1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   unsigned Opc = MI.getOpcode();
586   switch (Opc) {
587   case TargetOpcode::G_BZERO:
588     RTLibcall = RTLIB::BZERO;
589     break;
590   case TargetOpcode::G_MEMCPY:
591     RTLibcall = RTLIB::MEMCPY;
592     break;
593   case TargetOpcode::G_MEMMOVE:
594     RTLibcall = RTLIB::MEMMOVE;
595     break;
596   case TargetOpcode::G_MEMSET:
597     RTLibcall = RTLIB::MEMSET;
598     break;
599   default:
600     return LegalizerHelper::UnableToLegalize;
601   }
602   const char *Name = TLI.getLibcallName(RTLibcall);
603 
604   // Unsupported libcall on the target.
605   if (!Name) {
606     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
607                       << MIRBuilder.getTII().getName(Opc) << "\n");
608     return LegalizerHelper::UnableToLegalize;
609   }
610 
611   CallLowering::CallLoweringInfo Info;
612   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
613   Info.Callee = MachineOperand::CreateES(Name);
614   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
615   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
616                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
617 
618   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
619   if (!CLI.lowerCall(MIRBuilder, Info))
620     return LegalizerHelper::UnableToLegalize;
621 
622   if (Info.LoweredTailCall) {
623     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
624     // We must have a return following the call (or debug insts) to get past
625     // isLibCallInTailPosition.
626     do {
627       MachineInstr *Next = MI.getNextNode();
628       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
629              "Expected instr following MI to be return or debug inst?");
630       // We lowered a tail call, so the call is now the return from the block.
631       // Delete the old return.
632       Next->eraseFromParent();
633     } while (MI.getNextNode());
634   }
635 
636   return LegalizerHelper::Legalized;
637 }
638 
639 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
640                                        Type *FromType) {
641   auto ToMVT = MVT::getVT(ToType);
642   auto FromMVT = MVT::getVT(FromType);
643 
644   switch (Opcode) {
645   case TargetOpcode::G_FPEXT:
646     return RTLIB::getFPEXT(FromMVT, ToMVT);
647   case TargetOpcode::G_FPTRUNC:
648     return RTLIB::getFPROUND(FromMVT, ToMVT);
649   case TargetOpcode::G_FPTOSI:
650     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
651   case TargetOpcode::G_FPTOUI:
652     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
653   case TargetOpcode::G_SITOFP:
654     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
655   case TargetOpcode::G_UITOFP:
656     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
657   }
658   llvm_unreachable("Unsupported libcall function");
659 }
660 
661 static LegalizerHelper::LegalizeResult
662 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
663                   Type *FromType) {
664   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
665   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
666                        {{MI.getOperand(1).getReg(), FromType}});
667 }
668 
669 LegalizerHelper::LegalizeResult
670 LegalizerHelper::libcall(MachineInstr &MI) {
671   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
672   unsigned Size = LLTy.getSizeInBits();
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   switch (MI.getOpcode()) {
676   default:
677     return UnableToLegalize;
678   case TargetOpcode::G_SDIV:
679   case TargetOpcode::G_UDIV:
680   case TargetOpcode::G_SREM:
681   case TargetOpcode::G_UREM:
682   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
683     Type *HLTy = IntegerType::get(Ctx, Size);
684     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
685     if (Status != Legalized)
686       return Status;
687     break;
688   }
689   case TargetOpcode::G_FADD:
690   case TargetOpcode::G_FSUB:
691   case TargetOpcode::G_FMUL:
692   case TargetOpcode::G_FDIV:
693   case TargetOpcode::G_FMA:
694   case TargetOpcode::G_FPOW:
695   case TargetOpcode::G_FREM:
696   case TargetOpcode::G_FCOS:
697   case TargetOpcode::G_FSIN:
698   case TargetOpcode::G_FLOG10:
699   case TargetOpcode::G_FLOG:
700   case TargetOpcode::G_FLOG2:
701   case TargetOpcode::G_FEXP:
702   case TargetOpcode::G_FEXP2:
703   case TargetOpcode::G_FCEIL:
704   case TargetOpcode::G_FFLOOR:
705   case TargetOpcode::G_FMINNUM:
706   case TargetOpcode::G_FMAXNUM:
707   case TargetOpcode::G_FSQRT:
708   case TargetOpcode::G_FRINT:
709   case TargetOpcode::G_FNEARBYINT:
710   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
711     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
712     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
713       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
714       return UnableToLegalize;
715     }
716     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPEXT:
722   case TargetOpcode::G_FPTRUNC: {
723     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
724     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
725     if (!FromTy || !ToTy)
726       return UnableToLegalize;
727     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FPTOSI:
733   case TargetOpcode::G_FPTOUI: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
742         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_SITOFP:
748   case TargetOpcode::G_UITOFP: {
749     // FIXME: Support other types
750     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
751     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
752     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
753       return UnableToLegalize;
754     LegalizeResult Status = conversionLibcall(
755         MI, MIRBuilder,
756         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
757         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
758     if (Status != Legalized)
759       return Status;
760     break;
761   }
762   case TargetOpcode::G_BZERO:
763   case TargetOpcode::G_MEMCPY:
764   case TargetOpcode::G_MEMMOVE:
765   case TargetOpcode::G_MEMSET: {
766     LegalizeResult Result =
767         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
768     if (Result != Legalized)
769       return Result;
770     MI.eraseFromParent();
771     return Result;
772   }
773   }
774 
775   MI.eraseFromParent();
776   return Legalized;
777 }
778 
779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
780                                                               unsigned TypeIdx,
781                                                               LLT NarrowTy) {
782   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
783   uint64_t NarrowSize = NarrowTy.getSizeInBits();
784 
785   switch (MI.getOpcode()) {
786   default:
787     return UnableToLegalize;
788   case TargetOpcode::G_IMPLICIT_DEF: {
789     Register DstReg = MI.getOperand(0).getReg();
790     LLT DstTy = MRI.getType(DstReg);
791 
792     // If SizeOp0 is not an exact multiple of NarrowSize, emit
793     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
794     // FIXME: Although this would also be legal for the general case, it causes
795     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
796     //  combines not being hit). This seems to be a problem related to the
797     //  artifact combiner.
