1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 CallLowering::CallLoweringInfo Info; 368 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 369 Info.Callee = MachineOperand::CreateES(Name); 370 Info.OrigRet = Result; 371 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 372 if (!CLI.lowerCall(MIRBuilder, Info)) 373 return LegalizerHelper::UnableToLegalize; 374 375 return LegalizerHelper::Legalized; 376 } 377 378 // Useful for libcalls where all operands have the same type. 379 static LegalizerHelper::LegalizeResult 380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 381 Type *OpType) { 382 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 383 384 SmallVector<CallLowering::ArgInfo, 3> Args; 385 for (unsigned i = 1; i < MI.getNumOperands(); i++) 386 Args.push_back({MI.getOperand(i).getReg(), OpType}); 387 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 388 Args); 389 } 390 391 LegalizerHelper::LegalizeResult 392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 393 MachineInstr &MI) { 394 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 395 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 396 397 SmallVector<CallLowering::ArgInfo, 3> Args; 398 // Add all the args, except for the last which is an imm denoting 'tail'. 399 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 400 Register Reg = MI.getOperand(i).getReg(); 401 402 // Need derive an IR type for call lowering. 403 LLT OpLLT = MRI.getType(Reg); 404 Type *OpTy = nullptr; 405 if (OpLLT.isPointer()) 406 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 407 else 408 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 409 Args.push_back({Reg, OpTy}); 410 } 411 412 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 413 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 414 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 415 RTLIB::Libcall RTLibcall; 416 switch (ID) { 417 case Intrinsic::memcpy: 418 RTLibcall = RTLIB::MEMCPY; 419 break; 420 case Intrinsic::memset: 421 RTLibcall = RTLIB::MEMSET; 422 break; 423 case Intrinsic::memmove: 424 RTLibcall = RTLIB::MEMMOVE; 425 break; 426 default: 427 return LegalizerHelper::UnableToLegalize; 428 } 429 const char *Name = TLI.getLibcallName(RTLibcall); 430 431 MIRBuilder.setInstr(MI); 432 433 CallLowering::CallLoweringInfo Info; 434 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 435 Info.Callee = MachineOperand::CreateES(Name); 436 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 437 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 438 isLibCallInTailPosition(MI); 439 440 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 441 if (!CLI.lowerCall(MIRBuilder, Info)) 442 return LegalizerHelper::UnableToLegalize; 443 444 if (Info.LoweredTailCall) { 445 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 446 // We must have a return following the call to get past 447 // isLibCallInTailPosition. 448 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 449 "Expected instr following MI to be a return?"); 450 451 // We lowered a tail call, so the call is now the return from the block. 452 // Delete the old return. 453 MI.getNextNode()->eraseFromParent(); 454 } 455 456 return LegalizerHelper::Legalized; 457 } 458 459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 460 Type *FromType) { 461 auto ToMVT = MVT::getVT(ToType); 462 auto FromMVT = MVT::getVT(FromType); 463 464 switch (Opcode) { 465 case TargetOpcode::G_FPEXT: 466 return RTLIB::getFPEXT(FromMVT, ToMVT); 467 case TargetOpcode::G_FPTRUNC: 468 return RTLIB::getFPROUND(FromMVT, ToMVT); 469 case TargetOpcode::G_FPTOSI: 470 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 471 case TargetOpcode::G_FPTOUI: 472 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 473 case TargetOpcode::G_SITOFP: 474 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 475 case TargetOpcode::G_UITOFP: 476 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 477 } 478 llvm_unreachable("Unsupported libcall function"); 479 } 480 481 static LegalizerHelper::LegalizeResult 482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 483 Type *FromType) { 484 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 485 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 486 {{MI.getOperand(1).getReg(), FromType}}); 487 } 488 489 LegalizerHelper::LegalizeResult 490 LegalizerHelper::libcall(MachineInstr &MI) { 491 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 492 unsigned Size = LLTy.getSizeInBits(); 493 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 494 495 MIRBuilder.setInstr(MI); 496 497 switch (MI.getOpcode()) { 498 default: 499 return UnableToLegalize; 500 case TargetOpcode::G_SDIV: 501 case TargetOpcode::G_UDIV: 502 case TargetOpcode::G_SREM: 503 case TargetOpcode::G_UREM: 504 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 505 Type *HLTy = IntegerType::get(Ctx, Size); 506 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 507 if (Status != Legalized) 508 return Status; 509 break; 510 } 511 case TargetOpcode::G_FADD: 512 case TargetOpcode::G_FSUB: 513 case TargetOpcode::G_FMUL: 514 case TargetOpcode::G_FDIV: 515 case TargetOpcode::G_FMA: 516 case TargetOpcode::G_FPOW: 517 case TargetOpcode::G_FREM: 518 case TargetOpcode::G_FCOS: 519 case TargetOpcode::G_FSIN: 520 case TargetOpcode::G_FLOG10: 521 case TargetOpcode::G_FLOG: 522 case TargetOpcode::G_FLOG2: 523 case TargetOpcode::G_FEXP: 524 case TargetOpcode::G_FEXP2: 525 case TargetOpcode::G_FCEIL: 526 case TargetOpcode::G_FFLOOR: { 527 if (Size > 64) { 528 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 529 return UnableToLegalize; 530 } 531 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 532 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 533 if (Status != Legalized) 534 return Status; 535 break; 536 } 537 case TargetOpcode::G_FPEXT: { 538 // FIXME: Support other floating point types (half, fp128 etc) 539 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 540 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 541 if (ToSize != 64 || FromSize != 32) 542 return UnableToLegalize; 543 LegalizeResult Status = conversionLibcall( 544 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 545 if (Status != Legalized) 546 return Status; 547 break; 548 } 549 case TargetOpcode::G_FPTRUNC: { 550 // FIXME: Support other floating point types (half, fp128 etc) 551 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 552 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 553 if (ToSize != 32 || FromSize != 64) 554 return UnableToLegalize; 555 LegalizeResult Status = conversionLibcall( 556 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 557 if (Status != Legalized) 558 return Status; 559 break; 560 } 561 case TargetOpcode::G_FPTOSI: 562 case TargetOpcode::G_FPTOUI: { 563 // FIXME: Support other types 564 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 565 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 566 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 567 return UnableToLegalize; 568 LegalizeResult Status = conversionLibcall( 569 MI, MIRBuilder, 570 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 571 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 572 if (Status != Legalized) 573 return Status; 574 break; 575 } 576 case TargetOpcode::G_SITOFP: 577 case TargetOpcode::G_UITOFP: { 578 // FIXME: Support other types 579 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 580 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 581 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 582 return UnableToLegalize; 583 LegalizeResult Status = conversionLibcall( 584 MI, MIRBuilder, 585 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 586 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 587 if (Status != Legalized) 588 return Status; 589 break; 590 } 591 } 592 593 MI.eraseFromParent(); 594 return Legalized; 595 } 596 597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 598 unsigned TypeIdx, 599 LLT NarrowTy) { 600 MIRBuilder.setInstr(MI); 601 602 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 603 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 604 605 switch (MI.getOpcode()) { 606 default: 607 return UnableToLegalize; 608 case TargetOpcode::G_IMPLICIT_DEF: { 609 // FIXME: add support for when SizeOp0 isn't an exact multiple of 610 // NarrowSize. 611 if (SizeOp0 % NarrowSize != 0) 612 return UnableToLegalize; 613 int NumParts = SizeOp0 / NarrowSize; 614 615 SmallVector<Register, 2> DstRegs; 616 for (int i = 0; i < NumParts; ++i) 617 DstRegs.push_back( 618 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 619 620 Register DstReg = MI.getOperand(0).getReg(); 621 if(MRI.getType(DstReg).isVector()) 622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 623 else 624 MIRBuilder.buildMerge(DstReg, DstRegs); 625 MI.eraseFromParent(); 626 return Legalized; 627 } 628 case TargetOpcode::G_CONSTANT: { 629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 630 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 631 unsigned TotalSize = Ty.getSizeInBits(); 632 unsigned NarrowSize = NarrowTy.getSizeInBits(); 633 int NumParts = TotalSize / NarrowSize; 634 635 SmallVector<Register, 4> PartRegs; 636 for (int I = 0; I != NumParts; ++I) { 637 unsigned Offset = I * NarrowSize; 638 auto K = MIRBuilder.buildConstant(NarrowTy, 639 Val.lshr(Offset).trunc(NarrowSize)); 640 PartRegs.push_back(K.getReg(0)); 641 } 642 643 LLT LeftoverTy; 644 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 645 SmallVector<Register, 1> LeftoverRegs; 646 if (LeftoverBits != 0) { 647 LeftoverTy = LLT::scalar(LeftoverBits); 648 auto K = MIRBuilder.buildConstant( 649 LeftoverTy, 650 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 651 LeftoverRegs.push_back(K.getReg(0)); 652 } 653 654 insertParts(MI.getOperand(0).getReg(), 655 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 656 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 case TargetOpcode::G_SEXT: { 661 if (TypeIdx != 0) 662 return UnableToLegalize; 663 664 Register SrcReg = MI.getOperand(1).getReg(); 665 LLT SrcTy = MRI.getType(SrcReg); 666 667 // FIXME: support the general case where the requested NarrowTy may not be 668 // the same as the source type. E.g. s128 = sext(s32) 669 if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || 670 SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { 671 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 672 return UnableToLegalize; 673 } 674 675 // Shift the sign bit of the low register through the high register. 676 auto ShiftAmt = 677 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 678 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 679 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 680 MI.eraseFromParent(); 681 return Legalized; 682 } 683 case TargetOpcode::G_ZEXT: { 684 if (TypeIdx != 0) 685 return UnableToLegalize; 686 687 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 688 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 689 if (SizeOp0 % SizeOp1 != 0) 690 return UnableToLegalize; 691 692 // Generate a merge where the bottom bits are taken from the source, and 693 // zero everything else. 694 Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 695 unsigned NumParts = SizeOp0 / SizeOp1; 696 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; 697 for (unsigned Part = 1; Part < NumParts; ++Part) 698 Srcs.push_back(ZeroReg); 699 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 700 MI.eraseFromParent(); 701 return Legalized; 702 } 703 case TargetOpcode::G_TRUNC: { 704 if (TypeIdx != 1) 705 return UnableToLegalize; 706 707 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 708 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 709 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 710 return UnableToLegalize; 711 } 712 713 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 714 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 715 MI.eraseFromParent(); 716 return Legalized; 717 } 718 719 case TargetOpcode::G_ADD: { 720 // FIXME: add support for when SizeOp0 isn't an exact multiple of 721 // NarrowSize. 722 if (SizeOp0 % NarrowSize != 0) 723 return UnableToLegalize; 724 // Expand in terms of carry-setting/consuming G_ADDE instructions. 725 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 726 727 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 728 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 729 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 730 731 Register CarryIn; 732 for (int i = 0; i < NumParts; ++i) { 733 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 734 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 735 736 if (i == 0) 737 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 738 else { 739 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 740 Src2Regs[i], CarryIn); 741 } 742 743 DstRegs.push_back(DstReg); 744 CarryIn = CarryOut; 745 } 746 Register DstReg = MI.getOperand(0).getReg(); 747 if(MRI.getType(DstReg).isVector()) 748 MIRBuilder.buildBuildVector(DstReg, DstRegs); 749 else 750 MIRBuilder.buildMerge(DstReg, DstRegs); 751 MI.eraseFromParent(); 752 return Legalized; 753 } 754 case TargetOpcode::G_SUB: { 755 // FIXME: add support for when SizeOp0 isn't an exact multiple of 756 // NarrowSize. 757 if (SizeOp0 % NarrowSize != 0) 758 return UnableToLegalize; 759 760 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 761 762 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 763 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 764 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 765 766 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 767 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 768 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 769 {Src1Regs[0], Src2Regs[0]}); 770 DstRegs.push_back(DstReg); 771 Register BorrowIn = BorrowOut; 772 for (int i = 1; i < NumParts; ++i) { 773 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 774 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 775 776 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 777 {Src1Regs[i], Src2Regs[i], BorrowIn}); 778 779 DstRegs.push_back(DstReg); 780 BorrowIn = BorrowOut; 781 } 782 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 783 MI.eraseFromParent(); 784 return Legalized; 785 } 786 case TargetOpcode::G_MUL: 787 case TargetOpcode::G_UMULH: 788 return narrowScalarMul(MI, NarrowTy); 789 case TargetOpcode::G_EXTRACT: 790 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 791 case TargetOpcode::G_INSERT: 792 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 793 case TargetOpcode::G_LOAD: { 794 const auto &MMO = **MI.memoperands_begin(); 795 Register DstReg = MI.getOperand(0).getReg(); 796 LLT DstTy = MRI.getType(DstReg); 797 if (DstTy.isVector()) 798 return UnableToLegalize; 799 800 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 801 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 802 auto &MMO = **MI.memoperands_begin(); 803 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 804 MIRBuilder.buildAnyExt(DstReg, TmpReg); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 809 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 810 } 811 case TargetOpcode::G_ZEXTLOAD: 812 case TargetOpcode::G_SEXTLOAD: { 813 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 814 Register DstReg = MI.getOperand(0).getReg(); 815 Register PtrReg = MI.getOperand(1).getReg(); 816 817 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 818 auto &MMO = **MI.memoperands_begin(); 819 if (MMO.getSizeInBits() == NarrowSize) { 820 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 821 } else { 822 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 823 : TargetOpcode::G_SEXTLOAD; 824 MIRBuilder.buildInstr(ExtLoad) 825 .addDef(TmpReg) 826 .addUse(PtrReg) 827 .addMemOperand(&MMO); 828 } 829 830 if (ZExt) 831 MIRBuilder.buildZExt(DstReg, TmpReg); 832 else 833 MIRBuilder.buildSExt(DstReg, TmpReg); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_STORE: { 839 const auto &MMO = **MI.memoperands_begin(); 840 841 Register SrcReg = MI.getOperand(0).getReg(); 842 LLT SrcTy = MRI.getType(SrcReg); 843 if (SrcTy.isVector()) 844 return UnableToLegalize; 845 846 int NumParts = SizeOp0 / NarrowSize; 847 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 848 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 849 if (SrcTy.isVector() && LeftoverBits != 0) 850 return UnableToLegalize; 851 852 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 853 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 854 auto &MMO = **MI.memoperands_begin(); 855 MIRBuilder.buildTrunc(TmpReg, SrcReg); 856 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 857 MI.eraseFromParent(); 858 return Legalized; 859 } 860 861 return reduceLoadStoreWidth(MI, 0, NarrowTy); 862 } 863 case TargetOpcode::G_SELECT: 864 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 865 case TargetOpcode::G_AND: 866 case TargetOpcode::G_OR: 867 case TargetOpcode::G_XOR: { 868 // Legalize bitwise operation: 869 // A = BinOp<Ty> B, C 870 // into: 871 // B1, ..., BN = G_UNMERGE_VALUES B 872 // C1, ..., CN = G_UNMERGE_VALUES C 873 // A1 = BinOp<Ty/N> B1, C2 874 // ... 