1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy; 227 for (Register PartReg : PartRegs) 228 GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg); 229 230 for (Register PartReg : LeftoverRegs) 231 extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg); 232 233 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 234 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 235 } 236 237 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 238 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 239 const MachineInstr &MI) { 240 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 241 242 const int StartIdx = Regs.size(); 243 const int NumResults = MI.getNumOperands() - 1; 244 Regs.resize(Regs.size() + NumResults); 245 for (int I = 0; I != NumResults; ++I) 246 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 247 } 248 249 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 250 LLT GCDTy, Register SrcReg) { 251 LLT SrcTy = MRI.getType(SrcReg); 252 if (SrcTy == GCDTy) { 253 // If the source already evenly divides the result type, we don't need to do 254 // anything. 255 Parts.push_back(SrcReg); 256 } else { 257 // Need to split into common type sized pieces. 258 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 259 getUnmergeResults(Parts, *Unmerge); 260 } 261 } 262 263 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 264 LLT NarrowTy, Register SrcReg) { 265 LLT SrcTy = MRI.getType(SrcReg); 266 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 267 extractGCDType(Parts, GCDTy, SrcReg); 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 382 SmallVector<Register, 8> UnmergeDefs(NumDefs); 383 UnmergeDefs[0] = DstReg; 384 for (unsigned I = 1; I != NumDefs; ++I) 385 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 386 387 MIRBuilder.buildUnmerge(UnmergeDefs, 388 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 389 return; 390 } 391 392 llvm_unreachable("unhandled case"); 393 } 394 395 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 396 #define RTLIBCASE_INT(LibcallPrefix) \ 397 do { \ 398 switch (Size) { \ 399 case 32: \ 400 return RTLIB::LibcallPrefix##32; \ 401 case 64: \ 402 return RTLIB::LibcallPrefix##64; \ 403 case 128: \ 404 return RTLIB::LibcallPrefix##128; \ 405 default: \ 406 llvm_unreachable("unexpected size"); \ 407 } \ 408 } while (0) 409 410 #define RTLIBCASE(LibcallPrefix) \ 411 do { \ 412 switch (Size) { \ 413 case 32: \ 414 return RTLIB::LibcallPrefix##32; \ 415 case 64: \ 416 return RTLIB::LibcallPrefix##64; \ 417 case 80: \ 418 return RTLIB::LibcallPrefix##80; \ 419 case 128: \ 420 return RTLIB::LibcallPrefix##128; \ 421 default: \ 422 llvm_unreachable("unexpected size"); \ 423 } \ 424 } while (0) 425 426 switch (Opcode) { 427 case TargetOpcode::G_SDIV: 428 RTLIBCASE_INT(SDIV_I); 429 case TargetOpcode::G_UDIV: 430 RTLIBCASE_INT(UDIV_I); 431 case TargetOpcode::G_SREM: 432 RTLIBCASE_INT(SREM_I); 433 case TargetOpcode::G_UREM: 434 RTLIBCASE_INT(UREM_I); 435 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 436 RTLIBCASE_INT(CTLZ_I); 437 case TargetOpcode::G_FADD: 438 RTLIBCASE(ADD_F); 439 case TargetOpcode::G_FSUB: 440 RTLIBCASE(SUB_F); 441 case TargetOpcode::G_FMUL: 442 RTLIBCASE(MUL_F); 443 case TargetOpcode::G_FDIV: 444 RTLIBCASE(DIV_F); 445 case TargetOpcode::G_FEXP: 446 RTLIBCASE(EXP_F); 447 case TargetOpcode::G_FEXP2: 448 RTLIBCASE(EXP2_F); 449 case TargetOpcode::G_FREM: 450 RTLIBCASE(REM_F); 451 case TargetOpcode::G_FPOW: 452 RTLIBCASE(POW_F); 453 case TargetOpcode::G_FMA: 454 RTLIBCASE(FMA_F); 455 case TargetOpcode::G_FSIN: 456 RTLIBCASE(SIN_F); 457 case TargetOpcode::G_FCOS: 458 RTLIBCASE(COS_F); 459 case TargetOpcode::G_FLOG10: 460 RTLIBCASE(LOG10_F); 461 case TargetOpcode::G_FLOG: 462 RTLIBCASE(LOG_F); 463 case TargetOpcode::G_FLOG2: 464 RTLIBCASE(LOG2_F); 465 case TargetOpcode::G_FCEIL: 466 RTLIBCASE(CEIL_F); 467 case TargetOpcode::G_FFLOOR: 468 RTLIBCASE(FLOOR_F); 469 case TargetOpcode::G_FMINNUM: 470 RTLIBCASE(FMIN_F); 471 case TargetOpcode::G_FMAXNUM: 472 RTLIBCASE(FMAX_F); 473 case TargetOpcode::G_FSQRT: 474 RTLIBCASE(SQRT_F); 475 case TargetOpcode::G_FRINT: 476 RTLIBCASE(RINT_F); 477 case TargetOpcode::G_FNEARBYINT: 478 RTLIBCASE(NEARBYINT_F); 479 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 480 RTLIBCASE(ROUNDEVEN_F); 481 } 482 llvm_unreachable("Unknown libcall function"); 483 } 484 485 /// True if an instruction is in tail position in its caller. Intended for 486 /// legalizing libcalls as tail calls when possible. 487 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 488 MachineInstr &MI) { 489 MachineBasicBlock &MBB = *MI.getParent(); 490 const Function &F = MBB.getParent()->getFunction(); 491 492 // Conservatively require the attributes of the call to match those of 493 // the return. Ignore NoAlias and NonNull because they don't affect the 494 // call sequence. 495 AttributeList CallerAttrs = F.getAttributes(); 496 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 497 .removeAttribute(Attribute::NoAlias) 498 .removeAttribute(Attribute::NonNull) 499 .hasAttributes()) 500 return false; 501 502 // It's not safe to eliminate the sign / zero extension of the return value. 503 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 504 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 505 return false; 506 507 // Only tail call if the following instruction is a standard return. 508 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 509 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 510 return false; 511 512 return true; 513 } 514 515 LegalizerHelper::LegalizeResult 516 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 517 const CallLowering::ArgInfo &Result, 518 ArrayRef<CallLowering::ArgInfo> Args, 519 const CallingConv::ID CC) { 520 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 521 522 CallLowering::CallLoweringInfo Info; 523 Info.CallConv = CC; 524 Info.Callee = MachineOperand::CreateES(Name); 525 Info.OrigRet = Result; 526 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 527 if (!CLI.lowerCall(MIRBuilder, Info)) 528 return LegalizerHelper::UnableToLegalize; 529 530 return LegalizerHelper::Legalized; 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 535 const CallLowering::ArgInfo &Result, 536 ArrayRef<CallLowering::ArgInfo> Args) { 537 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 538 const char *Name = TLI.getLibcallName(Libcall); 539 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 540 return createLibcall(MIRBuilder, Name, Result, Args, CC); 541 } 542 543 // Useful for libcalls where all operands have the same type. 544 static LegalizerHelper::LegalizeResult 545 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 546 Type *OpType) { 547 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 548 549 SmallVector<CallLowering::ArgInfo, 3> Args; 550 for (unsigned i = 1; i < MI.getNumOperands(); i++) 551 Args.push_back({MI.getOperand(i).getReg(), OpType}); 552 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 553 Args); 554 } 555 556 LegalizerHelper::LegalizeResult 557 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 558 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 559 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 560 561 SmallVector<CallLowering::ArgInfo, 3> Args; 562 // Add all the args, except for the last which is an imm denoting 'tail'. 563 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 564 Register Reg = MI.getOperand(i).getReg(); 565 566 // Need derive an IR type for call lowering. 567 LLT OpLLT = MRI.getType(Reg); 568 Type *OpTy = nullptr; 569 if (OpLLT.isPointer()) 570 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 571 else 572 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 573 Args.push_back({Reg, OpTy}); 574 } 575 576 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 577 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 578 RTLIB::Libcall RTLibcall; 579 unsigned Opc = MI.getOpcode(); 580 switch (Opc) { 581 case TargetOpcode::G_BZERO: 582 RTLibcall = RTLIB::BZERO; 583 break; 584 case TargetOpcode::G_MEMCPY: 585 RTLibcall = RTLIB::MEMCPY; 586 break; 587 case TargetOpcode::G_MEMMOVE: 588 RTLibcall = RTLIB::MEMMOVE; 589 break; 590 case TargetOpcode::G_MEMSET: 591 RTLibcall = RTLIB::MEMSET; 592 break; 593 default: 594 return LegalizerHelper::UnableToLegalize; 595 } 596 const char *Name = TLI.getLibcallName(RTLibcall); 597 598 // Unsupported libcall on the target. 599 if (!Name) { 600 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 601 << MIRBuilder.getTII().getName(Opc) << "\n"); 602 return LegalizerHelper::UnableToLegalize; 603 } 604 605 CallLowering::CallLoweringInfo Info; 606 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 607 Info.Callee = MachineOperand::CreateES(Name); 608 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 609 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 610 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 611 612 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 613 if (!CLI.lowerCall(MIRBuilder, Info)) 614 return LegalizerHelper::UnableToLegalize; 615 616 617 if (Info.LoweredTailCall) { 618 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 619 620 // Check debug locations before removing the return. 621 LocObserver.checkpoint(true); 622 623 // We must have a return following the call (or debug insts) to get past 624 // isLibCallInTailPosition. 625 do { 626 MachineInstr *Next = MI.getNextNode(); 627 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 628 "Expected instr following MI to be return or debug inst?"); 629 // We lowered a tail call, so the call is now the return from the block. 630 // Delete the old return. 631 Next->eraseFromParent(); 632 } while (MI.getNextNode()); 633 634 // We expect to lose the debug location from the return. 635 LocObserver.checkpoint(false); 636 } 637 638 return LegalizerHelper::Legalized; 639 } 640 641 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 642 Type *FromType) { 643 auto ToMVT = MVT::getVT(ToType); 644 auto FromMVT = MVT::getVT(FromType); 645 646 switch (Opcode) { 647 case TargetOpcode::G_FPEXT: 648 return RTLIB::getFPEXT(FromMVT, ToMVT); 649 case TargetOpcode::G_FPTRUNC: 650 return RTLIB::getFPROUND(FromMVT, ToMVT); 651 case TargetOpcode::G_FPTOSI: 652 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 653 case TargetOpcode::G_FPTOUI: 654 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 655 case TargetOpcode::G_SITOFP: 656 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 657 case TargetOpcode::G_UITOFP: 658 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 659 } 660 llvm_unreachable("Unsupported libcall function"); 661 } 662 663 static LegalizerHelper::LegalizeResult 664 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 665 Type *FromType) { 666 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 667 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 668 {{MI.getOperand(1).getReg(), FromType}}); 669 } 670 671 LegalizerHelper::LegalizeResult 672 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 674 unsigned Size = LLTy.getSizeInBits(); 675 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 676 677 switch (MI.getOpcode()) { 678 default: 679 return UnableToLegalize; 680 case TargetOpcode::G_SDIV: 681 case TargetOpcode::G_UDIV: 682 case TargetOpcode::G_SREM: 683 case TargetOpcode::G_UREM: 684 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 685 Type *HLTy = IntegerType::get(Ctx, Size); 686 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 687 if (Status != Legalized) 688 return Status; 689 break; 690 } 691 case TargetOpcode::G_FADD: 692 case TargetOpcode::G_FSUB: 693 case TargetOpcode::G_FMUL: 694 case TargetOpcode::G_FDIV: 695 case TargetOpcode::G_FMA: 696 case TargetOpcode::G_FPOW: 697 case TargetOpcode::G_FREM: 698 case TargetOpcode::G_FCOS: 699 case TargetOpcode::G_FSIN: 700 case TargetOpcode::G_FLOG10: 701 case TargetOpcode::G_FLOG: 702 case TargetOpcode::G_FLOG2: 703 case TargetOpcode::G_FEXP: 704 case TargetOpcode::G_FEXP2: 705 case TargetOpcode::G_FCEIL: 706 case TargetOpcode::G_FFLOOR: 707 case TargetOpcode::G_FMINNUM: 708 case TargetOpcode::G_FMAXNUM: 709 case TargetOpcode::G_FSQRT: 710 case TargetOpcode::G_FRINT: 711 case TargetOpcode::G_FNEARBYINT: 712 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 713 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 714 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 715 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 716 return UnableToLegalize; 717 } 718 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 case TargetOpcode::G_FPEXT: 724 case TargetOpcode::G_FPTRUNC: { 725 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 726 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 727 if (!FromTy || !ToTy) 728 return UnableToLegalize; 729 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPTOSI: 735 case TargetOpcode::G_FPTOUI: { 736 // FIXME: Support other types 737 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 738 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 740 return UnableToLegalize; 741 LegalizeResult Status = conversionLibcall( 742 MI, MIRBuilder, 743 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 744 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 745 if (Status != Legalized) 746 return Status; 747 break; 748 } 749 case TargetOpcode::G_SITOFP: 750 case TargetOpcode::G_UITOFP: { 751 // FIXME: Support other types 752 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 753 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 754 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 755 return UnableToLegalize; 756 LegalizeResult Status = conversionLibcall( 757 MI, MIRBuilder, 758 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 759 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 760 if (Status != Legalized) 761 return Status; 762 break; 763 } 764 case TargetOpcode::G_BZERO: 765 case TargetOpcode::G_MEMCPY: 766 case TargetOpcode::G_MEMMOVE: 767 case TargetOpcode::G_MEMSET: { 768 LegalizeResult Result = 769 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 770 if (Result != Legalized) 771 return Result; 772 MI.eraseFromParent(); 773 return Result; 774 } 775 } 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 782 unsigned TypeIdx, 783 LLT NarrowTy) { 784 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 785 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 786 787 switch (MI.getOpcode()) { 788 default: 789 return UnableToLegalize; 790 case TargetOpcode::G_IMPLICIT_DEF: { 791 Register DstReg = MI.getOperand(0).getReg(); 792 LLT DstTy = MRI.getType(DstReg); 793 794 // If SizeOp0 is not an exact multiple of NarrowSize, emit 795 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 796 // FIXME: Although this would also be legal for the general case, it causes 797 // a lot of regressions in the emitted code (superfluous COPYs, artifact 798 // combines not being hit). This seems to be a problem related to the 799 // artifact combiner. 800 if (SizeOp0 % NarrowSize != 0) { 801 LLT ImplicitTy = NarrowTy; 802 if (DstTy.isVector()) 803 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 804 805 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 806 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 812 int NumParts = SizeOp0 / NarrowSize; 813 814 SmallVector<Register, 2> DstRegs; 815 for (int i = 0; i < NumParts; ++i) 816 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 817 818 if (DstTy.isVector()) 819 MIRBuilder.buildBuildVector(DstReg, DstRegs); 820 else 821 MIRBuilder.buildMerge(DstReg, DstRegs); 822 MI.eraseFromParent(); 823 return Legalized; 824 } 825 case TargetOpcode::G_CONSTANT: { 826 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 827 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 828 unsigned TotalSize = Ty.getSizeInBits(); 829 unsigned NarrowSize = NarrowTy.getSizeInBits(); 830 int NumParts = TotalSize / NarrowSize; 831 832 SmallVector<Register, 4> PartRegs; 833 for (int I = 0; I != NumParts; ++I) { 834 unsigned Offset = I * NarrowSize; 835 auto K = MIRBuilder.buildConstant(NarrowTy, 836 Val.lshr(Offset).trunc(NarrowSize)); 837 PartRegs.push_back(K.getReg(0)); 838 } 839 840 LLT LeftoverTy; 841 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 842 SmallVector<Register, 1> LeftoverRegs; 843 if (LeftoverBits != 0) { 844 LeftoverTy = LLT::scalar(LeftoverBits); 845 auto K = MIRBuilder.buildConstant( 846 LeftoverTy, 847 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 848 LeftoverRegs.push_back(K.getReg(0)); 849 } 850 851 insertParts(MI.getOperand(0).getReg(), 852 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 853 854 MI.eraseFromParent(); 855 return Legalized; 856 } 857 case TargetOpcode::G_SEXT: 858 case TargetOpcode::G_ZEXT: 859 case TargetOpcode::G_ANYEXT: 860 return narrowScalarExt(MI, TypeIdx, NarrowTy); 861 case TargetOpcode::G_TRUNC: { 862 if (TypeIdx != 1) 863 return UnableToLegalize; 864 865 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 866 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 867 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 868 return UnableToLegalize; 869 } 870 871 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 872 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 873 MI.eraseFromParent(); 874 return Legalized; 875 } 876 877 case TargetOpcode::G_FREEZE: 878 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 879 case TargetOpcode::G_ADD: 880 case TargetOpcode::G_SUB: 881 case TargetOpcode::G_SADDO: 882 case TargetOpcode::G_SSUBO: 883 case TargetOpcode::G_SADDE: 884 case TargetOpcode::G_SSUBE: 885 case TargetOpcode::G_UADDO: 886 case TargetOpcode::G_USUBO: 887 case TargetOpcode::G_UADDE: 888 case TargetOpcode::G_USUBE: 889 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_MUL: 891 case TargetOpcode::G_UMULH: 892 return narrowScalarMul(MI, NarrowTy); 893 case TargetOpcode::G_EXTRACT: 894 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 895 case TargetOpcode::G_INSERT: 896 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 897 case TargetOpcode::G_LOAD: { 898 auto &MMO = **MI.memoperands_begin(); 899 Register DstReg = MI.getOperand(0).getReg(); 900 LLT DstTy = MRI.getType(DstReg); 901 if (DstTy.isVector()) 902 return UnableToLegalize; 903 904 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 905 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 906 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 907 MIRBuilder.buildAnyExt(DstReg, TmpReg); 908 MI.eraseFromParent(); 909 return Legalized; 910 } 911 912 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 913 } 914 case TargetOpcode::G_ZEXTLOAD: 915 case TargetOpcode::G_SEXTLOAD: { 916 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 917 Register DstReg = MI.getOperand(0).getReg(); 918 Register PtrReg = MI.getOperand(1).getReg(); 919 920 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 921 auto &MMO = **MI.memoperands_begin(); 922 unsigned MemSize = MMO.getSizeInBits(); 923 924 if (MemSize == NarrowSize) { 925 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 926 } else if (MemSize < NarrowSize) { 927 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 928 } else if (MemSize > NarrowSize) { 929 // FIXME: Need to split the load. 930 return UnableToLegalize; 931 } 932 933 if (ZExt) 934 MIRBuilder.buildZExt(DstReg, TmpReg); 935 else 936 MIRBuilder.buildSExt(DstReg, TmpReg); 937 938 MI.eraseFromParent(); 939 return Legalized; 940 } 941 case TargetOpcode::G_STORE: { 942 const auto &MMO = **MI.memoperands_begin(); 943 944 Register SrcReg = MI.getOperand(0).getReg(); 945 LLT SrcTy = MRI.getType(SrcReg); 946 if (SrcTy.isVector()) 947 return UnableToLegalize; 948 949 int NumParts = SizeOp0 / NarrowSize; 950 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 951 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 952 if (SrcTy.isVector() && LeftoverBits != 0) 953 return UnableToLegalize; 954 955 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 956 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 957 auto &MMO = **MI.memoperands_begin(); 958 MIRBuilder.buildTrunc(TmpReg, SrcReg); 959 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 960 MI.eraseFromParent(); 961 return Legalized; 962 } 963 964 return reduceLoadStoreWidth(MI, 0, NarrowTy); 965 } 966 case TargetOpcode::G_SELECT: 967 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 968 case TargetOpcode::G_AND: 969 case TargetOpcode::G_OR: 970 case TargetOpcode::G_XOR: { 971 // Legalize bitwise operation: 972 // A = BinOp<Ty> B, C 973 // into: 974 // B1, ..., BN = G_UNMERGE_VALUES B 975 // C1, ..., CN = G_UNMERGE_VALUES C 976 // A1 = BinOp<Ty/N> B1, C2 977 // ... 978 // AN = BinOp<Ty/N> BN, CN 979 // A = G_MERGE_VALUES A1, ..., AN 980 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 981 } 982 case TargetOpcode::G_SHL: 983 case TargetOpcode::G_LSHR: 984 case TargetOpcode::G_ASHR: 985 return narrowScalarShift(MI, TypeIdx, NarrowTy); 986 case TargetOpcode::G_CTLZ: 987 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 988 case TargetOpcode::G_CTTZ: 989 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 990 case TargetOpcode::G_CTPOP: 991 if (TypeIdx == 1) 992 switch (MI.getOpcode()) { 993 case TargetOpcode::G_CTLZ: 994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 995 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 996 case TargetOpcode::G_CTTZ: 997 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 998 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTPOP: 1000 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1001 default: 1002 return UnableToLegalize; 1003 } 1004 1005 Observer.changingInstr(MI); 1006 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1007 Observer.changedInstr(MI); 1008 return Legalized; 1009 case TargetOpcode::G_INTTOPTR: 1010 if (TypeIdx != 1) 1011 return UnableToLegalize; 1012 1013 Observer.changingInstr(MI); 1014 narrowScalarSrc(MI, NarrowTy, 1); 1015 Observer.changedInstr(MI); 1016 return Legalized; 1017 case TargetOpcode::G_PTRTOINT: 1018 if (TypeIdx != 0) 1019 return UnableToLegalize; 1020 1021 Observer.changingInstr(MI); 1022 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1023 Observer.changedInstr(MI); 1024 return Legalized; 1025 case TargetOpcode::G_PHI: { 1026 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1027 // NarrowSize. 1028 if (SizeOp0 % NarrowSize != 0) 1029 return UnableToLegalize; 1030 1031 unsigned NumParts = SizeOp0 / NarrowSize; 1032 SmallVector<Register, 2> DstRegs(NumParts); 1033 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1034 Observer.changingInstr(MI); 1035 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1036 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1037 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1038 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1039 SrcRegs[i / 2]); 1040 } 1041 MachineBasicBlock &MBB = *MI.getParent(); 1042 MIRBuilder.setInsertPt(MBB, MI); 1043 for (unsigned i = 0; i < NumParts; ++i) { 1044 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1045 MachineInstrBuilder MIB = 1046 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1047 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1048 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1049 } 1050 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1051 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1052 Observer.changedInstr(MI); 1053 MI.eraseFromParent(); 1054 return Legalized; 1055 } 1056 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1057 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1058 if (TypeIdx != 2) 1059 return UnableToLegalize; 1060 1061 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1062 Observer.changingInstr(MI); 1063 narrowScalarSrc(MI, NarrowTy, OpIdx); 1064 Observer.changedInstr(MI); 1065 return Legalized; 1066 } 1067 case TargetOpcode::G_ICMP: { 1068 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1069 if (NarrowSize * 2 != SrcSize) 1070 return UnableToLegalize; 1071 1072 Observer.changingInstr(MI); 1073 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1076 1077 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1078 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1079 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1080 1081 CmpInst::Predicate Pred = 1082 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1083 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1084 1085 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1086 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1087 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1088 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1089 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1090 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1091 } else { 1092 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpHEQ = 1094 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1095 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1096 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1097 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1098 } 1099 Observer.changedInstr(MI); 1100 MI.eraseFromParent(); 1101 return Legalized; 1102 } 1103 case TargetOpcode::G_SEXT_INREG: { 1104 if (TypeIdx != 0) 1105 return UnableToLegalize; 1106 1107 int64_t SizeInBits = MI.getOperand(2).getImm(); 1108 1109 // So long as the new type has more bits than the bits we're extending we 1110 // don't need to break it apart. 1111 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1112 Observer.changingInstr(MI); 1113 // We don't lose any non-extension bits by truncating the src and 1114 // sign-extending the dst. 1115 MachineOperand &MO1 = MI.getOperand(1); 1116 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1117 MO1.setReg(TruncMIB.getReg(0)); 1118 1119 MachineOperand &MO2 = MI.getOperand(0); 1120 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1121 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1122 MIRBuilder.buildSExt(MO2, DstExt); 1123 MO2.setReg(DstExt); 1124 Observer.changedInstr(MI); 1125 return Legalized; 1126 } 1127 1128 // Break it apart. Components below the extension point are unmodified. The 1129 // component containing the extension point becomes a narrower SEXT_INREG. 1130 // Components above it are ashr'd from the component containing the 1131 // extension point. 1132 if (SizeOp0 % NarrowSize != 0) 1133 return UnableToLegalize; 1134 int NumParts = SizeOp0 / NarrowSize; 1135 1136 // List the registers where the destination will be scattered. 1137 SmallVector<Register, 2> DstRegs; 1138 // List the registers where the source will be split. 1139 SmallVector<Register, 2> SrcRegs; 1140 1141 // Create all the temporary registers. 1142 for (int i = 0; i < NumParts; ++i) { 1143 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1144 1145 SrcRegs.push_back(SrcReg); 1146 } 1147 1148 // Explode the big arguments into smaller chunks. 1149 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1150 1151 Register AshrCstReg = 1152 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1153 .getReg(0); 1154 Register FullExtensionReg = 0; 1155 Register PartialExtensionReg = 0; 1156 1157 // Do the operation on each small part. 1158 for (int i = 0; i < NumParts; ++i) { 1159 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1160 DstRegs.push_back(SrcRegs[i]); 1161 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1162 assert(PartialExtensionReg && 1163 "Expected to visit partial extension before full"); 1164 if (FullExtensionReg) { 1165 DstRegs.push_back(FullExtensionReg); 1166 continue; 1167 } 1168 DstRegs.push_back( 1169 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1170 .getReg(0)); 1171 FullExtensionReg = DstRegs.back(); 1172 } else { 1173 DstRegs.push_back( 1174 MIRBuilder 1175 .buildInstr( 1176 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1177 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1178 .getReg(0)); 1179 PartialExtensionReg = DstRegs.back(); 1180 } 1181 } 1182 1183 // Gather the destination registers into the final destination. 