798     if (SizeOp0 % NarrowSize != 0) {
799       LLT ImplicitTy = NarrowTy;
800       if (DstTy.isVector())
801         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
802 
803       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
804       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
805 
806       MI.eraseFromParent();
807       return Legalized;
808     }
809 
810     int NumParts = SizeOp0 / NarrowSize;
811 
812     SmallVector<Register, 2> DstRegs;
813     for (int i = 0; i < NumParts; ++i)
814       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
815 
816     if (DstTy.isVector())
817       MIRBuilder.buildBuildVector(DstReg, DstRegs);
818     else
819       MIRBuilder.buildMerge(DstReg, DstRegs);
820     MI.eraseFromParent();
821     return Legalized;
822   }
823   case TargetOpcode::G_CONSTANT: {
824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
825     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
826     unsigned TotalSize = Ty.getSizeInBits();
827     unsigned NarrowSize = NarrowTy.getSizeInBits();
828     int NumParts = TotalSize / NarrowSize;
829 
830     SmallVector<Register, 4> PartRegs;
831     for (int I = 0; I != NumParts; ++I) {
832       unsigned Offset = I * NarrowSize;
833       auto K = MIRBuilder.buildConstant(NarrowTy,
834                                         Val.lshr(Offset).trunc(NarrowSize));
835       PartRegs.push_back(K.getReg(0));
836     }
837 
838     LLT LeftoverTy;
839     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
840     SmallVector<Register, 1> LeftoverRegs;
841     if (LeftoverBits != 0) {
842       LeftoverTy = LLT::scalar(LeftoverBits);
843       auto K = MIRBuilder.buildConstant(
844         LeftoverTy,
845         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
846       LeftoverRegs.push_back(K.getReg(0));
847     }
848 
849     insertParts(MI.getOperand(0).getReg(),
850                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
851 
852     MI.eraseFromParent();
853     return Legalized;
854   }
855   case TargetOpcode::G_SEXT:
856   case TargetOpcode::G_ZEXT:
857   case TargetOpcode::G_ANYEXT:
858     return narrowScalarExt(MI, TypeIdx, NarrowTy);
859   case TargetOpcode::G_TRUNC: {
860     if (TypeIdx != 1)
861       return UnableToLegalize;
862 
863     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
864     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
865       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
866       return UnableToLegalize;
867     }
868 
869     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
870     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
871     MI.eraseFromParent();
872     return Legalized;
873   }
874 
875   case TargetOpcode::G_FREEZE:
876     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
877   case TargetOpcode::G_ADD:
878   case TargetOpcode::G_SUB:
879   case TargetOpcode::G_SADDO:
880   case TargetOpcode::G_SSUBO:
881   case TargetOpcode::G_SADDE:
882   case TargetOpcode::G_SSUBE:
883   case TargetOpcode::G_UADDO:
884   case TargetOpcode::G_USUBO:
885   case TargetOpcode::G_UADDE:
886   case TargetOpcode::G_USUBE:
887     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_MUL:
889   case TargetOpcode::G_UMULH:
890     return narrowScalarMul(MI, NarrowTy);
891   case TargetOpcode::G_EXTRACT:
892     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
893   case TargetOpcode::G_INSERT:
894     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_LOAD: {
896     auto &MMO = **MI.memoperands_begin();
897     Register DstReg = MI.getOperand(0).getReg();
898     LLT DstTy = MRI.getType(DstReg);
899     if (DstTy.isVector())
900       return UnableToLegalize;
901 
902     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
903       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
905       MIRBuilder.buildAnyExt(DstReg, TmpReg);
906       MI.eraseFromParent();
907       return Legalized;
908     }
909 
910     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
911   }
912   case TargetOpcode::G_ZEXTLOAD:
913   case TargetOpcode::G_SEXTLOAD: {
914     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
915     Register DstReg = MI.getOperand(0).getReg();
916     Register PtrReg = MI.getOperand(1).getReg();
917 
918     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
919     auto &MMO = **MI.memoperands_begin();
920     unsigned MemSize = MMO.getSizeInBits();
921 
922     if (MemSize == NarrowSize) {
923       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
924     } else if (MemSize < NarrowSize) {
925       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
926     } else if (MemSize > NarrowSize) {
927       // FIXME: Need to split the load.
