1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FREM: 248 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 249 case TargetOpcode::G_FPOW: 250 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 251 case TargetOpcode::G_FMA: 252 assert((Size == 32 || Size == 64) && "Unsupported size"); 253 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 254 case TargetOpcode::G_FSIN: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 return Size == 128 ? RTLIB::SIN_F128 257 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 258 case TargetOpcode::G_FCOS: 259 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 260 return Size == 128 ? RTLIB::COS_F128 261 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 262 case TargetOpcode::G_FLOG10: 263 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 264 return Size == 128 ? RTLIB::LOG10_F128 265 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 266 case TargetOpcode::G_FLOG: 267 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 268 return Size == 128 ? RTLIB::LOG_F128 269 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 270 case TargetOpcode::G_FLOG2: 271 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 272 return Size == 128 ? RTLIB::LOG2_F128 273 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 274 } 275 llvm_unreachable("Unknown libcall function"); 276 } 277 278 LegalizerHelper::LegalizeResult 279 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 280 const CallLowering::ArgInfo &Result, 281 ArrayRef<CallLowering::ArgInfo> Args) { 282 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 283 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 284 const char *Name = TLI.getLibcallName(Libcall); 285 286 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 287 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 288 MachineOperand::CreateES(Name), Result, Args)) 289 return LegalizerHelper::UnableToLegalize; 290 291 return LegalizerHelper::Legalized; 292 } 293 294 // Useful for libcalls where all operands have the same type. 295 static LegalizerHelper::LegalizeResult 296 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 297 Type *OpType) { 298 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 299 300 SmallVector<CallLowering::ArgInfo, 3> Args; 301 for (unsigned i = 1; i < MI.getNumOperands(); i++) 302 Args.push_back({MI.getOperand(i).getReg(), OpType}); 303 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 304 Args); 305 } 306 307 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 308 Type *FromType) { 309 auto ToMVT = MVT::getVT(ToType); 310 auto FromMVT = MVT::getVT(FromType); 311 312 switch (Opcode) { 313 case TargetOpcode::G_FPEXT: 314 return RTLIB::getFPEXT(FromMVT, ToMVT); 315 case TargetOpcode::G_FPTRUNC: 316 return RTLIB::getFPROUND(FromMVT, ToMVT); 317 case TargetOpcode::G_FPTOSI: 318 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 319 case TargetOpcode::G_FPTOUI: 320 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 321 case TargetOpcode::G_SITOFP: 322 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 323 case TargetOpcode::G_UITOFP: 324 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 325 } 326 llvm_unreachable("Unsupported libcall function"); 327 } 328 329 static LegalizerHelper::LegalizeResult 330 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 331 Type *FromType) { 332 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 333 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 334 {{MI.getOperand(1).getReg(), FromType}}); 335 } 336 337 LegalizerHelper::LegalizeResult 338 LegalizerHelper::libcall(MachineInstr &MI) { 339 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 340 unsigned Size = LLTy.getSizeInBits(); 341 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 342 343 MIRBuilder.setInstr(MI); 344 345 switch (MI.getOpcode()) { 346 default: 347 return UnableToLegalize; 348 case TargetOpcode::G_SDIV: 349 case TargetOpcode::G_UDIV: 350 case TargetOpcode::G_SREM: 351 case TargetOpcode::G_UREM: 352 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 353 Type *HLTy = IntegerType::get(Ctx, Size); 354 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 355 if (Status != Legalized) 356 return Status; 357 break; 358 } 359 case TargetOpcode::G_FADD: 360 case TargetOpcode::G_FSUB: 361 case TargetOpcode::G_FMUL: 362 case TargetOpcode::G_FDIV: 363 case TargetOpcode::G_FMA: 364 case TargetOpcode::G_FPOW: 365 case TargetOpcode::G_FREM: 366 case TargetOpcode::G_FCOS: 367 case TargetOpcode::G_FSIN: 368 case TargetOpcode::G_FLOG10: 369 case TargetOpcode::G_FLOG: 370 case TargetOpcode::G_FLOG2: 371 case TargetOpcode::G_FEXP: { 372 if (Size > 64) { 373 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 374 return UnableToLegalize; 375 } 376 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 377 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 378 if (Status != Legalized) 379 return Status; 380 break; 381 } 382 case TargetOpcode::G_FPEXT: { 383 // FIXME: Support other floating point types (half, fp128 etc) 384 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 385 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 386 if (ToSize != 64 || FromSize != 32) 387 return UnableToLegalize; 388 LegalizeResult Status = conversionLibcall( 389 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 390 if (Status != Legalized) 391 return Status; 392 break; 393 } 394 case TargetOpcode::G_FPTRUNC: { 395 // FIXME: Support other floating point types (half, fp128 etc) 396 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 397 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 398 if (ToSize != 32 || FromSize != 64) 399 return UnableToLegalize; 400 LegalizeResult Status = conversionLibcall( 401 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 402 if (Status != Legalized) 403 return Status; 404 break; 405 } 406 case TargetOpcode::G_FPTOSI: 407 case TargetOpcode::G_FPTOUI: { 408 // FIXME: Support other types 409 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 410 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 411 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 412 return UnableToLegalize; 413 LegalizeResult Status = conversionLibcall( 414 MI, MIRBuilder, Type::getInt32Ty(Ctx), 415 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 416 if (Status != Legalized) 417 return Status; 418 break; 419 } 420 case TargetOpcode::G_SITOFP: 421 case TargetOpcode::G_UITOFP: { 422 // FIXME: Support other types 423 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 424 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 425 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 426 return UnableToLegalize; 427 LegalizeResult Status = conversionLibcall( 428 MI, MIRBuilder, 429 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 430 Type::getInt32Ty(Ctx)); 431 if (Status != Legalized) 432 return Status; 433 break; 434 } 435 } 436 437 MI.eraseFromParent(); 438 return Legalized; 439 } 440 441 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 442 unsigned TypeIdx, 443 LLT NarrowTy) { 444 MIRBuilder.setInstr(MI); 445 446 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 447 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 448 449 switch (MI.getOpcode()) { 450 default: 451 return UnableToLegalize; 452 case TargetOpcode::G_IMPLICIT_DEF: { 453 // FIXME: add support for when SizeOp0 isn't an exact multiple of 454 // NarrowSize. 455 if (SizeOp0 % NarrowSize != 0) 456 return UnableToLegalize; 457 int NumParts = SizeOp0 / NarrowSize; 458 459 SmallVector<unsigned, 2> DstRegs; 460 for (int i = 0; i < NumParts; ++i) 461 DstRegs.push_back( 462 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 463 464 unsigned DstReg = MI.getOperand(0).getReg(); 465 if(MRI.getType(DstReg).isVector()) 466 MIRBuilder.buildBuildVector(DstReg, DstRegs); 467 else 468 MIRBuilder.buildMerge(DstReg, DstRegs); 469 MI.eraseFromParent(); 470 return Legalized; 471 } 472 case TargetOpcode::G_ADD: { 473 // FIXME: add support for when SizeOp0 isn't an exact multiple of 474 // NarrowSize. 475 if (SizeOp0 % NarrowSize != 0) 476 return UnableToLegalize; 477 // Expand in terms of carry-setting/consuming G_ADDE instructions. 478 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 479 480 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 481 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 482 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 483 484 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 485 MIRBuilder.buildConstant(CarryIn, 0); 486 487 for (int i = 0; i < NumParts; ++i) { 488 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 489 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 490 491 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 492 Src2Regs[i], CarryIn); 493 494 DstRegs.push_back(DstReg); 495 CarryIn = CarryOut; 496 } 497 unsigned DstReg = MI.getOperand(0).getReg(); 498 if(MRI.getType(DstReg).isVector()) 499 MIRBuilder.buildBuildVector(DstReg, DstRegs); 500 else 501 MIRBuilder.buildMerge(DstReg, DstRegs); 502 MI.eraseFromParent(); 503 return Legalized; 504 } 505 case TargetOpcode::G_SUB: { 506 // FIXME: add support for when SizeOp0 isn't an exact multiple of 507 // NarrowSize. 508 if (SizeOp0 % NarrowSize != 0) 509 return UnableToLegalize; 510 511 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 512 513 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 514 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 515 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 516 517 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 518 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 519 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 520 {Src1Regs[0], Src2Regs[0]}); 521 DstRegs.push_back(DstReg); 522 unsigned BorrowIn = BorrowOut; 523 for (int i = 1; i < NumParts; ++i) { 524 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 525 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 526 527 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 528 {Src1Regs[i], Src2Regs[i], BorrowIn}); 529 530 DstRegs.push_back(DstReg); 531 BorrowIn = BorrowOut; 532 } 533 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 534 MI.eraseFromParent(); 535 return Legalized; 536 } 537 case TargetOpcode::G_MUL: 538 return narrowScalarMul(MI, TypeIdx, NarrowTy); 539 case TargetOpcode::G_EXTRACT: 540 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 541 case TargetOpcode::G_INSERT: 542 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 543 case TargetOpcode::G_LOAD: { 544 const auto &MMO = **MI.memoperands_begin(); 545 unsigned DstReg = MI.getOperand(0).getReg(); 546 LLT DstTy = MRI.getType(DstReg); 547 if (DstTy.isVector()) 548 return UnableToLegalize; 549 550 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 551 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 552 auto &MMO = **MI.memoperands_begin(); 553 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 554 MIRBuilder.buildAnyExt(DstReg, TmpReg); 555 MI.eraseFromParent(); 556 return Legalized; 557 } 558 559 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 560 } 561 case TargetOpcode::G_ZEXTLOAD: 562 case