1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FEXP2: 248 assert((Size == 32 || Size == 64) && "Unsupported size"); 249 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 250 case TargetOpcode::G_FREM: 251 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 252 case TargetOpcode::G_FPOW: 253 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 254 case TargetOpcode::G_FMA: 255 assert((Size == 32 || Size == 64) && "Unsupported size"); 256 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 257 case TargetOpcode::G_FSIN: 258 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 259 return Size == 128 ? RTLIB::SIN_F128 260 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 261 case TargetOpcode::G_FCOS: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::COS_F128 264 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 265 case TargetOpcode::G_FLOG10: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::LOG10_F128 268 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 269 case TargetOpcode::G_FLOG: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG_F128 272 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 273 case TargetOpcode::G_FLOG2: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG2_F128 276 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 277 } 278 llvm_unreachable("Unknown libcall function"); 279 } 280 281 LegalizerHelper::LegalizeResult 282 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 283 const CallLowering::ArgInfo &Result, 284 ArrayRef<CallLowering::ArgInfo> Args) { 285 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 286 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 287 const char *Name = TLI.getLibcallName(Libcall); 288 289 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 290 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 291 MachineOperand::CreateES(Name), Result, Args)) 292 return LegalizerHelper::UnableToLegalize; 293 294 return LegalizerHelper::Legalized; 295 } 296 297 // Useful for libcalls where all operands have the same type. 298 static LegalizerHelper::LegalizeResult 299 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 300 Type *OpType) { 301 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 302 303 SmallVector<CallLowering::ArgInfo, 3> Args; 304 for (unsigned i = 1; i < MI.getNumOperands(); i++) 305 Args.push_back({MI.getOperand(i).getReg(), OpType}); 306 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 307 Args); 308 } 309 310 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 311 Type *FromType) { 312 auto ToMVT = MVT::getVT(ToType); 313 auto FromMVT = MVT::getVT(FromType); 314 315 switch (Opcode) { 316 case TargetOpcode::G_FPEXT: 317 return RTLIB::getFPEXT(FromMVT, ToMVT); 318 case TargetOpcode::G_FPTRUNC: 319 return RTLIB::getFPROUND(FromMVT, ToMVT); 320 case TargetOpcode::G_FPTOSI: 321 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 322 case TargetOpcode::G_FPTOUI: 323 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 324 case TargetOpcode::G_SITOFP: 325 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 326 case TargetOpcode::G_UITOFP: 327 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 328 } 329 llvm_unreachable("Unsupported libcall function"); 330 } 331 332 static LegalizerHelper::LegalizeResult 333 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 334 Type *FromType) { 335 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 336 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 337 {{MI.getOperand(1).getReg(), FromType}}); 338 } 339 340 LegalizerHelper::LegalizeResult 341 LegalizerHelper::libcall(MachineInstr &MI) { 342 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 343 unsigned Size = LLTy.getSizeInBits(); 344 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 345 346 MIRBuilder.setInstr(MI); 347 348 switch (MI.getOpcode()) { 349 default: 350 return UnableToLegalize; 351 case TargetOpcode::G_SDIV: 352 case TargetOpcode::G_UDIV: 353 case TargetOpcode::G_SREM: 354 case TargetOpcode::G_UREM: 355 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 356 Type *HLTy = IntegerType::get(Ctx, Size); 357 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 358 if (Status != Legalized) 359 return Status; 360 break; 361 } 362 case TargetOpcode::G_FADD: 363 case TargetOpcode::G_FSUB: 364 case TargetOpcode::G_FMUL: 365 case TargetOpcode::G_FDIV: 366 case TargetOpcode::G_FMA: 367 case TargetOpcode::G_FPOW: 368 case TargetOpcode::G_FREM: 369 case TargetOpcode::G_FCOS: 370 case TargetOpcode::G_FSIN: 371 case TargetOpcode::G_FLOG10: 372 case TargetOpcode::G_FLOG: 373 case TargetOpcode::G_FLOG2: 374 case TargetOpcode::G_FEXP: 375 case TargetOpcode::G_FEXP2: { 376 if (Size > 64) { 377 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 378 return UnableToLegalize; 379 } 380 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 381 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 382 if (Status != Legalized) 383 return Status; 384 break; 385 } 386 case TargetOpcode::G_FPEXT: { 387 // FIXME: Support other floating point types (half, fp128 etc) 388 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 389 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 390 if (ToSize != 64 || FromSize != 32) 391 return UnableToLegalize; 392 LegalizeResult Status = conversionLibcall( 393 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 394 if (Status != Legalized) 395 return Status; 396 break; 397 } 398 case TargetOpcode::G_FPTRUNC: { 399 // FIXME: Support other floating point types (half, fp128 etc) 400 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 401 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 402 if (ToSize != 32 || FromSize != 64) 403 return UnableToLegalize; 404 LegalizeResult Status = conversionLibcall( 405 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 406 if (Status != Legalized) 407 return Status; 408 break; 409 } 410 case TargetOpcode::G_FPTOSI: 411 case TargetOpcode::G_FPTOUI: { 412 // FIXME: Support other types 413 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 414 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 415 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 416 return UnableToLegalize; 417 LegalizeResult Status = conversionLibcall( 418 MI, MIRBuilder, Type::getInt32Ty(Ctx), 419 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 420 if (Status != Legalized) 421 return Status; 422 break; 423 } 424 case TargetOpcode::G_SITOFP: 425 case TargetOpcode::G_UITOFP: { 426 // FIXME: Support other types 427 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 428 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 429 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 430 return UnableToLegalize; 431 LegalizeResult Status = conversionLibcall( 432 MI, MIRBuilder, 433 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 434 Type::getInt32Ty(Ctx)); 435 if (Status != Legalized) 436 return Status; 437 break; 438 } 439 } 440 441 MI.eraseFromParent(); 442 return Legalized; 443 } 444 445 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 446 unsigned TypeIdx, 447 LLT NarrowTy) { 448 MIRBuilder.setInstr(MI); 449 450 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 451 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 452 453 switch (MI.getOpcode()) { 454 default: 455 return UnableToLegalize; 456 case TargetOpcode::G_IMPLICIT_DEF: { 457 // FIXME: add support for when SizeOp0 isn't an exact multiple of 458 // NarrowSize. 459 if (SizeOp0 % NarrowSize != 0) 460 return UnableToLegalize; 461 int NumParts = SizeOp0 / NarrowSize; 462 463 SmallVector<unsigned, 2> DstRegs; 464 for (int i = 0; i < NumParts; ++i) 465 DstRegs.push_back( 466 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 467 468 unsigned DstReg = MI.getOperand(0).getReg(); 469 if(MRI.getType(DstReg).isVector()) 470 MIRBuilder.buildBuildVector(DstReg, DstRegs); 471 else 472 MIRBuilder.buildMerge(DstReg, DstRegs); 473 MI.eraseFromParent(); 474 return Legalized; 475 } 476 case TargetOpcode::G_CONSTANT: { 477 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 478 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 479 unsigned TotalSize = Ty.getSizeInBits(); 480 unsigned NarrowSize = NarrowTy.getSizeInBits(); 481 int NumParts = TotalSize / NarrowSize; 482 483 SmallVector<unsigned, 4> PartRegs; 484 for (int I = 0; I != NumParts; ++I) { 485 unsigned Offset = I * NarrowSize; 486 auto K = MIRBuilder.buildConstant(NarrowTy, 487 Val.lshr(Offset).trunc(NarrowSize)); 488 PartRegs.push_back(K.getReg(0)); 489 } 490 491 LLT LeftoverTy; 492 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 493 SmallVector<unsigned, 1> LeftoverRegs; 494 if (LeftoverBits != 0) { 495 LeftoverTy = LLT::scalar(LeftoverBits); 496 auto K = MIRBuilder.buildConstant( 497 LeftoverTy, 498 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 499 LeftoverRegs.push_back(K.getReg(0)); 500 } 501 502 insertParts(MI.getOperand(0).getReg(), 503 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 504 505 MI.eraseFromParent(); 506 return Legalized; 507 } 508 case TargetOpcode::G_ADD: { 509 // FIXME: add support for when SizeOp0 isn't an exact multiple of 510 // NarrowSize. 511 if (SizeOp0 % NarrowSize != 0) 512 return UnableToLegalize; 513 // Expand in terms of carry-setting/consuming G_ADDE instructions. 514 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 515 516 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 517 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 518 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 519 520 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 521 MIRBuilder.buildConstant(CarryIn, 0); 522 523 for (int i = 0; i < NumParts; ++i) { 524 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 525 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 526 527 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 528 Src2Regs[i], CarryIn); 529 530 DstRegs.push_back(DstReg); 531 CarryIn = CarryOut; 532 } 533 unsigned DstReg = MI.getOperand(0).getReg(); 534 if(MRI.getType(DstReg).isVector()) 535 MIRBuilder.buildBuildVector(DstReg, DstRegs); 536 else 537 MIRBuilder.buildMerge(DstReg, DstRegs); 538 MI.eraseFromParent(); 539 return Legalized; 540 } 541 case TargetOpcode::G_SUB: { 542 // FIXME: add support for when SizeOp0 isn't an exact multiple of 543 // NarrowSize. 