928       return UnableToLegalize;
929     }
930 
931     if (ZExt)
932       MIRBuilder.buildZExt(DstReg, TmpReg);
933     else
934       MIRBuilder.buildSExt(DstReg, TmpReg);
935 
936     MI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_STORE: {
940     const auto &MMO = **MI.memoperands_begin();
941 
942     Register SrcReg = MI.getOperand(0).getReg();
943     LLT SrcTy = MRI.getType(SrcReg);
944     if (SrcTy.isVector())
945       return UnableToLegalize;
946 
947     int NumParts = SizeOp0 / NarrowSize;
948     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
949     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
950     if (SrcTy.isVector() && LeftoverBits != 0)
951       return UnableToLegalize;
952 
953     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
954       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
955       auto &MMO = **MI.memoperands_begin();
956       MIRBuilder.buildTrunc(TmpReg, SrcReg);
957       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
958       MI.eraseFromParent();
959       return Legalized;
960     }
961 
962     return reduceLoadStoreWidth(MI, 0, NarrowTy);
963   }
964   case TargetOpcode::G_SELECT:
965     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
966   case TargetOpcode::G_AND:
967   case TargetOpcode::G_OR:
968   case TargetOpcode::G_XOR: {
969     // Legalize bitwise operation:
970     // A = BinOp<Ty> B, C
971     // into:
972     // B1, ..., BN = G_UNMERGE_VALUES B
973     // C1, ..., CN = G_UNMERGE_VALUES C
974     // A1 = BinOp<Ty/N> B1, C2
975     // ...
976     // AN = BinOp<Ty/N> BN, CN
977     // A = G_MERGE_VALUES A1, ..., AN
978     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
979   }
980   case TargetOpcode::G_SHL:
981   case TargetOpcode::G_LSHR:
982   case TargetOpcode::G_ASHR:
983     return narrowScalarShift(MI, TypeIdx, NarrowTy);
984   case TargetOpcode::G_CTLZ:
985   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
986   case TargetOpcode::G_CTTZ:
987   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTPOP:
989     if (TypeIdx == 1)
990       switch (MI.getOpcode()) {
991       case TargetOpcode::G_CTLZ:
992       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
993         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
994       case TargetOpcode::G_CTTZ:
995       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
996         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTPOP:
998         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
999       default:
1000         return UnableToLegalize;
1001       }
1002 
1003     Observer.changingInstr(MI);
1004     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1005     Observer.changedInstr(MI);
1006     return Legalized;
1007   case TargetOpcode::G_INTTOPTR:
1008     if (TypeIdx != 1)
1009       return UnableToLegalize;
1010 
1011     Observer.changingInstr(MI);
1012     narrowScalarSrc(MI, NarrowTy, 1);
1013     Observer.changedInstr(MI);
1014     return Legalized;
1015   case TargetOpcode::G_PTRTOINT:
1016     if (TypeIdx != 0)
1017       return UnableToLegalize;
1018 
1019     Observer.changingInstr(MI);
1020     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1021     Observer.changedInstr(MI);
1022     return Legalized;
1023   case TargetOpcode::G_PHI: {
1024     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1025     // NarrowSize.
1026     if (SizeOp0 % NarrowSize != 0)
1027       return UnableToLegalize;
1028 
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTR_ADD:
1210   case TargetOpcode::G_PTRMASK: {
1211     if (TypeIdx != 1)
1212       return UnableToLegalize;
1213     Observer.changingInstr(MI);
1214     narrowScalarSrc(MI, NarrowTy, 2);
1215     Observer.changedInstr(MI);
1216     return Legalized;
1217   }
1218   case TargetOpcode::G_FPTOUI: {
1219     if (TypeIdx != 0)
1220       return UnableToLegalize;
1221     Observer.changingInstr(MI);
1222     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1223     Observer.changedInstr(MI);
1224     return Legalized;
1225   }
1226   case TargetOpcode::G_FPTOSI: {
1227     if (TypeIdx != 0)
1228       return UnableToLegalize;
1229     Observer.changingInstr(MI);
1230     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1231     Observer.changedInstr(MI);
1232     return Legalized;
1233   }
1234   case TargetOpcode::G_FPEXT:
1235     if (TypeIdx != 0)
1236       return UnableToLegalize;
1237     Observer.changingInstr(MI);
1238     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1239     Observer.changedInstr(MI);
1240     return Legalized;
1241   }
1242 }
1243 
1244 Register LegalizerHelper::coerceToScalar(Register Val) {
1245   LLT Ty = MRI.getType(Val);
1246   if (Ty.isScalar())
1247     return Val;
1248 
1249   const DataLayout &DL = MIRBuilder.getDataLayout();
1250   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1251   if (Ty.isPointer()) {
1252     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1253       return Register();
1254     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1255   }
1256 
1257   Register NewVal = Val;
1258 
1259   assert(Ty.isVector());
1260   LLT EltTy = Ty.getElementType();
1261   if (EltTy.isPointer())
1262     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1263   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1264 }
1265 
1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1267                                      unsigned OpIdx, unsigned ExtOpcode) {
1268   MachineOperand &MO = MI.getOperand(OpIdx);
1269   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1270   MO.setReg(ExtB.getReg(0));
1271 }
1272 
1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1274                                       unsigned OpIdx) {
1275   MachineOperand &MO = MI.getOperand(OpIdx);
1276   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1277   MO.setReg(ExtB.getReg(0));
1278 }
1279 
1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1281                                      unsigned OpIdx, unsigned TruncOpcode) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1285   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1286   MO.setReg(DstExt);
1287 }
1288 
1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1290                                       unsigned OpIdx, unsigned ExtOpcode) {
1291   MachineOperand &MO = MI.getOperand(OpIdx);
1292   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1293   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1294   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1295   MO.setReg(DstTrunc);
1296 }
1297 
1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1299                                             unsigned OpIdx) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1302   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1303 }
1304 
1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1306                                             unsigned OpIdx) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308 
1309   LLT OldTy = MRI.getType(MO.getReg());
1310   unsigned OldElts = OldTy.getNumElements();
1311   unsigned NewElts = MoreTy.getNumElements();
1312 
1313   unsigned NumParts = NewElts / OldElts;
1314 
1315   // Use concat_vectors if the result is a multiple of the number of elements.