1184 Register DstReg = MI.getOperand(0).getReg(); 1185 MIRBuilder.buildMerge(DstReg, DstRegs); 1186 MI.eraseFromParent(); 1187 return Legalized; 1188 } 1189 case TargetOpcode::G_BSWAP: 1190 case TargetOpcode::G_BITREVERSE: { 1191 if (SizeOp0 % NarrowSize != 0) 1192 return UnableToLegalize; 1193 1194 Observer.changingInstr(MI); 1195 SmallVector<Register, 2> SrcRegs, DstRegs; 1196 unsigned NumParts = SizeOp0 / NarrowSize; 1197 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1198 1199 for (unsigned i = 0; i < NumParts; ++i) { 1200 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1201 {SrcRegs[NumParts - 1 - i]}); 1202 DstRegs.push_back(DstPart.getReg(0)); 1203 } 1204 1205 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1206 1207 Observer.changedInstr(MI); 1208 MI.eraseFromParent(); 1209 return Legalized; 1210 } 1211 case TargetOpcode::G_PTR_ADD: 1212 case TargetOpcode::G_PTRMASK: { 1213 if (TypeIdx != 1) 1214 return UnableToLegalize; 1215 Observer.changingInstr(MI); 1216 narrowScalarSrc(MI, NarrowTy, 2); 1217 Observer.changedInstr(MI); 1218 return Legalized; 1219 } 1220 case TargetOpcode::G_FPTOUI: 1221 case TargetOpcode::G_FPTOSI: 1222 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1223 case TargetOpcode::G_FPEXT: 1224 if (TypeIdx != 0) 1225 return UnableToLegalize; 1226 Observer.changingInstr(MI); 1227 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 } 1232 1233 Register LegalizerHelper::coerceToScalar(Register Val) { 1234 LLT Ty = MRI.getType(Val); 1235 if (Ty.isScalar()) 1236 return Val; 1237 1238 const DataLayout &DL = MIRBuilder.getDataLayout(); 1239 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1240 if (Ty.isPointer()) { 1241 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1242 return Register(); 1243 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1244 } 1245 1246 Register NewVal = Val; 1247 1248 assert(Ty.isVector()); 1249 LLT EltTy = Ty.getElementType(); 1250 if (EltTy.isPointer()) 1251 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1252 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1253 } 1254 1255 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1256 unsigned OpIdx, unsigned ExtOpcode) { 1257 MachineOperand &MO = MI.getOperand(OpIdx); 1258 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1259 MO.setReg(ExtB.getReg(0)); 1260 } 1261 1262 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1263 unsigned OpIdx) { 1264 MachineOperand &MO = MI.getOperand(OpIdx); 1265 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1266 MO.setReg(ExtB.getReg(0)); 1267 } 1268 1269 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1270 unsigned OpIdx, unsigned TruncOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1275 MO.setReg(DstExt); 1276 } 1277 1278 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1279 unsigned OpIdx, unsigned ExtOpcode) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1284 MO.setReg(DstTrunc); 1285 } 1286 1287 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1288 unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1291 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1292 } 1293 1294 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1295 unsigned OpIdx) { 1296 MachineOperand &MO = MI.getOperand(OpIdx); 1297 1298 LLT OldTy = MRI.getType(MO.getReg()); 1299 unsigned OldElts = OldTy.getNumElements(); 1300 unsigned NewElts = MoreTy.getNumElements(); 1301 1302 unsigned NumParts = NewElts / OldElts; 1303 1304 // Use concat_vectors if the result is a multiple of the number of elements. 1305 if (NumParts * OldElts == NewElts) { 1306 SmallVector<Register, 8> Parts; 1307 Parts.push_back(MO.getReg()); 1308 1309 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1310 for (unsigned I = 1; I != NumParts; ++I) 1311 Parts.push_back(ImpDef); 1312 1313 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1314 MO.setReg(Concat.getReg(0)); 1315 return; 1316 } 1317 1318 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1319 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1320 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1321 MO.setReg(MoreReg); 1322 } 1323 1324 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1325 MachineOperand &Op = MI.getOperand(OpIdx); 1326 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1327 } 1328 1329 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1330 MachineOperand &MO = MI.getOperand(OpIdx); 1331 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1332 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1333 MIRBuilder.buildBitcast(MO, CastDst); 1334 MO.setReg(CastDst); 1335 } 1336 1337 LegalizerHelper::LegalizeResult 1338 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1339 LLT WideTy) { 1340 if (TypeIdx != 1) 1341 return UnableToLegalize; 1342 1343 Register DstReg = MI.getOperand(0).getReg(); 1344 LLT DstTy = MRI.getType(DstReg); 1345 if (DstTy.isVector()) 1346 return UnableToLegalize; 1347 1348 Register Src1 = MI.getOperand(1).getReg(); 1349 LLT SrcTy = MRI.getType(Src1); 1350 const int DstSize = DstTy.getSizeInBits(); 1351 const int SrcSize = SrcTy.getSizeInBits(); 1352 const int WideSize = WideTy.getSizeInBits(); 1353 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1354 1355 unsigned NumOps = MI.getNumOperands(); 1356 unsigned NumSrc = MI.getNumOperands() - 1; 1357 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1358 1359 if (WideSize >= DstSize) { 1360 // Directly pack the bits in the target type. 1361 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1362 1363 for (unsigned I = 2; I != NumOps; ++I) { 1364 const unsigned Offset = (I - 1) * PartSize; 1365 1366 Register SrcReg = MI.getOperand(I).getReg(); 1367 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1368 1369 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1370 1371 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1372 MRI.createGenericVirtualRegister(WideTy); 1373 1374 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1375 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1376 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1377 ResultReg = NextResult; 1378 } 1379 1380 if (WideSize > DstSize) 1381 MIRBuilder.buildTrunc(DstReg, ResultReg); 1382 else if (DstTy.isPointer()) 1383 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1384 1385 MI.eraseFromParent(); 1386 return Legalized; 1387 } 1388 1389 // Unmerge the original values to the GCD type, and recombine to the next 1390 // multiple greater than the original type. 1391 // 1392 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1393 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1394 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1395 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1396 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1397 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1398 // %12:_(s12) = G_MERGE_VALUES %10, %11 1399 // 1400 // Padding with undef if necessary: 1401 // 1402 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1403 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1404 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1405 // %7:_(s2) = G_IMPLICIT_DEF 1406 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1407 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1408 // %10:_(s12) = G_MERGE_VALUES %8, %9 1409 1410 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1411 LLT GCDTy = LLT::scalar(GCD); 1412 1413 SmallVector<Register, 8> Parts; 1414 SmallVector<Register, 8> NewMergeRegs; 1415 SmallVector<Register, 8> Unmerges; 1416 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1417 1418 // Decompose the original operands if they don't evenly divide. 1419 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1420 Register SrcReg = MI.getOperand(I).getReg(); 1421 if (GCD == SrcSize) { 1422 Unmerges.push_back(SrcReg); 1423 } else { 1424 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1425 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1426 Unmerges.push_back(Unmerge.getReg(J)); 1427 } 1428 } 1429 1430 // Pad with undef to the next size that is a multiple of the requested size. 1431 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1432 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1433 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1434 Unmerges.push_back(UndefReg); 1435 } 1436 1437 const int PartsPerGCD = WideSize / GCD; 1438 1439 // Build merges of each piece. 1440 ArrayRef<Register> Slicer(Unmerges); 1441 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1442 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1443 NewMergeRegs.push_back(Merge.getReg(0)); 1444 } 1445 1446 // A truncate may be necessary if the requested type doesn't evenly divide the 1447 // original result type. 1448 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1449 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1450 } else { 1451 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1452 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1453 } 1454 1455 MI.eraseFromParent(); 1456 return Legalized; 1457 } 1458 1459 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1460 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1461 LLT OrigTy = MRI.getType(OrigReg); 1462 LLT LCMTy = getLCMType(WideTy, OrigTy); 1463 1464 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1465 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1466 1467 Register UnmergeSrc = WideReg; 1468 1469 // Create a merge to the LCM type, padding with undef 1470 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1471 // => 1472 // %1:_(<4 x s32>) = G_FOO 1473 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1474 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1475 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1476 if (NumMergeParts > 1) { 1477 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1478 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1479 MergeParts[0] = WideReg; 1480 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1481 } 1482 1483 // Unmerge to the original register and pad with dead defs. 1484 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1485 UnmergeResults[0] = OrigReg; 1486 for (int I = 1; I != NumUnmergeParts; ++I) 1487 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1488 1489 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1490 return WideReg; 1491 } 1492 1493 LegalizerHelper::LegalizeResult 1494 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1495 LLT WideTy) { 1496 if (TypeIdx != 0) 1497 return UnableToLegalize; 1498 1499 int NumDst = MI.getNumOperands() - 1; 1500 Register SrcReg = MI.getOperand(NumDst).getReg(); 1501 LLT SrcTy = MRI.getType(SrcReg); 1502 if (SrcTy.isVector()) 1503 return UnableToLegalize; 1504 1505 Register Dst0Reg = MI.getOperand(0).getReg(); 1506 LLT DstTy = MRI.getType(Dst0Reg); 1507 if (!DstTy.isScalar()) 1508 return UnableToLegalize; 1509 1510 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1511 if (SrcTy.isPointer()) { 1512 const DataLayout &DL = MIRBuilder.getDataLayout(); 1513 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1514 LLVM_DEBUG( 1515 dbgs() << "Not casting non-integral address space integer\n"); 1516 return UnableToLegalize; 1517 } 1518 1519 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1520 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1521 } 1522 1523 // Widen SrcTy to WideTy. This does not affect the result, but since the 1524 // user requested this size, it is probably better handled than SrcTy and 1525 // should reduce the total number of legalization artifacts 1526 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1527 SrcTy = WideTy; 1528 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1529 } 1530 1531 // Theres no unmerge type to target. Directly extract the bits from the 1532 // source type 1533 unsigned DstSize = DstTy.getSizeInBits(); 1534 1535 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1536 for (int I = 1; I != NumDst; ++I) { 1537 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1538 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1539 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1540 } 1541 1542 MI.eraseFromParent(); 1543 return Legalized; 1544 } 1545 1546 // Extend the source to a wider type. 1547 LLT LCMTy = getLCMType(SrcTy, WideTy); 1548 1549 Register WideSrc = SrcReg; 1550 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1551 // TODO: If this is an integral address space, cast to integer and anyext. 1552 if (SrcTy.isPointer()) { 1553 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1554 return UnableToLegalize; 1555 } 1556 1557 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1558 } 1559 1560 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1561 1562 // Create a sequence of unmerges and merges to the original results. Since we 1563 // may have widened the source, we will need to pad the results with dead defs 1564 // to cover the source register. 1565 // e.g. widen s48 to s64: 1566 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1567 // 1568 // => 1569 // %4:_(s192) = G_ANYEXT %0:_(s96) 1570 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1571 // ; unpack to GCD type, with extra dead defs 1572 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1573 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1574 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1575 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1576 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1577 const LLT GCDTy = getGCDType(WideTy, DstTy); 1578 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1579 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1580 1581 // Directly unmerge to the destination without going through a GCD type 1582 // if possible 1583 if (PartsPerRemerge == 1) { 1584 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1585 1586 for (int I = 0; I != NumUnmerge; ++I) { 1587 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1588 1589 for (int J = 0; J != PartsPerUnmerge; ++J) { 1590 int Idx = I * PartsPerUnmerge + J; 1591 if (Idx < NumDst) 1592 MIB.addDef(MI.getOperand(Idx).getReg()); 1593 else { 1594 // Create dead def for excess components. 1595 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1596 } 1597 } 1598 1599 MIB.addUse(Unmerge.getReg(I)); 1600 } 1601 } else { 1602 SmallVector<Register, 16> Parts; 1603 for (int J = 0; J != NumUnmerge; ++J) 1604 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1605 1606 SmallVector<Register, 8> RemergeParts; 1607 for (int I = 0; I != NumDst; ++I) { 1608 for (int J = 0; J < PartsPerRemerge; ++J) { 1609 const int Idx = I * PartsPerRemerge + J; 1610 RemergeParts.emplace_back(Parts[Idx]); 1611 } 1612 1613 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1614 RemergeParts.clear(); 1615 } 1616 } 1617 1618 MI.eraseFromParent(); 1619 return Legalized; 1620 } 1621 1622 LegalizerHelper::LegalizeResult 1623 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1624 LLT WideTy) { 1625 Register DstReg = MI.getOperand(0).getReg(); 1626 Register SrcReg = MI.getOperand(1).getReg(); 1627 LLT SrcTy = MRI.getType(SrcReg); 1628 1629 LLT DstTy = MRI.getType(DstReg); 1630 unsigned Offset = MI.getOperand(2).getImm(); 1631 1632 if (TypeIdx == 0) { 1633 if (SrcTy.isVector() || DstTy.isVector()) 1634 return UnableToLegalize; 1635 1636 SrcOp Src(SrcReg); 1637 if (SrcTy.isPointer()) { 1638 // Extracts from pointers can be handled only if they are really just 1639 // simple integers. 1640 const DataLayout &DL = MIRBuilder.getDataLayout(); 1641 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1642 return UnableToLegalize; 1643 1644 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1645 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1646 SrcTy = SrcAsIntTy; 1647 } 1648 1649 if (DstTy.isPointer()) 1650 return UnableToLegalize; 1651 1652 if (Offset == 0) { 1653 // Avoid a shift in the degenerate case. 1654 MIRBuilder.buildTrunc(DstReg, 1655 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1656 MI.eraseFromParent(); 1657 return Legalized; 1658 } 1659 1660 // Do a shift in the source type. 1661 LLT ShiftTy = SrcTy; 1662 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1663 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1664 ShiftTy = WideTy; 1665 } 1666 1667 auto LShr = MIRBuilder.buildLShr( 1668 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1669 MIRBuilder.buildTrunc(DstReg, LShr); 1670 MI.eraseFromParent(); 1671 return Legalized; 1672 } 1673 1674 if (SrcTy.isScalar()) { 1675 Observer.changingInstr(MI); 1676 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1677 Observer.changedInstr(MI); 1678 return Legalized; 1679 } 1680 1681 if (!SrcTy.isVector()) 1682 return UnableToLegalize; 1683 1684 if (DstTy != SrcTy.getElementType()) 1685 return UnableToLegalize; 1686 1687 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1688 return UnableToLegalize; 1689 1690 Observer.changingInstr(MI); 1691 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1692 1693 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1694 Offset); 1695 widenScalarDst(MI, WideTy.getScalarType(), 0); 1696 Observer.changedInstr(MI); 1697 return Legalized; 1698 } 1699 1700 LegalizerHelper::LegalizeResult 1701 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1702 LLT WideTy) { 1703 if (TypeIdx != 0 || WideTy.isVector()) 1704 return UnableToLegalize; 1705 Observer.changingInstr(MI); 1706 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1707 widenScalarDst(MI, WideTy); 1708 Observer.changedInstr(MI); 1709 return Legalized; 1710 } 1711 1712 LegalizerHelper::LegalizeResult 1713 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1714 LLT WideTy) { 1715 if (TypeIdx == 1) 1716 return UnableToLegalize; // TODO 1717 1718 unsigned Opcode; 1719 unsigned ExtOpcode; 1720 Optional<Register> CarryIn = None; 1721 switch (MI.getOpcode()) { 1722 default: 1723 llvm_unreachable("Unexpected opcode!"); 1724 case TargetOpcode::G_SADDO: 1725 Opcode = TargetOpcode::G_ADD; 1726 ExtOpcode = TargetOpcode::G_SEXT; 1727 break; 1728 case TargetOpcode::G_SSUBO: 1729 Opcode = TargetOpcode::G_SUB; 1730 ExtOpcode = TargetOpcode::G_SEXT; 1731 break; 1732 case TargetOpcode::G_UADDO: 1733 Opcode = TargetOpcode::G_ADD; 1734 ExtOpcode = TargetOpcode::G_ZEXT; 1735 break; 1736 case TargetOpcode::G_USUBO: 1737 Opcode = TargetOpcode::G_SUB; 1738 ExtOpcode = TargetOpcode::G_ZEXT; 1739 break; 1740 case TargetOpcode::G_SADDE: 1741 Opcode = TargetOpcode::G_UADDE; 1742 ExtOpcode = TargetOpcode::G_SEXT; 1743 CarryIn = MI.getOperand(4).getReg(); 1744 break; 1745 case TargetOpcode::G_SSUBE: 1746 Opcode = TargetOpcode::G_USUBE; 1747 ExtOpcode = TargetOpcode::G_SEXT; 1748 CarryIn = MI.getOperand(4).getReg(); 1749 break; 1750 case TargetOpcode::G_UADDE: 1751 Opcode = TargetOpcode::G_UADDE; 1752 ExtOpcode = TargetOpcode::G_ZEXT; 1753 CarryIn = MI.getOperand(4).getReg(); 1754 break; 1755 case TargetOpcode::G_USUBE: 1756 Opcode = TargetOpcode::G_USUBE; 1757 ExtOpcode = TargetOpcode::G_ZEXT; 1758 CarryIn = MI.getOperand(4).getReg(); 1759 break; 1760 } 1761 1762 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1763 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1764 // Do the arithmetic in the larger type. 1765 Register NewOp; 1766 if (CarryIn) { 1767 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1768 NewOp = MIRBuilder 1769 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1770 {LHSExt, RHSExt, *CarryIn}) 1771 .getReg(0); 1772 } else { 1773 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1774 } 1775 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1776 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1777 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1778 // There is no overflow if the ExtOp is the same as NewOp. 1779 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1780 // Now trunc the NewOp to the original result. 1781 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1782 MI.eraseFromParent(); 1783 return Legalized; 1784 } 1785 1786 LegalizerHelper::LegalizeResult 1787 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1788 LLT WideTy) { 1789 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1790 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1791 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1792 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1793 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1794 // We can convert this to: 1795 // 1. Any extend iN to iM 1796 // 2. SHL by M-N 1797 // 3. [US][ADD|SUB|SHL]SAT 1798 // 4. L/ASHR by M-N 1799 // 1800 // It may be more efficient to lower this to a min and a max operation in 1801 // the higher precision arithmetic if the promoted operation isn't legal, 1802 // but this decision is up to the target's lowering request. 1803 Register DstReg = MI.getOperand(0).getReg(); 1804 1805 unsigned NewBits = WideTy.getScalarSizeInBits(); 1806 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1807 1808 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1809 // must not left shift the RHS to preserve the shift amount. 1810 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1811 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1812 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1813 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1814 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1815 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1816 1817 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1818 {ShiftL, ShiftR}, MI.getFlags()); 1819 1820 // Use a shift that will preserve the number of sign bits when the trunc is 1821 // folded away. 1822 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1823 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1824 1825 MIRBuilder.buildTrunc(DstReg, Result); 1826 MI.eraseFromParent(); 1827 return Legalized; 1828 } 1829 1830 LegalizerHelper::LegalizeResult 1831 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1832 LLT WideTy) { 1833 if (TypeIdx == 1) 1834 return UnableToLegalize; 1835 1836 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1837 Register Result = MI.getOperand(0).getReg(); 1838 Register OriginalOverflow = MI.getOperand(1).getReg(); 1839 Register LHS = MI.getOperand(2).getReg(); 1840 Register RHS = MI.getOperand(3).getReg(); 1841 LLT SrcTy = MRI.getType(LHS); 1842 LLT OverflowTy = MRI.getType(OriginalOverflow); 1843 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1844 1845 // To determine if the result overflowed in the larger type, we extend the 1846 // input to the larger type, do the multiply (checking if it overflows), 1847 // then also check the high bits of the result to see if overflow happened 1848 // there. 1849 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1850 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1851 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1852 1853 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1854 {LeftOperand, RightOperand}); 1855 auto Mul = Mulo->getOperand(0); 1856 MIRBuilder.buildTrunc(Result, Mul); 1857 1858 MachineInstrBuilder ExtResult; 1859 // Overflow occurred if it occurred in the larger type, or if the high part 1860 // of the result does not zero/sign-extend the low part. Check this second 1861 // possibility first. 1862 if (IsSigned) { 1863 // For signed, overflow occurred when the high part does not sign-extend 1864 // the low part. 1865 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1866 } else { 1867 // Unsigned overflow occurred when the high part does not zero-extend the 1868 // low part. 1869 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1870 } 1871 1872 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1873 // so we don't need to check the overflow result of larger type Mulo. 1874 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1875 auto Overflow = 1876 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1877 // Finally check if the multiplication in the larger type itself overflowed. 1878 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1879 } else { 1880 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1881 } 1882 MI.eraseFromParent(); 1883 return Legalized; 1884 } 1885 1886 LegalizerHelper::LegalizeResult 1887 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1888 switch (MI.getOpcode()) { 1889 default: 1890 return UnableToLegalize; 1891 case TargetOpcode::G_EXTRACT: 1892 return widenScalarExtract(MI, TypeIdx, WideTy); 1893 case TargetOpcode::G_INSERT: 1894 return widenScalarInsert(MI, TypeIdx, WideTy); 1895 case TargetOpcode::G_MERGE_VALUES: 1896 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1897 case TargetOpcode::G_UNMERGE_VALUES: 1898 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1899 case TargetOpcode::G_SADDO: 1900 case TargetOpcode::G_SSUBO: 1901 case TargetOpcode::G_UADDO: 1902 case TargetOpcode::G_USUBO: 1903 case TargetOpcode::G_SADDE: 1904 case TargetOpcode::G_SSUBE: 1905 case TargetOpcode::G_UADDE: 1906 case TargetOpcode::G_USUBE: 1907 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1908 case TargetOpcode::G_UMULO: 1909 case TargetOpcode::G_SMULO: 1910 return widenScalarMulo(MI, TypeIdx, WideTy); 1911 case TargetOpcode::G_SADDSAT: 1912 case TargetOpcode::G_SSUBSAT: 1913 case TargetOpcode::G_SSHLSAT: 1914 case TargetOpcode::G_UADDSAT: 1915 case TargetOpcode::G_USUBSAT: 1916 case TargetOpcode::G_USHLSAT: 1917 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1918 case TargetOpcode::G_CTTZ: 1919 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1920 case TargetOpcode::G_CTLZ: 1921 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1922 case TargetOpcode::G_CTPOP: { 1923 if (TypeIdx == 0) { 1924 Observer.changingInstr(MI); 1925 widenScalarDst(MI, WideTy, 0); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 1930 Register SrcReg = MI.getOperand(1).getReg(); 1931 1932 // First ZEXT the input. 1933 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1934 LLT CurTy = MRI.getType(SrcReg); 1935 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1936 // The count is the same in the larger type except if the original 1937 // value was zero. This can be handled by setting the bit just off 1938 // the top of the original type. 1939 auto TopBit = 1940 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1941 MIBSrc = MIRBuilder.buildOr( 1942 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1943 } 1944 1945 // Perform the operation at the larger size. 1946 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1947 // This is already the correct result for CTPOP and CTTZs 1948 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1949 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1950 // The correct result is NewOp - (Difference in widety and current ty). 1951 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1952 MIBNewOp = MIRBuilder.buildSub( 1953 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1954 } 1955 1956 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1957 MI.eraseFromParent(); 1958 return Legalized; 1959 } 1960 case TargetOpcode::G_BSWAP: { 1961 Observer.changingInstr(MI); 1962 Register DstReg = MI.getOperand(0).getReg(); 1963 1964 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1965 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1966 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1967 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1968 1969 MI.getOperand(0).setReg(DstExt); 1970 1971 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1972 1973 LLT Ty = MRI.getType(DstReg); 1974 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1975 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1976 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1977 1978 MIRBuilder.buildTrunc(DstReg, ShrReg); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 } 1982 case TargetOpcode::G_BITREVERSE: { 1983 Observer.changingInstr(MI); 1984 1985 Register DstReg = MI.getOperand(0).getReg(); 1986 LLT Ty = MRI.getType(DstReg); 1987 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1988 1989 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1990 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1991 MI.getOperand(0).setReg(DstExt); 1992 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1993 1994 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1995 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1996 MIRBuilder.buildTrunc(DstReg, Shift); 1997 Observer.changedInstr(MI); 1998 return Legalized; 1999 } 2000 case TargetOpcode::G_FREEZE: 2001 Observer.changingInstr(MI); 2002 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2003 widenScalarDst(MI, WideTy); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 2007 case TargetOpcode::G_ABS: 2008 Observer.changingInstr(MI); 2009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2010 widenScalarDst(MI, WideTy); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 2014 case TargetOpcode::G_ADD: 2015 case TargetOpcode::G_AND: 2016 case TargetOpcode::G_MUL: 2017 case TargetOpcode::G_OR: 2018 case TargetOpcode::G_XOR: 2019 case TargetOpcode::G_SUB: 2020 // Perform operation at larger width (any extension is fines here, high bits 2021 // don't affect the result) and then truncate the result back to the 2022 // original type. 2023 Observer.changingInstr(MI); 2024 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2025 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2026 widenScalarDst(MI, WideTy); 2027 Observer.changedInstr(MI); 2028 return Legalized; 2029 2030 case TargetOpcode::G_SBFX: 2031 case TargetOpcode::G_UBFX: 2032 Observer.changingInstr(MI); 2033 2034 if (TypeIdx == 0) { 2035 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2036 widenScalarDst(MI, WideTy); 2037 } else { 2038 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2039 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2040 } 2041 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 2045 case TargetOpcode::G_SHL: 2046 Observer.changingInstr(MI); 2047 2048 if (TypeIdx == 0) { 2049 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2050 widenScalarDst(MI, WideTy); 2051 } else { 2052 assert(TypeIdx == 1); 2053 // The "number of bits to shift" operand must preserve its value as an 2054 // unsigned integer: 2055 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2056 } 2057 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 2061 case TargetOpcode::G_SDIV: 2062 case TargetOpcode::G_SREM: 2063 case TargetOpcode::G_SMIN: 2064 case TargetOpcode::G_SMAX: 2065 Observer.changingInstr(MI); 2066 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2067 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2068 widenScalarDst(MI, WideTy); 2069 Observer.changedInstr(MI); 2070 return Legalized; 2071 2072 case TargetOpcode::G_SDIVREM: 2073 Observer.changingInstr(MI); 2074 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2075 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2076 widenScalarDst(MI, WideTy); 2077 widenScalarDst(MI, WideTy, 1); 2078 Observer.changedInstr(MI); 2079 return Legalized; 2080 2081 case TargetOpcode::G_ASHR: 2082 case TargetOpcode::G_LSHR: 2083 Observer.changingInstr(MI); 2084 2085 if (TypeIdx == 0) { 2086 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2087 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2088 2089 widenScalarSrc(MI, WideTy, 1, CvtOp); 2090 widenScalarDst(MI, WideTy); 2091 } else { 2092 assert(TypeIdx == 1); 2093 // The "number of bits to shift" operand must preserve its value as an 2094 // unsigned integer: 2095 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2096 } 2097 2098 Observer.changedInstr(MI); 2099 return Legalized; 2100 case TargetOpcode::G_UDIV: 2101 case TargetOpcode::G_UREM: 2102 case TargetOpcode::G_UMIN: 2103 case TargetOpcode::G_UMAX: 2104 Observer.changingInstr(MI); 2105 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2106 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2107 widenScalarDst(MI, WideTy); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 2111 case TargetOpcode::G_UDIVREM: 2112 Observer.changingInstr(MI); 2113 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2114 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2115 widenScalarDst(MI, WideTy); 2116 widenScalarDst(MI, WideTy, 1); 2117 Observer.changedInstr(MI); 2118 return Legalized; 2119 2120 case TargetOpcode::G_SELECT: 2121 Observer.changingInstr(MI); 2122 if (TypeIdx == 0) { 2123 // Perform operation at larger width (any extension is fine here, high 2124 // bits don't affect the result) and then truncate the result back to the 2125 // original type. 2126 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2127 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2128 widenScalarDst(MI, WideTy); 2129 } else { 2130 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2131 // Explicit extension is required here since high bits affect the result. 