875 // AN = BinOp<Ty/N> BN, CN 876 // A = G_MERGE_VALUES A1, ..., AN 877 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 878 } 879 case TargetOpcode::G_SHL: 880 case TargetOpcode::G_LSHR: 881 case TargetOpcode::G_ASHR: 882 return narrowScalarShift(MI, TypeIdx, NarrowTy); 883 case TargetOpcode::G_CTLZ: 884 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 885 case TargetOpcode::G_CTTZ: 886 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 887 case TargetOpcode::G_CTPOP: 888 if (TypeIdx != 0) 889 return UnableToLegalize; // TODO 890 891 Observer.changingInstr(MI); 892 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 893 Observer.changedInstr(MI); 894 return Legalized; 895 case TargetOpcode::G_INTTOPTR: 896 if (TypeIdx != 1) 897 return UnableToLegalize; 898 899 Observer.changingInstr(MI); 900 narrowScalarSrc(MI, NarrowTy, 1); 901 Observer.changedInstr(MI); 902 return Legalized; 903 case TargetOpcode::G_PTRTOINT: 904 if (TypeIdx != 0) 905 return UnableToLegalize; 906 907 Observer.changingInstr(MI); 908 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 909 Observer.changedInstr(MI); 910 return Legalized; 911 case TargetOpcode::G_PHI: { 912 unsigned NumParts = SizeOp0 / NarrowSize; 913 SmallVector<Register, 2> DstRegs; 914 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 915 DstRegs.resize(NumParts); 916 SrcRegs.resize(MI.getNumOperands() / 2); 917 Observer.changingInstr(MI); 918 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 919 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 920 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 921 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 922 SrcRegs[i / 2]); 923 } 924 MachineBasicBlock &MBB = *MI.getParent(); 925 MIRBuilder.setInsertPt(MBB, MI); 926 for (unsigned i = 0; i < NumParts; ++i) { 927 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 928 MachineInstrBuilder MIB = 929 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 930 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 931 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 932 } 933 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 934 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 935 Observer.changedInstr(MI); 936 MI.eraseFromParent(); 937 return Legalized; 938 } 939 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 940 case TargetOpcode::G_INSERT_VECTOR_ELT: { 941 if (TypeIdx != 2) 942 return UnableToLegalize; 943 944 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 945 Observer.changingInstr(MI); 946 narrowScalarSrc(MI, NarrowTy, OpIdx); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 case TargetOpcode::G_ICMP: { 951 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 952 if (NarrowSize * 2 != SrcSize) 953 return UnableToLegalize; 954 955 Observer.changingInstr(MI); 956 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 957 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 958 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 959 960 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 961 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 962 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 963 964 CmpInst::Predicate Pred = 965 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 966 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 967 968 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 969 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 970 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 971 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 972 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 973 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 974 } else { 975 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 976 MachineInstrBuilder CmpHEQ = 977 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 978 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 979 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 980 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 981 } 982 Observer.changedInstr(MI); 983 MI.eraseFromParent(); 984 return Legalized; 985 } 986 case TargetOpcode::G_SEXT_INREG: { 987 if (TypeIdx != 0) 988 return UnableToLegalize; 989 990 if (!MI.getOperand(2).isImm()) 991 return UnableToLegalize; 992 int64_t SizeInBits = MI.getOperand(2).getImm(); 993 994 // So long as the new type has more bits than the bits we're extending we 995 // don't need to break it apart. 996 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 997 Observer.changingInstr(MI); 998 // We don't lose any non-extension bits by truncating the src and 999 // sign-extending the dst. 1000 MachineOperand &MO1 = MI.getOperand(1); 1001 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 1002 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1003 1004 MachineOperand &MO2 = MI.getOperand(0); 1005 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1006 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1007 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 1008 MO2.setReg(DstExt); 1009 Observer.changedInstr(MI); 1010 return Legalized; 1011 } 1012 1013 // Break it apart. Components below the extension point are unmodified. The 1014 // component containing the extension point becomes a narrower SEXT_INREG. 1015 // Components above it are ashr'd from the component containing the 1016 // extension point. 1017 if (SizeOp0 % NarrowSize != 0) 1018 return UnableToLegalize; 1019 int NumParts = SizeOp0 / NarrowSize; 1020 1021 // List the registers where the destination will be scattered. 1022 SmallVector<Register, 2> DstRegs; 1023 // List the registers where the source will be split. 1024 SmallVector<Register, 2> SrcRegs; 1025 1026 // Create all the temporary registers. 1027 for (int i = 0; i < NumParts; ++i) { 1028 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1029 1030 SrcRegs.push_back(SrcReg); 1031 } 1032 1033 // Explode the big arguments into smaller chunks. 1034 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1035 1036 Register AshrCstReg = 1037 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1038 ->getOperand(0) 1039 .getReg(); 1040 Register FullExtensionReg = 0; 1041 Register PartialExtensionReg = 0; 1042 1043 // Do the operation on each small part. 1044 for (int i = 0; i < NumParts; ++i) { 1045 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1046 DstRegs.push_back(SrcRegs[i]); 1047 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1048 assert(PartialExtensionReg && 1049 "Expected to visit partial extension before full"); 1050 if (FullExtensionReg) { 1051 DstRegs.push_back(FullExtensionReg); 1052 continue; 1053 } 1054 DstRegs.push_back(MIRBuilder 1055 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1056 {PartialExtensionReg, AshrCstReg}) 1057 ->getOperand(0) 1058 .getReg()); 1059 FullExtensionReg = DstRegs.back(); 1060 } else { 1061 DstRegs.push_back( 1062 MIRBuilder 1063 .buildInstr( 1064 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1065 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1066 ->getOperand(0) 1067 .getReg()); 1068 PartialExtensionReg = DstRegs.back(); 1069 } 1070 } 1071 1072 // Gather the destination registers into the final destination. 1073 Register DstReg = MI.getOperand(0).getReg(); 1074 MIRBuilder.buildMerge(DstReg, DstRegs); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 } 1079 } 1080 1081 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1082 unsigned OpIdx, unsigned ExtOpcode) { 1083 MachineOperand &MO = MI.getOperand(OpIdx); 1084 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1085 MO.setReg(ExtB->getOperand(0).getReg()); 1086 } 1087 1088 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1089 unsigned OpIdx) { 1090 MachineOperand &MO = MI.getOperand(OpIdx); 1091 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1092 {MO.getReg()}); 1093 MO.setReg(ExtB->getOperand(0).getReg()); 1094 } 1095 1096 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1097 unsigned OpIdx, unsigned TruncOpcode) { 1098 MachineOperand &MO = MI.getOperand(OpIdx); 1099 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1100 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1101 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1102 MO.setReg(DstExt); 1103 } 1104 1105 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1106 unsigned OpIdx, unsigned ExtOpcode) { 1107 MachineOperand &MO = MI.getOperand(OpIdx); 1108 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1109 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1110 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1111 MO.setReg(DstTrunc); 1112 } 1113 1114 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1115 unsigned OpIdx) { 1116 MachineOperand &MO = MI.getOperand(OpIdx); 1117 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1118 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1119 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1120 MO.setReg(DstExt); 1121 } 1122 1123 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1124 unsigned OpIdx) { 1125 MachineOperand &MO = MI.getOperand(OpIdx); 1126 1127 LLT OldTy = MRI.getType(MO.getReg()); 1128 unsigned OldElts = OldTy.getNumElements(); 1129 unsigned NewElts = MoreTy.getNumElements(); 1130 1131 unsigned NumParts = NewElts / OldElts; 1132 1133 // Use concat_vectors if the result is a multiple of the number of elements. 1134 if (NumParts * OldElts == NewElts) { 1135 SmallVector<Register, 8> Parts; 1136 Parts.push_back(MO.getReg()); 1137 1138 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1139 for (unsigned I = 1; I != NumParts; ++I) 1140 Parts.push_back(ImpDef); 1141 1142 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1143 MO.setReg(Concat.getReg(0)); 1144 return; 1145 } 1146 1147 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1148 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1149 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1150 MO.setReg(MoreReg); 1151 } 1152 1153 LegalizerHelper::LegalizeResult 1154 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1155 LLT WideTy) { 1156 if (TypeIdx != 1) 1157 return UnableToLegalize; 1158 1159 Register DstReg = MI.getOperand(0).getReg(); 1160 LLT DstTy = MRI.getType(DstReg); 1161 if (DstTy.isVector()) 1162 return UnableToLegalize; 1163 1164 Register Src1 = MI.getOperand(1).getReg(); 1165 LLT SrcTy = MRI.getType(Src1); 1166 const int DstSize = DstTy.getSizeInBits(); 1167 const int SrcSize = SrcTy.getSizeInBits(); 1168 const int WideSize = WideTy.getSizeInBits(); 1169 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1170 1171 unsigned NumOps = MI.getNumOperands(); 1172 unsigned NumSrc = MI.getNumOperands() - 1; 1173 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1174 1175 if (WideSize >= DstSize) { 1176 // Directly pack the bits in the target type. 1177 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1178 1179 for (unsigned I = 2; I != NumOps; ++I) { 1180 const unsigned Offset = (I - 1) * PartSize; 1181 1182 Register SrcReg = MI.getOperand(I).getReg(); 1183 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1184 1185 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1186 1187 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1188 MRI.createGenericVirtualRegister(WideTy); 1189 1190 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1191 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1192 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1193 ResultReg = NextResult; 1194 } 1195 1196 if (WideSize > DstSize) 1197 MIRBuilder.buildTrunc(DstReg, ResultReg); 1198 else if (DstTy.isPointer()) 1199 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1200 1201 MI.eraseFromParent(); 1202 return Legalized; 1203 } 1204 1205 // Unmerge the original values to the GCD type, and recombine to the next 1206 // multiple greater than the original type. 1207 // 1208 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1209 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1210 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1211 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1212 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1213 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1214 // %12:_(s12) = G_MERGE_VALUES %10, %11 1215 // 1216 // Padding with undef if necessary: 1217 // 1218 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1219 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1220 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1221 // %7:_(s2) = G_IMPLICIT_DEF 1222 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1223 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1224 // %10:_(s12) = G_MERGE_VALUES %8, %9 1225 1226 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1227 LLT GCDTy = LLT::scalar(GCD); 1228 1229 SmallVector<Register, 8> Parts; 1230 SmallVector<Register, 8> NewMergeRegs; 1231 SmallVector<Register, 8> Unmerges; 1232 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1233 1234 // Decompose the original operands if they don't evenly divide. 1235 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1236 Register SrcReg = MI.getOperand(I).getReg(); 1237 if (GCD == SrcSize) { 1238 Unmerges.push_back(SrcReg); 1239 } else { 1240 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1241 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1242 Unmerges.push_back(Unmerge.getReg(J)); 1243 } 1244 } 1245 1246 // Pad with undef to the next size that is a multiple of the requested size. 1247 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1248 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1249 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1250 Unmerges.push_back(UndefReg); 1251 } 1252 1253 const int PartsPerGCD = WideSize / GCD; 1254 1255 // Build merges of each piece. 1256 ArrayRef<Register> Slicer(Unmerges); 1257 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1258 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1259 NewMergeRegs.push_back(Merge.getReg(0)); 1260 } 1261 1262 // A truncate may be necessary if the requested type doesn't evenly divide the 1263 // original result type. 1264 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1265 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1266 } else { 1267 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1268 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1269 } 1270 1271 MI.eraseFromParent(); 1272 return Legalized; 1273 } 1274 1275 LegalizerHelper::LegalizeResult 1276 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1277 LLT WideTy) { 1278 if (TypeIdx != 0) 1279 return UnableToLegalize; 1280 1281 unsigned NumDst = MI.getNumOperands() - 1; 1282 Register SrcReg = MI.getOperand(NumDst).getReg(); 1283 LLT SrcTy = MRI.getType(SrcReg); 1284 if (!SrcTy.isScalar()) 1285 return UnableToLegalize; 1286 1287 Register Dst0Reg = MI.getOperand(0).getReg(); 1288 LLT DstTy = MRI.getType(Dst0Reg); 1289 if (!DstTy.isScalar()) 1290 return UnableToLegalize; 1291 1292 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1293 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1294 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1295 1296 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1297 1298 for (unsigned I = 1; I != NumDst; ++I) { 1299 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1300 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1301 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1302 } 1303 1304 Observer.changingInstr(MI); 1305 1306 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1307 for (unsigned I = 0; I != NumDst; ++I) 1308 widenScalarDst(MI, WideTy, I); 1309 1310 Observer.changedInstr(MI); 1311 1312 return Legalized; 1313 } 1314 1315 LegalizerHelper::LegalizeResult 1316 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1317 LLT WideTy) { 1318 Register DstReg = MI.getOperand(0).getReg(); 1319 Register SrcReg = MI.getOperand(1).getReg(); 1320 LLT SrcTy = MRI.getType(SrcReg); 1321 1322 LLT DstTy = MRI.getType(DstReg); 1323 unsigned Offset = MI.getOperand(2).getImm(); 1324 1325 if (TypeIdx == 0) { 1326 if (SrcTy.isVector() || DstTy.isVector()) 1327 return UnableToLegalize; 1328 1329 SrcOp Src(SrcReg); 1330 if (SrcTy.isPointer()) { 1331 // Extracts from pointers can be handled only if they are really just 1332 // simple integers. 