1316   if (NumParts * OldElts == NewElts) {
1317     SmallVector<Register, 8> Parts;
1318     Parts.push_back(MO.getReg());
1319 
1320     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1321     for (unsigned I = 1; I != NumParts; ++I)
1322       Parts.push_back(ImpDef);
1323 
1324     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1325     MO.setReg(Concat.getReg(0));
1326     return;
1327   }
1328 
1329   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1330   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1331   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1332   MO.setReg(MoreReg);
1333 }
1334 
1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1336   MachineOperand &Op = MI.getOperand(OpIdx);
1337   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1338 }
1339 
1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1341   MachineOperand &MO = MI.getOperand(OpIdx);
1342   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1343   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1344   MIRBuilder.buildBitcast(MO, CastDst);
1345   MO.setReg(CastDst);
1346 }
1347 
1348 LegalizerHelper::LegalizeResult
1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1350                                         LLT WideTy) {
1351   if (TypeIdx != 1)
1352     return UnableToLegalize;
1353 
1354   Register DstReg = MI.getOperand(0).getReg();
1355   LLT DstTy = MRI.getType(DstReg);
1356   if (DstTy.isVector())
1357     return UnableToLegalize;
1358 
1359   Register Src1 = MI.getOperand(1).getReg();
1360   LLT SrcTy = MRI.getType(Src1);
1361   const int DstSize = DstTy.getSizeInBits();
1362   const int SrcSize = SrcTy.getSizeInBits();
1363   const int WideSize = WideTy.getSizeInBits();
1364   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1365 
1366   unsigned NumOps = MI.getNumOperands();
1367   unsigned NumSrc = MI.getNumOperands() - 1;
1368   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1369 
1370   if (WideSize >= DstSize) {
1371     // Directly pack the bits in the target type.
1372     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1373 
1374     for (unsigned I = 2; I != NumOps; ++I) {
1375       const unsigned Offset = (I - 1) * PartSize;
1376 
1377       Register SrcReg = MI.getOperand(I).getReg();
1378       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1379 
1380       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1381 
1382       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1383         MRI.createGenericVirtualRegister(WideTy);
1384 
1385       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1386       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1387       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1388       ResultReg = NextResult;
1389     }
1390 
1391     if (WideSize > DstSize)
1392       MIRBuilder.buildTrunc(DstReg, ResultReg);
1393     else if (DstTy.isPointer())
1394       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1395 
1396     MI.eraseFromParent();
1397     return Legalized;
1398   }
1399 
1400   // Unmerge the original values to the GCD type, and recombine to the next
1401   // multiple greater than the original type.
1402   //
1403   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1404   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1405   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1406   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1407   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1408   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1409   // %12:_(s12) = G_MERGE_VALUES %10, %11
1410   //
1411   // Padding with undef if necessary:
1412   //
1413   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1414   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1415   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1416   // %7:_(s2) = G_IMPLICIT_DEF
1417   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1418   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1419   // %10:_(s12) = G_MERGE_VALUES %8, %9
1420 
1421   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1422   LLT GCDTy = LLT::scalar(GCD);
1423 
1424   SmallVector<Register, 8> Parts;
1425   SmallVector<Register, 8> NewMergeRegs;
1426   SmallVector<Register, 8> Unmerges;
1427   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1428 
1429   // Decompose the original operands if they don't evenly divide.
1430   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1431     Register SrcReg = MI.getOperand(I).getReg();
1432     if (GCD == SrcSize) {
1433       Unmerges.push_back(SrcReg);
1434     } else {
1435       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1436       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1437         Unmerges.push_back(Unmerge.getReg(J));
1438     }
1439   }
1440 
1441   // Pad with undef to the next size that is a multiple of the requested size.