TargetOpcode::G_SEXTLOAD: { 563 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 564 unsigned DstReg = MI.getOperand(0).getReg(); 565 unsigned PtrReg = MI.getOperand(1).getReg(); 566 567 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 568 auto &MMO = **MI.memoperands_begin(); 569 if (MMO.getSize() * 8 == NarrowSize) { 570 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 571 } else { 572 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 573 : TargetOpcode::G_SEXTLOAD; 574 MIRBuilder.buildInstr(ExtLoad) 575 .addDef(TmpReg) 576 .addUse(PtrReg) 577 .addMemOperand(&MMO); 578 } 579 580 if (ZExt) 581 MIRBuilder.buildZExt(DstReg, TmpReg); 582 else 583 MIRBuilder.buildSExt(DstReg, TmpReg); 584 585 MI.eraseFromParent(); 586 return Legalized; 587 } 588 case TargetOpcode::G_STORE: { 589 const auto &MMO = **MI.memoperands_begin(); 590 591 unsigned SrcReg = MI.getOperand(0).getReg(); 592 LLT SrcTy = MRI.getType(SrcReg); 593 if (SrcTy.isVector()) 594 return UnableToLegalize; 595 596 int NumParts = SizeOp0 / NarrowSize; 597 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 598 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 599 if (SrcTy.isVector() && LeftoverBits != 0) 600 return UnableToLegalize; 601 602 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 603 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 604 auto &MMO = **MI.memoperands_begin(); 605 MIRBuilder.buildTrunc(TmpReg, SrcReg); 606 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 607 MI.eraseFromParent(); 608 return Legalized; 609 } 610 611 return reduceLoadStoreWidth(MI, 0, NarrowTy); 612 } 613 case TargetOpcode::G_CONSTANT: { 614 // FIXME: add support for when SizeOp0 isn't an exact multiple of 615 // NarrowSize. 616 if (SizeOp0 % NarrowSize != 0) 617 return UnableToLegalize; 618 int NumParts = SizeOp0 / NarrowSize; 619 const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); 620 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 621 622 SmallVector<unsigned, 2> DstRegs; 623 for (int i = 0; i < NumParts; ++i) { 624 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 625 ConstantInt *CI = 626 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); 627 MIRBuilder.buildConstant(DstReg, *CI); 628 DstRegs.push_back(DstReg); 629 } 630 unsigned DstReg = MI.getOperand(0).getReg(); 631 if(MRI.getType(DstReg).isVector()) 632 MIRBuilder.buildBuildVector(DstReg, DstRegs); 633 else 634 MIRBuilder.buildMerge(DstReg, DstRegs); 635 MI.eraseFromParent(); 636 return Legalized; 637 } 638 case TargetOpcode::G_SELECT: 639 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 640 case TargetOpcode::G_AND: 641 case TargetOpcode::G_OR: 642 case TargetOpcode::G_XOR: { 643 // Legalize bitwise operation: 644 // A = BinOp<Ty> B, C 645 // into: 646 // B1, ..., BN = G_UNMERGE_VALUES B 647 // C1, ..., CN = G_UNMERGE_VALUES C 648 // A1 = BinOp<Ty/N> B1, C2 649 // ... 650 // AN = BinOp<Ty/N> BN, CN 651 // A = G_MERGE_VALUES A1, ..., AN 652 653 // FIXME: add support for when SizeOp0 isn't an exact multiple of 654 // NarrowSize. 655 if (SizeOp0 % NarrowSize != 0) 656 return UnableToLegalize; 657 int NumParts = SizeOp0 / NarrowSize; 658 659 // List the registers where the destination will be scattered. 660 SmallVector<unsigned, 2> DstRegs; 661 // List the registers where the first argument will be split. 662 SmallVector<unsigned, 2> SrcsReg1; 663 // List the registers where the second argument will be split. 664 SmallVector<unsigned, 2> SrcsReg2; 665 // Create all the temporary registers. 666 for (int i = 0; i < NumParts; ++i) { 667 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 668 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); 669 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); 670 671 DstRegs.push_back(DstReg); 672 SrcsReg1.push_back(SrcReg1); 673 SrcsReg2.push_back(SrcReg2); 674 } 675 // Explode the big arguments into smaller chunks. 676 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); 677 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); 678 679 // Do the operation on each small part. 680 for (int i = 0; i < NumParts; ++i) 681 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, 682 {SrcsReg1[i], SrcsReg2[i]}); 683 684 // Gather the destination registers into the final destination. 685 unsigned DstReg = MI.getOperand(0).getReg(); 686 if(MRI.getType(DstReg).isVector()) 687 MIRBuilder.buildBuildVector(DstReg, DstRegs); 688 else 689 MIRBuilder.buildMerge(DstReg, DstRegs); 690 MI.eraseFromParent(); 691 return Legalized; 692 } 693 case TargetOpcode::G_SHL: 694 case TargetOpcode::G_LSHR: 695 case TargetOpcode::G_ASHR: 696 return narrowScalarShift(MI, TypeIdx, NarrowTy); 697 case TargetOpcode::G_CTLZ: 698 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 699 case TargetOpcode::G_CTTZ: 700 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 701 case TargetOpcode::G_CTPOP: 702 if (TypeIdx != 0) 703 return UnableToLegalize; // TODO 704 705 Observer.changingInstr(MI); 706 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 707 Observer.changedInstr(MI); 708 return Legalized; 709 case TargetOpcode::G_INTTOPTR: 710 if (TypeIdx != 1) 711 return UnableToLegalize; 712 713 Observer.changingInstr(MI); 714 narrowScalarSrc(MI, NarrowTy, 1); 715 Observer.changedInstr(MI); 716 return Legalized; 717 case TargetOpcode::G_PTRTOINT: 718 if (TypeIdx != 0) 719 return UnableToLegalize; 720 721 Observer.changingInstr(MI); 722 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 723 Observer.changedInstr(MI); 724 return Legalized; 725 } 726 } 727 728 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 729 unsigned OpIdx, unsigned ExtOpcode) { 730 MachineOperand &MO = MI.getOperand(OpIdx); 731 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 732 MO.setReg(ExtB->getOperand(0).getReg()); 733 } 734 735 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 736 unsigned OpIdx) { 737 MachineOperand &MO = MI.getOperand(OpIdx); 738 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 739 {MO.getReg()}); 740 MO.setReg(ExtB->getOperand(0).getReg()); 741 } 742 743 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 744 unsigned OpIdx, unsigned TruncOpcode) { 745 MachineOperand &MO = MI.getOperand(OpIdx); 746 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 747 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 748 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 749 MO.setReg(DstExt); 750 } 751 752 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 753 unsigned OpIdx, unsigned ExtOpcode) { 754 MachineOperand &MO = MI.getOperand(OpIdx); 755 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 756 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 757 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 758 MO.setReg(DstTrunc); 759 } 760 761 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 762 unsigned OpIdx) { 763 MachineOperand &MO = MI.getOperand(OpIdx); 764 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 765 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 766 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 767 MO.setReg(DstExt); 768 } 769 770 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 771 unsigned OpIdx) { 772 MachineOperand &MO = MI.getOperand(OpIdx); 773 774 LLT OldTy = MRI.getType(MO.getReg()); 775 unsigned OldElts = OldTy.getNumElements(); 776 unsigned NewElts = MoreTy.getNumElements(); 777 778 unsigned NumParts = NewElts / OldElts; 779 780 // Use concat_vectors if the result is a multiple of the number of elements. 781 if (NumParts * OldElts == NewElts) { 782 SmallVector<unsigned, 8> Parts; 783 Parts.push_back(MO.getReg()); 784 785 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 786 for (unsigned I = 1; I != NumParts; ++I) 787 Parts.push_back(ImpDef); 788 789 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 790 MO.setReg(Concat.getReg(0)); 791 return; 792 } 793 794 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 795 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 796 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 797 MO.setReg(MoreReg); 798 } 799 800 LegalizerHelper::LegalizeResult 801 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 802 LLT WideTy) { 803 if (TypeIdx != 1) 804 return UnableToLegalize; 805 806 unsigned DstReg = MI.getOperand(0).getReg(); 807 LLT DstTy = MRI.getType(DstReg); 808 if (!DstTy.isScalar()) 809 return UnableToLegalize; 810 811 unsigned NumOps = MI.getNumOperands(); 812 unsigned NumSrc = MI.getNumOperands() - 1; 813 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 814 815 unsigned Src1 = MI.getOperand(1).getReg(); 816 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 817 818 for (unsigned I = 2; I != NumOps; ++I) { 819 const unsigned Offset = (I - 1) * PartSize; 820 821 unsigned SrcReg = MI.getOperand(I).getReg(); 822 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 823 824 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 825 826 unsigned NextResult = I + 1 == NumOps ? DstReg : 827 MRI.createGenericVirtualRegister(DstTy); 828 829 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 830 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 831 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 832 ResultReg = NextResult; 833 } 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 839 LegalizerHelper::LegalizeResult 840 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 841 LLT WideTy) { 842 if (TypeIdx != 0) 843 return UnableToLegalize; 844 845 unsigned NumDst = MI.getNumOperands() - 1; 846 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 847 LLT SrcTy = MRI.getType(SrcReg); 848 if (!SrcTy.isScalar()) 849 return UnableToLegalize; 850 851 unsigned Dst0Reg = MI.getOperand(0).getReg(); 852 LLT DstTy = MRI.getType(Dst0Reg); 853 if (!DstTy.isScalar()) 854 return UnableToLegalize; 855 856 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 857 LLT NewSrcTy = LLT::scalar(NewSrcSize); 858 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 859 860 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 861 862 for (unsigned I = 1; I != NumDst; ++I) { 863 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 864 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 865 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 866 } 867 868 Observer.changingInstr(MI); 869 870 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 871 for (unsigned I = 0; I != NumDst; ++I) 872 widenScalarDst(MI, WideTy, I); 873 874 Observer.changedInstr(MI); 875 876 return Legalized; 877 } 878 879 LegalizerHelper::LegalizeResult 880 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 881 LLT WideTy) { 882 unsigned DstReg = MI.getOperand(0).getReg(); 883 unsigned SrcReg = MI.getOperand(1).getReg(); 884 LLT SrcTy = MRI.getType(SrcReg); 885 886 LLT DstTy = MRI.getType(DstReg); 887 unsigned Offset = MI.getOperand(2).getImm(); 888 889 if (TypeIdx == 0) { 890 if (SrcTy.isVector() || DstTy.isVector()) 891 return UnableToLegalize; 892 893 SrcOp Src(SrcReg); 894 if (SrcTy.isPointer()) { 895 // Extracts from pointers can be handled only if they are really just 896 // simple integers. 