544 if (SizeOp0 % NarrowSize != 0) 545 return UnableToLegalize; 546 547 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 548 549 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 550 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 551 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 552 553 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 554 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 555 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 556 {Src1Regs[0], Src2Regs[0]}); 557 DstRegs.push_back(DstReg); 558 unsigned BorrowIn = BorrowOut; 559 for (int i = 1; i < NumParts; ++i) { 560 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 561 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 562 563 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 564 {Src1Regs[i], Src2Regs[i], BorrowIn}); 565 566 DstRegs.push_back(DstReg); 567 BorrowIn = BorrowOut; 568 } 569 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 570 MI.eraseFromParent(); 571 return Legalized; 572 } 573 case TargetOpcode::G_MUL: 574 case TargetOpcode::G_UMULH: 575 return narrowScalarMul(MI, NarrowTy); 576 case TargetOpcode::G_EXTRACT: 577 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 578 case TargetOpcode::G_INSERT: 579 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 580 case TargetOpcode::G_LOAD: { 581 const auto &MMO = **MI.memoperands_begin(); 582 unsigned DstReg = MI.getOperand(0).getReg(); 583 LLT DstTy = MRI.getType(DstReg); 584 if (DstTy.isVector()) 585 return UnableToLegalize; 586 587 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 588 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 589 auto &MMO = **MI.memoperands_begin(); 590 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 591 MIRBuilder.buildAnyExt(DstReg, TmpReg); 592 MI.eraseFromParent(); 593 return Legalized; 594 } 595 596 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 597 } 598 case TargetOpcode::G_ZEXTLOAD: 599 case TargetOpcode::G_SEXTLOAD: { 600 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 601 unsigned DstReg = MI.getOperand(0).getReg(); 602 unsigned PtrReg = MI.getOperand(1).getReg(); 603 604 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 605 auto &MMO = **MI.memoperands_begin(); 606 if (MMO.getSizeInBits() == NarrowSize) { 607 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 608 } else { 609 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 610 : TargetOpcode::G_SEXTLOAD; 611 MIRBuilder.buildInstr(ExtLoad) 612 .addDef(TmpReg) 613 .addUse(PtrReg) 614 .addMemOperand(&MMO); 615 } 616 617 if (ZExt) 618 MIRBuilder.buildZExt(DstReg, TmpReg); 619 else 620 MIRBuilder.buildSExt(DstReg, TmpReg); 621 622 MI.eraseFromParent(); 623 return Legalized; 624 } 625 case TargetOpcode::G_STORE: { 626 const auto &MMO = **MI.memoperands_begin(); 627 628 unsigned SrcReg = MI.getOperand(0).getReg(); 629 LLT SrcTy = MRI.getType(SrcReg); 630 if (SrcTy.isVector()) 631 return UnableToLegalize; 632 633 int NumParts = SizeOp0 / NarrowSize; 634 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 635 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 636 if (SrcTy.isVector() && LeftoverBits != 0) 637 return UnableToLegalize; 638 639 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 640 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 641 auto &MMO = **MI.memoperands_begin(); 642 MIRBuilder.buildTrunc(TmpReg, SrcReg); 643 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 644 MI.eraseFromParent(); 645 return Legalized; 646 } 647 648 return reduceLoadStoreWidth(MI, 0, NarrowTy); 649 } 650 case TargetOpcode::G_SELECT: 651 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 652 case TargetOpcode::G_AND: 653 case TargetOpcode::G_OR: 654 case TargetOpcode::G_XOR: { 655 // Legalize bitwise operation: 656 // A = BinOp<Ty> B, C 657 // into: 658 // B1, ..., BN = G_UNMERGE_VALUES B 659 // C1, ..., CN = G_UNMERGE_VALUES C 660 // A1 = BinOp<Ty/N> B1, C2 661 // ... 662 // AN = BinOp<Ty/N> BN, CN 663 // A = G_MERGE_VALUES A1, ..., AN 664 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 665 } 666 case TargetOpcode::G_SHL: 667 case TargetOpcode::G_LSHR: 668 case TargetOpcode::G_ASHR: 669 return narrowScalarShift(MI, TypeIdx, NarrowTy); 670 case TargetOpcode::G_CTLZ: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 672 case TargetOpcode::G_CTTZ: 673 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 674 case TargetOpcode::G_CTPOP: 675 if (TypeIdx != 0) 676 return UnableToLegalize; // TODO 677 678 Observer.changingInstr(MI); 679 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 680 Observer.changedInstr(MI); 681 return Legalized; 682 case TargetOpcode::G_INTTOPTR: 683 if (TypeIdx != 1) 684 return UnableToLegalize; 685 686 Observer.changingInstr(MI); 687 narrowScalarSrc(MI, NarrowTy, 1); 688 Observer.changedInstr(MI); 689 return Legalized; 690 case TargetOpcode::G_PTRTOINT: 691 if (TypeIdx != 0) 692 return UnableToLegalize; 693 694 Observer.changingInstr(MI); 695 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 696 Observer.changedInstr(MI); 697 return Legalized; 698 } 699 } 700 701 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 702 unsigned OpIdx, unsigned ExtOpcode) { 703 MachineOperand &MO = MI.getOperand(OpIdx); 704 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 705 MO.setReg(ExtB->getOperand(0).getReg()); 706 } 707 708 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 709 unsigned OpIdx) { 710 MachineOperand &MO = MI.getOperand(OpIdx); 711 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 712 {MO.getReg()}); 713 MO.setReg(ExtB->getOperand(0).getReg()); 714 } 715 716 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 717 unsigned OpIdx, unsigned TruncOpcode) { 718 MachineOperand &MO = MI.getOperand(OpIdx); 719 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 720 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 721 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 722 MO.setReg(DstExt); 723 } 724 725 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 726 unsigned OpIdx, unsigned ExtOpcode) { 727 MachineOperand &MO = MI.getOperand(OpIdx); 728 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 729 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 730 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 731 MO.setReg(DstTrunc); 732 } 733 734 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 735 unsigned OpIdx) { 736 MachineOperand &MO = MI.getOperand(OpIdx); 737 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 738 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 739 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 740 MO.setReg(DstExt); 741 } 742 743 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 744 unsigned OpIdx) { 745 MachineOperand &MO = MI.getOperand(OpIdx); 746 747 LLT OldTy = MRI.getType(MO.getReg()); 748 unsigned OldElts = OldTy.getNumElements(); 749 unsigned NewElts = MoreTy.getNumElements(); 750 751 unsigned NumParts = NewElts / OldElts; 752 753 // Use concat_vectors if the result is a multiple of the number of elements. 754 if (NumParts * OldElts == NewElts) { 755 SmallVector<unsigned, 8> Parts; 756 Parts.push_back(MO.getReg()); 757 758 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 759 for (unsigned I = 1; I != NumParts; ++I) 760 Parts.push_back(ImpDef); 761 762 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 763 MO.setReg(Concat.getReg(0)); 764 return; 765 } 766 767 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 768 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 769 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 770 MO.setReg(MoreReg); 771 } 772 773 LegalizerHelper::LegalizeResult 774 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 775 LLT WideTy) { 776 if (TypeIdx != 1) 777 return UnableToLegalize; 778 779 unsigned DstReg = MI.getOperand(0).getReg(); 780 LLT DstTy = MRI.getType(DstReg); 781 if (!DstTy.isScalar()) 782 return UnableToLegalize; 783 784 unsigned NumOps = MI.getNumOperands(); 785 unsigned NumSrc = MI.getNumOperands() - 1; 786 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 787 788 unsigned Src1 = MI.getOperand(1).getReg(); 789 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 790 791 for (unsigned I = 2; I != NumOps; ++I) { 792 const unsigned Offset = (I - 1) * PartSize; 793 794 unsigned SrcReg = MI.getOperand(I).getReg(); 795 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 796 797 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 798 799 unsigned NextResult = I + 1 == NumOps ? DstReg : 800 MRI.createGenericVirtualRegister(DstTy); 801 802 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 803 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 804 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 805 ResultReg = NextResult; 806 } 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 812 LegalizerHelper::LegalizeResult 813 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 814 LLT WideTy) { 815 if (TypeIdx != 0) 816 return UnableToLegalize; 817 818 unsigned NumDst = MI.getNumOperands() - 1; 819 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 820 LLT SrcTy = MRI.getType(SrcReg); 821 if (!SrcTy.isScalar()) 822 return UnableToLegalize; 823 824 unsigned Dst0Reg = MI.getOperand(0).getReg(); 825 LLT DstTy = MRI.getType(Dst0Reg); 826 if (!DstTy.isScalar()) 827 return UnableToLegalize; 828 829 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 830 LLT NewSrcTy = LLT::scalar(NewSrcSize); 831 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 832 833 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 834 835 for (unsigned I = 1; I != NumDst; ++I) { 836 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 837 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 838 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 839 } 840 841 Observer.changingInstr(MI); 842 843 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 844 for (unsigned I = 0; I != NumDst; ++I) 845 widenScalarDst(MI, WideTy, I); 846 847 Observer.changedInstr(MI); 848 849 return Legalized; 850 } 851 852 LegalizerHelper::LegalizeResult 853 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 854 LLT WideTy) { 855 unsigned DstReg = MI.getOperand(0).getReg(); 856 unsigned SrcReg = MI.getOperand(1).getReg(); 857 LLT SrcTy = MRI.getType(SrcReg); 858 859 LLT DstTy = MRI.getType(DstReg); 860 unsigned Offset = MI.getOperand(2).getImm(); 861 862 if (TypeIdx == 0) { 863 if (SrcTy.isVector() || DstTy.isVector()) 864 return UnableToLegalize; 865 866 SrcOp Src(SrcReg); 867 if (SrcTy.isPointer()) { 868 // Extracts from pointers can be handled only if they are really just 869 // simple integers. 870 const DataLayout &DL = MIRBuilder.getDataLayout(); 871 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 872 return UnableToLegalize; 873 874 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 875 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 876 SrcTy = SrcAsIntTy; 877 } 878 879 if (DstTy.isPointer()) 880 return UnableToLegalize; 881 882 if (Offset == 0) { 883 // Avoid a shift in the degenerate case. 884 MIRBuilder.buildTrunc(DstReg, 885 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 886 MI.eraseFromParent(); 887 return Legalized; 888 } 889 890 // Do a shift in the source type. 891 LLT ShiftTy = SrcTy; 892 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 893 Src = MIRBuilder.buildAnyExt(WideTy, Src); 894 ShiftTy = WideTy; 895 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 896 return UnableToLegalize; 897 898 auto LShr = MIRBuilder.buildLShr( 899 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 900 MIRBuilder.buildTrunc(DstReg, LShr); 901 MI.eraseFromParent(); 902 return Legalized; 903 } 904 905 if (!SrcTy.isVector()) 906 return UnableToLegalize; 907 908 if (DstTy != SrcTy.getElementType()) 909 return UnableToLegalize; 910 911 if (Offset % SrcTy.getScalarSizeInBits() != 0) 912 return UnableToLegalize; 913 914 Observer.changingInstr(MI); 915 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 916 917 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 918 Offset); 919 widenScalarDst(MI, WideTy.getScalarType(), 0); 920 Observer.changedInstr(MI); 921 return Legalized; 922 } 923 924 LegalizerHelper::LegalizeResult 925 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 926 LLT WideTy) { 927 if (TypeIdx != 0) 928 return UnableToLegalize; 929 Observer.changingInstr(MI); 930 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 931 widenScalarDst(MI, WideTy); 932 Observer.changedInstr(MI); 933 return Legalized; 934 } 935 936 LegalizerHelper::LegalizeResult 937 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 938 MIRBuilder.setInstr(MI); 939 940 switch (MI.getOpcode()) { 941 default: 942 return UnableToLegalize; 943 case TargetOpcode::G_EXTRACT: 944 return widenScalarExtract(MI, TypeIdx, WideTy); 945 case TargetOpcode::G_INSERT: 946 return widenScalarInsert(MI, TypeIdx, WideTy); 947 case TargetOpcode::G_MERGE_VALUES: 948 return widenScalarMergeValues(MI, TypeIdx, WideTy); 949 case TargetOpcode::G_UNMERGE_VALUES: 950 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 951 case TargetOpcode::G_UADDO: 952 case TargetOpcode::G_USUBO: { 953 if (TypeIdx == 1) 954 return UnableToLegalize; // TODO 955 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 956 {MI.getOperand(2).getReg()}); 957 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 958 {MI.getOperand(3).getReg()}); 959 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 960 ? TargetOpcode::G_ADD 961 : TargetOpcode::G_SUB; 962 // Do the arithmetic in the larger type. 963 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 964 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 965 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 966 auto AndOp = MIRBuilder.buildInstr( 967 TargetOpcode::G_AND, {WideTy}, 968 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 969 // There is no overflow if the AndOp is the same as NewOp. 