2132 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2133 } 2134 Observer.changedInstr(MI); 2135 return Legalized; 2136 2137 case TargetOpcode::G_FPTOSI: 2138 case TargetOpcode::G_FPTOUI: 2139 Observer.changingInstr(MI); 2140 2141 if (TypeIdx == 0) 2142 widenScalarDst(MI, WideTy); 2143 else 2144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2145 2146 Observer.changedInstr(MI); 2147 return Legalized; 2148 case TargetOpcode::G_SITOFP: 2149 Observer.changingInstr(MI); 2150 2151 if (TypeIdx == 0) 2152 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2153 else 2154 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2155 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 case TargetOpcode::G_UITOFP: 2159 Observer.changingInstr(MI); 2160 2161 if (TypeIdx == 0) 2162 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2163 else 2164 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2165 2166 Observer.changedInstr(MI); 2167 return Legalized; 2168 case TargetOpcode::G_LOAD: 2169 case TargetOpcode::G_SEXTLOAD: 2170 case TargetOpcode::G_ZEXTLOAD: 2171 Observer.changingInstr(MI); 2172 widenScalarDst(MI, WideTy); 2173 Observer.changedInstr(MI); 2174 return Legalized; 2175 2176 case TargetOpcode::G_STORE: { 2177 if (TypeIdx != 0) 2178 return UnableToLegalize; 2179 2180 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2181 if (!Ty.isScalar()) 2182 return UnableToLegalize; 2183 2184 Observer.changingInstr(MI); 2185 2186 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2187 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2188 widenScalarSrc(MI, WideTy, 0, ExtType); 2189 2190 Observer.changedInstr(MI); 2191 return Legalized; 2192 } 2193 case TargetOpcode::G_CONSTANT: { 2194 MachineOperand &SrcMO = MI.getOperand(1); 2195 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2196 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2197 MRI.getType(MI.getOperand(0).getReg())); 2198 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2199 ExtOpc == TargetOpcode::G_ANYEXT) && 2200 "Illegal Extend"); 2201 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2202 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2203 ? SrcVal.sext(WideTy.getSizeInBits()) 2204 : SrcVal.zext(WideTy.getSizeInBits()); 2205 Observer.changingInstr(MI); 2206 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2207 2208 widenScalarDst(MI, WideTy); 2209 Observer.changedInstr(MI); 2210 return Legalized; 2211 } 2212 case TargetOpcode::G_FCONSTANT: { 2213 MachineOperand &SrcMO = MI.getOperand(1); 2214 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2215 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2216 bool LosesInfo; 2217 switch (WideTy.getSizeInBits()) { 2218 case 32: 2219 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2220 &LosesInfo); 2221 break; 2222 case 64: 2223 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2224 &LosesInfo); 2225 break; 2226 default: 2227 return UnableToLegalize; 2228 } 2229 2230 assert(!LosesInfo && "extend should always be lossless"); 2231 2232 Observer.changingInstr(MI); 2233 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2234 2235 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2236 Observer.changedInstr(MI); 2237 return Legalized; 2238 } 2239 case TargetOpcode::G_IMPLICIT_DEF: { 2240 Observer.changingInstr(MI); 2241 widenScalarDst(MI, WideTy); 2242 Observer.changedInstr(MI); 2243 return Legalized; 2244 } 2245 case TargetOpcode::G_BRCOND: 2246 Observer.changingInstr(MI); 2247 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2248 Observer.changedInstr(MI); 2249 return Legalized; 2250 2251 case TargetOpcode::G_FCMP: 2252 Observer.changingInstr(MI); 2253 if (TypeIdx == 0) 2254 widenScalarDst(MI, WideTy); 2255 else { 2256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2257 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2258 } 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 2262 case TargetOpcode::G_ICMP: 2263 Observer.changingInstr(MI); 2264 if (TypeIdx == 0) 2265 widenScalarDst(MI, WideTy); 2266 else { 2267 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2268 MI.getOperand(1).getPredicate())) 2269 ? TargetOpcode::G_SEXT 2270 : TargetOpcode::G_ZEXT; 2271 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2272 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2273 } 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 2277 case TargetOpcode::G_PTR_ADD: 2278 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2279 Observer.changingInstr(MI); 2280 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 2284 case TargetOpcode::G_PHI: { 2285 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2286 2287 Observer.changingInstr(MI); 2288 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2289 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2290 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2291 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2292 } 2293 2294 MachineBasicBlock &MBB = *MI.getParent(); 2295 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2296 widenScalarDst(MI, WideTy); 2297 Observer.changedInstr(MI); 2298 return Legalized; 2299 } 2300 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2301 if (TypeIdx == 0) { 2302 Register VecReg = MI.getOperand(1).getReg(); 2303 LLT VecTy = MRI.getType(VecReg); 2304 Observer.changingInstr(MI); 2305 2306 widenScalarSrc( 2307 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2308 TargetOpcode::G_SEXT); 2309 2310 widenScalarDst(MI, WideTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 2315 if (TypeIdx != 2) 2316 return UnableToLegalize; 2317 Observer.changingInstr(MI); 2318 // TODO: Probably should be zext 2319 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2320 Observer.changedInstr(MI); 2321 return Legalized; 2322 } 2323 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2324 if (TypeIdx == 1) { 2325 Observer.changingInstr(MI); 2326 2327 Register VecReg = MI.getOperand(1).getReg(); 2328 LLT VecTy = MRI.getType(VecReg); 2329 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2330 2331 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2332 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2333 widenScalarDst(MI, WideVecTy, 0); 2334 Observer.changedInstr(MI); 2335 return Legalized; 2336 } 2337 2338 if (TypeIdx == 2) { 2339 Observer.changingInstr(MI); 2340 // TODO: Probably should be zext 2341 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2342 Observer.changedInstr(MI); 2343 return Legalized; 2344 } 2345 2346 return UnableToLegalize; 2347 } 2348 case TargetOpcode::G_FADD: 2349 case TargetOpcode::G_FMUL: 2350 case TargetOpcode::G_FSUB: 2351 case TargetOpcode::G_FMA: 2352 case TargetOpcode::G_FMAD: 2353 case TargetOpcode::G_FNEG: 2354 case TargetOpcode::G_FABS: 2355 case TargetOpcode::G_FCANONICALIZE: 2356 case TargetOpcode::G_FMINNUM: 2357 case TargetOpcode::G_FMAXNUM: 2358 case TargetOpcode::G_FMINNUM_IEEE: 2359 case TargetOpcode::G_FMAXNUM_IEEE: 2360 case TargetOpcode::G_FMINIMUM: 2361 case TargetOpcode::G_FMAXIMUM: 2362 case TargetOpcode::G_FDIV: 2363 case TargetOpcode::G_FREM: 2364 case TargetOpcode::G_FCEIL: 2365 case TargetOpcode::G_FFLOOR: 2366 case TargetOpcode::G_FCOS: 2367 case TargetOpcode::G_FSIN: 2368 case TargetOpcode::G_FLOG10: 2369 case TargetOpcode::G_FLOG: 2370 case TargetOpcode::G_FLOG2: 2371 case TargetOpcode::G_FRINT: 2372 case TargetOpcode::G_FNEARBYINT: 2373 case TargetOpcode::G_FSQRT: 2374 case TargetOpcode::G_FEXP: 2375 case TargetOpcode::G_FEXP2: 2376 case TargetOpcode::G_FPOW: 2377 case TargetOpcode::G_INTRINSIC_TRUNC: 2378 case TargetOpcode::G_INTRINSIC_ROUND: 2379 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2380 assert(TypeIdx == 0); 2381 Observer.changingInstr(MI); 2382 2383 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2384 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2385 2386 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2387 Observer.changedInstr(MI); 2388 return Legalized; 2389 case TargetOpcode::G_FPOWI: { 2390 if (TypeIdx != 0) 2391 return UnableToLegalize; 2392 Observer.changingInstr(MI); 2393 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2394 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2395 Observer.changedInstr(MI); 2396 return Legalized; 2397 } 2398 case TargetOpcode::G_INTTOPTR: 2399 if (TypeIdx != 1) 2400 return UnableToLegalize; 2401 2402 Observer.changingInstr(MI); 2403 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2404 Observer.changedInstr(MI); 2405 return Legalized; 2406 case TargetOpcode::G_PTRTOINT: 2407 if (TypeIdx != 0) 2408 return UnableToLegalize; 2409 2410 Observer.changingInstr(MI); 2411 widenScalarDst(MI, WideTy, 0); 2412 Observer.changedInstr(MI); 2413 return Legalized; 2414 case TargetOpcode::G_BUILD_VECTOR: { 2415 Observer.changingInstr(MI); 2416 2417 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2418 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2419 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2420 2421 // Avoid changing the result vector type if the source element type was 2422 // requested. 2423 if (TypeIdx == 1) { 2424 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2425 } else { 2426 widenScalarDst(MI, WideTy, 0); 2427 } 2428 2429 Observer.changedInstr(MI); 2430 return Legalized; 2431 } 2432 case TargetOpcode::G_SEXT_INREG: 2433 if (TypeIdx != 0) 2434 return UnableToLegalize; 2435 2436 Observer.changingInstr(MI); 2437 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2438 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2439 Observer.changedInstr(MI); 2440 return Legalized; 2441 case TargetOpcode::G_PTRMASK: { 2442 if (TypeIdx != 1) 2443 return UnableToLegalize; 2444 Observer.changingInstr(MI); 2445 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2446 Observer.changedInstr(MI); 2447 return Legalized; 2448 } 2449 } 2450 } 2451 2452 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2453 MachineIRBuilder &B, Register Src, LLT Ty) { 2454 auto Unmerge = B.buildUnmerge(Ty, Src); 2455 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2456 Pieces.push_back(Unmerge.getReg(I)); 2457 } 2458 2459 LegalizerHelper::LegalizeResult 2460 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2461 Register Dst = MI.getOperand(0).getReg(); 2462 Register Src = MI.getOperand(1).getReg(); 2463 LLT DstTy = MRI.getType(Dst); 2464 LLT SrcTy = MRI.getType(Src); 2465 2466 if (SrcTy.isVector()) { 2467 LLT SrcEltTy = SrcTy.getElementType(); 2468 SmallVector<Register, 8> SrcRegs; 2469 2470 if (DstTy.isVector()) { 2471 int NumDstElt = DstTy.getNumElements(); 2472 int NumSrcElt = SrcTy.getNumElements(); 2473 2474 LLT DstEltTy = DstTy.getElementType(); 2475 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2476 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2477 2478 // If there's an element size mismatch, insert intermediate casts to match 2479 // the result element type. 2480 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2481 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2482 // 2483 // => 2484 // 2485 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2486 // %3:_(<2 x s8>) = G_BITCAST %2 2487 // %4:_(<2 x s8>) = G_BITCAST %3 2488 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2489 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2490 SrcPartTy = SrcEltTy; 2491 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2492 // 2493 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2494 // 2495 // => 2496 // 2497 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2498 // %3:_(s16) = G_BITCAST %2 2499 // %4:_(s16) = G_BITCAST %3 2500 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2501 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2502 DstCastTy = DstEltTy; 2503 } 2504 2505 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2506 for (Register &SrcReg : SrcRegs) 2507 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2508 } else 2509 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2510 2511 MIRBuilder.buildMerge(Dst, SrcRegs); 2512 MI.eraseFromParent(); 2513 return Legalized; 2514 } 2515 2516 if (DstTy.isVector()) { 2517 SmallVector<Register, 8> SrcRegs; 2518 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2519 MIRBuilder.buildMerge(Dst, SrcRegs); 2520 MI.eraseFromParent(); 2521 return Legalized; 2522 } 2523 2524 return UnableToLegalize; 2525 } 2526 2527 /// Figure out the bit offset into a register when coercing a vector index for 2528 /// the wide element type. This is only for the case when promoting vector to 2529 /// one with larger elements. 2530 // 2531 /// 2532 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2533 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2534 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2535 Register Idx, 2536 unsigned NewEltSize, 2537 unsigned OldEltSize) { 2538 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2539 LLT IdxTy = B.getMRI()->getType(Idx); 2540 2541 // Now figure out the amount we need to shift to get the target bits. 2542 auto OffsetMask = B.buildConstant( 2543 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2544 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2545 return B.buildShl(IdxTy, OffsetIdx, 2546 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2547 } 2548 2549 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2550 /// is casting to a vector with a smaller element size, perform multiple element 2551 /// extracts and merge the results. If this is coercing to a vector with larger 2552 /// elements, index the bitcasted vector and extract the target element with bit 2553 /// operations. This is intended to force the indexing in the native register 2554 /// size for architectures that can dynamically index the register file. 2555 LegalizerHelper::LegalizeResult 2556 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2557 LLT CastTy) { 2558 if (TypeIdx != 1) 2559 return UnableToLegalize; 2560 2561 Register Dst = MI.getOperand(0).getReg(); 2562 Register SrcVec = MI.getOperand(1).getReg(); 2563 Register Idx = MI.getOperand(2).getReg(); 2564 LLT SrcVecTy = MRI.getType(SrcVec); 2565 LLT IdxTy = MRI.getType(Idx); 2566 2567 LLT SrcEltTy = SrcVecTy.getElementType(); 2568 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2569 unsigned OldNumElts = SrcVecTy.getNumElements(); 2570 2571 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2572 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2573 2574 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2575 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2576 if (NewNumElts > OldNumElts) { 2577 // Decreasing the vector element size 2578 // 2579 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2580 // => 2581 // v4i32:castx = bitcast x:v2i64 2582 // 2583 // i64 = bitcast 2584 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2585 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2586 // 2587 if (NewNumElts % OldNumElts != 0) 2588 return UnableToLegalize; 2589 2590 // Type of the intermediate result vector. 2591 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2592 LLT MidTy = 2593 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2594 2595 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2596 2597 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2598 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2599 2600 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2601 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2602 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2603 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2604 NewOps[I] = Elt.getReg(0); 2605 } 2606 2607 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2608 MIRBuilder.buildBitcast(Dst, NewVec); 2609 MI.eraseFromParent(); 2610 return Legalized; 2611 } 2612 2613 if (NewNumElts < OldNumElts) { 2614 if (NewEltSize % OldEltSize != 0) 2615 return UnableToLegalize; 2616 2617 // This only depends on powers of 2 because we use bit tricks to figure out 2618 // the bit offset we need to shift to get the target element. A general 2619 // expansion could emit division/multiply. 2620 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2621 return UnableToLegalize; 2622 2623 // Increasing the vector element size. 2624 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2625 // 2626 // => 2627 // 2628 // %cast = G_BITCAST %vec 2629 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2630 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2631 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2632 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2633 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2634 // %elt = G_TRUNC %elt_bits 2635 2636 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2637 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2638 2639 // Divide to get the index in the wider element type. 2640 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2641 2642 Register WideElt = CastVec; 2643 if (CastTy.isVector()) { 2644 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2645 ScaledIdx).getReg(0); 2646 } 2647 2648 // Compute the bit offset into the register of the target element. 2649 Register OffsetBits = getBitcastWiderVectorElementOffset( 2650 MIRBuilder, Idx, NewEltSize, OldEltSize); 2651 2652 // Shift the wide element to get the target element. 2653 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2654 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2655 MI.eraseFromParent(); 2656 return Legalized; 2657 } 2658 2659 return UnableToLegalize; 2660 } 2661 2662 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2663 /// TargetReg, while preserving other bits in \p TargetReg. 2664 /// 2665 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2666 static Register buildBitFieldInsert(MachineIRBuilder &B, 2667 Register TargetReg, Register InsertReg, 2668 Register OffsetBits) { 2669 LLT TargetTy = B.getMRI()->getType(TargetReg); 2670 LLT InsertTy = B.getMRI()->getType(InsertReg); 2671 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2672 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2673 2674 // Produce a bitmask of the value to insert 2675 auto EltMask = B.buildConstant( 2676 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2677 InsertTy.getSizeInBits())); 2678 // Shift it into position 2679 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2680 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2681 2682 // Clear out the bits in the wide element 2683 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2684 2685 // The value to insert has all zeros already, so stick it into the masked 2686 // wide element. 2687 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2688 } 2689 2690 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2691 /// is increasing the element size, perform the indexing in the target element 2692 /// type, and use bit operations to insert at the element position. This is 2693 /// intended for architectures that can dynamically index the register file and 2694 /// want to force indexing in the native register size. 2695 LegalizerHelper::LegalizeResult 2696 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2697 LLT CastTy) { 2698 if (TypeIdx != 0) 2699 return UnableToLegalize; 2700 2701 Register Dst = MI.getOperand(0).getReg(); 2702 Register SrcVec = MI.getOperand(1).getReg(); 2703 Register Val = MI.getOperand(2).getReg(); 2704 Register Idx = MI.getOperand(3).getReg(); 2705 2706 LLT VecTy = MRI.getType(Dst); 2707 LLT IdxTy = MRI.getType(Idx); 2708 2709 LLT VecEltTy = VecTy.getElementType(); 2710 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2711 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2712 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2713 2714 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2715 unsigned OldNumElts = VecTy.getNumElements(); 2716 2717 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2718 if (NewNumElts < OldNumElts) { 2719 if (NewEltSize % OldEltSize != 0) 2720 return UnableToLegalize; 2721 2722 // This only depends on powers of 2 because we use bit tricks to figure out 2723 // the bit offset we need to shift to get the target element. A general 2724 // expansion could emit division/multiply. 2725 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2726 return UnableToLegalize; 2727 2728 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2729 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2730 2731 // Divide to get the index in the wider element type. 2732 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2733 2734 Register ExtractedElt = CastVec; 2735 if (CastTy.isVector()) { 2736 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2737 ScaledIdx).getReg(0); 2738 } 2739 2740 // Compute the bit offset into the register of the target element. 2741 Register OffsetBits = getBitcastWiderVectorElementOffset( 2742 MIRBuilder, Idx, NewEltSize, OldEltSize); 2743 2744 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2745 Val, OffsetBits); 2746 if (CastTy.isVector()) { 2747 InsertedElt = MIRBuilder.buildInsertVectorElement( 2748 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2749 } 2750 2751 MIRBuilder.buildBitcast(Dst, InsertedElt); 2752 MI.eraseFromParent(); 2753 return Legalized; 2754 } 2755 2756 return UnableToLegalize; 2757 } 2758 2759 LegalizerHelper::LegalizeResult 2760 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2761 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2762 Register DstReg = MI.getOperand(0).getReg(); 2763 Register PtrReg = MI.getOperand(1).getReg(); 2764 LLT DstTy = MRI.getType(DstReg); 2765 auto &MMO = **MI.memoperands_begin(); 2766 2767 if (DstTy.getSizeInBits() != MMO.getSizeInBits()) 2768 return UnableToLegalize; 2769 2770 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2771 // This load needs splitting into power of 2 sized loads. 2772 if (DstTy.isVector()) 2773 return UnableToLegalize; 2774 if (isPowerOf2_32(DstTy.getSizeInBits())) 2775 return UnableToLegalize; // Don't know what we're being asked to do. 2776 2777 // Our strategy here is to generate anyextending loads for the smaller 2778 // types up to next power-2 result type, and then combine the two larger 2779 // result values together, before truncating back down to the non-pow-2 2780 // type. 2781 // E.g. v1 = i24 load => 2782 // v2 = i32 zextload (2 byte) 2783 // v3 = i32 load (1 byte) 2784 // v4 = i32 shl v3, 16 2785 // v5 = i32 or v4, v2 2786 // v1 = i24 trunc v5 2787 // By doing this we generate the correct truncate which should get 2788 // combined away as an artifact with a matching extend. 2789 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2790 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2791 2792 MachineFunction &MF = MIRBuilder.getMF(); 2793 MachineMemOperand *LargeMMO = 2794 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2795 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2796 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2797 2798 LLT PtrTy = MRI.getType(PtrReg); 2799 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2800 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2801 auto LargeLoad = MIRBuilder.buildLoadInstr( 2802 TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO); 2803 2804 auto OffsetCst = MIRBuilder.buildConstant( 2805 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2806 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2807 auto SmallPtr = 2808 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2809 auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr, 2810 *SmallMMO); 2811 2812 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2813 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2814 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2815 MIRBuilder.buildTrunc(DstReg, {Or}); 2816 MI.eraseFromParent(); 2817 return Legalized; 2818 } 2819 2820 return UnableToLegalize; 2821 } 2822 2823 LegalizerHelper::LegalizeResult 2824 LegalizerHelper::lowerStore(MachineInstr &MI) { 2825 // Lower a non-power of 2 store into multiple pow-2 stores. 2826 // E.g. split an i24 store into an i16 store + i8 store. 2827 // We do this by first extending the stored value to the next largest power 2828 // of 2 type, and then using truncating stores to store the components. 2829 // By doing this, likewise with G_LOAD, generate an extend that can be 2830 // artifact-combined away instead of leaving behind extracts. 2831 Register SrcReg = MI.getOperand(0).getReg(); 2832 Register PtrReg = MI.getOperand(1).getReg(); 2833 LLT SrcTy = MRI.getType(SrcReg); 2834 MachineMemOperand &MMO = **MI.memoperands_begin(); 2835 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2836 return UnableToLegalize; 2837 if (SrcTy.isVector()) 2838 return UnableToLegalize; 2839 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2840 return UnableToLegalize; // Don't know what we're being asked to do. 2841 2842 // Extend to the next pow-2. 2843 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2844 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2845 2846 // Obtain the smaller value by shifting away the larger value. 2847 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2848 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2849 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2850 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2851 2852 // Generate the PtrAdd and truncating stores. 2853 LLT PtrTy = MRI.getType(PtrReg); 2854 auto OffsetCst = MIRBuilder.buildConstant( 2855 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2856 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2857 auto SmallPtr = 2858 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2859 2860 MachineFunction &MF = MIRBuilder.getMF(); 2861 MachineMemOperand *LargeMMO = 2862 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2863 MachineMemOperand *SmallMMO = 2864 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2865 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 2866 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 2867 MI.eraseFromParent(); 2868 return Legalized; 2869 } 2870 2871 LegalizerHelper::LegalizeResult 2872 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2873 switch (MI.getOpcode()) { 2874 case TargetOpcode::G_LOAD: { 2875 if (TypeIdx != 0) 2876 return UnableToLegalize; 2877 2878 Observer.changingInstr(MI); 2879 bitcastDst(MI, CastTy, 0); 2880 Observer.changedInstr(MI); 2881 return Legalized; 2882 } 2883 case TargetOpcode::G_STORE: { 2884 if (TypeIdx != 0) 2885 return UnableToLegalize; 2886 2887 Observer.changingInstr(MI); 2888 bitcastSrc(MI, CastTy, 0); 2889 Observer.changedInstr(MI); 2890 return Legalized; 2891 } 2892 case TargetOpcode::G_SELECT: { 2893 if (TypeIdx != 0) 2894 return UnableToLegalize; 2895 2896 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2897 LLVM_DEBUG( 2898 dbgs() << "bitcast action not implemented for vector select\n"); 2899 return UnableToLegalize; 2900 } 2901 2902 Observer.changingInstr(MI); 2903 bitcastSrc(MI, CastTy, 2); 2904 bitcastSrc(MI, CastTy, 3); 2905 bitcastDst(MI, CastTy, 0); 2906 Observer.changedInstr(MI); 2907 return Legalized; 2908 } 2909 case TargetOpcode::G_AND: 2910 case TargetOpcode::G_OR: 2911 case TargetOpcode::G_XOR: { 2912 Observer.changingInstr(MI); 2913 bitcastSrc(MI, CastTy, 1); 2914 bitcastSrc(MI, CastTy, 2); 2915 bitcastDst(MI, CastTy, 0); 2916 Observer.changedInstr(MI); 2917 return Legalized; 2918 } 2919 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2920 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2921 case TargetOpcode::G_INSERT_VECTOR_ELT: 2922 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2923 default: 2924 return UnableToLegalize; 2925 } 2926 } 2927 2928 // Legalize an instruction by changing the opcode in place. 