897 const DataLayout &DL = MIRBuilder.getDataLayout(); 898 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 899 return UnableToLegalize; 900 901 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 902 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 903 SrcTy = SrcAsIntTy; 904 } 905 906 if (DstTy.isPointer()) 907 return UnableToLegalize; 908 909 if (Offset == 0) { 910 // Avoid a shift in the degenerate case. 911 MIRBuilder.buildTrunc(DstReg, 912 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 913 MI.eraseFromParent(); 914 return Legalized; 915 } 916 917 // Do a shift in the source type. 918 LLT ShiftTy = SrcTy; 919 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 920 Src = MIRBuilder.buildAnyExt(WideTy, Src); 921 ShiftTy = WideTy; 922 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 923 return UnableToLegalize; 924 925 auto LShr = MIRBuilder.buildLShr( 926 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 927 MIRBuilder.buildTrunc(DstReg, LShr); 928 MI.eraseFromParent(); 929 return Legalized; 930 } 931 932 if (!SrcTy.isVector()) 933 return UnableToLegalize; 934 935 if (DstTy != SrcTy.getElementType()) 936 return UnableToLegalize; 937 938 if (Offset % SrcTy.getScalarSizeInBits() != 0) 939 return UnableToLegalize; 940 941 Observer.changingInstr(MI); 942 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 943 944 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 945 Offset); 946 widenScalarDst(MI, WideTy.getScalarType(), 0); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 951 LegalizerHelper::LegalizeResult 952 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 953 LLT WideTy) { 954 if (TypeIdx != 0) 955 return UnableToLegalize; 956 Observer.changingInstr(MI); 957 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 958 widenScalarDst(MI, WideTy); 959 Observer.changedInstr(MI); 960 return Legalized; 961 } 962 963 LegalizerHelper::LegalizeResult 964 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 965 MIRBuilder.setInstr(MI); 966 967 switch (MI.getOpcode()) { 968 default: 969 return UnableToLegalize; 970 case TargetOpcode::G_EXTRACT: 971 return widenScalarExtract(MI, TypeIdx, WideTy); 972 case TargetOpcode::G_INSERT: 973 return widenScalarInsert(MI, TypeIdx, WideTy); 974 case TargetOpcode::G_MERGE_VALUES: 975 return widenScalarMergeValues(MI, TypeIdx, WideTy); 976 case TargetOpcode::G_UNMERGE_VALUES: 977 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 978 case TargetOpcode::G_UADDO: 979 case TargetOpcode::G_USUBO: { 980 if (TypeIdx == 1) 981 return UnableToLegalize; // TODO 982 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 983 {MI.getOperand(2).getReg()}); 984 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 985 {MI.getOperand(3).getReg()}); 986 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 987 ? TargetOpcode::G_ADD 988 : TargetOpcode::G_SUB; 989 // Do the arithmetic in the larger type. 990 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 991 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 992 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 993 auto AndOp = MIRBuilder.buildInstr( 994 TargetOpcode::G_AND, {WideTy}, 995 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 996 // There is no overflow if the AndOp is the same as NewOp. 997 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 998 AndOp); 999 // Now trunc the NewOp to the original result. 1000 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1001 MI.eraseFromParent(); 1002 return Legalized; 1003 } 1004 case TargetOpcode::G_CTTZ: 1005 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1006 case TargetOpcode::G_CTLZ: 1007 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1008 case TargetOpcode::G_CTPOP: { 1009 if (TypeIdx == 0) { 1010 Observer.changingInstr(MI); 1011 widenScalarDst(MI, WideTy, 0); 1012 Observer.changedInstr(MI); 1013 return Legalized; 1014 } 1015 1016 unsigned SrcReg = MI.getOperand(1).getReg(); 1017 1018 // First ZEXT the input. 1019 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1020 LLT CurTy = MRI.getType(SrcReg); 1021 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1022 // The count is the same in the larger type except if the original 1023 // value was zero. This can be handled by setting the bit just off 1024 // the top of the original type. 1025 auto TopBit = 1026 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1027 MIBSrc = MIRBuilder.buildOr( 1028 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1029 } 1030 1031 // Perform the operation at the larger size. 1032 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1033 // This is already the correct result for CTPOP and CTTZs 1034 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1035 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1036 // The correct result is NewOp - (Difference in widety and current ty). 1037 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1038 MIBNewOp = MIRBuilder.buildInstr( 1039 TargetOpcode::G_SUB, {WideTy}, 1040 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1041 } 1042 1043 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1044 MI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 case TargetOpcode::G_BSWAP: { 1048 Observer.changingInstr(MI); 1049 unsigned DstReg = MI.getOperand(0).getReg(); 1050 1051 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1052 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1053 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1054 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1055 1056 MI.getOperand(0).setReg(DstExt); 1057 1058 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1059 1060 LLT Ty = MRI.getType(DstReg); 1061 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1062 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1063 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1064 .addDef(ShrReg) 1065 .addUse(DstExt) 1066 .addUse(ShiftAmtReg); 1067 1068 MIRBuilder.buildTrunc(DstReg, ShrReg); 1069 Observer.changedInstr(MI); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_ADD: 1073 case TargetOpcode::G_AND: 1074 case TargetOpcode::G_MUL: 1075 case TargetOpcode::G_OR: 1076 case TargetOpcode::G_XOR: 1077 case TargetOpcode::G_SUB: 1078 // Perform operation at larger width (any extension is fines here, high bits 1079 // don't affect the result) and then truncate the result back to the 1080 // original type. 1081 Observer.changingInstr(MI); 1082 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1083 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1084 widenScalarDst(MI, WideTy); 1085 Observer.changedInstr(MI); 1086 return Legalized; 1087 1088 case TargetOpcode::G_SHL: 1089 Observer.changingInstr(MI); 1090 1091 if (TypeIdx == 0) { 1092 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1093 widenScalarDst(MI, WideTy); 1094 } else { 1095 assert(TypeIdx == 1); 1096 // The "number of bits to shift" operand must preserve its value as an 1097 // unsigned integer: 1098 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1099 } 1100 1101 Observer.changedInstr(MI); 1102 return Legalized; 1103 1104 case TargetOpcode::G_SDIV: 1105 case TargetOpcode::G_SREM: 1106 Observer.changingInstr(MI); 1107 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1108 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1109 widenScalarDst(MI, WideTy); 1110 Observer.changedInstr(MI); 1111 return Legalized; 1112 1113 case TargetOpcode::G_ASHR: 1114 case TargetOpcode::G_LSHR: 1115 Observer.changingInstr(MI); 1116 1117 if (TypeIdx == 0) { 1118 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1119 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1120 1121 widenScalarSrc(MI, WideTy, 1, CvtOp); 1122 widenScalarDst(MI, WideTy); 1123 } else { 1124 assert(TypeIdx == 1); 1125 // The "number of bits to shift" operand must preserve its value as an 1126 // unsigned integer: 1127 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1128 } 1129 1130 Observer.changedInstr(MI); 1131 return Legalized; 1132 case TargetOpcode::G_UDIV: 1133 case TargetOpcode::G_UREM: 1134 Observer.changingInstr(MI); 1135 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1136 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1137 widenScalarDst(MI, WideTy); 1138 Observer.changedInstr(MI); 1139 return Legalized; 1140 1141 case TargetOpcode::G_SELECT: 1142 Observer.changingInstr(MI); 1143 if (TypeIdx == 0) { 1144 // Perform operation at larger width (any extension is fine here, high 1145 // bits don't affect the result) and then truncate the result back to the 1146 // original type. 1147 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1148 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1149 widenScalarDst(MI, WideTy); 1150 } else { 1151 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1152 // Explicit extension is required here since high bits affect the result. 1153 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1154 } 1155 Observer.changedInstr(MI); 1156 return Legalized; 1157 1158 case TargetOpcode::G_FPTOSI: 1159 case TargetOpcode::G_FPTOUI: 1160 if (TypeIdx != 0) 1161 return UnableToLegalize; 1162 Observer.changingInstr(MI); 1163 widenScalarDst(MI, WideTy); 1164 Observer.changedInstr(MI); 1165 return Legalized; 1166 1167 case TargetOpcode::G_SITOFP: 1168 if (TypeIdx != 1) 1169 return UnableToLegalize; 1170 Observer.changingInstr(MI); 1171 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1172 Observer.changedInstr(MI); 1173 return Legalized; 1174 1175 case TargetOpcode::G_UITOFP: 1176 if (TypeIdx != 1) 1177 return UnableToLegalize; 1178 Observer.changingInstr(MI); 1179 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1180 Observer.changedInstr(MI); 1181 return Legalized; 1182 1183 case TargetOpcode::G_LOAD: 1184 case TargetOpcode::G_SEXTLOAD: 1185 case TargetOpcode::G_ZEXTLOAD: 1186 Observer.changingInstr(MI); 1187 widenScalarDst(MI, WideTy); 1188 Observer.changedInstr(MI); 1189 return Legalized; 1190 1191 case TargetOpcode::G_STORE: { 1192 if (TypeIdx != 0) 1193 return UnableToLegalize; 1194 1195 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1196 if (!isPowerOf2_32(Ty.getSizeInBits())) 1197 return UnableToLegalize; 1198 1199 Observer.changingInstr(MI); 1200 1201 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1202 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1203 widenScalarSrc(MI, WideTy, 0, ExtType); 1204 1205 Observer.changedInstr(MI); 1206 return Legalized; 1207 } 1208 case TargetOpcode::G_CONSTANT: { 1209 MachineOperand &SrcMO = MI.getOperand(1); 1210 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1211 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1212 Observer.changingInstr(MI); 1213 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1214 1215 widenScalarDst(MI, WideTy); 1216 Observer.changedInstr(MI); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_FCONSTANT: { 1220 MachineOperand &SrcMO = MI.getOperand(1); 1221 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1222 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1223 bool LosesInfo; 1224 switch (WideTy.getSizeInBits()) { 1225 case 32: 1226 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1227 &LosesInfo); 1228 break; 1229 