1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy;
227   for (Register PartReg : PartRegs)
228     GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
229 
230   for (Register PartReg : LeftoverRegs)
231     extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
232 
233   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
234   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
235 }
236 
237 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
238 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
239                               const MachineInstr &MI) {
240   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
241 
242   const int StartIdx = Regs.size();
243   const int NumResults = MI.getNumOperands() - 1;
244   Regs.resize(Regs.size() + NumResults);
245   for (int I = 0; I != NumResults; ++I)
246     Regs[StartIdx + I] = MI.getOperand(I).getReg();
247 }
248 
249 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
250                                      LLT GCDTy, Register SrcReg) {
251   LLT SrcTy = MRI.getType(SrcReg);
252   if (SrcTy == GCDTy) {
253     // If the source already evenly divides the result type, we don't need to do
254     // anything.
255     Parts.push_back(SrcReg);
256   } else {
257     // Need to split into common type sized pieces.
258     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
259     getUnmergeResults(Parts, *Unmerge);
260   }
261 }
262 
263 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
264                                     LLT NarrowTy, Register SrcReg) {
265   LLT SrcTy = MRI.getType(SrcReg);
266   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
267   extractGCDType(Parts, GCDTy, SrcReg);
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
382     SmallVector<Register, 8> UnmergeDefs(NumDefs);
383     UnmergeDefs[0] = DstReg;
384     for (unsigned I = 1; I != NumDefs; ++I)
385       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
386 
387     MIRBuilder.buildUnmerge(UnmergeDefs,
388                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
389     return;
390   }
391 
392   llvm_unreachable("unhandled case");
393 }
394 
395 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
396 #define RTLIBCASE_INT(LibcallPrefix)                                           \
397   do {                                                                         \
398     switch (Size) {                                                            \
399     case 32:                                                                   \
400       return RTLIB::LibcallPrefix##32;                                         \
401     case 64:                                                                   \
402       return RTLIB::LibcallPrefix##64;                                         \
403     case 128:                                                                  \
404       return RTLIB::LibcallPrefix##128;                                        \
405     default:                                                                   \
406       llvm_unreachable("unexpected size");                                     \
407     }                                                                          \
408   } while (0)
409 
410 #define RTLIBCASE(LibcallPrefix)                                               \
411   do {                                                                         \
412     switch (Size) {                                                            \
413     case 32:                                                                   \
414       return RTLIB::LibcallPrefix##32;                                         \
415     case 64:                                                                   \
416       return RTLIB::LibcallPrefix##64;                                         \
417     case 80:                                                                   \
418       return RTLIB::LibcallPrefix##80;                                         \
419     case 128:                                                                  \
420       return RTLIB::LibcallPrefix##128;                                        \
421     default:                                                                   \
422       llvm_unreachable("unexpected size");                                     \
423     }                                                                          \
424   } while (0)
425 
426   switch (Opcode) {
427   case TargetOpcode::G_SDIV:
428     RTLIBCASE_INT(SDIV_I);
429   case TargetOpcode::G_UDIV:
430     RTLIBCASE_INT(UDIV_I);
431   case TargetOpcode::G_SREM:
432     RTLIBCASE_INT(SREM_I);
433   case TargetOpcode::G_UREM:
434     RTLIBCASE_INT(UREM_I);
435   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
436     RTLIBCASE_INT(CTLZ_I);
437   case TargetOpcode::G_FADD:
438     RTLIBCASE(ADD_F);
439   case TargetOpcode::G_FSUB:
440     RTLIBCASE(SUB_F);
441   case TargetOpcode::G_FMUL:
442     RTLIBCASE(MUL_F);
443   case TargetOpcode::G_FDIV:
444     RTLIBCASE(DIV_F);
445   case TargetOpcode::G_FEXP:
446     RTLIBCASE(EXP_F);
447   case TargetOpcode::G_FEXP2:
448     RTLIBCASE(EXP2_F);
449   case TargetOpcode::G_FREM:
450     RTLIBCASE(REM_F);
451   case TargetOpcode::G_FPOW:
452     RTLIBCASE(POW_F);
453   case TargetOpcode::G_FMA:
454     RTLIBCASE(FMA_F);
455   case TargetOpcode::G_FSIN:
456     RTLIBCASE(SIN_F);
457   case TargetOpcode::G_FCOS:
458     RTLIBCASE(COS_F);
459   case TargetOpcode::G_FLOG10:
460     RTLIBCASE(LOG10_F);
461   case TargetOpcode::G_FLOG:
462     RTLIBCASE(LOG_F);
463   case TargetOpcode::G_FLOG2:
464     RTLIBCASE(LOG2_F);
465   case TargetOpcode::G_FCEIL:
466     RTLIBCASE(CEIL_F);
467   case TargetOpcode::G_FFLOOR:
468     RTLIBCASE(FLOOR_F);
469   case TargetOpcode::G_FMINNUM:
470     RTLIBCASE(FMIN_F);
471   case TargetOpcode::G_FMAXNUM:
472     RTLIBCASE(FMAX_F);
473   case TargetOpcode::G_FSQRT:
474     RTLIBCASE(SQRT_F);
475   case TargetOpcode::G_FRINT:
476     RTLIBCASE(RINT_F);
477   case TargetOpcode::G_FNEARBYINT:
478     RTLIBCASE(NEARBYINT_F);
479   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
480     RTLIBCASE(ROUNDEVEN_F);
481   }
482   llvm_unreachable("Unknown libcall function");
483 }
484 
485 /// True if an instruction is in tail position in its caller. Intended for
486 /// legalizing libcalls as tail calls when possible.
487 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
488                                     MachineInstr &MI) {
489   MachineBasicBlock &MBB = *MI.getParent();
490   const Function &F = MBB.getParent()->getFunction();
491 
492   // Conservatively require the attributes of the call to match those of
493   // the return. Ignore NoAlias and NonNull because they don't affect the
494   // call sequence.
495   AttributeList CallerAttrs = F.getAttributes();
496   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
497           .removeAttribute(Attribute::NoAlias)
498           .removeAttribute(Attribute::NonNull)
499           .hasAttributes())
500     return false;
501 
502   // It's not safe to eliminate the sign / zero extension of the return value.
503   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
504       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
505     return false;
506 
507   // Only tail call if the following instruction is a standard return.
508   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
509   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
510     return false;
511 
512   return true;
513 }
514 
515 LegalizerHelper::LegalizeResult
516 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
517                     const CallLowering::ArgInfo &Result,
518                     ArrayRef<CallLowering::ArgInfo> Args,
519                     const CallingConv::ID CC) {
520   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
521 
522   CallLowering::CallLoweringInfo Info;
523   Info.CallConv = CC;
524   Info.Callee = MachineOperand::CreateES(Name);
525   Info.OrigRet = Result;
526   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
527   if (!CLI.lowerCall(MIRBuilder, Info))
528     return LegalizerHelper::UnableToLegalize;
529 
530   return LegalizerHelper::Legalized;
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
535                     const CallLowering::ArgInfo &Result,
536                     ArrayRef<CallLowering::ArgInfo> Args) {
537   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
538   const char *Name = TLI.getLibcallName(Libcall);
539   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
540   return createLibcall(MIRBuilder, Name, Result, Args, CC);
541 }
542 
543 // Useful for libcalls where all operands have the same type.
544 static LegalizerHelper::LegalizeResult
545 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
546               Type *OpType) {
547   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
548 
549   SmallVector<CallLowering::ArgInfo, 3> Args;
550   for (unsigned i = 1; i < MI.getNumOperands(); i++)
551     Args.push_back({MI.getOperand(i).getReg(), OpType});
552   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
553                        Args);
554 }
555 
556 LegalizerHelper::LegalizeResult
557 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
558                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
559   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
560 
561   SmallVector<CallLowering::ArgInfo, 3> Args;
562   // Add all the args, except for the last which is an imm denoting 'tail'.
563   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
564     Register Reg = MI.getOperand(i).getReg();
565 
566     // Need derive an IR type for call lowering.
567     LLT OpLLT = MRI.getType(Reg);
568     Type *OpTy = nullptr;
569     if (OpLLT.isPointer())
570       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
571     else
572       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
573     Args.push_back({Reg, OpTy});
574   }
575 
576   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
577   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
578   RTLIB::Libcall RTLibcall;
579   unsigned Opc = MI.getOpcode();
580   switch (Opc) {
581   case TargetOpcode::G_BZERO:
582     RTLibcall = RTLIB::BZERO;
583     break;
584   case TargetOpcode::G_MEMCPY:
585     RTLibcall = RTLIB::MEMCPY;
586     break;
587   case TargetOpcode::G_MEMMOVE:
588     RTLibcall = RTLIB::MEMMOVE;
589     break;
590   case TargetOpcode::G_MEMSET:
591     RTLibcall = RTLIB::MEMSET;
592     break;
593   default:
594     return LegalizerHelper::UnableToLegalize;
595   }
596   const char *Name = TLI.getLibcallName(RTLibcall);
597 
598   // Unsupported libcall on the target.
599   if (!Name) {
600     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
601                       << MIRBuilder.getTII().getName(Opc) << "\n");
602     return LegalizerHelper::UnableToLegalize;
603   }
604 
605   CallLowering::CallLoweringInfo Info;
606   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
607   Info.Callee = MachineOperand::CreateES(Name);
608   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
609   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
610                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
611 
612   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
613   if (!CLI.lowerCall(MIRBuilder, Info))
614     return LegalizerHelper::UnableToLegalize;
615 
616 
617   if (Info.LoweredTailCall) {
618     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
619 
620     // Check debug locations before removing the return.
621     LocObserver.checkpoint(true);
622 
623     // We must have a return following the call (or debug insts) to get past
624     // isLibCallInTailPosition.
625     do {
626       MachineInstr *Next = MI.getNextNode();
627       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
628              "Expected instr following MI to be return or debug inst?");
629       // We lowered a tail call, so the call is now the return from the block.
630       // Delete the old return.
631       Next->eraseFromParent();
632     } while (MI.getNextNode());
633 
634     // We expect to lose the debug location from the return.
635     LocObserver.checkpoint(false);
636   }
637 
638   return LegalizerHelper::Legalized;
639 }
640 
641 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
642                                        Type *FromType) {
643   auto ToMVT = MVT::getVT(ToType);
644   auto FromMVT = MVT::getVT(FromType);
645 
646   switch (Opcode) {
647   case TargetOpcode::G_FPEXT:
648     return RTLIB::getFPEXT(FromMVT, ToMVT);
649   case TargetOpcode::G_FPTRUNC:
650     return RTLIB::getFPROUND(FromMVT, ToMVT);
651   case TargetOpcode::G_FPTOSI:
652     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
653   case TargetOpcode::G_FPTOUI:
654     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
655   case TargetOpcode::G_SITOFP:
656     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
657   case TargetOpcode::G_UITOFP:
658     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
659   }
660   llvm_unreachable("Unsupported libcall function");
661 }
662 
663 static LegalizerHelper::LegalizeResult
664 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
665                   Type *FromType) {
666   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
667   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
668                        {{MI.getOperand(1).getReg(), FromType}});
669 }
670 
671 LegalizerHelper::LegalizeResult
672 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
674   unsigned Size = LLTy.getSizeInBits();
675   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
676 
677   switch (MI.getOpcode()) {
678   default:
679     return UnableToLegalize;
680   case TargetOpcode::G_SDIV:
681   case TargetOpcode::G_UDIV:
682   case TargetOpcode::G_SREM:
683   case TargetOpcode::G_UREM:
684   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
685     Type *HLTy = IntegerType::get(Ctx, Size);
686     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
687     if (Status != Legalized)
688       return Status;
689     break;
690   }
691   case TargetOpcode::G_FADD:
692   case TargetOpcode::G_FSUB:
693   case TargetOpcode::G_FMUL:
694   case TargetOpcode::G_FDIV:
695   case TargetOpcode::G_FMA:
696   case TargetOpcode::G_FPOW:
697   case TargetOpcode::G_FREM:
698   case TargetOpcode::G_FCOS:
699   case TargetOpcode::G_FSIN:
700   case TargetOpcode::G_FLOG10:
701   case TargetOpcode::G_FLOG:
702   case TargetOpcode::G_FLOG2:
703   case TargetOpcode::G_FEXP:
704   case TargetOpcode::G_FEXP2:
705   case TargetOpcode::G_FCEIL:
706   case TargetOpcode::G_FFLOOR:
707   case TargetOpcode::G_FMINNUM:
708   case TargetOpcode::G_FMAXNUM:
709   case TargetOpcode::G_FSQRT:
710   case TargetOpcode::G_FRINT:
711   case TargetOpcode::G_FNEARBYINT:
712   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
713     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
714     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
715       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
716       return UnableToLegalize;
717     }
718     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   case TargetOpcode::G_FPEXT:
724   case TargetOpcode::G_FPTRUNC: {
725     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
726     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
727     if (!FromTy || !ToTy)
728       return UnableToLegalize;
729     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
730     if (Status != Legalized)
731       return Status;
732     break;
733   }
734   case TargetOpcode::G_FPTOSI:
735   case TargetOpcode::G_FPTOUI: {
736     // FIXME: Support other types
737     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
738     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
739     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
740       return UnableToLegalize;
741     LegalizeResult Status = conversionLibcall(
742         MI, MIRBuilder,
743         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
744         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
745     if (Status != Legalized)
746       return Status;
747     break;
748   }
749   case TargetOpcode::G_SITOFP:
750   case TargetOpcode::G_UITOFP: {
751     // FIXME: Support other types
752     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
753     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
755       return UnableToLegalize;
756     LegalizeResult Status = conversionLibcall(
757         MI, MIRBuilder,
758         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
759         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_BZERO:
765   case TargetOpcode::G_MEMCPY:
766   case TargetOpcode::G_MEMMOVE:
767   case TargetOpcode::G_MEMSET: {
768     LegalizeResult Result =
769         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
770     if (Result != Legalized)
771       return Result;
772     MI.eraseFromParent();
773     return Result;
774   }
775   }
776 
777   MI.eraseFromParent();
778   return Legalized;
779 }
780 
781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
782                                                               unsigned TypeIdx,
783                                                               LLT NarrowTy) {
784   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
785   uint64_t NarrowSize = NarrowTy.getSizeInBits();
786 
787   switch (MI.getOpcode()) {
788   default:
789     return UnableToLegalize;
790   case TargetOpcode::G_IMPLICIT_DEF: {
791     Register DstReg = MI.getOperand(0).getReg();
792     LLT DstTy = MRI.getType(DstReg);
793 
794     // If SizeOp0 is not an exact multiple of NarrowSize, emit
795     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
796     // FIXME: Although this would also be legal for the general case, it causes
797     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
798     //  combines not being hit). This seems to be a problem related to the
799     //  artifact combiner.
800     if (SizeOp0 % NarrowSize != 0) {
801       LLT ImplicitTy = NarrowTy;
802       if (DstTy.isVector())
803         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
804 
805       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
806       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
807 
808       MI.eraseFromParent();
809       return Legalized;
810     }
811 
812     int NumParts = SizeOp0 / NarrowSize;
813 
814     SmallVector<Register, 2> DstRegs;
815     for (int i = 0; i < NumParts; ++i)
816       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
817 
818     if (DstTy.isVector())
819       MIRBuilder.buildBuildVector(DstReg, DstRegs);
820     else
821       MIRBuilder.buildMerge(DstReg, DstRegs);
822     MI.eraseFromParent();
823     return Legalized;
824   }
825   case TargetOpcode::G_CONSTANT: {
826     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
827     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
828     unsigned TotalSize = Ty.getSizeInBits();
829     unsigned NarrowSize = NarrowTy.getSizeInBits();
830     int NumParts = TotalSize / NarrowSize;
831 
832     SmallVector<Register, 4> PartRegs;
833     for (int I = 0; I != NumParts; ++I) {
834       unsigned Offset = I * NarrowSize;
835       auto K = MIRBuilder.buildConstant(NarrowTy,
836                                         Val.lshr(Offset).trunc(NarrowSize));
837       PartRegs.push_back(K.getReg(0));
838     }
839 
840     LLT LeftoverTy;
841     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
842     SmallVector<Register, 1> LeftoverRegs;
843     if (LeftoverBits != 0) {
844       LeftoverTy = LLT::scalar(LeftoverBits);
845       auto K = MIRBuilder.buildConstant(
846         LeftoverTy,
847         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
848       LeftoverRegs.push_back(K.getReg(0));
849     }
850 
851     insertParts(MI.getOperand(0).getReg(),
852                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
853 
854     MI.eraseFromParent();
855     return Legalized;
856   }
857   case TargetOpcode::G_SEXT:
858   case TargetOpcode::G_ZEXT:
859   case TargetOpcode::G_ANYEXT:
860     return narrowScalarExt(MI, TypeIdx, NarrowTy);
861   case TargetOpcode::G_TRUNC: {
862     if (TypeIdx != 1)
863       return UnableToLegalize;
864 
865     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
866     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
867       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
868       return UnableToLegalize;
869     }
870 
871     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
872     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
873     MI.eraseFromParent();
874     return Legalized;
875   }
876 
877   case TargetOpcode::G_FREEZE:
878     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
879   case TargetOpcode::G_ADD:
880   case TargetOpcode::G_SUB:
881   case TargetOpcode::G_SADDO:
882   case TargetOpcode::G_SSUBO:
883   case TargetOpcode::G_SADDE:
884   case TargetOpcode::G_SSUBE:
885   case TargetOpcode::G_UADDO:
886   case TargetOpcode::G_USUBO:
887   case TargetOpcode::G_UADDE:
888   case TargetOpcode::G_USUBE:
889     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_MUL:
891   case TargetOpcode::G_UMULH:
892     return narrowScalarMul(MI, NarrowTy);
893   case TargetOpcode::G_EXTRACT:
894     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_INSERT:
896     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
897   case TargetOpcode::G_LOAD: {
898     auto &MMO = **MI.memoperands_begin();
899     Register DstReg = MI.getOperand(0).getReg();
900     LLT DstTy = MRI.getType(DstReg);
901     if (DstTy.isVector())
902       return UnableToLegalize;
903 
904     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
905       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
906       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
907       MIRBuilder.buildAnyExt(DstReg, TmpReg);
908       MI.eraseFromParent();
909       return Legalized;
910     }
911 
912     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
913   }
914   case TargetOpcode::G_ZEXTLOAD:
915   case TargetOpcode::G_SEXTLOAD: {
916     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
917     Register DstReg = MI.getOperand(0).getReg();
918     Register PtrReg = MI.getOperand(1).getReg();
919 
920     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
921     auto &MMO = **MI.memoperands_begin();
922     unsigned MemSize = MMO.getSizeInBits();
923 
924     if (MemSize == NarrowSize) {
925       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
926     } else if (MemSize < NarrowSize) {
927       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
928     } else if (MemSize > NarrowSize) {
929       // FIXME: Need to split the load.
930       return UnableToLegalize;
931     }
932 
933     if (ZExt)
934       MIRBuilder.buildZExt(DstReg, TmpReg);
935     else
936       MIRBuilder.buildSExt(DstReg, TmpReg);
937 
938     MI.eraseFromParent();
939     return Legalized;
940   }
941   case TargetOpcode::G_STORE: {
942     const auto &MMO = **MI.memoperands_begin();
943 
944     Register SrcReg = MI.getOperand(0).getReg();
945     LLT SrcTy = MRI.getType(SrcReg);
946     if (SrcTy.isVector())
947       return UnableToLegalize;
948 
949     int NumParts = SizeOp0 / NarrowSize;
950     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
951     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
952     if (SrcTy.isVector() && LeftoverBits != 0)
953       return UnableToLegalize;
954 
955     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
956       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
957       auto &MMO = **MI.memoperands_begin();
958       MIRBuilder.buildTrunc(TmpReg, SrcReg);
959       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
960       MI.eraseFromParent();
961       return Legalized;
962     }
963 
964     return reduceLoadStoreWidth(MI, 0, NarrowTy);
965   }
966   case TargetOpcode::G_SELECT:
967     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
968   case TargetOpcode::G_AND:
969   case TargetOpcode::G_OR:
970   case TargetOpcode::G_XOR: {
971     // Legalize bitwise operation:
972     // A = BinOp<Ty> B, C
973     // into:
974     // B1, ..., BN = G_UNMERGE_VALUES B
975     // C1, ..., CN = G_UNMERGE_VALUES C
976     // A1 = BinOp<Ty/N> B1, C2
977     // ...
978     // AN = BinOp<Ty/N> BN, CN
979     // A = G_MERGE_VALUES A1, ..., AN
980     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
981   }
982   case TargetOpcode::G_SHL:
983   case TargetOpcode::G_LSHR:
984   case TargetOpcode::G_ASHR:
985     return narrowScalarShift(MI, TypeIdx, NarrowTy);
986   case TargetOpcode::G_CTLZ:
987   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTTZ:
989   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
990   case TargetOpcode::G_CTPOP:
991     if (TypeIdx == 1)
992       switch (MI.getOpcode()) {
993       case TargetOpcode::G_CTLZ:
994       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
995         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
996       case TargetOpcode::G_CTTZ:
997       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
998         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
999       case TargetOpcode::G_CTPOP:
1000         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1001       default:
1002         return UnableToLegalize;
1003       }
1004 
1005     Observer.changingInstr(MI);
1006     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1007     Observer.changedInstr(MI);
1008     return Legalized;
1009   case TargetOpcode::G_INTTOPTR:
1010     if (TypeIdx != 1)
1011       return UnableToLegalize;
1012 
1013     Observer.changingInstr(MI);
1014     narrowScalarSrc(MI, NarrowTy, 1);
1015     Observer.changedInstr(MI);
1016     return Legalized;
1017   case TargetOpcode::G_PTRTOINT:
1018     if (TypeIdx != 0)
1019       return UnableToLegalize;
1020 
1021     Observer.changingInstr(MI);
1022     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1023     Observer.changedInstr(MI);
1024     return Legalized;
1025   case TargetOpcode::G_PHI: {
1026     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1027     // NarrowSize.
1028     if (SizeOp0 % NarrowSize != 0)
1029       return UnableToLegalize;
1030 
1031     unsigned NumParts = SizeOp0 / NarrowSize;
1032     SmallVector<Register, 2> DstRegs(NumParts);
1033     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1034     Observer.changingInstr(MI);
1035     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1036       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1037       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1038       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1039                    SrcRegs[i / 2]);
1040     }
1041     MachineBasicBlock &MBB = *MI.getParent();
1042     MIRBuilder.setInsertPt(MBB, MI);
1043     for (unsigned i = 0; i < NumParts; ++i) {
1044       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1045       MachineInstrBuilder MIB =
1046           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1047       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1048         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1049     }
1050     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1051     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1052     Observer.changedInstr(MI);
1053     MI.eraseFromParent();
1054     return Legalized;
1055   }
1056   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1057   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1058     if (TypeIdx != 2)
1059       return UnableToLegalize;
1060 
1061     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1062     Observer.changingInstr(MI);
1063     narrowScalarSrc(MI, NarrowTy, OpIdx);
1064     Observer.changedInstr(MI);
1065     return Legalized;
1066   }
1067   case TargetOpcode::G_ICMP: {
1068     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1069     if (NarrowSize * 2 != SrcSize)
1070       return UnableToLegalize;
1071 
1072     Observer.changingInstr(MI);
1073     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1076 
1077     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1078     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1079     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1080 
1081     CmpInst::Predicate Pred =
1082         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1083     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1084 
1085     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1086       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1087       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1088       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1089       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1090       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1091     } else {
1092       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpHEQ =
1094           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1095       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1096           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1097       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1098     }
1099     Observer.changedInstr(MI);
1100     MI.eraseFromParent();
1101     return Legalized;
1102   }
1103   case TargetOpcode::G_SEXT_INREG: {
1104     if (TypeIdx != 0)
1105       return UnableToLegalize;
1106 
1107     int64_t SizeInBits = MI.getOperand(2).getImm();
1108 
1109     // So long as the new type has more bits than the bits we're extending we
1110     // don't need to break it apart.
1111     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1112       Observer.changingInstr(MI);
1113       // We don't lose any non-extension bits by truncating the src and
1114       // sign-extending the dst.
1115       MachineOperand &MO1 = MI.getOperand(1);
1116       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1117       MO1.setReg(TruncMIB.getReg(0));
1118 
1119       MachineOperand &MO2 = MI.getOperand(0);
1120       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1121       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1122       MIRBuilder.buildSExt(MO2, DstExt);
1123       MO2.setReg(DstExt);
1124       Observer.changedInstr(MI);
1125       return Legalized;
1126     }
1127 
1128     // Break it apart. Components below the extension point are unmodified. The
1129     // component containing the extension point becomes a narrower SEXT_INREG.
1130     // Components above it are ashr'd from the component containing the
1131     // extension point.
1132     if (SizeOp0 % NarrowSize != 0)
1133       return UnableToLegalize;
1134     int NumParts = SizeOp0 / NarrowSize;
1135 
1136     // List the registers where the destination will be scattered.
1137     SmallVector<Register, 2> DstRegs;
1138     // List the registers where the source will be split.
1139     SmallVector<Register, 2> SrcRegs;
1140 
1141     // Create all the temporary registers.