2929 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2930 Observer.changingInstr(MI); 2931 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2932 Observer.changedInstr(MI); 2933 } 2934 2935 LegalizerHelper::LegalizeResult 2936 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2937 using namespace TargetOpcode; 2938 2939 switch(MI.getOpcode()) { 2940 default: 2941 return UnableToLegalize; 2942 case TargetOpcode::G_BITCAST: 2943 return lowerBitcast(MI); 2944 case TargetOpcode::G_SREM: 2945 case TargetOpcode::G_UREM: { 2946 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2947 auto Quot = 2948 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2949 {MI.getOperand(1), MI.getOperand(2)}); 2950 2951 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2952 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 case TargetOpcode::G_SADDO: 2957 case TargetOpcode::G_SSUBO: 2958 return lowerSADDO_SSUBO(MI); 2959 case TargetOpcode::G_UMULH: 2960 case TargetOpcode::G_SMULH: 2961 return lowerSMULH_UMULH(MI); 2962 case TargetOpcode::G_SMULO: 2963 case TargetOpcode::G_UMULO: { 2964 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2965 // result. 2966 Register Res = MI.getOperand(0).getReg(); 2967 Register Overflow = MI.getOperand(1).getReg(); 2968 Register LHS = MI.getOperand(2).getReg(); 2969 Register RHS = MI.getOperand(3).getReg(); 2970 LLT Ty = MRI.getType(Res); 2971 2972 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2973 ? TargetOpcode::G_SMULH 2974 : TargetOpcode::G_UMULH; 2975 2976 Observer.changingInstr(MI); 2977 const auto &TII = MIRBuilder.getTII(); 2978 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2979 MI.RemoveOperand(1); 2980 Observer.changedInstr(MI); 2981 2982 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2983 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2984 2985 // Move insert point forward so we can use the Res register if needed. 2986 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2987 2988 // For *signed* multiply, overflow is detected by checking: 2989 // (hi != (lo >> bitwidth-1)) 2990 if (Opcode == TargetOpcode::G_SMULH) { 2991 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2992 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2993 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2994 } else { 2995 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2996 } 2997 return Legalized; 2998 } 2999 case TargetOpcode::G_FNEG: { 3000 Register Res = MI.getOperand(0).getReg(); 3001 LLT Ty = MRI.getType(Res); 3002 3003 // TODO: Handle vector types once we are able to 3004 // represent them. 3005 if (Ty.isVector()) 3006 return UnableToLegalize; 3007 auto SignMask = 3008 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3009 Register SubByReg = MI.getOperand(1).getReg(); 3010 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3011 MI.eraseFromParent(); 3012 return Legalized; 3013 } 3014 case TargetOpcode::G_FSUB: { 3015 Register Res = MI.getOperand(0).getReg(); 3016 LLT Ty = MRI.getType(Res); 3017 3018 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3019 // First, check if G_FNEG is marked as Lower. If so, we may 3020 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3021 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3022 return UnableToLegalize; 3023 Register LHS = MI.getOperand(1).getReg(); 3024 Register RHS = MI.getOperand(2).getReg(); 3025 Register Neg = MRI.createGenericVirtualRegister(Ty); 3026 MIRBuilder.buildFNeg(Neg, RHS); 3027 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3028 MI.eraseFromParent(); 3029 return Legalized; 3030 } 3031 case TargetOpcode::G_FMAD: 3032 return lowerFMad(MI); 3033 case TargetOpcode::G_FFLOOR: 3034 return lowerFFloor(MI); 3035 case TargetOpcode::G_INTRINSIC_ROUND: 3036 return lowerIntrinsicRound(MI); 3037 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3038 // Since round even is the assumed rounding mode for unconstrained FP 3039 // operations, rint and roundeven are the same operation. 3040 changeOpcode(MI, TargetOpcode::G_FRINT); 3041 return Legalized; 3042 } 3043 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3044 Register OldValRes = MI.getOperand(0).getReg(); 3045 Register SuccessRes = MI.getOperand(1).getReg(); 3046 Register Addr = MI.getOperand(2).getReg(); 3047 Register CmpVal = MI.getOperand(3).getReg(); 3048 Register NewVal = MI.getOperand(4).getReg(); 3049 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3050 **MI.memoperands_begin()); 3051 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3052 MI.eraseFromParent(); 3053 return Legalized; 3054 } 3055 case TargetOpcode::G_LOAD: 3056 case TargetOpcode::G_SEXTLOAD: 3057 case TargetOpcode::G_ZEXTLOAD: 3058 return lowerLoad(MI); 3059 case TargetOpcode::G_STORE: 3060 return lowerStore(MI); 3061 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3062 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3063 case TargetOpcode::G_CTLZ: 3064 case TargetOpcode::G_CTTZ: 3065 case TargetOpcode::G_CTPOP: 3066 return lowerBitCount(MI); 3067 case G_UADDO: { 3068 Register Res = MI.getOperand(0).getReg(); 3069 Register CarryOut = MI.getOperand(1).getReg(); 3070 Register LHS = MI.getOperand(2).getReg(); 3071 Register RHS = MI.getOperand(3).getReg(); 3072 3073 MIRBuilder.buildAdd(Res, LHS, RHS); 3074 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3075 3076 MI.eraseFromParent(); 3077 return Legalized; 3078 } 3079 case G_UADDE: { 3080 Register Res = MI.getOperand(0).getReg(); 3081 Register CarryOut = MI.getOperand(1).getReg(); 3082 Register LHS = MI.getOperand(2).getReg(); 3083 Register RHS = MI.getOperand(3).getReg(); 3084 Register CarryIn = MI.getOperand(4).getReg(); 3085 LLT Ty = MRI.getType(Res); 3086 3087 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3088 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3089 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3090 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3091 3092 MI.eraseFromParent(); 3093 return Legalized; 3094 } 3095 case G_USUBO: { 3096 Register Res = MI.getOperand(0).getReg(); 3097 Register BorrowOut = MI.getOperand(1).getReg(); 3098 Register LHS = MI.getOperand(2).getReg(); 3099 Register RHS = MI.getOperand(3).getReg(); 3100 3101 MIRBuilder.buildSub(Res, LHS, RHS); 3102 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3103 3104 MI.eraseFromParent(); 3105 return Legalized; 3106 } 3107 case G_USUBE: { 3108 Register Res = MI.getOperand(0).getReg(); 3109 Register BorrowOut = MI.getOperand(1).getReg(); 3110 Register LHS = MI.getOperand(2).getReg(); 3111 Register RHS = MI.getOperand(3).getReg(); 3112 Register BorrowIn = MI.getOperand(4).getReg(); 3113 const LLT CondTy = MRI.getType(BorrowOut); 3114 const LLT Ty = MRI.getType(Res); 3115 3116 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3117 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3118 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3119 3120 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3121 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3122 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3123 3124 MI.eraseFromParent(); 3125 return Legalized; 3126 } 3127 case G_UITOFP: 3128 return lowerUITOFP(MI); 3129 case G_SITOFP: 3130 return lowerSITOFP(MI); 3131 case G_FPTOUI: 3132 return lowerFPTOUI(MI); 3133 case G_FPTOSI: 3134 return lowerFPTOSI(MI); 3135 case G_FPTRUNC: 3136 return lowerFPTRUNC(MI); 3137 case G_FPOWI: 3138 return lowerFPOWI(MI); 3139 case G_SMIN: 3140 case G_SMAX: 3141 case G_UMIN: 3142 case G_UMAX: 3143 return lowerMinMax(MI); 3144 case G_FCOPYSIGN: 3145 return lowerFCopySign(MI); 3146 case G_FMINNUM: 3147 case G_FMAXNUM: 3148 return lowerFMinNumMaxNum(MI); 3149 case G_MERGE_VALUES: 3150 return lowerMergeValues(MI); 3151 case G_UNMERGE_VALUES: 3152 return lowerUnmergeValues(MI); 3153 case TargetOpcode::G_SEXT_INREG: { 3154 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3155 int64_t SizeInBits = MI.getOperand(2).getImm(); 3156 3157 Register DstReg = MI.getOperand(0).getReg(); 3158 Register SrcReg = MI.getOperand(1).getReg(); 3159 LLT DstTy = MRI.getType(DstReg); 3160 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3161 3162 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3163 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3164 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3165 MI.eraseFromParent(); 3166 return Legalized; 3167 } 3168 case G_EXTRACT_VECTOR_ELT: 3169 case G_INSERT_VECTOR_ELT: 3170 return lowerExtractInsertVectorElt(MI); 3171 case G_SHUFFLE_VECTOR: 3172 return lowerShuffleVector(MI); 3173 case G_DYN_STACKALLOC: 3174 return lowerDynStackAlloc(MI); 3175 case G_EXTRACT: 3176 return lowerExtract(MI); 3177 case G_INSERT: 3178 return lowerInsert(MI); 3179 case G_BSWAP: 3180 return lowerBswap(MI); 3181 case G_BITREVERSE: 3182 return lowerBitreverse(MI); 3183 case G_READ_REGISTER: 3184 case G_WRITE_REGISTER: 3185 return lowerReadWriteRegister(MI); 3186 case G_UADDSAT: 3187 case G_USUBSAT: { 3188 // Try to make a reasonable guess about which lowering strategy to use. The 3189 // target can override this with custom lowering and calling the 3190 // implementation functions. 3191 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3192 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3193 return lowerAddSubSatToMinMax(MI); 3194 return lowerAddSubSatToAddoSubo(MI); 3195 } 3196 case G_SADDSAT: 3197 case G_SSUBSAT: { 3198 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3199 3200 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3201 // since it's a shorter expansion. However, we would need to figure out the 3202 // preferred boolean type for the carry out for the query. 3203 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3204 return lowerAddSubSatToMinMax(MI); 3205 return lowerAddSubSatToAddoSubo(MI); 3206 } 3207 case G_SSHLSAT: 3208 case G_USHLSAT: 3209 return lowerShlSat(MI); 3210 case G_ABS: 3211 return lowerAbsToAddXor(MI); 3212 case G_SELECT: 3213 return lowerSelect(MI); 3214 case G_SDIVREM: 3215 case G_UDIVREM: 3216 return lowerDIVREM(MI); 3217 case G_FSHL: 3218 case G_FSHR: 3219 return lowerFunnelShift(MI); 3220 case G_ROTL: 3221 case G_ROTR: 3222 return lowerRotate(MI); 3223 } 3224 } 3225 3226 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3227 Align MinAlign) const { 3228 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3229 // datalayout for the preferred alignment. Also there should be a target hook 3230 // for this to allow targets to reduce the alignment and ignore the 3231 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3232 // the type. 3233 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3234 } 3235 3236 MachineInstrBuilder 3237 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3238 MachinePointerInfo &PtrInfo) { 3239 MachineFunction &MF = MIRBuilder.getMF(); 3240 const DataLayout &DL = MIRBuilder.getDataLayout(); 3241 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3242 3243 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3244 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3245 3246 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3247 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3248 } 3249 3250 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3251 LLT VecTy) { 3252 int64_t IdxVal; 3253 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3254 return IdxReg; 3255 3256 LLT IdxTy = B.getMRI()->getType(IdxReg); 3257 unsigned NElts = VecTy.getNumElements(); 3258 if (isPowerOf2_32(NElts)) { 3259 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3260 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3261 } 3262 3263 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3264 .getReg(0); 3265 } 3266 3267 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3268 Register Index) { 3269 LLT EltTy = VecTy.getElementType(); 3270 3271 // Calculate the element offset and add it to the pointer. 3272 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3273 assert(EltSize * 8 == EltTy.getSizeInBits() && 3274 "Converting bits to bytes lost precision"); 3275 3276 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3277 3278 LLT IdxTy = MRI.getType(Index); 3279 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3280 MIRBuilder.buildConstant(IdxTy, EltSize)); 3281 3282 LLT PtrTy = MRI.getType(VecPtr); 3283 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3284 } 3285 3286 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3287 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3288 Register DstReg = MI.getOperand(0).getReg(); 3289 LLT DstTy = MRI.getType(DstReg); 3290 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3291 3292 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3293 3294 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3295 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3296 3297 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3298 MI.eraseFromParent(); 3299 return Legalized; 3300 } 3301 3302 // Handle splitting vector operations which need to have the same number of 3303 // elements in each type index, but each type index may have a different element 3304 // type. 3305 // 3306 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3307 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3308 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3309 // 3310 // Also handles some irregular breakdown cases, e.g. 3311 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3312 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3313 // s64 = G_SHL s64, s32 3314 LegalizerHelper::LegalizeResult 3315 LegalizerHelper::fewerElementsVectorMultiEltType( 3316 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3317 if (TypeIdx != 0) 3318 return UnableToLegalize; 3319 3320 const LLT NarrowTy0 = NarrowTyArg; 3321 const Register DstReg = MI.getOperand(0).getReg(); 3322 LLT DstTy = MRI.getType(DstReg); 3323 LLT LeftoverTy0; 3324 3325 // All of the operands need to have the same number of elements, so if we can 3326 // determine a type breakdown for the result type, we can for all of the 3327 // source types. 3328 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3329 if (NumParts < 0) 3330 return UnableToLegalize; 3331 3332 SmallVector<MachineInstrBuilder, 4> NewInsts; 3333 3334 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3335 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3336 3337 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3338 Register SrcReg = MI.getOperand(I).getReg(); 3339 LLT SrcTyI = MRI.getType(SrcReg); 3340 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3341 : ElementCount::getFixed(1); 3342 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3343 LLT LeftoverTyI; 3344 3345 // Split this operand into the requested typed registers, and any leftover 3346 // required to reproduce the original type. 3347 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3348 LeftoverRegs)) 3349 return UnableToLegalize; 3350 3351 if (I == 1) { 3352 // For the first operand, create an instruction for each part and setup 3353 // the result. 3354 for (Register PartReg : PartRegs) { 3355 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3356 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3357 .addDef(PartDstReg) 3358 .addUse(PartReg)); 3359 DstRegs.push_back(PartDstReg); 3360 } 3361 3362 for (Register LeftoverReg : LeftoverRegs) { 3363 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3364 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3365 .addDef(PartDstReg) 3366 .addUse(LeftoverReg)); 3367 LeftoverDstRegs.push_back(PartDstReg); 3368 } 3369 } else { 3370 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3371 3372 // Add the newly created operand splits to the existing instructions. The 3373 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3374 // pieces. 3375 unsigned InstCount = 0; 3376 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3377 NewInsts[InstCount++].addUse(PartRegs[J]); 3378 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3379 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3380 } 3381 3382 PartRegs.clear(); 3383 LeftoverRegs.clear(); 3384 } 3385 3386 // Insert the newly built operations and rebuild the result register. 3387 for (auto &MIB : NewInsts) 3388 MIRBuilder.insertInstr(MIB); 3389 3390 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3391 3392 MI.eraseFromParent(); 3393 return Legalized; 3394 } 3395 3396 LegalizerHelper::LegalizeResult 3397 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3398 LLT NarrowTy) { 3399 if (TypeIdx != 0) 3400 return UnableToLegalize; 3401 3402 Register DstReg = MI.getOperand(0).getReg(); 3403 Register SrcReg = MI.getOperand(1).getReg(); 3404 LLT DstTy = MRI.getType(DstReg); 3405 LLT SrcTy = MRI.getType(SrcReg); 3406 3407 LLT NarrowTy0 = NarrowTy; 3408 LLT NarrowTy1; 3409 unsigned NumParts; 3410 3411 if (NarrowTy.isVector()) { 3412 // Uneven breakdown not handled. 3413 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3414 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3415 return UnableToLegalize; 3416 3417 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3418 } else { 3419 NumParts = DstTy.getNumElements(); 3420 NarrowTy1 = SrcTy.getElementType(); 3421 } 3422 3423 SmallVector<Register, 4> SrcRegs, DstRegs; 3424 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3425 3426 for (unsigned I = 0; I < NumParts; ++I) { 3427 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3428 MachineInstr *NewInst = 3429 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3430 3431 NewInst->setFlags(MI.getFlags()); 3432 DstRegs.push_back(DstReg); 3433 } 3434 3435 if (NarrowTy.isVector()) 3436 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3437 else 3438 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3439 3440 MI.eraseFromParent(); 3441 return Legalized; 3442 } 3443 3444 LegalizerHelper::LegalizeResult 3445 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3446 LLT NarrowTy) { 3447 Register DstReg = MI.getOperand(0).getReg(); 3448 Register Src0Reg = MI.getOperand(2).getReg(); 3449 LLT DstTy = MRI.getType(DstReg); 3450 LLT SrcTy = MRI.getType(Src0Reg); 3451 3452 unsigned NumParts; 3453 LLT NarrowTy0, NarrowTy1; 3454 3455 if (TypeIdx == 0) { 3456 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3457 unsigned OldElts = DstTy.getNumElements(); 3458 3459 NarrowTy0 = NarrowTy; 3460 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3461 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3462 SrcTy.getScalarSizeInBits()) 3463 : SrcTy.getElementType(); 3464 3465 } else { 3466 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3467 unsigned OldElts = SrcTy.getNumElements(); 3468 3469 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3470 NarrowTy.getNumElements(); 3471 NarrowTy0 = 3472 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3473 NarrowTy1 = NarrowTy; 3474 } 3475 3476 // FIXME: Don't know how to handle the situation where the small vectors 3477 // aren't all the same size yet. 3478 if (NarrowTy1.isVector() && 3479 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3480 return UnableToLegalize; 3481 3482 CmpInst::Predicate Pred 3483 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3484 3485 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3486 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3487 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3488 3489 for (unsigned I = 0; I < NumParts; ++I) { 3490 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3491 DstRegs.push_back(DstReg); 3492 3493 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3494 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3495 else { 3496 MachineInstr *NewCmp 3497 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3498 NewCmp->setFlags(MI.getFlags()); 3499 } 3500 } 3501 3502 if (NarrowTy1.isVector()) 3503 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3504 else 3505 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3506 3507 MI.eraseFromParent(); 3508 return Legalized; 3509 } 3510 3511 LegalizerHelper::LegalizeResult 3512 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3513 LLT NarrowTy) { 3514 Register DstReg = MI.getOperand(0).getReg(); 3515 Register CondReg = MI.getOperand(1).getReg(); 3516 3517 unsigned NumParts = 0; 3518 LLT NarrowTy0, NarrowTy1; 3519 3520 LLT DstTy = MRI.getType(DstReg); 3521 LLT CondTy = MRI.getType(CondReg); 3522 unsigned Size = DstTy.getSizeInBits(); 3523 3524 assert(TypeIdx == 0 || CondTy.isVector()); 3525 3526 if (TypeIdx == 0) { 3527 NarrowTy0 = NarrowTy; 3528 NarrowTy1 = CondTy; 3529 3530 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3531 // FIXME: Don't know how to handle the situation where the small vectors 3532 // aren't all the same size yet. 3533 if (Size % NarrowSize != 0) 3534 return UnableToLegalize; 3535 3536 NumParts = Size / NarrowSize; 3537 3538 // Need to break down the condition type 3539 if (CondTy.isVector()) { 3540 if (CondTy.getNumElements() == NumParts) 3541 NarrowTy1 = CondTy.getElementType(); 3542 else 3543 NarrowTy1 = 3544 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3545 CondTy.getScalarSizeInBits()); 3546 } 3547 } else { 3548 NumParts = CondTy.getNumElements(); 3549 if (NarrowTy.isVector()) { 3550 // TODO: Handle uneven breakdown. 3551 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3552 return UnableToLegalize; 3553 3554 return UnableToLegalize; 3555 } else { 3556 NarrowTy0 = DstTy.getElementType(); 3557 NarrowTy1 = NarrowTy; 3558 } 3559 } 3560 3561 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3562 if (CondTy.isVector()) 3563 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3564 3565 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3566 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3567 3568 for (unsigned i = 0; i < NumParts; ++i) { 3569 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3570 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3571 Src1Regs[i], Src2Regs[i]); 3572 DstRegs.push_back(DstReg); 3573 } 3574 3575 if (NarrowTy0.isVector()) 3576 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3577 else 3578 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3579 3580 MI.eraseFromParent(); 3581 return Legalized; 3582 } 3583 3584 LegalizerHelper::LegalizeResult 3585 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3586 LLT NarrowTy) { 3587 const Register DstReg = MI.getOperand(0).getReg(); 3588 LLT PhiTy = MRI.getType(DstReg); 3589 LLT LeftoverTy; 3590 3591 // All of the operands need to have the same number of elements, so if we can 3592 // determine a type breakdown for the result type, we can for all of the 3593 // source types. 3594 int NumParts, NumLeftover; 3595 std::tie(NumParts, NumLeftover) 3596 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3597 if (NumParts < 0) 3598 return UnableToLegalize; 3599 3600 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3601 SmallVector<MachineInstrBuilder, 4> NewInsts; 3602 3603 const int TotalNumParts = NumParts + NumLeftover; 3604 3605 // Insert the new phis in the result block first. 3606 for (int I = 0; I != TotalNumParts; ++I) { 3607 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3608 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3609 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3610 .addDef(PartDstReg)); 3611 if (I < NumParts) 3612 DstRegs.push_back(PartDstReg); 3613 else 3614 LeftoverDstRegs.push_back(PartDstReg); 3615 } 3616 3617 MachineBasicBlock *MBB = MI.getParent(); 3618 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3619 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3620 3621 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3622 3623 // Insert code to extract the incoming values in each predecessor block. 3624 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3625 PartRegs.clear(); 3626 LeftoverRegs.clear(); 3627 3628 Register SrcReg = MI.getOperand(I).getReg(); 3629 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3630 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3631 3632 LLT Unused; 3633 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3634 LeftoverRegs)) 3635 return UnableToLegalize; 3636 3637 // Add the newly created operand splits to the existing instructions. The 3638 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3639 // pieces. 3640 for (int J = 0; J != TotalNumParts; ++J) { 3641 MachineInstrBuilder MIB = NewInsts[J]; 3642 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3643 MIB.addMBB(&OpMBB); 3644 } 3645 } 3646 3647 MI.eraseFromParent(); 3648 return Legalized; 3649 } 3650 3651 LegalizerHelper::LegalizeResult 3652 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3653 unsigned TypeIdx, 3654 LLT NarrowTy) { 3655 if (TypeIdx != 1) 3656 return UnableToLegalize; 3657 3658 const int NumDst = MI.getNumOperands() - 1; 3659 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3660 LLT SrcTy = MRI.getType(SrcReg); 3661 3662 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3663 3664 // TODO: Create sequence of extracts. 3665 if (DstTy == NarrowTy) 3666 return UnableToLegalize; 3667 3668 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3669 if (DstTy == GCDTy) { 3670 // This would just be a copy of the same unmerge. 3671 // TODO: Create extracts, pad with undef and create intermediate merges. 3672 return UnableToLegalize; 3673 } 3674 3675 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3676 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3677 const int PartsPerUnmerge = NumDst / NumUnmerge; 3678 3679 for (int I = 0; I != NumUnmerge; ++I) { 3680 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3681 3682 for (int J = 0; J != PartsPerUnmerge; ++J) 3683 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3684 MIB.addUse(Unmerge.getReg(I)); 3685 } 3686 3687 MI.eraseFromParent(); 3688 return Legalized; 3689 } 3690 3691 LegalizerHelper::LegalizeResult 3692 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3693 LLT NarrowTy) { 3694 Register Result = MI.getOperand(0).getReg(); 3695 Register Overflow = MI.getOperand(1).getReg(); 3696 Register LHS = MI.getOperand(2).getReg(); 3697 Register RHS = MI.getOperand(3).getReg(); 3698 3699 LLT SrcTy = MRI.getType(LHS); 3700 if (!SrcTy.isVector()) 3701 return UnableToLegalize; 3702 3703 LLT ElementType = SrcTy.getElementType(); 3704 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3705 const ElementCount NumResult = SrcTy.getElementCount(); 3706 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3707 3708 // Unmerge the operands to smaller parts of GCD type. 3709 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3710 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3711 3712 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3713 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3714 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3715 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3716 3717 // Perform the operation over unmerged parts. 3718 SmallVector<Register, 8> ResultParts; 3719 SmallVector<Register, 8> OverflowParts; 3720 for (int I = 0; I != NumOps; ++I) { 3721 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3722 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3723 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3724 {Operand1, Operand2}); 3725 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3726 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3727 } 3728 3729 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3730 LLT OverflowLCMTy = 3731 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 3732 3733 // Recombine the pieces to the original result and overflow registers. 3734 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3735 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3736 MI.eraseFromParent(); 3737 return Legalized; 3738 } 3739 3740 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3741 // a vector 3742 // 3743 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3744 // undef as necessary. 