970 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 971 AndOp); 972 // Now trunc the NewOp to the original result. 973 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 974 MI.eraseFromParent(); 975 return Legalized; 976 } 977 case TargetOpcode::G_CTTZ: 978 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 979 case TargetOpcode::G_CTLZ: 980 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 981 case TargetOpcode::G_CTPOP: { 982 if (TypeIdx == 0) { 983 Observer.changingInstr(MI); 984 widenScalarDst(MI, WideTy, 0); 985 Observer.changedInstr(MI); 986 return Legalized; 987 } 988 989 unsigned SrcReg = MI.getOperand(1).getReg(); 990 991 // First ZEXT the input. 992 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 993 LLT CurTy = MRI.getType(SrcReg); 994 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 995 // The count is the same in the larger type except if the original 996 // value was zero. This can be handled by setting the bit just off 997 // the top of the original type. 998 auto TopBit = 999 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1000 MIBSrc = MIRBuilder.buildOr( 1001 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1002 } 1003 1004 // Perform the operation at the larger size. 1005 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1006 // This is already the correct result for CTPOP and CTTZs 1007 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1008 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1009 // The correct result is NewOp - (Difference in widety and current ty). 1010 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1011 MIBNewOp = MIRBuilder.buildInstr( 1012 TargetOpcode::G_SUB, {WideTy}, 1013 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1014 } 1015 1016 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1017 MI.eraseFromParent(); 1018 return Legalized; 1019 } 1020 case TargetOpcode::G_BSWAP: { 1021 Observer.changingInstr(MI); 1022 unsigned DstReg = MI.getOperand(0).getReg(); 1023 1024 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1025 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1026 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1027 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1028 1029 MI.getOperand(0).setReg(DstExt); 1030 1031 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1032 1033 LLT Ty = MRI.getType(DstReg); 1034 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1035 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1036 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1037 .addDef(ShrReg) 1038 .addUse(DstExt) 1039 .addUse(ShiftAmtReg); 1040 1041 MIRBuilder.buildTrunc(DstReg, ShrReg); 1042 Observer.changedInstr(MI); 1043 return Legalized; 1044 } 1045 case TargetOpcode::G_ADD: 1046 case TargetOpcode::G_AND: 1047 case TargetOpcode::G_MUL: 1048 case TargetOpcode::G_OR: 1049 case TargetOpcode::G_XOR: 1050 case TargetOpcode::G_SUB: 1051 // Perform operation at larger width (any extension is fines here, high bits 1052 // don't affect the result) and then truncate the result back to the 1053 // original type. 1054 Observer.changingInstr(MI); 1055 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1056 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1057 widenScalarDst(MI, WideTy); 1058 Observer.changedInstr(MI); 1059 return Legalized; 1060 1061 case TargetOpcode::G_SHL: 1062 Observer.changingInstr(MI); 1063 1064 if (TypeIdx == 0) { 1065 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1066 widenScalarDst(MI, WideTy); 1067 } else { 1068 assert(TypeIdx == 1); 1069 // The "number of bits to shift" operand must preserve its value as an 1070 // unsigned integer: 1071 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1072 } 1073 1074 Observer.changedInstr(MI); 1075 return Legalized; 1076 1077 case TargetOpcode::G_SDIV: 1078 case TargetOpcode::G_SREM: 1079 Observer.changingInstr(MI); 1080 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1081 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1082 widenScalarDst(MI, WideTy); 1083 Observer.changedInstr(MI); 1084 return Legalized; 1085 1086 case TargetOpcode::G_ASHR: 1087 case TargetOpcode::G_LSHR: 1088 Observer.changingInstr(MI); 1089 1090 if (TypeIdx == 0) { 1091 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1092 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1093 1094 widenScalarSrc(MI, WideTy, 1, CvtOp); 1095 widenScalarDst(MI, WideTy); 1096 } else { 1097 assert(TypeIdx == 1); 1098 // The "number of bits to shift" operand must preserve its value as an 1099 // unsigned integer: 1100 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1101 } 1102 1103 Observer.changedInstr(MI); 1104 return Legalized; 1105 case TargetOpcode::G_UDIV: 1106 case TargetOpcode::G_UREM: 1107 Observer.changingInstr(MI); 1108 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1109 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1110 widenScalarDst(MI, WideTy); 1111 Observer.changedInstr(MI); 1112 return Legalized; 1113 1114 case TargetOpcode::G_SELECT: 1115 Observer.changingInstr(MI); 1116 if (TypeIdx == 0) { 1117 // Perform operation at larger width (any extension is fine here, high 1118 // bits don't affect the result) and then truncate the result back to the 1119 // original type. 1120 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1121 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1122 widenScalarDst(MI, WideTy); 1123 } else { 1124 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1125 // Explicit extension is required here since high bits affect the result. 1126 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1127 } 1128 Observer.changedInstr(MI); 1129 return Legalized; 1130 1131 case TargetOpcode::G_FPTOSI: 1132 case TargetOpcode::G_FPTOUI: 1133 if (TypeIdx != 0) 1134 return UnableToLegalize; 1135 Observer.changingInstr(MI); 1136 widenScalarDst(MI, WideTy); 1137 Observer.changedInstr(MI); 1138 return Legalized; 1139 1140 case TargetOpcode::G_SITOFP: 1141 if (TypeIdx != 1) 1142 return UnableToLegalize; 1143 Observer.changingInstr(MI); 1144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1145 Observer.changedInstr(MI); 1146 return Legalized; 1147 1148 case TargetOpcode::G_UITOFP: 1149 if (TypeIdx != 1) 1150 return UnableToLegalize; 1151 Observer.changingInstr(MI); 1152 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1153 Observer.changedInstr(MI); 1154 return Legalized; 1155 1156 case TargetOpcode::G_LOAD: 1157 case TargetOpcode::G_SEXTLOAD: 1158 case TargetOpcode::G_ZEXTLOAD: 1159 Observer.changingInstr(MI); 1160 widenScalarDst(MI, WideTy); 1161 Observer.changedInstr(MI); 1162 return Legalized; 1163 1164 case TargetOpcode::G_STORE: { 1165 if (TypeIdx != 0) 1166 return UnableToLegalize; 1167 1168 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1169 if (!isPowerOf2_32(Ty.getSizeInBits())) 1170 return UnableToLegalize; 1171 1172 Observer.changingInstr(MI); 1173 1174 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1175 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1176 widenScalarSrc(MI, WideTy, 0, ExtType); 1177 1178 Observer.changedInstr(MI); 1179 return Legalized; 1180 } 1181 case TargetOpcode::G_CONSTANT: { 1182 MachineOperand &SrcMO = MI.getOperand(1); 1183 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1184 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1185 Observer.changingInstr(MI); 1186 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1187 1188 widenScalarDst(MI, WideTy); 1189 Observer.changedInstr(MI); 1190 return Legalized; 1191 } 1192 case TargetOpcode::G_FCONSTANT: { 1193 MachineOperand &SrcMO = MI.getOperand(1); 1194 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1195 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1196 bool LosesInfo; 1197 switch (WideTy.getSizeInBits()) { 1198 case 32: 1199 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1200 &LosesInfo); 1201 break; 1202 case 64: 1203 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1204 &LosesInfo); 1205 break; 1206 default: 1207 return UnableToLegalize; 1208 } 1209 1210 assert(!LosesInfo && "extend should always be lossless"); 1211 1212 Observer.changingInstr(MI); 1213 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1214 1215 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1216 Observer.changedInstr(MI); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_IMPLICIT_DEF: { 1220 Observer.changingInstr(MI); 1221 widenScalarDst(MI, WideTy); 1222 Observer.changedInstr(MI); 1223 return Legalized; 1224 } 1225 case TargetOpcode::G_BRCOND: 1226 Observer.changingInstr(MI); 1227 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 1231 case TargetOpcode::G_FCMP: 1232 Observer.changingInstr(MI); 1233 if (TypeIdx == 0) 1234 widenScalarDst(MI, WideTy); 1235 else { 1236 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1237 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1238 } 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 1242 case TargetOpcode::G_ICMP: 1243 Observer.changingInstr(MI); 1244 if (TypeIdx == 0) 1245 widenScalarDst(MI, WideTy); 1246 else { 1247 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1248 MI.getOperand(1).getPredicate())) 1249 ? TargetOpcode::G_SEXT 1250 : TargetOpcode::G_ZEXT; 1251 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1252 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1253 } 1254 Observer.changedInstr(MI); 1255 return Legalized; 1256 1257 case TargetOpcode::G_GEP: 1258 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1259 Observer.changingInstr(MI); 1260 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1261 Observer.changedInstr(MI); 1262 return Legalized; 1263 1264 case TargetOpcode::G_PHI: { 1265 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1266 1267 Observer.changingInstr(MI); 1268 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1269 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1270 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1271 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1272 } 1273 1274 MachineBasicBlock &MBB = *MI.getParent(); 1275 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1276 widenScalarDst(MI, WideTy); 1277 Observer.changedInstr(MI); 1278 return Legalized; 1279 } 1280 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1281 if (TypeIdx == 0) { 1282 unsigned VecReg = MI.getOperand(1).getReg(); 1283 LLT VecTy = MRI.getType(VecReg); 1284 Observer.changingInstr(MI); 1285 1286 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1287 WideTy.getSizeInBits()), 1288 1, TargetOpcode::G_SEXT); 1289 1290 widenScalarDst(MI, WideTy, 0); 1291 Observer.changedInstr(MI); 1292 return Legalized; 1293 } 1294 1295 if (TypeIdx != 2) 1296 return UnableToLegalize; 1297 Observer.changingInstr(MI); 1298 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1299 Observer.changedInstr(MI); 1300 return Legalized; 1301 } 1302 case TargetOpcode::G_FADD: 1303 case TargetOpcode::G_FMUL: 1304 case TargetOpcode::G_FSUB: 1305 case TargetOpcode::G_FMA: 1306 case TargetOpcode::G_FNEG: 1307 case TargetOpcode::G_FABS: 1308 case TargetOpcode::G_FCANONICALIZE: 1309 case TargetOpcode::G_FDIV: 1310 case TargetOpcode::G_FREM: 1311 case TargetOpcode::G_FCEIL: 1312 case TargetOpcode::G_FFLOOR: 1313 case TargetOpcode::G_FCOS: 1314 case TargetOpcode::G_FSIN: 1315 case TargetOpcode::G_FLOG10: 1316 case TargetOpcode::G_FLOG: 1317 case TargetOpcode::G_FLOG2: 1318 case TargetOpcode::G_FSQRT: 1319 case TargetOpcode::G_FEXP: 1320 case TargetOpcode::G_FEXP2: 1321 assert(TypeIdx == 0); 1322 Observer.changingInstr(MI); 1323 1324 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1325 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1326 1327 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1328 Observer.changedInstr(MI); 1329 return Legalized; 1330 case TargetOpcode::G_INTTOPTR: 1331 if (TypeIdx != 1) 1332 return UnableToLegalize; 1333 1334 Observer.changingInstr(MI); 1335 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1336 Observer.changedInstr(MI); 1337 return Legalized; 1338 case TargetOpcode::G_PTRTOINT: 1339 if (TypeIdx != 0) 1340 return UnableToLegalize; 1341 1342 Observer.changingInstr(MI); 1343 widenScalarDst(MI, WideTy, 0); 1344 Observer.changedInstr(MI); 1345 return Legalized; 1346 } 1347 } 1348 1349 LegalizerHelper::LegalizeResult 1350 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1351 using namespace TargetOpcode; 1352 MIRBuilder.setInstr(MI); 1353 1354 switch(MI.getOpcode()) { 1355 default: 1356 return UnableToLegalize; 1357 case TargetOpcode::G_SREM: 1358 case TargetOpcode::G_UREM: { 1359 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1360 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1361 .addDef(QuotReg) 1362 .addUse(MI.getOperand(1).getReg()) 1363 .addUse(MI.getOperand(2).getReg()); 1364 1365 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1366 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1367 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1368 ProdReg); 1369 MI.eraseFromParent(); 1370 return Legalized; 1371 } 1372 case TargetOpcode::G_SMULO: 1373 case TargetOpcode::G_UMULO: { 1374 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1375 // result. 