuilder SatVal;
6409   if (IsSigned) {
6410     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6411     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6412     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6413                                     MIRBuilder.buildConstant(Ty, 0));
6414     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6415   } else {
6416     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6417   }
6418   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6419   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6420 
6421   MI.eraseFromParent();
6422   return Legalized;
6423 }
6424 
6425 LegalizerHelper::LegalizeResult
6426 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6427   Register Dst = MI.getOperand(0).getReg();
6428   Register Src = MI.getOperand(1).getReg();
6429   const LLT Ty = MRI.getType(Src);
6430   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6431   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6432 
6433   // Swap most and least significant byte, set remaining bytes in Res to zero.
6434   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6435   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6436   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6437   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6438 
6439   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6440   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6441     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6442     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6443     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6444     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6445     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6446     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6447     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6448     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6449     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6450     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6451     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6452     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6453   }
6454   Res.getInstr()->getOperand(0).setReg(Dst);
6455 
6456   MI.eraseFromParent();
6457   return Legalized;
6458 }
6459 
6460 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6461 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6462                                  MachineInstrBuilder Src, APInt Mask) {
6463   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6464   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6465   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6466   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6467   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6468   return B.buildOr(Dst, LHS, RHS);
6469 }
6470 
6471 LegalizerHelper::LegalizeResult
6472 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6473   Register Dst = MI.getOperand(0).getReg();
6474   Register Src = MI.getOperand(1).getReg();
6475   const LLT Ty = MRI.getType(Src);
6476   unsigned Size = Ty.getSizeInBits();
6477 
6478   MachineInstrBuilder BSWAP =
6479       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6480 
6481   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6482   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6483   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6484   MachineInstrBuilder Swap4 =
6485       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6486 
6487   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6488   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6489   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6490   MachineInstrBuilder Swap2 =
6491       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6492 
6493   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6494   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6495   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6496   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6497 
6498   MI.eraseFromParent();
6499   return Legalized;
6500 }
6501 
6502 LegalizerHelper::LegalizeResult
6503 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6504   MachineFunction &MF = MIRBuilder.getMF();
6505 
6506   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6507   int NameOpIdx = IsRead ? 1 : 0;
6508   int ValRegIndex = IsRead ? 0 : 1;
6509 
6510   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6511   const LLT Ty = MRI.getType(ValReg);
6512   const MDString *RegStr = cast<MDString>(
6513     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6514 
6515   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6516   if (!PhysReg.isValid())
6517     return UnableToLegalize;
6518 
6519   if (IsRead)
6520     MIRBuilder.buildCopy(ValReg, PhysReg);
6521   else
6522     MIRBuilder.buildCopy(PhysReg, ValReg);
6523 
6524   MI.eraseFromParent();
6525   return Legalized;
6526 }
6527 
6528 LegalizerHelper::LegalizeResult
6529 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6530   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6531   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6532   Register Result = MI.getOperand(0).getReg();
6533   LLT OrigTy = MRI.getType(Result);
6534   auto SizeInBits = OrigTy.getScalarSizeInBits();
6535   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6536 
6537   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6538   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6539   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6540   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6541 
6542   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6543   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6544   MIRBuilder.buildTrunc(Result, Shifted);
6545 
6546   MI.eraseFromParent();
6547   return Legalized;
6548 }
6549 
6550 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6551   // Implement vector G_SELECT in terms of XOR, AND, OR.
6552   Register DstReg = MI.getOperand(0).getReg();
6553   Register MaskReg = MI.getOperand(1).getReg();
6554   Register Op1Reg = MI.getOperand(2).getReg();
6555   Register Op2Reg = MI.getOperand(3).getReg();
6556   LLT DstTy = MRI.getType(DstReg);
6557   LLT MaskTy = MRI.getType(MaskReg);
6558   LLT Op1Ty = MRI.getType(Op1Reg);
6559   if (!DstTy.isVector())
6560     return UnableToLegalize;
6561 
6562   // Vector selects can have a scalar predicate. If so, splat into a vector and
6563   // finish for later legalization attempts to try again.
6564   if (MaskTy.isScalar()) {
6565     Register MaskElt = MaskReg;
6566     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6567       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6568     // Generate a vector splat idiom to be pattern matched later.
6569     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6570     Observer.changingInstr(MI);
6571     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6572     Observer.changedInstr(MI);
6573     return Legalized;
6574   }
6575 
6576   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6577     return UnableToLegalize;
6578   }
6579 
6580   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6581   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6582   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6583   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6584   MI.eraseFromParent();
6585   return Legalized;
6586 }
6587 
6588 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6589   // Split DIVREM into individual instructions.
6590   unsigned Opcode = MI.getOpcode();
6591 
6592   MIRBuilder.buildInstr(
6593       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6594                                         : TargetOpcode::G_UDIV,
6595       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6596   MIRBuilder.buildInstr(
6597       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6598                                         : TargetOpcode::G_UREM,
6599       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6600   MI.eraseFromParent();
6601   return Legalized;
6602 }
6603