3745 // 3746 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3747 // -> <2 x s16> 3748 // 3749 // %4:_(s16) = G_IMPLICIT_DEF 3750 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3751 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3752 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3753 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3754 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3755 LegalizerHelper::LegalizeResult 3756 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3757 LLT NarrowTy) { 3758 Register DstReg = MI.getOperand(0).getReg(); 3759 LLT DstTy = MRI.getType(DstReg); 3760 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3761 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3762 3763 // Break into a common type 3764 SmallVector<Register, 16> Parts; 3765 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3766 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3767 3768 // Build the requested new merge, padding with undef. 3769 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3770 TargetOpcode::G_ANYEXT); 3771 3772 // Pack into the original result register. 3773 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3774 3775 MI.eraseFromParent(); 3776 return Legalized; 3777 } 3778 3779 LegalizerHelper::LegalizeResult 3780 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3781 unsigned TypeIdx, 3782 LLT NarrowVecTy) { 3783 Register DstReg = MI.getOperand(0).getReg(); 3784 Register SrcVec = MI.getOperand(1).getReg(); 3785 Register InsertVal; 3786 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3787 3788 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3789 if (IsInsert) 3790 InsertVal = MI.getOperand(2).getReg(); 3791 3792 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3793 3794 // TODO: Handle total scalarization case. 3795 if (!NarrowVecTy.isVector()) 3796 return UnableToLegalize; 3797 3798 LLT VecTy = MRI.getType(SrcVec); 3799 3800 // If the index is a constant, we can really break this down as you would 3801 // expect, and index into the target size pieces. 3802 int64_t IdxVal; 3803 auto MaybeCst = 3804 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 3805 /*HandleFConstants*/ false); 3806 if (MaybeCst) { 3807 IdxVal = MaybeCst->Value.getSExtValue(); 3808 // Avoid out of bounds indexing the pieces. 3809 if (IdxVal >= VecTy.getNumElements()) { 3810 MIRBuilder.buildUndef(DstReg); 3811 MI.eraseFromParent(); 3812 return Legalized; 3813 } 3814 3815 SmallVector<Register, 8> VecParts; 3816 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3817 3818 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3819 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3820 TargetOpcode::G_ANYEXT); 3821 3822 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3823 3824 LLT IdxTy = MRI.getType(Idx); 3825 int64_t PartIdx = IdxVal / NewNumElts; 3826 auto NewIdx = 3827 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3828 3829 if (IsInsert) { 3830 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3831 3832 // Use the adjusted index to insert into one of the subvectors. 3833 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3834 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3835 VecParts[PartIdx] = InsertPart.getReg(0); 3836 3837 // Recombine the inserted subvector with the others to reform the result 3838 // vector. 3839 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3840 } else { 3841 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3842 } 3843 3844 MI.eraseFromParent(); 3845 return Legalized; 3846 } 3847 3848 // With a variable index, we can't perform the operation in a smaller type, so 3849 // we're forced to expand this. 3850 // 3851 // TODO: We could emit a chain of compare/select to figure out which piece to 3852 // index. 3853 return lowerExtractInsertVectorElt(MI); 3854 } 3855 3856 LegalizerHelper::LegalizeResult 3857 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3858 LLT NarrowTy) { 3859 // FIXME: Don't know how to handle secondary types yet. 3860 if (TypeIdx != 0) 3861 return UnableToLegalize; 3862 3863 MachineMemOperand *MMO = *MI.memoperands_begin(); 3864 3865 // This implementation doesn't work for atomics. Give up instead of doing 3866 // something invalid. 3867 if (MMO->isAtomic()) 3868 return UnableToLegalize; 3869 3870 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3871 Register ValReg = MI.getOperand(0).getReg(); 3872 Register AddrReg = MI.getOperand(1).getReg(); 3873 LLT ValTy = MRI.getType(ValReg); 3874 3875 // FIXME: Do we need a distinct NarrowMemory legalize action? 3876 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3877 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3878 return UnableToLegalize; 3879 } 3880 3881 int NumParts = -1; 3882 int NumLeftover = -1; 3883 LLT LeftoverTy; 3884 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3885 if (IsLoad) { 3886 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3887 } else { 3888 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3889 NarrowLeftoverRegs)) { 3890 NumParts = NarrowRegs.size(); 3891 NumLeftover = NarrowLeftoverRegs.size(); 3892 } 3893 } 3894 3895 if (NumParts == -1) 3896 return UnableToLegalize; 3897 3898 LLT PtrTy = MRI.getType(AddrReg); 3899 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3900 3901 unsigned TotalSize = ValTy.getSizeInBits(); 3902 3903 // Split the load/store into PartTy sized pieces starting at Offset. If this 3904 // is a load, return the new registers in ValRegs. For a store, each elements 3905 // of ValRegs should be PartTy. Returns the next offset that needs to be 3906 // handled. 3907 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3908 unsigned Offset) -> unsigned { 3909 MachineFunction &MF = MIRBuilder.getMF(); 3910 unsigned PartSize = PartTy.getSizeInBits(); 3911 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3912 Offset += PartSize, ++Idx) { 3913 unsigned ByteSize = PartSize / 8; 3914 unsigned ByteOffset = Offset / 8; 3915 Register NewAddrReg; 3916 3917 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3918 3919 MachineMemOperand *NewMMO = 3920 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3921 3922 if (IsLoad) { 3923 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3924 ValRegs.push_back(Dst); 3925 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3926 } else { 3927 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3928 } 3929 } 3930 3931 return Offset; 3932 }; 3933 3934 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3935 3936 // Handle the rest of the register if this isn't an even type breakdown. 3937 if (LeftoverTy.isValid()) 3938 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3939 3940 if (IsLoad) { 3941 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3942 LeftoverTy, NarrowLeftoverRegs); 3943 } 3944 3945 MI.eraseFromParent(); 3946 return Legalized; 3947 } 3948 3949 LegalizerHelper::LegalizeResult 3950 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3951 LLT NarrowTy) { 3952 assert(TypeIdx == 0 && "only one type index expected"); 3953 3954 const unsigned Opc = MI.getOpcode(); 3955 const int NumDefOps = MI.getNumExplicitDefs(); 3956 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 3957 const unsigned Flags = MI.getFlags(); 3958 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3959 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3960 3961 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 3962 "result and 1-3 sources or 2 results and " 3963 "1-2 sources"); 3964 3965 SmallVector<Register, 2> DstRegs; 3966 for (int I = 0; I < NumDefOps; ++I) 3967 DstRegs.push_back(MI.getOperand(I).getReg()); 3968 3969 // First of all check whether we are narrowing (changing the element type) 3970 // or reducing the vector elements 3971 const LLT DstTy = MRI.getType(DstRegs[0]); 3972 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3973 3974 SmallVector<Register, 8> ExtractedRegs[3]; 3975 SmallVector<Register, 8> Parts; 3976 3977 // Break down all the sources into NarrowTy pieces we can operate on. This may 3978 // involve creating merges to a wider type, padded with undef. 3979 for (int I = 0; I != NumSrcOps; ++I) { 3980 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 3981 LLT SrcTy = MRI.getType(SrcReg); 3982 3983 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3984 // For fewerElements, this is a smaller vector with the same element type. 3985 LLT OpNarrowTy; 3986 if (IsNarrow) { 3987 OpNarrowTy = NarrowScalarTy; 3988 3989 // In case of narrowing, we need to cast vectors to scalars for this to 3990 // work properly 3991 // FIXME: Can we do without the bitcast here if we're narrowing? 3992 if (SrcTy.isVector()) { 3993 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3994 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3995 } 3996 } else { 3997 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 3998 : ElementCount::getFixed(1); 3999 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4000 } 4001 4002 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4003 4004 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4005 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4006 TargetOpcode::G_ANYEXT); 4007 } 4008 4009 SmallVector<Register, 8> ResultRegs[2]; 4010 4011 // Input operands for each sub-instruction. 4012 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4013 4014 int NumParts = ExtractedRegs[0].size(); 4015 const unsigned DstSize = DstTy.getSizeInBits(); 4016 const LLT DstScalarTy = LLT::scalar(DstSize); 4017 4018 // Narrowing needs to use scalar types 4019 LLT DstLCMTy, NarrowDstTy; 4020 if (IsNarrow) { 4021 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4022 NarrowDstTy = NarrowScalarTy; 4023 } else { 4024 DstLCMTy = getLCMType(DstTy, NarrowTy); 4025 NarrowDstTy = NarrowTy; 4026 } 4027 4028 // We widened the source registers to satisfy merge/unmerge size 4029 // constraints. We'll have some extra fully undef parts. 4030 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4031 4032 for (int I = 0; I != NumRealParts; ++I) { 4033 // Emit this instruction on each of the split pieces. 4034 for (int J = 0; J != NumSrcOps; ++J) 4035 InputRegs[J] = ExtractedRegs[J][I]; 4036 4037 MachineInstrBuilder Inst; 4038 if (NumDefOps == 1) 4039 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4040 else 4041 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4042 Flags); 4043 4044 for (int J = 0; J != NumDefOps; ++J) 4045 ResultRegs[J].push_back(Inst.getReg(J)); 4046 } 4047 4048 // Fill out the widened result with undef instead of creating instructions 4049 // with undef inputs. 4050 int NumUndefParts = NumParts - NumRealParts; 4051 if (NumUndefParts != 0) { 4052 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4053 for (int I = 0; I != NumDefOps; ++I) 4054 ResultRegs[I].append(NumUndefParts, Undef); 4055 } 4056 4057 // Extract the possibly padded result. Use a scratch register if we need to do 4058 // a final bitcast, otherwise use the original result register. 4059 Register MergeDstReg; 4060 for (int I = 0; I != NumDefOps; ++I) { 4061 if (IsNarrow && DstTy.isVector()) 4062 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4063 else 4064 MergeDstReg = DstRegs[I]; 4065 4066 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4067 4068 // Recast to vector if we narrowed a vector 4069 if (IsNarrow && DstTy.isVector()) 4070 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4071 } 4072 4073 MI.eraseFromParent(); 4074 return Legalized; 4075 } 4076 4077 LegalizerHelper::LegalizeResult 4078 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4079 LLT NarrowTy) { 4080 Register DstReg = MI.getOperand(0).getReg(); 4081 Register SrcReg = MI.getOperand(1).getReg(); 4082 int64_t Imm = MI.getOperand(2).getImm(); 4083 4084 LLT DstTy = MRI.getType(DstReg); 4085 4086 SmallVector<Register, 8> Parts; 4087 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4088 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4089 4090 for (Register &R : Parts) 4091 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4092 4093 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4094 4095 MI.eraseFromParent(); 4096 return Legalized; 4097 } 4098 4099 LegalizerHelper::LegalizeResult 4100 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4101 LLT NarrowTy) { 4102 using namespace TargetOpcode; 4103 4104 switch (MI.getOpcode()) { 4105 case G_IMPLICIT_DEF: 4106 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4107 case G_TRUNC: 4108 case G_AND: 4109 case G_OR: 4110 case G_XOR: 4111 case G_ADD: 4112 case G_SUB: 4113 case G_MUL: 4114 case G_PTR_ADD: 4115 case G_SMULH: 4116 case G_UMULH: 4117 case G_FADD: 4118 case G_FMUL: 4119 case G_FSUB: 4120 case G_FNEG: 4121 case G_FABS: 4122 case G_FCANONICALIZE: 4123 case G_FDIV: 4124 case G_FREM: 4125 case G_FMA: 4126 case G_FMAD: 4127 case G_FPOW: 4128 case G_FEXP: 4129 case G_FEXP2: 4130 case G_FLOG: 4131 case G_FLOG2: 4132 case G_FLOG10: 4133 case G_FNEARBYINT: 4134 case G_FCEIL: 4135 case G_FFLOOR: 4136 case G_FRINT: 4137 case G_INTRINSIC_ROUND: 4138 case G_INTRINSIC_ROUNDEVEN: 4139 case G_INTRINSIC_TRUNC: 4140 case G_FCOS: 4141 case G_FSIN: 4142 case G_FSQRT: 4143 case G_BSWAP: 4144 case G_BITREVERSE: 4145 case G_SDIV: 4146 case G_UDIV: 4147 case G_SREM: 4148 case G_UREM: 4149 case G_SDIVREM: 4150 case G_UDIVREM: 4151 case G_SMIN: 4152 case G_SMAX: 4153 case G_UMIN: 4154 case G_UMAX: 4155 case G_ABS: 4156 case G_FMINNUM: 4157 case G_FMAXNUM: 4158 case G_FMINNUM_IEEE: 4159 case G_FMAXNUM_IEEE: 4160 case G_FMINIMUM: 4161 case G_FMAXIMUM: 4162 case G_FSHL: 4163 case G_FSHR: 4164 case G_FREEZE: 4165 case G_SADDSAT: 4166 case G_SSUBSAT: 4167 case G_UADDSAT: 4168 case G_USUBSAT: 4169 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4170 case G_UMULO: 4171 case G_SMULO: 4172 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4173 case G_SHL: 4174 case G_LSHR: 4175 case G_ASHR: 4176 case G_SSHLSAT: 4177 case G_USHLSAT: 4178 case G_CTLZ: 4179 case G_CTLZ_ZERO_UNDEF: 4180 case G_CTTZ: 4181 case G_CTTZ_ZERO_UNDEF: 4182 case G_CTPOP: 4183 case G_FCOPYSIGN: 4184 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4185 case G_ZEXT: 4186 case G_SEXT: 4187 case G_ANYEXT: 4188 case G_FPEXT: 4189 case G_FPTRUNC: 4190 case G_SITOFP: 4191 case G_UITOFP: 4192 case G_FPTOSI: 4193 case G_FPTOUI: 4194 case G_INTTOPTR: 4195 case G_PTRTOINT: 4196 case G_ADDRSPACE_CAST: 4197 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4198 case G_ICMP: 4199 case G_FCMP: 4200 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4201 case G_SELECT: 4202 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4203 case G_PHI: 4204 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4205 case G_UNMERGE_VALUES: 4206 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4207 case G_BUILD_VECTOR: 4208 assert(TypeIdx == 0 && "not a vector type index"); 4209 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4210 case G_CONCAT_VECTORS: 4211 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4212 return UnableToLegalize; 4213 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4214 case G_EXTRACT_VECTOR_ELT: 4215 case G_INSERT_VECTOR_ELT: 4216 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4217 case G_LOAD: 4218 case G_STORE: 4219 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4220 case G_SEXT_INREG: 4221 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4222 GISEL_VECREDUCE_CASES_NONSEQ 4223 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4224 case G_SHUFFLE_VECTOR: 4225 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4226 default: 4227 return UnableToLegalize; 4228 } 4229 } 4230 4231 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4232 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4233 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4234 if (TypeIdx != 0) 4235 return UnableToLegalize; 4236 4237 Register DstReg = MI.getOperand(0).getReg(); 4238 Register Src1Reg = MI.getOperand(1).getReg(); 4239 Register Src2Reg = MI.getOperand(2).getReg(); 4240 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4241 LLT DstTy = MRI.getType(DstReg); 4242 LLT Src1Ty = MRI.getType(Src1Reg); 4243 LLT Src2Ty = MRI.getType(Src2Reg); 4244 // The shuffle should be canonicalized by now. 4245 if (DstTy != Src1Ty) 4246 return UnableToLegalize; 4247 if (DstTy != Src2Ty) 4248 return UnableToLegalize; 4249 4250 if (!isPowerOf2_32(DstTy.getNumElements())) 4251 return UnableToLegalize; 4252 4253 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4254 // Further legalization attempts will be needed to do split further. 4255 NarrowTy = 4256 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4257 unsigned NewElts = NarrowTy.getNumElements(); 4258 4259 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4260 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4261 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4262 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4263 SplitSrc2Regs[1]}; 4264 4265 Register Hi, Lo; 4266 4267 // If Lo or Hi uses elements from at most two of the four input vectors, then 4268 // express it as a vector shuffle of those two inputs. Otherwise extract the 4269 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4270 SmallVector<int, 16> Ops; 4271 for (unsigned High = 0; High < 2; ++High) { 4272 Register &Output = High ? Hi : Lo; 4273 4274 // Build a shuffle mask for the output, discovering on the fly which 4275 // input vectors to use as shuffle operands (recorded in InputUsed). 4276 // If building a suitable shuffle vector proves too hard, then bail 4277 // out with useBuildVector set. 4278 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4279 unsigned FirstMaskIdx = High * NewElts; 4280 bool UseBuildVector = false; 4281 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4282 // The mask element. This indexes into the input. 4283 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4284 4285 // The input vector this mask element indexes into. 4286 unsigned Input = (unsigned)Idx / NewElts; 4287 4288 if (Input >= array_lengthof(Inputs)) { 4289 // The mask element does not index into any input vector. 4290 Ops.push_back(-1); 4291 continue; 4292 } 4293 4294 // Turn the index into an offset from the start of the input vector. 4295 Idx -= Input * NewElts; 4296 4297 // Find or create a shuffle vector operand to hold this input. 4298 unsigned OpNo; 4299 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4300 if (InputUsed[OpNo] == Input) { 4301 // This input vector is already an operand. 4302 break; 4303 } else if (InputUsed[OpNo] == -1U) { 4304 // Create a new operand for this input vector. 4305 InputUsed[OpNo] = Input; 4306 break; 4307 } 4308 } 4309 4310 if (OpNo >= array_lengthof(InputUsed)) { 4311 // More than two input vectors used! Give up on trying to create a 4312 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4313 UseBuildVector = true; 4314 break; 4315 } 4316 4317 // Add the mask index for the new shuffle vector. 4318 Ops.push_back(Idx + OpNo * NewElts); 4319 } 4320 4321 if (UseBuildVector) { 4322 LLT EltTy = NarrowTy.getElementType(); 4323 SmallVector<Register, 16> SVOps; 4324 4325 // Extract the input elements by hand. 4326 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4327 // The mask element. This indexes into the input. 4328 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4329 4330 // The input vector this mask element indexes into. 4331 unsigned Input = (unsigned)Idx / NewElts; 4332 4333 if (Input >= array_lengthof(Inputs)) { 4334 // The mask element is "undef" or indexes off the end of the input. 4335 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4336 continue; 4337 } 4338 4339 // Turn the index into an offset from the start of the input vector. 4340 Idx -= Input * NewElts; 4341 4342 // Extract the vector element by hand. 4343 SVOps.push_back(MIRBuilder 4344 .buildExtractVectorElement( 4345 EltTy, Inputs[Input], 4346 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4347 .getReg(0)); 4348 } 4349 4350 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4351 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4352 } else if (InputUsed[0] == -1U) { 4353 // No input vectors were used! The result is undefined. 4354 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4355 } else { 4356 Register Op0 = Inputs[InputUsed[0]]; 4357 // If only one input was used, use an undefined vector for the other. 4358 Register Op1 = InputUsed[1] == -1U 4359 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4360 : Inputs[InputUsed[1]]; 4361 // At least one input vector was used. Create a new shuffle vector. 4362 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4363 } 4364 4365 Ops.clear(); 4366 } 4367 4368 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4369 MI.eraseFromParent(); 4370 return Legalized; 4371 } 4372 4373 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4374 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4375 unsigned Opc = MI.getOpcode(); 4376 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4377 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4378 "Sequential reductions not expected"); 4379 4380 if (TypeIdx != 1) 4381 return UnableToLegalize; 4382 4383 // The semantics of the normal non-sequential reductions allow us to freely 4384 // re-associate the operation. 4385 Register SrcReg = MI.getOperand(1).getReg(); 4386 LLT SrcTy = MRI.getType(SrcReg); 4387 Register DstReg = MI.getOperand(0).getReg(); 4388 LLT DstTy = MRI.getType(DstReg); 4389 4390 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4391 return UnableToLegalize; 4392 4393 SmallVector<Register> SplitSrcs; 4394 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4395 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4396 SmallVector<Register> PartialReductions; 4397 for (unsigned Part = 0; Part < NumParts; ++Part) { 4398 PartialReductions.push_back( 4399 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4400 } 4401 4402 unsigned ScalarOpc; 4403 switch (Opc) { 4404 case TargetOpcode::G_VECREDUCE_FADD: 4405 ScalarOpc = TargetOpcode::G_FADD; 4406 break; 4407 case TargetOpcode::G_VECREDUCE_FMUL: 4408 ScalarOpc = TargetOpcode::G_FMUL; 4409 break; 4410 case TargetOpcode::G_VECREDUCE_FMAX: 4411 ScalarOpc = TargetOpcode::G_FMAXNUM; 4412 break; 4413 case TargetOpcode::G_VECREDUCE_FMIN: 4414 ScalarOpc = TargetOpcode::G_FMINNUM; 4415 break; 4416 case TargetOpcode::G_VECREDUCE_ADD: 4417 ScalarOpc = TargetOpcode::G_ADD; 4418 break; 4419 case TargetOpcode::G_VECREDUCE_MUL: 4420 ScalarOpc = TargetOpcode::G_MUL; 4421 break; 4422 case TargetOpcode::G_VECREDUCE_AND: 4423 ScalarOpc = TargetOpcode::G_AND; 4424 break; 4425 case TargetOpcode::G_VECREDUCE_OR: 4426 ScalarOpc = TargetOpcode::G_OR; 4427 break; 4428 case TargetOpcode::G_VECREDUCE_XOR: 4429 ScalarOpc = TargetOpcode::G_XOR; 4430 break; 4431 case TargetOpcode::G_VECREDUCE_SMAX: 4432 ScalarOpc = TargetOpcode::G_SMAX; 4433 break; 4434 case TargetOpcode::G_VECREDUCE_SMIN: 4435 ScalarOpc = TargetOpcode::G_SMIN; 4436 break; 4437 case TargetOpcode::G_VECREDUCE_UMAX: 4438 ScalarOpc = TargetOpcode::G_UMAX; 4439 break; 4440 case TargetOpcode::G_VECREDUCE_UMIN: 4441 ScalarOpc = TargetOpcode::G_UMIN; 4442 break; 4443 default: 4444 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4445 return UnableToLegalize; 4446 } 4447 4448 // If the types involved are powers of 2, we can generate intermediate vector 4449 // ops, before generating a final reduction operation. 4450 if (isPowerOf2_32(SrcTy.getNumElements()) && 4451 isPowerOf2_32(NarrowTy.getNumElements())) { 4452 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4453 } 4454 4455 Register Acc = PartialReductions[0]; 4456 for (unsigned Part = 1; Part < NumParts; ++Part) { 4457 if (Part == NumParts - 1) { 4458 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4459 {Acc, PartialReductions[Part]}); 4460 } else { 4461 Acc = MIRBuilder 4462 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4463 .getReg(0); 4464 } 4465 } 4466 MI.eraseFromParent(); 4467 return Legalized; 4468 } 4469 4470 LegalizerHelper::LegalizeResult 4471 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4472 LLT SrcTy, LLT NarrowTy, 4473 unsigned ScalarOpc) { 4474 SmallVector<Register> SplitSrcs; 4475 // Split the sources into NarrowTy size pieces. 4476 extractParts(SrcReg, NarrowTy, 4477 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4478 // We're going to do a tree reduction using vector operations until we have 4479 // one NarrowTy size value left. 4480 while (SplitSrcs.size() > 1) { 4481 SmallVector<Register> PartialRdxs; 4482 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4483 Register LHS = SplitSrcs[Idx]; 4484 Register RHS = SplitSrcs[Idx + 1]; 4485 // Create the intermediate vector op. 4486 Register Res = 4487 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4488 PartialRdxs.push_back(Res); 4489 } 4490 SplitSrcs = std::move(PartialRdxs); 4491 } 4492 // Finally generate the requested NarrowTy based reduction. 4493 Observer.changingInstr(MI); 4494 MI.getOperand(1).setReg(SplitSrcs[0]); 4495 Observer.changedInstr(MI); 4496 return Legalized; 4497 } 4498 4499 LegalizerHelper::LegalizeResult 4500 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4501 const LLT HalfTy, const LLT AmtTy) { 4502 4503 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4504 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4505 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4506 4507 if (Amt.isNullValue()) { 4508 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4509 MI.eraseFromParent(); 4510 return Legalized; 4511 } 4512 4513 LLT NVT = HalfTy; 4514 unsigned NVTBits = HalfTy.getSizeInBits(); 4515 unsigned VTBits = 2 * NVTBits; 4516 4517 SrcOp Lo(Register(0)), Hi(Register(0)); 4518 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4519 if (Amt.ugt(VTBits)) { 4520 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4521 } else if (Amt.ugt(NVTBits)) { 4522 Lo = MIRBuilder.buildConstant(NVT, 0); 4523 Hi = MIRBuilder.buildShl(NVT, InL, 4524 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4525 } else if (Amt == NVTBits) { 4526 Lo = MIRBuilder.buildConstant(NVT, 0); 4527 Hi = InL; 4528 } else { 4529 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4530 auto OrLHS = 4531 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4532 auto OrRHS = MIRBuilder.buildLShr( 4533 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4534 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4535 } 4536 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4537 if (Amt.ugt(VTBits)) { 4538 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4539 } else if (Amt.ugt(NVTBits)) { 4540 Lo = MIRBuilder.buildLShr(NVT, InH, 4541 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4542 Hi = MIRBuilder.buildConstant(NVT, 0); 4543 } else if (Amt == NVTBits) { 4544 Lo = InH; 4545 Hi = MIRBuilder.buildConstant(NVT, 0); 4546 } else { 4547 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4548 4549 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4550 auto OrRHS = MIRBuilder.buildShl( 4551 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4552 4553 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4554 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4555 } 4556 } else { 4557 if (Amt.ugt(VTBits)) { 4558 Hi = Lo = MIRBuilder.buildAShr( 4559 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4560 } else if (Amt.ugt(NVTBits)) { 4561 Lo = MIRBuilder.buildAShr(NVT, InH, 4562 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4563 Hi = MIRBuilder.buildAShr(NVT, InH, 4564 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4565 } else if (Amt == NVTBits) { 4566 Lo = InH; 4567 Hi = MIRBuilder.buildAShr(NVT, InH, 4568 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4569 } else { 4570 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4571 4572 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4573 auto OrRHS = MIRBuilder.buildShl( 4574 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4575 4576 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4577 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4578 } 4579 } 4580 4581 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4582 MI.eraseFromParent(); 4583 4584 return Legalized; 4585 } 4586 4587 // TODO: Optimize if constant shift amount. 4588 LegalizerHelper::LegalizeResult 4589 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4590 LLT RequestedTy) { 4591 if (TypeIdx == 1) { 4592 Observer.changingInstr(MI); 4593 narrowScalarSrc(MI, RequestedTy, 2); 4594 Observer.changedInstr(MI); 4595 return Legalized; 4596 } 4597 4598 Register DstReg = MI.getOperand(0).getReg(); 4599 LLT DstTy = MRI.getType(DstReg); 4600 if (DstTy.isVector()) 4601 return UnableToLegalize; 4602 4603 Register Amt = MI.getOperand(2).getReg(); 4604 LLT ShiftAmtTy = MRI.getType(Amt); 4605 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4606 if (DstEltSize % 2 != 0) 4607 return UnableToLegalize; 4608 4609 // Ignore the input type. We can only go to exactly half the size of the 4610 // input. If that isn't small enough, the resulting pieces will be further 4611 // legalized. 