1442   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1443     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1444     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1445       Unmerges.push_back(UndefReg);
1446   }
1447 
1448   const int PartsPerGCD = WideSize / GCD;
1449 
1450   // Build merges of each piece.
1451   ArrayRef<Register> Slicer(Unmerges);
1452   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1453     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1454     NewMergeRegs.push_back(Merge.getReg(0));
1455   }
1456 
1457   // A truncate may be necessary if the requested type doesn't evenly divide the
1458   // original result type.
1459   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1460     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1461   } else {
1462     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1463     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1464   }
1465 
1466   MI.eraseFromParent();
1467   return Legalized;
1468 }
1469 
1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1471   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1472   LLT OrigTy = MRI.getType(OrigReg);
1473   LLT LCMTy = getLCMType(WideTy, OrigTy);
1474 
1475   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1476   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1477 
1478   Register UnmergeSrc = WideReg;
1479 
1480   // Create a merge to the LCM type, padding with undef
1481   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1482   // =>
1483   // %1:_(<4 x s32>) = G_FOO
1484   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1485   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1486   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1487   if (NumMergeParts > 1) {
1488     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1489     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1490     MergeParts[0] = WideReg;
1491     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1492   }
1493 
1494   // Unmerge to the original register and pad with dead defs.
1495   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1496   UnmergeResults[0] = OrigReg;
1497   for (int I = 1; I != NumUnmergeParts; ++I)
1498     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1499 
1500   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1501   return WideReg;
1502 }
1503 
1504 LegalizerHelper::LegalizeResult
1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1506                                           LLT WideTy) {
1507   if (TypeIdx != 0)
1508     return UnableToLegalize;
1509 
1510   int NumDst = MI.getNumOperands() - 1;
1511   Register SrcReg = MI.getOperand(NumDst).getReg();
1512   LLT SrcTy = MRI.getType(SrcReg);
1513   if (SrcTy.isVector())
1514     return UnableToLegalize;
1515 
1516   Register Dst0Reg = MI.getOperand(0).getReg();
1517   LLT DstTy = MRI.getType(Dst0Reg);
1518   if (!DstTy.isScalar())
1519     return UnableToLegalize;
1520 
1521   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1522     if (SrcTy.isPointer()) {
1523       const DataLayout &DL = MIRBuilder.getDataLayout();
1524       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1525         LLVM_DEBUG(
1526             dbgs() << "Not casting non-integral address space integer\n");
1527         return UnableToLegalize;
1528       }
1529 
1530       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1531       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1532     }
1533 
1534     // Widen SrcTy to WideTy. This does not affect the result, but since the
1535     // user requested this size, it is probably better handled than SrcTy and
1536     // should reduce the total number of legalization artifacts
1537     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1538       SrcTy = WideTy;
1539       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1540     }
1541 
1542     // Theres no unmerge type to target. Directly extract the bits from the
1543     // source type
1544     unsigned DstSize = DstTy.getSizeInBits();
1545 
1546     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1547     for (int I = 1; I != NumDst; ++I) {
1548       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1549       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1550       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1551     }
1552 
1553     MI.eraseFromParent();
1554     return Legalized;
1555   }
1556 
1557   // Extend the source to a wider type.
1558   LLT LCMTy = getLCMType(SrcTy, WideTy);
1559 
1560   Register WideSrc = SrcReg;
1561   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1562     // TODO: If this is an integral address space, cast to integer and anyext.
1563     if (SrcTy.isPointer()) {
1564       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1565       return UnableToLegalize;
1566     }
1567 
1568     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1569   }
1570 
1571   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1572 
1573   // Create a sequence of unmerges and merges to the original results. Since we
1574   // may have widened the source, we will need to pad the results with dead defs
1575   // to cover the source register.
1576   // e.g. widen s48 to s64:
1577   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1578   //
1579   // =>
1580   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1581   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1582   //  ; unpack to GCD type, with extra dead defs
1583   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1584   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1585   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1586   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1587   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1588   const LLT GCDTy = getGCDType(WideTy, DstTy);
1589   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1590   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1591 
1592   // Directly unmerge to the destination without going through a GCD type
1593   // if possible
1594   if (PartsPerRemerge == 1) {
1595     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1596 
1597     for (int I = 0; I != NumUnmerge; ++I) {
1598       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1599 
1600       for (int J = 0; J != PartsPerUnmerge; ++J) {
1601         int Idx = I * PartsPerUnmerge + J;
1602         if (Idx < NumDst)
1603           MIB.addDef(MI.getOperand(Idx).getReg());
1604         else {
1605           // Create dead def for excess components.