case 64: 1230 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1231 &LosesInfo); 1232 break; 1233 default: 1234 return UnableToLegalize; 1235 } 1236 1237 assert(!LosesInfo && "extend should always be lossless"); 1238 1239 Observer.changingInstr(MI); 1240 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1241 1242 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1243 Observer.changedInstr(MI); 1244 return Legalized; 1245 } 1246 case TargetOpcode::G_IMPLICIT_DEF: { 1247 Observer.changingInstr(MI); 1248 widenScalarDst(MI, WideTy); 1249 Observer.changedInstr(MI); 1250 return Legalized; 1251 } 1252 case TargetOpcode::G_BRCOND: 1253 Observer.changingInstr(MI); 1254 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1255 Observer.changedInstr(MI); 1256 return Legalized; 1257 1258 case TargetOpcode::G_FCMP: 1259 Observer.changingInstr(MI); 1260 if (TypeIdx == 0) 1261 widenScalarDst(MI, WideTy); 1262 else { 1263 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1264 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1265 } 1266 Observer.changedInstr(MI); 1267 return Legalized; 1268 1269 case TargetOpcode::G_ICMP: 1270 Observer.changingInstr(MI); 1271 if (TypeIdx == 0) 1272 widenScalarDst(MI, WideTy); 1273 else { 1274 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1275 MI.getOperand(1).getPredicate())) 1276 ? TargetOpcode::G_SEXT 1277 : TargetOpcode::G_ZEXT; 1278 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1279 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1280 } 1281 Observer.changedInstr(MI); 1282 return Legalized; 1283 1284 case TargetOpcode::G_GEP: 1285 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1286 Observer.changingInstr(MI); 1287 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1288 Observer.changedInstr(MI); 1289 return Legalized; 1290 1291 case TargetOpcode::G_PHI: { 1292 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1293 1294 Observer.changingInstr(MI); 1295 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1296 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1297 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1298 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1299 } 1300 1301 MachineBasicBlock &MBB = *MI.getParent(); 1302 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1303 widenScalarDst(MI, WideTy); 1304 Observer.changedInstr(MI); 1305 return Legalized; 1306 } 1307 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1308 if (TypeIdx == 0) { 1309 unsigned VecReg = MI.getOperand(1).getReg(); 1310 LLT VecTy = MRI.getType(VecReg); 1311 Observer.changingInstr(MI); 1312 1313 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1314 WideTy.getSizeInBits()), 1315 1, TargetOpcode::G_SEXT); 1316 1317 widenScalarDst(MI, WideTy, 0); 1318 Observer.changedInstr(MI); 1319 return Legalized; 1320 } 1321 1322 if (TypeIdx != 2) 1323 return UnableToLegalize; 1324 Observer.changingInstr(MI); 1325 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1326 Observer.changedInstr(MI); 1327 return Legalized; 1328 } 1329 case TargetOpcode::G_FADD: 1330 case TargetOpcode::G_FMUL: 1331 case TargetOpcode::G_FSUB: 1332 case TargetOpcode::G_FMA: 1333 case TargetOpcode::G_FNEG: 1334 case TargetOpcode::G_FABS: 1335 case TargetOpcode::G_FCANONICALIZE: 1336 case TargetOpcode::G_FDIV: 1337 case TargetOpcode::G_FREM: 1338 case TargetOpcode::G_FCEIL: 1339 case TargetOpcode::G_FFLOOR: 1340 case TargetOpcode::G_FCOS: 1341 case TargetOpcode::G_FSIN: 1342 case TargetOpcode::G_FLOG10: 1343 case TargetOpcode::G_FLOG: 1344 case TargetOpcode::G_FLOG2: 1345 case TargetOpcode::G_FSQRT: 1346 case TargetOpcode::G_FEXP: 1347 assert(TypeIdx == 0); 1348 Observer.changingInstr(MI); 1349 1350 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1351 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1352 1353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1354 Observer.changedInstr(MI); 1355 return Legalized; 1356 case TargetOpcode::G_INTTOPTR: 1357 if (TypeIdx != 1) 1358 return UnableToLegalize; 1359 1360 Observer.changingInstr(MI); 1361 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1362 Observer.changedInstr(MI); 1363 return Legalized; 1364 case TargetOpcode::G_PTRTOINT: 1365 if (TypeIdx != 0) 1366 return UnableToLegalize; 1367 1368 Observer.changingInstr(MI); 1369 widenScalarDst(MI, WideTy, 0); 1370 Observer.changedInstr(MI); 1371 return Legalized; 1372 } 1373 } 1374 1375 LegalizerHelper::LegalizeResult 1376 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1377 using namespace TargetOpcode; 1378 MIRBuilder.setInstr(MI); 1379 1380 switch(MI.getOpcode()) { 1381 default: 1382 return UnableToLegalize; 1383 case TargetOpcode::G_SREM: 1384 case TargetOpcode::G_UREM: { 1385 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1386 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1387 .addDef(QuotReg) 1388 .addUse(MI.getOperand(1).getReg()) 1389 .addUse(MI.getOperand(2).getReg()); 1390 1391 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1392 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1393 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1394 ProdReg); 1395 MI.eraseFromParent(); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_SMULO: 1399 case TargetOpcode::G_UMULO: { 1400 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1401 // result. 1402 unsigned Res = MI.getOperand(0).getReg(); 1403 unsigned Overflow = MI.getOperand(1).getReg(); 1404 unsigned LHS = MI.getOperand(2).getReg(); 1405 unsigned RHS = MI.getOperand(3).getReg(); 1406 1407 MIRBuilder.buildMul(Res, LHS, RHS); 1408 1409 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1410 ? TargetOpcode::G_SMULH 1411 : TargetOpcode::G_UMULH; 1412 1413 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1414 MIRBuilder.buildInstr(Opcode) 1415 .addDef(HiPart) 1416 .addUse(LHS) 1417 .addUse(RHS); 1418 1419 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1420 MIRBuilder.buildConstant(Zero, 0); 1421 1422 // For *signed* multiply, overflow is detected by checking: 1423 // (hi != (lo >> bitwidth-1)) 1424 if (Opcode == TargetOpcode::G_SMULH) { 1425 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1426 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1427 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1428 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1429 .addDef(Shifted) 1430 .addUse(Res) 1431 .addUse(ShiftAmt); 1432 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1433 } else { 1434 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1435 } 1436 MI.eraseFromParent(); 1437 return Legalized; 1438 } 1439 case TargetOpcode::G_FNEG: { 1440 // TODO: Handle vector types once we are able to 1441 // represent them. 1442 if (Ty.isVector()) 1443 return UnableToLegalize; 1444 unsigned Res = MI.getOperand(0).getReg(); 1445 Type *ZeroTy; 1446 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1447 switch (Ty.getSizeInBits()) { 1448 case 16: 1449 ZeroTy = Type::getHalfTy(Ctx); 1450 break; 1451 case 32: 1452 ZeroTy = Type::getFloatTy(Ctx); 1453 break; 1454 case 64: 1455 ZeroTy = Type::getDoubleTy(Ctx); 1456 break; 1457 case 128: 1458 ZeroTy = Type::getFP128Ty(Ctx); 1459 break; 1460 default: 1461 llvm_unreachable("unexpected floating-point type"); 1462 } 1463 ConstantFP &ZeroForNegation = 1464 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1465 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1466 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1467 .addDef(Res) 1468 .addUse(Zero->getOperand(0).getReg()) 1469 .addUse(MI.getOperand(1).getReg()); 1470 MI.eraseFromParent(); 1471 return Legalized; 1472 } 1473 case TargetOpcode::G_FSUB: { 1474 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1475 // First, check if G_FNEG is marked as Lower. If so, we may 1476 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1477 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1478 return UnableToLegalize; 1479 unsigned Res = MI.getOperand(0).getReg(); 1480 unsigned LHS = MI.getOperand(1).getReg(); 1481 unsigned RHS = MI.getOperand(2).getReg(); 1482 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1483 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1484 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1485 .addDef(Res) 1486 .addUse(LHS) 1487 .addUse(Neg); 1488 MI.eraseFromParent(); 1489 return Legalized; 1490 } 1491 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1492 unsigned OldValRes = MI.getOperand(0).getReg(); 1493 unsigned SuccessRes = MI.getOperand(1).getReg(); 1494 unsigned Addr = MI.getOperand(2).getReg(); 1495 unsigned CmpVal = MI.getOperand(3).getReg(); 1496 unsigned NewVal = MI.getOperand(4).getReg(); 1497 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1498 **MI.memoperands_begin()); 1499 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1500 MI.eraseFromParent(); 1501 return Legalized; 1502 } 1503 case TargetOpcode::G_LOAD: 1504 case TargetOpcode::G_SEXTLOAD: 1505 case TargetOpcode::G_ZEXTLOAD: { 1506 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1507 unsigned DstReg = MI.getOperand(0).getReg(); 1508 unsigned PtrReg = MI.getOperand(1).getReg(); 1509 LLT DstTy = MRI.getType(DstReg); 1510 auto &MMO = **MI.memoperands_begin(); 1511 1512 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1513 // In the case of G_LOAD, this was a non-extending load already and we're 1514 // about to lower to the same instruction. 1515 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1516 return UnableToLegalize; 1517 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1518 MI.eraseFromParent(); 1519 return Legalized; 1520 } 1521 1522 if (DstTy.isScalar()) { 1523 unsigned TmpReg = MRI.createGenericVirtualRegister( 1524 LLT::scalar(MMO.getSize() /* in bytes */ * 8)); 1525 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1526 switch (MI.getOpcode()) { 1527 default: 1528 llvm_unreachable("Unexpected opcode"); 1529 case TargetOpcode::G_LOAD: 1530 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1531 break; 1532 case TargetOpcode::G_SEXTLOAD: 1533 MIRBuilder.buildSExt(DstReg, TmpReg); 1534 break; 1535 case TargetOpcode::G_ZEXTLOAD: 1536 MIRBuilder.buildZExt(DstReg, TmpReg); 1537 break; 1538 } 1539 MI.eraseFromParent(); 1540 return Legalized; 1541 } 1542 1543 return UnableToLegalize; 1544 } 1545 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1546 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1547 case TargetOpcode::G_CTLZ: 1548 case TargetOpcode::G_CTTZ: 1549 case TargetOpcode::G_CTPOP: 1550 return lowerBitCount(MI, TypeIdx, Ty); 1551 case G_UADDO: { 1552 unsigned Res = MI.getOperand(0).getReg(); 1553 unsigned CarryOut = MI.getOperand(1).getReg(); 1554 unsigned LHS = MI.getOperand(2).getReg(); 1555 unsigned RHS = MI.getOperand(3).getReg(); 1556 1557 MIRBuilder.buildAdd(Res, LHS, RHS); 1558 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1559 1560 MI.eraseFromParent(); 1561 return Legalized; 1562 } 1563 case G_UADDE: { 1564 unsigned Res = MI.getOperand(0).getReg(); 1565 unsigned CarryOut = MI.getOperand(1).getReg(); 1566 unsigned LHS = MI.getOperand(2).getReg(); 1567 unsigned RHS = MI.getOperand(3).getReg(); 1568 unsigned CarryIn = MI.getOperand(4).getReg(); 1569 1570 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1571 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1572 1573 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1574 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1575 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1576 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1577 1578 MI.eraseFromParent(); 1579 return Legalized; 1580 } 1581 case G_USUBO: { 1582 unsigned Res = MI.getOperand(0).getReg(); 1583 unsigned BorrowOut = MI.getOperand(1).getReg(); 1584 unsigned LHS = MI.getOperand(2).getReg(); 1585 unsigned RHS = MI.getOperand(3).getReg(); 1586 1587 MIRBuilder.buildSub(Res, LHS, RHS); 1588 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1589 1590 MI.eraseFromParent(); 1591 return Legalized; 1592 } 1593 case G_USUBE: { 1594 unsigned Res = MI.getOperand(0).getReg(); 1595 unsigned BorrowOut = MI.getOperand(1).getReg(); 1596 unsigned LHS = MI.getOperand(2).getReg(); 1597 unsigned RHS = MI.getOperand(3).getReg(); 1598 unsigned BorrowIn = MI.getOperand(4).getReg(); 1599 1600 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1601 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1602 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1603 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1604 1605 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1606 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1607 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1608 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1609 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1610 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1611 1612 MI.eraseFromParent(); 1613 return Legalized; 1614 } 1615 } 1616 } 1617 1618 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1619 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1620 SmallVector<unsigned, 2> DstRegs; 1621 1622 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1623 unsigned DstReg = MI.getOperand(0).getReg(); 1624 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1625 int NumParts = Size / NarrowSize; 1626 // FIXME: Don't know how to handle the situation where the small vectors 1627 // aren't all the same size yet. 1628 if (Size % NarrowSize != 0) 1629 return UnableToLegalize; 1630 1631 for (int i = 0; i < NumParts; ++i) { 1632 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1633 MIRBuilder.buildUndef(TmpReg); 1634 DstRegs.push_back(TmpReg); 1635 } 1636 1637 if (NarrowTy.isVector()) 1638 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1639 else 1640 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1641 1642 MI.eraseFromParent(); 1643 return Legalized; 1644 } 1645 1646 LegalizerHelper::LegalizeResult 1647 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1648 LLT NarrowTy) { 1649 const unsigned Opc = MI.getOpcode(); 1650 const unsigned NumOps = MI.getNumOperands() - 1; 1651 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1652 const unsigned DstReg = MI.getOperand(0).getReg(); 1653 const unsigned Flags = MI.getFlags(); 1654 const LLT DstTy = MRI.getType(DstReg); 1655 const unsigned Size = DstTy.getSizeInBits(); 1656 const int NumParts = Size / NarrowSize; 1657 const LLT EltTy = DstTy.getElementType(); 1658 const unsigned EltSize = EltTy.getSizeInBits(); 1659 const unsigned BitsForNumParts = NarrowSize * NumParts; 1660 1661 // Check if we have any leftovers. If we do, then only handle the case where 1662 // the leftover is one element. 1663 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1664 return UnableToLegalize; 1665 1666 if (BitsForNumParts != Size) { 1667 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1668 MIRBuilder.buildUndef(AccumDstReg); 1669 1670 // Handle the pieces which evenly divide into the requested type with 1671 // extract/op/insert sequence. 1672 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1673 SmallVector<SrcOp, 4> SrcOps; 1674 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1675 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1676 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1677 SrcOps.push_back(PartOpReg); 1678 } 1679 1680 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1681 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1682 1683 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1684 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1685 AccumDstReg = PartInsertReg; 1686 } 1687 1688 // Handle the remaining element sized leftover piece. 1689 SmallVector<SrcOp, 4> SrcOps; 1690 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1691 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1692 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1693 BitsForNumParts); 1694 SrcOps.push_back(PartOpReg); 1695 } 1696 1697 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1698 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1699 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1700 MI.eraseFromParent(); 1701 1702 return Legalized; 1703 } 1704 1705 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1706 1707 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1708 1709 if (NumOps >= 2) 1710 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1711 1712 if (NumOps >= 3) 1713 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1714 1715 for (int i = 0; i < NumParts; ++i) { 1716 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1717 1718 if (NumOps == 1) 1719 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1720 else if (NumOps == 2) { 1721 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1722 } else if (NumOps == 3) { 1723 MIRBuilder.buildInstr(Opc, {DstReg}, 1724 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1725 } 1726 1727 DstRegs.push_back(DstReg); 1728 } 1729 1730 if (NarrowTy.isVector()) 1731 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1732 else 1733 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1734 1735 MI.eraseFromParent(); 1736 return Legalized; 1737 } 1738 1739 // Handle splitting vector operations which need to have the same number of 1740 // elements in each type index, but each type index may have a different element 1741 // type. 1742 // 1743 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1744 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1745 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1746 // 1747 // Also handles some irregular breakdown cases, e.g. 1748 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1749 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1750 // s64 = G_SHL s64, s32 1751 LegalizerHelper::LegalizeResult 1752 LegalizerHelper::fewerElementsVectorMultiEltType( 1753 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1754 if (TypeIdx != 0) 1755 return UnableToLegalize; 1756 1757 const LLT NarrowTy0 = NarrowTyArg; 1758 const unsigned NewNumElts = 1759 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1760 1761 const unsigned DstReg = MI.getOperand(0).getReg(); 1762 LLT DstTy = MRI.getType(DstReg); 1763 LLT LeftoverTy0; 1764 1765 int NumParts, NumLeftover; 1766 // All of the operands need to have the same number of elements, so if we can 1767 // determine a type breakdown for the result type, we can for all of the 1768 // source types. 1769 std::tie(NumParts, NumLeftover) 1770 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1771 if (NumParts < 0) 1772 return UnableToLegalize; 1773 1774 SmallVector<MachineInstrBuilder, 4> NewInsts; 1775 1776 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1777 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1778 1779 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1780 LLT LeftoverTy; 1781 unsigned SrcReg = MI.getOperand(I).getReg(); 1782 LLT SrcTyI = MRI.getType(SrcReg); 1783 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1784 LLT LeftoverTyI; 1785 1786 // Split this operand into the requested typed registers, and any leftover 1787 // required to reproduce the original type. 1788 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1789 LeftoverRegs)) 1790 return UnableToLegalize; 1791 1792 if (I == 1) { 1793 // For the first operand, create an instruction for each part and setup 1794 // the result. 1795 for (unsigned PartReg : PartRegs) { 1796 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1797 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1798 .addDef(PartDstReg) 1799 .addUse(PartReg)); 1800 DstRegs.push_back(PartDstReg); 1801 } 1802 1803 for (unsigned LeftoverReg : LeftoverRegs) { 1804 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1805 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1806 .addDef(PartDstReg) 1807 .addUse(LeftoverReg)); 1808 LeftoverDstRegs.push_back(PartDstReg); 1809 } 1810 } else { 1811 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1812 1813 // Add the newly created operand splits to the existing instructions. The 1814 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1815 // pieces. 1816 unsigned InstCount = 0; 1817 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1818 NewInsts[InstCount++].addUse(PartRegs[J]); 1819 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1820 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1821 } 1822 1823 PartRegs.clear(); 1824 LeftoverRegs.clear(); 1825 } 1826 1827 // Insert the newly built operations and rebuild the result register. 1828 for (auto &MIB : NewInsts) 1829 MIRBuilder.insertInstr(MIB); 1830 1831 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1832 1833 MI.eraseFromParent(); 1834 return Legalized; 1835 } 1836 1837 LegalizerHelper::LegalizeResult 1838 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1839 LLT NarrowTy) { 1840 if (TypeIdx != 0) 1841 return UnableToLegalize; 1842 1843 unsigned DstReg = MI.getOperand(0).getReg(); 1844 unsigned SrcReg = MI.getOperand(1).getReg(); 1845 LLT DstTy = MRI.getType(DstReg); 1846 LLT SrcTy = MRI.getType(SrcReg); 1847 1848 LLT NarrowTy0 = NarrowTy; 1849 LLT NarrowTy1; 1850 unsigned NumParts; 1851 1852 if (NarrowTy.isVector()) { 1853 // Uneven breakdown not handled. 1854 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1855 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1856 return UnableToLegalize; 1857 1858 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1859 } else { 1860 NumParts = DstTy.getNumElements(); 1861 NarrowTy1 = SrcTy.getElementType(); 1862 } 1863 1864 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1865 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1866 1867 for (unsigned I = 0; I < NumParts; ++I) { 1868 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1869 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1870 .addDef(DstReg) 1871 .addUse(SrcRegs[I]); 1872 1873 NewInst->setFlags(MI.getFlags()); 1874 DstRegs.push_back(DstReg); 1875 } 1876 1877 if (NarrowTy.isVector()) 1878 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1879 else 1880 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1881 1882 MI.eraseFromParent(); 1883 return Legalized; 1884 } 1885 1886 LegalizerHelper::LegalizeResult 1887 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1888 LLT NarrowTy) { 1889 unsigned DstReg = MI.getOperand(0).getReg(); 1890 unsigned Src0Reg = MI.getOperand(2).getReg(); 1891 LLT DstTy = MRI.getType(DstReg); 1892 LLT SrcTy = MRI.getType(Src0Reg); 1893 1894 unsigned NumParts; 1895 LLT NarrowTy0, NarrowTy1; 1896 1897 if (TypeIdx == 0) { 1898 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1899 unsigned OldElts = DstTy.getNumElements(); 1900 1901 NarrowTy0 = NarrowTy; 1902 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1903 NarrowTy1 = NarrowTy.isVector() ? 