4612 const unsigned NewBitSize = DstEltSize / 2; 4613 const LLT HalfTy = LLT::scalar(NewBitSize); 4614 const LLT CondTy = LLT::scalar(1); 4615 4616 if (const MachineInstr *KShiftAmt = 4617 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4618 return narrowScalarShiftByConstant( 4619 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4620 } 4621 4622 // TODO: Expand with known bits. 4623 4624 // Handle the fully general expansion by an unknown amount. 4625 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4626 4627 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4628 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4629 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4630 4631 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4632 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4633 4634 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4635 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4636 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4637 4638 Register ResultRegs[2]; 4639 switch (MI.getOpcode()) { 4640 case TargetOpcode::G_SHL: { 4641 // Short: ShAmt < NewBitSize 4642 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4643 4644 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4645 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4646 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4647 4648 // Long: ShAmt >= NewBitSize 4649 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4650 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4651 4652 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4653 auto Hi = MIRBuilder.buildSelect( 4654 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4655 4656 ResultRegs[0] = Lo.getReg(0); 4657 ResultRegs[1] = Hi.getReg(0); 4658 break; 4659 } 4660 case TargetOpcode::G_LSHR: 4661 case TargetOpcode::G_ASHR: { 4662 // Short: ShAmt < NewBitSize 4663 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4664 4665 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4666 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4667 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4668 4669 // Long: ShAmt >= NewBitSize 4670 MachineInstrBuilder HiL; 4671 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4672 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4673 } else { 4674 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4675 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4676 } 4677 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4678 {InH, AmtExcess}); // Lo from Hi part. 4679 4680 auto Lo = MIRBuilder.buildSelect( 4681 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4682 4683 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4684 4685 ResultRegs[0] = Lo.getReg(0); 4686 ResultRegs[1] = Hi.getReg(0); 4687 break; 4688 } 4689 default: 4690 llvm_unreachable("not a shift"); 4691 } 4692 4693 MIRBuilder.buildMerge(DstReg, ResultRegs); 4694 MI.eraseFromParent(); 4695 return Legalized; 4696 } 4697 4698 LegalizerHelper::LegalizeResult 4699 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4700 LLT MoreTy) { 4701 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4702 4703 Observer.changingInstr(MI); 4704 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4705 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4706 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4707 moreElementsVectorSrc(MI, MoreTy, I); 4708 } 4709 4710 MachineBasicBlock &MBB = *MI.getParent(); 4711 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4712 moreElementsVectorDst(MI, MoreTy, 0); 4713 Observer.changedInstr(MI); 4714 return Legalized; 4715 } 4716 4717 LegalizerHelper::LegalizeResult 4718 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4719 LLT MoreTy) { 4720 unsigned Opc = MI.getOpcode(); 4721 switch (Opc) { 4722 case TargetOpcode::G_IMPLICIT_DEF: 4723 case TargetOpcode::G_LOAD: { 4724 if (TypeIdx != 0) 4725 return UnableToLegalize; 4726 Observer.changingInstr(MI); 4727 moreElementsVectorDst(MI, MoreTy, 0); 4728 Observer.changedInstr(MI); 4729 return Legalized; 4730 } 4731 case TargetOpcode::G_STORE: 4732 if (TypeIdx != 0) 4733 return UnableToLegalize; 4734 Observer.changingInstr(MI); 4735 moreElementsVectorSrc(MI, MoreTy, 0); 4736 Observer.changedInstr(MI); 4737 return Legalized; 4738 case TargetOpcode::G_AND: 4739 case TargetOpcode::G_OR: 4740 case TargetOpcode::G_XOR: 4741 case TargetOpcode::G_SMIN: 4742 case TargetOpcode::G_SMAX: 4743 case TargetOpcode::G_UMIN: 4744 case TargetOpcode::G_UMAX: 4745 case TargetOpcode::G_FMINNUM: 4746 case TargetOpcode::G_FMAXNUM: 4747 case TargetOpcode::G_FMINNUM_IEEE: 4748 case TargetOpcode::G_FMAXNUM_IEEE: 4749 case TargetOpcode::G_FMINIMUM: 4750 case TargetOpcode::G_FMAXIMUM: { 4751 Observer.changingInstr(MI); 4752 moreElementsVectorSrc(MI, MoreTy, 1); 4753 moreElementsVectorSrc(MI, MoreTy, 2); 4754 moreElementsVectorDst(MI, MoreTy, 0); 4755 Observer.changedInstr(MI); 4756 return Legalized; 4757 } 4758 case TargetOpcode::G_EXTRACT: 4759 if (TypeIdx != 1) 4760 return UnableToLegalize; 4761 Observer.changingInstr(MI); 4762 moreElementsVectorSrc(MI, MoreTy, 1); 4763 Observer.changedInstr(MI); 4764 return Legalized; 4765 case TargetOpcode::G_INSERT: 4766 case TargetOpcode::G_FREEZE: 4767 if (TypeIdx != 0) 4768 return UnableToLegalize; 4769 Observer.changingInstr(MI); 4770 moreElementsVectorSrc(MI, MoreTy, 1); 4771 moreElementsVectorDst(MI, MoreTy, 0); 4772 Observer.changedInstr(MI); 4773 return Legalized; 4774 case TargetOpcode::G_SELECT: 4775 if (TypeIdx != 0) 4776 return UnableToLegalize; 4777 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4778 return UnableToLegalize; 4779 4780 Observer.changingInstr(MI); 4781 moreElementsVectorSrc(MI, MoreTy, 2); 4782 moreElementsVectorSrc(MI, MoreTy, 3); 4783 moreElementsVectorDst(MI, MoreTy, 0); 4784 Observer.changedInstr(MI); 4785 return Legalized; 4786 case TargetOpcode::G_UNMERGE_VALUES: { 4787 if (TypeIdx != 1) 4788 return UnableToLegalize; 4789 4790 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4791 int NumDst = MI.getNumOperands() - 1; 4792 moreElementsVectorSrc(MI, MoreTy, NumDst); 4793 4794 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4795 for (int I = 0; I != NumDst; ++I) 4796 MIB.addDef(MI.getOperand(I).getReg()); 4797 4798 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4799 for (int I = NumDst; I != NewNumDst; ++I) 4800 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4801 4802 MIB.addUse(MI.getOperand(NumDst).getReg()); 4803 MI.eraseFromParent(); 4804 return Legalized; 4805 } 4806 case TargetOpcode::G_PHI: 4807 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4808 default: 4809 return UnableToLegalize; 4810 } 4811 } 4812 4813 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4814 ArrayRef<Register> Src1Regs, 4815 ArrayRef<Register> Src2Regs, 4816 LLT NarrowTy) { 4817 MachineIRBuilder &B = MIRBuilder; 4818 unsigned SrcParts = Src1Regs.size(); 4819 unsigned DstParts = DstRegs.size(); 4820 4821 unsigned DstIdx = 0; // Low bits of the result. 4822 Register FactorSum = 4823 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4824 DstRegs[DstIdx] = FactorSum; 4825 4826 unsigned CarrySumPrevDstIdx; 4827 SmallVector<Register, 4> Factors; 4828 4829 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4830 // Collect low parts of muls for DstIdx. 4831 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4832 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4833 MachineInstrBuilder Mul = 4834 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4835 Factors.push_back(Mul.getReg(0)); 4836 } 4837 // Collect high parts of muls from previous DstIdx. 4838 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4839 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4840 MachineInstrBuilder Umulh = 4841 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4842 Factors.push_back(Umulh.getReg(0)); 4843 } 4844 // Add CarrySum from additions calculated for previous DstIdx. 4845 if (DstIdx != 1) { 4846 Factors.push_back(CarrySumPrevDstIdx); 4847 } 4848 4849 Register CarrySum; 4850 // Add all factors and accumulate all carries into CarrySum. 4851 if (DstIdx != DstParts - 1) { 4852 MachineInstrBuilder Uaddo = 4853 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4854 FactorSum = Uaddo.getReg(0); 4855 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4856 for (unsigned i = 2; i < Factors.size(); ++i) { 4857 MachineInstrBuilder Uaddo = 4858 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4859 FactorSum = Uaddo.getReg(0); 4860 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4861 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4862 } 4863 } else { 4864 // Since value for the next index is not calculated, neither is CarrySum. 4865 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4866 for (unsigned i = 2; i < Factors.size(); ++i) 4867 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4868 } 4869 4870 CarrySumPrevDstIdx = CarrySum; 4871 DstRegs[DstIdx] = FactorSum; 4872 Factors.clear(); 4873 } 4874 } 4875 4876 LegalizerHelper::LegalizeResult 4877 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4878 LLT NarrowTy) { 4879 if (TypeIdx != 0) 4880 return UnableToLegalize; 4881 4882 Register DstReg = MI.getOperand(0).getReg(); 4883 LLT DstType = MRI.getType(DstReg); 4884 // FIXME: add support for vector types 4885 if (DstType.isVector()) 4886 return UnableToLegalize; 4887 4888 unsigned Opcode = MI.getOpcode(); 4889 unsigned OpO, OpE, OpF; 4890 switch (Opcode) { 4891 case TargetOpcode::G_SADDO: 4892 case TargetOpcode::G_SADDE: 4893 case TargetOpcode::G_UADDO: 4894 case TargetOpcode::G_UADDE: 4895 case TargetOpcode::G_ADD: 4896 OpO = TargetOpcode::G_UADDO; 4897 OpE = TargetOpcode::G_UADDE; 4898 OpF = TargetOpcode::G_UADDE; 4899 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4900 OpF = TargetOpcode::G_SADDE; 4901 break; 4902 case TargetOpcode::G_SSUBO: 4903 case TargetOpcode::G_SSUBE: 4904 case TargetOpcode::G_USUBO: 4905 case TargetOpcode::G_USUBE: 4906 case TargetOpcode::G_SUB: 4907 OpO = TargetOpcode::G_USUBO; 4908 OpE = TargetOpcode::G_USUBE; 4909 OpF = TargetOpcode::G_USUBE; 4910 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4911 OpF = TargetOpcode::G_SSUBE; 4912 break; 4913 default: 4914 llvm_unreachable("Unexpected add/sub opcode!"); 4915 } 4916 4917 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4918 unsigned NumDefs = MI.getNumExplicitDefs(); 4919 Register Src1 = MI.getOperand(NumDefs).getReg(); 4920 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4921 Register CarryDst, CarryIn; 4922 if (NumDefs == 2) 4923 CarryDst = MI.getOperand(1).getReg(); 4924 if (MI.getNumOperands() == NumDefs + 3) 4925 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4926 4927 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 4928 LLT LeftoverTy, DummyTy; 4929 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 4930 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 4931 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 4932 4933 int NarrowParts = Src1Regs.size(); 4934 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 4935 Src1Regs.push_back(Src1Left[I]); 4936 Src2Regs.push_back(Src2Left[I]); 4937 } 4938 DstRegs.reserve(Src1Regs.size()); 4939 4940 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 4941 Register DstReg = 4942 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 4943 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4944 // Forward the final carry-out to the destination register 4945 if (i == e - 1 && CarryDst) 4946 CarryOut = CarryDst; 4947 4948 if (!CarryIn) { 4949 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4950 {Src1Regs[i], Src2Regs[i]}); 4951 } else if (i == e - 1) { 4952 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4953 {Src1Regs[i], Src2Regs[i], CarryIn}); 4954 } else { 4955 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4956 {Src1Regs[i], Src2Regs[i], CarryIn}); 4957 } 4958 4959 DstRegs.push_back(DstReg); 4960 CarryIn = CarryOut; 4961 } 4962 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 4963 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 4964 makeArrayRef(DstRegs).drop_front(NarrowParts)); 4965 4966 MI.eraseFromParent(); 4967 return Legalized; 4968 } 4969 4970 LegalizerHelper::LegalizeResult 4971 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4972 Register DstReg = MI.getOperand(0).getReg(); 4973 Register Src1 = MI.getOperand(1).getReg(); 4974 Register Src2 = MI.getOperand(2).getReg(); 4975 4976 LLT Ty = MRI.getType(DstReg); 4977 if (Ty.isVector()) 4978 return UnableToLegalize; 4979 4980 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4981 unsigned DstSize = Ty.getSizeInBits(); 4982 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4983 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4984 return UnableToLegalize; 4985 4986 unsigned NumDstParts = DstSize / NarrowSize; 4987 unsigned NumSrcParts = SrcSize / NarrowSize; 4988 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4989 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4990 4991 SmallVector<Register, 2> Src1Parts, Src2Parts; 4992 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4993 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4994 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4995 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4996 4997 // Take only high half of registers if this is high mul. 4998 ArrayRef<Register> DstRegs( 4999 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5000 MIRBuilder.buildMerge(DstReg, DstRegs); 5001 MI.eraseFromParent(); 5002 return Legalized; 5003 } 5004 5005 LegalizerHelper::LegalizeResult 5006 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5007 LLT NarrowTy) { 5008 if (TypeIdx != 0) 5009 return UnableToLegalize; 5010 5011 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5012 5013 Register Src = MI.getOperand(1).getReg(); 5014 LLT SrcTy = MRI.getType(Src); 5015 5016 // If all finite floats fit into the narrowed integer type, we can just swap 5017 // out the result type. This is practically only useful for conversions from 5018 // half to at least 16-bits, so just handle the one case. 5019 if (SrcTy.getScalarType() != LLT::scalar(16) || 5020 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5021 return UnableToLegalize; 5022 5023 Observer.changingInstr(MI); 5024 narrowScalarDst(MI, NarrowTy, 0, 5025 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5026 Observer.changedInstr(MI); 5027 return Legalized; 5028 } 5029 5030 LegalizerHelper::LegalizeResult 5031 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5032 LLT NarrowTy) { 5033 if (TypeIdx != 1) 5034 return UnableToLegalize; 5035 5036 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5037 5038 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5039 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5040 // NarrowSize. 5041 if (SizeOp1 % NarrowSize != 0) 5042 return UnableToLegalize; 5043 int NumParts = SizeOp1 / NarrowSize; 5044 5045 SmallVector<Register, 2> SrcRegs, DstRegs; 5046 SmallVector<uint64_t, 2> Indexes; 5047 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5048 5049 Register OpReg = MI.getOperand(0).getReg(); 5050 uint64_t OpStart = MI.getOperand(2).getImm(); 5051 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5052 for (int i = 0; i < NumParts; ++i) { 5053 unsigned SrcStart = i * NarrowSize; 5054 5055 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5056 // No part of the extract uses this subregister, ignore it. 5057 continue; 5058 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5059 // The entire subregister is extracted, forward the value. 5060 DstRegs.push_back(SrcRegs[i]); 5061 continue; 5062 } 5063 5064 // OpSegStart is where this destination segment would start in OpReg if it 5065 // extended infinitely in both directions. 5066 int64_t ExtractOffset; 5067 uint64_t SegSize; 5068 if (OpStart < SrcStart) { 5069 ExtractOffset = 0; 5070 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5071 } else { 5072 ExtractOffset = OpStart - SrcStart; 5073 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5074 } 5075 5076 Register SegReg = SrcRegs[i]; 5077 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5078 // A genuine extract is needed. 5079 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5080 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5081 } 5082 5083 DstRegs.push_back(SegReg); 5084 } 5085 5086 Register DstReg = MI.getOperand(0).getReg(); 5087 if (MRI.getType(DstReg).isVector()) 5088 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5089 else if (DstRegs.size() > 1) 5090 MIRBuilder.buildMerge(DstReg, DstRegs); 5091 else 5092 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5093 MI.eraseFromParent(); 5094 return Legalized; 5095 } 5096 5097 LegalizerHelper::LegalizeResult 5098 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5099 LLT NarrowTy) { 5100 // FIXME: Don't know how to handle secondary types yet. 5101 if (TypeIdx != 0) 5102 return UnableToLegalize; 5103 5104 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5105 SmallVector<uint64_t, 2> Indexes; 5106 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5107 LLT LeftoverTy; 5108 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5109 LeftoverRegs); 5110 5111 for (Register Reg : LeftoverRegs) 5112 SrcRegs.push_back(Reg); 5113 5114 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5115 Register OpReg = MI.getOperand(2).getReg(); 5116 uint64_t OpStart = MI.getOperand(3).getImm(); 5117 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5118 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5119 unsigned DstStart = I * NarrowSize; 5120 5121 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5122 // The entire subregister is defined by this insert, forward the new 5123 // value. 5124 DstRegs.push_back(OpReg); 5125 continue; 5126 } 5127 5128 Register SrcReg = SrcRegs[I]; 5129 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5130 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5131 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5132 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5133 } 5134 5135 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5136 // No part of the insert affects this subregister, forward the original. 5137 DstRegs.push_back(SrcReg); 5138 continue; 5139 } 5140 5141 // OpSegStart is where this destination segment would start in OpReg if it 5142 // extended infinitely in both directions. 5143 int64_t ExtractOffset, InsertOffset; 5144 uint64_t SegSize; 5145 if (OpStart < DstStart) { 5146 InsertOffset = 0; 5147 ExtractOffset = DstStart - OpStart; 5148 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5149 } else { 5150 InsertOffset = OpStart - DstStart; 5151 ExtractOffset = 0; 5152 SegSize = 5153 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5154 } 5155 5156 Register SegReg = OpReg; 5157 if (ExtractOffset != 0 || SegSize != OpSize) { 5158 // A genuine extract is needed. 5159 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5160 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5161 } 5162 5163 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5164 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5165 DstRegs.push_back(DstReg); 5166 } 5167 5168 uint64_t WideSize = DstRegs.size() * NarrowSize; 5169 Register DstReg = MI.getOperand(0).getReg(); 5170 if (WideSize > RegTy.getSizeInBits()) { 5171 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5172 MIRBuilder.buildMerge(MergeReg, DstRegs); 5173 MIRBuilder.buildTrunc(DstReg, MergeReg); 5174 } else 5175 MIRBuilder.buildMerge(DstReg, DstRegs); 5176 5177 MI.eraseFromParent(); 5178 return Legalized; 5179 } 5180 5181 LegalizerHelper::LegalizeResult 5182 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5183 LLT NarrowTy) { 5184 Register DstReg = MI.getOperand(0).getReg(); 5185 LLT DstTy = MRI.getType(DstReg); 5186 5187 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5188 5189 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5190 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5191 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5192 LLT LeftoverTy; 5193 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5194 Src0Regs, Src0LeftoverRegs)) 5195 return UnableToLegalize; 5196 5197 LLT Unused; 5198 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5199 Src1Regs, Src1LeftoverRegs)) 5200 llvm_unreachable("inconsistent extractParts result"); 5201 5202 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5203 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5204 {Src0Regs[I], Src1Regs[I]}); 5205 DstRegs.push_back(Inst.getReg(0)); 5206 } 5207 5208 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5209 auto Inst = MIRBuilder.buildInstr( 5210 MI.getOpcode(), 5211 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5212 DstLeftoverRegs.push_back(Inst.getReg(0)); 5213 } 5214 5215 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5216 LeftoverTy, DstLeftoverRegs); 5217 5218 MI.eraseFromParent(); 5219 return Legalized; 5220 } 5221 5222 LegalizerHelper::LegalizeResult 5223 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5224 LLT NarrowTy) { 5225 if (TypeIdx != 0) 5226 return UnableToLegalize; 5227 5228 Register DstReg = MI.getOperand(0).getReg(); 5229 Register SrcReg = MI.getOperand(1).getReg(); 5230 5231 LLT DstTy = MRI.getType(DstReg); 5232 if (DstTy.isVector()) 5233 return UnableToLegalize; 5234 5235 SmallVector<Register, 8> Parts; 5236 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5237 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5238 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5239 5240 MI.eraseFromParent(); 5241 return Legalized; 5242 } 5243 5244 LegalizerHelper::LegalizeResult 5245 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5246 LLT NarrowTy) { 5247 if (TypeIdx != 0) 5248 return UnableToLegalize; 5249 5250 Register CondReg = MI.getOperand(1).getReg(); 5251 LLT CondTy = MRI.getType(CondReg); 5252 if (CondTy.isVector()) // TODO: Handle vselect 5253 return UnableToLegalize; 5254 5255 Register DstReg = MI.getOperand(0).getReg(); 5256 LLT DstTy = MRI.getType(DstReg); 5257 5258 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5259 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5260 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5261 LLT LeftoverTy; 5262 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5263 Src1Regs, Src1LeftoverRegs)) 5264 return UnableToLegalize; 5265 5266 LLT Unused; 5267 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5268 Src2Regs, Src2LeftoverRegs)) 5269 llvm_unreachable("inconsistent extractParts result"); 5270 5271 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5272 auto Select = MIRBuilder.buildSelect(NarrowTy, 5273 CondReg, Src1Regs[I], Src2Regs[I]); 5274 DstRegs.push_back(Select.getReg(0)); 5275 } 5276 5277 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5278 auto Select = MIRBuilder.buildSelect( 5279 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5280 DstLeftoverRegs.push_back(Select.getReg(0)); 5281 } 5282 5283 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5284 LeftoverTy, DstLeftoverRegs); 5285 5286 MI.eraseFromParent(); 5287 return Legalized; 5288 } 5289 5290 LegalizerHelper::LegalizeResult 5291 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5292 LLT NarrowTy) { 5293 if (TypeIdx != 1) 5294 return UnableToLegalize; 5295 5296 Register DstReg = MI.getOperand(0).getReg(); 5297 Register SrcReg = MI.getOperand(1).getReg(); 5298 LLT DstTy = MRI.getType(DstReg); 5299 LLT SrcTy = MRI.getType(SrcReg); 5300 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5301 5302 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5303 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5304 5305 MachineIRBuilder &B = MIRBuilder; 5306 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5307 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5308 auto C_0 = B.buildConstant(NarrowTy, 0); 5309 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5310 UnmergeSrc.getReg(1), C_0); 5311 auto LoCTLZ = IsUndef ? 5312 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5313 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5314 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5315 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5316 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5317 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5318 5319 MI.eraseFromParent(); 5320 return Legalized; 5321 } 5322 5323 return UnableToLegalize; 5324 } 5325 5326 LegalizerHelper::LegalizeResult 5327 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5328 LLT NarrowTy) { 5329 if (TypeIdx != 1) 5330 return UnableToLegalize; 5331 5332 Register DstReg = MI.getOperand(0).getReg(); 5333 Register SrcReg = MI.getOperand(1).getReg(); 5334 LLT DstTy = MRI.getType(DstReg); 5335 LLT SrcTy = MRI.getType(SrcReg); 5336 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5337 5338 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5339 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5340 5341 MachineIRBuilder &B = MIRBuilder; 5342 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5343 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5344 auto C_0 = B.buildConstant(NarrowTy, 0); 5345 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5346 UnmergeSrc.getReg(0), C_0); 5347 auto HiCTTZ = IsUndef ? 5348 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5349 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5350 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5351 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5352 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5353 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5354 5355 MI.eraseFromParent(); 5356 return Legalized; 5357 } 5358 5359 return UnableToLegalize; 5360 } 5361 5362 LegalizerHelper::LegalizeResult 5363 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5364 LLT NarrowTy) { 5365 if (TypeIdx != 1) 5366 return UnableToLegalize; 5367 5368 Register DstReg = MI.getOperand(0).getReg(); 5369 LLT DstTy = MRI.getType(DstReg); 5370 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5371 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5372 5373 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5374 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5375 5376 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5377 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5378 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5379 5380 MI.eraseFromParent(); 5381 return Legalized; 5382 } 5383 5384 return UnableToLegalize; 5385 } 5386 5387 LegalizerHelper::LegalizeResult 5388 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5389 unsigned Opc = MI.getOpcode(); 5390 const auto &TII = MIRBuilder.getTII(); 5391 auto isSupported = [this](const LegalityQuery &Q) { 5392 auto QAction = LI.getAction(Q).Action; 5393 return QAction == Legal || QAction == Libcall || QAction == Custom; 5394 }; 5395 switch (Opc) { 5396 default: 5397 return UnableToLegalize; 5398 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5399 // This trivially expands to CTLZ. 5400 Observer.changingInstr(MI); 5401 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5402 Observer.changedInstr(MI); 5403 return Legalized; 5404 } 5405 case TargetOpcode::G_CTLZ: { 5406 Register DstReg = MI.getOperand(0).getReg(); 5407 Register SrcReg = MI.getOperand(1).getReg(); 5408 LLT DstTy = MRI.getType(DstReg); 5409 LLT SrcTy = MRI.getType(SrcReg); 5410 unsigned Len = SrcTy.getSizeInBits(); 5411 5412 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5413 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5414 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5415 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5416 auto ICmp = MIRBuilder.buildICmp( 5417 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5418 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5419 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5420 MI.eraseFromParent(); 5421 return Legalized; 5422 } 5423 // for now, we do this: 5424 // NewLen = NextPowerOf2(Len); 5425 // x = x | (x >> 1); 5426 // x = x | (x >> 2); 5427 // ... 