1142     for (int i = 0; i < NumParts; ++i) {
1143       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1144 
1145       SrcRegs.push_back(SrcReg);
1146     }
1147 
1148     // Explode the big arguments into smaller chunks.
1149     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1150 
1151     Register AshrCstReg =
1152         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1153             .getReg(0);
1154     Register FullExtensionReg = 0;
1155     Register PartialExtensionReg = 0;
1156 
1157     // Do the operation on each small part.
1158     for (int i = 0; i < NumParts; ++i) {
1159       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1160         DstRegs.push_back(SrcRegs[i]);
1161       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1162         assert(PartialExtensionReg &&
1163                "Expected to visit partial extension before full");
1164         if (FullExtensionReg) {
1165           DstRegs.push_back(FullExtensionReg);
1166           continue;
1167         }
1168         DstRegs.push_back(
1169             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1170                 .getReg(0));
1171         FullExtensionReg = DstRegs.back();
1172       } else {
1173         DstRegs.push_back(
1174             MIRBuilder
1175                 .buildInstr(
1176                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1177                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1178                 .getReg(0));
1179         PartialExtensionReg = DstRegs.back();
1180       }
1181     }
1182 
1183     // Gather the destination registers into the final destination.
1184     Register DstReg = MI.getOperand(0).getReg();
1185     MIRBuilder.buildMerge(DstReg, DstRegs);
1186     MI.eraseFromParent();
1187     return Legalized;
1188   }
1189   case TargetOpcode::G_BSWAP:
1190   case TargetOpcode::G_BITREVERSE: {
1191     if (SizeOp0 % NarrowSize != 0)
1192       return UnableToLegalize;
1193 
1194     Observer.changingInstr(MI);
1195     SmallVector<Register, 2> SrcRegs, DstRegs;
1196     unsigned NumParts = SizeOp0 / NarrowSize;
1197     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1198 
1199     for (unsigned i = 0; i < NumParts; ++i) {
1200       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1201                                            {SrcRegs[NumParts - 1 - i]});
1202       DstRegs.push_back(DstPart.getReg(0));
1203     }
1204 
1205     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1206 
1207     Observer.changedInstr(MI);
1208     MI.eraseFromParent();
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_PTR_ADD:
1212   case TargetOpcode::G_PTRMASK: {
1213     if (TypeIdx != 1)
1214       return UnableToLegalize;
1215     Observer.changingInstr(MI);
1216     narrowScalarSrc(MI, NarrowTy, 2);
1217     Observer.changedInstr(MI);
1218     return Legalized;
1219   }
1220   case TargetOpcode::G_FPTOUI:
1221   case TargetOpcode::G_FPTOSI:
1222     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1223   case TargetOpcode::G_FPEXT:
1224     if (TypeIdx != 0)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231 }
1232 
1233 Register LegalizerHelper::coerceToScalar(Register Val) {
1234   LLT Ty = MRI.getType(Val);
1235   if (Ty.isScalar())
1236     return Val;
1237 
1238   const DataLayout &DL = MIRBuilder.getDataLayout();
1239   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1240   if (Ty.isPointer()) {
1241     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1242       return Register();
1243     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1244   }
1245 
1246   Register NewVal = Val;
1247 
1248   assert(Ty.isVector());
1249   LLT EltTy = Ty.getElementType();
1250   if (EltTy.isPointer())
1251     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1252   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1253 }
1254 
1255 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1256                                      unsigned OpIdx, unsigned ExtOpcode) {
1257   MachineOperand &MO = MI.getOperand(OpIdx);
1258   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1259   MO.setReg(ExtB.getReg(0));
1260 }
1261 
1262 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1263                                       unsigned OpIdx) {
1264   MachineOperand &MO = MI.getOperand(OpIdx);
1265   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1266   MO.setReg(ExtB.getReg(0));
1267 }
1268 
1269 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1270                                      unsigned OpIdx, unsigned TruncOpcode) {
1271   MachineOperand &MO = MI.getOperand(OpIdx);
1272   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1273   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1274   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1275   MO.setReg(DstExt);
1276 }
1277 
1278 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1279                                       unsigned OpIdx, unsigned ExtOpcode) {
1280   MachineOperand &MO = MI.getOperand(OpIdx);
1281   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1282   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1283   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1284   MO.setReg(DstTrunc);
1285 }
1286 
1287 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1288                                             unsigned OpIdx) {
1289   MachineOperand &MO = MI.getOperand(OpIdx);
1290   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1291   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1292 }
1293 
1294 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1295                                             unsigned OpIdx) {
1296   MachineOperand &MO = MI.getOperand(OpIdx);
1297 
1298   LLT OldTy = MRI.getType(MO.getReg());
1299   unsigned OldElts = OldTy.getNumElements();
1300   unsigned NewElts = MoreTy.getNumElements();
1301 
1302   unsigned NumParts = NewElts / OldElts;
1303 
1304   // Use concat_vectors if the result is a multiple of the number of elements.
1305   if (NumParts * OldElts == NewElts) {
1306     SmallVector<Register, 8> Parts;
1307     Parts.push_back(MO.getReg());
1308 
1309     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1310     for (unsigned I = 1; I != NumParts; ++I)
1311       Parts.push_back(ImpDef);
1312 
1313     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1314     MO.setReg(Concat.getReg(0));
1315     return;
1316   }
1317 
1318   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1319   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1320   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1321   MO.setReg(MoreReg);
1322 }
1323 
1324 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1325   MachineOperand &Op = MI.getOperand(OpIdx);
1326   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1327 }
1328 
1329 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1330   MachineOperand &MO = MI.getOperand(OpIdx);
1331   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1332   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1333   MIRBuilder.buildBitcast(MO, CastDst);
1334   MO.setReg(CastDst);
1335 }
1336 
1337 LegalizerHelper::LegalizeResult
1338 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1339                                         LLT WideTy) {
1340   if (TypeIdx != 1)
1341     return UnableToLegalize;
1342 
1343   Register DstReg = MI.getOperand(0).getReg();
1344   LLT DstTy = MRI.getType(DstReg);
1345   if (DstTy.isVector())
1346     return UnableToLegalize;
1347 
1348   Register Src1 = MI.getOperand(1).getReg();
1349   LLT SrcTy = MRI.getType(Src1);
1350   const int DstSize = DstTy.getSizeInBits();
1351   const int SrcSize = SrcTy.getSizeInBits();
1352   const int WideSize = WideTy.getSizeInBits();
1353   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1354 
1355   unsigned NumOps = MI.getNumOperands();
1356   unsigned NumSrc = MI.getNumOperands() - 1;
1357   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1358 
1359   if (WideSize >= DstSize) {
1360     // Directly pack the bits in the target type.
1361     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1362 
1363     for (unsigned I = 2; I != NumOps; ++I) {
1364       const unsigned Offset = (I - 1) * PartSize;
1365 
1366       Register SrcReg = MI.getOperand(I).getReg();
1367       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1368 
1369       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1370 
1371       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1372         MRI.createGenericVirtualRegister(WideTy);
1373 
1374       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1375       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1376       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1377       ResultReg = NextResult;
1378     }
1379 
1380     if (WideSize > DstSize)
1381       MIRBuilder.buildTrunc(DstReg, ResultReg);
1382     else if (DstTy.isPointer())
1383       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1384 
1385     MI.eraseFromParent();
1386     return Legalized;
1387   }
1388 
1389   // Unmerge the original values to the GCD type, and recombine to the next
1390   // multiple greater than the original type.
1391   //
1392   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1393   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1394   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1395   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1396   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1397   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1398   // %12:_(s12) = G_MERGE_VALUES %10, %11
1399   //
1400   // Padding with undef if necessary:
1401   //
1402   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1403   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1404   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1405   // %7:_(s2) = G_IMPLICIT_DEF
1406   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1407   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1408   // %10:_(s12) = G_MERGE_VALUES %8, %9
1409 
1410   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1411   LLT GCDTy = LLT::scalar(GCD);
1412 
1413   SmallVector<Register, 8> Parts;
1414   SmallVector<Register, 8> NewMergeRegs;
1415   SmallVector<Register, 8> Unmerges;
1416   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1417 
1418   // Decompose the original operands if they don't evenly divide.
1419   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1420     Register SrcReg = MI.getOperand(I).getReg();
1421     if (GCD == SrcSize) {
1422       Unmerges.push_back(SrcReg);
1423     } else {
1424       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1425       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1426         Unmerges.push_back(Unmerge.getReg(J));
1427     }
1428   }
1429 
1430   // Pad with undef to the next size that is a multiple of the requested size.
1431   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1432     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1433     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1434       Unmerges.push_back(UndefReg);
1435   }
1436 
1437   const int PartsPerGCD = WideSize / GCD;
1438 
1439   // Build merges of each piece.
1440   ArrayRef<Register> Slicer(Unmerges);
1441   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1442     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1443     NewMergeRegs.push_back(Merge.getReg(0));
1444   }
1445 
1446   // A truncate may be necessary if the requested type doesn't evenly divide the
1447   // original result type.
1448   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1449     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1450   } else {
1451     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1452     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1453   }
1454 
1455   MI.eraseFromParent();
1456   return Legalized;
1457 }
1458 
1459 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1460   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1461   LLT OrigTy = MRI.getType(OrigReg);
1462   LLT LCMTy = getLCMType(WideTy, OrigTy);
1463 
1464   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1465   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1466 
1467   Register UnmergeSrc = WideReg;
1468 
1469   // Create a merge to the LCM type, padding with undef
1470   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1471   // =>
1472   // %1:_(<4 x s32>) = G_FOO
1473   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1474   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1475   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1476   if (NumMergeParts > 1) {
1477     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1478     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1479     MergeParts[0] = WideReg;
1480     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1481   }
1482 
1483   // Unmerge to the original register and pad with dead defs.
1484   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1485   UnmergeResults[0] = OrigReg;
1486   for (int I = 1; I != NumUnmergeParts; ++I)
1487     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1488 
1489   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1490   return WideReg;
1491 }
1492 
1493 LegalizerHelper::LegalizeResult
1494 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1495                                           LLT WideTy) {
1496   if (TypeIdx != 0)
1497     return UnableToLegalize;
1498 
1499   int NumDst = MI.getNumOperands() - 1;
1500   Register SrcReg = MI.getOperand(NumDst).getReg();
1501   LLT SrcTy = MRI.getType(SrcReg);
1502   if (SrcTy.isVector())
1503     return UnableToLegalize;
1504 
1505   Register Dst0Reg = MI.getOperand(0).getReg();
1506   LLT DstTy = MRI.getType(Dst0Reg);
1507   if (!DstTy.isScalar())
1508     return UnableToLegalize;
1509 
1510   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1511     if (SrcTy.isPointer()) {
1512       const DataLayout &DL = MIRBuilder.getDataLayout();
1513       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1514         LLVM_DEBUG(
1515             dbgs() << "Not casting non-integral address space integer\n");
1516         return UnableToLegalize;
1517       }
1518 
1519       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1520       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1521     }
1522 
1523     // Widen SrcTy to WideTy. This does not affect the result, but since the
1524     // user requested this size, it is probably better handled than SrcTy and
1525     // should reduce the total number of legalization artifacts
1526     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1527       SrcTy = WideTy;
1528       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1529     }
1530 
1531     // Theres no unmerge type to target. Directly extract the bits from the
1532     // source type
1533     unsigned DstSize = DstTy.getSizeInBits();
1534 
1535     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1536     for (int I = 1; I != NumDst; ++I) {
1537       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1538       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1539       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1540     }
1541 
1542     MI.eraseFromParent();
1543     return Legalized;
1544   }
1545 
1546   // Extend the source to a wider type.
1547   LLT LCMTy = getLCMType(SrcTy, WideTy);
1548 
1549   Register WideSrc = SrcReg;
1550   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1551     // TODO: If this is an integral address space, cast to integer and anyext.
1552     if (SrcTy.isPointer()) {
1553       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1554       return UnableToLegalize;
1555     }
1556 
1557     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1558   }
1559 
1560   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1561 
1562   // Create a sequence of unmerges and merges to the original results. Since we
1563   // may have widened the source, we will need to pad the results with dead defs
1564   // to cover the source register.
1565   // e.g. widen s48 to s64:
1566   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1567   //
1568   // =>
1569   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1570   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1571   //  ; unpack to GCD type, with extra dead defs
1572   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1573   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1574   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1575   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1576   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1577   const LLT GCDTy = getGCDType(WideTy, DstTy);
1578   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1579   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1580 
1581   // Directly unmerge to the destination without going through a GCD type
1582   // if possible
1583   if (PartsPerRemerge == 1) {
1584     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1585 
1586     for (int I = 0; I != NumUnmerge; ++I) {
1587       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1588 
1589       for (int J = 0; J != PartsPerUnmerge; ++J) {
1590         int Idx = I * PartsPerUnmerge + J;
1591         if (Idx < NumDst)
1592           MIB.addDef(MI.getOperand(Idx).getReg());
1593         else {
1594           // Create dead def for excess components.
1595           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1596         }
1597       }
1598 
1599       MIB.addUse(Unmerge.getReg(I));
1600     }
1601   } else {
1602     SmallVector<Register, 16> Parts;
1603     for (int J = 0; J != NumUnmerge; ++J)
1604       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1605 
1606     SmallVector<Register, 8> RemergeParts;
1607     for (int I = 0; I != NumDst; ++I) {
1608       for (int J = 0; J < PartsPerRemerge; ++J) {
1609         const int Idx = I * PartsPerRemerge + J;
1610         RemergeParts.emplace_back(Parts[Idx]);
1611       }
1612 
1613       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1614       RemergeParts.clear();
1615     }
1616   }
1617 
1618   MI.eraseFromParent();
1619   return Legalized;
1620 }
1621 
1622 LegalizerHelper::LegalizeResult
1623 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1624                                     LLT WideTy) {
1625   Register DstReg = MI.getOperand(0).getReg();
1626   Register SrcReg = MI.getOperand(1).getReg();
1627   LLT SrcTy = MRI.getType(SrcReg);
1628 
1629   LLT DstTy = MRI.getType(DstReg);
1630   unsigned Offset = MI.getOperand(2).getImm();
1631 
1632   if (TypeIdx == 0) {
1633     if (SrcTy.isVector() || DstTy.isVector())
1634       return UnableToLegalize;
1635 
1636     SrcOp Src(SrcReg);
1637     if (SrcTy.isPointer()) {
1638       // Extracts from pointers can be handled only if they are really just
1639       // simple integers.
1640       const DataLayout &DL = MIRBuilder.getDataLayout();
1641       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1642         return UnableToLegalize;
1643 
1644       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1645       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1646       SrcTy = SrcAsIntTy;
1647     }
1648 
1649     if (DstTy.isPointer())
1650       return UnableToLegalize;
1651 
1652     if (Offset == 0) {
1653       // Avoid a shift in the degenerate case.
1654       MIRBuilder.buildTrunc(DstReg,
1655                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1656       MI.eraseFromParent();
1657       return Legalized;
1658     }
1659 
1660     // Do a shift in the source type.
1661     LLT ShiftTy = SrcTy;
1662     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1663       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1664       ShiftTy = WideTy;
1665     }
1666 
1667     auto LShr = MIRBuilder.buildLShr(
1668       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1669     MIRBuilder.buildTrunc(DstReg, LShr);
1670     MI.eraseFromParent();
1671     return Legalized;
1672   }
1673 
1674   if (SrcTy.isScalar()) {
1675     Observer.changingInstr(MI);
1676     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1677     Observer.changedInstr(MI);
1678     return Legalized;
1679   }
1680 
1681   if (!SrcTy.isVector())
1682     return UnableToLegalize;
1683 
1684   if (DstTy != SrcTy.getElementType())
1685     return UnableToLegalize;
1686 
1687   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1688     return UnableToLegalize;
1689 
1690   Observer.changingInstr(MI);
1691   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1692 
1693   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1694                           Offset);
1695   widenScalarDst(MI, WideTy.getScalarType(), 0);
1696   Observer.changedInstr(MI);
1697   return Legalized;
1698 }
1699 
1700 LegalizerHelper::LegalizeResult
1701 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1702                                    LLT WideTy) {
1703   if (TypeIdx != 0 || WideTy.isVector())
1704     return UnableToLegalize;
1705   Observer.changingInstr(MI);
1706   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1707   widenScalarDst(MI, WideTy);
1708   Observer.changedInstr(MI);
1709   return Legalized;
1710 }
1711 
1712 LegalizerHelper::LegalizeResult
1713 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1714                                            LLT WideTy) {
1715   if (TypeIdx == 1)
1716     return UnableToLegalize; // TODO
1717 
1718   unsigned Opcode;
1719   unsigned ExtOpcode;
1720   Optional<Register> CarryIn = None;
1721   switch (MI.getOpcode()) {
1722   default:
1723     llvm_unreachable("Unexpected opcode!");
1724   case TargetOpcode::G_SADDO:
1725     Opcode = TargetOpcode::G_ADD;
1726     ExtOpcode = TargetOpcode::G_SEXT;
1727     break;
1728   case TargetOpcode::G_SSUBO:
1729     Opcode = TargetOpcode::G_SUB;
1730     ExtOpcode = TargetOpcode::G_SEXT;
1731     break;
1732   case TargetOpcode::G_UADDO:
1733     Opcode = TargetOpcode::G_ADD;
1734     ExtOpcode = TargetOpcode::G_ZEXT;
1735     break;
1736   case TargetOpcode::G_USUBO:
1737     Opcode = TargetOpcode::G_SUB;
1738     ExtOpcode = TargetOpcode::G_ZEXT;
1739     break;
1740   case TargetOpcode::G_SADDE:
1741     Opcode = TargetOpcode::G_UADDE;
1742     ExtOpcode = TargetOpcode::G_SEXT;
1743     CarryIn = MI.getOperand(4).getReg();
1744     break;
1745   case TargetOpcode::G_SSUBE:
1746     Opcode = TargetOpcode::G_USUBE;
1747     ExtOpcode = TargetOpcode::G_SEXT;
1748     CarryIn = MI.getOperand(4).getReg();
1749     break;
1750   case TargetOpcode::G_UADDE:
1751     Opcode = TargetOpcode::G_UADDE;
1752     ExtOpcode = TargetOpcode::G_ZEXT;
1753     CarryIn = MI.getOperand(4).getReg();
1754     break;
1755   case TargetOpcode::G_USUBE:
1756     Opcode = TargetOpcode::G_USUBE;
1757     ExtOpcode = TargetOpcode::G_ZEXT;
1758     CarryIn = MI.getOperand(4).getReg();
1759     break;
1760   }
1761 
1762   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1763   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1764   // Do the arithmetic in the larger type.
1765   Register NewOp;
1766   if (CarryIn) {
1767     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1768     NewOp = MIRBuilder
1769                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1770                             {LHSExt, RHSExt, *CarryIn})
1771                 .getReg(0);
1772   } else {
1773     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1774   }
1775   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1776   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1777   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1778   // There is no overflow if the ExtOp is the same as NewOp.
1779   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1780   // Now trunc the NewOp to the original result.
1781   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1782   MI.eraseFromParent();
1783   return Legalized;
1784 }
1785 
1786 LegalizerHelper::LegalizeResult
1787 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1788                                          LLT WideTy) {
1789   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1790                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1791                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1792   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1793                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1794   // We can convert this to:
1795   //   1. Any extend iN to iM
1796   //   2. SHL by M-N
1797   //   3. [US][ADD|SUB|SHL]SAT
1798   //   4. L/ASHR by M-N
1799   //
1800   // It may be more efficient to lower this to a min and a max operation in
1801   // the higher precision arithmetic if the promoted operation isn't legal,
1802   // but this decision is up to the target's lowering request.
1803   Register DstReg = MI.getOperand(0).getReg();
1804 
1805   unsigned NewBits = WideTy.getScalarSizeInBits();
1806   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1807 
1808   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1809   // must not left shift the RHS to preserve the shift amount.
1810   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1811   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1812                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1813   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1814   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1815   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1816 
1817   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1818                                         {ShiftL, ShiftR}, MI.getFlags());
1819 
1820   // Use a shift that will preserve the number of sign bits when the trunc is
1821   // folded away.
1822   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1823                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1824 
1825   MIRBuilder.buildTrunc(DstReg, Result);
1826   MI.eraseFromParent();
1827   return Legalized;
1828 }
1829 
1830 LegalizerHelper::LegalizeResult
1831 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1832                                  LLT WideTy) {
1833   if (TypeIdx == 1)
1834     return UnableToLegalize;
1835 
1836   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1837   Register Result = MI.getOperand(0).getReg();
1838   Register OriginalOverflow = MI.getOperand(1).getReg();
1839   Register LHS = MI.getOperand(2).getReg();
1840   Register RHS = MI.getOperand(3).getReg();
1841   LLT SrcTy = MRI.getType(LHS);
1842   LLT OverflowTy = MRI.getType(OriginalOverflow);
1843   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1844 
1845   // To determine if the result overflowed in the larger type, we extend the
1846   // input to the larger type, do the multiply (checking if it overflows),
1847   // then also check the high bits of the result to see if overflow happened
1848   // there.
1849   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1850   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1851   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1852 
1853   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1854                                     {LeftOperand, RightOperand});
1855   auto Mul = Mulo->getOperand(0);
1856   MIRBuilder.buildTrunc(Result, Mul);
1857 
1858   MachineInstrBuilder ExtResult;
1859   // Overflow occurred if it occurred in the larger type, or if the high part
1860   // of the result does not zero/sign-extend the low part.  Check this second
1861   // possibility first.
1862   if (IsSigned) {
1863     // For signed, overflow occurred when the high part does not sign-extend
1864     // the low part.
1865     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1866   } else {
1867     // Unsigned overflow occurred when the high part does not zero-extend the
1868     // low part.
1869     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1870   }
1871 
1872   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1873   // so we don't need to check the overflow result of larger type Mulo.
1874   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1875     auto Overflow =
1876         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1877     // Finally check if the multiplication in the larger type itself overflowed.
1878     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1879   } else {
1880     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1881   }
1882   MI.eraseFromParent();
1883   return Legalized;
1884 }
1885 
1886 LegalizerHelper::LegalizeResult
1887 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1888   switch (MI.getOpcode()) {
1889   default:
1890     return UnableToLegalize;
1891   case TargetOpcode::G_EXTRACT:
1892     return widenScalarExtract(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_INSERT:
1894     return widenScalarInsert(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_MERGE_VALUES:
1896     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_UNMERGE_VALUES:
1898     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1899   case TargetOpcode::G_SADDO:
1900   case TargetOpcode::G_SSUBO:
1901   case TargetOpcode::G_UADDO:
1902   case TargetOpcode::G_USUBO:
1903   case TargetOpcode::G_SADDE:
1904   case TargetOpcode::G_SSUBE:
1905   case TargetOpcode::G_UADDE:
1906   case TargetOpcode::G_USUBE:
1907     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UMULO:
1909   case TargetOpcode::G_SMULO:
1910     return widenScalarMulo(MI, TypeIdx, WideTy);
1911   case TargetOpcode::G_SADDSAT:
1912   case TargetOpcode::G_SSUBSAT:
1913   case TargetOpcode::G_SSHLSAT:
1914   case TargetOpcode::G_UADDSAT:
1915   case TargetOpcode::G_USUBSAT:
1916   case TargetOpcode::G_USHLSAT:
1917     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1918   case TargetOpcode::G_CTTZ:
1919   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1920   case TargetOpcode::G_CTLZ:
1921   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1922   case TargetOpcode::G_CTPOP: {
1923     if (TypeIdx == 0) {
1924       Observer.changingInstr(MI);
1925       widenScalarDst(MI, WideTy, 0);
1926       Observer.changedInstr(MI);
1927       return Legalized;
1928     }
1929 
1930     Register SrcReg = MI.getOperand(1).getReg();
1931 
1932     // First ZEXT the input.
1933     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1934     LLT CurTy = MRI.getType(SrcReg);
1935     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1936       // The count is the same in the larger type except if the original
1937       // value was zero.  This can be handled by setting the bit just off
1938       // the top of the original type.
1939       auto TopBit =
1940           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1941       MIBSrc = MIRBuilder.buildOr(
1942         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1943     }
1944 
1945     // Perform the operation at the larger size.
1946     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1947     // This is already the correct result for CTPOP and CTTZs
1948     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1949         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1950       // The correct result is NewOp - (Difference in widety and current ty).