1376 unsigned Res = MI.getOperand(0).getReg(); 1377 unsigned Overflow = MI.getOperand(1).getReg(); 1378 unsigned LHS = MI.getOperand(2).getReg(); 1379 unsigned RHS = MI.getOperand(3).getReg(); 1380 1381 MIRBuilder.buildMul(Res, LHS, RHS); 1382 1383 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1384 ? TargetOpcode::G_SMULH 1385 : TargetOpcode::G_UMULH; 1386 1387 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1388 MIRBuilder.buildInstr(Opcode) 1389 .addDef(HiPart) 1390 .addUse(LHS) 1391 .addUse(RHS); 1392 1393 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1394 MIRBuilder.buildConstant(Zero, 0); 1395 1396 // For *signed* multiply, overflow is detected by checking: 1397 // (hi != (lo >> bitwidth-1)) 1398 if (Opcode == TargetOpcode::G_SMULH) { 1399 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1400 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1401 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1402 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1403 .addDef(Shifted) 1404 .addUse(Res) 1405 .addUse(ShiftAmt); 1406 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1407 } else { 1408 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1409 } 1410 MI.eraseFromParent(); 1411 return Legalized; 1412 } 1413 case TargetOpcode::G_FNEG: { 1414 // TODO: Handle vector types once we are able to 1415 // represent them. 1416 if (Ty.isVector()) 1417 return UnableToLegalize; 1418 unsigned Res = MI.getOperand(0).getReg(); 1419 Type *ZeroTy; 1420 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1421 switch (Ty.getSizeInBits()) { 1422 case 16: 1423 ZeroTy = Type::getHalfTy(Ctx); 1424 break; 1425 case 32: 1426 ZeroTy = Type::getFloatTy(Ctx); 1427 break; 1428 case 64: 1429 ZeroTy = Type::getDoubleTy(Ctx); 1430 break; 1431 case 128: 1432 ZeroTy = Type::getFP128Ty(Ctx); 1433 break; 1434 default: 1435 llvm_unreachable("unexpected floating-point type"); 1436 } 1437 ConstantFP &ZeroForNegation = 1438 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1439 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1440 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1441 .addDef(Res) 1442 .addUse(Zero->getOperand(0).getReg()) 1443 .addUse(MI.getOperand(1).getReg()); 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 case TargetOpcode::G_FSUB: { 1448 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1449 // First, check if G_FNEG is marked as Lower. If so, we may 1450 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1451 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1452 return UnableToLegalize; 1453 unsigned Res = MI.getOperand(0).getReg(); 1454 unsigned LHS = MI.getOperand(1).getReg(); 1455 unsigned RHS = MI.getOperand(2).getReg(); 1456 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1457 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1458 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1459 .addDef(Res) 1460 .addUse(LHS) 1461 .addUse(Neg); 1462 MI.eraseFromParent(); 1463 return Legalized; 1464 } 1465 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1466 unsigned OldValRes = MI.getOperand(0).getReg(); 1467 unsigned SuccessRes = MI.getOperand(1).getReg(); 1468 unsigned Addr = MI.getOperand(2).getReg(); 1469 unsigned CmpVal = MI.getOperand(3).getReg(); 1470 unsigned NewVal = MI.getOperand(4).getReg(); 1471 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1472 **MI.memoperands_begin()); 1473 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1474 MI.eraseFromParent(); 1475 return Legalized; 1476 } 1477 case TargetOpcode::G_LOAD: 1478 case TargetOpcode::G_SEXTLOAD: 1479 case TargetOpcode::G_ZEXTLOAD: { 1480 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1481 unsigned DstReg = MI.getOperand(0).getReg(); 1482 unsigned PtrReg = MI.getOperand(1).getReg(); 1483 LLT DstTy = MRI.getType(DstReg); 1484 auto &MMO = **MI.memoperands_begin(); 1485 1486 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 1487 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 1488 // This load needs splitting into power of 2 sized loads. 1489 if (DstTy.isVector()) 1490 return UnableToLegalize; 1491 if (isPowerOf2_32(DstTy.getSizeInBits())) 1492 return UnableToLegalize; // Don't know what we're being asked to do. 1493 1494 // Our strategy here is to generate anyextending loads for the smaller 1495 // types up to next power-2 result type, and then combine the two larger 1496 // result values together, before truncating back down to the non-pow-2 1497 // type. 1498 // E.g. v1 = i24 load => 1499 // v2 = i32 load (2 byte) 1500 // v3 = i32 load (1 byte) 1501 // v4 = i32 shl v2, 16 1502 // v5 = i32 or v4, v3 1503 // v1 = i24 trunc v5 1504 // By doing this we generate the correct truncate which should get 1505 // combined away as an artifact with a matching extend. 1506 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 1507 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 1508 1509 MachineFunction &MF = MIRBuilder.getMF(); 1510 MachineMemOperand *LargeMMO = 1511 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 1512 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 1513 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 1514 1515 LLT PtrTy = MRI.getType(PtrReg); 1516 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 1517 LLT AnyExtTy = LLT::scalar(AnyExtSize); 1518 unsigned LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 1519 unsigned SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 1520 auto LargeLoad = 1521 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 1522 1523 auto OffsetCst = 1524 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 1525 unsigned GEPReg = MRI.createGenericVirtualRegister(PtrTy); 1526 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 1527 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 1528 *SmallMMO); 1529 1530 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 1531 auto Shift = MIRBuilder.buildShl(AnyExtTy, LargeLoad, ShiftAmt); 1532 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, SmallLoad); 1533 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 1534 MI.eraseFromParent(); 1535 return Legalized; 1536 } 1537 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1538 MI.eraseFromParent(); 1539 return Legalized; 1540 } 1541 1542 if (DstTy.isScalar()) { 1543 unsigned TmpReg = 1544 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1545 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1546 switch (MI.getOpcode()) { 1547 default: 1548 llvm_unreachable("Unexpected opcode"); 1549 case TargetOpcode::G_LOAD: 1550 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1551 break; 1552 case TargetOpcode::G_SEXTLOAD: 1553 MIRBuilder.buildSExt(DstReg, TmpReg); 1554 break; 1555 case TargetOpcode::G_ZEXTLOAD: 1556 MIRBuilder.buildZExt(DstReg, TmpReg); 1557 break; 1558 } 1559 MI.eraseFromParent(); 1560 return Legalized; 1561 } 1562 1563 return UnableToLegalize; 1564 } 1565 case TargetOpcode::G_STORE: { 1566 // Lower a non-power of 2 store into multiple pow-2 stores. 1567 // E.g. split an i24 store into an i16 store + i8 store. 1568 // We do this by first extending the stored value to the next largest power 1569 // of 2 type, and then using truncating stores to store the components. 1570 // By doing this, likewise with G_LOAD, generate an extend that can be 1571 // artifact-combined away instead of leaving behind extracts. 1572 unsigned SrcReg = MI.getOperand(0).getReg(); 1573 unsigned PtrReg = MI.getOperand(1).getReg(); 1574 LLT SrcTy = MRI.getType(SrcReg); 1575 MachineMemOperand &MMO = **MI.memoperands_begin(); 1576 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 1577 return UnableToLegalize; 1578 if (SrcTy.isVector()) 1579 return UnableToLegalize; 1580 if (isPowerOf2_32(SrcTy.getSizeInBits())) 1581 return UnableToLegalize; // Don't know what we're being asked to do. 1582 1583 // Extend to the next pow-2. 1584 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 1585 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 1586 1587 // Obtain the smaller value by shifting away the larger value. 1588 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 1589 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 1590 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 1591 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 1592 1593 // Generate the GEP and truncating stores. 1594 LLT PtrTy = MRI.getType(PtrReg); 1595 auto OffsetCst = 1596 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 1597 unsigned GEPReg = MRI.createGenericVirtualRegister(PtrTy); 1598 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 1599 1600 MachineFunction &MF = MIRBuilder.getMF(); 1601 MachineMemOperand *LargeMMO = 1602 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 1603 MachineMemOperand *SmallMMO = 1604 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 1605 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 1606 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 1607 MI.eraseFromParent(); 1608 return Legalized; 1609 } 1610 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1611 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1612 case TargetOpcode::G_CTLZ: 1613 case TargetOpcode::G_CTTZ: 1614 case TargetOpcode::G_CTPOP: 1615 return lowerBitCount(MI, TypeIdx, Ty); 1616 case G_UADDO: { 1617 unsigned Res = MI.getOperand(0).getReg(); 1618 unsigned CarryOut = MI.getOperand(1).getReg(); 1619 unsigned LHS = MI.getOperand(2).getReg(); 1620 unsigned RHS = MI.getOperand(3).getReg(); 1621 1622 MIRBuilder.buildAdd(Res, LHS, RHS); 1623 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1624 1625 MI.eraseFromParent(); 1626 return Legalized; 1627 } 1628 case G_UADDE: { 1629 unsigned Res = MI.getOperand(0).getReg(); 1630 unsigned CarryOut = MI.getOperand(1).getReg(); 1631 unsigned LHS = MI.getOperand(2).getReg(); 1632 unsigned RHS = MI.getOperand(3).getReg(); 1633 unsigned CarryIn = MI.getOperand(4).getReg(); 1634 1635 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1636 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1637 1638 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1639 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1640 