1333 const DataLayout &DL = MIRBuilder.getDataLayout(); 1334 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1335 return UnableToLegalize; 1336 1337 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1338 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1339 SrcTy = SrcAsIntTy; 1340 } 1341 1342 if (DstTy.isPointer()) 1343 return UnableToLegalize; 1344 1345 if (Offset == 0) { 1346 // Avoid a shift in the degenerate case. 1347 MIRBuilder.buildTrunc(DstReg, 1348 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1349 MI.eraseFromParent(); 1350 return Legalized; 1351 } 1352 1353 // Do a shift in the source type. 1354 LLT ShiftTy = SrcTy; 1355 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1356 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1357 ShiftTy = WideTy; 1358 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1359 return UnableToLegalize; 1360 1361 auto LShr = MIRBuilder.buildLShr( 1362 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1363 MIRBuilder.buildTrunc(DstReg, LShr); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 1368 if (SrcTy.isScalar()) { 1369 Observer.changingInstr(MI); 1370 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1371 Observer.changedInstr(MI); 1372 return Legalized; 1373 } 1374 1375 if (!SrcTy.isVector()) 1376 return UnableToLegalize; 1377 1378 if (DstTy != SrcTy.getElementType()) 1379 return UnableToLegalize; 1380 1381 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1382 return UnableToLegalize; 1383 1384 Observer.changingInstr(MI); 1385 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1386 1387 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1388 Offset); 1389 widenScalarDst(MI, WideTy.getScalarType(), 0); 1390 Observer.changedInstr(MI); 1391 return Legalized; 1392 } 1393 1394 LegalizerHelper::LegalizeResult 1395 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1396 LLT WideTy) { 1397 if (TypeIdx != 0) 1398 return UnableToLegalize; 1399 Observer.changingInstr(MI); 1400 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1401 widenScalarDst(MI, WideTy); 1402 Observer.changedInstr(MI); 1403 return Legalized; 1404 } 1405 1406 LegalizerHelper::LegalizeResult 1407 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1408 MIRBuilder.setInstr(MI); 1409 1410 switch (MI.getOpcode()) { 1411 default: 1412 return UnableToLegalize; 1413 case TargetOpcode::G_EXTRACT: 1414 return widenScalarExtract(MI, TypeIdx, WideTy); 1415 case TargetOpcode::G_INSERT: 1416 return widenScalarInsert(MI, TypeIdx, WideTy); 1417 case TargetOpcode::G_MERGE_VALUES: 1418 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1419 case TargetOpcode::G_UNMERGE_VALUES: 1420 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1421 case TargetOpcode::G_UADDO: 1422 case TargetOpcode::G_USUBO: { 1423 if (TypeIdx == 1) 1424 return UnableToLegalize; // TODO 1425 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1426 {MI.getOperand(2).getReg()}); 1427 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1428 {MI.getOperand(3).getReg()}); 1429 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1430 ? TargetOpcode::G_ADD 1431 : TargetOpcode::G_SUB; 1432 // Do the arithmetic in the larger type. 1433 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1434 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1435 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1436 auto AndOp = MIRBuilder.buildInstr( 1437 TargetOpcode::G_AND, {WideTy}, 1438 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1439 // There is no overflow if the AndOp is the same as NewOp. 1440 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1441 AndOp); 1442 // Now trunc the NewOp to the original result. 1443 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 case TargetOpcode::G_CTTZ: 1448 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1449 case TargetOpcode::G_CTLZ: 1450 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1451 case TargetOpcode::G_CTPOP: { 1452 if (TypeIdx == 0) { 1453 Observer.changingInstr(MI); 1454 widenScalarDst(MI, WideTy, 0); 1455 Observer.changedInstr(MI); 1456 return Legalized; 1457 } 1458 1459 Register SrcReg = MI.getOperand(1).getReg(); 1460 1461 // First ZEXT the input. 1462 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1463 LLT CurTy = MRI.getType(SrcReg); 1464 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1465 // The count is the same in the larger type except if the original 1466 // value was zero. This can be handled by setting the bit just off 1467 // the top of the original type. 1468 auto TopBit = 1469 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1470 MIBSrc = MIRBuilder.buildOr( 1471 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1472 } 1473 1474 // Perform the operation at the larger size. 1475 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1476 // This is already the correct result for CTPOP and CTTZs 1477 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1478 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1479 // The correct result is NewOp - (Difference in widety and current ty). 1480 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1481 MIBNewOp = MIRBuilder.buildInstr( 1482 TargetOpcode::G_SUB, {WideTy}, 1483 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1484 } 1485 1486 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1487 MI.eraseFromParent(); 1488 return Legalized; 1489 } 1490 case TargetOpcode::G_BSWAP: { 1491 Observer.changingInstr(MI); 1492 Register DstReg = MI.getOperand(0).getReg(); 1493 1494 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1495 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1496 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1497 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1498 1499 MI.getOperand(0).setReg(DstExt); 1500 1501 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1502 1503 LLT Ty = MRI.getType(DstReg); 1504 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1505 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1506 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1507 .addDef(ShrReg) 1508 .addUse(DstExt) 1509 .addUse(ShiftAmtReg); 1510 1511 MIRBuilder.buildTrunc(DstReg, ShrReg); 1512 Observer.changedInstr(MI); 1513 return Legalized; 1514 } 1515 case TargetOpcode::G_BITREVERSE: { 1516 Observer.changingInstr(MI); 1517 1518 Register DstReg = MI.getOperand(0).getReg(); 1519 LLT Ty = MRI.getType(DstReg); 1520 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1521 1522 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1523 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1524 MI.getOperand(0).setReg(DstExt); 1525 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1526 1527 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1528 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1529 MIRBuilder.buildTrunc(DstReg, Shift); 1530 Observer.changedInstr(MI); 1531 return Legalized; 1532 } 1533 case TargetOpcode::G_ADD: 1534 case TargetOpcode::G_AND: 1535 case TargetOpcode::G_MUL: 1536 case TargetOpcode::G_OR: 1537 case TargetOpcode::G_XOR: 1538 case TargetOpcode::G_SUB: 1539 // Perform operation at larger width (any extension is fines here, high bits 1540 // don't affect the result) and then truncate the result back to the 1541 // original type. 1542 Observer.changingInstr(MI); 1543 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1544 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1545 widenScalarDst(MI, WideTy); 1546 Observer.changedInstr(MI); 1547 return Legalized; 1548 1549 case TargetOpcode::G_SHL: 1550 Observer.changingInstr(MI); 1551 1552 if (TypeIdx == 0) { 1553 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1554 widenScalarDst(MI, WideTy); 1555 } else { 1556 assert(TypeIdx == 1); 1557 // The "number of bits to shift" operand must preserve its value as an 1558 // unsigned integer: 1559 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1560 } 1561 1562 Observer.changedInstr(MI); 1563 return Legalized; 1564 1565 case TargetOpcode::G_SDIV: 1566 case TargetOpcode::G_SREM: 1567 case TargetOpcode::G_SMIN: 1568 case TargetOpcode::G_SMAX: 1569 Observer.changingInstr(MI); 1570 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1571 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1572 widenScalarDst(MI, WideTy); 1573 Observer.changedInstr(MI); 1574 return Legalized; 1575 1576 case TargetOpcode::G_ASHR: 1577 case TargetOpcode::G_LSHR: 1578 Observer.changingInstr(MI); 1579 1580 if (TypeIdx == 0) { 1581 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1582 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1583 1584 widenScalarSrc(MI, WideTy, 1, CvtOp); 1585 widenScalarDst(MI, WideTy); 1586 } else { 1587 assert(TypeIdx == 1); 1588 // The "number of bits to shift" operand must preserve its value as an 1589 // unsigned integer: 1590 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1591 } 1592 1593 Observer.changedInstr(MI); 1594 return Legalized; 1595 case TargetOpcode::G_UDIV: 1596 case TargetOpcode::G_UREM: 1597 case TargetOpcode::G_UMIN: 1598 case TargetOpcode::G_UMAX: 1599 Observer.changingInstr(MI); 1600 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1601 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1602 widenScalarDst(MI, WideTy); 1603 Observer.changedInstr(MI); 1604 return Legalized; 1605 1606 case TargetOpcode::G_SELECT: 1607 Observer.changingInstr(MI); 1608 if (TypeIdx == 0) { 1609 // Perform operation at larger width (any extension is fine here, high 1610 // bits don't affect the result) and then truncate the result back to the 1611 // original type. 1612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1613 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1614 widenScalarDst(MI, WideTy); 1615 } else { 1616 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1617 // Explicit extension is required here since high bits affect the result. 1618 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1619 } 1620 Observer.changedInstr(MI); 1621 return Legalized; 1622 1623 case TargetOpcode::G_FPTOSI: 1624 case TargetOpcode::G_FPTOUI: 1625 Observer.changingInstr(MI); 1626 1627 if (TypeIdx == 0) 1628 widenScalarDst(MI, WideTy); 1629 else 1630 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1631 1632 Observer.changedInstr(MI); 1633 return Legalized; 1634 case TargetOpcode::G_SITOFP: 1635 if (TypeIdx != 1) 1636 return UnableToLegalize; 1637 Observer.changingInstr(MI); 1638 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1639 Observer.changedInstr(MI); 1640 return Legalized; 1641 1642 case TargetOpcode::G_UITOFP: 1643 if (TypeIdx != 1) 1644 return UnableToLegalize; 1645 Observer.changingInstr(MI); 1646 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1647 Observer.changedInstr(MI); 1648 return Legalized; 1649 1650 case TargetOpcode::G_LOAD: 1651 case TargetOpcode::G_SEXTLOAD: 1652 case TargetOpcode::G_ZEXTLOAD: 1653 Observer.changingInstr(MI); 1654 widenScalarDst(MI, WideTy); 1655 Observer.changedInstr(MI); 1656 return Legalized; 1657 1658 case TargetOpcode::G_STORE: { 1659 if (TypeIdx != 0) 1660 return UnableToLegalize; 1661 1662 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1663 if (!isPowerOf2_32(Ty.getSizeInBits())) 1664 return UnableToLegalize; 1665 1666 Observer.changingInstr(MI); 1667 1668 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1669 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1670 widenScalarSrc(MI, WideTy, 0, ExtType); 1671 1672 Observer.changedInstr(MI); 1673 return Legalized; 1674 } 1675 case TargetOpcode::G_CONSTANT: { 1676 MachineOperand &SrcMO = MI.getOperand(1); 1677 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1678 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1679 Observer.changingInstr(MI); 1680 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1681 1682 widenScalarDst(MI, WideTy); 1683 Observer.changedInstr(MI); 1684 return Legalized; 1685 } 1686 case TargetOpcode::G_FCONSTANT: { 1687 MachineOperand &SrcMO = MI.getOperand(1); 1688 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1689 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1690 bool LosesInfo; 1691 switch (WideTy.getSizeInBits()) { 1692 case 32: 1693 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1694 &LosesInfo); 1695 break; 1696 case 64: 1697 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1698 &LosesInfo); 1699 break; 1700 default: 1701 return UnableToLegalize; 1702 } 1703 1704 assert(!LosesInfo && "extend should always be lossless"); 1705 1706 Observer.changingInstr(MI); 1707 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1708 1709 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1710 Observer.changedInstr(MI); 1711 return Legalized; 1712 } 1713 case TargetOpcode::G_IMPLICIT_DEF: { 1714 Observer.changingInstr(MI); 1715 widenScalarDst(MI, WideTy); 1716 Observer.changedInstr(MI); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_BRCOND: 1720 Observer.changingInstr(MI); 1721 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1722 Observer.changedInstr(MI); 1723 return Legalized; 1724 1725 case TargetOpcode::G_FCMP: 1726 Observer.changingInstr(MI); 1727 if (TypeIdx == 0) 1728 widenScalarDst(MI, WideTy); 1729 else { 1730 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1731 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1732 } 1733 Observer.changedInstr(MI); 1734 return Legalized; 1735 1736 case TargetOpcode::G_ICMP: 1737 Observer.changingInstr(MI); 1738 if (TypeIdx == 0) 1739 widenScalarDst(MI, WideTy); 1740 else { 1741 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1742 MI.getOperand(1).getPredicate())) 1743 ? TargetOpcode::G_SEXT 1744 : TargetOpcode::G_ZEXT; 1745 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1746 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1747 } 1748 Observer.changedInstr(MI); 1749 return Legalized; 1750 1751 case TargetOpcode::G_PTR_ADD: 1752 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1755 Observer.changedInstr(MI); 1756 return Legalized; 1757 1758 case TargetOpcode::G_PHI: { 1759 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1760 1761 Observer.changingInstr(MI); 1762 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1763 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1764 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1765 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1766 } 1767 1768 MachineBasicBlock &MBB = *MI.getParent(); 1769 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1770 widenScalarDst(MI, WideTy); 1771 Observer.changedInstr(MI); 1772 return Legalized; 1773 } 1774 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1775 if (TypeIdx == 0) { 1776 Register VecReg = MI.getOperand(1).getReg(); 1777 LLT VecTy = MRI.getType(VecReg); 1778 Observer.changingInstr(MI); 1779 1780 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1781 WideTy.getSizeInBits()), 1782 1, TargetOpcode::G_SEXT); 1783 1784 widenScalarDst(MI, WideTy, 0); 1785 Observer.changedInstr(MI); 1786 return Legalized; 1787 } 1788 1789 if (TypeIdx != 2) 1790 return UnableToLegalize; 1791 Observer.changingInstr(MI); 1792 // TODO: Probably should be zext 1793 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1794 Observer.changedInstr(MI); 1795 return Legalized; 1796 } 1797 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1798 if (TypeIdx == 1) { 1799 Observer.changingInstr(MI); 1800 1801 Register VecReg = MI.getOperand(1).getReg(); 1802 LLT VecTy = MRI.getType(VecReg); 1803 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1804 1805 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1806 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1807 widenScalarDst(MI, WideVecTy, 0); 1808 Observer.changedInstr(MI); 1809 return Legalized; 1810 } 1811 1812 if (TypeIdx == 2) { 1813 Observer.changingInstr(MI); 1814 // TODO: Probably should be zext 1815 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1816 Observer.changedInstr(MI); 1817 } 1818 1819 return Legalized; 1820 } 1821 case TargetOpcode::G_FADD: 1822 case TargetOpcode::G_FMUL: 1823 case TargetOpcode::G_FSUB: 1824 case TargetOpcode::G_FMA: 1825 case TargetOpcode::G_FMAD: 1826 case TargetOpcode::G_FNEG: 1827 case TargetOpcode::G_FABS: 1828 case TargetOpcode::G_FCANONICALIZE: 1829 case TargetOpcode::G_FMINNUM: 1830 case TargetOpcode::G_FMAXNUM: 1831 case TargetOpcode::G_FMINNUM_IEEE: 1832 case TargetOpcode::G_FMAXNUM_IEEE: 1833 case TargetOpcode::G_FMINIMUM: 1834 case TargetOpcode::G_FMAXIMUM: 1835 case TargetOpcode::G_FDIV: 1836 case TargetOpcode::G_FREM: 1837 case TargetOpcode::G_FCEIL: 1838 case TargetOpcode::G_FFLOOR: 1839 case TargetOpcode::G_FCOS: 1840 case TargetOpcode::G_FSIN: 1841 case TargetOpcode::G_FLOG10: 1842 case TargetOpcode::G_FLOG: 1843 case TargetOpcode::G_FLOG2: 1844 case TargetOpcode::G_FRINT: 1845 case TargetOpcode::G_FNEARBYINT: 1846 case TargetOpcode::G_FSQRT: 1847 case TargetOpcode::G_FEXP: 1848 case TargetOpcode::G_FEXP2: 1849 case TargetOpcode::G_FPOW: 1850 case TargetOpcode::G_INTRINSIC_TRUNC: 1851 case TargetOpcode::G_INTRINSIC_ROUND: 1852 assert(TypeIdx == 0); 1853 Observer.changingInstr(MI); 1854 1855 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1856 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1857 1858 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1859 Observer.changedInstr(MI); 1860 return Legalized; 1861 case TargetOpcode::G_INTTOPTR: 1862 if (TypeIdx != 1) 1863 return UnableToLegalize; 1864 1865 Observer.changingInstr(MI); 1866 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1867 Observer.changedInstr(MI); 1868 return Legalized; 1869 case TargetOpcode::G_PTRTOINT: 1870 if (TypeIdx != 0) 1871 return UnableToLegalize; 1872 1873 Observer.changingInstr(MI); 1874 widenScalarDst(MI, WideTy, 0); 1875 Observer.changedInstr(MI); 1876 return Legalized; 1877 case TargetOpcode::G_BUILD_VECTOR: { 1878 Observer.changingInstr(MI); 1879 1880 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1881 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1882 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1883 1884 // Avoid changing the result vector type if the source element type was 1885 // requested. 