1951       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1952       MIBNewOp = MIRBuilder.buildSub(
1953           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1954     }
1955 
1956     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1957     MI.eraseFromParent();
1958     return Legalized;
1959   }
1960   case TargetOpcode::G_BSWAP: {
1961     Observer.changingInstr(MI);
1962     Register DstReg = MI.getOperand(0).getReg();
1963 
1964     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1965     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1966     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1967     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1968 
1969     MI.getOperand(0).setReg(DstExt);
1970 
1971     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1972 
1973     LLT Ty = MRI.getType(DstReg);
1974     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1975     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1976     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1977 
1978     MIRBuilder.buildTrunc(DstReg, ShrReg);
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981   }
1982   case TargetOpcode::G_BITREVERSE: {
1983     Observer.changingInstr(MI);
1984 
1985     Register DstReg = MI.getOperand(0).getReg();
1986     LLT Ty = MRI.getType(DstReg);
1987     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1988 
1989     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1990     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1991     MI.getOperand(0).setReg(DstExt);
1992     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1993 
1994     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1995     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1996     MIRBuilder.buildTrunc(DstReg, Shift);
1997     Observer.changedInstr(MI);
1998     return Legalized;
1999   }
2000   case TargetOpcode::G_FREEZE:
2001     Observer.changingInstr(MI);
2002     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2003     widenScalarDst(MI, WideTy);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006 
2007   case TargetOpcode::G_ABS:
2008     Observer.changingInstr(MI);
2009     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2010     widenScalarDst(MI, WideTy);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013 
2014   case TargetOpcode::G_ADD:
2015   case TargetOpcode::G_AND:
2016   case TargetOpcode::G_MUL:
2017   case TargetOpcode::G_OR:
2018   case TargetOpcode::G_XOR:
2019   case TargetOpcode::G_SUB:
2020     // Perform operation at larger width (any extension is fines here, high bits
2021     // don't affect the result) and then truncate the result back to the
2022     // original type.
2023     Observer.changingInstr(MI);
2024     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2025     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2026     widenScalarDst(MI, WideTy);
2027     Observer.changedInstr(MI);
2028     return Legalized;
2029 
2030   case TargetOpcode::G_SBFX:
2031   case TargetOpcode::G_UBFX:
2032     Observer.changingInstr(MI);
2033 
2034     if (TypeIdx == 0) {
2035       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2036       widenScalarDst(MI, WideTy);
2037     } else {
2038       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2039       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2040     }
2041 
2042     Observer.changedInstr(MI);
2043     return Legalized;
2044 
2045   case TargetOpcode::G_SHL:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0) {
2049       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2050       widenScalarDst(MI, WideTy);
2051     } else {
2052       assert(TypeIdx == 1);
2053       // The "number of bits to shift" operand must preserve its value as an
2054       // unsigned integer:
2055       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2056     }
2057 
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060 
2061   case TargetOpcode::G_SDIV:
2062   case TargetOpcode::G_SREM:
2063   case TargetOpcode::G_SMIN:
2064   case TargetOpcode::G_SMAX:
2065     Observer.changingInstr(MI);
2066     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2067     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2068     widenScalarDst(MI, WideTy);
2069     Observer.changedInstr(MI);
2070     return Legalized;
2071 
2072   case TargetOpcode::G_SDIVREM:
2073     Observer.changingInstr(MI);
2074     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2075     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2076     widenScalarDst(MI, WideTy);
2077     widenScalarDst(MI, WideTy, 1);
2078     Observer.changedInstr(MI);
2079     return Legalized;
2080 
2081   case TargetOpcode::G_ASHR:
2082   case TargetOpcode::G_LSHR:
2083     Observer.changingInstr(MI);
2084 
2085     if (TypeIdx == 0) {
2086       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2087         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2088 
2089       widenScalarSrc(MI, WideTy, 1, CvtOp);
2090       widenScalarDst(MI, WideTy);
2091     } else {
2092       assert(TypeIdx == 1);
2093       // The "number of bits to shift" operand must preserve its value as an
2094       // unsigned integer:
2095       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2096     }
2097 
2098     Observer.changedInstr(MI);
2099     return Legalized;
2100   case TargetOpcode::G_UDIV:
2101   case TargetOpcode::G_UREM:
2102   case TargetOpcode::G_UMIN:
2103   case TargetOpcode::G_UMAX:
2104     Observer.changingInstr(MI);
2105     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2106     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2107     widenScalarDst(MI, WideTy);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110 
2111   case TargetOpcode::G_UDIVREM:
2112     Observer.changingInstr(MI);
2113     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2114     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2115     widenScalarDst(MI, WideTy);
2116     widenScalarDst(MI, WideTy, 1);
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119 
2120   case TargetOpcode::G_SELECT:
2121     Observer.changingInstr(MI);
2122     if (TypeIdx == 0) {
2123       // Perform operation at larger width (any extension is fine here, high
2124       // bits don't affect the result) and then truncate the result back to the
2125       // original type.
2126       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2127       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2128       widenScalarDst(MI, WideTy);
2129     } else {
2130       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2131       // Explicit extension is required here since high bits affect the result.
2132       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2133     }
2134     Observer.changedInstr(MI);
2135     return Legalized;
2136 
2137   case TargetOpcode::G_FPTOSI:
2138   case TargetOpcode::G_FPTOUI:
2139     Observer.changingInstr(MI);
2140 
2141     if (TypeIdx == 0)
2142       widenScalarDst(MI, WideTy);
2143     else
2144       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2145 
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   case TargetOpcode::G_SITOFP:
2149     Observer.changingInstr(MI);
2150 
2151     if (TypeIdx == 0)
2152       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2153     else
2154       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2155 
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158   case TargetOpcode::G_UITOFP:
2159     Observer.changingInstr(MI);
2160 
2161     if (TypeIdx == 0)
2162       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2163     else
2164       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2165 
2166     Observer.changedInstr(MI);
2167     return Legalized;
2168   case TargetOpcode::G_LOAD:
2169   case TargetOpcode::G_SEXTLOAD:
2170   case TargetOpcode::G_ZEXTLOAD:
2171     Observer.changingInstr(MI);
2172     widenScalarDst(MI, WideTy);
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175 
2176   case TargetOpcode::G_STORE: {
2177     if (TypeIdx != 0)
2178       return UnableToLegalize;
2179 
2180     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2181     if (!Ty.isScalar())
2182       return UnableToLegalize;
2183 
2184     Observer.changingInstr(MI);
2185 
2186     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2187       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2188     widenScalarSrc(MI, WideTy, 0, ExtType);
2189 
2190     Observer.changedInstr(MI);
2191     return Legalized;
2192   }
2193   case TargetOpcode::G_CONSTANT: {
2194     MachineOperand &SrcMO = MI.getOperand(1);
2195     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2196     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2197         MRI.getType(MI.getOperand(0).getReg()));
2198     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2199             ExtOpc == TargetOpcode::G_ANYEXT) &&
2200            "Illegal Extend");
2201     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2202     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2203                            ? SrcVal.sext(WideTy.getSizeInBits())
2204                            : SrcVal.zext(WideTy.getSizeInBits());
2205     Observer.changingInstr(MI);
2206     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2207 
2208     widenScalarDst(MI, WideTy);
2209     Observer.changedInstr(MI);
2210     return Legalized;
2211   }
2212   case TargetOpcode::G_FCONSTANT: {
2213     MachineOperand &SrcMO = MI.getOperand(1);
2214     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2215     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2216     bool LosesInfo;
2217     switch (WideTy.getSizeInBits()) {
2218     case 32:
2219       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2220                   &LosesInfo);
2221       break;
2222     case 64:
2223       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2224                   &LosesInfo);
2225       break;
2226     default:
2227       return UnableToLegalize;
2228     }
2229 
2230     assert(!LosesInfo && "extend should always be lossless");
2231 
2232     Observer.changingInstr(MI);
2233     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2234 
2235     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2236     Observer.changedInstr(MI);
2237     return Legalized;
2238   }
2239   case TargetOpcode::G_IMPLICIT_DEF: {
2240     Observer.changingInstr(MI);
2241     widenScalarDst(MI, WideTy);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   }
2245   case TargetOpcode::G_BRCOND:
2246     Observer.changingInstr(MI);
2247     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2248     Observer.changedInstr(MI);
2249     return Legalized;
2250 
2251   case TargetOpcode::G_FCMP:
2252     Observer.changingInstr(MI);
2253     if (TypeIdx == 0)
2254       widenScalarDst(MI, WideTy);
2255     else {
2256       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2257       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2258     }
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261 
2262   case TargetOpcode::G_ICMP:
2263     Observer.changingInstr(MI);
2264     if (TypeIdx == 0)
2265       widenScalarDst(MI, WideTy);
2266     else {
2267       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2268                                MI.getOperand(1).getPredicate()))
2269                                ? TargetOpcode::G_SEXT
2270                                : TargetOpcode::G_ZEXT;
2271       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2272       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2273     }
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276 
2277   case TargetOpcode::G_PTR_ADD:
2278     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2279     Observer.changingInstr(MI);
2280     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2281     Observer.changedInstr(MI);
2282     return Legalized;
2283 
2284   case TargetOpcode::G_PHI: {
2285     assert(TypeIdx == 0 && "Expecting only Idx 0");
2286 
2287     Observer.changingInstr(MI);
2288     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2289       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2290       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2291       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2292     }
2293 
2294     MachineBasicBlock &MBB = *MI.getParent();
2295     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2296     widenScalarDst(MI, WideTy);
2297     Observer.changedInstr(MI);
2298     return Legalized;
2299   }
2300   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2301     if (TypeIdx == 0) {
2302       Register VecReg = MI.getOperand(1).getReg();
2303       LLT VecTy = MRI.getType(VecReg);
2304       Observer.changingInstr(MI);
2305 
2306       widenScalarSrc(
2307           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2308           TargetOpcode::G_SEXT);
2309 
2310       widenScalarDst(MI, WideTy, 0);
2311       Observer.changedInstr(MI);
2312       return Legalized;
2313     }
2314 
2315     if (TypeIdx != 2)
2316       return UnableToLegalize;
2317     Observer.changingInstr(MI);
2318     // TODO: Probably should be zext
2319     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2320     Observer.changedInstr(MI);
2321     return Legalized;
2322   }
2323   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2324     if (TypeIdx == 1) {
2325       Observer.changingInstr(MI);
2326 
2327       Register VecReg = MI.getOperand(1).getReg();
2328       LLT VecTy = MRI.getType(VecReg);
2329       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2330 
2331       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2332       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2333       widenScalarDst(MI, WideVecTy, 0);
2334       Observer.changedInstr(MI);
2335       return Legalized;
2336     }
2337 
2338     if (TypeIdx == 2) {
2339       Observer.changingInstr(MI);
2340       // TODO: Probably should be zext
2341       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2342       Observer.changedInstr(MI);
2343       return Legalized;
2344     }
2345 
2346     return UnableToLegalize;
2347   }
2348   case TargetOpcode::G_FADD:
2349   case TargetOpcode::G_FMUL:
2350   case TargetOpcode::G_FSUB:
2351   case TargetOpcode::G_FMA:
2352   case TargetOpcode::G_FMAD:
2353   case TargetOpcode::G_FNEG:
2354   case TargetOpcode::G_FABS:
2355   case TargetOpcode::G_FCANONICALIZE:
2356   case TargetOpcode::G_FMINNUM:
2357   case TargetOpcode::G_FMAXNUM:
2358   case TargetOpcode::G_FMINNUM_IEEE:
2359   case TargetOpcode::G_FMAXNUM_IEEE:
2360   case TargetOpcode::G_FMINIMUM:
2361   case TargetOpcode::G_FMAXIMUM:
2362   case TargetOpcode::G_FDIV:
2363   case TargetOpcode::G_FREM:
2364   case TargetOpcode::G_FCEIL:
2365   case TargetOpcode::G_FFLOOR:
2366   case TargetOpcode::G_FCOS:
2367   case TargetOpcode::G_FSIN:
2368   case TargetOpcode::G_FLOG10:
2369   case TargetOpcode::G_FLOG:
2370   case TargetOpcode::G_FLOG2:
2371   case TargetOpcode::G_FRINT:
2372   case TargetOpcode::G_FNEARBYINT:
2373   case TargetOpcode::G_FSQRT:
2374   case TargetOpcode::G_FEXP:
2375   case TargetOpcode::G_FEXP2:
2376   case TargetOpcode::G_FPOW:
2377   case TargetOpcode::G_INTRINSIC_TRUNC:
2378   case TargetOpcode::G_INTRINSIC_ROUND:
2379   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2380     assert(TypeIdx == 0);
2381     Observer.changingInstr(MI);
2382 
2383     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2384       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2385 
2386     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2387     Observer.changedInstr(MI);
2388     return Legalized;
2389   case TargetOpcode::G_FPOWI: {
2390     if (TypeIdx != 0)
2391       return UnableToLegalize;
2392     Observer.changingInstr(MI);
2393     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2394     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   }
2398   case TargetOpcode::G_INTTOPTR:
2399     if (TypeIdx != 1)
2400       return UnableToLegalize;
2401 
2402     Observer.changingInstr(MI);
2403     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2404     Observer.changedInstr(MI);
2405     return Legalized;
2406   case TargetOpcode::G_PTRTOINT:
2407     if (TypeIdx != 0)
2408       return UnableToLegalize;
2409 
2410     Observer.changingInstr(MI);
2411     widenScalarDst(MI, WideTy, 0);
2412     Observer.changedInstr(MI);
2413     return Legalized;
2414   case TargetOpcode::G_BUILD_VECTOR: {
2415     Observer.changingInstr(MI);
2416 
2417     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2418     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2419       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2420 
2421     // Avoid changing the result vector type if the source element type was
2422     // requested.
2423     if (TypeIdx == 1) {
2424       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2425     } else {
2426       widenScalarDst(MI, WideTy, 0);
2427     }
2428 
2429     Observer.changedInstr(MI);
2430     return Legalized;
2431   }
2432   case TargetOpcode::G_SEXT_INREG:
2433     if (TypeIdx != 0)
2434       return UnableToLegalize;
2435 
2436     Observer.changingInstr(MI);
2437     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2438     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2439     Observer.changedInstr(MI);
2440     return Legalized;
2441   case TargetOpcode::G_PTRMASK: {
2442     if (TypeIdx != 1)
2443       return UnableToLegalize;
2444     Observer.changingInstr(MI);
2445     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2446     Observer.changedInstr(MI);
2447     return Legalized;
2448   }
2449   }
2450 }
2451 
2452 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2453                              MachineIRBuilder &B, Register Src, LLT Ty) {
2454   auto Unmerge = B.buildUnmerge(Ty, Src);
2455   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2456     Pieces.push_back(Unmerge.getReg(I));
2457 }
2458 
2459 LegalizerHelper::LegalizeResult
2460 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2461   Register Dst = MI.getOperand(0).getReg();
2462   Register Src = MI.getOperand(1).getReg();
2463   LLT DstTy = MRI.getType(Dst);
2464   LLT SrcTy = MRI.getType(Src);
2465 
2466   if (SrcTy.isVector()) {
2467     LLT SrcEltTy = SrcTy.getElementType();
2468     SmallVector<Register, 8> SrcRegs;
2469 
2470     if (DstTy.isVector()) {
2471       int NumDstElt = DstTy.getNumElements();
2472       int NumSrcElt = SrcTy.getNumElements();
2473 
2474       LLT DstEltTy = DstTy.getElementType();
2475       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2476       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2477 
2478       // If there's an element size mismatch, insert intermediate casts to match
2479       // the result element type.
2480       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2481         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2482         //
2483         // =>
2484         //
2485         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2486         // %3:_(<2 x s8>) = G_BITCAST %2
2487         // %4:_(<2 x s8>) = G_BITCAST %3
2488         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2489         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2490         SrcPartTy = SrcEltTy;
2491       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2492         //
2493         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2494         //
2495         // =>
2496         //
2497         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2498         // %3:_(s16) = G_BITCAST %2
2499         // %4:_(s16) = G_BITCAST %3
2500         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2501         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2502         DstCastTy = DstEltTy;
2503       }
2504 
2505       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2506       for (Register &SrcReg : SrcRegs)
2507         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2508     } else
2509       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2510 
2511     MIRBuilder.buildMerge(Dst, SrcRegs);
2512     MI.eraseFromParent();
2513     return Legalized;
2514   }
2515 
2516   if (DstTy.isVector()) {
2517     SmallVector<Register, 8> SrcRegs;
2518     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2519     MIRBuilder.buildMerge(Dst, SrcRegs);
2520     MI.eraseFromParent();
2521     return Legalized;
2522   }
2523 
2524   return UnableToLegalize;
2525 }
2526 
2527 /// Figure out the bit offset into a register when coercing a vector index for
2528 /// the wide element type. This is only for the case when promoting vector to
2529 /// one with larger elements.
2530 //
2531 ///
2532 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2533 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2534 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2535                                                    Register Idx,
2536                                                    unsigned NewEltSize,
2537                                                    unsigned OldEltSize) {
2538   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2539   LLT IdxTy = B.getMRI()->getType(Idx);
2540 
2541   // Now figure out the amount we need to shift to get the target bits.
2542   auto OffsetMask = B.buildConstant(
2543     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2544   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2545   return B.buildShl(IdxTy, OffsetIdx,
2546                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2547 }
2548 
2549 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2550 /// is casting to a vector with a smaller element size, perform multiple element
2551 /// extracts and merge the results. If this is coercing to a vector with larger
2552 /// elements, index the bitcasted vector and extract the target element with bit
2553 /// operations. This is intended to force the indexing in the native register
2554 /// size for architectures that can dynamically index the register file.
2555 LegalizerHelper::LegalizeResult
2556 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2557                                          LLT CastTy) {
2558   if (TypeIdx != 1)
2559     return UnableToLegalize;
2560 
2561   Register Dst = MI.getOperand(0).getReg();
2562   Register SrcVec = MI.getOperand(1).getReg();
2563   Register Idx = MI.getOperand(2).getReg();
2564   LLT SrcVecTy = MRI.getType(SrcVec);
2565   LLT IdxTy = MRI.getType(Idx);
2566 
2567   LLT SrcEltTy = SrcVecTy.getElementType();
2568   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2569   unsigned OldNumElts = SrcVecTy.getNumElements();
2570 
2571   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2572   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2573 
2574   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2575   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2576   if (NewNumElts > OldNumElts) {
2577     // Decreasing the vector element size
2578     //
2579     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2580     //  =>
2581     //  v4i32:castx = bitcast x:v2i64
2582     //
2583     // i64 = bitcast
2584     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2585     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2586     //
2587     if (NewNumElts % OldNumElts != 0)
2588       return UnableToLegalize;
2589 
2590     // Type of the intermediate result vector.
2591     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2592     LLT MidTy =
2593         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2594 
2595     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2596 
2597     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2598     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2599 
2600     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2601       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2602       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2603       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2604       NewOps[I] = Elt.getReg(0);
2605     }
2606 
2607     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2608     MIRBuilder.buildBitcast(Dst, NewVec);
2609     MI.eraseFromParent();
2610     return Legalized;
2611   }
2612 
2613   if (NewNumElts < OldNumElts) {
2614     if (NewEltSize % OldEltSize != 0)
2615       return UnableToLegalize;
2616 
2617     // This only depends on powers of 2 because we use bit tricks to figure out
2618     // the bit offset we need to shift to get the target element. A general
2619     // expansion could emit division/multiply.
2620     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2621       return UnableToLegalize;
2622 
2623     // Increasing the vector element size.
2624     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2625     //
2626     //   =>
2627     //
2628     // %cast = G_BITCAST %vec
2629     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2630     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2631     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2632     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2633     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2634     // %elt = G_TRUNC %elt_bits
2635 
2636     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2637     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2638 
2639     // Divide to get the index in the wider element type.
2640     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2641 
2642     Register WideElt = CastVec;
2643     if (CastTy.isVector()) {
2644       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2645                                                      ScaledIdx).getReg(0);
2646     }
2647 
2648     // Compute the bit offset into the register of the target element.
2649     Register OffsetBits = getBitcastWiderVectorElementOffset(
2650       MIRBuilder, Idx, NewEltSize, OldEltSize);
2651 
2652     // Shift the wide element to get the target element.
2653     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2654     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2655     MI.eraseFromParent();
2656     return Legalized;
2657   }
2658 
2659   return UnableToLegalize;
2660 }
2661 
2662 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2663 /// TargetReg, while preserving other bits in \p TargetReg.
2664 ///
2665 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2666 static Register buildBitFieldInsert(MachineIRBuilder &B,
2667                                     Register TargetReg, Register InsertReg,
2668                                     Register OffsetBits) {
2669   LLT TargetTy = B.getMRI()->getType(TargetReg);
2670   LLT InsertTy = B.getMRI()->getType(InsertReg);
2671   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2672   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2673 
2674   // Produce a bitmask of the value to insert
2675   auto EltMask = B.buildConstant(
2676     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2677                                    InsertTy.getSizeInBits()));
2678   // Shift it into position
2679   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2680   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2681 
2682   // Clear out the bits in the wide element
2683   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2684 
2685   // The value to insert has all zeros already, so stick it into the masked
2686   // wide element.
2687   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2688 }
2689 
2690 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2691 /// is increasing the element size, perform the indexing in the target element
2692 /// type, and use bit operations to insert at the element position. This is
2693 /// intended for architectures that can dynamically index the register file and
2694 /// want to force indexing in the native register size.
2695 LegalizerHelper::LegalizeResult
2696 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2697                                         LLT CastTy) {
2698   if (TypeIdx != 0)
2699     return UnableToLegalize;
2700 
2701   Register Dst = MI.getOperand(0).getReg();
2702   Register SrcVec = MI.getOperand(1).getReg();
2703   Register Val = MI.getOperand(2).getReg();
2704   Register Idx = MI.getOperand(3).getReg();
2705 
2706   LLT VecTy = MRI.getType(Dst);
2707   LLT IdxTy = MRI.getType(Idx);
2708 
2709   LLT VecEltTy = VecTy.getElementType();
2710   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2711   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2712   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2713 
2714   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2715   unsigned OldNumElts = VecTy.getNumElements();
2716 
2717   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2718   if (NewNumElts < OldNumElts) {
2719     if (NewEltSize % OldEltSize != 0)
2720       return UnableToLegalize;
2721 
2722     // This only depends on powers of 2 because we use bit tricks to figure out
2723     // the bit offset we need to shift to get the target element. A general
2724     // expansion could emit division/multiply.
2725     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2726       return UnableToLegalize;
2727 
2728     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2729     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2730 
2731     // Divide to get the index in the wider element type.
2732     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2733 
2734     Register ExtractedElt = CastVec;
2735     if (CastTy.isVector()) {
2736       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2737                                                           ScaledIdx).getReg(0);
2738     }
2739 
2740     // Compute the bit offset into the register of the target element.
2741     Register OffsetBits = getBitcastWiderVectorElementOffset(
2742       MIRBuilder, Idx, NewEltSize, OldEltSize);
2743 
2744     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2745                                                Val, OffsetBits);
2746     if (CastTy.isVector()) {
2747       InsertedElt = MIRBuilder.buildInsertVectorElement(
2748         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2749     }
2750 
2751     MIRBuilder.buildBitcast(Dst, InsertedElt);
2752     MI.eraseFromParent();
2753     return Legalized;
2754   }
2755 
2756   return UnableToLegalize;
2757 }
2758 
2759 LegalizerHelper::LegalizeResult
2760 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2761   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2762   Register DstReg = MI.getOperand(0).getReg();
2763   Register PtrReg = MI.getOperand(1).getReg();
2764   LLT DstTy = MRI.getType(DstReg);
2765   auto &MMO = **MI.memoperands_begin();
2766 
2767   if (DstTy.getSizeInBits() != MMO.getSizeInBits())
2768     return UnableToLegalize;
2769 
2770   if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2771     // This load needs splitting into power of 2 sized loads.
2772     if (DstTy.isVector())
2773       return UnableToLegalize;
2774     if (isPowerOf2_32(DstTy.getSizeInBits()))
2775       return UnableToLegalize; // Don't know what we're being asked to do.
2776 
2777     // Our strategy here is to generate anyextending loads for the smaller
2778     // types up to next power-2 result type, and then combine the two larger
2779     // result values together, before truncating back down to the non-pow-2
2780     // type.
2781     // E.g. v1 = i24 load =>
2782     // v2 = i32 zextload (2 byte)
2783     // v3 = i32 load (1 byte)
2784     // v4 = i32 shl v3, 16
2785     // v5 = i32 or v4, v2
2786     // v1 = i24 trunc v5
2787     // By doing this we generate the correct truncate which should get
2788     // combined away as an artifact with a matching extend.
2789     uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2790     uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2791 
2792     MachineFunction &MF = MIRBuilder.getMF();
2793     MachineMemOperand *LargeMMO =
2794       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2795     MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2796       &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2797 
2798     LLT PtrTy = MRI.getType(PtrReg);
2799     unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2800     LLT AnyExtTy = LLT::scalar(AnyExtSize);
2801     auto LargeLoad = MIRBuilder.buildLoadInstr(
2802       TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2803 
2804     auto OffsetCst = MIRBuilder.buildConstant(
2805       LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2806     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2807     auto SmallPtr =
2808       MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2809     auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2810                                           *SmallMMO);
2811 
2812     auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2813     auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2814     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2815     MIRBuilder.buildTrunc(DstReg, {Or});
2816     MI.eraseFromParent();
2817     return Legalized;
2818   }
2819 
2820   return UnableToLegalize;
2821 }
2822 
2823 LegalizerHelper::LegalizeResult
2824 LegalizerHelper::lowerStore(MachineInstr &MI) {
2825   // Lower a non-power of 2 store into multiple pow-2 stores.
2826   // E.g. split an i24 store into an i16 store + i8 store.
2827   // We do this by first extending the stored value to the next largest power
2828   // of 2 type, and then using truncating stores to store the components.