1904 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1905 SrcTy.getElementType(); 1906 1907 } else { 1908 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1909 unsigned OldElts = SrcTy.getNumElements(); 1910 1911 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1912 NarrowTy.getNumElements(); 1913 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1914 DstTy.getScalarSizeInBits()); 1915 NarrowTy1 = NarrowTy; 1916 } 1917 1918 // FIXME: Don't know how to handle the situation where the small vectors 1919 // aren't all the same size yet. 1920 if (NarrowTy1.isVector() && 1921 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1922 return UnableToLegalize; 1923 1924 CmpInst::Predicate Pred 1925 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1926 1927 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1928 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1929 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1930 1931 for (unsigned I = 0; I < NumParts; ++I) { 1932 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1933 DstRegs.push_back(DstReg); 1934 1935 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1936 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1937 else { 1938 MachineInstr *NewCmp 1939 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1940 NewCmp->setFlags(MI.getFlags()); 1941 } 1942 } 1943 1944 if (NarrowTy1.isVector()) 1945 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1946 else 1947 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1948 1949 MI.eraseFromParent(); 1950 return Legalized; 1951 } 1952 1953 LegalizerHelper::LegalizeResult 1954 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1955 LLT NarrowTy) { 1956 unsigned DstReg = MI.getOperand(0).getReg(); 1957 unsigned CondReg = MI.getOperand(1).getReg(); 1958 1959 unsigned NumParts = 0; 1960 LLT NarrowTy0, NarrowTy1; 1961 1962 LLT DstTy = MRI.getType(DstReg); 1963 LLT CondTy = MRI.getType(CondReg); 1964 unsigned Size = DstTy.getSizeInBits(); 1965 1966 assert(TypeIdx == 0 || CondTy.isVector()); 1967 1968 if (TypeIdx == 0) { 1969 NarrowTy0 = NarrowTy; 1970 NarrowTy1 = CondTy; 1971 1972 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1973 // FIXME: Don't know how to handle the situation where the small vectors 1974 // aren't all the same size yet. 1975 if (Size % NarrowSize != 0) 1976 return UnableToLegalize; 1977 1978 NumParts = Size / NarrowSize; 1979 1980 // Need to break down the condition type 1981 if (CondTy.isVector()) { 1982 if (CondTy.getNumElements() == NumParts) 1983 NarrowTy1 = CondTy.getElementType(); 1984 else 1985 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1986 CondTy.getScalarSizeInBits()); 1987 } 1988 } else { 1989 NumParts = CondTy.getNumElements(); 1990 if (NarrowTy.isVector()) { 1991 // TODO: Handle uneven breakdown. 1992 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1993 return UnableToLegalize; 1994 1995 return UnableToLegalize; 1996 } else { 1997 NarrowTy0 = DstTy.getElementType(); 1998 NarrowTy1 = NarrowTy; 1999 } 2000 } 2001 2002 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2003 if (CondTy.isVector()) 2004 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2005 2006 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2007 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2008 2009 for (unsigned i = 0; i < NumParts; ++i) { 2010 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2011 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2012 Src1Regs[i], Src2Regs[i]); 2013 DstRegs.push_back(DstReg); 2014 } 2015 2016 if (NarrowTy0.isVector()) 2017 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2018 else 2019 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2020 2021 MI.eraseFromParent(); 2022 return Legalized; 2023 } 2024 2025 LegalizerHelper::LegalizeResult 2026 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2027 LLT NarrowTy) { 2028 const unsigned DstReg = MI.getOperand(0).getReg(); 2029 LLT PhiTy = MRI.getType(DstReg); 2030 LLT LeftoverTy; 2031 2032 // All of the operands need to have the same number of elements, so if we can 2033 // determine a type breakdown for the result type, we can for all of the 2034 // source types. 2035 int NumParts, NumLeftover; 2036 std::tie(NumParts, NumLeftover) 2037 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2038 if (NumParts < 0) 2039 return UnableToLegalize; 2040 2041 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2042 SmallVector<MachineInstrBuilder, 4> NewInsts; 2043 2044 const int TotalNumParts = NumParts + NumLeftover; 2045 2046 // Insert the new phis in the result block first. 2047 for (int I = 0; I != TotalNumParts; ++I) { 2048 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2049 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2050 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2051 .addDef(PartDstReg)); 2052 if (I < NumParts) 2053 DstRegs.push_back(PartDstReg); 2054 else 2055 LeftoverDstRegs.push_back(PartDstReg); 2056 } 2057 2058 MachineBasicBlock *MBB = MI.getParent(); 2059 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2060 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2061 2062 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2063 2064 // Insert code to extract the incoming values in each predecessor block. 2065 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2066 PartRegs.clear(); 2067 LeftoverRegs.clear(); 2068 2069 unsigned SrcReg = MI.getOperand(I).getReg(); 2070 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2071 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2072 2073 LLT Unused; 2074 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2075 LeftoverRegs)) 2076 return UnableToLegalize; 2077 2078 // Add the newly created operand splits to the existing instructions. The 2079 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2080 // pieces. 2081 for (int J = 0; J != TotalNumParts; ++J) { 2082 MachineInstrBuilder MIB = NewInsts[J]; 2083 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2084 MIB.addMBB(&OpMBB); 2085 } 2086 } 2087 2088 MI.eraseFromParent(); 2089 return Legalized; 2090 } 2091 2092 LegalizerHelper::LegalizeResult 2093 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2094 LLT NarrowTy) { 2095 // FIXME: Don't know how to handle secondary types yet. 2096 if (TypeIdx != 0) 2097 return UnableToLegalize; 2098 2099 MachineMemOperand *MMO = *MI.memoperands_begin(); 2100 2101 // This implementation doesn't work for atomics. Give up instead of doing 2102 // something invalid. 2103 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2104 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2105 return UnableToLegalize; 2106 2107 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2108 unsigned ValReg = MI.getOperand(0).getReg(); 2109 unsigned AddrReg = MI.getOperand(1).getReg(); 2110 LLT ValTy = MRI.getType(ValReg); 2111 2112 int NumParts = -1; 2113 int NumLeftover = -1; 2114 LLT LeftoverTy; 2115 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2116 if (IsLoad) { 2117 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2118 } else { 2119 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2120 NarrowLeftoverRegs)) { 2121 NumParts = NarrowRegs.size(); 2122 NumLeftover = NarrowLeftoverRegs.size(); 2123 } 2124 } 2125 2126 if (NumParts == -1) 2127 return UnableToLegalize; 2128 2129 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2130 2131 unsigned TotalSize = ValTy.getSizeInBits(); 2132 2133 // Split the load/store into PartTy sized pieces starting at Offset. If this 2134 // is a load, return the new registers in ValRegs. For a store, each elements 2135 // of ValRegs should be PartTy. Returns the next offset that needs to be 2136 // handled. 2137 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2138 unsigned Offset) -> unsigned { 2139 MachineFunction &MF = MIRBuilder.getMF(); 2140 unsigned PartSize = PartTy.getSizeInBits(); 2141 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2142 Offset += PartSize, ++Idx) { 2143 unsigned ByteSize = PartSize / 8; 2144 unsigned ByteOffset = Offset / 8; 2145 unsigned NewAddrReg = 0; 2146 2147 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2148 2149 MachineMemOperand *NewMMO = 2150 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2151 2152 if (IsLoad) { 2153 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2154 ValRegs.push_back(Dst); 2155 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2156 } else { 2157 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2158 } 2159 } 2160 2161 return Offset; 2162 }; 2163 2164 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2165 2166 // Handle the rest of the register if this isn't an even type breakdown. 2167 if (LeftoverTy.isValid()) 2168 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2169 2170 if (IsLoad) { 2171 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2172 LeftoverTy, NarrowLeftoverRegs); 2173 } 2174 2175 MI.eraseFromParent(); 2176 return Legalized; 2177 } 2178 2179 LegalizerHelper::LegalizeResult 2180 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2181 LLT NarrowTy) { 2182 using namespace TargetOpcode; 2183 2184 MIRBuilder.setInstr(MI); 2185 switch (MI.getOpcode()) { 2186 case G_IMPLICIT_DEF: 2187 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2188 case G_AND: 2189 case G_OR: 2190 case G_XOR: 2191 case G_ADD: 2192 case G_SUB: 2193 case G_MUL: 2194 case G_SMULH: 2195 case G_UMULH: 2196 case G_FADD: 2197 case G_FMUL: 2198 case G_FSUB: 2199 case G_FNEG: 2200 case G_FABS: 2201 case G_FCANONICALIZE: 2202 case G_FDIV: 2203 case G_FREM: 2204 case G_FMA: 2205 case G_FPOW: 2206 case G_FEXP: 2207 case G_FEXP2: 2208 case G_FLOG: 2209 case G_FLOG2: 2210 case G_FLOG10: 2211 case G_FCEIL: 2212 case G_FFLOOR: 2213 case G_INTRINSIC_ROUND: 2214 case G_INTRINSIC_TRUNC: 2215 case G_FCOS: 2216 case G_FSIN: 2217 case G_FSQRT: 2218 case G_BSWAP: 2219 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2220 case G_SHL: 2221 case G_LSHR: 2222 case G_ASHR: 2223 case G_CTLZ: 2224 case G_CTLZ_ZERO_UNDEF: 2225 case G_CTTZ: 2226 case G_CTTZ_ZERO_UNDEF: 2227 case G_CTPOP: 2228 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2229 case G_ZEXT: 2230 case G_SEXT: 2231 case G_ANYEXT: 2232 case G_FPEXT: 2233 case G_FPTRUNC: 2234 case G_SITOFP: 2235 case G_UITOFP: 2236 case G_FPTOSI: 2237 case G_FPTOUI: 2238 case G_INTTOPTR: 2239 case G_PTRTOINT: 2240 case G_ADDRSPACE_CAST: 2241 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2242 case G_ICMP: 2243 case G_FCMP: 2244 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2245 case G_SELECT: 2246 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2247 case G_PHI: 2248 