1886 if (TypeIdx == 1) { 1887 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1888 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1889 } else { 1890 widenScalarDst(MI, WideTy, 0); 1891 } 1892 1893 Observer.changedInstr(MI); 1894 return Legalized; 1895 } 1896 case TargetOpcode::G_SEXT_INREG: 1897 if (TypeIdx != 0) 1898 return UnableToLegalize; 1899 1900 Observer.changingInstr(MI); 1901 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1902 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1903 Observer.changedInstr(MI); 1904 return Legalized; 1905 } 1906 } 1907 1908 LegalizerHelper::LegalizeResult 1909 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1910 using namespace TargetOpcode; 1911 MIRBuilder.setInstr(MI); 1912 1913 switch(MI.getOpcode()) { 1914 default: 1915 return UnableToLegalize; 1916 case TargetOpcode::G_SREM: 1917 case TargetOpcode::G_UREM: { 1918 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1919 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1920 .addDef(QuotReg) 1921 .addUse(MI.getOperand(1).getReg()) 1922 .addUse(MI.getOperand(2).getReg()); 1923 1924 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1925 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1926 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1927 ProdReg); 1928 MI.eraseFromParent(); 1929 return Legalized; 1930 } 1931 case TargetOpcode::G_SADDO: 1932 case TargetOpcode::G_SSUBO: 1933 return lowerSADDO_SSUBO(MI); 1934 case TargetOpcode::G_SMULO: 1935 case TargetOpcode::G_UMULO: { 1936 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1937 // result. 1938 Register Res = MI.getOperand(0).getReg(); 1939 Register Overflow = MI.getOperand(1).getReg(); 1940 Register LHS = MI.getOperand(2).getReg(); 1941 Register RHS = MI.getOperand(3).getReg(); 1942 1943 MIRBuilder.buildMul(Res, LHS, RHS); 1944 1945 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1946 ? TargetOpcode::G_SMULH 1947 : TargetOpcode::G_UMULH; 1948 1949 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1950 MIRBuilder.buildInstr(Opcode) 1951 .addDef(HiPart) 1952 .addUse(LHS) 1953 .addUse(RHS); 1954 1955 Register Zero = MRI.createGenericVirtualRegister(Ty); 1956 MIRBuilder.buildConstant(Zero, 0); 1957 1958 // For *signed* multiply, overflow is detected by checking: 1959 // (hi != (lo >> bitwidth-1)) 1960 if (Opcode == TargetOpcode::G_SMULH) { 1961 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1962 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1963 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1964 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1965 .addDef(Shifted) 1966 .addUse(Res) 1967 .addUse(ShiftAmt); 1968 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1969 } else { 1970 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1971 } 1972 MI.eraseFromParent(); 1973 return Legalized; 1974 } 1975 case TargetOpcode::G_FNEG: { 1976 // TODO: Handle vector types once we are able to 1977 // represent them. 1978 if (Ty.isVector()) 1979 return UnableToLegalize; 1980 Register Res = MI.getOperand(0).getReg(); 1981 Type *ZeroTy; 1982 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1983 switch (Ty.getSizeInBits()) { 1984 case 16: 1985 ZeroTy = Type::getHalfTy(Ctx); 1986 break; 1987 case 32: 1988 ZeroTy = Type::getFloatTy(Ctx); 1989 break; 1990 case 64: 1991 ZeroTy = Type::getDoubleTy(Ctx); 1992 break; 1993 case 128: 1994 ZeroTy = Type::getFP128Ty(Ctx); 1995 break; 1996 default: 1997 llvm_unreachable("unexpected floating-point type"); 1998 } 1999 ConstantFP &ZeroForNegation = 2000 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2001 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2002 Register SubByReg = MI.getOperand(1).getReg(); 2003 Register ZeroReg = Zero->getOperand(0).getReg(); 2004 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 2005 MI.getFlags()); 2006 MI.eraseFromParent(); 2007 return Legalized; 2008 } 2009 case TargetOpcode::G_FSUB: { 2010 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2011 // First, check if G_FNEG is marked as Lower. If so, we may 2012 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2013 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2014 return UnableToLegalize; 2015 Register Res = MI.getOperand(0).getReg(); 2016 Register LHS = MI.getOperand(1).getReg(); 2017 Register RHS = MI.getOperand(2).getReg(); 2018 Register Neg = MRI.createGenericVirtualRegister(Ty); 2019 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 2020 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 2021 MI.eraseFromParent(); 2022 return Legalized; 2023 } 2024 case TargetOpcode::G_FMAD: 2025 return lowerFMad(MI); 2026 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2027 Register OldValRes = MI.getOperand(0).getReg(); 2028 Register SuccessRes = MI.getOperand(1).getReg(); 2029 Register Addr = MI.getOperand(2).getReg(); 2030 Register CmpVal = MI.getOperand(3).getReg(); 2031 Register NewVal = MI.getOperand(4).getReg(); 2032 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2033 **MI.memoperands_begin()); 2034 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2035 MI.eraseFromParent(); 2036 return Legalized; 2037 } 2038 case TargetOpcode::G_LOAD: 2039 case TargetOpcode::G_SEXTLOAD: 2040 case TargetOpcode::G_ZEXTLOAD: { 2041 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2042 Register DstReg = MI.getOperand(0).getReg(); 2043 Register PtrReg = MI.getOperand(1).getReg(); 2044 LLT DstTy = MRI.getType(DstReg); 2045 auto &MMO = **MI.memoperands_begin(); 2046 2047 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2048 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2049 // This load needs splitting into power of 2 sized loads. 2050 if (DstTy.isVector()) 2051 return UnableToLegalize; 2052 if (isPowerOf2_32(DstTy.getSizeInBits())) 2053 return UnableToLegalize; // Don't know what we're being asked to do. 2054 2055 // Our strategy here is to generate anyextending loads for the smaller 2056 // types up to next power-2 result type, and then combine the two larger 2057 // result values together, before truncating back down to the non-pow-2 2058 // type. 2059 // E.g. v1 = i24 load => 2060 // v2 = i32 load (2 byte) 2061 // v3 = i32 load (1 byte) 2062 // v4 = i32 shl v3, 16 2063 // v5 = i32 or v4, v2 2064 // v1 = i24 trunc v5 2065 // By doing this we generate the correct truncate which should get 2066 // combined away as an artifact with a matching extend. 2067 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2068 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2069 2070 MachineFunction &MF = MIRBuilder.getMF(); 2071 MachineMemOperand *LargeMMO = 2072 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2073 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2074 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2075 2076 LLT PtrTy = MRI.getType(PtrReg); 2077 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2078 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2079 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2080 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2081 auto LargeLoad = 2082 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2083 2084 auto OffsetCst = 2085 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2086 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2087 auto SmallPtr = 2088 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2089 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2090 *SmallMMO); 2091 2092 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2093 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2094 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2095 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2096 MI.eraseFromParent(); 2097 return Legalized; 2098 } 2099 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2100 MI.eraseFromParent(); 2101 return Legalized; 2102 } 2103 2104 if (DstTy.isScalar()) { 2105 Register TmpReg = 2106 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2107 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2108 switch (MI.getOpcode()) { 2109 default: 2110 llvm_unreachable("Unexpected opcode"); 2111 case TargetOpcode::G_LOAD: 2112 MIRBuilder.buildAnyExt(DstReg, TmpReg); 2113 break; 2114 case TargetOpcode::G_SEXTLOAD: 2115 MIRBuilder.buildSExt(DstReg, TmpReg); 2116 break; 2117 case TargetOpcode::G_ZEXTLOAD: 2118 MIRBuilder.buildZExt(DstReg, TmpReg); 2119 break; 2120 } 2121 MI.eraseFromParent(); 2122 return Legalized; 2123 } 2124 2125 return UnableToLegalize; 2126 } 2127 case TargetOpcode::G_STORE: { 2128 // Lower a non-power of 2 store into multiple pow-2 stores. 2129 // E.g. split an i24 store into an i16 store + i8 store. 2130 // We do this by first extending the stored value to the next largest power 2131 // of 2 type, and then using truncating stores to store the components. 2132 // By doing this, likewise with G_LOAD, generate an extend that can be 2133 // artifact-combined away instead of leaving behind extracts. 2134 Register SrcReg = MI.getOperand(0).getReg(); 2135 Register PtrReg = MI.getOperand(1).getReg(); 2136 LLT SrcTy = MRI.getType(SrcReg); 2137 MachineMemOperand &MMO = **MI.memoperands_begin(); 2138 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2139 return UnableToLegalize; 2140 if (SrcTy.isVector()) 2141 return UnableToLegalize; 2142 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2143 return UnableToLegalize; // Don't know what we're being asked to do. 2144 2145 // Extend to the next pow-2. 2146 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2147 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2148 2149 // Obtain the smaller value by shifting away the larger value. 2150 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2151 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2152 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2153 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2154 2155 // Generate the PtrAdd and truncating stores. 2156 LLT PtrTy = MRI.getType(PtrReg); 2157 auto OffsetCst = 2158 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2159 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2160 auto SmallPtr = 2161 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2162 2163 MachineFunction &MF = MIRBuilder.getMF(); 2164 MachineMemOperand *LargeMMO = 2165 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2166 MachineMemOperand *SmallMMO = 2167 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2168 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2169 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2170 MI.eraseFromParent(); 2171 return Legalized; 2172 } 2173 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2174 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2175 case TargetOpcode::G_CTLZ: 2176 case TargetOpcode::G_CTTZ: 2177 case TargetOpcode::G_CTPOP: 2178 return lowerBitCount(MI, TypeIdx, Ty); 2179 case G_UADDO: { 2180 Register Res = MI.getOperand(0).getReg(); 2181 Register CarryOut = MI.getOperand(1).getReg(); 2182 Register LHS = MI.getOperand(2).getReg(); 2183 Register RHS = MI.getOperand(3).getReg(); 2184 2185 MIRBuilder.buildAdd(Res, LHS, RHS); 2186 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2187 2188 MI.eraseFromParent(); 2189 return Legalized; 2190 } 2191 case G_UADDE: { 2192 Register Res = MI.getOperand(0).getReg(); 2193 Register CarryOut = MI.getOperand(1).getReg(); 2194 Register LHS = MI.getOperand(2).getReg(); 2195 Register RHS = MI.getOperand(3).getReg(); 2196 Register CarryIn = MI.getOperand(4).getReg(); 2197 2198 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2199 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2200 2201 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2202 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2203 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2204 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2205 2206 MI.eraseFromParent(); 2207 return Legalized; 2208 } 2209 case G_USUBO: { 2210 Register Res = MI.getOperand(0).getReg(); 2211 Register BorrowOut = MI.getOperand(1).getReg(); 2212 Register LHS = MI.getOperand(2).getReg(); 2213 Register RHS = MI.getOperand(3).getReg(); 2214 2215 MIRBuilder.buildSub(Res, LHS, RHS); 2216 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2217 2218 MI.eraseFromParent(); 2219 return Legalized; 2220 } 2221 case G_USUBE: { 2222 Register Res = MI.getOperand(0).getReg(); 2223 Register BorrowOut = MI.getOperand(1).getReg(); 2224 Register LHS = MI.getOperand(2).getReg(); 2225 Register RHS = MI.getOperand(3).getReg(); 2226 Register BorrowIn = MI.getOperand(4).getReg(); 2227 2228 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2229 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2230 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2231 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2232 2233 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2234 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2235 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2236 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2237 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2238 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2239 2240 MI.eraseFromParent(); 2241 return Legalized; 2242 } 2243 case G_UITOFP: 2244 return lowerUITOFP(MI, TypeIdx, Ty); 2245 case G_SITOFP: 2246 return lowerSITOFP(MI, TypeIdx, Ty); 2247 case G_FPTOUI: 2248 return lowerFPTOUI(MI, TypeIdx, Ty); 2249 case G_SMIN: 2250 case G_SMAX: 2251 case G_UMIN: 2252 case G_UMAX: 2253 return lowerMinMax(MI, TypeIdx, Ty); 2254 case G_FCOPYSIGN: 2255 return lowerFCopySign(MI, TypeIdx, Ty); 2256 case G_FMINNUM: 2257 case G_FMAXNUM: 2258 return lowerFMinNumMaxNum(MI); 2259 case G_UNMERGE_VALUES: 2260 return lowerUnmergeValues(MI); 2261 case TargetOpcode::G_SEXT_INREG: { 2262 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2263 int64_t SizeInBits = MI.getOperand(2).getImm(); 2264 2265 Register DstReg = MI.getOperand(0).getReg(); 2266 Register SrcReg = MI.getOperand(1).getReg(); 2267 LLT DstTy = MRI.getType(DstReg); 2268 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2269 2270 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2271 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2272 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2273 MI.eraseFromParent(); 2274 return Legalized; 2275 } 2276 case G_SHUFFLE_VECTOR: 2277 return lowerShuffleVector(MI); 2278 case G_DYN_STACKALLOC: 2279 return lowerDynStackAlloc(MI); 2280 case G_EXTRACT: 2281 return lowerExtract(MI); 2282 case G_INSERT: 2283 return lowerInsert(MI); 2284 } 2285 } 2286 2287 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2288 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2289 SmallVector<Register, 2> DstRegs; 2290 2291 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2292 Register DstReg = MI.getOperand(0).getReg(); 2293 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2294 int NumParts = Size / NarrowSize; 2295 // FIXME: Don't know how to handle the situation where the small vectors 2296 // aren't all the same size yet. 2297 if (Size % NarrowSize != 0) 2298 return UnableToLegalize; 2299 2300 for (int i = 0; i < NumParts; ++i) { 2301 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2302 MIRBuilder.buildUndef(TmpReg); 2303 DstRegs.push_back(TmpReg); 2304 } 2305 2306 if (NarrowTy.isVector()) 2307 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2308 else 2309 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2310 2311 MI.eraseFromParent(); 2312 return Legalized; 2313 } 2314 2315 LegalizerHelper::LegalizeResult 2316 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2317 LLT NarrowTy) { 2318 const unsigned Opc = MI.getOpcode(); 2319 const unsigned NumOps = MI.getNumOperands() - 1; 2320 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2321 const Register DstReg = MI.getOperand(0).getReg(); 2322 const unsigned Flags = MI.getFlags(); 2323 const LLT DstTy = MRI.getType(DstReg); 2324 const unsigned Size = DstTy.getSizeInBits(); 2325 const int NumParts = Size / NarrowSize; 2326 const LLT EltTy = DstTy.getElementType(); 2327 const unsigned EltSize = EltTy.getSizeInBits(); 2328 const unsigned BitsForNumParts = NarrowSize * NumParts; 2329 2330 // Check if we have any leftovers. If we do, then only handle the case where 2331 // the leftover is one element. 