2829   // By doing this, likewise with G_LOAD, generate an extend that can be
2830   // artifact-combined away instead of leaving behind extracts.
2831   Register SrcReg = MI.getOperand(0).getReg();
2832   Register PtrReg = MI.getOperand(1).getReg();
2833   LLT SrcTy = MRI.getType(SrcReg);
2834   MachineMemOperand &MMO = **MI.memoperands_begin();
2835   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2836     return UnableToLegalize;
2837   if (SrcTy.isVector())
2838     return UnableToLegalize;
2839   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2840     return UnableToLegalize; // Don't know what we're being asked to do.
2841 
2842   // Extend to the next pow-2.
2843   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2844   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2845 
2846   // Obtain the smaller value by shifting away the larger value.
2847   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2848   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2849   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2850   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2851 
2852   // Generate the PtrAdd and truncating stores.
2853   LLT PtrTy = MRI.getType(PtrReg);
2854   auto OffsetCst = MIRBuilder.buildConstant(
2855     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2856   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2857   auto SmallPtr =
2858     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2859 
2860   MachineFunction &MF = MIRBuilder.getMF();
2861   MachineMemOperand *LargeMMO =
2862     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2863   MachineMemOperand *SmallMMO =
2864     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2865   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2866   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2867   MI.eraseFromParent();
2868   return Legalized;
2869 }
2870 
2871 LegalizerHelper::LegalizeResult
2872 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2873   switch (MI.getOpcode()) {
2874   case TargetOpcode::G_LOAD: {
2875     if (TypeIdx != 0)
2876       return UnableToLegalize;
2877 
2878     Observer.changingInstr(MI);
2879     bitcastDst(MI, CastTy, 0);
2880     Observer.changedInstr(MI);
2881     return Legalized;
2882   }
2883   case TargetOpcode::G_STORE: {
2884     if (TypeIdx != 0)
2885       return UnableToLegalize;
2886 
2887     Observer.changingInstr(MI);
2888     bitcastSrc(MI, CastTy, 0);
2889     Observer.changedInstr(MI);
2890     return Legalized;
2891   }
2892   case TargetOpcode::G_SELECT: {
2893     if (TypeIdx != 0)
2894       return UnableToLegalize;
2895 
2896     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2897       LLVM_DEBUG(
2898           dbgs() << "bitcast action not implemented for vector select\n");
2899       return UnableToLegalize;
2900     }
2901 
2902     Observer.changingInstr(MI);
2903     bitcastSrc(MI, CastTy, 2);
2904     bitcastSrc(MI, CastTy, 3);
2905     bitcastDst(MI, CastTy, 0);
2906     Observer.changedInstr(MI);
2907     return Legalized;
2908   }
2909   case TargetOpcode::G_AND:
2910   case TargetOpcode::G_OR:
2911   case TargetOpcode::G_XOR: {
2912     Observer.changingInstr(MI);
2913     bitcastSrc(MI, CastTy, 1);
2914     bitcastSrc(MI, CastTy, 2);
2915     bitcastDst(MI, CastTy, 0);
2916     Observer.changedInstr(MI);
2917     return Legalized;
2918   }
2919   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2920     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2921   case TargetOpcode::G_INSERT_VECTOR_ELT:
2922     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2923   default:
2924     return UnableToLegalize;
2925   }
2926 }
2927 
2928 // Legalize an instruction by changing the opcode in place.
2929 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2930     Observer.changingInstr(MI);
2931     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2932     Observer.changedInstr(MI);
2933 }
2934 
2935 LegalizerHelper::LegalizeResult
2936 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2937   using namespace TargetOpcode;
2938 
2939   switch(MI.getOpcode()) {
2940   default:
2941     return UnableToLegalize;
2942   case TargetOpcode::G_BITCAST:
2943     return lowerBitcast(MI);
2944   case TargetOpcode::G_SREM:
2945   case TargetOpcode::G_UREM: {
2946     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2947     auto Quot =
2948         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2949                               {MI.getOperand(1), MI.getOperand(2)});
2950 
2951     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2952     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2953     MI.eraseFromParent();
2954     return Legalized;
2955   }
2956   case TargetOpcode::G_SADDO:
2957   case TargetOpcode::G_SSUBO:
2958     return lowerSADDO_SSUBO(MI);
2959   case TargetOpcode::G_UMULH:
2960   case TargetOpcode::G_SMULH:
2961     return lowerSMULH_UMULH(MI);
2962   case TargetOpcode::G_SMULO:
2963   case TargetOpcode::G_UMULO: {
2964     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2965     // result.
2966     Register Res = MI.getOperand(0).getReg();
2967     Register Overflow = MI.getOperand(1).getReg();
2968     Register LHS = MI.getOperand(2).getReg();
2969     Register RHS = MI.getOperand(3).getReg();
2970     LLT Ty = MRI.getType(Res);
2971 
2972     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2973                           ? TargetOpcode::G_SMULH
2974                           : TargetOpcode::G_UMULH;
2975 
2976     Observer.changingInstr(MI);
2977     const auto &TII = MIRBuilder.getTII();
2978     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2979     MI.RemoveOperand(1);
2980     Observer.changedInstr(MI);
2981 
2982     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2983     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2984 
2985     // Move insert point forward so we can use the Res register if needed.
2986     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2987 
2988     // For *signed* multiply, overflow is detected by checking:
2989     // (hi != (lo >> bitwidth-1))
2990     if (Opcode == TargetOpcode::G_SMULH) {
2991       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2992       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2993       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2994     } else {
2995       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2996     }
2997     return Legalized;
2998   }
2999   case TargetOpcode::G_FNEG: {
3000     Register Res = MI.getOperand(0).getReg();
3001     LLT Ty = MRI.getType(Res);
3002 
3003     // TODO: Handle vector types once we are able to
3004     // represent them.
3005     if (Ty.isVector())
3006       return UnableToLegalize;
3007     auto SignMask =
3008         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3009     Register SubByReg = MI.getOperand(1).getReg();
3010     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3011     MI.eraseFromParent();
3012     return Legalized;
3013   }
3014   case TargetOpcode::G_FSUB: {
3015     Register Res = MI.getOperand(0).getReg();
3016     LLT Ty = MRI.getType(Res);
3017 
3018     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3019     // First, check if G_FNEG is marked as Lower. If so, we may
3020     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3021     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3022       return UnableToLegalize;
3023     Register LHS = MI.getOperand(1).getReg();
3024     Register RHS = MI.getOperand(2).getReg();
3025     Register Neg = MRI.createGenericVirtualRegister(Ty);
3026     MIRBuilder.buildFNeg(Neg, RHS);
3027     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3028     MI.eraseFromParent();
3029     return Legalized;
3030   }
3031   case TargetOpcode::G_FMAD:
3032     return lowerFMad(MI);
3033   case TargetOpcode::G_FFLOOR:
3034     return lowerFFloor(MI);
3035   case TargetOpcode::G_INTRINSIC_ROUND:
3036     return lowerIntrinsicRound(MI);
3037   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3038     // Since round even is the assumed rounding mode for unconstrained FP
3039     // operations, rint and roundeven are the same operation.
3040     changeOpcode(MI, TargetOpcode::G_FRINT);
3041     return Legalized;
3042   }
3043   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3044     Register OldValRes = MI.getOperand(0).getReg();
3045     Register SuccessRes = MI.getOperand(1).getReg();
3046     Register Addr = MI.getOperand(2).getReg();
3047     Register CmpVal = MI.getOperand(3).getReg();
3048     Register NewVal = MI.getOperand(4).getReg();
3049     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3050                                   **MI.memoperands_begin());
3051     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3052     MI.eraseFromParent();
3053     return Legalized;
3054   }
3055   case TargetOpcode::G_LOAD:
3056   case TargetOpcode::G_SEXTLOAD:
3057   case TargetOpcode::G_ZEXTLOAD:
3058     return lowerLoad(MI);
3059   case TargetOpcode::G_STORE:
3060     return lowerStore(MI);
3061   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3062   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3063   case TargetOpcode::G_CTLZ:
3064   case TargetOpcode::G_CTTZ:
3065   case TargetOpcode::G_CTPOP:
3066     return lowerBitCount(MI);
3067   case G_UADDO: {
3068     Register Res = MI.getOperand(0).getReg();
3069     Register CarryOut = MI.getOperand(1).getReg();
3070     Register LHS = MI.getOperand(2).getReg();
3071     Register RHS = MI.getOperand(3).getReg();
3072 
3073     MIRBuilder.buildAdd(Res, LHS, RHS);
3074     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3075 
3076     MI.eraseFromParent();
3077     return Legalized;
3078   }
3079   case G_UADDE: {
3080     Register Res = MI.getOperand(0).getReg();
3081     Register CarryOut = MI.getOperand(1).getReg();
3082     Register LHS = MI.getOperand(2).getReg();
3083     Register RHS = MI.getOperand(3).getReg();
3084     Register CarryIn = MI.getOperand(4).getReg();
3085     LLT Ty = MRI.getType(Res);
3086 
3087     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3088     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3089     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3090     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3091 
3092     MI.eraseFromParent();
3093     return Legalized;
3094   }
3095   case G_USUBO: {
3096     Register Res = MI.getOperand(0).getReg();
3097     Register BorrowOut = MI.getOperand(1).getReg();
3098     Register LHS = MI.getOperand(2).getReg();
3099     Register RHS = MI.getOperand(3).getReg();
3100 
3101     MIRBuilder.buildSub(Res, LHS, RHS);
3102     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3103 
3104     MI.eraseFromParent();
3105     return Legalized;
3106   }
3107   case G_USUBE: {
3108     Register Res = MI.getOperand(0).getReg();
3109     Register BorrowOut = MI.getOperand(1).getReg();
3110     Register LHS = MI.getOperand(2).getReg();
3111     Register RHS = MI.getOperand(3).getReg();
3112     Register BorrowIn = MI.getOperand(4).getReg();
3113     const LLT CondTy = MRI.getType(BorrowOut);
3114     const LLT Ty = MRI.getType(Res);
3115 
3116     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3117     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3118     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3119 
3120     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3121     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3122     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3123 
3124     MI.eraseFromParent();
3125     return Legalized;
3126   }
3127   case G_UITOFP:
3128     return lowerUITOFP(MI);
3129   case G_SITOFP:
3130     return lowerSITOFP(MI);
3131   case G_FPTOUI:
3132     return lowerFPTOUI(MI);
3133   case G_FPTOSI:
3134     return lowerFPTOSI(MI);
3135   case G_FPTRUNC:
3136     return lowerFPTRUNC(MI);
3137   case G_FPOWI:
3138     return lowerFPOWI(MI);
3139   case G_SMIN:
3140   case G_SMAX:
3141   case G_UMIN:
3142   case G_UMAX:
3143     return lowerMinMax(MI);
3144   case G_FCOPYSIGN:
3145     return lowerFCopySign(MI);
3146   case G_FMINNUM:
3147   case G_FMAXNUM:
3148     return lowerFMinNumMaxNum(MI);
3149   case G_MERGE_VALUES:
3150     return lowerMergeValues(MI);
3151   case G_UNMERGE_VALUES:
3152     return lowerUnmergeValues(MI);
3153   case TargetOpcode::G_SEXT_INREG: {
3154     assert(MI.getOperand(2).isImm() && "Expected immediate");
3155     int64_t SizeInBits = MI.getOperand(2).getImm();
3156 
3157     Register DstReg = MI.getOperand(0).getReg();
3158     Register SrcReg = MI.getOperand(1).getReg();
3159     LLT DstTy = MRI.getType(DstReg);
3160     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3161 
3162     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3163     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3164     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3165     MI.eraseFromParent();
3166     return Legalized;
3167   }
3168   case G_EXTRACT_VECTOR_ELT:
3169   case G_INSERT_VECTOR_ELT:
3170     return lowerExtractInsertVectorElt(MI);
3171   case G_SHUFFLE_VECTOR:
3172     return lowerShuffleVector(MI);
3173   case G_DYN_STACKALLOC:
3174     return lowerDynStackAlloc(MI);
3175   case G_EXTRACT:
3176     return lowerExtract(MI);
3177   case G_INSERT:
3178     return lowerInsert(MI);
3179   case G_BSWAP:
3180     return lowerBswap(MI);
3181   case G_BITREVERSE:
3182     return lowerBitreverse(MI);
3183   case G_READ_REGISTER:
3184   case G_WRITE_REGISTER:
3185     return lowerReadWriteRegister(MI);
3186   case G_UADDSAT:
3187   case G_USUBSAT: {
3188     // Try to make a reasonable guess about which lowering strategy to use. The
3189     // target can override this with custom lowering and calling the
3190     // implementation functions.
3191     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3192     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3193       return lowerAddSubSatToMinMax(MI);
3194     return lowerAddSubSatToAddoSubo(MI);
3195   }
3196   case G_SADDSAT:
3197   case G_SSUBSAT: {
3198     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3199 
3200     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3201     // since it's a shorter expansion. However, we would need to figure out the
3202     // preferred boolean type for the carry out for the query.
3203     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3204       return lowerAddSubSatToMinMax(MI);
3205     return lowerAddSubSatToAddoSubo(MI);
3206   }
3207   case G_SSHLSAT:
3208   case G_USHLSAT:
3209     return lowerShlSat(MI);
3210   case G_ABS:
3211     return lowerAbsToAddXor(MI);
3212   case G_SELECT:
3213     return lowerSelect(MI);
3214   case G_SDIVREM:
3215   case G_UDIVREM:
3216     return lowerDIVREM(MI);
3217   case G_FSHL:
3218   case G_FSHR:
3219     return lowerFunnelShift(MI);
3220   case G_ROTL:
3221   case G_ROTR:
3222     return lowerRotate(MI);
3223   }
3224 }
3225 
3226 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3227                                                   Align MinAlign) const {
3228   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3229   // datalayout for the preferred alignment. Also there should be a target hook
3230   // for this to allow targets to reduce the alignment and ignore the
3231   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3232   // the type.
3233   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3234 }
3235 
3236 MachineInstrBuilder
3237 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3238                                       MachinePointerInfo &PtrInfo) {
3239   MachineFunction &MF = MIRBuilder.getMF();
3240   const DataLayout &DL = MIRBuilder.getDataLayout();
3241   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3242 
3243   unsigned AddrSpace = DL.getAllocaAddrSpace();
3244   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3245 
3246   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3247   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3248 }
3249 
3250 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3251                                         LLT VecTy) {
3252   int64_t IdxVal;
3253   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3254     return IdxReg;
3255 
3256   LLT IdxTy = B.getMRI()->getType(IdxReg);
3257   unsigned NElts = VecTy.getNumElements();
3258   if (isPowerOf2_32(NElts)) {
3259     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3260     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3261   }
3262 
3263   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3264       .getReg(0);
3265 }
3266 
3267 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3268                                                   Register Index) {
3269   LLT EltTy = VecTy.getElementType();
3270 
3271   // Calculate the element offset and add it to the pointer.
3272   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3273   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3274          "Converting bits to bytes lost precision");
3275 
3276   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3277 
3278   LLT IdxTy = MRI.getType(Index);
3279   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3280                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3281 
3282   LLT PtrTy = MRI.getType(VecPtr);
3283   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3284 }
3285 
3286 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3287     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3288   Register DstReg = MI.getOperand(0).getReg();
3289   LLT DstTy = MRI.getType(DstReg);
3290   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3291 
3292   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3293 
3294   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3295   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3296 
3297   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3298   MI.eraseFromParent();
3299   return Legalized;
3300 }
3301 
3302 // Handle splitting vector operations which need to have the same number of
3303 // elements in each type index, but each type index may have a different element
3304 // type.
3305 //
3306 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3307 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3308 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3309 //
3310 // Also handles some irregular breakdown cases, e.g.
3311 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3312 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3313 //             s64 = G_SHL s64, s32
3314 LegalizerHelper::LegalizeResult
3315 LegalizerHelper::fewerElementsVectorMultiEltType(
3316   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3317   if (TypeIdx != 0)
3318     return UnableToLegalize;
3319 
3320   const LLT NarrowTy0 = NarrowTyArg;
3321   const Register DstReg = MI.getOperand(0).getReg();
3322   LLT DstTy = MRI.getType(DstReg);
3323   LLT LeftoverTy0;
3324 
3325   // All of the operands need to have the same number of elements, so if we can
3326   // determine a type breakdown for the result type, we can for all of the
3327   // source types.
3328   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3329   if (NumParts < 0)
3330     return UnableToLegalize;
3331 
3332   SmallVector<MachineInstrBuilder, 4> NewInsts;
3333 
3334   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3335   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3336 
3337   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3338     Register SrcReg = MI.getOperand(I).getReg();
3339     LLT SrcTyI = MRI.getType(SrcReg);
3340     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3341                                             : ElementCount::getFixed(1);
3342     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3343     LLT LeftoverTyI;
3344 
3345     // Split this operand into the requested typed registers, and any leftover
3346     // required to reproduce the original type.
3347     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3348                       LeftoverRegs))
3349       return UnableToLegalize;
3350 
3351     if (I == 1) {
3352       // For the first operand, create an instruction for each part and setup
3353       // the result.
3354       for (Register PartReg : PartRegs) {
3355         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3356         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3357                                .addDef(PartDstReg)
3358                                .addUse(PartReg));
3359         DstRegs.push_back(PartDstReg);
3360       }
3361 
3362       for (Register LeftoverReg : LeftoverRegs) {
3363         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3364         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3365                                .addDef(PartDstReg)
3366                                .addUse(LeftoverReg));
3367         LeftoverDstRegs.push_back(PartDstReg);
3368       }
3369     } else {
3370       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3371 
3372       // Add the newly created operand splits to the existing instructions. The
3373       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3374       // pieces.
3375       unsigned InstCount = 0;
3376       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3377         NewInsts[InstCount++].addUse(PartRegs[J]);
3378       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3379         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3380     }
3381 
3382     PartRegs.clear();
3383     LeftoverRegs.clear();
3384   }
3385 
3386   // Insert the newly built operations and rebuild the result register.
3387   for (auto &MIB : NewInsts)
3388     MIRBuilder.insertInstr(MIB);
3389 
3390   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3391 
3392   MI.eraseFromParent();
3393   return Legalized;
3394 }
3395 
3396 LegalizerHelper::LegalizeResult
3397 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3398                                           LLT NarrowTy) {
3399   if (TypeIdx != 0)
3400     return UnableToLegalize;
3401 
3402   Register DstReg = MI.getOperand(0).getReg();
3403   Register SrcReg = MI.getOperand(1).getReg();
3404   LLT DstTy = MRI.getType(DstReg);
3405   LLT SrcTy = MRI.getType(SrcReg);
3406 
3407   LLT NarrowTy0 = NarrowTy;
3408   LLT NarrowTy1;
3409   unsigned NumParts;
3410 
3411   if (NarrowTy.isVector()) {
3412     // Uneven breakdown not handled.
3413     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3414     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3415       return UnableToLegalize;
3416 
3417     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3418   } else {
3419     NumParts = DstTy.getNumElements();
3420     NarrowTy1 = SrcTy.getElementType();
3421   }
3422 
3423   SmallVector<Register, 4> SrcRegs, DstRegs;
3424   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3425 
3426   for (unsigned I = 0; I < NumParts; ++I) {
3427     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3428     MachineInstr *NewInst =
3429         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3430 
3431     NewInst->setFlags(MI.getFlags());
3432     DstRegs.push_back(DstReg);
3433   }
3434 
3435   if (NarrowTy.isVector())
3436     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3437   else
3438     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3439 
3440   MI.eraseFromParent();
3441   return Legalized;
3442 }
3443 
3444 LegalizerHelper::LegalizeResult
3445 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3446                                         LLT NarrowTy) {
3447   Register DstReg = MI.getOperand(0).getReg();
3448   Register Src0Reg = MI.getOperand(2).getReg();
3449   LLT DstTy = MRI.getType(DstReg);
3450   LLT SrcTy = MRI.getType(Src0Reg);
3451 
3452   unsigned NumParts;
3453   LLT NarrowTy0, NarrowTy1;
3454 
3455   if (TypeIdx == 0) {
3456     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3457     unsigned OldElts = DstTy.getNumElements();
3458 
3459     NarrowTy0 = NarrowTy;
3460     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3461     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3462                                                   SrcTy.getScalarSizeInBits())
3463                                     : SrcTy.getElementType();
3464 
3465   } else {
3466     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3467     unsigned OldElts = SrcTy.getNumElements();
3468 
3469     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3470       NarrowTy.getNumElements();
3471     NarrowTy0 =
3472         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3473     NarrowTy1 = NarrowTy;
3474   }
3475 
3476   // FIXME: Don't know how to handle the situation where the small vectors
3477   // aren't all the same size yet.
3478   if (NarrowTy1.isVector() &&
3479       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3480     return UnableToLegalize;
3481 
3482   CmpInst::Predicate Pred
3483     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3484 
3485   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3486   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3487   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3488 
3489   for (unsigned I = 0; I < NumParts; ++I) {
3490     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3491     DstRegs.push_back(DstReg);
3492 
3493     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3494       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3495     else {
3496       MachineInstr *NewCmp
3497         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3498       NewCmp->setFlags(MI.getFlags());
3499     }
3500   }
3501 
3502   if (NarrowTy1.isVector())
3503     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3504   else
3505     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3506 
3507   MI.eraseFromParent();
3508   return Legalized;
3509 }
3510 
3511 LegalizerHelper::LegalizeResult
3512 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3513                                            LLT NarrowTy) {
3514   Register DstReg = MI.getOperand(0).getReg();
3515   Register CondReg = MI.getOperand(1).getReg();
3516 
3517   unsigned NumParts = 0;
3518   LLT NarrowTy0, NarrowTy1;
3519 
3520   LLT DstTy = MRI.getType(DstReg);
3521   LLT CondTy = MRI.getType(CondReg);
3522   unsigned Size = DstTy.getSizeInBits();
3523 
3524   assert(TypeIdx == 0 || CondTy.isVector());
3525 
3526   if (TypeIdx == 0) {
3527     NarrowTy0 = NarrowTy;
3528     NarrowTy1 = CondTy;
3529 
3530     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3531     // FIXME: Don't know how to handle the situation where the small vectors
3532     // aren't all the same size yet.
3533     if (Size % NarrowSize != 0)
3534       return UnableToLegalize;
3535 
3536     NumParts = Size / NarrowSize;
3537 
3538     // Need to break down the condition type
3539     if (CondTy.isVector()) {
3540       if (CondTy.getNumElements() == NumParts)
3541         NarrowTy1 = CondTy.getElementType();
3542       else
3543         NarrowTy1 =
3544             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3545                         CondTy.getScalarSizeInBits());
3546     }
3547   } else {
3548     NumParts = CondTy.getNumElements();
3549     if (NarrowTy.isVector()) {
3550       // TODO: Handle uneven breakdown.
3551       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3552         return UnableToLegalize;
3553 
3554       return UnableToLegalize;
3555     } else {
3556       NarrowTy0 = DstTy.getElementType();
3557       NarrowTy1 = NarrowTy;
3558     }
3559   }
3560 
3561   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3562   if (CondTy.isVector())
3563     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3564 
3565   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3566   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3567 
3568   for (unsigned i = 0; i < NumParts; ++i) {
3569     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3570     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3571                            Src1Regs[i], Src2Regs[i]);
3572     DstRegs.push_back(DstReg);
3573   }
3574 
3575   if (NarrowTy0.isVector())
3576     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3577   else
3578     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3579 
3580   MI.eraseFromParent();
3581   return Legalized;
3582 }
3583 
3584 LegalizerHelper::LegalizeResult
3585 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3586                                         LLT NarrowTy) {
3587   const Register DstReg = MI.getOperand(0).getReg();
3588   LLT PhiTy = MRI.getType(DstReg);
3589   LLT LeftoverTy;
3590 
3591   // All of the operands need to have the same number of elements, so if we can
3592   // determine a type breakdown for the result type, we can for all of the
3593   // source types.
3594   int NumParts, NumLeftover;
3595   std::tie(NumParts, NumLeftover)
3596     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3597   if (NumParts < 0)
3598     return UnableToLegalize;
3599 
3600   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3601   SmallVector<MachineInstrBuilder, 4> NewInsts;
3602 
3603   const int TotalNumParts = NumParts + NumLeftover;
3604 
3605   // Insert the new phis in the result block first.
3606   for (int I = 0; I != TotalNumParts; ++I) {
3607     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3608     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3609     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3610                        .addDef(PartDstReg));
3611     if (I < NumParts)
3612       DstRegs.push_back(PartDstReg);
3613     else
3614       LeftoverDstRegs.push_back(PartDstReg);
3615   }
3616 
3617   MachineBasicBlock *MBB = MI.getParent();
3618   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3619   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3620 
3621   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3622 
3623   // Insert code to extract the incoming values in each predecessor block.
3624   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3625     PartRegs.clear();
3626     LeftoverRegs.clear();
3627 
3628     Register SrcReg = MI.getOperand(I).getReg();
3629     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3630     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3631 
3632     LLT Unused;
3633     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3634                       LeftoverRegs))
3635       return UnableToLegalize;
3636 
3637     // Add the newly created operand splits to the existing instructions. The
3638     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3639     // pieces.