1606           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1607         }
1608       }
1609 
1610       MIB.addUse(Unmerge.getReg(I));
1611     }
1612   } else {
1613     SmallVector<Register, 16> Parts;
1614     for (int J = 0; J != NumUnmerge; ++J)
1615       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1616 
1617     SmallVector<Register, 8> RemergeParts;
1618     for (int I = 0; I != NumDst; ++I) {
1619       for (int J = 0; J < PartsPerRemerge; ++J) {
1620         const int Idx = I * PartsPerRemerge + J;
1621         RemergeParts.emplace_back(Parts[Idx]);
1622       }
1623 
1624       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1625       RemergeParts.clear();
1626     }
1627   }
1628 
1629   MI.eraseFromParent();
1630   return Legalized;
1631 }
1632 
1633 LegalizerHelper::LegalizeResult
1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1635                                     LLT WideTy) {
1636   Register DstReg = MI.getOperand(0).getReg();
1637   Register SrcReg = MI.getOperand(1).getReg();
1638   LLT SrcTy = MRI.getType(SrcReg);
1639 
1640   LLT DstTy = MRI.getType(DstReg);
1641   unsigned Offset = MI.getOperand(2).getImm();
1642 
1643   if (TypeIdx == 0) {
1644     if (SrcTy.isVector() || DstTy.isVector())
1645       return UnableToLegalize;
1646 
1647     SrcOp Src(SrcReg);
1648     if (SrcTy.isPointer()) {
1649       // Extracts from pointers can be handled only if they are really just
1650       // simple integers.
1651       const DataLayout &DL = MIRBuilder.getDataLayout();
1652       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1653         return UnableToLegalize;
1654 
1655       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1656       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1657       SrcTy = SrcAsIntTy;
1658     }
1659 
1660     if (DstTy.isPointer())
1661       return UnableToLegalize;
1662 
1663     if (Offset == 0) {
1664       // Avoid a shift in the degenerate case.
1665       MIRBuilder.buildTrunc(DstReg,
1666                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1667       MI.eraseFromParent();
1668       return Legalized;
1669     }
1670 
1671     // Do a shift in the source type.
1672     LLT ShiftTy = SrcTy;
1673     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1674       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1675       ShiftTy = WideTy;
1676     }
1677 
1678     auto LShr = MIRBuilder.buildLShr(
1679       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1680     MIRBuilder.buildTrunc(DstReg, LShr);
1681     MI.eraseFromParent();
1682     return Legalized;
1683   }
1684 
1685   if (SrcTy.isScalar()) {
1686     Observer.changingInstr(MI);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     Observer.changedInstr(MI);
1689     return Legalized;
1690   }
1691 
1692   if (!SrcTy.isVector())
1693     return UnableToLegalize;
1694 
1695   if (DstTy != SrcTy.getElementType())
1696     return UnableToLegalize;
1697 
1698   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1699     return UnableToLegalize;
1700 
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703 
1704   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1705                           Offset);
1706   widenScalarDst(MI, WideTy.getScalarType(), 0);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1713                                    LLT WideTy) {
1714   if (TypeIdx != 0 || WideTy.isVector())
1715     return UnableToLegalize;
1716   Observer.changingInstr(MI);
1717   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718   widenScalarDst(MI, WideTy);
1719   Observer.changedInstr(MI);
1720   return Legalized;
1721 }
1722 
1723 LegalizerHelper::LegalizeResult
1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1725                                            LLT WideTy) {
1726   if (TypeIdx == 1)
1727     return UnableToLegalize; // TODO
1728 
1729   unsigned Opcode;
1730   unsigned ExtOpcode;
1731   Optional<Register> CarryIn = None;
1732   switch (MI.getOpcode()) {
1733   default:
1734     llvm_unreachable("Unexpected opcode!");
1735   case TargetOpcode::G_SADDO:
1736     Opcode = TargetOpcode::G_ADD;
1737     ExtOpcode = TargetOpcode::G_SEXT;
1738     break;
1739   case TargetOpcode::G_SSUBO:
1740     Opcode = TargetOpcode::G_SUB;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     break;
1743   case TargetOpcode::G_UADDO:
1744     Opcode = TargetOpcode::G_ADD;
1745     ExtOpcode = TargetOpcode::G_ZEXT;
1746     break;
1747   case TargetOpcode::G_USUBO:
1748     Opcode = TargetOpcode::G_SUB;
1749     ExtOpcode = TargetOpcode::G_ZEXT;
1750     break;
1751   case TargetOpcode::G_SADDE:
1752     Opcode = TargetOpcode::G_UADDE;
1753     ExtOpcode = TargetOpcode::G_SEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   case TargetOpcode::G_SSUBE:
1757     Opcode = TargetOpcode::G_USUBE;
1758     ExtOpcode = TargetOpcode::G_SEXT;
1759     CarryIn = MI.getOperand(4).getReg();
1760     break;
1761   case TargetOpcode::G_UADDE:
1762     Opcode = TargetOpcode::G_UADDE;
1763     ExtOpcode = TargetOpcode::G_ZEXT;
1764     CarryIn = MI.getOperand(4).getReg();
1765     break;
1766   case TargetOpcode::G_USUBE:
1767     Opcode = TargetOpcode::G_USUBE;
1768     ExtOpcode = TargetOpcode::G_ZEXT;
1769     CarryIn = MI.getOperand(4).getReg();
1770     break;
1771   }
1772 
1773   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1774   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1775   // Do the arithmetic in the larger type.
1776   Register NewOp;
1777   if (CarryIn) {
1778     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1779     NewOp = MIRBuilder
1780                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1781                             {LHSExt, RHSExt, *CarryIn})
1782                 .getReg(0);
1783   } else {
1784     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1785   }
1786   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1787   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1788   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1789   // There is no overflow if the ExtOp is the same as NewOp.