2332 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2333 return UnableToLegalize; 2334 2335 if (BitsForNumParts != Size) { 2336 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2337 MIRBuilder.buildUndef(AccumDstReg); 2338 2339 // Handle the pieces which evenly divide into the requested type with 2340 // extract/op/insert sequence. 2341 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2342 SmallVector<SrcOp, 4> SrcOps; 2343 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2344 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2345 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2346 SrcOps.push_back(PartOpReg); 2347 } 2348 2349 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2350 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2351 2352 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2353 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2354 AccumDstReg = PartInsertReg; 2355 } 2356 2357 // Handle the remaining element sized leftover piece. 2358 SmallVector<SrcOp, 4> SrcOps; 2359 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2360 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2361 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2362 BitsForNumParts); 2363 SrcOps.push_back(PartOpReg); 2364 } 2365 2366 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2367 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2368 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2369 MI.eraseFromParent(); 2370 2371 return Legalized; 2372 } 2373 2374 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2375 2376 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2377 2378 if (NumOps >= 2) 2379 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2380 2381 if (NumOps >= 3) 2382 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2383 2384 for (int i = 0; i < NumParts; ++i) { 2385 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2386 2387 if (NumOps == 1) 2388 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2389 else if (NumOps == 2) { 2390 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2391 } else if (NumOps == 3) { 2392 MIRBuilder.buildInstr(Opc, {DstReg}, 2393 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2394 } 2395 2396 DstRegs.push_back(DstReg); 2397 } 2398 2399 if (NarrowTy.isVector()) 2400 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2401 else 2402 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2403 2404 MI.eraseFromParent(); 2405 return Legalized; 2406 } 2407 2408 // Handle splitting vector operations which need to have the same number of 2409 // elements in each type index, but each type index may have a different element 2410 // type. 2411 // 2412 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2413 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2414 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2415 // 2416 // Also handles some irregular breakdown cases, e.g. 2417 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2418 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2419 // s64 = G_SHL s64, s32 2420 LegalizerHelper::LegalizeResult 2421 LegalizerHelper::fewerElementsVectorMultiEltType( 2422 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2423 if (TypeIdx != 0) 2424 return UnableToLegalize; 2425 2426 const LLT NarrowTy0 = NarrowTyArg; 2427 const unsigned NewNumElts = 2428 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2429 2430 const Register DstReg = MI.getOperand(0).getReg(); 2431 LLT DstTy = MRI.getType(DstReg); 2432 LLT LeftoverTy0; 2433 2434 // All of the operands need to have the same number of elements, so if we can 2435 // determine a type breakdown for the result type, we can for all of the 2436 // source types. 2437 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2438 if (NumParts < 0) 2439 return UnableToLegalize; 2440 2441 SmallVector<MachineInstrBuilder, 4> NewInsts; 2442 2443 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2444 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2445 2446 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2447 LLT LeftoverTy; 2448 Register SrcReg = MI.getOperand(I).getReg(); 2449 LLT SrcTyI = MRI.getType(SrcReg); 2450 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2451 LLT LeftoverTyI; 2452 2453 // Split this operand into the requested typed registers, and any leftover 2454 // required to reproduce the original type. 2455 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2456 LeftoverRegs)) 2457 return UnableToLegalize; 2458 2459 if (I == 1) { 2460 // For the first operand, create an instruction for each part and setup 2461 // the result. 2462 for (Register PartReg : PartRegs) { 2463 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2464 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2465 .addDef(PartDstReg) 2466 .addUse(PartReg)); 2467 DstRegs.push_back(PartDstReg); 2468 } 2469 2470 for (Register LeftoverReg : LeftoverRegs) { 2471 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2472 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2473 .addDef(PartDstReg) 2474 .addUse(LeftoverReg)); 2475 LeftoverDstRegs.push_back(PartDstReg); 2476 } 2477 } else { 2478 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2479 2480 // Add the newly created operand splits to the existing instructions. The 2481 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2482 // pieces. 2483 unsigned InstCount = 0; 2484 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2485 NewInsts[InstCount++].addUse(PartRegs[J]); 2486 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2487 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2488 } 2489 2490 PartRegs.clear(); 2491 LeftoverRegs.clear(); 2492 } 2493 2494 // Insert the newly built operations and rebuild the result register. 2495 for (auto &MIB : NewInsts) 2496 MIRBuilder.insertInstr(MIB); 2497 2498 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2499 2500 MI.eraseFromParent(); 2501 return Legalized; 2502 } 2503 2504 LegalizerHelper::LegalizeResult 2505 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2506 LLT NarrowTy) { 2507 if (TypeIdx != 0) 2508 return UnableToLegalize; 2509 2510 Register DstReg = MI.getOperand(0).getReg(); 2511 Register SrcReg = MI.getOperand(1).getReg(); 2512 LLT DstTy = MRI.getType(DstReg); 2513 LLT SrcTy = MRI.getType(SrcReg); 2514 2515 LLT NarrowTy0 = NarrowTy; 2516 LLT NarrowTy1; 2517 unsigned NumParts; 2518 2519 if (NarrowTy.isVector()) { 2520 // Uneven breakdown not handled. 2521 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2522 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2523 return UnableToLegalize; 2524 2525 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2526 } else { 2527 NumParts = DstTy.getNumElements(); 2528 NarrowTy1 = SrcTy.getElementType(); 2529 } 2530 2531 SmallVector<Register, 4> SrcRegs, DstRegs; 2532 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2533 2534 for (unsigned I = 0; I < NumParts; ++I) { 2535 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2536 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2537 .addDef(DstReg) 2538 .addUse(SrcRegs[I]); 2539 2540 NewInst->setFlags(MI.getFlags()); 2541 DstRegs.push_back(DstReg); 2542 } 2543 2544 if (NarrowTy.isVector()) 2545 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2546 else 2547 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2548 2549 MI.eraseFromParent(); 2550 return Legalized; 2551 } 2552 2553 LegalizerHelper::LegalizeResult 2554 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2555 LLT NarrowTy) { 2556 Register DstReg = MI.getOperand(0).getReg(); 2557 Register Src0Reg = MI.getOperand(2).getReg(); 2558 LLT DstTy = MRI.getType(DstReg); 2559 LLT SrcTy = MRI.getType(Src0Reg); 2560 2561 unsigned NumParts; 2562 LLT NarrowTy0, NarrowTy1; 2563 2564 if (TypeIdx == 0) { 2565 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2566 unsigned OldElts = DstTy.getNumElements(); 2567 2568 NarrowTy0 = NarrowTy; 2569 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2570 NarrowTy1 = NarrowTy.isVector() ? 2571 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2572 SrcTy.getElementType(); 2573 2574 } else { 2575 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2576 unsigned OldElts = SrcTy.getNumElements(); 2577 2578 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2579 NarrowTy.getNumElements(); 2580 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2581 DstTy.getScalarSizeInBits()); 2582 NarrowTy1 = NarrowTy; 2583 } 2584 2585 // FIXME: Don't know how to handle the situation where the small vectors 2586 // aren't all the same size yet. 2587 if (NarrowTy1.isVector() && 2588 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2589 return UnableToLegalize; 2590 2591 CmpInst::Predicate Pred 2592 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2593 2594 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2595 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2596 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2597 2598 for (unsigned I = 0; I < NumParts; ++I) { 2599 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2600 DstRegs.push_back(DstReg); 2601 2602 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2603 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2604 else { 2605 MachineInstr *NewCmp 2606 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2607 NewCmp->setFlags(MI.getFlags()); 2608 } 2609 } 2610 2611 if (NarrowTy1.isVector()) 2612 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2613 else 2614 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2615 2616 MI.eraseFromParent(); 2617 return Legalized; 2618 } 2619 2620 LegalizerHelper::LegalizeResult 2621 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2622 LLT NarrowTy) { 2623 Register DstReg = MI.getOperand(0).getReg(); 2624 Register CondReg = MI.getOperand(1).getReg(); 2625 2626 unsigned NumParts = 0; 2627 LLT NarrowTy0, NarrowTy1; 2628 2629 LLT DstTy = MRI.getType(DstReg); 2630 LLT CondTy = MRI.getType(CondReg); 2631 unsigned Size = DstTy.getSizeInBits(); 2632 2633 assert(TypeIdx == 0 || CondTy.isVector()); 2634 2635 if (TypeIdx == 0) { 2636 NarrowTy0 = NarrowTy; 2637 NarrowTy1 = CondTy; 2638 2639 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2640 // FIXME: Don't know how to handle the situation where the small vectors 2641 // aren't all the same size yet. 2642 if (Size % NarrowSize != 0) 2643 return UnableToLegalize; 2644 2645 NumParts = Size / NarrowSize; 2646 2647 // Need to break down the condition type 2648 if (CondTy.isVector()) { 2649 if (CondTy.getNumElements() == NumParts) 2650 NarrowTy1 = CondTy.getElementType(); 2651 else 2652 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2653 CondTy.getScalarSizeInBits()); 2654 } 2655 } else { 2656 NumParts = CondTy.getNumElements(); 2657 if (NarrowTy.isVector()) { 2658 // TODO: Handle uneven breakdown. 2659 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2660 return UnableToLegalize; 2661 2662 return UnableToLegalize; 2663 } else { 2664 NarrowTy0 = DstTy.getElementType(); 2665 NarrowTy1 = NarrowTy; 2666 } 2667 } 2668 2669 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2670 if (CondTy.isVector()) 2671 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2672 2673 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2674 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2675 2676 for (unsigned i = 0; i < NumParts; ++i) { 2677 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2678 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2679 Src1Regs[i], Src2Regs[i]); 2680 DstRegs.push_back(DstReg); 2681 } 2682 2683 if (NarrowTy0.isVector()) 2684 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2685 else 2686 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2687 2688 MI.eraseFromParent(); 2689 return Legalized; 2690 } 2691 2692 LegalizerHelper::LegalizeResult 2693 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2694 LLT NarrowTy) { 2695 const Register DstReg = MI.getOperand(0).getReg(); 2696 LLT PhiTy = MRI.getType(DstReg); 2697 LLT LeftoverTy; 2698 2699 // All of the operands need to have the same number of elements, so if we can 2700 // determine a type breakdown for the result type, we can for all of the 2701 // source types. 2702 int NumParts, NumLeftover; 2703 std::tie(NumParts, NumLeftover) 2704 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2705 if (NumParts < 0) 2706 return UnableToLegalize; 2707 2708 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2709 SmallVector<MachineInstrBuilder, 4> NewInsts; 2710 2711 const int TotalNumParts = NumParts + NumLeftover; 2712 2713 // Insert the new phis in the result block first. 2714 for (int I = 0; I != TotalNumParts; ++I) { 2715 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2716 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2717 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2718 .addDef(PartDstReg)); 2719 if (I < NumParts) 2720 DstRegs.push_back(PartDstReg); 2721 else 2722 LeftoverDstRegs.push_back(PartDstReg); 2723 } 2724 2725 MachineBasicBlock *MBB = MI.getParent(); 2726 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2727 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2728 2729 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2730 2731 // Insert code to extract the incoming values in each predecessor block. 2732 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2733 PartRegs.clear(); 2734 LeftoverRegs.clear(); 2735 2736 Register SrcReg = MI.getOperand(I).getReg(); 2737 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2738 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2739 2740 LLT Unused; 2741 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2742 LeftoverRegs)) 2743 return UnableToLegalize; 2744 2745 // Add the newly created operand splits to the existing instructions. The 2746 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2747 // pieces. 2748 for (int J = 0; J != TotalNumParts; ++J) { 2749 MachineInstrBuilder MIB = NewInsts[J]; 2750 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2751 MIB.addMBB(&OpMBB); 2752 } 2753 } 2754 2755 MI.eraseFromParent(); 2756 return Legalized; 2757 } 2758 2759 LegalizerHelper::LegalizeResult 2760 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2761 unsigned TypeIdx, 2762 LLT NarrowTy) { 2763 if (TypeIdx != 1) 2764 return UnableToLegalize; 2765 2766 const int NumDst = MI.getNumOperands() - 1; 2767 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2768 LLT SrcTy = MRI.getType(SrcReg); 2769 2770 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2771 2772 // TODO: Create sequence of extracts. 2773 if (DstTy == NarrowTy) 2774 return UnableToLegalize; 2775 2776 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2777 if (DstTy == GCDTy) { 2778 // This would just be a copy of the same unmerge. 2779 // TODO: Create extracts, pad with undef and create intermediate merges. 2780 return UnableToLegalize; 2781 } 2782 2783 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2784 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2785 const int PartsPerUnmerge = NumDst / NumUnmerge; 2786 2787 for (int I = 0; I != NumUnmerge; ++I) { 2788 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2789 2790 for (int J = 0; J != PartsPerUnmerge; ++J) 2791 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2792 MIB.addUse(Unmerge.getReg(I)); 2793 } 2794 2795 MI.eraseFromParent(); 2796 return Legalized; 2797 } 2798 2799 LegalizerHelper::LegalizeResult 2800 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2801 unsigned TypeIdx, 2802 LLT NarrowTy) { 2803 assert(TypeIdx == 0 && "not a vector type index"); 2804 Register DstReg = MI.getOperand(0).getReg(); 2805 LLT DstTy = MRI.getType(DstReg); 2806 LLT SrcTy = DstTy.getElementType(); 2807 2808 int DstNumElts = DstTy.getNumElements(); 2809 int NarrowNumElts = NarrowTy.getNumElements(); 2810 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2811 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2812 2813 SmallVector<Register, 8> ConcatOps; 2814 SmallVector<Register, 8> SubBuildVector; 2815 2816 Register UndefReg; 2817 if (WidenedDstTy != DstTy) 2818 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2819 2820 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2821 // necessary. 