3640     for (int J = 0; J != TotalNumParts; ++J) {
3641       MachineInstrBuilder MIB = NewInsts[J];
3642       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3643       MIB.addMBB(&OpMBB);
3644     }
3645   }
3646 
3647   MI.eraseFromParent();
3648   return Legalized;
3649 }
3650 
3651 LegalizerHelper::LegalizeResult
3652 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3653                                                   unsigned TypeIdx,
3654                                                   LLT NarrowTy) {
3655   if (TypeIdx != 1)
3656     return UnableToLegalize;
3657 
3658   const int NumDst = MI.getNumOperands() - 1;
3659   const Register SrcReg = MI.getOperand(NumDst).getReg();
3660   LLT SrcTy = MRI.getType(SrcReg);
3661 
3662   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3663 
3664   // TODO: Create sequence of extracts.
3665   if (DstTy == NarrowTy)
3666     return UnableToLegalize;
3667 
3668   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3669   if (DstTy == GCDTy) {
3670     // This would just be a copy of the same unmerge.
3671     // TODO: Create extracts, pad with undef and create intermediate merges.
3672     return UnableToLegalize;
3673   }
3674 
3675   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3676   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3677   const int PartsPerUnmerge = NumDst / NumUnmerge;
3678 
3679   for (int I = 0; I != NumUnmerge; ++I) {
3680     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3681 
3682     for (int J = 0; J != PartsPerUnmerge; ++J)
3683       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3684     MIB.addUse(Unmerge.getReg(I));
3685   }
3686 
3687   MI.eraseFromParent();
3688   return Legalized;
3689 }
3690 
3691 LegalizerHelper::LegalizeResult
3692 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3693                                          LLT NarrowTy) {
3694   Register Result = MI.getOperand(0).getReg();
3695   Register Overflow = MI.getOperand(1).getReg();
3696   Register LHS = MI.getOperand(2).getReg();
3697   Register RHS = MI.getOperand(3).getReg();
3698 
3699   LLT SrcTy = MRI.getType(LHS);
3700   if (!SrcTy.isVector())
3701     return UnableToLegalize;
3702 
3703   LLT ElementType = SrcTy.getElementType();
3704   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3705   const ElementCount NumResult = SrcTy.getElementCount();
3706   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3707 
3708   // Unmerge the operands to smaller parts of GCD type.
3709   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3710   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3711 
3712   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3713   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3714   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3715   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3716 
3717   // Perform the operation over unmerged parts.
3718   SmallVector<Register, 8> ResultParts;
3719   SmallVector<Register, 8> OverflowParts;
3720   for (int I = 0; I != NumOps; ++I) {
3721     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3722     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3723     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3724                                          {Operand1, Operand2});
3725     ResultParts.push_back(PartMul->getOperand(0).getReg());
3726     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3727   }
3728 
3729   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3730   LLT OverflowLCMTy =
3731       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3732 
3733   // Recombine the pieces to the original result and overflow registers.
3734   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3735   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3736   MI.eraseFromParent();
3737   return Legalized;
3738 }
3739 
3740 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3741 // a vector
3742 //
3743 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3744 // undef as necessary.
3745 //
3746 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3747 //   -> <2 x s16>
3748 //
3749 // %4:_(s16) = G_IMPLICIT_DEF
3750 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3751 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3752 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3753 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3754 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3755 LegalizerHelper::LegalizeResult
3756 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3757                                           LLT NarrowTy) {
3758   Register DstReg = MI.getOperand(0).getReg();
3759   LLT DstTy = MRI.getType(DstReg);
3760   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3761   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3762 
3763   // Break into a common type
3764   SmallVector<Register, 16> Parts;
3765   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3766     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3767 
3768   // Build the requested new merge, padding with undef.
3769   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3770                                   TargetOpcode::G_ANYEXT);
3771 
3772   // Pack into the original result register.
3773   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3774 
3775   MI.eraseFromParent();
3776   return Legalized;
3777 }
3778 
3779 LegalizerHelper::LegalizeResult
3780 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3781                                                            unsigned TypeIdx,
3782                                                            LLT NarrowVecTy) {
3783   Register DstReg = MI.getOperand(0).getReg();
3784   Register SrcVec = MI.getOperand(1).getReg();
3785   Register InsertVal;
3786   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3787 
3788   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3789   if (IsInsert)
3790     InsertVal = MI.getOperand(2).getReg();
3791 
3792   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3793 
3794   // TODO: Handle total scalarization case.
3795   if (!NarrowVecTy.isVector())
3796     return UnableToLegalize;
3797 
3798   LLT VecTy = MRI.getType(SrcVec);
3799 
3800   // If the index is a constant, we can really break this down as you would
3801   // expect, and index into the target size pieces.
3802   int64_t IdxVal;
3803   auto MaybeCst =
3804       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3805                                         /*HandleFConstants*/ false);
3806   if (MaybeCst) {
3807     IdxVal = MaybeCst->Value.getSExtValue();
3808     // Avoid out of bounds indexing the pieces.
3809     if (IdxVal >= VecTy.getNumElements()) {
3810       MIRBuilder.buildUndef(DstReg);
3811       MI.eraseFromParent();
3812       return Legalized;
3813     }
3814 
3815     SmallVector<Register, 8> VecParts;
3816     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3817 
3818     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3819     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3820                                     TargetOpcode::G_ANYEXT);
3821 
3822     unsigned NewNumElts = NarrowVecTy.getNumElements();
3823 
3824     LLT IdxTy = MRI.getType(Idx);
3825     int64_t PartIdx = IdxVal / NewNumElts;
3826     auto NewIdx =
3827         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3828 
3829     if (IsInsert) {
3830       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3831 
3832       // Use the adjusted index to insert into one of the subvectors.
3833       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3834           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3835       VecParts[PartIdx] = InsertPart.getReg(0);
3836 
3837       // Recombine the inserted subvector with the others to reform the result
3838       // vector.
3839       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3840     } else {
3841       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3842     }
3843 
3844     MI.eraseFromParent();
3845     return Legalized;
3846   }
3847 
3848   // With a variable index, we can't perform the operation in a smaller type, so
3849   // we're forced to expand this.
3850   //
3851   // TODO: We could emit a chain of compare/select to figure out which piece to
3852   // index.
3853   return lowerExtractInsertVectorElt(MI);
3854 }
3855 
3856 LegalizerHelper::LegalizeResult
3857 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3858                                       LLT NarrowTy) {
3859   // FIXME: Don't know how to handle secondary types yet.
3860   if (TypeIdx != 0)
3861     return UnableToLegalize;
3862 
3863   MachineMemOperand *MMO = *MI.memoperands_begin();
3864 
3865   // This implementation doesn't work for atomics. Give up instead of doing
3866   // something invalid.
3867   if (MMO->isAtomic())
3868     return UnableToLegalize;
3869 
3870   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3871   Register ValReg = MI.getOperand(0).getReg();
3872   Register AddrReg = MI.getOperand(1).getReg();
3873   LLT ValTy = MRI.getType(ValReg);
3874 
3875   // FIXME: Do we need a distinct NarrowMemory legalize action?
3876   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3877     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3878     return UnableToLegalize;
3879   }
3880 
3881   int NumParts = -1;
3882   int NumLeftover = -1;
3883   LLT LeftoverTy;
3884   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3885   if (IsLoad) {
3886     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3887   } else {
3888     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3889                      NarrowLeftoverRegs)) {
3890       NumParts = NarrowRegs.size();
3891       NumLeftover = NarrowLeftoverRegs.size();
3892     }
3893   }
3894 
3895   if (NumParts == -1)
3896     return UnableToLegalize;
3897 
3898   LLT PtrTy = MRI.getType(AddrReg);
3899   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3900 
3901   unsigned TotalSize = ValTy.getSizeInBits();
3902 
3903   // Split the load/store into PartTy sized pieces starting at Offset. If this
3904   // is a load, return the new registers in ValRegs. For a store, each elements
3905   // of ValRegs should be PartTy. Returns the next offset that needs to be
3906   // handled.
3907   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3908                              unsigned Offset) -> unsigned {
3909     MachineFunction &MF = MIRBuilder.getMF();
3910     unsigned PartSize = PartTy.getSizeInBits();
3911     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3912          Offset += PartSize, ++Idx) {
3913       unsigned ByteSize = PartSize / 8;
3914       unsigned ByteOffset = Offset / 8;
3915       Register NewAddrReg;
3916 
3917       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3918 
3919       MachineMemOperand *NewMMO =
3920         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3921 
3922       if (IsLoad) {
3923         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3924         ValRegs.push_back(Dst);
3925         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3926       } else {
3927         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3928       }
3929     }
3930 
3931     return Offset;
3932   };
3933 
3934   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3935 
3936   // Handle the rest of the register if this isn't an even type breakdown.
3937   if (LeftoverTy.isValid())
3938     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3939 
3940   if (IsLoad) {
3941     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3942                 LeftoverTy, NarrowLeftoverRegs);
3943   }
3944 
3945   MI.eraseFromParent();
3946   return Legalized;
3947 }
3948 
3949 LegalizerHelper::LegalizeResult
3950 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3951                                       LLT NarrowTy) {
3952   assert(TypeIdx == 0 && "only one type index expected");
3953 
3954   const unsigned Opc = MI.getOpcode();
3955   const int NumDefOps = MI.getNumExplicitDefs();
3956   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3957   const unsigned Flags = MI.getFlags();
3958   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3959   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3960 
3961   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3962                                      "result and 1-3 sources or 2 results and "
3963                                      "1-2 sources");
3964 
3965   SmallVector<Register, 2> DstRegs;
3966   for (int I = 0; I < NumDefOps; ++I)
3967     DstRegs.push_back(MI.getOperand(I).getReg());
3968 
3969   // First of all check whether we are narrowing (changing the element type)
3970   // or reducing the vector elements
3971   const LLT DstTy = MRI.getType(DstRegs[0]);
3972   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3973 
3974   SmallVector<Register, 8> ExtractedRegs[3];
3975   SmallVector<Register, 8> Parts;
3976 
3977   // Break down all the sources into NarrowTy pieces we can operate on. This may
3978   // involve creating merges to a wider type, padded with undef.
3979   for (int I = 0; I != NumSrcOps; ++I) {
3980     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3981     LLT SrcTy = MRI.getType(SrcReg);
3982 
3983     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3984     // For fewerElements, this is a smaller vector with the same element type.
3985     LLT OpNarrowTy;
3986     if (IsNarrow) {
3987       OpNarrowTy = NarrowScalarTy;
3988 
3989       // In case of narrowing, we need to cast vectors to scalars for this to
3990       // work properly
3991       // FIXME: Can we do without the bitcast here if we're narrowing?
3992       if (SrcTy.isVector()) {
3993         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3994         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3995       }
3996     } else {
3997       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
3998                                           : ElementCount::getFixed(1);
3999       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4000     }
4001 
4002     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4003 
4004     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4005     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4006                         TargetOpcode::G_ANYEXT);
4007   }
4008 
4009   SmallVector<Register, 8> ResultRegs[2];
4010 
4011   // Input operands for each sub-instruction.
4012   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4013 
4014   int NumParts = ExtractedRegs[0].size();
4015   const unsigned DstSize = DstTy.getSizeInBits();
4016   const LLT DstScalarTy = LLT::scalar(DstSize);
4017 
4018   // Narrowing needs to use scalar types
4019   LLT DstLCMTy, NarrowDstTy;
4020   if (IsNarrow) {
4021     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4022     NarrowDstTy = NarrowScalarTy;
4023   } else {
4024     DstLCMTy = getLCMType(DstTy, NarrowTy);
4025     NarrowDstTy = NarrowTy;
4026   }
4027 
4028   // We widened the source registers to satisfy merge/unmerge size
4029   // constraints. We'll have some extra fully undef parts.
4030   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4031 
4032   for (int I = 0; I != NumRealParts; ++I) {
4033     // Emit this instruction on each of the split pieces.
4034     for (int J = 0; J != NumSrcOps; ++J)
4035       InputRegs[J] = ExtractedRegs[J][I];
4036 
4037     MachineInstrBuilder Inst;
4038     if (NumDefOps == 1)
4039       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4040     else
4041       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4042                                    Flags);
4043 
4044     for (int J = 0; J != NumDefOps; ++J)
4045       ResultRegs[J].push_back(Inst.getReg(J));
4046   }
4047 
4048   // Fill out the widened result with undef instead of creating instructions
4049   // with undef inputs.
4050   int NumUndefParts = NumParts - NumRealParts;
4051   if (NumUndefParts != 0) {
4052     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4053     for (int I = 0; I != NumDefOps; ++I)
4054       ResultRegs[I].append(NumUndefParts, Undef);
4055   }
4056 
4057   // Extract the possibly padded result. Use a scratch register if we need to do
4058   // a final bitcast, otherwise use the original result register.
4059   Register MergeDstReg;
4060   for (int I = 0; I != NumDefOps; ++I) {
4061     if (IsNarrow && DstTy.isVector())
4062       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4063     else
4064       MergeDstReg = DstRegs[I];
4065 
4066     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4067 
4068     // Recast to vector if we narrowed a vector
4069     if (IsNarrow && DstTy.isVector())
4070       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4071   }
4072 
4073   MI.eraseFromParent();
4074   return Legalized;
4075 }
4076 
4077 LegalizerHelper::LegalizeResult
4078 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4079                                               LLT NarrowTy) {
4080   Register DstReg = MI.getOperand(0).getReg();
4081   Register SrcReg = MI.getOperand(1).getReg();
4082   int64_t Imm = MI.getOperand(2).getImm();
4083 
4084   LLT DstTy = MRI.getType(DstReg);
4085 
4086   SmallVector<Register, 8> Parts;
4087   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4088   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4089 
4090   for (Register &R : Parts)
4091     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4092 
4093   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4094 
4095   MI.eraseFromParent();
4096   return Legalized;
4097 }
4098 
4099 LegalizerHelper::LegalizeResult
4100 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4101                                      LLT NarrowTy) {
4102   using namespace TargetOpcode;
4103 
4104   switch (MI.getOpcode()) {
4105   case G_IMPLICIT_DEF:
4106     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4107   case G_TRUNC:
4108   case G_AND:
4109   case G_OR:
4110   case G_XOR:
4111   case G_ADD:
4112   case G_SUB:
4113   case G_MUL:
4114   case G_PTR_ADD:
4115   case G_SMULH:
4116   case G_UMULH:
4117   case G_FADD:
4118   case G_FMUL:
4119   case G_FSUB:
4120   case G_FNEG:
4121   case G_FABS:
4122   case G_FCANONICALIZE:
4123   case G_FDIV:
4124   case G_FREM:
4125   case G_FMA:
4126   case G_FMAD:
4127   case G_FPOW:
4128   case G_FEXP:
4129   case G_FEXP2:
4130   case G_FLOG:
4131   case G_FLOG2:
4132   case G_FLOG10:
4133   case G_FNEARBYINT:
4134   case G_FCEIL:
4135   case G_FFLOOR:
4136   case G_FRINT:
4137   case G_INTRINSIC_ROUND:
4138   case G_INTRINSIC_ROUNDEVEN:
4139   case G_INTRINSIC_TRUNC:
4140   case G_FCOS:
4141   case G_FSIN:
4142   case G_FSQRT:
4143   case G_BSWAP:
4144   case G_BITREVERSE:
4145   case G_SDIV:
4146   case G_UDIV:
4147   case G_SREM:
4148   case G_UREM:
4149   case G_SDIVREM:
4150   case G_UDIVREM:
4151   case G_SMIN:
4152   case G_SMAX:
4153   case G_UMIN:
4154   case G_UMAX:
4155   case G_ABS:
4156   case G_FMINNUM:
4157   case G_FMAXNUM:
4158   case G_FMINNUM_IEEE:
4159   case G_FMAXNUM_IEEE:
4160   case G_FMINIMUM:
4161   case G_FMAXIMUM:
4162   case G_FSHL:
4163   case G_FSHR:
4164   case G_FREEZE:
4165   case G_SADDSAT:
4166   case G_SSUBSAT:
4167   case G_UADDSAT:
4168   case G_USUBSAT:
4169     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4170   case G_UMULO:
4171   case G_SMULO:
4172     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4173   case G_SHL:
4174   case G_LSHR:
4175   case G_ASHR:
4176   case G_SSHLSAT:
4177   case G_USHLSAT:
4178   case G_CTLZ:
4179   case G_CTLZ_ZERO_UNDEF:
4180   case G_CTTZ:
4181   case G_CTTZ_ZERO_UNDEF:
4182   case G_CTPOP:
4183   case G_FCOPYSIGN:
4184     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4185   case G_ZEXT:
4186   case G_SEXT:
4187   case G_ANYEXT:
4188   case G_FPEXT:
4189   case G_FPTRUNC:
4190   case G_SITOFP:
4191   case G_UITOFP:
4192   case G_FPTOSI:
4193   case G_FPTOUI:
4194   case G_INTTOPTR:
4195   case G_PTRTOINT:
4196   case G_ADDRSPACE_CAST:
4197     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4198   case G_ICMP:
4199   case G_FCMP:
4200     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4201   case G_SELECT:
4202     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4203   case G_PHI:
4204     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4205   case G_UNMERGE_VALUES:
4206     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4207   case G_BUILD_VECTOR:
4208     assert(TypeIdx == 0 && "not a vector type index");
4209     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4210   case G_CONCAT_VECTORS:
4211     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4212       return UnableToLegalize;
4213     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4214   case G_EXTRACT_VECTOR_ELT:
4215   case G_INSERT_VECTOR_ELT:
4216     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4217   case G_LOAD:
4218   case G_STORE:
4219     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4220   case G_SEXT_INREG:
4221     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4222   GISEL_VECREDUCE_CASES_NONSEQ
4223     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4224   case G_SHUFFLE_VECTOR:
4225     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4226   default:
4227     return UnableToLegalize;
4228   }
4229 }
4230 
4231 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4232     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4233   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4234   if (TypeIdx != 0)
4235     return UnableToLegalize;
4236 
4237   Register DstReg = MI.getOperand(0).getReg();
4238   Register Src1Reg = MI.getOperand(1).getReg();
4239   Register Src2Reg = MI.getOperand(2).getReg();
4240   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4241   LLT DstTy = MRI.getType(DstReg);
4242   LLT Src1Ty = MRI.getType(Src1Reg);
4243   LLT Src2Ty = MRI.getType(Src2Reg);
4244   // The shuffle should be canonicalized by now.
4245   if (DstTy != Src1Ty)
4246     return UnableToLegalize;
4247   if (DstTy != Src2Ty)
4248     return UnableToLegalize;
4249 
4250   if (!isPowerOf2_32(DstTy.getNumElements()))
4251     return UnableToLegalize;
4252 
4253   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4254   // Further legalization attempts will be needed to do split further.
4255   NarrowTy =
4256       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4257   unsigned NewElts = NarrowTy.getNumElements();
4258 
4259   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4260   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4261   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4262   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4263                         SplitSrc2Regs[1]};
4264 
4265   Register Hi, Lo;
4266 
4267   // If Lo or Hi uses elements from at most two of the four input vectors, then
4268   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4269   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4270   SmallVector<int, 16> Ops;
4271   for (unsigned High = 0; High < 2; ++High) {
4272     Register &Output = High ? Hi : Lo;
4273 
4274     // Build a shuffle mask for the output, discovering on the fly which
4275     // input vectors to use as shuffle operands (recorded in InputUsed).
4276     // If building a suitable shuffle vector proves too hard, then bail
4277     // out with useBuildVector set.
4278     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4279     unsigned FirstMaskIdx = High * NewElts;
4280     bool UseBuildVector = false;
4281     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4282       // The mask element.  This indexes into the input.
4283       int Idx = Mask[FirstMaskIdx + MaskOffset];
4284 
4285       // The input vector this mask element indexes into.
4286       unsigned Input = (unsigned)Idx / NewElts;
4287 
4288       if (Input >= array_lengthof(Inputs)) {
4289         // The mask element does not index into any input vector.
4290         Ops.push_back(-1);
4291         continue;
4292       }
4293 
4294       // Turn the index into an offset from the start of the input vector.
4295       Idx -= Input * NewElts;
4296 
4297       // Find or create a shuffle vector operand to hold this input.
4298       unsigned OpNo;
4299       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4300         if (InputUsed[OpNo] == Input) {
4301           // This input vector is already an operand.
4302           break;
4303         } else if (InputUsed[OpNo] == -1U) {
4304           // Create a new operand for this input vector.
4305           InputUsed[OpNo] = Input;
4306           break;
4307         }
4308       }
4309 
4310       if (OpNo >= array_lengthof(InputUsed)) {
4311         // More than two input vectors used!  Give up on trying to create a
4312         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4313         UseBuildVector = true;
4314         break;
4315       }
4316 
4317       // Add the mask index for the new shuffle vector.
4318       Ops.push_back(Idx + OpNo * NewElts);
4319     }
4320 
4321     if (UseBuildVector) {
4322       LLT EltTy = NarrowTy.getElementType();
4323       SmallVector<Register, 16> SVOps;
4324 
4325       // Extract the input elements by hand.
4326       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4327         // The mask element.  This indexes into the input.
4328         int Idx = Mask[FirstMaskIdx + MaskOffset];
4329 
4330         // The input vector this mask element indexes into.
4331         unsigned Input = (unsigned)Idx / NewElts;
4332 
4333         if (Input >= array_lengthof(Inputs)) {
4334           // The mask element is "undef" or indexes off the end of the input.
4335           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4336           continue;
4337         }
4338 
4339         // Turn the index into an offset from the start of the input vector.
4340         Idx -= Input * NewElts;
4341 
4342         // Extract the vector element by hand.
4343         SVOps.push_back(MIRBuilder
4344                             .buildExtractVectorElement(
4345                                 EltTy, Inputs[Input],
4346                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4347                             .getReg(0));
4348       }
4349 
4350       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4351       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4352     } else if (InputUsed[0] == -1U) {
4353       // No input vectors were used! The result is undefined.
4354       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4355     } else {
4356       Register Op0 = Inputs[InputUsed[0]];
4357       // If only one input was used, use an undefined vector for the other.
4358       Register Op1 = InputUsed[1] == -1U
4359                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4360                          : Inputs[InputUsed[1]];
4361       // At least one input vector was used. Create a new shuffle vector.
4362       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4363     }
4364 
4365     Ops.clear();
4366   }
4367 
4368   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4369   MI.eraseFromParent();
4370   return Legalized;
4371 }
4372 
4373 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4374     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4375   unsigned Opc = MI.getOpcode();
4376   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4377          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4378          "Sequential reductions not expected");
4379 
4380   if (TypeIdx != 1)
4381     return UnableToLegalize;
4382 
4383   // The semantics of the normal non-sequential reductions allow us to freely
4384   // re-associate the operation.
4385   Register SrcReg = MI.getOperand(1).getReg();
4386   LLT SrcTy = MRI.getType(SrcReg);
4387   Register DstReg = MI.getOperand(0).getReg();
4388   LLT DstTy = MRI.getType(DstReg);
4389 
4390   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4391     return UnableToLegalize;
4392 
4393   SmallVector<Register> SplitSrcs;
4394   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4395   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4396   SmallVector<Register> PartialReductions;
4397   for (unsigned Part = 0; Part < NumParts; ++Part) {
4398     PartialReductions.push_back(
4399         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4400   }
4401 
4402   unsigned ScalarOpc;
4403   switch (Opc) {
4404   case TargetOpcode::G_VECREDUCE_FADD:
4405     ScalarOpc = TargetOpcode::G_FADD;
4406     break;
4407   case TargetOpcode::G_VECREDUCE_FMUL:
4408     ScalarOpc = TargetOpcode::G_FMUL;
4409     break;
4410   case TargetOpcode::G_VECREDUCE_FMAX:
4411     ScalarOpc = TargetOpcode::G_FMAXNUM;
4412     break;
4413   case TargetOpcode::G_VECREDUCE_FMIN:
4414     ScalarOpc = TargetOpcode::G_FMINNUM;
4415     break;
4416   case TargetOpcode::G_VECREDUCE_ADD:
4417     ScalarOpc = TargetOpcode::G_ADD;
4418     break;
4419   case TargetOpcode::G_VECREDUCE_MUL:
4420     ScalarOpc = TargetOpcode::G_MUL;
4421     break;
4422   case TargetOpcode::G_VECREDUCE_AND:
4423     ScalarOpc = TargetOpcode::G_AND;
4424     break;
4425   case TargetOpcode::G_VECREDUCE_OR:
4426     ScalarOpc = TargetOpcode::G_OR;
4427     break;
4428   case TargetOpcode::G_VECREDUCE_XOR:
4429     ScalarOpc = TargetOpcode::G_XOR;
4430     break;
4431   case TargetOpcode::G_VECREDUCE_SMAX:
4432     ScalarOpc = TargetOpcode::G_SMAX;
4433     break;
4434   case TargetOpcode::G_VECREDUCE_SMIN:
4435     ScalarOpc = TargetOpcode::G_SMIN;
4436     break;
4437   case TargetOpcode::G_VECREDUCE_UMAX:
4438     ScalarOpc = TargetOpcode::G_UMAX;
4439     break;
4440   case TargetOpcode::G_VECREDUCE_UMIN:
4441     ScalarOpc = TargetOpcode::G_UMIN;
4442     break;
4443   default:
4444     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4445     return UnableToLegalize;
4446   }
4447 
4448   // If the types involved are powers of 2, we can generate intermediate vector
4449   // ops, before generating a final reduction operation.