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1641 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1642 1643 MI.eraseFromParent(); 1644 return Legalized; 1645 } 1646 case G_USUBO: { 1647 unsigned Res = MI.getOperand(0).getReg(); 1648 unsigned BorrowOut = MI.getOperand(1).getReg(); 1649 unsigned LHS = MI.getOperand(2).getReg(); 1650 unsigned RHS = MI.getOperand(3).getReg(); 1651 1652 MIRBuilder.buildSub(Res, LHS, RHS); 1653 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1654 1655 MI.eraseFromParent(); 1656 return Legalized; 1657 } 1658 case G_USUBE: { 1659 unsigned Res = MI.getOperand(0).getReg(); 1660 unsigned BorrowOut = MI.getOperand(1).getReg(); 1661 unsigned LHS = MI.getOperand(2).getReg(); 1662 unsigned RHS = MI.getOperand(3).getReg(); 1663 unsigned BorrowIn = MI.getOperand(4).getReg(); 1664 1665 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1666 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1667 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1668 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1669 1670 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1671 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1672 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1673 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1674 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1675 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1676 1677 MI.eraseFromParent(); 1678 return Legalized; 1679 } 1680 } 1681 } 1682 1683 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1684 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1685 SmallVector<unsigned, 2> DstRegs; 1686 1687 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1688 unsigned DstReg = MI.getOperand(0).getReg(); 1689 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1690 int NumParts = Size / NarrowSize; 1691 // FIXME: Don't know how to handle the situation where the small vectors 1692 // aren't all the same size yet. 1693 if (Size % NarrowSize != 0) 1694 return UnableToLegalize; 1695 1696 for (int i = 0; i < NumParts; ++i) { 1697 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1698 MIRBuilder.buildUndef(TmpReg); 1699 DstRegs.push_back(TmpReg); 1700 } 1701 1702 if (NarrowTy.isVector()) 1703 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1704 else 1705 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1706 1707 MI.eraseFromParent(); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1713 LLT NarrowTy) { 1714 const unsigned Opc = MI.getOpcode(); 1715 const unsigned NumOps = MI.getNumOperands() - 1; 1716 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1717 const unsigned DstReg = MI.getOperand(0).getReg(); 1718 const unsigned Flags = MI.getFlags(); 1719 const LLT DstTy = MRI.getType(DstReg); 1720 const unsigned Size = DstTy.getSizeInBits(); 1721 const int NumParts = Size / NarrowSize; 1722 const LLT EltTy = DstTy.getElementType(); 1723 const unsigned EltSize = EltTy.getSizeInBits(); 1724 const unsigned BitsForNumParts = NarrowSize * NumParts; 1725 1726 // Check if we have any leftovers. If we do, then only handle the case where 1727 // the leftover is one element. 1728 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1729 return UnableToLegalize; 1730 1731 if (BitsForNumParts != Size) { 1732 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1733 MIRBuilder.buildUndef(AccumDstReg); 1734 1735 // Handle the pieces which evenly divide into the requested type with 1736 // extract/op/insert sequence. 1737 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1738 SmallVector<SrcOp, 4> SrcOps; 1739 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1740 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1741 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1742 SrcOps.push_back(PartOpReg); 1743 } 1744 1745 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1746 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1747 1748 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1749 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1750 AccumDstReg = PartInsertReg; 1751 } 1752 1753 // Handle the remaining element sized leftover piece. 1754 SmallVector<SrcOp, 4> SrcOps; 1755 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1756 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1757 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1758 BitsForNumParts); 1759 SrcOps.push_back(PartOpReg); 1760 } 1761 1762 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1763 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1764 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1765 MI.eraseFromParent(); 1766 1767 return Legalized; 1768 } 1769 1770 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1771 1772 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1773 1774 if (NumOps >= 2) 1775 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1776 1777 if (NumOps >= 3) 1778 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1779 1780 for (int i = 0; i < NumParts; ++i) { 1781 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1782 1783 if (NumOps == 1) 1784 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1785 else if (NumOps == 2) { 1786 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1787 } else if (NumOps == 3) { 1788 MIRBuilder.buildInstr(Opc, {DstReg}, 1789 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1790 } 1791 1792 DstRegs.push_back(DstReg); 1793 } 1794 1795 if (NarrowTy.isVector()) 1796 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1797 else 1798 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1799 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 1804 // Handle splitting vector operations which need to have the same number of 1805 // elements in each type index, but each type index may have a different element 1806 // type. 1807 // 1808 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1809 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1810 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1811 // 1812 // Also handles some irregular breakdown cases, e.g. 1813 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1814 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1815 // s64 = G_SHL s64, s32 1816 LegalizerHelper::LegalizeResult 1817 LegalizerHelper::fewerElementsVectorMultiEltType( 1818 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1819 if (TypeIdx != 0) 1820 return UnableToLegalize; 1821 1822 const LLT NarrowTy0 = NarrowTyArg; 1823 const unsigned NewNumElts = 1824 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1825 1826 const unsigned DstReg = MI.getOperand(0).getReg(); 1827 LLT DstTy = MRI.getType(DstReg); 1828 LLT LeftoverTy0; 1829 1830 int NumParts, NumLeftover; 1831 // All of the operands need to have the same number of elements, so if we can 1832 // determine a type breakdown for the result type, we can for all of the 1833 // source types. 1834 std::tie(NumParts, NumLeftover) 1835 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1836 if (NumParts < 0) 1837 return UnableToLegalize; 1838 1839 SmallVector<MachineInstrBuilder, 4> NewInsts; 1840 1841 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1842 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1843 1844 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1845 LLT LeftoverTy; 1846 unsigned SrcReg = MI.getOperand(I).getReg(); 1847 LLT SrcTyI = MRI.getType(SrcReg); 1848 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1849 LLT LeftoverTyI; 1850 1851 // Split this operand into the requested typed registers, and any leftover 1852 // required to reproduce the original type. 1853 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1854 LeftoverRegs)) 1855 return UnableToLegalize; 1856 1857 if (I == 1) { 1858 // For the first operand, create an instruction for each part and setup 1859 // the result. 1860 for (unsigned PartReg : PartRegs) { 1861 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1862 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1863 .addDef(PartDstReg) 1864 .addUse(PartReg)); 1865 DstRegs.push_back(PartDstReg); 1866 } 1867 1868 for (unsigned LeftoverReg : LeftoverRegs) { 1869 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1870 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1871 .addDef(PartDstReg) 1872 .addUse(LeftoverReg)); 1873 LeftoverDstRegs.push_back(PartDstReg); 1874 } 1875 } else { 1876 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1877 1878 // Add the newly created operand splits to the existing instructions. The 1879 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1880 // pieces. 1881 unsigned InstCount = 0; 1882 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1883 NewInsts[InstCount++].addUse(PartRegs[J]); 1884 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1885 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1886 } 1887 1888 PartRegs.clear(); 1889 LeftoverRegs.clear(); 1890 } 1891 1892 // Insert the newly built operations and rebuild the result register. 1893 for (auto &MIB : NewInsts) 1894 MIRBuilder.insertInstr(MIB); 1895 1896 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1897 1898 MI.eraseFromParent(); 1899 return Legalized; 1900 } 1901 1902 LegalizerHelper::LegalizeResult 1903 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1904 LLT NarrowTy) { 1905 if (TypeIdx != 0) 1906 return UnableToLegalize; 1907 1908 unsigned DstReg = MI.getOperand(0).getReg(); 1909 unsigned SrcReg = MI.getOperand(1).getReg(); 1910 LLT DstTy = MRI.getType(DstReg); 1911 LLT SrcTy = MRI.getType(SrcReg); 1912 1913 LLT NarrowTy0 = NarrowTy; 1914 LLT NarrowTy1; 1915 unsigned NumParts; 1916 1917 if (NarrowTy.isVector()) { 1918 // Uneven breakdown not handled. 1919 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1920 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1921 return UnableToLegalize; 1922 1923 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1924 } else { 1925 NumParts = DstTy.getNumElements(); 1926 NarrowTy1 = SrcTy.getElementType(); 1927 } 1928 1929 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1930 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1931 1932 for (unsigned I = 0; I < NumParts; ++I) { 1933 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1934 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1935 .addDef(DstReg) 1936 .addUse(SrcRegs[I]); 1937 1938 NewInst->setFlags(MI.getFlags()); 1939 DstRegs.push_back(DstReg); 1940 } 1941 1942 if (NarrowTy.isVector()) 1943 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1944 else 1945 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1946 1947 MI.eraseFromParent(); 1948 return Legalized; 1949 } 1950 1951 LegalizerHelper::LegalizeResult 1952 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1953 LLT NarrowTy) { 1954 unsigned DstReg = MI.getOperand(0).getReg(); 1955 unsigned Src0Reg = MI.getOperand(2).getReg(); 1956 LLT DstTy = MRI.getType(DstReg); 1957 LLT SrcTy = MRI.getType(Src0Reg); 1958 1959 unsigned NumParts; 1960 LLT NarrowTy0, NarrowTy1; 1961 1962 if (TypeIdx == 0) { 1963 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1964 unsigned OldElts = DstTy.getNumElements(); 1965 1966 NarrowTy0 = NarrowTy; 1967 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1968 NarrowTy1 = NarrowTy.isVector() ? 