2822 // 2823 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2824 // -> <2 x s16> 2825 // 2826 // %4:_(s16) = G_IMPLICIT_DEF 2827 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2828 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2829 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2830 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2831 for (int I = 0; I != NumConcat; ++I) { 2832 for (int J = 0; J != NarrowNumElts; ++J) { 2833 int SrcIdx = NarrowNumElts * I + J; 2834 2835 if (SrcIdx < DstNumElts) { 2836 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2837 SubBuildVector.push_back(SrcReg); 2838 } else 2839 SubBuildVector.push_back(UndefReg); 2840 } 2841 2842 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2843 ConcatOps.push_back(BuildVec.getReg(0)); 2844 SubBuildVector.clear(); 2845 } 2846 2847 if (DstTy == WidenedDstTy) 2848 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2849 else { 2850 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 2851 MIRBuilder.buildExtract(DstReg, Concat, 0); 2852 } 2853 2854 MI.eraseFromParent(); 2855 return Legalized; 2856 } 2857 2858 LegalizerHelper::LegalizeResult 2859 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2860 LLT NarrowTy) { 2861 // FIXME: Don't know how to handle secondary types yet. 2862 if (TypeIdx != 0) 2863 return UnableToLegalize; 2864 2865 MachineMemOperand *MMO = *MI.memoperands_begin(); 2866 2867 // This implementation doesn't work for atomics. Give up instead of doing 2868 // something invalid. 2869 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2870 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2871 return UnableToLegalize; 2872 2873 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2874 Register ValReg = MI.getOperand(0).getReg(); 2875 Register AddrReg = MI.getOperand(1).getReg(); 2876 LLT ValTy = MRI.getType(ValReg); 2877 2878 int NumParts = -1; 2879 int NumLeftover = -1; 2880 LLT LeftoverTy; 2881 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2882 if (IsLoad) { 2883 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2884 } else { 2885 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2886 NarrowLeftoverRegs)) { 2887 NumParts = NarrowRegs.size(); 2888 NumLeftover = NarrowLeftoverRegs.size(); 2889 } 2890 } 2891 2892 if (NumParts == -1) 2893 return UnableToLegalize; 2894 2895 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2896 2897 unsigned TotalSize = ValTy.getSizeInBits(); 2898 2899 // Split the load/store into PartTy sized pieces starting at Offset. If this 2900 // is a load, return the new registers in ValRegs. For a store, each elements 2901 // of ValRegs should be PartTy. Returns the next offset that needs to be 2902 // handled. 2903 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2904 unsigned Offset) -> unsigned { 2905 MachineFunction &MF = MIRBuilder.getMF(); 2906 unsigned PartSize = PartTy.getSizeInBits(); 2907 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2908 Offset += PartSize, ++Idx) { 2909 unsigned ByteSize = PartSize / 8; 2910 unsigned ByteOffset = Offset / 8; 2911 Register NewAddrReg; 2912 2913 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2914 2915 MachineMemOperand *NewMMO = 2916 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2917 2918 if (IsLoad) { 2919 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2920 ValRegs.push_back(Dst); 2921 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2922 } else { 2923 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2924 } 2925 } 2926 2927 return Offset; 2928 }; 2929 2930 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2931 2932 // Handle the rest of the register if this isn't an even type breakdown. 2933 if (LeftoverTy.isValid()) 2934 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2935 2936 if (IsLoad) { 2937 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2938 LeftoverTy, NarrowLeftoverRegs); 2939 } 2940 2941 MI.eraseFromParent(); 2942 return Legalized; 2943 } 2944 2945 LegalizerHelper::LegalizeResult 2946 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2947 LLT NarrowTy) { 2948 using namespace TargetOpcode; 2949 2950 MIRBuilder.setInstr(MI); 2951 switch (MI.getOpcode()) { 2952 case G_IMPLICIT_DEF: 2953 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2954 case G_AND: 2955 case G_OR: 2956 case G_XOR: 2957 case G_ADD: 2958 case G_SUB: 2959 case G_MUL: 2960 case G_SMULH: 2961 case G_UMULH: 2962 case G_FADD: 2963 case G_FMUL: 2964 case G_FSUB: 2965 case G_FNEG: 2966 case G_FABS: 2967 case G_FCANONICALIZE: 2968 case G_FDIV: 2969 case G_FREM: 2970 case G_FMA: 2971 case G_FMAD: 2972 case G_FPOW: 2973 case G_FEXP: 2974 case G_FEXP2: 2975 case G_FLOG: 2976 case G_FLOG2: 2977 case G_FLOG10: 2978 case G_FNEARBYINT: 2979 case G_FCEIL: 2980 case G_FFLOOR: 2981 case G_FRINT: 2982 case G_INTRINSIC_ROUND: 2983 case G_INTRINSIC_TRUNC: 2984 case G_FCOS: 2985 case G_FSIN: 2986 case G_FSQRT: 2987 case G_BSWAP: 2988 case G_BITREVERSE: 2989 case G_SDIV: 2990 case G_SMIN: 2991 case G_SMAX: 2992 case G_UMIN: 2993 case G_UMAX: 2994 case G_FMINNUM: 2995 case G_FMAXNUM: 2996 case G_FMINNUM_IEEE: 2997 case G_FMAXNUM_IEEE: 2998 case G_FMINIMUM: 2999 case G_FMAXIMUM: 3000 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3001 case G_SHL: 3002 case G_LSHR: 3003 case G_ASHR: 3004 case G_CTLZ: 3005 case G_CTLZ_ZERO_UNDEF: 3006 case G_CTTZ: 3007 case G_CTTZ_ZERO_UNDEF: 3008 case G_CTPOP: 3009 case G_FCOPYSIGN: 3010 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3011 case G_ZEXT: 3012 case G_SEXT: 3013 case G_ANYEXT: 3014 case G_FPEXT: 3015 case G_FPTRUNC: 3016 case G_SITOFP: 3017 case G_UITOFP: 3018 case G_FPTOSI: 3019 case G_FPTOUI: 3020 case G_INTTOPTR: 3021 case G_PTRTOINT: 3022 case G_ADDRSPACE_CAST: 3023 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3024 case G_ICMP: 3025 case G_FCMP: 3026 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3027 case G_SELECT: 3028 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3029 case G_PHI: 3030 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3031 case G_UNMERGE_VALUES: 3032 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3033 case G_BUILD_VECTOR: 3034 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3035 case G_LOAD: 3036 case G_STORE: 3037 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3038 default: 3039 return UnableToLegalize; 3040 } 3041 } 3042 3043 LegalizerHelper::LegalizeResult 3044 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3045 const LLT HalfTy, const LLT AmtTy) { 3046 3047 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3048 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3049 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3050 3051 if (Amt.isNullValue()) { 3052 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 3053 MI.eraseFromParent(); 3054 return Legalized; 3055 } 3056 3057 LLT NVT = HalfTy; 3058 unsigned NVTBits = HalfTy.getSizeInBits(); 3059 unsigned VTBits = 2 * NVTBits; 3060 3061 SrcOp Lo(Register(0)), Hi(Register(0)); 3062 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3063 if (Amt.ugt(VTBits)) { 3064 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3065 } else if (Amt.ugt(NVTBits)) { 3066 Lo = MIRBuilder.buildConstant(NVT, 0); 3067 Hi = MIRBuilder.buildShl(NVT, InL, 3068 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3069 } else if (Amt == NVTBits) { 3070 Lo = MIRBuilder.buildConstant(NVT, 0); 3071 Hi = InL; 3072 } else { 3073 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3074 auto OrLHS = 3075 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3076 auto OrRHS = MIRBuilder.buildLShr( 3077 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3078 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3079 } 3080 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3081 if (Amt.ugt(VTBits)) { 3082 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3083 } else if (Amt.ugt(NVTBits)) { 3084 Lo = MIRBuilder.buildLShr(NVT, InH, 3085 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3086 Hi = MIRBuilder.buildConstant(NVT, 0); 3087 } else if (Amt == NVTBits) { 3088 Lo = InH; 3089 Hi = MIRBuilder.buildConstant(NVT, 0); 3090 } else { 3091 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3092 3093 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3094 auto OrRHS = MIRBuilder.buildShl( 3095 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3096 3097 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3098 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3099 } 3100 } else { 3101 if (Amt.ugt(VTBits)) { 3102 Hi = Lo = MIRBuilder.buildAShr( 3103 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3104 } else if (Amt.ugt(NVTBits)) { 3105 Lo = MIRBuilder.buildAShr(NVT, InH, 3106 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3107 Hi = MIRBuilder.buildAShr(NVT, InH, 3108 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3109 } else if (Amt == NVTBits) { 3110 Lo = InH; 3111 Hi = MIRBuilder.buildAShr(NVT, InH, 3112 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3113 } else { 3114 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3115 3116 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3117 auto OrRHS = MIRBuilder.buildShl( 3118 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3119 3120 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3121 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3122 } 3123 } 3124 3125 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3126 MI.eraseFromParent(); 3127 3128 return Legalized; 3129 } 3130 3131 // TODO: Optimize if constant shift amount. 3132 LegalizerHelper::LegalizeResult 3133 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3134 LLT RequestedTy) { 3135 if (TypeIdx == 1) { 3136 Observer.changingInstr(MI); 3137 narrowScalarSrc(MI, RequestedTy, 2); 3138 Observer.changedInstr(MI); 3139 return Legalized; 3140 } 3141 3142 Register DstReg = MI.getOperand(0).getReg(); 3143 LLT DstTy = MRI.getType(DstReg); 3144 if (DstTy.isVector()) 3145 return UnableToLegalize; 3146 3147 Register Amt = MI.getOperand(2).getReg(); 3148 LLT ShiftAmtTy = MRI.getType(Amt); 3149 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3150 if (DstEltSize % 2 != 0) 3151 return UnableToLegalize; 3152 3153 // Ignore the input type. We can only go to exactly half the size of the 3154 // input. If that isn't small enough, the resulting pieces will be further 3155 // legalized. 3156 const unsigned NewBitSize = DstEltSize / 2; 3157 const LLT HalfTy = LLT::scalar(NewBitSize); 3158 const LLT CondTy = LLT::scalar(1); 3159 3160 if (const MachineInstr *KShiftAmt = 3161 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3162 return narrowScalarShiftByConstant( 3163 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3164 } 3165 3166 // TODO: Expand with known bits. 3167 3168 // Handle the fully general expansion by an unknown amount. 3169 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3170 3171 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3172 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3173 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3174 3175 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3176 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3177 3178 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3179 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3180 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3181 3182 Register ResultRegs[2]; 3183 switch (MI.getOpcode()) { 3184 case TargetOpcode::G_SHL: { 3185 // Short: ShAmt < NewBitSize 3186 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3187 3188 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3189 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3190 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3191 3192 // Long: ShAmt >= NewBitSize 3193 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3194 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3195 3196 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3197 auto Hi = MIRBuilder.buildSelect( 3198 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3199 3200 ResultRegs[0] = Lo.getReg(0); 3201 ResultRegs[1] = Hi.getReg(0); 3202 break; 3203 } 3204 case TargetOpcode::G_LSHR: 3205 case TargetOpcode::G_ASHR: { 3206 // Short: ShAmt < NewBitSize 3207 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3208 3209 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3210 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3211 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3212 3213 // Long: ShAmt >= NewBitSize 3214 MachineInstrBuilder HiL; 3215 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3216 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3217 } else { 3218 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3219 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3220 } 3221 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3222 {InH, AmtExcess}); // Lo from Hi part. 3223 3224 auto Lo = MIRBuilder.buildSelect( 3225 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3226 3227 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3228 3229 ResultRegs[0] = Lo.getReg(0); 3230 ResultRegs[1] = Hi.getReg(0); 3231 break; 3232 } 3233 default: 3234 llvm_unreachable("not a shift"); 3235 } 3236 3237 MIRBuilder.buildMerge(DstReg, ResultRegs); 3238 MI.eraseFromParent(); 3239 return Legalized; 3240 } 3241 3242 LegalizerHelper::LegalizeResult 3243 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3244 LLT MoreTy) { 3245 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3246 3247 Observer.changingInstr(MI); 3248 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3249 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3250 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3251 moreElementsVectorSrc(MI, MoreTy, I); 3252 } 3253 3254 MachineBasicBlock &MBB = *MI.getParent(); 3255 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3256 moreElementsVectorDst(MI, MoreTy, 0); 3257 Observer.changedInstr(MI); 3258 return Legalized; 3259 } 3260 3261 LegalizerHelper::LegalizeResult 3262 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3263 LLT MoreTy) { 3264 MIRBuilder.setInstr(MI); 3265 unsigned Opc = MI.getOpcode(); 3266 switch (Opc) { 3267 case TargetOpcode::G_IMPLICIT_DEF: 3268 case TargetOpcode::G_LOAD: { 3269 if (TypeIdx != 0) 3270 return UnableToLegalize; 3271 Observer.changingInstr(MI); 3272 moreElementsVectorDst(MI, MoreTy, 0); 3273 Observer.changedInstr(MI); 3274 return Legalized; 3275 } 3276 case TargetOpcode::G_STORE: 3277 if (TypeIdx != 0) 3278 return UnableToLegalize; 3279 Observer.changingInstr(MI); 3280 moreElementsVectorSrc(MI, MoreTy, 0); 3281 Observer.changedInstr(MI); 3282 return Legalized; 3283 case TargetOpcode::G_AND: 3284 case TargetOpcode::G_OR: 3285 case TargetOpcode::G_XOR: 3286 case TargetOpcode::G_SMIN: 3287 case TargetOpcode::G_SMAX: 3288 case TargetOpcode::G_UMIN: 3289 case TargetOpcode::G_UMAX: { 3290 Observer.changingInstr(MI); 3291 moreElementsVectorSrc(MI, MoreTy, 1); 3292 moreElementsVectorSrc(MI, MoreTy, 2); 3293 moreElementsVectorDst(MI, MoreTy, 0); 3294 Observer.changedInstr(MI); 3295 return Legalized; 3296 } 3297 case TargetOpcode::G_EXTRACT: 3298 if (TypeIdx != 1) 3299 return UnableToLegalize; 3300 Observer.changingInstr(MI); 3301 moreElementsVectorSrc(MI, MoreTy, 1); 3302 Observer.changedInstr(MI); 3303 return Legalized; 3304 case TargetOpcode::G_INSERT: 3305 if (TypeIdx != 0) 3306 return UnableToLegalize; 3307 Observer.changingInstr(MI); 3308 moreElementsVectorSrc(MI, MoreTy, 1); 3309 moreElementsVectorDst(MI, MoreTy, 0); 3310 Observer.changedInstr(MI); 3311 return Legalized; 3312 case TargetOpcode::G_SELECT: 3313 if (TypeIdx != 0) 3314 return UnableToLegalize; 3315 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3316 return UnableToLegalize; 3317 3318 Observer.changingInstr(MI); 3319 moreElementsVectorSrc(MI, MoreTy, 2); 3320 moreElementsVectorSrc(MI, MoreTy, 3); 3321 moreElementsVectorDst(MI, MoreTy, 0); 3322 Observer.changedInstr(MI); 3323 return Legalized; 3324 case TargetOpcode::G_UNMERGE_VALUES: { 3325 if (TypeIdx != 1) 3326 return UnableToLegalize; 3327 3328 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3329 int NumDst = MI.getNumOperands() - 1; 3330 moreElementsVectorSrc(MI, MoreTy, NumDst); 3331 3332 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3333 for (int I = 0; I != NumDst; ++I) 3334 MIB.addDef(MI.getOperand(I).getReg()); 3335 3336 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3337 for (int I = NumDst; I != NewNumDst; ++I) 3338 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3339 3340 MIB.addUse(MI.getOperand(NumDst).getReg()); 3341 MI.eraseFromParent(); 3342 return Legalized; 3343 } 3344 case TargetOpcode::G_PHI: 3345 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3346 default: 3347 return UnableToLegalize; 3348 } 3349 } 3350 3351 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3352 ArrayRef<Register> Src1Regs, 3353 ArrayRef<Register> Src2Regs, 3354 LLT NarrowTy) { 3355 MachineIRBuilder &B = MIRBuilder; 3356 unsigned SrcParts = Src1Regs.size(); 3357 unsigned DstParts = DstRegs.size(); 3358 3359 unsigned DstIdx = 0; // Low bits of the result. 