4450   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4451       isPowerOf2_32(NarrowTy.getNumElements())) {
4452     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4453   }
4454 
4455   Register Acc = PartialReductions[0];
4456   for (unsigned Part = 1; Part < NumParts; ++Part) {
4457     if (Part == NumParts - 1) {
4458       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4459                             {Acc, PartialReductions[Part]});
4460     } else {
4461       Acc = MIRBuilder
4462                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4463                 .getReg(0);
4464     }
4465   }
4466   MI.eraseFromParent();
4467   return Legalized;
4468 }
4469 
4470 LegalizerHelper::LegalizeResult
4471 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4472                                         LLT SrcTy, LLT NarrowTy,
4473                                         unsigned ScalarOpc) {
4474   SmallVector<Register> SplitSrcs;
4475   // Split the sources into NarrowTy size pieces.
4476   extractParts(SrcReg, NarrowTy,
4477                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4478   // We're going to do a tree reduction using vector operations until we have
4479   // one NarrowTy size value left.
4480   while (SplitSrcs.size() > 1) {
4481     SmallVector<Register> PartialRdxs;
4482     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4483       Register LHS = SplitSrcs[Idx];
4484       Register RHS = SplitSrcs[Idx + 1];
4485       // Create the intermediate vector op.
4486       Register Res =
4487           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4488       PartialRdxs.push_back(Res);
4489     }
4490     SplitSrcs = std::move(PartialRdxs);
4491   }
4492   // Finally generate the requested NarrowTy based reduction.
4493   Observer.changingInstr(MI);
4494   MI.getOperand(1).setReg(SplitSrcs[0]);
4495   Observer.changedInstr(MI);
4496   return Legalized;
4497 }
4498 
4499 LegalizerHelper::LegalizeResult
4500 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4501                                              const LLT HalfTy, const LLT AmtTy) {
4502 
4503   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4504   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4505   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4506 
4507   if (Amt.isNullValue()) {
4508     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4509     MI.eraseFromParent();
4510     return Legalized;
4511   }
4512 
4513   LLT NVT = HalfTy;
4514   unsigned NVTBits = HalfTy.getSizeInBits();
4515   unsigned VTBits = 2 * NVTBits;
4516 
4517   SrcOp Lo(Register(0)), Hi(Register(0));
4518   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4519     if (Amt.ugt(VTBits)) {
4520       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4521     } else if (Amt.ugt(NVTBits)) {
4522       Lo = MIRBuilder.buildConstant(NVT, 0);
4523       Hi = MIRBuilder.buildShl(NVT, InL,
4524                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4525     } else if (Amt == NVTBits) {
4526       Lo = MIRBuilder.buildConstant(NVT, 0);
4527       Hi = InL;
4528     } else {
4529       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4530       auto OrLHS =
4531           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4532       auto OrRHS = MIRBuilder.buildLShr(
4533           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4534       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4535     }
4536   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4537     if (Amt.ugt(VTBits)) {
4538       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4539     } else if (Amt.ugt(NVTBits)) {
4540       Lo = MIRBuilder.buildLShr(NVT, InH,
4541                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4542       Hi = MIRBuilder.buildConstant(NVT, 0);
4543     } else if (Amt == NVTBits) {
4544       Lo = InH;
4545       Hi = MIRBuilder.buildConstant(NVT, 0);
4546     } else {
4547       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4548 
4549       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4550       auto OrRHS = MIRBuilder.buildShl(
4551           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4552 
4553       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4554       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4555     }
4556   } else {
4557     if (Amt.ugt(VTBits)) {
4558       Hi = Lo = MIRBuilder.buildAShr(
4559           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4560     } else if (Amt.ugt(NVTBits)) {
4561       Lo = MIRBuilder.buildAShr(NVT, InH,
4562                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4563       Hi = MIRBuilder.buildAShr(NVT, InH,
4564                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4565     } else if (Amt == NVTBits) {
4566       Lo = InH;
4567       Hi = MIRBuilder.buildAShr(NVT, InH,
4568                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4569     } else {
4570       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4571 
4572       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4573       auto OrRHS = MIRBuilder.buildShl(
4574           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4575 
4576       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4577       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4578     }
4579   }
4580 
4581   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4582   MI.eraseFromParent();
4583 
4584   return Legalized;
4585 }
4586 
4587 // TODO: Optimize if constant shift amount.
4588 LegalizerHelper::LegalizeResult
4589 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4590                                    LLT RequestedTy) {
4591   if (TypeIdx == 1) {
4592     Observer.changingInstr(MI);
4593     narrowScalarSrc(MI, RequestedTy, 2);
4594     Observer.changedInstr(MI);
4595     return Legalized;
4596   }
4597 
4598   Register DstReg = MI.getOperand(0).getReg();
4599   LLT DstTy = MRI.getType(DstReg);
4600   if (DstTy.isVector())
4601     return UnableToLegalize;
4602 
4603   Register Amt = MI.getOperand(2).getReg();
4604   LLT ShiftAmtTy = MRI.getType(Amt);
4605   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4606   if (DstEltSize % 2 != 0)
4607     return UnableToLegalize;
4608 
4609   // Ignore the input type. We can only go to exactly half the size of the
4610   // input. If that isn't small enough, the resulting pieces will be further
4611   // legalized.
4612   const unsigned NewBitSize = DstEltSize / 2;
4613   const LLT HalfTy = LLT::scalar(NewBitSize);
4614   const LLT CondTy = LLT::scalar(1);
4615 
4616   if (const MachineInstr *KShiftAmt =
4617           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4618     return narrowScalarShiftByConstant(
4619         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4620   }
4621 
4622   // TODO: Expand with known bits.
4623 
4624   // Handle the fully general expansion by an unknown amount.
4625   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4626 
4627   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4628   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4629   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4630 
4631   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4632   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4633 
4634   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4635   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4636   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4637 
4638   Register ResultRegs[2];
4639   switch (MI.getOpcode()) {
4640   case TargetOpcode::G_SHL: {
4641     // Short: ShAmt < NewBitSize
4642     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4643 
4644     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4645     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4646     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4647 
4648     // Long: ShAmt >= NewBitSize
4649     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4650     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4651 
4652     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4653     auto Hi = MIRBuilder.buildSelect(
4654         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4655 
4656     ResultRegs[0] = Lo.getReg(0);
4657     ResultRegs[1] = Hi.getReg(0);
4658     break;
4659   }
4660   case TargetOpcode::G_LSHR:
4661   case TargetOpcode::G_ASHR: {
4662     // Short: ShAmt < NewBitSize
4663     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4664 
4665     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4666     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4667     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4668 
4669     // Long: ShAmt >= NewBitSize
4670     MachineInstrBuilder HiL;
4671     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4672       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4673     } else {
4674       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4675       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4676     }
4677     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4678                                      {InH, AmtExcess});     // Lo from Hi part.
4679 
4680     auto Lo = MIRBuilder.buildSelect(
4681         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4682 
4683     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4684 
4685     ResultRegs[0] = Lo.getReg(0);
4686     ResultRegs[1] = Hi.getReg(0);
4687     break;
4688   }
4689   default:
4690     llvm_unreachable("not a shift");
4691   }
4692 
4693   MIRBuilder.buildMerge(DstReg, ResultRegs);
4694   MI.eraseFromParent();
4695   return Legalized;
4696 }
4697 
4698 LegalizerHelper::LegalizeResult
4699 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4700                                        LLT MoreTy) {
4701   assert(TypeIdx == 0 && "Expecting only Idx 0");
4702 
4703   Observer.changingInstr(MI);
4704   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4705     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4706     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4707     moreElementsVectorSrc(MI, MoreTy, I);
4708   }
4709 
4710   MachineBasicBlock &MBB = *MI.getParent();
4711   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4712   moreElementsVectorDst(MI, MoreTy, 0);
4713   Observer.changedInstr(MI);
4714   return Legalized;
4715 }
4716 
4717 LegalizerHelper::LegalizeResult
4718 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4719                                     LLT MoreTy) {
4720   unsigned Opc = MI.getOpcode();
4721   switch (Opc) {
4722   case TargetOpcode::G_IMPLICIT_DEF:
4723   case TargetOpcode::G_LOAD: {
4724     if (TypeIdx != 0)
4725       return UnableToLegalize;
4726     Observer.changingInstr(MI);
4727     moreElementsVectorDst(MI, MoreTy, 0);
4728     Observer.changedInstr(MI);
4729     return Legalized;
4730   }
4731   case TargetOpcode::G_STORE:
4732     if (TypeIdx != 0)
4733       return UnableToLegalize;
4734     Observer.changingInstr(MI);
4735     moreElementsVectorSrc(MI, MoreTy, 0);
4736     Observer.changedInstr(MI);
4737     return Legalized;
4738   case TargetOpcode::G_AND:
4739   case TargetOpcode::G_OR:
4740   case TargetOpcode::G_XOR:
4741   case TargetOpcode::G_SMIN:
4742   case TargetOpcode::G_SMAX:
4743   case TargetOpcode::G_UMIN:
4744   case TargetOpcode::G_UMAX:
4745   case TargetOpcode::G_FMINNUM:
4746   case TargetOpcode::G_FMAXNUM:
4747   case TargetOpcode::G_FMINNUM_IEEE:
4748   case TargetOpcode::G_FMAXNUM_IEEE:
4749   case TargetOpcode::G_FMINIMUM:
4750   case TargetOpcode::G_FMAXIMUM: {
4751     Observer.changingInstr(MI);
4752     moreElementsVectorSrc(MI, MoreTy, 1);
4753     moreElementsVectorSrc(MI, MoreTy, 2);
4754     moreElementsVectorDst(MI, MoreTy, 0);
4755     Observer.changedInstr(MI);
4756     return Legalized;
4757   }
4758   case TargetOpcode::G_EXTRACT:
4759     if (TypeIdx != 1)
4760       return UnableToLegalize;
4761     Observer.changingInstr(MI);
4762     moreElementsVectorSrc(MI, MoreTy, 1);
4763     Observer.changedInstr(MI);
4764     return Legalized;
4765   case TargetOpcode::G_INSERT:
4766   case TargetOpcode::G_FREEZE:
4767     if (TypeIdx != 0)
4768       return UnableToLegalize;
4769     Observer.changingInstr(MI);
4770     moreElementsVectorSrc(MI, MoreTy, 1);
4771     moreElementsVectorDst(MI, MoreTy, 0);
4772     Observer.changedInstr(MI);
4773     return Legalized;
4774   case TargetOpcode::G_SELECT:
4775     if (TypeIdx != 0)
4776       return UnableToLegalize;
4777     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4778       return UnableToLegalize;
4779 
4780     Observer.changingInstr(MI);
4781     moreElementsVectorSrc(MI, MoreTy, 2);
4782     moreElementsVectorSrc(MI, MoreTy, 3);
4783     moreElementsVectorDst(MI, MoreTy, 0);
4784     Observer.changedInstr(MI);
4785     return Legalized;
4786   case TargetOpcode::G_UNMERGE_VALUES: {
4787     if (TypeIdx != 1)
4788       return UnableToLegalize;
4789 
4790     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4791     int NumDst = MI.getNumOperands() - 1;
4792     moreElementsVectorSrc(MI, MoreTy, NumDst);
4793 
4794     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4795     for (int I = 0; I != NumDst; ++I)
4796       MIB.addDef(MI.getOperand(I).getReg());
4797 
4798     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4799     for (int I = NumDst; I != NewNumDst; ++I)
4800       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4801 
4802     MIB.addUse(MI.getOperand(NumDst).getReg());
4803     MI.eraseFromParent();
4804     return Legalized;
4805   }
4806   case TargetOpcode::G_PHI:
4807     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4808   default:
4809     return UnableToLegalize;
4810   }
4811 }
4812 
4813 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4814                                         ArrayRef<Register> Src1Regs,
4815                                         ArrayRef<Register> Src2Regs,
4816                                         LLT NarrowTy) {
4817   MachineIRBuilder &B = MIRBuilder;
4818   unsigned SrcParts = Src1Regs.size();
4819   unsigned DstParts = DstRegs.size();
4820 
4821   unsigned DstIdx = 0; // Low bits of the result.
4822   Register FactorSum =
4823       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4824   DstRegs[DstIdx] = FactorSum;
4825 
4826   unsigned CarrySumPrevDstIdx;
4827   SmallVector<Register, 4> Factors;
4828 
4829   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4830     // Collect low parts of muls for DstIdx.
4831     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4832          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4833       MachineInstrBuilder Mul =
4834           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4835       Factors.push_back(Mul.getReg(0));
4836     }
4837     // Collect high parts of muls from previous DstIdx.
4838     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4839          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4840       MachineInstrBuilder Umulh =
4841           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4842       Factors.push_back(Umulh.getReg(0));
4843     }
4844     // Add CarrySum from additions calculated for previous DstIdx.
4845     if (DstIdx != 1) {
4846       Factors.push_back(CarrySumPrevDstIdx);
4847     }
4848 
4849     Register CarrySum;
4850     // Add all factors and accumulate all carries into CarrySum.
4851     if (DstIdx != DstParts - 1) {
4852       MachineInstrBuilder Uaddo =
4853           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4854       FactorSum = Uaddo.getReg(0);
4855       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4856       for (unsigned i = 2; i < Factors.size(); ++i) {
4857         MachineInstrBuilder Uaddo =
4858             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4859         FactorSum = Uaddo.getReg(0);
4860         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4861         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4862       }
4863     } else {
4864       // Since value for the next index is not calculated, neither is CarrySum.
4865       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4866       for (unsigned i = 2; i < Factors.size(); ++i)
4867         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4868     }
4869 
4870     CarrySumPrevDstIdx = CarrySum;
4871     DstRegs[DstIdx] = FactorSum;
4872     Factors.clear();
4873   }
4874 }
4875 
4876 LegalizerHelper::LegalizeResult
4877 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4878                                     LLT NarrowTy) {
4879   if (TypeIdx != 0)
4880     return UnableToLegalize;
4881 
4882   Register DstReg = MI.getOperand(0).getReg();
4883   LLT DstType = MRI.getType(DstReg);
4884   // FIXME: add support for vector types
4885   if (DstType.isVector())
4886     return UnableToLegalize;
4887 
4888   unsigned Opcode = MI.getOpcode();
4889   unsigned OpO, OpE, OpF;
4890   switch (Opcode) {
4891   case TargetOpcode::G_SADDO:
4892   case TargetOpcode::G_SADDE:
4893   case TargetOpcode::G_UADDO:
4894   case TargetOpcode::G_UADDE:
4895   case TargetOpcode::G_ADD:
4896     OpO = TargetOpcode::G_UADDO;
4897     OpE = TargetOpcode::G_UADDE;
4898     OpF = TargetOpcode::G_UADDE;
4899     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4900       OpF = TargetOpcode::G_SADDE;
4901     break;
4902   case TargetOpcode::G_SSUBO:
4903   case TargetOpcode::G_SSUBE:
4904   case TargetOpcode::G_USUBO:
4905   case TargetOpcode::G_USUBE:
4906   case TargetOpcode::G_SUB:
4907     OpO = TargetOpcode::G_USUBO;
4908     OpE = TargetOpcode::G_USUBE;
4909     OpF = TargetOpcode::G_USUBE;
4910     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4911       OpF = TargetOpcode::G_SSUBE;
4912     break;
4913   default:
4914     llvm_unreachable("Unexpected add/sub opcode!");
4915   }
4916 
4917   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4918   unsigned NumDefs = MI.getNumExplicitDefs();
4919   Register Src1 = MI.getOperand(NumDefs).getReg();
4920   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4921   Register CarryDst, CarryIn;
4922   if (NumDefs == 2)
4923     CarryDst = MI.getOperand(1).getReg();
4924   if (MI.getNumOperands() == NumDefs + 3)
4925     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4926 
4927   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
4928   LLT LeftoverTy, DummyTy;
4929   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
4930   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
4931   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
4932 
4933   int NarrowParts = Src1Regs.size();
4934   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
4935     Src1Regs.push_back(Src1Left[I]);
4936     Src2Regs.push_back(Src2Left[I]);
4937   }
4938   DstRegs.reserve(Src1Regs.size());
4939 
4940   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
4941     Register DstReg =
4942         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
4943     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4944     // Forward the final carry-out to the destination register
4945     if (i == e - 1 && CarryDst)
4946       CarryOut = CarryDst;
4947 
4948     if (!CarryIn) {
4949       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4950                             {Src1Regs[i], Src2Regs[i]});
4951     } else if (i == e - 1) {
4952       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4953                             {Src1Regs[i], Src2Regs[i], CarryIn});
4954     } else {
4955       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4956                             {Src1Regs[i], Src2Regs[i], CarryIn});
4957     }
4958 
4959     DstRegs.push_back(DstReg);
4960     CarryIn = CarryOut;
4961   }
4962   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
4963               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
4964               makeArrayRef(DstRegs).drop_front(NarrowParts));
4965 
4966   MI.eraseFromParent();
4967   return Legalized;
4968 }
4969 
4970 LegalizerHelper::LegalizeResult
4971 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4972   Register DstReg = MI.getOperand(0).getReg();
4973   Register Src1 = MI.getOperand(1).getReg();
4974   Register Src2 = MI.getOperand(2).getReg();
4975 
4976   LLT Ty = MRI.getType(DstReg);
4977   if (Ty.isVector())
4978     return UnableToLegalize;
4979 
4980   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4981   unsigned DstSize = Ty.getSizeInBits();
4982   unsigned NarrowSize = NarrowTy.getSizeInBits();
4983   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4984     return UnableToLegalize;
4985 
4986   unsigned NumDstParts = DstSize / NarrowSize;
4987   unsigned NumSrcParts = SrcSize / NarrowSize;
4988   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4989   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4990 
4991   SmallVector<Register, 2> Src1Parts, Src2Parts;
4992   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4993   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4994   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4995   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4996 
4997   // Take only high half of registers if this is high mul.
4998   ArrayRef<Register> DstRegs(
4999       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5000   MIRBuilder.buildMerge(DstReg, DstRegs);
5001   MI.eraseFromParent();
5002   return Legalized;
5003 }
5004 
5005 LegalizerHelper::LegalizeResult
5006 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5007                                    LLT NarrowTy) {
5008   if (TypeIdx != 0)
5009     return UnableToLegalize;
5010 
5011   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5012 
5013   Register Src = MI.getOperand(1).getReg();
5014   LLT SrcTy = MRI.getType(Src);
5015 
5016   // If all finite floats fit into the narrowed integer type, we can just swap
5017   // out the result type. This is practically only useful for conversions from
5018   // half to at least 16-bits, so just handle the one case.
5019   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5020       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5021     return UnableToLegalize;
5022 
5023   Observer.changingInstr(MI);
5024   narrowScalarDst(MI, NarrowTy, 0,
5025                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5026   Observer.changedInstr(MI);
5027   return Legalized;
5028 }
5029 
5030 LegalizerHelper::LegalizeResult
5031 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5032                                      LLT NarrowTy) {
5033   if (TypeIdx != 1)
5034     return UnableToLegalize;
5035 
5036   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5037 
5038   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5039   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5040   // NarrowSize.
5041   if (SizeOp1 % NarrowSize != 0)
5042     return UnableToLegalize;
5043   int NumParts = SizeOp1 / NarrowSize;
5044 
5045   SmallVector<Register, 2> SrcRegs, DstRegs;
5046   SmallVector<uint64_t, 2> Indexes;
5047   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5048 
5049   Register OpReg = MI.getOperand(0).getReg();
5050   uint64_t OpStart = MI.getOperand(2).getImm();
5051   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5052   for (int i = 0; i < NumParts; ++i) {
5053     unsigned SrcStart = i * NarrowSize;
5054 
5055     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5056       // No part of the extract uses this subregister, ignore it.
5057       continue;
5058     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5059       // The entire subregister is extracted, forward the value.
5060       DstRegs.push_back(SrcRegs[i]);
5061       continue;
5062     }
5063 
5064     // OpSegStart is where this destination segment would start in OpReg if it
5065     // extended infinitely in both directions.
5066     int64_t ExtractOffset;
5067     uint64_t SegSize;
5068     if (OpStart < SrcStart) {
5069       ExtractOffset = 0;
5070       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5071     } else {
5072       ExtractOffset = OpStart - SrcStart;
5073       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5074     }
5075 
5076     Register SegReg = SrcRegs[i];
5077     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5078       // A genuine extract is needed.
5079       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5080       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5081     }
5082 
5083     DstRegs.push_back(SegReg);
5084   }
5085 
5086   Register DstReg = MI.getOperand(0).getReg();
5087   if (MRI.getType(DstReg).isVector())
5088     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5089   else if (DstRegs.size() > 1)
5090     MIRBuilder.buildMerge(DstReg, DstRegs);
5091   else
5092     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5093   MI.eraseFromParent();
5094   return Legalized;
5095 }
5096 
5097 LegalizerHelper::LegalizeResult
5098 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5099                                     LLT NarrowTy) {
5100   // FIXME: Don't know how to handle secondary types yet.
5101   if (TypeIdx != 0)
5102     return UnableToLegalize;
5103 
5104   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5105   SmallVector<uint64_t, 2> Indexes;
5106   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5107   LLT LeftoverTy;
5108   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5109                LeftoverRegs);
5110 
5111   for (Register Reg : LeftoverRegs)
5112     SrcRegs.push_back(Reg);
5113 
5114   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5115   Register OpReg = MI.getOperand(2).getReg();
5116   uint64_t OpStart = MI.getOperand(3).getImm();
5117   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5118   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5119     unsigned DstStart = I * NarrowSize;
5120 
5121     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5122       // The entire subregister is defined by this insert, forward the new
5123       // value.
5124       DstRegs.push_back(OpReg);
5125       continue;
5126     }
5127 
5128     Register SrcReg = SrcRegs[I];
5129     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5130       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5131       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5132       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5133     }
5134 
5135     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5136       // No part of the insert affects this subregister, forward the original.
5137       DstRegs.push_back(SrcReg);
5138       continue;
5139     }
5140 
5141     // OpSegStart is where this destination segment would start in OpReg if it
5142     // extended infinitely in both directions.
5143     int64_t ExtractOffset, InsertOffset;
5144     uint64_t SegSize;
5145     if (OpStart < DstStart) {
5146       InsertOffset = 0;
5147       ExtractOffset = DstStart - OpStart;
5148       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5149     } else {
5150       InsertOffset = OpStart - DstStart;
5151       ExtractOffset = 0;
5152       SegSize =
5153         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5154     }
5155 
5156     Register SegReg = OpReg;
5157     if (ExtractOffset != 0 || SegSize != OpSize) {
5158       // A genuine extract is needed.