1790   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1791   // Now trunc the NewOp to the original result.
1792   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793   MI.eraseFromParent();
1794   return Legalized;
1795 }
1796 
1797 LegalizerHelper::LegalizeResult
1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1799                                          LLT WideTy) {
1800   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1801                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1802                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1803   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1804                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1805   // We can convert this to:
1806   //   1. Any extend iN to iM
1807   //   2. SHL by M-N
1808   //   3. [US][ADD|SUB|SHL]SAT
1809   //   4. L/ASHR by M-N
1810   //
1811   // It may be more efficient to lower this to a min and a max operation in
1812   // the higher precision arithmetic if the promoted operation isn't legal,
1813   // but this decision is up to the target's lowering request.
1814   Register DstReg = MI.getOperand(0).getReg();
1815 
1816   unsigned NewBits = WideTy.getScalarSizeInBits();
1817   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1818 
1819   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1820   // must not left shift the RHS to preserve the shift amount.
1821   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1822   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1823                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1824   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1825   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1826   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1827 
1828   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1829                                         {ShiftL, ShiftR}, MI.getFlags());
1830 
1831   // Use a shift that will preserve the number of sign bits when the trunc is
1832   // folded away.
1833   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1834                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1835 
1836   MIRBuilder.buildTrunc(DstReg, Result);
1837   MI.eraseFromParent();
1838   return Legalized;
1839 }
1840 
1841 LegalizerHelper::LegalizeResult
1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1843                                  LLT WideTy) {
1844   if (TypeIdx == 1)
1845     return UnableToLegalize;
1846 
1847   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1848   Register Result = MI.getOperand(0).getReg();
1849   Register OriginalOverflow = MI.getOperand(1).getReg();
1850   Register LHS = MI.getOperand(2).getReg();
1851   Register RHS = MI.getOperand(3).getReg();
1852   LLT SrcTy = MRI.getType(LHS);
1853   LLT OverflowTy = MRI.getType(OriginalOverflow);
1854   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1855 
1856   // To determine if the result overflowed in the larger type, we extend the
1857   // input to the larger type, do the multiply (checking if it overflows),
1858   // then also check the high bits of the result to see if overflow happened
1859   // there.
1860   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1861   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1862   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1863 
1864   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1865                                     {LeftOperand, RightOperand});
1866   auto Mul = Mulo->getOperand(0);
1867   MIRBuilder.buildTrunc(Result, Mul);
1868 
1869   MachineInstrBuilder ExtResult;
1870   // Overflow occurred if it occurred in the larger type, or if the high part
1871   // of the result does not zero/sign-extend the low part.  Check this second
1872   // possibility first.
1873   if (IsSigned) {
1874     // For signed, overflow occurred when the high part does not sign-extend
1875     // the low part.
1876     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1877   } else {
1878     // Unsigned overflow occurred when the high part does not zero-extend the
1879     // low part.
1880     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1881   }
1882 
1883   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1884   // so we don't need to check the overflow result of larger type Mulo.
1885   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1886     auto Overflow =
1887         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1888     // Finally check if the multiplication in the larger type itself overflowed.
1889     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1890   } else {
1891     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1892   }
1893   MI.eraseFromParent();
1894   return Legalized;
1895 }
1896 
1897 LegalizerHelper::LegalizeResult
1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1899   switch (MI.getOpcode()) {
1900   default:
1901     return UnableToLegalize;
1902   case TargetOpcode::G_EXTRACT:
1903     return widenScalarExtract(MI, TypeIdx, WideTy);
1904   case TargetOpcode::G_INSERT:
1905     return widenScalarInsert(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_MERGE_VALUES:
1907     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UNMERGE_VALUES:
1909     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDO:
1911   case TargetOpcode::G_SSUBO:
1912   case TargetOpcode::G_UADDO:
1913   case TargetOpcode::G_USUBO:
1914   case TargetOpcode::G_SADDE:
1915   case TargetOpcode::G_SSUBE:
1916   case TargetOpcode::G_UADDE:
1917   case TargetOpcode::G_USUBE:
1918     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1919   case TargetOpcode::G_UMULO:
1920   case TargetOpcode::G_SMULO:
1921     return widenScalarMulo(MI, TypeIdx, WideTy);
1922   case TargetOpcode::G_SADDSAT:
1923   case TargetOpcode::G_SSUBSAT:
1924   case TargetOpcode::G_SSHLSAT:
1925   case TargetOpcode::G_UADDSAT:
1926   case TargetOpcode::G_USUBSAT:
1927   case TargetOpcode::G_USHLSAT:
1928     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1929   case TargetOpcode::G_CTTZ:
1930   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1931   case TargetOpcode::G_CTLZ:
1932   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1933   case TargetOpcode::G_CTPOP: {
1934     if (TypeIdx == 0) {
1935       Observer.changingInstr(MI);
1936       widenScalarDst(MI, WideTy, 0);
1937       Observer.changedInstr(MI);
1938       return Legalized;
1939     }
1940 
1941     Register SrcReg = MI.getOperand(1).getReg();
1942 
1943     // First ZEXT the input.