1969 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1970 SrcTy.getElementType(); 1971 1972 } else { 1973 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1974 unsigned OldElts = SrcTy.getNumElements(); 1975 1976 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1977 NarrowTy.getNumElements(); 1978 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1979 DstTy.getScalarSizeInBits()); 1980 NarrowTy1 = NarrowTy; 1981 } 1982 1983 // FIXME: Don't know how to handle the situation where the small vectors 1984 // aren't all the same size yet. 1985 if (NarrowTy1.isVector() && 1986 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1987 return UnableToLegalize; 1988 1989 CmpInst::Predicate Pred 1990 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1991 1992 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1993 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1994 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1995 1996 for (unsigned I = 0; I < NumParts; ++I) { 1997 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1998 DstRegs.push_back(DstReg); 1999 2000 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2001 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2002 else { 2003 MachineInstr *NewCmp 2004 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2005 NewCmp->setFlags(MI.getFlags()); 2006 } 2007 } 2008 2009 if (NarrowTy1.isVector()) 2010 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2011 else 2012 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2013 2014 MI.eraseFromParent(); 2015 return Legalized; 2016 } 2017 2018 LegalizerHelper::LegalizeResult 2019 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2020 LLT NarrowTy) { 2021 unsigned DstReg = MI.getOperand(0).getReg(); 2022 unsigned CondReg = MI.getOperand(1).getReg(); 2023 2024 unsigned NumParts = 0; 2025 LLT NarrowTy0, NarrowTy1; 2026 2027 LLT DstTy = MRI.getType(DstReg); 2028 LLT CondTy = MRI.getType(CondReg); 2029 unsigned Size = DstTy.getSizeInBits(); 2030 2031 assert(TypeIdx == 0 || CondTy.isVector()); 2032 2033 if (TypeIdx == 0) { 2034 NarrowTy0 = NarrowTy; 2035 NarrowTy1 = CondTy; 2036 2037 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2038 // FIXME: Don't know how to handle the situation where the small vectors 2039 // aren't all the same size yet. 2040 if (Size % NarrowSize != 0) 2041 return UnableToLegalize; 2042 2043 NumParts = Size / NarrowSize; 2044 2045 // Need to break down the condition type 2046 if (CondTy.isVector()) { 2047 if (CondTy.getNumElements() == NumParts) 2048 NarrowTy1 = CondTy.getElementType(); 2049 else 2050 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2051 CondTy.getScalarSizeInBits()); 2052 } 2053 } else { 2054 NumParts = CondTy.getNumElements(); 2055 if (NarrowTy.isVector()) { 2056 // TODO: Handle uneven breakdown. 2057 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2058 return UnableToLegalize; 2059 2060 return UnableToLegalize; 2061 } else { 2062 NarrowTy0 = DstTy.getElementType(); 2063 NarrowTy1 = NarrowTy; 2064 } 2065 } 2066 2067 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2068 if (CondTy.isVector()) 2069 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2070 2071 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2072 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2073 2074 for (unsigned i = 0; i < NumParts; ++i) { 2075 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2076 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2077 Src1Regs[i], Src2Regs[i]); 2078 DstRegs.push_back(DstReg); 2079 } 2080 2081 if (NarrowTy0.isVector()) 2082 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2083 else 2084 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2085 2086 MI.eraseFromParent(); 2087 return Legalized; 2088 } 2089 2090 LegalizerHelper::LegalizeResult 2091 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2092 LLT NarrowTy) { 2093 const unsigned DstReg = MI.getOperand(0).getReg(); 2094 LLT PhiTy = MRI.getType(DstReg); 2095 LLT LeftoverTy; 2096 2097 // All of the operands need to have the same number of elements, so if we can 2098 // determine a type breakdown for the result type, we can for all of the 2099 // source types. 2100 int NumParts, NumLeftover; 2101 std::tie(NumParts, NumLeftover) 2102 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2103 if (NumParts < 0) 2104 return UnableToLegalize; 2105 2106 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2107 SmallVector<MachineInstrBuilder, 4> NewInsts; 2108 2109 const int TotalNumParts = NumParts + NumLeftover; 2110 2111 // Insert the new phis in the result block first. 2112 for (int I = 0; I != TotalNumParts; ++I) { 2113 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2114 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2115 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2116 .addDef(PartDstReg)); 2117 if (I < NumParts) 2118 DstRegs.push_back(PartDstReg); 2119 else 2120 LeftoverDstRegs.push_back(PartDstReg); 2121 } 2122 2123 MachineBasicBlock *MBB = MI.getParent(); 2124 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2125 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2126 2127 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2128 2129 // Insert code to extract the incoming values in each predecessor block. 2130 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2131 PartRegs.clear(); 2132 LeftoverRegs.clear(); 2133 2134 unsigned SrcReg = MI.getOperand(I).getReg(); 2135 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2136 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2137 2138 LLT Unused; 2139 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2140 LeftoverRegs)) 2141 return UnableToLegalize; 2142 2143 // Add the newly created operand splits to the existing instructions. The 2144 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2145 // pieces. 2146 for (int J = 0; J != TotalNumParts; ++J) { 2147 MachineInstrBuilder MIB = NewInsts[J]; 2148 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2149 MIB.addMBB(&OpMBB); 2150 } 2151 } 2152 2153 MI.eraseFromParent(); 2154 return Legalized; 2155 } 2156 2157 LegalizerHelper::LegalizeResult 2158 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2159 LLT NarrowTy) { 2160 // FIXME: Don't know how to handle secondary types yet. 2161 if (TypeIdx != 0) 2162 return UnableToLegalize; 2163 2164 MachineMemOperand *MMO = *MI.memoperands_begin(); 2165 2166 // This implementation doesn't work for atomics. Give up instead of doing 2167 // something invalid. 2168 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2169 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2170 return UnableToLegalize; 2171 2172 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2173 unsigned ValReg = MI.getOperand(0).getReg(); 2174 unsigned AddrReg = MI.getOperand(1).getReg(); 2175 LLT ValTy = MRI.getType(ValReg); 2176 2177 int NumParts = -1; 2178 int NumLeftover = -1; 2179 LLT LeftoverTy; 2180 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2181 if (IsLoad) { 2182 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2183 } else { 2184 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2185 NarrowLeftoverRegs)) { 2186 NumParts = NarrowRegs.size(); 2187 NumLeftover = NarrowLeftoverRegs.size(); 2188 } 2189 } 2190 2191 if (NumParts == -1) 2192 return UnableToLegalize; 2193 2194 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2195 2196 unsigned TotalSize = ValTy.getSizeInBits(); 2197 2198 // Split the load/store into PartTy sized pieces starting at Offset. If this 2199 // is a load, return the new registers in ValRegs. For a store, each elements 2200 // of ValRegs should be PartTy. Returns the next offset that needs to be 2201 // handled. 2202 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2203 unsigned Offset) -> unsigned { 2204 MachineFunction &MF = MIRBuilder.getMF(); 2205 unsigned PartSize = PartTy.getSizeInBits(); 2206 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2207 Offset += PartSize, ++Idx) { 2208 unsigned ByteSize = PartSize / 8; 2209 unsigned ByteOffset = Offset / 8; 2210 unsigned NewAddrReg = 0; 2211 2212 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2213 2214 MachineMemOperand *NewMMO = 2215 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2216 2217 if (IsLoad) { 2218 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2219 ValRegs.push_back(Dst); 2220 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2221 } else { 2222 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2223 } 2224 } 2225 2226 return Offset; 2227 }; 2228 2229 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2230 2231 // Handle the rest of the register if this isn't an even type breakdown. 2232 if (LeftoverTy.isValid()) 2233 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2234 2235 if (IsLoad) { 2236 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2237 LeftoverTy, NarrowLeftoverRegs); 2238 } 2239 2240 MI.eraseFromParent(); 2241 return Legalized; 2242 } 2243 2244 LegalizerHelper::LegalizeResult 2245 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2246 LLT NarrowTy) { 2247 using namespace TargetOpcode; 2248 2249 MIRBuilder.setInstr(MI); 2250 switch (MI.getOpcode()) { 2251 case G_IMPLICIT_DEF: 2252 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2253 case G_AND: 2254 case G_OR: 2255 case G_XOR: 2256 case G_ADD: 2257 case G_SUB: 2258 case G_MUL: 2259 case G_SMULH: 2260 case G_UMULH: 2261 case G_FADD: 2262 case G_FMUL: 2263 case G_FSUB: 2264 case G_FNEG: 2265 case G_FABS: 2266 case G_FCANONICALIZE: 2267 case G_FDIV: 2268 case G_FREM: 2269 case G_FMA: 2270 case G_FPOW: 2271 case G_FEXP: 2272 case G_FEXP2: 2273 case G_FLOG: 2274 case G_FLOG2: 2275 case G_FLOG10: 2276 case G_FCEIL: 2277 case G_FFLOOR: 2278 case G_INTRINSIC_ROUND: 2279 case G_INTRINSIC_TRUNC: 2280 case G_FCOS: 2281 case G_FSIN: 2282 case G_FSQRT: 2283 case G_BSWAP: 2284 case G_SDIV: 2285 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2286 case G_SHL: 2287 case G_LSHR: 2288 case G_ASHR: 2289 case G_CTLZ: 2290 case G_CTLZ_ZERO_UNDEF: 2291 case G_CTTZ: 2292 case G_CTTZ_ZERO_UNDEF: 2293 case G_CTPOP: 2294 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2295 case G_ZEXT: 2296 case G_SEXT: 2297 case G_ANYEXT: 2298 case G_FPEXT: 2299 case G_FPTRUNC: 2300 case G_SITOFP: 2301 case G_UITOFP: 2302 case G_FPTOSI: 2303 case G_FPTOUI: 2304 case G_INTTOPTR: 2305 case G_PTRTOINT: 2306 case G_ADDRSPACE_CAST: 2307 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2308 case G_ICMP: 2309 case G_FCMP: 2310 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2311 case G_SELECT: 2312 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2313 case G_PHI: 2314 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2315 case G_LOAD: 2316 case G_STORE: 2317 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2318 default: 2319 return UnableToLegalize; 2320 } 2321 } 2322 2323 LegalizerHelper::LegalizeResult 2324 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2325 const LLT HalfTy, const LLT AmtTy) { 2326 2327 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2328 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2329 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2330 2331 if (Amt.isNullValue()) { 2332 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2333 MI.eraseFromParent(); 2334 return Legalized; 2335 } 2336 2337 LLT NVT = HalfTy; 2338 unsigned NVTBits = HalfTy.getSizeInBits(); 2339 unsigned VTBits = 2 * NVTBits; 2340 2341 SrcOp Lo(0), Hi(0); 2342 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2343 if (Amt.ugt(VTBits)) { 2344 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2345 } else if (Amt.ugt(NVTBits)) { 2346 Lo = MIRBuilder.buildConstant(NVT, 0); 2347 Hi = MIRBuilder.buildShl(NVT, InL, 2348 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2349 } else if (Amt == NVTBits) { 2350 Lo = MIRBuilder.buildConstant(NVT, 0); 2351 Hi = InL; 2352 } else { 2353 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2354 auto OrLHS = 2355 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2356 auto OrRHS = MIRBuilder.buildLShr( 2357 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2358 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2359 } 2360 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2361 if (Amt.ugt(VTBits)) { 2362 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2363 } else if (Amt.ugt(NVTBits)) { 2364 Lo = MIRBuilder.buildLShr(NVT, InH, 2365 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2366 Hi = MIRBuilder.buildConstant(NVT, 0); 2367 } else if (Amt == NVTBits) { 2368 Lo = InH; 2369 Hi = MIRBuilder.buildConstant(NVT, 0); 2370 } else { 2371 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2372 2373 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2374 auto OrRHS = MIRBuilder.buildShl( 2375 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2376 2377 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2378 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2379 } 2380 } else { 2381 if (Amt.ugt(VTBits)) { 2382 Hi = Lo = MIRBuilder.buildAShr( 2383 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2384 } else if (Amt.ugt(NVTBits)) { 2385 Lo = MIRBuilder.buildAShr(NVT, InH, 2386 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2387 Hi = MIRBuilder.buildAShr(NVT, InH, 2388 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2389 } else if (Amt == NVTBits) { 2390 Lo = InH; 2391 Hi = MIRBuilder.buildAShr(NVT, InH, 2392 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2393 } else { 2394 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2395 2396 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2397 auto OrRHS = MIRBuilder.buildShl( 2398 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2399 2400 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2401 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2402 } 2403 } 2404 2405 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2406 MI.eraseFromParent(); 2407 2408 return Legalized; 2409 } 2410 2411 // TODO: Optimize if constant shift amount. 