5159       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5160       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5161     }
5162 
5163     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5164     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5165     DstRegs.push_back(DstReg);
5166   }
5167 
5168   uint64_t WideSize = DstRegs.size() * NarrowSize;
5169   Register DstReg = MI.getOperand(0).getReg();
5170   if (WideSize > RegTy.getSizeInBits()) {
5171     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5172     MIRBuilder.buildMerge(MergeReg, DstRegs);
5173     MIRBuilder.buildTrunc(DstReg, MergeReg);
5174   } else
5175     MIRBuilder.buildMerge(DstReg, DstRegs);
5176 
5177   MI.eraseFromParent();
5178   return Legalized;
5179 }
5180 
5181 LegalizerHelper::LegalizeResult
5182 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5183                                    LLT NarrowTy) {
5184   Register DstReg = MI.getOperand(0).getReg();
5185   LLT DstTy = MRI.getType(DstReg);
5186 
5187   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5188 
5189   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5190   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5191   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5192   LLT LeftoverTy;
5193   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5194                     Src0Regs, Src0LeftoverRegs))
5195     return UnableToLegalize;
5196 
5197   LLT Unused;
5198   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5199                     Src1Regs, Src1LeftoverRegs))
5200     llvm_unreachable("inconsistent extractParts result");
5201 
5202   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5203     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5204                                         {Src0Regs[I], Src1Regs[I]});
5205     DstRegs.push_back(Inst.getReg(0));
5206   }
5207 
5208   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5209     auto Inst = MIRBuilder.buildInstr(
5210       MI.getOpcode(),
5211       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5212     DstLeftoverRegs.push_back(Inst.getReg(0));
5213   }
5214 
5215   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5216               LeftoverTy, DstLeftoverRegs);
5217 
5218   MI.eraseFromParent();
5219   return Legalized;
5220 }
5221 
5222 LegalizerHelper::LegalizeResult
5223 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5224                                  LLT NarrowTy) {
5225   if (TypeIdx != 0)
5226     return UnableToLegalize;
5227 
5228   Register DstReg = MI.getOperand(0).getReg();
5229   Register SrcReg = MI.getOperand(1).getReg();
5230 
5231   LLT DstTy = MRI.getType(DstReg);
5232   if (DstTy.isVector())
5233     return UnableToLegalize;
5234 
5235   SmallVector<Register, 8> Parts;
5236   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5237   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5238   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5239 
5240   MI.eraseFromParent();
5241   return Legalized;
5242 }
5243 
5244 LegalizerHelper::LegalizeResult
5245 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5246                                     LLT NarrowTy) {
5247   if (TypeIdx != 0)
5248     return UnableToLegalize;
5249 
5250   Register CondReg = MI.getOperand(1).getReg();
5251   LLT CondTy = MRI.getType(CondReg);
5252   if (CondTy.isVector()) // TODO: Handle vselect
5253     return UnableToLegalize;
5254 
5255   Register DstReg = MI.getOperand(0).getReg();
5256   LLT DstTy = MRI.getType(DstReg);
5257 
5258   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5259   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5260   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5261   LLT LeftoverTy;
5262   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5263                     Src1Regs, Src1LeftoverRegs))
5264     return UnableToLegalize;
5265 
5266   LLT Unused;
5267   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5268                     Src2Regs, Src2LeftoverRegs))
5269     llvm_unreachable("inconsistent extractParts result");
5270 
5271   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5272     auto Select = MIRBuilder.buildSelect(NarrowTy,
5273                                          CondReg, Src1Regs[I], Src2Regs[I]);
5274     DstRegs.push_back(Select.getReg(0));
5275   }
5276 
5277   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5278     auto Select = MIRBuilder.buildSelect(
5279       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5280     DstLeftoverRegs.push_back(Select.getReg(0));
5281   }
5282 
5283   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5284               LeftoverTy, DstLeftoverRegs);
5285 
5286   MI.eraseFromParent();
5287   return Legalized;
5288 }
5289 
5290 LegalizerHelper::LegalizeResult
5291 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5292                                   LLT NarrowTy) {
5293   if (TypeIdx != 1)
5294     return UnableToLegalize;
5295 
5296   Register DstReg = MI.getOperand(0).getReg();
5297   Register SrcReg = MI.getOperand(1).getReg();
5298   LLT DstTy = MRI.getType(DstReg);
5299   LLT SrcTy = MRI.getType(SrcReg);
5300   unsigned NarrowSize = NarrowTy.getSizeInBits();
5301 
5302   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5303     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5304 
5305     MachineIRBuilder &B = MIRBuilder;
5306     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5307     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5308     auto C_0 = B.buildConstant(NarrowTy, 0);
5309     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5310                                 UnmergeSrc.getReg(1), C_0);
5311     auto LoCTLZ = IsUndef ?
5312       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5313       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5314     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5315     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5316     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5317     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5318 
5319     MI.eraseFromParent();
5320     return Legalized;
5321   }
5322 
5323   return UnableToLegalize;
5324 }
5325 
5326 LegalizerHelper::LegalizeResult
5327 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5328                                   LLT NarrowTy) {
5329   if (TypeIdx != 1)
5330     return UnableToLegalize;
5331 
5332   Register DstReg = MI.getOperand(0).getReg();
5333   Register SrcReg = MI.getOperand(1).getReg();
5334   LLT DstTy = MRI.getType(DstReg);
5335   LLT SrcTy = MRI.getType(SrcReg);
5336   unsigned NarrowSize = NarrowTy.getSizeInBits();
5337 
5338   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5339     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5340 
5341     MachineIRBuilder &B = MIRBuilder;
5342     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5343     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5344     auto C_0 = B.buildConstant(NarrowTy, 0);
5345     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5346                                 UnmergeSrc.getReg(0), C_0);
5347     auto HiCTTZ = IsUndef ?
5348       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5349       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5350     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5351     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5352     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5353     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5354 
5355     MI.eraseFromParent();
5356     return Legalized;
5357   }
5358 
5359   return UnableToLegalize;
5360 }
5361 
5362 LegalizerHelper::LegalizeResult
5363 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5364                                    LLT NarrowTy) {
5365   if (TypeIdx != 1)
5366     return UnableToLegalize;
5367 
5368   Register DstReg = MI.getOperand(0).getReg();
5369   LLT DstTy = MRI.getType(DstReg);
5370   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5371   unsigned NarrowSize = NarrowTy.getSizeInBits();
5372 
5373   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5374     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5375 
5376     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5377     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5378     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5379 
5380     MI.eraseFromParent();
5381     return Legalized;
5382   }
5383 
5384   return UnableToLegalize;
5385 }
5386 
5387 LegalizerHelper::LegalizeResult
5388 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5389   unsigned Opc = MI.getOpcode();
5390   const auto &TII = MIRBuilder.getTII();
5391   auto isSupported = [this](const LegalityQuery &Q) {
5392     auto QAction = LI.getAction(Q).Action;
5393     return QAction == Legal || QAction == Libcall || QAction == Custom;
5394   };
5395   switch (Opc) {
5396   default:
5397     return UnableToLegalize;
5398   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5399     // This trivially expands to CTLZ.
5400     Observer.changingInstr(MI);
5401     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5402     Observer.changedInstr(MI);
5403     return Legalized;
5404   }
5405   case TargetOpcode::G_CTLZ: {
5406     Register DstReg = MI.getOperand(0).getReg();
5407     Register SrcReg = MI.getOperand(1).getReg();
5408     LLT DstTy = MRI.getType(DstReg);
5409     LLT SrcTy = MRI.getType(SrcReg);
5410     unsigned Len = SrcTy.getSizeInBits();
5411 
5412     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5413       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5414       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5415       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5416       auto ICmp = MIRBuilder.buildICmp(
5417           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5418       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5419       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5420       MI.eraseFromParent();
5421       return Legalized;
5422     }
5423     // for now, we do this:
5424     // NewLen = NextPowerOf2(Len);
5425     // x = x | (x >> 1);
5426     // x = x | (x >> 2);
5427     // ...
5428     // x = x | (x >>16);
5429     // x = x | (x >>32); // for 64-bit input
5430     // Upto NewLen/2
5431     // return Len - popcount(x);
5432     //
5433     // Ref: "Hacker's Delight" by Henry Warren
5434     Register Op = SrcReg;
5435     unsigned NewLen = PowerOf2Ceil(Len);
5436     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5437       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5438       auto MIBOp = MIRBuilder.buildOr(
5439           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5440       Op = MIBOp.getReg(0);
5441     }
5442     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5443     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5444                         MIBPop);
5445     MI.eraseFromParent();
5446     return Legalized;
5447   }
5448   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5449     // This trivially expands to CTTZ.
5450     Observer.changingInstr(MI);
5451     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5452     Observer.changedInstr(MI);
5453     return Legalized;
5454   }
5455   case TargetOpcode::G_CTTZ: {
5456     Register DstReg = MI.getOperand(0).getReg();
5457     Register SrcReg = MI.getOperand(1).getReg();
5458     LLT DstTy = MRI.getType(DstReg);
5459     LLT SrcTy = MRI.getType(SrcReg);
5460 
5461     unsigned Len = SrcTy.getSizeInBits();
5462     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5463       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5464       // zero.
5465       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5466       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5467       auto ICmp = MIRBuilder.buildICmp(
5468           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5469       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5470       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5471       MI.eraseFromParent();
5472       return Legalized;
5473     }
5474     // for now, we use: { return popcount(~x & (x - 1)); }
5475     // unless the target has ctlz but not ctpop, in which case we use:
5476     // { return 32 - nlz(~x & (x-1)); }
5477     // Ref: "Hacker's Delight" by Henry Warren
5478     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5479     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5480     auto MIBTmp = MIRBuilder.buildAnd(
5481         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5482     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5483         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5484       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5485       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5486                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5487       MI.eraseFromParent();
5488       return Legalized;
5489     }
5490     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5491     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5492     return Legalized;
5493   }
5494   case TargetOpcode::G_CTPOP: {
5495     Register SrcReg = MI.getOperand(1).getReg();
5496     LLT Ty = MRI.getType(SrcReg);
5497     unsigned Size = Ty.getSizeInBits();
5498     MachineIRBuilder &B = MIRBuilder;
5499 
5500     // Count set bits in blocks of 2 bits. Default approach would be
5501     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5502     // We use following formula instead:
5503     // B2Count = val - { (val >> 1) & 0x55555555 }
5504     // since it gives same result in blocks of 2 with one instruction less.
5505     auto C_1 = B.buildConstant(Ty, 1);
5506     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5507     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5508     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5509     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5510     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5511 
5512     // In order to get count in blocks of 4 add values from adjacent block of 2.
5513     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5514     auto C_2 = B.buildConstant(Ty, 2);
5515     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5516     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5517     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5518     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5519     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5520     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5521 
5522     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5523     // addition since count value sits in range {0,...,8} and 4 bits are enough
5524     // to hold such binary values. After addition high 4 bits still hold count
5525     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5526     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5527     auto C_4 = B.buildConstant(Ty, 4);
5528     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5529     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5530     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5531     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5532     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5533 
5534     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5535     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5536     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5537     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5538     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5539 
5540     // Shift count result from 8 high bits to low bits.
5541     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5542     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5543 
5544     MI.eraseFromParent();
5545     return Legalized;
5546   }
5547   }
5548 }
5549 
5550 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5551 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5552                                         Register Reg, unsigned BW) {
5553   return matchUnaryPredicate(
5554       MRI, Reg,
5555       [=](const Constant *C) {
5556         // Null constant here means an undef.
5557         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5558         return !CI || CI->getValue().urem(BW) != 0;
5559       },
5560       /*AllowUndefs*/ true);
5561 }
5562 
5563 LegalizerHelper::LegalizeResult
5564 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5565   Register Dst = MI.getOperand(0).getReg();
5566   Register X = MI.getOperand(1).getReg();
5567   Register Y = MI.getOperand(2).getReg();
5568   Register Z = MI.getOperand(3).getReg();
5569   LLT Ty = MRI.getType(Dst);
5570   LLT ShTy = MRI.getType(Z);
5571 
5572   unsigned BW = Ty.getScalarSizeInBits();
5573 
5574   if (!isPowerOf2_32(BW))
5575     return UnableToLegalize;
5576 
5577   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5578   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5579 
5580   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5581     // fshl X, Y, Z -> fshr X, Y, -Z
5582     // fshr X, Y, Z -> fshl X, Y, -Z
5583     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5584     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5585   } else {
5586     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5587     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5588     auto One = MIRBuilder.buildConstant(ShTy, 1);
5589     if (IsFSHL) {
5590       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5591       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5592     } else {
5593       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5594       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5595     }
5596 
5597     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5598   }
5599 
5600   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5601   MI.eraseFromParent();
5602   return Legalized;
5603 }
5604 
5605 LegalizerHelper::LegalizeResult
5606 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5607   Register Dst = MI.getOperand(0).getReg();
5608   Register X = MI.getOperand(1).getReg();
5609   Register Y = MI.getOperand(2).getReg();
5610   Register Z = MI.getOperand(3).getReg();
5611   LLT Ty = MRI.getType(Dst);
5612   LLT ShTy = MRI.getType(Z);
5613 
5614   const unsigned BW = Ty.getScalarSizeInBits();
5615   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5616 
5617   Register ShX, ShY;
5618   Register ShAmt, InvShAmt;
5619 
5620   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5621   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5622     // fshl: X << C | Y >> (BW - C)
5623     // fshr: X << (BW - C) | Y >> C
5624     // where C = Z % BW is not zero
5625     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5626     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5627     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5628     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5629     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5630   } else {
5631     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5632     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5633     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5634     if (isPowerOf2_32(BW)) {
5635       // Z % BW -> Z & (BW - 1)
5636       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5637       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5638       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5639       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5640     } else {
5641       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5642       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5643       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5644     }
5645 
5646     auto One = MIRBuilder.buildConstant(ShTy, 1);
5647     if (IsFSHL) {
5648       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5649       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5650       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5651     } else {
5652       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5653       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5654       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5655     }
5656   }
5657 
5658   MIRBuilder.buildOr(Dst, ShX, ShY);
5659   MI.eraseFromParent();
5660   return Legalized;
5661 }
5662 
5663 LegalizerHelper::LegalizeResult
5664 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5665   // These operations approximately do the following (while avoiding undefined
5666   // shifts by BW):
5667   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5668   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5669   Register Dst = MI.getOperand(0).getReg();
5670   LLT Ty = MRI.getType(Dst);
5671   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5672 
5673   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5674   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5675 
5676   // TODO: Use smarter heuristic that accounts for vector legalization.
5677   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5678     return lowerFunnelShiftAsShifts(MI);
5679 
5680   // This only works for powers of 2, fallback to shifts if it fails.
5681   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5682   if (Result == UnableToLegalize)
5683     return lowerFunnelShiftAsShifts(MI);
5684   return Result;
5685 }
5686 
5687 LegalizerHelper::LegalizeResult
5688 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5689   Register Dst = MI.getOperand(0).getReg();
5690   Register Src = MI.getOperand(1).getReg();
5691   Register Amt = MI.getOperand(2).getReg();
5692   LLT AmtTy = MRI.getType(Amt);
5693   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5694   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5695   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5696   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5697   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5698   MI.eraseFromParent();
5699   return Legalized;
5700 }
5701 
5702 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5703   Register Dst = MI.getOperand(0).getReg();
5704   Register Src = MI.getOperand(1).getReg();
5705   Register Amt = MI.getOperand(2).getReg();
5706   LLT DstTy = MRI.getType(Dst);
5707   LLT SrcTy = MRI.getType(Dst);
5708   LLT AmtTy = MRI.getType(Amt);
5709 
5710   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5711   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5712 
5713   MIRBuilder.setInstrAndDebugLoc(MI);
5714 
5715   // If a rotate in the other direction is supported, use it.
5716   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5717   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5718       isPowerOf2_32(EltSizeInBits))
5719     return lowerRotateWithReverseRotate(MI);
5720 
5721   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5722   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5723   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5724   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5725   Register ShVal;
5726   Register RevShiftVal;
5727   if (isPowerOf2_32(EltSizeInBits)) {
5728     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5729     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5730     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5731     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5732     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5733     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5734     RevShiftVal =
5735         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5736   } else {
5737     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5738     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5739     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5740     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5741     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5742     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5743     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5744     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5745     RevShiftVal =
5746         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5747   }
5748   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5749   MI.eraseFromParent();
5750   return Legalized;
5751 }
5752 
5753 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5754 // representation.
5755 LegalizerHelper::LegalizeResult
5756 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5757   Register Dst = MI.getOperand(0).getReg();
5758   Register Src = MI.getOperand(1).getReg();
5759   const LLT S64 = LLT::scalar(64);
5760   const LLT S32 = LLT::scalar(32);
5761   const LLT S1 = LLT::scalar(1);
5762 
5763   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5764 
5765   // unsigned cul2f(ulong u) {
5766   //   uint lz = clz(u);
5767   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5768   //   u = (u << lz) & 0x7fffffffffffffffUL;
5769   //   ulong t = u & 0xffffffffffUL;
5770   //   uint v = (e << 23) | (uint)(u >> 40);
5771   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5772   //   return as_float(v + r);
5773   // }
5774 
5775   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5776   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5777 
5778   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5779 
5780   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5781   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5782 
5783   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5784   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5785 
5786   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5787   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5788 
5789   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5790 
5791   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5792   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5793 
5794   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5795   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5796   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5797 
5798   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5799   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5800   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5801   auto One = MIRBuilder.buildConstant(S32, 1);
5802 
5803   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5804   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5805   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5806   MIRBuilder.buildAdd(Dst, V, R);
5807 
5808   MI.eraseFromParent();
5809   return Legalized;
5810 }
5811 
5812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5813   Register Dst = MI.getOperand(0).getReg();
5814   Register Src = MI.getOperand(1).getReg();
5815   LLT DstTy = MRI.getType(Dst);
5816   LLT SrcTy = MRI.getType(Src);
5817 
5818   if (SrcTy == LLT::scalar(1)) {
5819     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5820     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5821     MIRBuilder.buildSelect(Dst, Src, True, False);
5822     MI.eraseFromParent();
5823     return Legalized;
5824   }
5825 
5826   if (SrcTy != LLT::scalar(64))
5827     return UnableToLegalize;
5828 
5829   if (DstTy == LLT::scalar(32)) {
5830     // TODO: SelectionDAG has several alternative expansions to port which may
5831     // be more reasonble depending on the available instructions. If a target
5832     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5833     // intermediate type, this is probably worse.
5834     return lowerU64ToF32BitOps(MI);
5835   }
5836 
5837   return UnableToLegalize;
5838 }
5839 
5840 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5841   Register Dst = MI.getOperand(0).getReg();
5842   Register Src = MI.getOperand(1).getReg();
5843   LLT DstTy = MRI.getType(Dst);
5844   LLT SrcTy = MRI.getType(Src);
5845 
5846   const LLT S64 = LLT::scalar(64);
5847   const LLT S32 = LLT::scalar(32);
5848   const LLT S1 = LLT::scalar(1);
5849 
5850   if (SrcTy == S1) {
5851     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5852     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5853     MIRBuilder.buildSelect(Dst, Src, True, False);
5854     MI.eraseFromParent();
5855     return Legalized;
5856   }
5857 
5858   if (SrcTy != S64)
5859     return UnableToLegalize;
5860 
5861   if (DstTy == S32) {
5862     // signed cl2f(long l) {
5863     //   long s = l >> 63;
5864     //   float r = cul2f((l + s) ^ s);
5865     //   return s ? -r : r;
5866     // }
5867     Register L = Src;
5868     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5869     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5870 
5871     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5872     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5873     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5874 
5875     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5876     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5877                                             MIRBuilder.buildConstant(S64, 0));
5878     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5879     MI.eraseFromParent();
5880     return Legalized;
5881   }
5882 
5883   return UnableToLegalize;
5884 }
5885 
5886 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5887   Register Dst = MI.getOperand(0).getReg();
5888   Register Src = MI.getOperand(1).getReg();
5889   LLT DstTy = MRI.getType(Dst);
5890   LLT SrcTy = MRI.getType(Src);
5891   const LLT S64 = LLT::scalar(64);
5892   const LLT S32 = LLT::scalar(32);
5893 
5894   if (SrcTy != S64 && SrcTy != S32)
5895     return UnableToLegalize;
5896   if (DstTy != S32 && DstTy != S64)
5897     return UnableToLegalize;
5898 
5899   // FPTOSI gives same result as FPTOUI for positive signed integers.
5900   // FPTOUI needs to deal with fp values that convert to unsigned integers
5901   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5902 
5903   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5904   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5905                                                 : APFloat::IEEEdouble(),
5906                     APInt::getNullValue(SrcTy.getSizeInBits()));
5907   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5908 
5909   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5910 
5911   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5912   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5913   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5914   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5915   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5916   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5917   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5918 
5919   const LLT S1 = LLT::scalar(1);
5920 
5921   MachineInstrBuilder FCMP =
5922       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5923   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5924 
5925   MI.eraseFromParent();
5926   return Legalized;
5927 }
5928 
5929 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5930   Register Dst = MI.getOperand(0).getReg();
5931   Register Src = MI.getOperand(1).getReg();
5932   LLT DstTy = MRI.getType(Dst);
5933   LLT SrcTy = MRI.getType(Src);
5934   const LLT S64 = LLT::scalar(64);
5935   const LLT S32 = LLT::scalar(32);
5936 
5937   // FIXME: Only f32 to i64 conversions are supported.
5938   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5939     return UnableToLegalize;
5940 
5941   // Expand f32 -> i64 conversion
5942   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5943   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5944 
5945   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5946 
5947   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5948   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5949 
5950   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5951   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5952 
5953   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5954                                            APInt::getSignMask(SrcEltBits));
5955   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5956   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5957   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5958   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5959 
5960   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5961   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5962   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5963 
5964   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5965   R = MIRBuilder.buildZExt(DstTy, R);
5966 
5967   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5968   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5969   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5970   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5971 
5972   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5973   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5974 
5975   const LLT S1 = LLT::scalar(1);
5976   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5977                                     S1, Exponent, ExponentLoBit);
5978 
5979   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5980 
5981   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5982   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5983 
5984   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5985 
5986   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5987                                           S1, Exponent, ZeroSrcTy);
5988 
5989   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5990   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5991 
5992   MI.eraseFromParent();
5993   return Legalized;
5994 }
5995 
5996 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5997 LegalizerHelper::LegalizeResult
5998 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5999   Register Dst = MI.getOperand(0).getReg();
6000   Register Src = MI.getOperand(1).getReg();
6001 
6002   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6003     return UnableToLegalize;
6004 
6005   const unsigned ExpMask = 0x7ff;
6006   const unsigned ExpBiasf64 = 1023;
6007   const unsigned ExpBiasf16 = 15;
6008   const LLT S32 = LLT::scalar(32);
6009   const LLT S1 = LLT::scalar(1);
6010 
6011   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6012   Register U = Unmerge.getReg(0);
6013   Register UH = Unmerge.getReg(1);
6014 
6015   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6016   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6017 
6018   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6019   // add the f16 bias (15) to get the biased exponent for the f16 format.
6020   E = MIRBuilder.buildAdd(
6021     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6022 
6023   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6024   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6025 
6026   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6027                                        MIRBuilder.buildConstant(S32, 0x1ff));
6028   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6029 
6030   auto Zero = MIRBuilder.buildConstant(S32, 0);
6031   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6032   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6033   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6034 
6035   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6036   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6037   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6038   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6039 
6040   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6041   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6042 
6043   // N = M | (E << 12);
6044   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6045   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6046 
6047   // B = clamp(1-E, 0, 13);
6048   auto One = MIRBuilder.buildConstant(S32, 1);
6049   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6050   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6051   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6052 
6053   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6054                                        MIRBuilder.buildConstant(S32, 0x1000));
6055 
6056   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6057   auto D0 = MIRBuilder.buildShl(S32, D, B);
6058 
6059   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6060                                              D0, SigSetHigh);
6061   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6062   D = MIRBuilder.buildOr(S32, D, D1);
6063 
6064   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6065   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6066 
6067   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6068   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6069 
6070   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6071                                        MIRBuilder.buildConstant(S32, 3));
6072   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6073 
6074   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6075                                        MIRBuilder.buildConstant(S32, 5));
6076   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6077 
6078   V1 = MIRBuilder.buildOr(S32, V0, V1);
6079   V = MIRBuilder.buildAdd(S32, V, V1);
6080 
6081   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6082                                        E, MIRBuilder.buildConstant(S32, 30));
6083   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6084                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6085 
6086   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6087                                          E, MIRBuilder.buildConstant(S32, 1039));
6088   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6089 
6090   // Extract the sign bit.
6091   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6092   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6093 
6094   // Insert the sign bit
6095   V = MIRBuilder.buildOr(S32, Sign, V);
6096 
6097   MIRBuilder.buildTrunc(Dst, V);
6098   MI.eraseFromParent();
6099   return Legalized;
6100 }
6101 
6102 LegalizerHelper::LegalizeResult
6103 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6104   Register Dst = MI.getOperand(0).getReg();
6105   Register Src = MI.getOperand(1).getReg();
6106 
6107   LLT DstTy = MRI.getType(Dst);
6108   LLT SrcTy = MRI.getType(Src);
6109   const LLT S64 = LLT::scalar(64);
6110   const LLT S16 = LLT::scalar(16);
6111 
6112   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6113     return lowerFPTRUNC_F64_TO_F16(MI);
6114 
6115   return UnableToLegalize;
6116 }
6117 
6118 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6119 // multiplication tree.
6120 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6121   Register Dst = MI.getOperand(0).getReg();
6122   Register Src0 = MI.getOperand(1).getReg();
6123   Register Src1 = MI.getOperand(2).getReg();
6124   LLT Ty = MRI.getType(Dst);
6125 
6126   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6127   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6128   MI.eraseFromParent();
6129   return Legalized;
6130 }
6131 
6132 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6133   switch (Opc) {
6134   case TargetOpcode::G_SMIN:
6135     return CmpInst::ICMP_SLT;
6136   case TargetOpcode::G_SMAX:
6137     return CmpInst::ICMP_SGT;
6138   case TargetOpcode::G_UMIN:
6139     return CmpInst::ICMP_ULT;
6140   case TargetOpcode::G_UMAX:
6141     return CmpInst::ICMP_UGT;
6142   default:
6143     llvm_unreachable("not in integer min/max");
6144   }
6145 }
6146 
6147 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6148   Register Dst = MI.getOperand(0).getReg();
6149   Register Src0 = MI.getOperand(1).getReg();
6150   Register Src1 = MI.getOperand(2).getReg();
6151 
6152   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6153   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6154 
6155   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6156   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6157 
6158   MI.eraseFromParent();
6159   return Legalized;
6160 }
6161 
6162 LegalizerHelper::LegalizeResult
6163 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6164   Register Dst = MI.getOperand(0).getReg();
6165   Register Src0 = MI.getOperand(1).getReg();
6166   Register Src1 = MI.getOperand(2).getReg();
6167 
6168   const LLT Src0Ty = MRI.getType(Src0);
6169   const LLT Src1Ty = MRI.getType(Src1);
6170 
6171   const int Src0Size = Src0Ty.getScalarSizeInBits();
6172   const int Src1Size = Src1Ty.getScalarSizeInBits();
6173 
6174   auto SignBitMask = MIRBuilder.buildConstant(
6175     Src0Ty, APInt::getSignMask(Src0Size));
6176 
6177   auto NotSignBitMask = MIRBuilder.buildConstant(
6178     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6179 
6180   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6181   Register And1;
6182   if (Src0Ty == Src1Ty) {
6183     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6184   } else if (Src0Size > Src1Size) {
6185     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6186     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6187     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6188     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6189   } else {
6190     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6191     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6192     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6193     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6194   }
6195 
6196   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6197   // constants are a nan and -0.0, but the final result should preserve
6198   // everything.