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2249 case G_LOAD: 2250 case G_STORE: 2251 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2252 default: 2253 return UnableToLegalize; 2254 } 2255 } 2256 2257 LegalizerHelper::LegalizeResult 2258 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2259 const LLT HalfTy, const LLT AmtTy) { 2260 2261 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2262 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2263 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2264 2265 if (Amt.isNullValue()) { 2266 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2267 MI.eraseFromParent(); 2268 return Legalized; 2269 } 2270 2271 LLT NVT = HalfTy; 2272 unsigned NVTBits = HalfTy.getSizeInBits(); 2273 unsigned VTBits = 2 * NVTBits; 2274 2275 SrcOp Lo(0), Hi(0); 2276 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2277 if (Amt.ugt(VTBits)) { 2278 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2279 } else if (Amt.ugt(NVTBits)) { 2280 Lo = MIRBuilder.buildConstant(NVT, 0); 2281 Hi = MIRBuilder.buildShl(NVT, InL, 2282 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2283 } else if (Amt == NVTBits) { 2284 Lo = MIRBuilder.buildConstant(NVT, 0); 2285 Hi = InL; 2286 } else { 2287 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2288 auto OrLHS = 2289 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2290 auto OrRHS = MIRBuilder.buildLShr( 2291 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2292 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2293 } 2294 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2295 if (Amt.ugt(VTBits)) { 2296 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2297 } else if (Amt.ugt(NVTBits)) { 2298 Lo = MIRBuilder.buildLShr(NVT, InH, 2299 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2300 Hi = MIRBuilder.buildConstant(NVT, 0); 2301 } else if (Amt == NVTBits) { 2302 Lo = InH; 2303 Hi = MIRBuilder.buildConstant(NVT, 0); 2304 } else { 2305 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2306 2307 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2308 auto OrRHS = MIRBuilder.buildShl( 2309 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2310 2311 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2312 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2313 } 2314 } else { 2315 if (Amt.ugt(VTBits)) { 2316 Hi = Lo = MIRBuilder.buildAShr( 2317 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2318 } else if (Amt.ugt(NVTBits)) { 2319 Lo = MIRBuilder.buildAShr(NVT, InH, 2320 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2321 Hi = MIRBuilder.buildAShr(NVT, InH, 2322 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2323 } else if (Amt == NVTBits) { 2324 Lo = InH; 2325 Hi = MIRBuilder.buildAShr(NVT, InH, 2326 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2327 } else { 2328 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2329 2330 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2331 auto OrRHS = MIRBuilder.buildShl( 2332 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2333 2334 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2335 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2336 } 2337 } 2338 2339 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2340 MI.eraseFromParent(); 2341 2342 return Legalized; 2343 } 2344 2345 // TODO: Optimize if constant shift amount. 2346 LegalizerHelper::LegalizeResult 2347 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2348 LLT RequestedTy) { 2349 if (TypeIdx == 1) { 2350 Observer.changingInstr(MI); 2351 narrowScalarSrc(MI, RequestedTy, 2); 2352 Observer.changedInstr(MI); 2353 return Legalized; 2354 } 2355 2356 unsigned DstReg = MI.getOperand(0).getReg(); 2357 LLT DstTy = MRI.getType(DstReg); 2358 if (DstTy.isVector()) 2359 return UnableToLegalize; 2360 2361 unsigned Amt = MI.getOperand(2).getReg(); 2362 LLT ShiftAmtTy = MRI.getType(Amt); 2363 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2364 if (DstEltSize % 2 != 0) 2365 return UnableToLegalize; 2366 2367 // Ignore the input type. We can only go to exactly half the size of the 2368 // input. If that isn't small enough, the resulting pieces will be further 2369 // legalized. 2370 const unsigned NewBitSize = DstEltSize / 2; 2371 const LLT HalfTy = LLT::scalar(NewBitSize); 2372 const LLT CondTy = LLT::scalar(1); 2373 2374 if (const MachineInstr *KShiftAmt = 2375 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2376 return narrowScalarShiftByConstant( 2377 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2378 } 2379 2380 // TODO: Expand with known bits. 2381 2382 // Handle the fully general expansion by an unknown amount. 2383 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2384 2385 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2386 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2387 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2388 2389 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2390 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2391 2392 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2393 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2394 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2395 2396 unsigned ResultRegs[2]; 2397 switch (MI.getOpcode()) { 2398 case TargetOpcode::G_SHL: { 2399 // Short: ShAmt < NewBitSize 2400 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2401 2402 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2403 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2404 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2405 2406 // Long: ShAmt >= NewBitSize 2407 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2408 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2409 2410 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2411 auto Hi = MIRBuilder.buildSelect( 2412 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2413 2414 ResultRegs[0] = Lo.getReg(0); 2415 ResultRegs[1] = Hi.getReg(0); 2416 break; 2417 } 2418 case TargetOpcode::G_LSHR: { 2419 // Short: ShAmt < NewBitSize 2420 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2421 2422 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2423 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2424 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2425 2426 // Long: ShAmt >= NewBitSize 2427 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2428 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2429 2430 auto Lo = MIRBuilder.buildSelect( 2431 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2432 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2433 2434 ResultRegs[0] = Lo.getReg(0); 2435 ResultRegs[1] = Hi.getReg(0); 2436 break; 2437 } 2438 case TargetOpcode::G_ASHR: { 2439 // Short: ShAmt < NewBitSize 2440 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2441 2442 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2443 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2444 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2445 2446 // Long: ShAmt >= NewBitSize 2447 2448 // Sign of Hi part. 2449 auto HiL = MIRBuilder.buildAShr( 2450 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2451 2452 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2453 2454 auto Lo = MIRBuilder.buildSelect( 2455 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2456 2457 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2458 2459 ResultRegs[0] = Lo.getReg(0); 2460 ResultRegs[1] = Hi.getReg(0); 2461 break; 2462 } 2463 default: 2464 llvm_unreachable("not a shift"); 2465 } 2466 2467 MIRBuilder.buildMerge(DstReg, ResultRegs); 2468 MI.eraseFromParent(); 2469 return Legalized; 2470 } 2471 2472 LegalizerHelper::LegalizeResult 2473 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2474 LLT MoreTy) { 2475 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2476 2477 Observer.changingInstr(MI); 2478 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2479 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2480 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2481 moreElementsVectorSrc(MI, MoreTy, I); 2482 } 2483 2484 MachineBasicBlock &MBB = *MI.getParent(); 2485 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2486 moreElementsVectorDst(MI, MoreTy, 0); 2487 Observer.changedInstr(MI); 2488 return Legalized; 2489 } 2490 2491 LegalizerHelper::LegalizeResult 2492 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2493 LLT MoreTy) { 2494 MIRBuilder.setInstr(MI); 2495 unsigned Opc = MI.getOpcode(); 2496 switch (Opc) { 2497 case TargetOpcode::G_IMPLICIT_DEF: { 2498 Observer.changingInstr(MI); 2499 moreElementsVectorDst(MI, MoreTy, 0); 2500 Observer.changedInstr(MI); 2501 return Legalized; 2502 } 2503 case TargetOpcode::G_AND: 2504 case TargetOpcode::G_OR: 2505 case TargetOpcode::G_XOR: { 2506 Observer.changingInstr(MI); 2507 moreElementsVectorSrc(MI, MoreTy, 1); 2508 moreElementsVectorSrc(MI, MoreTy, 2); 2509 moreElementsVectorDst(MI, MoreTy, 0); 2510 Observer.changedInstr(MI); 2511 return Legalized; 2512 } 2513 case TargetOpcode::G_EXTRACT: 2514 if (TypeIdx != 1) 2515 return UnableToLegalize; 2516 Observer.changingInstr(MI); 2517 moreElementsVectorSrc(MI, MoreTy, 1); 2518 Observer.changedInstr(MI); 2519 return Legalized; 2520 case TargetOpcode::G_INSERT: 2521 if (TypeIdx != 0) 2522 return UnableToLegalize; 2523 Observer.changingInstr(MI); 2524 moreElementsVectorSrc(MI, MoreTy, 1); 2525 moreElementsVectorDst(MI, MoreTy, 0); 2526 Observer.changedInstr(MI); 2527 return Legalized; 2528 case TargetOpcode::G_SELECT: 2529 if (TypeIdx != 0) 2530 return UnableToLegalize; 2531 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2532 return UnableToLegalize; 2533 2534 Observer.changingInstr(MI); 2535 moreElementsVectorSrc(MI, MoreTy, 2); 2536 moreElementsVectorSrc(MI, MoreTy, 3); 2537 moreElementsVectorDst(MI, MoreTy, 0); 2538 Observer.changedInstr(MI); 2539 return Legalized; 2540 case TargetOpcode::G_PHI: 2541 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2542 default: 2543 return UnableToLegalize; 2544 } 2545 } 2546 2547 LegalizerHelper::LegalizeResult 2548 LegalizerHelper::narrowScalarMul(MachineInstr &MI, unsigned TypeIdx, LLT NewTy) { 2549 unsigned DstReg = MI.getOperand(0).getReg(); 2550 unsigned Src0 = MI.getOperand(1).getReg(); 2551 unsigned Src1 = MI.getOperand(2).getReg(); 2552 LLT Ty = MRI.getType(DstReg); 2553 if (Ty.isVector()) 2554 return UnableToLegalize; 2555 2556 unsigned Size = Ty.getSizeInBits(); 2557 unsigned NewSize = Size / 2; 2558 if (Size != 2 * NewSize) 2559 return UnableToLegalize; 2560 2561 LLT HalfTy = LLT::scalar(NewSize); 2562 // TODO: if HalfTy != NewTy, handle the breakdown all at once? 2563 2564 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 2565 unsigned Lo = MRI.createGenericVirtualRegister(HalfTy); 2566 unsigned Hi = MRI.createGenericVirtualRegister(HalfTy); 2567 unsigned ExtLo = MRI.createGenericVirtualRegister(Ty); 2568 unsigned ExtHi = MRI.createGenericVirtualRegister(Ty); 2569 unsigned ShiftedHi = MRI.createGenericVirtualRegister(Ty); 2570 2571 SmallVector<unsigned, 2> Src0Parts; 2572 SmallVector<unsigned, 2> Src1Parts; 2573 2574 extractParts(Src0, HalfTy, 2, Src0Parts); 2575 extractParts(Src1, HalfTy, 2, Src1Parts); 2576 2577 MIRBuilder.buildMul(Lo, Src0Parts[0], Src1Parts[0]); 2578 2579 // TODO: Use smulh or umulh depending on what the target has. 2580 MIRBuilder.buildUMulH(Hi, Src0Parts[1], Src1Parts[1]); 2581 2582 MIRBuilder.buildConstant(ShiftAmt, NewSize); 2583 MIRBuilder.buildAnyExt(ExtHi, Hi); 2584 MIRBuilder.buildShl(ShiftedHi, ExtHi, ShiftAmt); 2585 2586 MIRBuilder.buildZExt(ExtLo, Lo); 2587 MIRBuilder.buildOr(DstReg, ExtLo, ShiftedHi); 2588 MI.eraseFromParent(); 2589 return Legalized; 2590 } 2591 2592 2593 LegalizerHelper::LegalizeResult 2594 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2595 LLT NarrowTy) { 2596 if (TypeIdx != 1) 2597 return UnableToLegalize; 2598 2599 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2600 2601 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2602 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2603 // NarrowSize. 