2412 LegalizerHelper::LegalizeResult 2413 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2414 LLT RequestedTy) { 2415 if (TypeIdx == 1) { 2416 Observer.changingInstr(MI); 2417 narrowScalarSrc(MI, RequestedTy, 2); 2418 Observer.changedInstr(MI); 2419 return Legalized; 2420 } 2421 2422 unsigned DstReg = MI.getOperand(0).getReg(); 2423 LLT DstTy = MRI.getType(DstReg); 2424 if (DstTy.isVector()) 2425 return UnableToLegalize; 2426 2427 unsigned Amt = MI.getOperand(2).getReg(); 2428 LLT ShiftAmtTy = MRI.getType(Amt); 2429 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2430 if (DstEltSize % 2 != 0) 2431 return UnableToLegalize; 2432 2433 // Ignore the input type. We can only go to exactly half the size of the 2434 // input. If that isn't small enough, the resulting pieces will be further 2435 // legalized. 2436 const unsigned NewBitSize = DstEltSize / 2; 2437 const LLT HalfTy = LLT::scalar(NewBitSize); 2438 const LLT CondTy = LLT::scalar(1); 2439 2440 if (const MachineInstr *KShiftAmt = 2441 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2442 return narrowScalarShiftByConstant( 2443 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2444 } 2445 2446 // TODO: Expand with known bits. 2447 2448 // Handle the fully general expansion by an unknown amount. 2449 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2450 2451 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2452 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2453 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2454 2455 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2456 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2457 2458 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2459 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2460 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2461 2462 unsigned ResultRegs[2]; 2463 switch (MI.getOpcode()) { 2464 case TargetOpcode::G_SHL: { 2465 // Short: ShAmt < NewBitSize 2466 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2467 2468 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2469 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2470 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2471 2472 // Long: ShAmt >= NewBitSize 2473 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2474 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2475 2476 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2477 auto Hi = MIRBuilder.buildSelect( 2478 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2479 2480 ResultRegs[0] = Lo.getReg(0); 2481 ResultRegs[1] = Hi.getReg(0); 2482 break; 2483 } 2484 case TargetOpcode::G_LSHR: { 2485 // Short: ShAmt < NewBitSize 2486 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2487 2488 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2489 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2490 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2491 2492 // Long: ShAmt >= NewBitSize 2493 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2494 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2495 2496 auto Lo = MIRBuilder.buildSelect( 2497 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2498 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2499 2500 ResultRegs[0] = Lo.getReg(0); 2501 ResultRegs[1] = Hi.getReg(0); 2502 break; 2503 } 2504 case TargetOpcode::G_ASHR: { 2505 // Short: ShAmt < NewBitSize 2506 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2507 2508 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2509 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2510 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2511 2512 // Long: ShAmt >= NewBitSize 2513 2514 // Sign of Hi part. 2515 auto HiL = MIRBuilder.buildAShr( 2516 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2517 2518 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2519 2520 auto Lo = MIRBuilder.buildSelect( 2521 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2522 2523 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2524 2525 ResultRegs[0] = Lo.getReg(0); 2526 ResultRegs[1] = Hi.getReg(0); 2527 break; 2528 } 2529 default: 2530 llvm_unreachable("not a shift"); 2531 } 2532 2533 MIRBuilder.buildMerge(DstReg, ResultRegs); 2534 MI.eraseFromParent(); 2535 return Legalized; 2536 } 2537 2538 LegalizerHelper::LegalizeResult 2539 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2540 LLT MoreTy) { 2541 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2542 2543 Observer.changingInstr(MI); 2544 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2545 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2546 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2547 moreElementsVectorSrc(MI, MoreTy, I); 2548 } 2549 2550 MachineBasicBlock &MBB = *MI.getParent(); 2551 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2552 moreElementsVectorDst(MI, MoreTy, 0); 2553 Observer.changedInstr(MI); 2554 return Legalized; 2555 } 2556 2557 LegalizerHelper::LegalizeResult 2558 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2559 LLT MoreTy) { 2560 MIRBuilder.setInstr(MI); 2561 unsigned Opc = MI.getOpcode(); 2562 switch (Opc) { 2563 case TargetOpcode::G_IMPLICIT_DEF: { 2564 Observer.changingInstr(MI); 2565 moreElementsVectorDst(MI, MoreTy, 0); 2566 Observer.changedInstr(MI); 2567 return Legalized; 2568 } 2569 case TargetOpcode::G_AND: 2570 case TargetOpcode::G_OR: 2571 case TargetOpcode::G_XOR: { 2572 Observer.changingInstr(MI); 2573 moreElementsVectorSrc(MI, MoreTy, 1); 2574 moreElementsVectorSrc(MI, MoreTy, 2); 2575 moreElementsVectorDst(MI, MoreTy, 0); 2576 Observer.changedInstr(MI); 2577 return Legalized; 2578 } 2579 case TargetOpcode::G_EXTRACT: 2580 if (TypeIdx != 1) 2581 return UnableToLegalize; 2582 Observer.changingInstr(MI); 2583 moreElementsVectorSrc(MI, MoreTy, 1); 2584 Observer.changedInstr(MI); 2585 return Legalized; 2586 case TargetOpcode::G_INSERT: 2587 if (TypeIdx != 0) 2588 return UnableToLegalize; 2589 Observer.changingInstr(MI); 2590 moreElementsVectorSrc(MI, MoreTy, 1); 2591 moreElementsVectorDst(MI, MoreTy, 0); 2592 Observer.changedInstr(MI); 2593 return Legalized; 2594 case TargetOpcode::G_SELECT: 2595 if (TypeIdx != 0) 2596 return UnableToLegalize; 2597 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2598 return UnableToLegalize; 2599 2600 Observer.changingInstr(MI); 2601 moreElementsVectorSrc(MI, MoreTy, 2); 2602 moreElementsVectorSrc(MI, MoreTy, 3); 2603 moreElementsVectorDst(MI, MoreTy, 0); 2604 Observer.changedInstr(MI); 2605 return Legalized; 2606 case TargetOpcode::G_PHI: 2607 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2608 default: 2609 return UnableToLegalize; 2610 } 2611 } 2612 2613 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs, 2614 ArrayRef<unsigned> Src1Regs, 2615 ArrayRef<unsigned> Src2Regs, 2616 LLT NarrowTy) { 2617 MachineIRBuilder &B = MIRBuilder; 2618 unsigned SrcParts = Src1Regs.size(); 2619 unsigned DstParts = DstRegs.size(); 2620 2621 unsigned DstIdx = 0; // Low bits of the result. 2622 unsigned FactorSum = 2623 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2624 DstRegs[DstIdx] = FactorSum; 2625 2626 unsigned CarrySumPrevDstIdx; 2627 SmallVector<unsigned, 4> Factors; 2628 2629 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2630 // Collect low parts of muls for DstIdx. 2631 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2632 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2633 MachineInstrBuilder Mul = 2634 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2635 Factors.push_back(Mul.getReg(0)); 2636 } 2637 // Collect high parts of muls from previous DstIdx. 2638 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2639 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2640 MachineInstrBuilder Umulh = 2641 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2642 Factors.push_back(Umulh.getReg(0)); 2643 } 2644 // Add CarrySum from additons calculated for previous DstIdx. 2645 if (DstIdx != 1) { 2646 Factors.push_back(CarrySumPrevDstIdx); 2647 } 2648 2649 unsigned CarrySum = 0; 2650 // Add all factors and accumulate all carries into CarrySum. 2651 if (DstIdx != DstParts - 1) { 2652 MachineInstrBuilder Uaddo = 2653 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2654 FactorSum = Uaddo.getReg(0); 2655 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2656 for (unsigned i = 2; i < Factors.size(); ++i) { 2657 MachineInstrBuilder Uaddo = 2658 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2659 FactorSum = Uaddo.getReg(0); 2660 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2661 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2662 } 2663 } else { 2664 // Since value for the next index is not calculated, neither is CarrySum. 2665 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2666 for (unsigned i = 2; i < Factors.size(); ++i) 2667 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2668 } 2669 2670 CarrySumPrevDstIdx = CarrySum; 2671 DstRegs[DstIdx] = FactorSum; 2672 Factors.clear(); 2673 } 2674 } 2675 2676 LegalizerHelper::LegalizeResult 2677 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2678 unsigned DstReg = MI.getOperand(0).getReg(); 2679 unsigned Src1 = MI.getOperand(1).getReg(); 2680 unsigned Src2 = MI.getOperand(2).getReg(); 2681 2682 LLT Ty = MRI.getType(DstReg); 2683 if (Ty.isVector()) 2684 return UnableToLegalize; 2685 2686 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2687 unsigned DstSize = Ty.getSizeInBits(); 2688 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2689 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2690 return UnableToLegalize; 2691 2692 unsigned NumDstParts = DstSize / NarrowSize; 2693 unsigned NumSrcParts = SrcSize / NarrowSize; 2694 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2695 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2696 2697 SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs; 2698 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2699 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2700 DstTmpRegs.resize(DstTmpParts); 2701 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2702 2703 // Take only high half of registers if this is high mul. 2704 ArrayRef<unsigned> DstRegs( 2705 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2706 MIRBuilder.buildMerge(DstReg, DstRegs); 2707 MI.eraseFromParent(); 2708 return Legalized; 2709 } 2710 2711 LegalizerHelper::LegalizeResult 2712 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2713 LLT NarrowTy) { 2714 if (TypeIdx != 1) 2715 return UnableToLegalize; 2716 2717 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2718 2719 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2720 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2721 // NarrowSize. 