5428 // x = x | (x >>16); 5429 // x = x | (x >>32); // for 64-bit input 5430 // Upto NewLen/2 5431 // return Len - popcount(x); 5432 // 5433 // Ref: "Hacker's Delight" by Henry Warren 5434 Register Op = SrcReg; 5435 unsigned NewLen = PowerOf2Ceil(Len); 5436 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5437 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5438 auto MIBOp = MIRBuilder.buildOr( 5439 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5440 Op = MIBOp.getReg(0); 5441 } 5442 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5443 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5444 MIBPop); 5445 MI.eraseFromParent(); 5446 return Legalized; 5447 } 5448 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5449 // This trivially expands to CTTZ. 5450 Observer.changingInstr(MI); 5451 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5452 Observer.changedInstr(MI); 5453 return Legalized; 5454 } 5455 case TargetOpcode::G_CTTZ: { 5456 Register DstReg = MI.getOperand(0).getReg(); 5457 Register SrcReg = MI.getOperand(1).getReg(); 5458 LLT DstTy = MRI.getType(DstReg); 5459 LLT SrcTy = MRI.getType(SrcReg); 5460 5461 unsigned Len = SrcTy.getSizeInBits(); 5462 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5463 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5464 // zero. 5465 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5466 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5467 auto ICmp = MIRBuilder.buildICmp( 5468 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5469 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5470 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5471 MI.eraseFromParent(); 5472 return Legalized; 5473 } 5474 // for now, we use: { return popcount(~x & (x - 1)); } 5475 // unless the target has ctlz but not ctpop, in which case we use: 5476 // { return 32 - nlz(~x & (x-1)); } 5477 // Ref: "Hacker's Delight" by Henry Warren 5478 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5479 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5480 auto MIBTmp = MIRBuilder.buildAnd( 5481 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5482 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5483 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5484 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5485 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5486 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5487 MI.eraseFromParent(); 5488 return Legalized; 5489 } 5490 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5491 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5492 return Legalized; 5493 } 5494 case TargetOpcode::G_CTPOP: { 5495 Register SrcReg = MI.getOperand(1).getReg(); 5496 LLT Ty = MRI.getType(SrcReg); 5497 unsigned Size = Ty.getSizeInBits(); 5498 MachineIRBuilder &B = MIRBuilder; 5499 5500 // Count set bits in blocks of 2 bits. Default approach would be 5501 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5502 // We use following formula instead: 5503 // B2Count = val - { (val >> 1) & 0x55555555 } 5504 // since it gives same result in blocks of 2 with one instruction less. 5505 auto C_1 = B.buildConstant(Ty, 1); 5506 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5507 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5508 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5509 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5510 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5511 5512 // In order to get count in blocks of 4 add values from adjacent block of 2. 5513 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5514 auto C_2 = B.buildConstant(Ty, 2); 5515 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5516 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5517 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5518 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5519 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5520 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5521 5522 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5523 // addition since count value sits in range {0,...,8} and 4 bits are enough 5524 // to hold such binary values. After addition high 4 bits still hold count 5525 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5526 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5527 auto C_4 = B.buildConstant(Ty, 4); 5528 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5529 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5530 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5531 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5532 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5533 5534 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5535 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5536 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5537 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5538 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5539 5540 // Shift count result from 8 high bits to low bits. 5541 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5542 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5543 5544 MI.eraseFromParent(); 5545 return Legalized; 5546 } 5547 } 5548 } 5549 5550 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5551 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5552 Register Reg, unsigned BW) { 5553 return matchUnaryPredicate( 5554 MRI, Reg, 5555 [=](const Constant *C) { 5556 // Null constant here means an undef. 5557 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5558 return !CI || CI->getValue().urem(BW) != 0; 5559 }, 5560 /*AllowUndefs*/ true); 5561 } 5562 5563 LegalizerHelper::LegalizeResult 5564 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5565 Register Dst = MI.getOperand(0).getReg(); 5566 Register X = MI.getOperand(1).getReg(); 5567 Register Y = MI.getOperand(2).getReg(); 5568 Register Z = MI.getOperand(3).getReg(); 5569 LLT Ty = MRI.getType(Dst); 5570 LLT ShTy = MRI.getType(Z); 5571 5572 unsigned BW = Ty.getScalarSizeInBits(); 5573 5574 if (!isPowerOf2_32(BW)) 5575 return UnableToLegalize; 5576 5577 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5578 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5579 5580 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5581 // fshl X, Y, Z -> fshr X, Y, -Z 5582 // fshr X, Y, Z -> fshl X, Y, -Z 5583 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5584 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5585 } else { 5586 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5587 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5588 auto One = MIRBuilder.buildConstant(ShTy, 1); 5589 if (IsFSHL) { 5590 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5591 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5592 } else { 5593 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5594 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5595 } 5596 5597 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5598 } 5599 5600 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5601 MI.eraseFromParent(); 5602 return Legalized; 5603 } 5604 5605 LegalizerHelper::LegalizeResult 5606 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5607 Register Dst = MI.getOperand(0).getReg(); 5608 Register X = MI.getOperand(1).getReg(); 5609 Register Y = MI.getOperand(2).getReg(); 5610 Register Z = MI.getOperand(3).getReg(); 5611 LLT Ty = MRI.getType(Dst); 5612 LLT ShTy = MRI.getType(Z); 5613 5614 const unsigned BW = Ty.getScalarSizeInBits(); 5615 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5616 5617 Register ShX, ShY; 5618 Register ShAmt, InvShAmt; 5619 5620 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5621 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5622 // fshl: X << C | Y >> (BW - C) 5623 // fshr: X << (BW - C) | Y >> C 5624 // where C = Z % BW is not zero 5625 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5626 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5627 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5628 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5629 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5630 } else { 5631 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5632 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5633 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5634 if (isPowerOf2_32(BW)) { 5635 // Z % BW -> Z & (BW - 1) 5636 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5637 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5638 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5639 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5640 } else { 5641 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5642 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5643 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5644 } 5645 5646 auto One = MIRBuilder.buildConstant(ShTy, 1); 5647 if (IsFSHL) { 5648 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5649 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5650 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5651 } else { 5652 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5653 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5654 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5655 } 5656 } 5657 5658 MIRBuilder.buildOr(Dst, ShX, ShY); 5659 MI.eraseFromParent(); 5660 return Legalized; 5661 } 5662 5663 LegalizerHelper::LegalizeResult 5664 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5665 // These operations approximately do the following (while avoiding undefined 5666 // shifts by BW): 5667 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5668 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5669 Register Dst = MI.getOperand(0).getReg(); 5670 LLT Ty = MRI.getType(Dst); 5671 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5672 5673 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5674 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5675 5676 // TODO: Use smarter heuristic that accounts for vector legalization. 5677 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5678 return lowerFunnelShiftAsShifts(MI); 5679 5680 // This only works for powers of 2, fallback to shifts if it fails. 5681 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5682 if (Result == UnableToLegalize) 5683 return lowerFunnelShiftAsShifts(MI); 5684 return Result; 5685 } 5686 5687 LegalizerHelper::LegalizeResult 5688 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5689 Register Dst = MI.getOperand(0).getReg(); 5690 Register Src = MI.getOperand(1).getReg(); 5691 Register Amt = MI.getOperand(2).getReg(); 5692 LLT AmtTy = MRI.getType(Amt); 5693 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5694 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5695 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5696 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5697 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5698 MI.eraseFromParent(); 5699 return Legalized; 5700 } 5701 5702 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5703 Register Dst = MI.getOperand(0).getReg(); 5704 Register Src = MI.getOperand(1).getReg(); 5705 Register Amt = MI.getOperand(2).getReg(); 5706 LLT DstTy = MRI.getType(Dst); 5707 LLT SrcTy = MRI.getType(Dst); 5708 LLT AmtTy = MRI.getType(Amt); 5709 5710 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5711 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5712 5713 MIRBuilder.setInstrAndDebugLoc(MI); 5714 5715 // If a rotate in the other direction is supported, use it. 5716 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5717 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5718 isPowerOf2_32(EltSizeInBits)) 5719 return lowerRotateWithReverseRotate(MI); 5720 5721 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5722 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5723 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5724 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5725 Register ShVal; 5726 Register RevShiftVal; 5727 if (isPowerOf2_32(EltSizeInBits)) { 5728 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5729 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5730 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5731 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5732 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5733 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5734 RevShiftVal = 5735 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5736 } else { 5737 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5738 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5739 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5740 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5741 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5742 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5743 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5744 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5745 RevShiftVal = 5746 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5747 } 5748 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5749 MI.eraseFromParent(); 5750 return Legalized; 5751 } 5752 5753 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5754 // representation. 5755 LegalizerHelper::LegalizeResult 5756 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5757 Register Dst = MI.getOperand(0).getReg(); 5758 Register Src = MI.getOperand(1).getReg(); 5759 const LLT S64 = LLT::scalar(64); 5760 const LLT S32 = LLT::scalar(32); 5761 const LLT S1 = LLT::scalar(1); 5762 5763 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5764 5765 // unsigned cul2f(ulong u) { 5766 // uint lz = clz(u); 5767 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5768 // u = (u << lz) & 0x7fffffffffffffffUL; 5769 // ulong t = u & 0xffffffffffUL; 5770 // uint v = (e << 23) | (uint)(u >> 40); 5771 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5772 // return as_float(v + r); 5773 // } 5774 5775 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5776 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5777 5778 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5779 5780 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5781 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5782 5783 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5784 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5785 5786 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5787 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5788 5789 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5790 5791 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5792 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5793 5794 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5795 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5796 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5797 5798 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5799 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5800 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5801 auto One = MIRBuilder.buildConstant(S32, 1); 5802 5803 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5804 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5805 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5806 MIRBuilder.buildAdd(Dst, V, R); 5807 5808 MI.eraseFromParent(); 5809 return Legalized; 5810 } 5811 5812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5813 Register Dst = MI.getOperand(0).getReg(); 5814 Register Src = MI.getOperand(1).getReg(); 5815 LLT DstTy = MRI.getType(Dst); 5816 LLT SrcTy = MRI.getType(Src); 5817 5818 if (SrcTy == LLT::scalar(1)) { 5819 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5820 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5821 MIRBuilder.buildSelect(Dst, Src, True, False); 5822 MI.eraseFromParent(); 5823 return Legalized; 5824 } 5825 5826 if (SrcTy != LLT::scalar(64)) 5827 return UnableToLegalize; 5828 5829 if (DstTy == LLT::scalar(32)) { 5830 // TODO: SelectionDAG has several alternative expansions to port which may 5831 // be more reasonble depending on the available instructions. If a target 5832 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5833 // intermediate type, this is probably worse. 5834 return lowerU64ToF32BitOps(MI); 5835 } 5836 5837 return UnableToLegalize; 5838 } 5839 5840 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5841 Register Dst = MI.getOperand(0).getReg(); 5842 Register Src = MI.getOperand(1).getReg(); 5843 LLT DstTy = MRI.getType(Dst); 5844 LLT SrcTy = MRI.getType(Src); 5845 5846 const LLT S64 = LLT::scalar(64); 5847 const LLT S32 = LLT::scalar(32); 5848 const LLT S1 = LLT::scalar(1); 5849 5850 if (SrcTy == S1) { 5851 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5852 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5853 MIRBuilder.buildSelect(Dst, Src, True, False); 5854 MI.eraseFromParent(); 5855 return Legalized; 5856 } 5857 5858 if (SrcTy != S64) 5859 return UnableToLegalize; 5860 5861 if (DstTy == S32) { 5862 // signed cl2f(long l) { 5863 // long s = l >> 63; 5864 // float r = cul2f((l + s) ^ s); 5865 // return s ? -r : r; 5866 // } 5867 Register L = Src; 5868 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5869 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5870 5871 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5872 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5873 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5874 5875 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5876 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5877 MIRBuilder.buildConstant(S64, 0)); 5878 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5879 MI.eraseFromParent(); 5880 return Legalized; 5881 } 5882 5883 return UnableToLegalize; 5884 } 5885 5886 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5887 Register Dst = MI.getOperand(0).getReg(); 5888 Register Src = MI.getOperand(1).getReg(); 5889 LLT DstTy = MRI.getType(Dst); 5890 LLT SrcTy = MRI.getType(Src); 5891 const LLT S64 = LLT::scalar(64); 5892 const LLT S32 = LLT::scalar(32); 5893 5894 if (SrcTy != S64 && SrcTy != S32) 5895 return UnableToLegalize; 5896 if (DstTy != S32 && DstTy != S64) 5897 return UnableToLegalize; 5898 5899 // FPTOSI gives same result as FPTOUI for positive signed integers. 5900 // FPTOUI needs to deal with fp values that convert to unsigned integers 5901 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5902 5903 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5904 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5905 : APFloat::IEEEdouble(), 5906 APInt::getNullValue(SrcTy.getSizeInBits())); 5907 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5908 5909 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5910 5911 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5912 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5913 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5914 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5915 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5916 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5917 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5918 5919 const LLT S1 = LLT::scalar(1); 5920 5921 MachineInstrBuilder FCMP = 5922 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5923 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5924 5925 MI.eraseFromParent(); 5926 return Legalized; 5927 } 5928 5929 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5930 Register Dst = MI.getOperand(0).getReg(); 5931 Register Src = MI.getOperand(1).getReg(); 5932 LLT DstTy = MRI.getType(Dst); 5933 LLT SrcTy = MRI.getType(Src); 5934 const LLT S64 = LLT::scalar(64); 5935 const LLT S32 = LLT::scalar(32); 5936 5937 // FIXME: Only f32 to i64 conversions are supported. 5938 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5939 return UnableToLegalize; 5940 5941 // Expand f32 -> i64 conversion 5942 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5943 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5944 5945 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5946 5947 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5948 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5949 5950 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5951 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5952 5953 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5954 APInt::getSignMask(SrcEltBits)); 5955 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5956 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5957 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5958 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5959 5960 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5961 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5962 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5963 5964 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5965 R = MIRBuilder.buildZExt(DstTy, R); 5966 5967 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5968 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5969 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5970 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5971 5972 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5973 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5974 5975 const LLT S1 = LLT::scalar(1); 5976 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5977 S1, Exponent, ExponentLoBit); 5978 5979 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5980 5981 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5982 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5983 5984 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5985 5986 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5987 S1, Exponent, ZeroSrcTy); 5988 5989 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5990 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5991 5992 MI.eraseFromParent(); 5993 return Legalized; 5994 } 5995 5996 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5997 LegalizerHelper::LegalizeResult 5998 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5999 Register Dst = MI.getOperand(0).getReg(); 6000 Register Src = MI.getOperand(1).getReg(); 6001 6002 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6003 return UnableToLegalize; 6004 6005 const unsigned ExpMask = 0x7ff; 6006 const unsigned ExpBiasf64 = 1023; 6007 const unsigned ExpBiasf16 = 15; 6008 const LLT S32 = LLT::scalar(32); 6009 const LLT S1 = LLT::scalar(1); 6010 6011 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6012 Register U = Unmerge.getReg(0); 6013 Register UH = Unmerge.getReg(1); 6014 6015 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6016 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6017 6018 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6019 // add the f16 bias (15) to get the biased exponent for the f16 format. 6020 E = MIRBuilder.buildAdd( 6021 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6022 6023 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6024 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6025 6026 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6027 MIRBuilder.buildConstant(S32, 0x1ff)); 6028 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6029 6030 auto Zero = MIRBuilder.buildConstant(S32, 0); 6031 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6032 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6033 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6034 6035 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6036 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6037 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6038 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6039 6040 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6041 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6042 6043 // N = M | (E << 12); 6044 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6045 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6046 6047 // B = clamp(1-E, 0, 13); 6048 auto One = MIRBuilder.buildConstant(S32, 1); 6049 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6050 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6051 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6052 6053 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6054 MIRBuilder.buildConstant(S32, 0x1000)); 6055 6056 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6057 auto D0 = MIRBuilder.buildShl(S32, D, B); 6058 6059 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6060 D0, SigSetHigh); 6061 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6062 D = MIRBuilder.buildOr(S32, D, D1); 6063 6064 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6065 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6066 6067 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6068 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6069 6070 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6071 MIRBuilder.buildConstant(S32, 3)); 6072 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6073 6074 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6075 MIRBuilder.buildConstant(S32, 5)); 6076 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6077 6078 V1 = MIRBuilder.buildOr(S32, V0, V1); 6079 V = MIRBuilder.buildAdd(S32, V, V1); 6080 6081 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6082 E, MIRBuilder.buildConstant(S32, 30)); 6083 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6084 MIRBuilder.buildConstant(S32, 0x7c00), V); 6085 6086 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6087 E, MIRBuilder.buildConstant(S32, 1039)); 6088 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6089 6090 // Extract the sign bit. 6091 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6092 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6093 6094 // Insert the sign bit 6095 V = MIRBuilder.buildOr(S32, Sign, V); 6096 6097 MIRBuilder.buildTrunc(Dst, V); 6098 MI.eraseFromParent(); 6099 return Legalized; 6100 } 6101 6102 LegalizerHelper::LegalizeResult 6103 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6104 Register Dst = MI.getOperand(0).getReg(); 6105 Register Src = MI.getOperand(1).getReg(); 6106 6107 LLT DstTy = MRI.getType(Dst); 6108 LLT SrcTy = MRI.getType(Src); 6109 const LLT S64 = LLT::scalar(64); 6110 const LLT S16 = LLT::scalar(16); 6111 6112 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6113 return lowerFPTRUNC_F64_TO_F16(MI); 6114 6115 return UnableToLegalize; 6116 } 6117 6118 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6119 // multiplication tree. 6120 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6121 Register Dst = MI.getOperand(0).getReg(); 6122 Register Src0 = MI.getOperand(1).getReg(); 6123 Register Src1 = MI.getOperand(2).getReg(); 6124 LLT Ty = MRI.getType(Dst); 6125 6126 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6127 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6128 MI.eraseFromParent(); 6129 return Legalized; 6130 } 6131 6132 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6133 switch (Opc) { 6134 case TargetOpcode::G_SMIN: 6135 return CmpInst::ICMP_SLT; 6136 case TargetOpcode::G_SMAX: 6137 return CmpInst::ICMP_SGT; 6138 case TargetOpcode::G_UMIN: 6139 return CmpInst::ICMP_ULT; 6140 case TargetOpcode::G_UMAX: 6141 return CmpInst::ICMP_UGT; 6142 default: 6143 llvm_unreachable("not in integer min/max"); 6144 } 6145 } 6146 6147 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6148 Register Dst = MI.getOperand(0).getReg(); 6149 Register Src0 = MI.getOperand(1).getReg(); 6150 Register Src1 = MI.getOperand(2).getReg(); 6151 6152 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6153 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6154 6155 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6156 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6157 6158 MI.eraseFromParent(); 6159 return Legalized; 6160 } 6161 6162 LegalizerHelper::LegalizeResult 6163 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6164 Register Dst = MI.getOperand(0).getReg(); 6165 Register Src0 = MI.getOperand(1).getReg(); 6166 Register Src1 = MI.getOperand(2).getReg(); 6167 6168 const LLT Src0Ty = MRI.getType(Src0); 6169 const LLT Src1Ty = MRI.getType(Src1); 6170 6171 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6172 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6173 6174 auto SignBitMask = MIRBuilder.buildConstant( 6175 Src0Ty, APInt::getSignMask(Src0Size)); 6176 6177 auto NotSignBitMask = MIRBuilder.buildConstant( 6178 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6179 6180 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6181 Register And1; 6182 if (Src0Ty == Src1Ty) { 6183 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6184 } else if (Src0Size > Src1Size) { 6185 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6186 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6187 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6188 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6189 } else { 6190 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6191 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6192 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6193 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6194 } 6195 6196 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6197 // constants are a nan and -0.0, but the final result should preserve 6198 // everything. 6199 unsigned Flags = MI.getFlags(); 6200 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6201 6202 MI.eraseFromParent(); 6203 return Legalized; 6204 } 6205 6206 LegalizerHelper::LegalizeResult 6207 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6208 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6209 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6210 6211 Register Dst = MI.getOperand(0).getReg(); 6212 Register Src0 = MI.getOperand(1).getReg(); 6213 Register Src1 = MI.getOperand(2).getReg(); 6214 LLT Ty = MRI.getType(Dst); 6215 6216 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6217 // Insert canonicalizes if it's possible we need to quiet to get correct 6218 // sNaN behavior. 