6199   unsigned Flags = MI.getFlags();
6200   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6201 
6202   MI.eraseFromParent();
6203   return Legalized;
6204 }
6205 
6206 LegalizerHelper::LegalizeResult
6207 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6208   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6209     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6210 
6211   Register Dst = MI.getOperand(0).getReg();
6212   Register Src0 = MI.getOperand(1).getReg();
6213   Register Src1 = MI.getOperand(2).getReg();
6214   LLT Ty = MRI.getType(Dst);
6215 
6216   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6217     // Insert canonicalizes if it's possible we need to quiet to get correct
6218     // sNaN behavior.
6219 
6220     // Note this must be done here, and not as an optimization combine in the
6221     // absence of a dedicate quiet-snan instruction as we're using an
6222     // omni-purpose G_FCANONICALIZE.
6223     if (!isKnownNeverSNaN(Src0, MRI))
6224       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6225 
6226     if (!isKnownNeverSNaN(Src1, MRI))
6227       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6228   }
6229 
6230   // If there are no nans, it's safe to simply replace this with the non-IEEE
6231   // version.
6232   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6233   MI.eraseFromParent();
6234   return Legalized;
6235 }
6236 
6237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6238   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6239   Register DstReg = MI.getOperand(0).getReg();
6240   LLT Ty = MRI.getType(DstReg);
6241   unsigned Flags = MI.getFlags();
6242 
6243   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6244                                   Flags);
6245   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6246   MI.eraseFromParent();
6247   return Legalized;
6248 }
6249 
6250 LegalizerHelper::LegalizeResult
6251 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6252   Register DstReg = MI.getOperand(0).getReg();
6253   Register X = MI.getOperand(1).getReg();
6254   const unsigned Flags = MI.getFlags();
6255   const LLT Ty = MRI.getType(DstReg);
6256   const LLT CondTy = Ty.changeElementSize(1);
6257 
6258   // round(x) =>
6259   //  t = trunc(x);
6260   //  d = fabs(x - t);
6261   //  o = copysign(1.0f, x);
6262   //  return t + (d >= 0.5 ? o : 0.0);
6263 
6264   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6265 
6266   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6267   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6268   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6269   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6270   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6271   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6272 
6273   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6274                                   Flags);
6275   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6276 
6277   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6278 
6279   MI.eraseFromParent();
6280   return Legalized;
6281 }
6282 
6283 LegalizerHelper::LegalizeResult
6284 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6285   Register DstReg = MI.getOperand(0).getReg();
6286   Register SrcReg = MI.getOperand(1).getReg();
6287   unsigned Flags = MI.getFlags();
6288   LLT Ty = MRI.getType(DstReg);
6289   const LLT CondTy = Ty.changeElementSize(1);
6290 
6291   // result = trunc(src);
6292   // if (src < 0.0 && src != result)
6293   //   result += -1.0.
6294 
6295   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6296   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6297 
6298   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6299                                   SrcReg, Zero, Flags);
6300   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6301                                       SrcReg, Trunc, Flags);
6302   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6303   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6304 
6305   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6306   MI.eraseFromParent();
6307   return Legalized;
6308 }
6309 
6310 LegalizerHelper::LegalizeResult
6311 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6312   const unsigned NumOps = MI.getNumOperands();
6313   Register DstReg = MI.getOperand(0).getReg();
6314   Register Src0Reg = MI.getOperand(1).getReg();
6315   LLT DstTy = MRI.getType(DstReg);
6316   LLT SrcTy = MRI.getType(Src0Reg);
6317   unsigned PartSize = SrcTy.getSizeInBits();
6318 
6319   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6320   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6321 
6322   for (unsigned I = 2; I != NumOps; ++I) {
6323     const unsigned Offset = (I - 1) * PartSize;
6324 
6325     Register SrcReg = MI.getOperand(I).getReg();
6326     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6327 
6328     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6329       MRI.createGenericVirtualRegister(WideTy);
6330 
6331     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6332     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6333     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6334     ResultReg = NextResult;
6335   }
6336 
6337   if (DstTy.isPointer()) {
6338     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6339           DstTy.getAddressSpace())) {
6340       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6341       return UnableToLegalize;
6342     }
6343 
6344     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6345   }
6346 
6347   MI.eraseFromParent();
6348   return Legalized;
6349 }
6350 
6351 LegalizerHelper::LegalizeResult
6352 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6353   const unsigned NumDst = MI.getNumOperands() - 1;
6354   Register SrcReg = MI.getOperand(NumDst).getReg();
6355   Register Dst0Reg = MI.getOperand(0).getReg();
6356   LLT DstTy = MRI.getType(Dst0Reg);
6357   if (DstTy.isPointer())
6358     return UnableToLegalize; // TODO
6359 
6360   SrcReg = coerceToScalar(SrcReg);
6361   if (!SrcReg)
6362     return UnableToLegalize;
6363 
6364   // Expand scalarizing unmerge as bitcast to integer and shift.
6365   LLT IntTy = MRI.getType(SrcReg);
6366 
6367   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6368 
6369   const unsigned DstSize = DstTy.getSizeInBits();
6370   unsigned Offset = DstSize;
6371   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6372     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6373     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6374     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6375   }
6376 
6377   MI.eraseFromParent();
6378   return Legalized;
6379 }
6380 
6381 /// Lower a vector extract or insert by writing the vector to a stack temporary
6382 /// and reloading the element or vector.
6383 ///
6384 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6385 ///  =>
6386 ///  %stack_temp = G_FRAME_INDEX
6387 ///  G_STORE %vec, %stack_temp
6388 ///  %idx = clamp(%idx, %vec.getNumElements())
6389 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6390 ///  %dst = G_LOAD %element_ptr
6391 LegalizerHelper::LegalizeResult
6392 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6393   Register DstReg = MI.getOperand(0).getReg();
6394   Register SrcVec = MI.getOperand(1).getReg();
6395   Register InsertVal;
6396   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6397     InsertVal = MI.getOperand(2).getReg();
6398 
6399   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6400 
6401   LLT VecTy = MRI.getType(SrcVec);
6402   LLT EltTy = VecTy.getElementType();
6403   if (!EltTy.isByteSized()) { // Not implemented.
6404     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6405     return UnableToLegalize;
6406   }
6407 
6408   unsigned EltBytes = EltTy.getSizeInBytes();
6409   Align VecAlign = getStackTemporaryAlignment(VecTy);
6410   Align EltAlign;
6411 
6412   MachinePointerInfo PtrInfo;
6413   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6414                                         VecAlign, PtrInfo);
6415   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6416 
6417   // Get the pointer to the element, and be sure not to hit undefined behavior
6418   // if the index is out of bounds.
6419   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6420 
6421   int64_t IdxVal;
6422   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6423     int64_t Offset = IdxVal * EltBytes;
6424     PtrInfo = PtrInfo.getWithOffset(Offset);
6425     EltAlign = commonAlignment(VecAlign, Offset);
6426   } else {
6427     // We lose information with a variable offset.
6428     EltAlign = getStackTemporaryAlignment(EltTy);
6429     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6430   }
6431 
6432   if (InsertVal) {
6433     // Write the inserted element
6434     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6435 
6436     // Reload the whole vector.
6437     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6438   } else {
6439     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6440   }
6441 
6442   MI.eraseFromParent();
6443   return Legalized;
6444 }
6445 
6446 LegalizerHelper::LegalizeResult
6447 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6448   Register DstReg = MI.getOperand(0).getReg();
6449   Register Src0Reg = MI.getOperand(1).getReg();
6450   Register Src1Reg = MI.getOperand(2).getReg();
6451   LLT Src0Ty = MRI.getType(Src0Reg);
6452   LLT DstTy = MRI.getType(DstReg);
6453   LLT IdxTy = LLT::scalar(32);
6454 
6455   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6456 
6457   if (DstTy.isScalar()) {
6458     if (Src0Ty.isVector())
6459       return UnableToLegalize;
6460 
6461     // This is just a SELECT.
6462     assert(Mask.size() == 1 && "Expected a single mask element");
6463     Register Val;
6464     if (Mask[0] < 0 || Mask[0] > 1)
6465       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6466     else
6467       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6468     MIRBuilder.buildCopy(DstReg, Val);
6469     MI.eraseFromParent();
6470     return Legalized;
6471   }
6472 
6473   Register Undef;
6474   SmallVector<Register, 32> BuildVec;
6475   LLT EltTy = DstTy.getElementType();
6476 
6477   for (int Idx : Mask) {
6478     if (Idx < 0) {
6479       if (!Undef.isValid())
6480         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6481       BuildVec.push_back(Undef);
6482       continue;
6483     }
6484 
6485     if (Src0Ty.isScalar()) {
6486       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6487     } else {
6488       int NumElts = Src0Ty.getNumElements();
6489       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6490       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6491       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6492       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6493       BuildVec.push_back(Extract.getReg(0));
6494     }
6495   }
6496 
6497   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6498   MI.eraseFromParent();
6499   return Legalized;
6500 }
6501 
6502 LegalizerHelper::LegalizeResult
6503 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6504   const auto &MF = *MI.getMF();
6505   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6506   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6507     return UnableToLegalize;
6508 
6509   Register Dst = MI.getOperand(0).getReg();
6510   Register AllocSize = MI.getOperand(1).getReg();
6511   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6512 
6513   LLT PtrTy = MRI.getType(Dst);
6514   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6515 
6516   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6517   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6518   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6519 
6520   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6521   // have to generate an extra instruction to negate the alloc and then use
6522   // G_PTR_ADD to add the negative offset.
6523   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6524   if (Alignment > Align(1)) {
6525     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6526     AlignMask.negate();
6527     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6528     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6529   }
6530 
6531   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6532   MIRBuilder.buildCopy(SPReg, SPTmp);
6533   MIRBuilder.buildCopy(Dst, SPTmp);
6534 
6535   MI.eraseFromParent();
6536   return Legalized;
6537 }
6538 
6539 LegalizerHelper::LegalizeResult
6540 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6541   Register Dst = MI.getOperand(0).getReg();
6542   Register Src = MI.getOperand(1).getReg();
6543   unsigned Offset = MI.getOperand(2).getImm();
6544 
6545   LLT DstTy = MRI.getType(Dst);
6546   LLT SrcTy = MRI.getType(Src);
6547 
6548   if (DstTy.isScalar() &&
6549       (SrcTy.isScalar() ||
6550        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6551     LLT SrcIntTy = SrcTy;
6552     if (!SrcTy.isScalar()) {
6553       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6554       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6555     }
6556 
6557     if (Offset == 0)
6558       MIRBuilder.buildTrunc(Dst, Src);
6559     else {
6560       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6561       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6562       MIRBuilder.buildTrunc(Dst, Shr);
6563     }
6564 
6565     MI.eraseFromParent();
6566     return Legalized;
6567   }
6568 
6569   return UnableToLegalize;
6570 }
6571 
6572 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6573   Register Dst = MI.getOperand(0).getReg();
6574   Register Src = MI.getOperand(1).getReg();
6575   Register InsertSrc = MI.getOperand(2).getReg();
6576   uint64_t Offset = MI.getOperand(3).getImm();
6577 
6578   LLT DstTy = MRI.getType(Src);
6579   LLT InsertTy = MRI.getType(InsertSrc);
6580 
6581   if (InsertTy.isVector() ||
6582       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6583     return UnableToLegalize;
6584 
6585   const DataLayout &DL = MIRBuilder.getDataLayout();
6586   if ((DstTy.isPointer() &&
6587        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6588       (InsertTy.isPointer() &&
6589        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6590     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6591     return UnableToLegalize;
6592   }
6593 
6594   LLT IntDstTy = DstTy;
6595 
6596   if (!DstTy.isScalar()) {
6597     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6598     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6599   }
6600 
6601   if (!InsertTy.isScalar()) {
6602     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6603     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6604   }
6605 
6606   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6607   if (Offset != 0) {
6608     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6609     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6610   }
6611 
6612   APInt MaskVal = APInt::getBitsSetWithWrap(
6613       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6614 
6615   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6616   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6617   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6618 
6619   MIRBuilder.buildCast(Dst, Or);
6620   MI.eraseFromParent();
6621   return Legalized;
6622 }
6623 
6624 LegalizerHelper::LegalizeResult
6625 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6626   Register Dst0 = MI.getOperand(0).getReg();
6627   Register Dst1 = MI.getOperand(1).getReg();
6628   Register LHS = MI.getOperand(2).getReg();
6629   Register RHS = MI.getOperand(3).getReg();
6630   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6631 
6632   LLT Ty = MRI.getType(Dst0);
6633   LLT BoolTy = MRI.getType(Dst1);
6634 
6635   if (IsAdd)
6636     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6637   else
6638     MIRBuilder.buildSub(Dst0, LHS, RHS);
6639 
6640   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6641 
6642   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6643 
6644   // For an addition, the result should be less than one of the operands (LHS)
6645   // if and only if the other operand (RHS) is negative, otherwise there will
6646   // be overflow.
6647   // For a subtraction, the result should be less than one of the operands
6648   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6649   // otherwise there will be overflow.
6650   auto ResultLowerThanLHS =
6651       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6652   auto ConditionRHS = MIRBuilder.buildICmp(
6653       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6654 
6655   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6656   MI.eraseFromParent();
6657   return Legalized;
6658 }
6659 
6660 LegalizerHelper::LegalizeResult
6661 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6662   Register Res = MI.getOperand(0).getReg();
6663   Register LHS = MI.getOperand(1).getReg();
6664   Register RHS = MI.getOperand(2).getReg();
6665   LLT Ty = MRI.getType(Res);
6666   bool IsSigned;
6667   bool IsAdd;
6668   unsigned BaseOp;
6669   switch (MI.getOpcode()) {
6670   default:
6671     llvm_unreachable("unexpected addsat/subsat opcode");
6672   case TargetOpcode::G_UADDSAT:
6673     IsSigned = false;
6674     IsAdd = true;
6675     BaseOp = TargetOpcode::G_ADD;
6676     break;
6677   case TargetOpcode::G_SADDSAT:
6678     IsSigned = true;
6679     IsAdd = true;
6680     BaseOp = TargetOpcode::G_ADD;
6681     break;
6682   case TargetOpcode::G_USUBSAT:
6683     IsSigned = false;
6684     IsAdd = false;
6685     BaseOp = TargetOpcode::G_SUB;
6686     break;
6687   case TargetOpcode::G_SSUBSAT:
6688     IsSigned = true;
6689     IsAdd = false;
6690     BaseOp = TargetOpcode::G_SUB;
6691     break;
6692   }
6693 
6694   if (IsSigned) {
6695     // sadd.sat(a, b) ->
6696     //   hi = 0x7fffffff - smax(a, 0)
6697     //   lo = 0x80000000 - smin(a, 0)
6698     //   a + smin(smax(lo, b), hi)
6699     // ssub.sat(a, b) ->
6700     //   lo = smax(a, -1) - 0x7fffffff
6701     //   hi = smin(a, -1) - 0x80000000
6702     //   a - smin(smax(lo, b), hi)
6703     // TODO: AMDGPU can use a "median of 3" instruction here:
6704     //   a +/- med3(lo, b, hi)
6705     uint64_t NumBits = Ty.getScalarSizeInBits();
6706     auto MaxVal =
6707         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6708     auto MinVal =
6709         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6710     MachineInstrBuilder Hi, Lo;
6711     if (IsAdd) {
6712       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6713       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6714       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6715     } else {
6716       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6717       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6718                                MaxVal);
6719       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6720                                MinVal);
6721     }
6722     auto RHSClamped =
6723         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6724     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6725   } else {
6726     // uadd.sat(a, b) -> a + umin(~a, b)
6727     // usub.sat(a, b) -> a - umin(a, b)
6728     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6729     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6730     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6731   }
6732 
6733   MI.eraseFromParent();
6734   return Legalized;
6735 }
6736 
6737 LegalizerHelper::LegalizeResult
6738 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6739   Register Res = MI.getOperand(0).getReg();
6740   Register LHS = MI.getOperand(1).getReg();
6741   Register RHS = MI.getOperand(2).getReg();
6742   LLT Ty = MRI.getType(Res);
6743   LLT BoolTy = Ty.changeElementSize(1);
6744   bool IsSigned;
6745   bool IsAdd;
6746   unsigned OverflowOp;
6747   switch (MI.getOpcode()) {
6748   default:
6749     llvm_unreachable("unexpected addsat/subsat opcode");
6750   case TargetOpcode::G_UADDSAT:
6751     IsSigned = false;
6752     IsAdd = true;
6753     OverflowOp = TargetOpcode::G_UADDO;
6754     break;
6755   case TargetOpcode::G_SADDSAT:
6756     IsSigned = true;
6757     IsAdd = true;
6758     OverflowOp = TargetOpcode::G_SADDO;
6759     break;
6760   case TargetOpcode::G_USUBSAT:
6761     IsSigned = false;
6762     IsAdd = false;
6763     OverflowOp = TargetOpcode::G_USUBO;
6764     break;
6765   case TargetOpcode::G_SSUBSAT:
6766     IsSigned = true;
6767     IsAdd = false;
6768     OverflowOp = TargetOpcode::G_SSUBO;
6769     break;
6770   }
6771 
6772   auto OverflowRes =
6773       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6774   Register Tmp = OverflowRes.getReg(0);
6775   Register Ov = OverflowRes.getReg(1);
6776   MachineInstrBuilder Clamp;
6777   if (IsSigned) {
6778     // sadd.sat(a, b) ->
6779     //   {tmp, ov} = saddo(a, b)
6780     //   ov ? (tmp >>s 31) + 0x80000000 : r
6781     // ssub.sat(a, b) ->
6782     //   {tmp, ov} = ssubo(a, b)
6783     //   ov ? (tmp >>s 31) + 0x80000000 : r
6784     uint64_t NumBits = Ty.getScalarSizeInBits();
6785     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6786     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6787     auto MinVal =
6788         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6789     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6790   } else {
6791     // uadd.sat(a, b) ->
6792     //   {tmp, ov} = uaddo(a, b)
6793     //   ov ? 0xffffffff : tmp
6794     // usub.sat(a, b) ->
6795     //   {tmp, ov} = usubo(a, b)
6796     //   ov ? 0 : tmp
6797     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6798   }
6799   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6800 
6801   MI.eraseFromParent();
6802   return Legalized;
6803 }
6804 
6805 LegalizerHelper::LegalizeResult
6806 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6807   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6808           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6809          "Expected shlsat opcode!");
6810   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6811   Register Res = MI.getOperand(0).getReg();
6812   Register LHS = MI.getOperand(1).getReg();
6813   Register RHS = MI.getOperand(2).getReg();
6814   LLT Ty = MRI.getType(Res);
6815   LLT BoolTy = Ty.changeElementSize(1);
6816 
6817   unsigned BW = Ty.getScalarSizeInBits();
6818   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6819   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6820                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6821 
6822   MachineInstrBuilder SatVal;
6823   if (IsSigned) {
6824     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6825     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6826     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6827                                     MIRBuilder.buildConstant(Ty, 0));
6828     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6829   } else {
6830     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6831   }
6832   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6833   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6834 
6835   MI.eraseFromParent();
6836   return Legalized;
6837 }
6838 
6839 LegalizerHelper::LegalizeResult
6840 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6841   Register Dst = MI.getOperand(0).getReg();
6842   Register Src = MI.getOperand(1).getReg();
6843   const LLT Ty = MRI.getType(Src);
6844   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6845   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6846 
6847   // Swap most and least significant byte, set remaining bytes in Res to zero.
6848   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6849   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6850   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6851   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6852 
6853   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6854   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6855     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6856     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6857     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6858     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6859     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6860     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6861     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6862     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6863     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6864     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6865     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6866     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6867   }
6868   Res.getInstr()->getOperand(0).setReg(Dst);
6869 
6870   MI.eraseFromParent();
6871   return Legalized;
6872 }
6873 
6874 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6875 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6876                                  MachineInstrBuilder Src, APInt Mask) {
6877   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6878   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6879   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6880   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6881   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6882   return B.buildOr(Dst, LHS, RHS);
6883 }
6884 
6885 LegalizerHelper::LegalizeResult
6886 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6887   Register Dst = MI.getOperand(0).getReg();
6888   Register Src = MI.getOperand(1).getReg();
6889   const LLT Ty = MRI.getType(Src);
6890   unsigned Size = Ty.getSizeInBits();
6891 
6892   MachineInstrBuilder BSWAP =
6893       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6894 
6895   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6896   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6897   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6898   MachineInstrBuilder Swap4 =
6899       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6900 
6901   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6902   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6903   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6904   MachineInstrBuilder Swap2 =
6905       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6906 
6907   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6908   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6909   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6910   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6911 
6912   MI.eraseFromParent();
6913   return Legalized;
6914 }
6915 
6916 LegalizerHelper::LegalizeResult
6917 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6918   MachineFunction &MF = MIRBuilder.getMF();
6919 
6920   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6921   int NameOpIdx = IsRead ? 1 : 0;
6922   int ValRegIndex = IsRead ? 0 : 1;
6923 
6924   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6925   const LLT Ty = MRI.getType(ValReg);
6926   const MDString *RegStr = cast<MDString>(
6927     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6928 
6929   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6930   if (!PhysReg.isValid())
6931     return UnableToLegalize;
6932 
6933   if (IsRead)
6934     MIRBuilder.buildCopy(ValReg, PhysReg);
6935   else
6936     MIRBuilder.buildCopy(PhysReg, ValReg);
6937 
6938   MI.eraseFromParent();
6939   return Legalized;
6940 }
6941 
6942 LegalizerHelper::LegalizeResult
6943 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6944   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6945   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6946   Register Result = MI.getOperand(0).getReg();
6947   LLT OrigTy = MRI.getType(Result);
6948   auto SizeInBits = OrigTy.getScalarSizeInBits();
6949   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6950 
6951   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6952   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6953   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6954   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6955 
6956   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6957   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6958   MIRBuilder.buildTrunc(Result, Shifted);
6959 
6960   MI.eraseFromParent();
6961   return Legalized;
6962 }
6963 
6964 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6965   // Implement vector G_SELECT in terms of XOR, AND, OR.
6966   Register DstReg = MI.getOperand(0).getReg();
6967   Register MaskReg = MI.getOperand(1).getReg();
6968   Register Op1Reg = MI.getOperand(2).getReg();
6969   Register Op2Reg = MI.getOperand(3).getReg();
6970   LLT DstTy = MRI.getType(DstReg);
6971   LLT MaskTy = MRI.getType(MaskReg);
6972   LLT Op1Ty = MRI.getType(Op1Reg);
6973   if (!DstTy.isVector())
6974     return UnableToLegalize;
6975 
6976   // Vector selects can have a scalar predicate. If so, splat into a vector and
6977   // finish for later legalization attempts to try again.
6978   if (MaskTy.isScalar()) {
6979     Register MaskElt = MaskReg;
6980     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6981       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6982     // Generate a vector splat idiom to be pattern matched later.
6983     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6984     Observer.changingInstr(MI);
6985     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6986     Observer.changedInstr(MI);
6987     return Legalized;
6988   }
6989 
6990   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6991     return UnableToLegalize;
6992   }
6993 
6994   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6995   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6996   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6997   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6998   MI.eraseFromParent();
6999   return Legalized;
7000 }
7001 
7002 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7003   // Split DIVREM into individual instructions.
7004   unsigned Opcode = MI.getOpcode();
7005 
7006   MIRBuilder.buildInstr(
7007       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7008                                         : TargetOpcode::G_UDIV,
7009       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7010   MIRBuilder.buildInstr(
7011       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7012                                         : TargetOpcode::G_UREM,
7013       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7014   MI.eraseFromParent();
7015   return Legalized;
7016 }
7017 
7018 LegalizerHelper::LegalizeResult
7019 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7020   // Expand %res = G_ABS %a into:
7021   // %v1 = G_ASHR %a, scalar_size-1
7022   // %v2 = G_ADD %a, %v1
7023   // %res = G_XOR %v2, %v1
7024   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7025   Register OpReg = MI.getOperand(1).getReg();
7026   auto ShiftAmt =
7027       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7028   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7029   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7030   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7031   MI.eraseFromParent();
7032   return Legalized;
7033 }
7034 
7035 LegalizerHelper::LegalizeResult
7036 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7037   // Expand %res = G_ABS %a into:
7038   // %v1 = G_CONSTANT 0
7039   // %v2 = G_SUB %v1, %a
7040   // %res = G_SMAX %a, %v2
7041   Register SrcReg = MI.getOperand(1).getReg();
7042   LLT Ty = MRI.getType(SrcReg);
7043   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7044   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7045   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7046   MI.eraseFromParent();
7047   return Legalized;
7048 }
7049