2722 if (SizeOp1 % NarrowSize != 0) 2723 return UnableToLegalize; 2724 int NumParts = SizeOp1 / NarrowSize; 2725 2726 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2727 SmallVector<uint64_t, 2> Indexes; 2728 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2729 2730 unsigned OpReg = MI.getOperand(0).getReg(); 2731 uint64_t OpStart = MI.getOperand(2).getImm(); 2732 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2733 for (int i = 0; i < NumParts; ++i) { 2734 unsigned SrcStart = i * NarrowSize; 2735 2736 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2737 // No part of the extract uses this subregister, ignore it. 2738 continue; 2739 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2740 // The entire subregister is extracted, forward the value. 2741 DstRegs.push_back(SrcRegs[i]); 2742 continue; 2743 } 2744 2745 // OpSegStart is where this destination segment would start in OpReg if it 2746 // extended infinitely in both directions. 2747 int64_t ExtractOffset; 2748 uint64_t SegSize; 2749 if (OpStart < SrcStart) { 2750 ExtractOffset = 0; 2751 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2752 } else { 2753 ExtractOffset = OpStart - SrcStart; 2754 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2755 } 2756 2757 unsigned SegReg = SrcRegs[i]; 2758 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2759 // A genuine extract is needed. 2760 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2761 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2762 } 2763 2764 DstRegs.push_back(SegReg); 2765 } 2766 2767 unsigned DstReg = MI.getOperand(0).getReg(); 2768 if(MRI.getType(DstReg).isVector()) 2769 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2770 else 2771 MIRBuilder.buildMerge(DstReg, DstRegs); 2772 MI.eraseFromParent(); 2773 return Legalized; 2774 } 2775 2776 LegalizerHelper::LegalizeResult 2777 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2778 LLT NarrowTy) { 2779 // FIXME: Don't know how to handle secondary types yet. 2780 if (TypeIdx != 0) 2781 return UnableToLegalize; 2782 2783 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2784 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2785 2786 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2787 // NarrowSize. 2788 if (SizeOp0 % NarrowSize != 0) 2789 return UnableToLegalize; 2790 2791 int NumParts = SizeOp0 / NarrowSize; 2792 2793 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2794 SmallVector<uint64_t, 2> Indexes; 2795 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2796 2797 unsigned OpReg = MI.getOperand(2).getReg(); 2798 uint64_t OpStart = MI.getOperand(3).getImm(); 2799 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2800 for (int i = 0; i < NumParts; ++i) { 2801 unsigned DstStart = i * NarrowSize; 2802 2803 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2804 // No part of the insert affects this subregister, forward the original. 2805 DstRegs.push_back(SrcRegs[i]); 2806 continue; 2807 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2808 // The entire subregister is defined by this insert, forward the new 2809 // value. 2810 DstRegs.push_back(OpReg); 2811 continue; 2812 } 2813 2814 // OpSegStart is where this destination segment would start in OpReg if it 2815 // extended infinitely in both directions. 2816 int64_t ExtractOffset, InsertOffset; 2817 uint64_t SegSize; 2818 if (OpStart < DstStart) { 2819 InsertOffset = 0; 2820 ExtractOffset = DstStart - OpStart; 2821 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2822 } else { 2823 InsertOffset = OpStart - DstStart; 2824 ExtractOffset = 0; 2825 SegSize = 2826 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2827 } 2828 2829 unsigned SegReg = OpReg; 2830 if (ExtractOffset != 0 || SegSize != OpSize) { 2831 // A genuine extract is needed. 2832 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2833 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2834 } 2835 2836 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2837 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2838 DstRegs.push_back(DstReg); 2839 } 2840 2841 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2842 unsigned DstReg = MI.getOperand(0).getReg(); 2843 if(MRI.getType(DstReg).isVector()) 2844 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2845 else 2846 MIRBuilder.buildMerge(DstReg, DstRegs); 2847 MI.eraseFromParent(); 2848 return Legalized; 2849 } 2850 2851 LegalizerHelper::LegalizeResult 2852 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2853 LLT NarrowTy) { 2854 unsigned DstReg = MI.getOperand(0).getReg(); 2855 LLT DstTy = MRI.getType(DstReg); 2856 2857 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2858 2859 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2860 SmallVector<unsigned, 4> Src0Regs, Src0LeftoverRegs; 2861 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2862 LLT LeftoverTy; 2863 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2864 Src0Regs, Src0LeftoverRegs)) 2865 return UnableToLegalize; 2866 2867 LLT Unused; 2868 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2869 Src1Regs, Src1LeftoverRegs)) 2870 llvm_unreachable("inconsistent extractParts result"); 2871 2872 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2873 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2874 {Src0Regs[I], Src1Regs[I]}); 2875 DstRegs.push_back(Inst->getOperand(0).getReg()); 2876 } 2877 2878 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2879 auto Inst = MIRBuilder.buildInstr( 2880 MI.getOpcode(), 2881 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2882 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2883 } 2884 2885 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2886 LeftoverTy, DstLeftoverRegs); 2887 2888 MI.eraseFromParent(); 2889 return Legalized; 2890 } 2891 2892 LegalizerHelper::LegalizeResult 2893 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2894 LLT NarrowTy) { 2895 if (TypeIdx != 0) 2896 return UnableToLegalize; 2897 2898 unsigned CondReg = MI.getOperand(1).getReg(); 2899 LLT CondTy = MRI.getType(CondReg); 2900 if (CondTy.isVector()) // TODO: Handle vselect 2901 return UnableToLegalize; 2902 2903 unsigned DstReg = MI.getOperand(0).getReg(); 2904 LLT DstTy = MRI.getType(DstReg); 2905 2906 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2907 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2908 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2909 LLT LeftoverTy; 2910 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2911 Src1Regs, Src1LeftoverRegs)) 2912 return UnableToLegalize; 2913 2914 LLT Unused; 2915 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2916 Src2Regs, Src2LeftoverRegs)) 2917 llvm_unreachable("inconsistent extractParts result"); 2918 2919 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2920 auto Select = MIRBuilder.buildSelect(NarrowTy, 2921 CondReg, Src1Regs[I], Src2Regs[I]); 2922 DstRegs.push_back(Select->getOperand(0).getReg()); 2923 } 2924 2925 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2926 auto Select = MIRBuilder.buildSelect( 2927 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2928 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2929 } 2930 2931 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2932 LeftoverTy, DstLeftoverRegs); 2933 2934 MI.eraseFromParent(); 2935 return Legalized; 2936 } 2937 2938 LegalizerHelper::LegalizeResult 2939 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2940 unsigned Opc = MI.getOpcode(); 2941 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2942 auto isSupported = [this](const LegalityQuery &Q) { 2943 auto QAction = LI.getAction(Q).Action; 2944 return QAction == Legal || QAction == Libcall || QAction == Custom; 2945 }; 2946 switch (Opc) { 2947 default: 2948 return UnableToLegalize; 2949 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2950 // This trivially expands to CTLZ. 2951 Observer.changingInstr(MI); 2952 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2953 Observer.changedInstr(MI); 2954 return Legalized; 2955 } 2956 case TargetOpcode::G_CTLZ: { 2957 unsigned SrcReg = MI.getOperand(1).getReg(); 2958 unsigned Len = Ty.getSizeInBits(); 2959 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2960 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2961 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2962 {Ty}, {SrcReg}); 2963 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2964 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2965 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2966 SrcReg, MIBZero); 2967 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2968 MIBCtlzZU); 2969 MI.eraseFromParent(); 2970 return Legalized; 2971 } 2972 // for now, we do this: 2973 // NewLen = NextPowerOf2(Len); 2974 // x = x | (x >> 1); 2975 // x = x | (x >> 2); 2976 // ... 2977 // x = x | (x >>16); 2978 // x = x | (x >>32); // for 64-bit input 2979 // Upto NewLen/2 2980 // return Len - popcount(x); 2981 // 2982 // Ref: "Hacker's Delight" by Henry Warren 2983 unsigned Op = SrcReg; 2984 unsigned NewLen = PowerOf2Ceil(Len); 2985 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2986 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2987 auto MIBOp = MIRBuilder.buildInstr( 2988 TargetOpcode::G_OR, {Ty}, 2989 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2990 {Op, MIBShiftAmt})}); 2991 Op = MIBOp->getOperand(0).getReg(); 2992 } 2993 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2994 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2995 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2996 MI.eraseFromParent(); 2997 return Legalized; 2998 } 2999 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3000 // This trivially expands to CTTZ. 3001 Observer.changingInstr(MI); 3002 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3003 Observer.changedInstr(MI); 3004 return Legalized; 3005 } 3006 case TargetOpcode::G_CTTZ: { 3007 unsigned SrcReg = MI.getOperand(1).getReg(); 3008 unsigned Len = Ty.getSizeInBits(); 3009 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3010 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3011 // zero. 3012 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3013 {Ty}, {SrcReg}); 3014 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3015 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3016 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3017 SrcReg, MIBZero); 3018 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3019 MIBCttzZU); 3020 MI.eraseFromParent(); 3021 return Legalized; 3022 } 3023 // for now, we use: { return popcount(~x & (x - 1)); } 3024 // unless the target has ctlz but not ctpop, in which case we use: 3025 // { return 32 - nlz(~x & (x-1)); } 3026 // Ref: "Hacker's Delight" by Henry Warren 3027 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3028 auto MIBNot = 3029 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3030 auto MIBTmp = MIRBuilder.buildInstr( 3031 TargetOpcode::G_AND, {Ty}, 3032 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3033 {SrcReg, MIBCstNeg1})}); 3034 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3035 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3036 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3037 MIRBuilder.buildInstr( 3038 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3039 {MIBCstLen, 3040 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3041 MI.eraseFromParent(); 3042 return Legalized; 3043 } 3044 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3045 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3046 return Legalized; 3047 } 3048 } 3049 } 3050