2604 if (SizeOp1 % NarrowSize != 0) 2605 return UnableToLegalize; 2606 int NumParts = SizeOp1 / NarrowSize; 2607 2608 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2609 SmallVector<uint64_t, 2> Indexes; 2610 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2611 2612 unsigned OpReg = MI.getOperand(0).getReg(); 2613 uint64_t OpStart = MI.getOperand(2).getImm(); 2614 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2615 for (int i = 0; i < NumParts; ++i) { 2616 unsigned SrcStart = i * NarrowSize; 2617 2618 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2619 // No part of the extract uses this subregister, ignore it. 2620 continue; 2621 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2622 // The entire subregister is extracted, forward the value. 2623 DstRegs.push_back(SrcRegs[i]); 2624 continue; 2625 } 2626 2627 // OpSegStart is where this destination segment would start in OpReg if it 2628 // extended infinitely in both directions. 2629 int64_t ExtractOffset; 2630 uint64_t SegSize; 2631 if (OpStart < SrcStart) { 2632 ExtractOffset = 0; 2633 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2634 } else { 2635 ExtractOffset = OpStart - SrcStart; 2636 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2637 } 2638 2639 unsigned SegReg = SrcRegs[i]; 2640 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2641 // A genuine extract is needed. 2642 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2643 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2644 } 2645 2646 DstRegs.push_back(SegReg); 2647 } 2648 2649 unsigned DstReg = MI.getOperand(0).getReg(); 2650 if(MRI.getType(DstReg).isVector()) 2651 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2652 else 2653 MIRBuilder.buildMerge(DstReg, DstRegs); 2654 MI.eraseFromParent(); 2655 return Legalized; 2656 } 2657 2658 LegalizerHelper::LegalizeResult 2659 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2660 LLT NarrowTy) { 2661 // FIXME: Don't know how to handle secondary types yet. 2662 if (TypeIdx != 0) 2663 return UnableToLegalize; 2664 2665 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2666 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2667 2668 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2669 // NarrowSize. 2670 if (SizeOp0 % NarrowSize != 0) 2671 return UnableToLegalize; 2672 2673 int NumParts = SizeOp0 / NarrowSize; 2674 2675 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2676 SmallVector<uint64_t, 2> Indexes; 2677 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2678 2679 unsigned OpReg = MI.getOperand(2).getReg(); 2680 uint64_t OpStart = MI.getOperand(3).getImm(); 2681 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2682 for (int i = 0; i < NumParts; ++i) { 2683 unsigned DstStart = i * NarrowSize; 2684 2685 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2686 // No part of the insert affects this subregister, forward the original. 2687 DstRegs.push_back(SrcRegs[i]); 2688 continue; 2689 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2690 // The entire subregister is defined by this insert, forward the new 2691 // value. 2692 DstRegs.push_back(OpReg); 2693 continue; 2694 } 2695 2696 // OpSegStart is where this destination segment would start in OpReg if it 2697 // extended infinitely in both directions. 2698 int64_t ExtractOffset, InsertOffset; 2699 uint64_t SegSize; 2700 if (OpStart < DstStart) { 2701 InsertOffset = 0; 2702 ExtractOffset = DstStart - OpStart; 2703 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2704 } else { 2705 InsertOffset = OpStart - DstStart; 2706 ExtractOffset = 0; 2707 SegSize = 2708 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2709 } 2710 2711 unsigned SegReg = OpReg; 2712 if (ExtractOffset != 0 || SegSize != OpSize) { 2713 // A genuine extract is needed. 2714 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2715 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2716 } 2717 2718 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2719 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2720 DstRegs.push_back(DstReg); 2721 } 2722 2723 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2724 unsigned DstReg = MI.getOperand(0).getReg(); 2725 if(MRI.getType(DstReg).isVector()) 2726 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2727 else 2728 MIRBuilder.buildMerge(DstReg, DstRegs); 2729 MI.eraseFromParent(); 2730 return Legalized; 2731 } 2732 2733 LegalizerHelper::LegalizeResult 2734 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2735 LLT NarrowTy) { 2736 if (TypeIdx != 0) 2737 return UnableToLegalize; 2738 2739 unsigned CondReg = MI.getOperand(1).getReg(); 2740 LLT CondTy = MRI.getType(CondReg); 2741 if (CondTy.isVector()) // TODO: Handle vselect 2742 return UnableToLegalize; 2743 2744 unsigned DstReg = MI.getOperand(0).getReg(); 2745 LLT DstTy = MRI.getType(DstReg); 2746 2747 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2748 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2749 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2750 LLT LeftoverTy; 2751 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2752 Src1Regs, Src1LeftoverRegs)) 2753 return UnableToLegalize; 2754 2755 LLT Unused; 2756 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2757 Src2Regs, Src2LeftoverRegs)) 2758 llvm_unreachable("inconsistent extractParts result"); 2759 2760 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2761 auto Select = MIRBuilder.buildSelect(NarrowTy, 2762 CondReg, Src1Regs[I], Src2Regs[I]); 2763 DstRegs.push_back(Select->getOperand(0).getReg()); 2764 } 2765 2766 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2767 auto Select = MIRBuilder.buildSelect( 2768 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2769 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2770 } 2771 2772 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2773 LeftoverTy, DstLeftoverRegs); 2774 2775 MI.eraseFromParent(); 2776 return Legalized; 2777 } 2778 2779 LegalizerHelper::LegalizeResult 2780 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2781 unsigned Opc = MI.getOpcode(); 2782 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2783 auto isSupported = [this](const LegalityQuery &Q) { 2784 auto QAction = LI.getAction(Q).Action; 2785 return QAction == Legal || QAction == Libcall || QAction == Custom; 2786 }; 2787 switch (Opc) { 2788 default: 2789 return UnableToLegalize; 2790 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2791 // This trivially expands to CTLZ. 2792 Observer.changingInstr(MI); 2793 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2794 Observer.changedInstr(MI); 2795 return Legalized; 2796 } 2797 case TargetOpcode::G_CTLZ: { 2798 unsigned SrcReg = MI.getOperand(1).getReg(); 2799 unsigned Len = Ty.getSizeInBits(); 2800 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2801 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2802 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2803 {Ty}, {SrcReg}); 2804 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2805 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2806 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2807 SrcReg, MIBZero); 2808 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2809 MIBCtlzZU); 2810 MI.eraseFromParent(); 2811 return Legalized; 2812 } 2813 // for now, we do this: 2814 // NewLen = NextPowerOf2(Len); 2815 // x = x | (x >> 1); 2816 // x = x | (x >> 2); 2817 // ... 2818 // x = x | (x >>16); 2819 // x = x | (x >>32); // for 64-bit input 2820 // Upto NewLen/2 2821 // return Len - popcount(x); 2822 // 2823 // Ref: "Hacker's Delight" by Henry Warren 2824 unsigned Op = SrcReg; 2825 unsigned NewLen = PowerOf2Ceil(Len); 2826 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2827 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2828 auto MIBOp = MIRBuilder.buildInstr( 2829 TargetOpcode::G_OR, {Ty}, 2830 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2831 {Op, MIBShiftAmt})}); 2832 Op = MIBOp->getOperand(0).getReg(); 2833 } 2834 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2835 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2836 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2837 MI.eraseFromParent(); 2838 return Legalized; 2839 } 2840 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2841 // This trivially expands to CTTZ. 2842 Observer.changingInstr(MI); 2843 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2844 Observer.changedInstr(MI); 2845 return Legalized; 2846 } 2847 case TargetOpcode::G_CTTZ: { 2848 unsigned SrcReg = MI.getOperand(1).getReg(); 2849 unsigned Len = Ty.getSizeInBits(); 2850 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2851 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2852 // zero. 2853 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2854 {Ty}, {SrcReg}); 2855 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2856 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2857 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2858 SrcReg, MIBZero); 2859 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2860 MIBCttzZU); 2861 MI.eraseFromParent(); 2862 return Legalized; 2863 } 2864 // for now, we use: { return popcount(~x & (x - 1)); } 2865 // unless the target has ctlz but not ctpop, in which case we use: 2866 // { return 32 - nlz(~x & (x-1)); } 2867 // Ref: "Hacker's Delight" by Henry Warren 2868 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2869 auto MIBNot = 2870 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2871 auto MIBTmp = MIRBuilder.buildInstr( 2872 TargetOpcode::G_AND, {Ty}, 2873 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2874 {SrcReg, MIBCstNeg1})}); 2875 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2876 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2877 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2878 MIRBuilder.buildInstr( 2879 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2880 {MIBCstLen, 2881 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2882 MI.eraseFromParent(); 2883 return Legalized; 2884 } 2885 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2886 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2887 return Legalized; 2888 } 2889 } 2890 } 2891