3360 Register FactorSum = 3361 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3362 DstRegs[DstIdx] = FactorSum; 3363 3364 unsigned CarrySumPrevDstIdx; 3365 SmallVector<Register, 4> Factors; 3366 3367 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3368 // Collect low parts of muls for DstIdx. 3369 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3370 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3371 MachineInstrBuilder Mul = 3372 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3373 Factors.push_back(Mul.getReg(0)); 3374 } 3375 // Collect high parts of muls from previous DstIdx. 3376 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3377 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3378 MachineInstrBuilder Umulh = 3379 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3380 Factors.push_back(Umulh.getReg(0)); 3381 } 3382 // Add CarrySum from additions calculated for previous DstIdx. 3383 if (DstIdx != 1) { 3384 Factors.push_back(CarrySumPrevDstIdx); 3385 } 3386 3387 Register CarrySum; 3388 // Add all factors and accumulate all carries into CarrySum. 3389 if (DstIdx != DstParts - 1) { 3390 MachineInstrBuilder Uaddo = 3391 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3392 FactorSum = Uaddo.getReg(0); 3393 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3394 for (unsigned i = 2; i < Factors.size(); ++i) { 3395 MachineInstrBuilder Uaddo = 3396 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3397 FactorSum = Uaddo.getReg(0); 3398 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3399 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3400 } 3401 } else { 3402 // Since value for the next index is not calculated, neither is CarrySum. 3403 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3404 for (unsigned i = 2; i < Factors.size(); ++i) 3405 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3406 } 3407 3408 CarrySumPrevDstIdx = CarrySum; 3409 DstRegs[DstIdx] = FactorSum; 3410 Factors.clear(); 3411 } 3412 } 3413 3414 LegalizerHelper::LegalizeResult 3415 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3416 Register DstReg = MI.getOperand(0).getReg(); 3417 Register Src1 = MI.getOperand(1).getReg(); 3418 Register Src2 = MI.getOperand(2).getReg(); 3419 3420 LLT Ty = MRI.getType(DstReg); 3421 if (Ty.isVector()) 3422 return UnableToLegalize; 3423 3424 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3425 unsigned DstSize = Ty.getSizeInBits(); 3426 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3427 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3428 return UnableToLegalize; 3429 3430 unsigned NumDstParts = DstSize / NarrowSize; 3431 unsigned NumSrcParts = SrcSize / NarrowSize; 3432 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3433 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3434 3435 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3436 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3437 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3438 DstTmpRegs.resize(DstTmpParts); 3439 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3440 3441 // Take only high half of registers if this is high mul. 3442 ArrayRef<Register> DstRegs( 3443 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3444 MIRBuilder.buildMerge(DstReg, DstRegs); 3445 MI.eraseFromParent(); 3446 return Legalized; 3447 } 3448 3449 LegalizerHelper::LegalizeResult 3450 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3451 LLT NarrowTy) { 3452 if (TypeIdx != 1) 3453 return UnableToLegalize; 3454 3455 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3456 3457 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3458 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3459 // NarrowSize. 3460 if (SizeOp1 % NarrowSize != 0) 3461 return UnableToLegalize; 3462 int NumParts = SizeOp1 / NarrowSize; 3463 3464 SmallVector<Register, 2> SrcRegs, DstRegs; 3465 SmallVector<uint64_t, 2> Indexes; 3466 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3467 3468 Register OpReg = MI.getOperand(0).getReg(); 3469 uint64_t OpStart = MI.getOperand(2).getImm(); 3470 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3471 for (int i = 0; i < NumParts; ++i) { 3472 unsigned SrcStart = i * NarrowSize; 3473 3474 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3475 // No part of the extract uses this subregister, ignore it. 3476 continue; 3477 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3478 // The entire subregister is extracted, forward the value. 3479 DstRegs.push_back(SrcRegs[i]); 3480 continue; 3481 } 3482 3483 // OpSegStart is where this destination segment would start in OpReg if it 3484 // extended infinitely in both directions. 3485 int64_t ExtractOffset; 3486 uint64_t SegSize; 3487 if (OpStart < SrcStart) { 3488 ExtractOffset = 0; 3489 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3490 } else { 3491 ExtractOffset = OpStart - SrcStart; 3492 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3493 } 3494 3495 Register SegReg = SrcRegs[i]; 3496 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3497 // A genuine extract is needed. 3498 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3499 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3500 } 3501 3502 DstRegs.push_back(SegReg); 3503 } 3504 3505 Register DstReg = MI.getOperand(0).getReg(); 3506 if(MRI.getType(DstReg).isVector()) 3507 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3508 else 3509 MIRBuilder.buildMerge(DstReg, DstRegs); 3510 MI.eraseFromParent(); 3511 return Legalized; 3512 } 3513 3514 LegalizerHelper::LegalizeResult 3515 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3516 LLT NarrowTy) { 3517 // FIXME: Don't know how to handle secondary types yet. 3518 if (TypeIdx != 0) 3519 return UnableToLegalize; 3520 3521 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3522 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3523 3524 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3525 // NarrowSize. 3526 if (SizeOp0 % NarrowSize != 0) 3527 return UnableToLegalize; 3528 3529 int NumParts = SizeOp0 / NarrowSize; 3530 3531 SmallVector<Register, 2> SrcRegs, DstRegs; 3532 SmallVector<uint64_t, 2> Indexes; 3533 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3534 3535 Register OpReg = MI.getOperand(2).getReg(); 3536 uint64_t OpStart = MI.getOperand(3).getImm(); 3537 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3538 for (int i = 0; i < NumParts; ++i) { 3539 unsigned DstStart = i * NarrowSize; 3540 3541 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3542 // No part of the insert affects this subregister, forward the original. 3543 DstRegs.push_back(SrcRegs[i]); 3544 continue; 3545 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3546 // The entire subregister is defined by this insert, forward the new 3547 // value. 3548 DstRegs.push_back(OpReg); 3549 continue; 3550 } 3551 3552 // OpSegStart is where this destination segment would start in OpReg if it 3553 // extended infinitely in both directions. 3554 int64_t ExtractOffset, InsertOffset; 3555 uint64_t SegSize; 3556 if (OpStart < DstStart) { 3557 InsertOffset = 0; 3558 ExtractOffset = DstStart - OpStart; 3559 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3560 } else { 3561 InsertOffset = OpStart - DstStart; 3562 ExtractOffset = 0; 3563 SegSize = 3564 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3565 } 3566 3567 Register SegReg = OpReg; 3568 if (ExtractOffset != 0 || SegSize != OpSize) { 3569 // A genuine extract is needed. 3570 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3571 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3572 } 3573 3574 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3575 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3576 DstRegs.push_back(DstReg); 3577 } 3578 3579 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3580 Register DstReg = MI.getOperand(0).getReg(); 3581 if(MRI.getType(DstReg).isVector()) 3582 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3583 else 3584 MIRBuilder.buildMerge(DstReg, DstRegs); 3585 MI.eraseFromParent(); 3586 return Legalized; 3587 } 3588 3589 LegalizerHelper::LegalizeResult 3590 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3591 LLT NarrowTy) { 3592 Register DstReg = MI.getOperand(0).getReg(); 3593 LLT DstTy = MRI.getType(DstReg); 3594 3595 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3596 3597 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3598 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3599 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3600 LLT LeftoverTy; 3601 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3602 Src0Regs, Src0LeftoverRegs)) 3603 return UnableToLegalize; 3604 3605 LLT Unused; 3606 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3607 Src1Regs, Src1LeftoverRegs)) 3608 llvm_unreachable("inconsistent extractParts result"); 3609 3610 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3611 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3612 {Src0Regs[I], Src1Regs[I]}); 3613 DstRegs.push_back(Inst->getOperand(0).getReg()); 3614 } 3615 3616 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3617 auto Inst = MIRBuilder.buildInstr( 3618 MI.getOpcode(), 3619 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3620 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3621 } 3622 3623 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3624 LeftoverTy, DstLeftoverRegs); 3625 3626 MI.eraseFromParent(); 3627 return Legalized; 3628 } 3629 3630 LegalizerHelper::LegalizeResult 3631 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3632 LLT NarrowTy) { 3633 if (TypeIdx != 0) 3634 return UnableToLegalize; 3635 3636 Register CondReg = MI.getOperand(1).getReg(); 3637 LLT CondTy = MRI.getType(CondReg); 3638 if (CondTy.isVector()) // TODO: Handle vselect 3639 return UnableToLegalize; 3640 3641 Register DstReg = MI.getOperand(0).getReg(); 3642 LLT DstTy = MRI.getType(DstReg); 3643 3644 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3645 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3646 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3647 LLT LeftoverTy; 3648 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3649 Src1Regs, Src1LeftoverRegs)) 3650 return UnableToLegalize; 3651 3652 LLT Unused; 3653 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3654 Src2Regs, Src2LeftoverRegs)) 3655 llvm_unreachable("inconsistent extractParts result"); 3656 3657 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3658 auto Select = MIRBuilder.buildSelect(NarrowTy, 3659 CondReg, Src1Regs[I], Src2Regs[I]); 3660 DstRegs.push_back(Select->getOperand(0).getReg()); 3661 } 3662 3663 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3664 auto Select = MIRBuilder.buildSelect( 3665 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3666 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3667 } 3668 3669 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3670 LeftoverTy, DstLeftoverRegs); 3671 3672 MI.eraseFromParent(); 3673 return Legalized; 3674 } 3675 3676 LegalizerHelper::LegalizeResult 3677 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3678 unsigned Opc = MI.getOpcode(); 3679 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3680 auto isSupported = [this](const LegalityQuery &Q) { 3681 auto QAction = LI.getAction(Q).Action; 3682 return QAction == Legal || QAction == Libcall || QAction == Custom; 3683 }; 3684 switch (Opc) { 3685 default: 3686 return UnableToLegalize; 3687 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3688 // This trivially expands to CTLZ. 3689 Observer.changingInstr(MI); 3690 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3691 Observer.changedInstr(MI); 3692 return Legalized; 3693 } 3694 case TargetOpcode::G_CTLZ: { 3695 Register SrcReg = MI.getOperand(1).getReg(); 3696 unsigned Len = Ty.getSizeInBits(); 3697 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3698 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3699 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3700 {Ty}, {SrcReg}); 3701 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3702 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3703 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3704 SrcReg, MIBZero); 3705 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3706 MIBCtlzZU); 3707 MI.eraseFromParent(); 3708 return Legalized; 3709 } 3710 // for now, we do this: 3711 // NewLen = NextPowerOf2(Len); 3712 // x = x | (x >> 1); 3713 // x = x | (x >> 2); 3714 // ... 3715 // x = x | (x >>16); 3716 // x = x | (x >>32); // for 64-bit input 3717 // Upto NewLen/2 3718 // return Len - popcount(x); 3719 // 3720 // Ref: "Hacker's Delight" by Henry Warren 3721 Register Op = SrcReg; 3722 unsigned NewLen = PowerOf2Ceil(Len); 3723 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3724 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3725 auto MIBOp = MIRBuilder.buildInstr( 3726 TargetOpcode::G_OR, {Ty}, 3727 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3728 {Op, MIBShiftAmt})}); 3729 Op = MIBOp->getOperand(0).getReg(); 3730 } 3731 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3732 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3733 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3734 MI.eraseFromParent(); 3735 return Legalized; 3736 } 3737 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3738 // This trivially expands to CTTZ. 3739 Observer.changingInstr(MI); 3740 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3741 Observer.changedInstr(MI); 3742 return Legalized; 3743 } 3744 case TargetOpcode::G_CTTZ: { 3745 Register SrcReg = MI.getOperand(1).getReg(); 3746 unsigned Len = Ty.getSizeInBits(); 3747 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3748 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3749 // zero. 3750 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3751 {Ty}, {SrcReg}); 3752 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3753 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3754 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3755 SrcReg, MIBZero); 3756 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3757 MIBCttzZU); 3758 MI.eraseFromParent(); 3759 return Legalized; 3760 } 3761 // for now, we use: { return popcount(~x & (x - 1)); } 3762 // unless the target has ctlz but not ctpop, in which case we use: 3763 // { return 32 - nlz(~x & (x-1)); } 3764 // Ref: "Hacker's Delight" by Henry Warren 3765 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3766 auto MIBNot = 3767 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3768 auto MIBTmp = MIRBuilder.buildInstr( 3769 TargetOpcode::G_AND, {Ty}, 3770 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3771 {SrcReg, MIBCstNeg1})}); 3772 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3773 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3774 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3775 MIRBuilder.buildInstr( 3776 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3777 {MIBCstLen, 3778 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3779 MI.eraseFromParent(); 3780 return Legalized; 3781 } 3782 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3783 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3784 return Legalized; 3785 } 3786 } 3787 } 3788 3789 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3790 // representation. 3791 LegalizerHelper::LegalizeResult 3792 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3793 Register Dst = MI.getOperand(0).getReg(); 3794 Register Src = MI.getOperand(1).getReg(); 3795 const LLT S64 = LLT::scalar(64); 3796 const LLT S32 = LLT::scalar(32); 3797 const LLT S1 = LLT::scalar(1); 3798 3799 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3800 3801 // unsigned cul2f(ulong u) { 3802 // uint lz = clz(u); 3803 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3804 // u = (u << lz) & 0x7fffffffffffffffUL; 3805 // ulong t = u & 0xffffffffffUL; 3806 // uint v = (e << 23) | (uint)(u >> 40); 3807 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3808 // return as_float(v + r); 3809 // } 3810 3811 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3812 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3813 3814 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3815 3816 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3817 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3818 3819 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3820 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3821 3822 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3823 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3824 3825 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3826 3827 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3828 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3829 3830 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3831 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3832 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3833 3834 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3835 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3836 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3837 auto One = MIRBuilder.buildConstant(S32, 1); 3838 3839 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3840 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3841 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3842 MIRBuilder.buildAdd(Dst, V, R); 3843 3844 return Legalized; 3845 } 3846 3847 LegalizerHelper::LegalizeResult 3848 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3849 Register Dst = MI.getOperand(0).getReg(); 3850 Register Src = MI.getOperand(1).getReg(); 3851 LLT DstTy = MRI.getType(Dst); 3852 LLT SrcTy = MRI.getType(Src); 3853 3854 if (SrcTy == LLT::scalar(1)) { 3855 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 3856 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3857 MIRBuilder.buildSelect(Dst, Src, True, False); 3858 MI.eraseFromParent(); 3859 return Legalized; 3860 } 3861 3862 if (SrcTy != LLT::scalar(64)) 3863 return UnableToLegalize; 3864 3865 if (DstTy == LLT::scalar(32)) { 3866 // TODO: SelectionDAG has several alternative expansions to port which may 3867 // be more reasonble depending on the available instructions. If a target 3868 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3869 // intermediate type, this is probably worse. 