6219 6220 // Note this must be done here, and not as an optimization combine in the 6221 // absence of a dedicate quiet-snan instruction as we're using an 6222 // omni-purpose G_FCANONICALIZE. 6223 if (!isKnownNeverSNaN(Src0, MRI)) 6224 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6225 6226 if (!isKnownNeverSNaN(Src1, MRI)) 6227 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6228 } 6229 6230 // If there are no nans, it's safe to simply replace this with the non-IEEE 6231 // version. 6232 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6233 MI.eraseFromParent(); 6234 return Legalized; 6235 } 6236 6237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6238 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6239 Register DstReg = MI.getOperand(0).getReg(); 6240 LLT Ty = MRI.getType(DstReg); 6241 unsigned Flags = MI.getFlags(); 6242 6243 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6244 Flags); 6245 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6246 MI.eraseFromParent(); 6247 return Legalized; 6248 } 6249 6250 LegalizerHelper::LegalizeResult 6251 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6252 Register DstReg = MI.getOperand(0).getReg(); 6253 Register X = MI.getOperand(1).getReg(); 6254 const unsigned Flags = MI.getFlags(); 6255 const LLT Ty = MRI.getType(DstReg); 6256 const LLT CondTy = Ty.changeElementSize(1); 6257 6258 // round(x) => 6259 // t = trunc(x); 6260 // d = fabs(x - t); 6261 // o = copysign(1.0f, x); 6262 // return t + (d >= 0.5 ? o : 0.0); 6263 6264 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6265 6266 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6267 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6268 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6269 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6270 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6271 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6272 6273 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6274 Flags); 6275 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6276 6277 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6278 6279 MI.eraseFromParent(); 6280 return Legalized; 6281 } 6282 6283 LegalizerHelper::LegalizeResult 6284 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6285 Register DstReg = MI.getOperand(0).getReg(); 6286 Register SrcReg = MI.getOperand(1).getReg(); 6287 unsigned Flags = MI.getFlags(); 6288 LLT Ty = MRI.getType(DstReg); 6289 const LLT CondTy = Ty.changeElementSize(1); 6290 6291 // result = trunc(src); 6292 // if (src < 0.0 && src != result) 6293 // result += -1.0. 6294 6295 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6296 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6297 6298 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6299 SrcReg, Zero, Flags); 6300 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6301 SrcReg, Trunc, Flags); 6302 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6303 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6304 6305 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6306 MI.eraseFromParent(); 6307 return Legalized; 6308 } 6309 6310 LegalizerHelper::LegalizeResult 6311 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6312 const unsigned NumOps = MI.getNumOperands(); 6313 Register DstReg = MI.getOperand(0).getReg(); 6314 Register Src0Reg = MI.getOperand(1).getReg(); 6315 LLT DstTy = MRI.getType(DstReg); 6316 LLT SrcTy = MRI.getType(Src0Reg); 6317 unsigned PartSize = SrcTy.getSizeInBits(); 6318 6319 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6320 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6321 6322 for (unsigned I = 2; I != NumOps; ++I) { 6323 const unsigned Offset = (I - 1) * PartSize; 6324 6325 Register SrcReg = MI.getOperand(I).getReg(); 6326 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6327 6328 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6329 MRI.createGenericVirtualRegister(WideTy); 6330 6331 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6332 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6333 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6334 ResultReg = NextResult; 6335 } 6336 6337 if (DstTy.isPointer()) { 6338 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6339 DstTy.getAddressSpace())) { 6340 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6341 return UnableToLegalize; 6342 } 6343 6344 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6345 } 6346 6347 MI.eraseFromParent(); 6348 return Legalized; 6349 } 6350 6351 LegalizerHelper::LegalizeResult 6352 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6353 const unsigned NumDst = MI.getNumOperands() - 1; 6354 Register SrcReg = MI.getOperand(NumDst).getReg(); 6355 Register Dst0Reg = MI.getOperand(0).getReg(); 6356 LLT DstTy = MRI.getType(Dst0Reg); 6357 if (DstTy.isPointer()) 6358 return UnableToLegalize; // TODO 6359 6360 SrcReg = coerceToScalar(SrcReg); 6361 if (!SrcReg) 6362 return UnableToLegalize; 6363 6364 // Expand scalarizing unmerge as bitcast to integer and shift. 6365 LLT IntTy = MRI.getType(SrcReg); 6366 6367 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6368 6369 const unsigned DstSize = DstTy.getSizeInBits(); 6370 unsigned Offset = DstSize; 6371 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6372 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6373 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6374 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6375 } 6376 6377 MI.eraseFromParent(); 6378 return Legalized; 6379 } 6380 6381 /// Lower a vector extract or insert by writing the vector to a stack temporary 6382 /// and reloading the element or vector. 6383 /// 6384 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6385 /// => 6386 /// %stack_temp = G_FRAME_INDEX 6387 /// G_STORE %vec, %stack_temp 6388 /// %idx = clamp(%idx, %vec.getNumElements()) 6389 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6390 /// %dst = G_LOAD %element_ptr 6391 LegalizerHelper::LegalizeResult 6392 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6393 Register DstReg = MI.getOperand(0).getReg(); 6394 Register SrcVec = MI.getOperand(1).getReg(); 6395 Register InsertVal; 6396 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6397 InsertVal = MI.getOperand(2).getReg(); 6398 6399 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6400 6401 LLT VecTy = MRI.getType(SrcVec); 6402 LLT EltTy = VecTy.getElementType(); 6403 if (!EltTy.isByteSized()) { // Not implemented. 6404 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6405 return UnableToLegalize; 6406 } 6407 6408 unsigned EltBytes = EltTy.getSizeInBytes(); 6409 Align VecAlign = getStackTemporaryAlignment(VecTy); 6410 Align EltAlign; 6411 6412 MachinePointerInfo PtrInfo; 6413 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6414 VecAlign, PtrInfo); 6415 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6416 6417 // Get the pointer to the element, and be sure not to hit undefined behavior 6418 // if the index is out of bounds. 6419 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6420 6421 int64_t IdxVal; 6422 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6423 int64_t Offset = IdxVal * EltBytes; 6424 PtrInfo = PtrInfo.getWithOffset(Offset); 6425 EltAlign = commonAlignment(VecAlign, Offset); 6426 } else { 6427 // We lose information with a variable offset. 6428 EltAlign = getStackTemporaryAlignment(EltTy); 6429 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6430 } 6431 6432 if (InsertVal) { 6433 // Write the inserted element 6434 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6435 6436 // Reload the whole vector. 6437 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6438 } else { 6439 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6440 } 6441 6442 MI.eraseFromParent(); 6443 return Legalized; 6444 } 6445 6446 LegalizerHelper::LegalizeResult 6447 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6448 Register DstReg = MI.getOperand(0).getReg(); 6449 Register Src0Reg = MI.getOperand(1).getReg(); 6450 Register Src1Reg = MI.getOperand(2).getReg(); 6451 LLT Src0Ty = MRI.getType(Src0Reg); 6452 LLT DstTy = MRI.getType(DstReg); 6453 LLT IdxTy = LLT::scalar(32); 6454 6455 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6456 6457 if (DstTy.isScalar()) { 6458 if (Src0Ty.isVector()) 6459 return UnableToLegalize; 6460 6461 // This is just a SELECT. 6462 assert(Mask.size() == 1 && "Expected a single mask element"); 6463 Register Val; 6464 if (Mask[0] < 0 || Mask[0] > 1) 6465 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6466 else 6467 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6468 MIRBuilder.buildCopy(DstReg, Val); 6469 MI.eraseFromParent(); 6470 return Legalized; 6471 } 6472 6473 Register Undef; 6474 SmallVector<Register, 32> BuildVec; 6475 LLT EltTy = DstTy.getElementType(); 6476 6477 for (int Idx : Mask) { 6478 if (Idx < 0) { 6479 if (!Undef.isValid()) 6480 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6481 BuildVec.push_back(Undef); 6482 continue; 6483 } 6484 6485 if (Src0Ty.isScalar()) { 6486 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6487 } else { 6488 int NumElts = Src0Ty.getNumElements(); 6489 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6490 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6491 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6492 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6493 BuildVec.push_back(Extract.getReg(0)); 6494 } 6495 } 6496 6497 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6498 MI.eraseFromParent(); 6499 return Legalized; 6500 } 6501 6502 LegalizerHelper::LegalizeResult 6503 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6504 const auto &MF = *MI.getMF(); 6505 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6506 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6507 return UnableToLegalize; 6508 6509 Register Dst = MI.getOperand(0).getReg(); 6510 Register AllocSize = MI.getOperand(1).getReg(); 6511 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6512 6513 LLT PtrTy = MRI.getType(Dst); 6514 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6515 6516 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6517 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6518 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6519 6520 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6521 // have to generate an extra instruction to negate the alloc and then use 6522 // G_PTR_ADD to add the negative offset. 6523 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6524 if (Alignment > Align(1)) { 6525 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6526 AlignMask.negate(); 6527 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6528 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6529 } 6530 6531 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6532 MIRBuilder.buildCopy(SPReg, SPTmp); 6533 MIRBuilder.buildCopy(Dst, SPTmp); 6534 6535 MI.eraseFromParent(); 6536 return Legalized; 6537 } 6538 6539 LegalizerHelper::LegalizeResult 6540 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6541 Register Dst = MI.getOperand(0).getReg(); 6542 Register Src = MI.getOperand(1).getReg(); 6543 unsigned Offset = MI.getOperand(2).getImm(); 6544 6545 LLT DstTy = MRI.getType(Dst); 6546 LLT SrcTy = MRI.getType(Src); 6547 6548 if (DstTy.isScalar() && 6549 (SrcTy.isScalar() || 6550 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6551 LLT SrcIntTy = SrcTy; 6552 if (!SrcTy.isScalar()) { 6553 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6554 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6555 } 6556 6557 if (Offset == 0) 6558 MIRBuilder.buildTrunc(Dst, Src); 6559 else { 6560 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6561 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6562 MIRBuilder.buildTrunc(Dst, Shr); 6563 } 6564 6565 MI.eraseFromParent(); 6566 return Legalized; 6567 } 6568 6569 return UnableToLegalize; 6570 } 6571 6572 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6573 Register Dst = MI.getOperand(0).getReg(); 6574 Register Src = MI.getOperand(1).getReg(); 6575 Register InsertSrc = MI.getOperand(2).getReg(); 6576 uint64_t Offset = MI.getOperand(3).getImm(); 6577 6578 LLT DstTy = MRI.getType(Src); 6579 LLT InsertTy = MRI.getType(InsertSrc); 6580 6581 if (InsertTy.isVector() || 6582 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6583 return UnableToLegalize; 6584 6585 const DataLayout &DL = MIRBuilder.getDataLayout(); 6586 if ((DstTy.isPointer() && 6587 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6588 (InsertTy.isPointer() && 6589 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6590 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6591 return UnableToLegalize; 6592 } 6593 6594 LLT IntDstTy = DstTy; 6595 6596 if (!DstTy.isScalar()) { 6597 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6598 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6599 } 6600 6601 if (!InsertTy.isScalar()) { 6602 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6603 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6604 } 6605 6606 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6607 if (Offset != 0) { 6608 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6609 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6610 } 6611 6612 APInt MaskVal = APInt::getBitsSetWithWrap( 6613 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6614 6615 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6616 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6617 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6618 6619 MIRBuilder.buildCast(Dst, Or); 6620 MI.eraseFromParent(); 6621 return Legalized; 6622 } 6623 6624 LegalizerHelper::LegalizeResult 6625 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6626 Register Dst0 = MI.getOperand(0).getReg(); 6627 Register Dst1 = MI.getOperand(1).getReg(); 6628 Register LHS = MI.getOperand(2).getReg(); 6629 Register RHS = MI.getOperand(3).getReg(); 6630 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6631 6632 LLT Ty = MRI.getType(Dst0); 6633 LLT BoolTy = MRI.getType(Dst1); 6634 6635 if (IsAdd) 6636 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6637 else 6638 MIRBuilder.buildSub(Dst0, LHS, RHS); 6639 6640 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6641 6642 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6643 6644 // For an addition, the result should be less than one of the operands (LHS) 6645 // if and only if the other operand (RHS) is negative, otherwise there will 6646 // be overflow. 6647 // For a subtraction, the result should be less than one of the operands 6648 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6649 // otherwise there will be overflow. 6650 auto ResultLowerThanLHS = 6651 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6652 auto ConditionRHS = MIRBuilder.buildICmp( 6653 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6654 6655 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6656 MI.eraseFromParent(); 6657 return Legalized; 6658 } 6659 6660 LegalizerHelper::LegalizeResult 6661 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6662 Register Res = MI.getOperand(0).getReg(); 6663 Register LHS = MI.getOperand(1).getReg(); 6664 Register RHS = MI.getOperand(2).getReg(); 6665 LLT Ty = MRI.getType(Res); 6666 bool IsSigned; 6667 bool IsAdd; 6668 unsigned BaseOp; 6669 switch (MI.getOpcode()) { 6670 default: 6671 llvm_unreachable("unexpected addsat/subsat opcode"); 6672 case TargetOpcode::G_UADDSAT: 6673 IsSigned = false; 6674 IsAdd = true; 6675 BaseOp = TargetOpcode::G_ADD; 6676 break; 6677 case TargetOpcode::G_SADDSAT: 6678 IsSigned = true; 6679 IsAdd = true; 6680 BaseOp = TargetOpcode::G_ADD; 6681 break; 6682 case TargetOpcode::G_USUBSAT: 6683 IsSigned = false; 6684 IsAdd = false; 6685 BaseOp = TargetOpcode::G_SUB; 6686 break; 6687 case TargetOpcode::G_SSUBSAT: 6688 IsSigned = true; 6689 IsAdd = false; 6690 BaseOp = TargetOpcode::G_SUB; 6691 break; 6692 } 6693 6694 if (IsSigned) { 6695 // sadd.sat(a, b) -> 6696 // hi = 0x7fffffff - smax(a, 0) 6697 // lo = 0x80000000 - smin(a, 0) 6698 // a + smin(smax(lo, b), hi) 6699 // ssub.sat(a, b) -> 6700 // lo = smax(a, -1) - 0x7fffffff 6701 // hi = smin(a, -1) - 0x80000000 6702 // a - smin(smax(lo, b), hi) 6703 // TODO: AMDGPU can use a "median of 3" instruction here: 6704 // a +/- med3(lo, b, hi) 6705 uint64_t NumBits = Ty.getScalarSizeInBits(); 6706 auto MaxVal = 6707 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6708 auto MinVal = 6709 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6710 MachineInstrBuilder Hi, Lo; 6711 if (IsAdd) { 6712 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6713 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6714 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6715 } else { 6716 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6717 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6718 MaxVal); 6719 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6720 MinVal); 6721 } 6722 auto RHSClamped = 6723 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6724 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6725 } else { 6726 // uadd.sat(a, b) -> a + umin(~a, b) 6727 // usub.sat(a, b) -> a - umin(a, b) 6728 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6729 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6730 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6731 } 6732 6733 MI.eraseFromParent(); 6734 return Legalized; 6735 } 6736 6737 LegalizerHelper::LegalizeResult 6738 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6739 Register Res = MI.getOperand(0).getReg(); 6740 Register LHS = MI.getOperand(1).getReg(); 6741 Register RHS = MI.getOperand(2).getReg(); 6742 LLT Ty = MRI.getType(Res); 6743 LLT BoolTy = Ty.changeElementSize(1); 6744 bool IsSigned; 6745 bool IsAdd; 6746 unsigned OverflowOp; 6747 switch (MI.getOpcode()) { 6748 default: 6749 llvm_unreachable("unexpected addsat/subsat opcode"); 6750 case TargetOpcode::G_UADDSAT: 6751 IsSigned = false; 6752 IsAdd = true; 6753 OverflowOp = TargetOpcode::G_UADDO; 6754 break; 6755 case TargetOpcode::G_SADDSAT: 6756 IsSigned = true; 6757 IsAdd = true; 6758 OverflowOp = TargetOpcode::G_SADDO; 6759 break; 6760 case TargetOpcode::G_USUBSAT: 6761 IsSigned = false; 6762 IsAdd = false; 6763 OverflowOp = TargetOpcode::G_USUBO; 6764 break; 6765 case TargetOpcode::G_SSUBSAT: 6766 IsSigned = true; 6767 IsAdd = false; 6768 OverflowOp = TargetOpcode::G_SSUBO; 6769 break; 6770 } 6771 6772 auto OverflowRes = 6773 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6774 Register Tmp = OverflowRes.getReg(0); 6775 Register Ov = OverflowRes.getReg(1); 6776 MachineInstrBuilder Clamp; 6777 if (IsSigned) { 6778 // sadd.sat(a, b) -> 6779 // {tmp, ov} = saddo(a, b) 6780 // ov ? (tmp >>s 31) + 0x80000000 : r 6781 // ssub.sat(a, b) -> 6782 // {tmp, ov} = ssubo(a, b) 6783 // ov ? (tmp >>s 31) + 0x80000000 : r 6784 uint64_t NumBits = Ty.getScalarSizeInBits(); 6785 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6786 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6787 auto MinVal = 6788 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6789 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6790 } else { 6791 // uadd.sat(a, b) -> 6792 // {tmp, ov} = uaddo(a, b) 6793 // ov ? 0xffffffff : tmp 6794 // usub.sat(a, b) -> 6795 // {tmp, ov} = usubo(a, b) 6796 // ov ? 0 : tmp 6797 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6798 } 6799 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6800 6801 MI.eraseFromParent(); 6802 return Legalized; 6803 } 6804 6805 LegalizerHelper::LegalizeResult 6806 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6807 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6808 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6809 "Expected shlsat opcode!"); 6810 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6811 Register Res = MI.getOperand(0).getReg(); 6812 Register LHS = MI.getOperand(1).getReg(); 6813 Register RHS = MI.getOperand(2).getReg(); 6814 LLT Ty = MRI.getType(Res); 6815 LLT BoolTy = Ty.changeElementSize(1); 6816 6817 unsigned BW = Ty.getScalarSizeInBits(); 6818 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6819 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6820 : MIRBuilder.buildLShr(Ty, Result, RHS); 6821 6822 MachineInstrBuilder SatVal; 6823 if (IsSigned) { 6824 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6825 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6826 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6827 MIRBuilder.buildConstant(Ty, 0)); 6828 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6829 } else { 6830 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6831 } 6832 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6833 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6834 6835 MI.eraseFromParent(); 6836 return Legalized; 6837 } 6838 6839 LegalizerHelper::LegalizeResult 6840 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6841 Register Dst = MI.getOperand(0).getReg(); 6842 Register Src = MI.getOperand(1).getReg(); 6843 const LLT Ty = MRI.getType(Src); 6844 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6845 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6846 6847 // Swap most and least significant byte, set remaining bytes in Res to zero. 6848 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6849 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6850 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6851 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6852 6853 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6854 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6855 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6856 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6857 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6858 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6859 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6860 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6861 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6862 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6863 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6864 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6865 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6866 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6867 } 6868 Res.getInstr()->getOperand(0).setReg(Dst); 6869 6870 MI.eraseFromParent(); 6871 return Legalized; 6872 } 6873 6874 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6875 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6876 MachineInstrBuilder Src, APInt Mask) { 6877 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6878 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6879 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6880 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6881 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6882 return B.buildOr(Dst, LHS, RHS); 6883 } 6884 6885 LegalizerHelper::LegalizeResult 6886 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6887 Register Dst = MI.getOperand(0).getReg(); 6888 Register Src = MI.getOperand(1).getReg(); 6889 const LLT Ty = MRI.getType(Src); 6890 unsigned Size = Ty.getSizeInBits(); 6891 6892 MachineInstrBuilder BSWAP = 6893 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6894 6895 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6896 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6897 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6898 MachineInstrBuilder Swap4 = 6899 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6900 6901 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6902 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6903 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6904 MachineInstrBuilder Swap2 = 6905 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6906 6907 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6908 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6909 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6910 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6911 6912 MI.eraseFromParent(); 6913 return Legalized; 6914 } 6915 6916 LegalizerHelper::LegalizeResult 6917 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6918 MachineFunction &MF = MIRBuilder.getMF(); 6919 6920 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6921 int NameOpIdx = IsRead ? 1 : 0; 6922 int ValRegIndex = IsRead ? 0 : 1; 6923 6924 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6925 const LLT Ty = MRI.getType(ValReg); 6926 const MDString *RegStr = cast<MDString>( 6927 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6928 6929 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6930 if (!PhysReg.isValid()) 6931 return UnableToLegalize; 6932 6933 if (IsRead) 6934 MIRBuilder.buildCopy(ValReg, PhysReg); 6935 else 6936 MIRBuilder.buildCopy(PhysReg, ValReg); 6937 6938 MI.eraseFromParent(); 6939 return Legalized; 6940 } 6941 6942 LegalizerHelper::LegalizeResult 6943 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6944 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6945 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6946 Register Result = MI.getOperand(0).getReg(); 6947 LLT OrigTy = MRI.getType(Result); 6948 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6949 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6950 6951 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6952 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6953 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6954 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6955 6956 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6957 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6958 MIRBuilder.buildTrunc(Result, Shifted); 6959 6960 MI.eraseFromParent(); 6961 return Legalized; 6962 } 6963 6964 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6965 // Implement vector G_SELECT in terms of XOR, AND, OR. 6966 Register DstReg = MI.getOperand(0).getReg(); 6967 Register MaskReg = MI.getOperand(1).getReg(); 6968 Register Op1Reg = MI.getOperand(2).getReg(); 6969 Register Op2Reg = MI.getOperand(3).getReg(); 6970 LLT DstTy = MRI.getType(DstReg); 6971 LLT MaskTy = MRI.getType(MaskReg); 6972 LLT Op1Ty = MRI.getType(Op1Reg); 6973 if (!DstTy.isVector()) 6974 return UnableToLegalize; 6975 6976 // Vector selects can have a scalar predicate. If so, splat into a vector and 6977 // finish for later legalization attempts to try again. 6978 if (MaskTy.isScalar()) { 6979 Register MaskElt = MaskReg; 6980 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6981 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6982 // Generate a vector splat idiom to be pattern matched later. 6983 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6984 Observer.changingInstr(MI); 6985 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6986 Observer.changedInstr(MI); 6987 return Legalized; 6988 } 6989 6990 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6991 return UnableToLegalize; 6992 } 6993 6994 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6995 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6996 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6997 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6998 MI.eraseFromParent(); 6999 return Legalized; 7000 } 7001 7002 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7003 // Split DIVREM into individual instructions. 7004 unsigned Opcode = MI.getOpcode(); 7005 7006 MIRBuilder.buildInstr( 7007 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7008 : TargetOpcode::G_UDIV, 7009 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7010 MIRBuilder.buildInstr( 7011 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7012 : TargetOpcode::G_UREM, 7013 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7014 MI.eraseFromParent(); 7015 return Legalized; 7016 } 7017 7018 LegalizerHelper::LegalizeResult 7019 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7020 // Expand %res = G_ABS %a into: 7021 // %v1 = G_ASHR %a, scalar_size-1 7022 // %v2 = G_ADD %a, %v1 7023 // %res = G_XOR %v2, %v1 7024 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7025 Register OpReg = MI.getOperand(1).getReg(); 7026 auto ShiftAmt = 7027 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7028 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7029 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7030 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7031 MI.eraseFromParent(); 7032 return Legalized; 7033 } 7034 7035 LegalizerHelper::LegalizeResult 7036 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7037 // Expand %res = G_ABS %a into: 7038 // %v1 = G_CONSTANT 0 7039 // %v2 = G_SUB %v1, %a 7040 // %res = G_SMAX %a, %v2 7041 Register SrcReg = MI.getOperand(1).getReg(); 7042 LLT Ty = MRI.getType(SrcReg); 7043 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7044 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7045 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7046 MI.eraseFromParent(); 7047 return Legalized; 7048 } 7049