3870 return lowerU64ToF32BitOps(MI); 3871 } 3872 3873 return UnableToLegalize; 3874 } 3875 3876 LegalizerHelper::LegalizeResult 3877 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3878 Register Dst = MI.getOperand(0).getReg(); 3879 Register Src = MI.getOperand(1).getReg(); 3880 LLT DstTy = MRI.getType(Dst); 3881 LLT SrcTy = MRI.getType(Src); 3882 3883 const LLT S64 = LLT::scalar(64); 3884 const LLT S32 = LLT::scalar(32); 3885 const LLT S1 = LLT::scalar(1); 3886 3887 if (SrcTy == S1) { 3888 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 3889 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3890 MIRBuilder.buildSelect(Dst, Src, True, False); 3891 MI.eraseFromParent(); 3892 return Legalized; 3893 } 3894 3895 if (SrcTy != S64) 3896 return UnableToLegalize; 3897 3898 if (DstTy == S32) { 3899 // signed cl2f(long l) { 3900 // long s = l >> 63; 3901 // float r = cul2f((l + s) ^ s); 3902 // return s ? -r : r; 3903 // } 3904 Register L = Src; 3905 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3906 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3907 3908 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3909 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3910 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3911 3912 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3913 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3914 MIRBuilder.buildConstant(S64, 0)); 3915 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3916 return Legalized; 3917 } 3918 3919 return UnableToLegalize; 3920 } 3921 3922 LegalizerHelper::LegalizeResult 3923 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3924 Register Dst = MI.getOperand(0).getReg(); 3925 Register Src = MI.getOperand(1).getReg(); 3926 LLT DstTy = MRI.getType(Dst); 3927 LLT SrcTy = MRI.getType(Src); 3928 const LLT S64 = LLT::scalar(64); 3929 const LLT S32 = LLT::scalar(32); 3930 3931 if (SrcTy != S64 && SrcTy != S32) 3932 return UnableToLegalize; 3933 if (DstTy != S32 && DstTy != S64) 3934 return UnableToLegalize; 3935 3936 // FPTOSI gives same result as FPTOUI for positive signed integers. 3937 // FPTOUI needs to deal with fp values that convert to unsigned integers 3938 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 3939 3940 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 3941 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 3942 : APFloat::IEEEdouble(), 3943 APInt::getNullValue(SrcTy.getSizeInBits())); 3944 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 3945 3946 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 3947 3948 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 3949 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 3950 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 3951 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 3952 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 3953 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 3954 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 3955 3956 MachineInstrBuilder FCMP = 3957 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); 3958 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 3959 3960 MI.eraseFromParent(); 3961 return Legalized; 3962 } 3963 3964 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3965 switch (Opc) { 3966 case TargetOpcode::G_SMIN: 3967 return CmpInst::ICMP_SLT; 3968 case TargetOpcode::G_SMAX: 3969 return CmpInst::ICMP_SGT; 3970 case TargetOpcode::G_UMIN: 3971 return CmpInst::ICMP_ULT; 3972 case TargetOpcode::G_UMAX: 3973 return CmpInst::ICMP_UGT; 3974 default: 3975 llvm_unreachable("not in integer min/max"); 3976 } 3977 } 3978 3979 LegalizerHelper::LegalizeResult 3980 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3981 Register Dst = MI.getOperand(0).getReg(); 3982 Register Src0 = MI.getOperand(1).getReg(); 3983 Register Src1 = MI.getOperand(2).getReg(); 3984 3985 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3986 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3987 3988 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3989 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3990 3991 MI.eraseFromParent(); 3992 return Legalized; 3993 } 3994 3995 LegalizerHelper::LegalizeResult 3996 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3997 Register Dst = MI.getOperand(0).getReg(); 3998 Register Src0 = MI.getOperand(1).getReg(); 3999 Register Src1 = MI.getOperand(2).getReg(); 4000 4001 const LLT Src0Ty = MRI.getType(Src0); 4002 const LLT Src1Ty = MRI.getType(Src1); 4003 4004 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4005 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4006 4007 auto SignBitMask = MIRBuilder.buildConstant( 4008 Src0Ty, APInt::getSignMask(Src0Size)); 4009 4010 auto NotSignBitMask = MIRBuilder.buildConstant( 4011 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4012 4013 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4014 MachineInstr *Or; 4015 4016 if (Src0Ty == Src1Ty) { 4017 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4018 Or = MIRBuilder.buildOr(Dst, And0, And1); 4019 } else if (Src0Size > Src1Size) { 4020 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4021 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4022 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4023 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4024 Or = MIRBuilder.buildOr(Dst, And0, And1); 4025 } else { 4026 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4027 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4028 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4029 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4030 Or = MIRBuilder.buildOr(Dst, And0, And1); 4031 } 4032 4033 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4034 // constants are a nan and -0.0, but the final result should preserve 4035 // everything. 4036 if (unsigned Flags = MI.getFlags()) 4037 Or->setFlags(Flags); 4038 4039 MI.eraseFromParent(); 4040 return Legalized; 4041 } 4042 4043 LegalizerHelper::LegalizeResult 4044 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4045 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4046 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4047 4048 Register Dst = MI.getOperand(0).getReg(); 4049 Register Src0 = MI.getOperand(1).getReg(); 4050 Register Src1 = MI.getOperand(2).getReg(); 4051 LLT Ty = MRI.getType(Dst); 4052 4053 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4054 // Insert canonicalizes if it's possible we need to quiet to get correct 4055 // sNaN behavior. 4056 4057 // Note this must be done here, and not as an optimization combine in the 4058 // absence of a dedicate quiet-snan instruction as we're using an 4059 // omni-purpose G_FCANONICALIZE. 4060 if (!isKnownNeverSNaN(Src0, MRI)) 4061 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4062 4063 if (!isKnownNeverSNaN(Src1, MRI)) 4064 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4065 } 4066 4067 // If there are no nans, it's safe to simply replace this with the non-IEEE 4068 // version. 4069 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4070 MI.eraseFromParent(); 4071 return Legalized; 4072 } 4073 4074 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4075 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4076 Register DstReg = MI.getOperand(0).getReg(); 4077 LLT Ty = MRI.getType(DstReg); 4078 unsigned Flags = MI.getFlags(); 4079 4080 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4081 Flags); 4082 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4083 MI.eraseFromParent(); 4084 return Legalized; 4085 } 4086 4087 LegalizerHelper::LegalizeResult 4088 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4089 const unsigned NumDst = MI.getNumOperands() - 1; 4090 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4091 LLT SrcTy = MRI.getType(SrcReg); 4092 4093 Register Dst0Reg = MI.getOperand(0).getReg(); 4094 LLT DstTy = MRI.getType(Dst0Reg); 4095 4096 4097 // Expand scalarizing unmerge as bitcast to integer and shift. 4098 if (!DstTy.isVector() && SrcTy.isVector() && 4099 SrcTy.getElementType() == DstTy) { 4100 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4101 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4102 4103 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4104 4105 const unsigned DstSize = DstTy.getSizeInBits(); 4106 unsigned Offset = DstSize; 4107 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4108 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4109 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4110 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4111 } 4112 4113 MI.eraseFromParent(); 4114 return Legalized; 4115 } 4116 4117 return UnableToLegalize; 4118 } 4119 4120 LegalizerHelper::LegalizeResult 4121 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4122 Register DstReg = MI.getOperand(0).getReg(); 4123 Register Src0Reg = MI.getOperand(1).getReg(); 4124 Register Src1Reg = MI.getOperand(2).getReg(); 4125 LLT Src0Ty = MRI.getType(Src0Reg); 4126 LLT DstTy = MRI.getType(DstReg); 4127 LLT IdxTy = LLT::scalar(32); 4128 4129 const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); 4130 4131 SmallVector<int, 32> Mask; 4132 ShuffleVectorInst::getShuffleMask(ShufMask, Mask); 4133 4134 if (DstTy.isScalar()) { 4135 if (Src0Ty.isVector()) 4136 return UnableToLegalize; 4137 4138 // This is just a SELECT. 4139 assert(Mask.size() == 1 && "Expected a single mask element"); 4140 Register Val; 4141 if (Mask[0] < 0 || Mask[0] > 1) 4142 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4143 else 4144 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4145 MIRBuilder.buildCopy(DstReg, Val); 4146 MI.eraseFromParent(); 4147 return Legalized; 4148 } 4149 4150 Register Undef; 4151 SmallVector<Register, 32> BuildVec; 4152 LLT EltTy = DstTy.getElementType(); 4153 4154 for (int Idx : Mask) { 4155 if (Idx < 0) { 4156 if (!Undef.isValid()) 4157 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4158 BuildVec.push_back(Undef); 4159 continue; 4160 } 4161 4162 if (Src0Ty.isScalar()) { 4163 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4164 } else { 4165 int NumElts = Src0Ty.getNumElements(); 4166 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4167 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4168 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4169 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4170 BuildVec.push_back(Extract.getReg(0)); 4171 } 4172 } 4173 4174 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4175 MI.eraseFromParent(); 4176 return Legalized; 4177 } 4178 4179 LegalizerHelper::LegalizeResult 4180 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4181 Register Dst = MI.getOperand(0).getReg(); 4182 Register AllocSize = MI.getOperand(1).getReg(); 4183 unsigned Align = MI.getOperand(2).getImm(); 4184 4185 const auto &MF = *MI.getMF(); 4186 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4187 4188 LLT PtrTy = MRI.getType(Dst); 4189 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4190 4191 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4192 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4193 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4194 4195 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4196 // have to generate an extra instruction to negate the alloc and then use 4197 // G_PTR_ADD to add the negative offset. 4198 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4199 if (Align) { 4200 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4201 AlignMask.negate(); 4202 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4203 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4204 } 4205 4206 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4207 MIRBuilder.buildCopy(SPReg, SPTmp); 4208 MIRBuilder.buildCopy(Dst, SPTmp); 4209 4210 MI.eraseFromParent(); 4211 return Legalized; 4212 } 4213 4214 LegalizerHelper::LegalizeResult 4215 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4216 Register Dst = MI.getOperand(0).getReg(); 4217 Register Src = MI.getOperand(1).getReg(); 4218 unsigned Offset = MI.getOperand(2).getImm(); 4219 4220 LLT DstTy = MRI.getType(Dst); 4221 LLT SrcTy = MRI.getType(Src); 4222 4223 if (DstTy.isScalar() && 4224 (SrcTy.isScalar() || 4225 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4226 LLT SrcIntTy = SrcTy; 4227 if (!SrcTy.isScalar()) { 4228 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4229 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4230 } 4231 4232 if (Offset == 0) 4233 MIRBuilder.buildTrunc(Dst, Src); 4234 else { 4235 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4236 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4237 MIRBuilder.buildTrunc(Dst, Shr); 4238 } 4239 4240 MI.eraseFromParent(); 4241 return Legalized; 4242 } 4243 4244 return UnableToLegalize; 4245 } 4246 4247 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4248 Register Dst = MI.getOperand(0).getReg(); 4249 Register Src = MI.getOperand(1).getReg(); 4250 Register InsertSrc = MI.getOperand(2).getReg(); 4251 uint64_t Offset = MI.getOperand(3).getImm(); 4252 4253 LLT DstTy = MRI.getType(Src); 4254 LLT InsertTy = MRI.getType(InsertSrc); 4255 4256 if (InsertTy.isScalar() && 4257 (DstTy.isScalar() || 4258 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4259 LLT IntDstTy = DstTy; 4260 if (!DstTy.isScalar()) { 4261 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4262 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4263 } 4264 4265 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4266 if (Offset != 0) { 4267 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4268 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4269 } 4270 4271 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4272 InsertTy.getSizeInBits()); 4273 4274 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4275 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4276 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4277 4278 MIRBuilder.buildBitcast(Dst, Or); 4279 MI.eraseFromParent(); 4280 return Legalized; 4281 } 4282 4283 return UnableToLegalize; 4284 } 4285 4286 LegalizerHelper::LegalizeResult 4287 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4288 Register Dst0 = MI.getOperand(0).getReg(); 4289 Register Dst1 = MI.getOperand(1).getReg(); 4290 Register LHS = MI.getOperand(2).getReg(); 4291 Register RHS = MI.getOperand(3).getReg(); 4292 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4293 4294 LLT Ty = MRI.getType(Dst0); 4295 LLT BoolTy = MRI.getType(Dst1); 4296 4297 if (IsAdd) 4298 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4299 else 4300 MIRBuilder.buildSub(Dst0, LHS, RHS); 4301 4302 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4303 4304 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4305 4306 // For an addition, the result should be less than one of the operands (LHS) 4307 // if and only if the other operand (RHS) is negative, otherwise there will 4308 // be overflow. 4309 // For a subtraction, the result should be less than one of the operands 4310 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4311 // otherwise there will be overflow. 4312 auto ResultLowerThanLHS = 4313 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4314 auto ConditionRHS = MIRBuilder.buildICmp( 4315 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4316 4317 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4318 MI.eraseFromParent(); 4319 return Legalized; 4320 } 4321