1944     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1945     LLT CurTy = MRI.getType(SrcReg);
1946     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1947       // The count is the same in the larger type except if the original
1948       // value was zero.  This can be handled by setting the bit just off
1949       // the top of the original type.
1950       auto TopBit =
1951           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1952       MIBSrc = MIRBuilder.buildOr(
1953         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1954     }
1955 
1956     // Perform the operation at the larger size.
1957     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1958     // This is already the correct result for CTPOP and CTTZs
1959     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1960         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1961       // The correct result is NewOp - (Difference in widety and current ty).
1962       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1963       MIBNewOp = MIRBuilder.buildSub(
1964           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1965     }
1966 
1967     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1968     MI.eraseFromParent();
1969     return Legalized;
1970   }
1971   case TargetOpcode::G_BSWAP: {
1972     Observer.changingInstr(MI);
1973     Register DstReg = MI.getOperand(0).getReg();
1974 
1975     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1976     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1977     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1978     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1979 
1980     MI.getOperand(0).setReg(DstExt);
1981 
1982     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1983 
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1987     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1988 
1989     MIRBuilder.buildTrunc(DstReg, ShrReg);
1990     Observer.changedInstr(MI);
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_BITREVERSE: {
1994     Observer.changingInstr(MI);
1995 
1996     Register DstReg = MI.getOperand(0).getReg();
1997     LLT Ty = MRI.getType(DstReg);
1998     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1999 
2000     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     MI.getOperand(0).setReg(DstExt);
2003     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2004 
2005     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2006     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2007     MIRBuilder.buildTrunc(DstReg, Shift);
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010   }
2011   case TargetOpcode::G_FREEZE:
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2014     widenScalarDst(MI, WideTy);
2015     Observer.changedInstr(MI);
2016     return Legalized;
2017 
2018   case TargetOpcode::G_ADD:
2019   case TargetOpcode::G_AND:
2020   case TargetOpcode::G_MUL:
2021   case TargetOpcode::G_OR:
2022   case TargetOpcode::G_XOR:
2023   case TargetOpcode::G_SUB:
2024     // Perform operation at larger width (any extension is fines here, high bits
2025     // don't affect the result) and then truncate the result back to the
2026     // original type.
2027     Observer.changingInstr(MI);
2028     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2029     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2030     widenScalarDst(MI, WideTy);
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033 
2034   case TargetOpcode::G_SHL:
2035     Observer.changingInstr(MI);
2036 
2037     if (TypeIdx == 0) {
2038       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2039       widenScalarDst(MI, WideTy);
2040     } else {
2041       assert(TypeIdx == 1);
2042       // The "number of bits to shift" operand must preserve its value as an
2043       // unsigned integer:
2044       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2045     }
2046 
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049 
2050   case TargetOpcode::G_SDIV:
2051   case TargetOpcode::G_SREM:
2052   case TargetOpcode::G_SMIN:
2053   case TargetOpcode::G_SMAX:
2054     Observer.changingInstr(MI);
2055     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2056     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2057     widenScalarDst(MI, WideTy);
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060 
2061   case TargetOpcode::G_ASHR:
2062   case TargetOpcode::G_LSHR:
2063     Observer.changingInstr(MI);
2064 
2065     if (TypeIdx == 0) {
2066       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2067         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2068 
2069       widenScalarSrc(MI, WideTy, 1, CvtOp);
2070       widenScalarDst(MI, WideTy);
2071     } else {
2072       assert(TypeIdx == 1);
2073       // The "number of bits to shift" operand must preserve its value as an
2074       // unsigned integer:
2075       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2076     }
2077 
2078     Observer.changedInstr(MI);
2079     return Legalized;
2080   case TargetOpcode::G_UDIV:
2081   case TargetOpcode::G_UREM:
2082   case TargetOpcode::G_UMIN:
2083   case TargetOpcode::G_UMAX:
2084     Observer.changingInstr(MI);
2085     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2086     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2087     widenScalarDst(MI, WideTy);
2088     Observer.changedInstr(MI);
2089     return Legalized;
2090 
2091   case TargetOpcode::G_SELECT:
2092     Observer.changingInstr(MI);
2093     if (TypeIdx == 0) {
2094       // Perform operation at larger width (any extension is fine here, high
2095       // bits don't affect the result) and then truncate the result back to the
2096       // original type.
2097       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2098       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2099       widenScalarDst(MI, WideTy);
2100     } else {
2101       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2102       // Explicit extension is required here since high bits affect the result.
2103       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2104     }
2105     Observer.changedInstr(MI);
2106     return Legalized;
2107 
2108   case TargetOpcode::G_FPTOSI:
2109   case TargetOpcode::G_FPTOUI:
2110     Observer.changingInstr(MI);
2111 
2112     if (TypeIdx == 0)
2113       widenScalarDst(MI, WideTy);
2114     else
2115       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2116 
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119   case TargetOpcode::G_SITOFP:
2120     Observer.changingInstr(MI);
2121 
2122     if (TypeIdx == 0)
2123       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2124     else
2125       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2126 
2127     Observer.changedInstr(MI);
2128     return Legalized;
2129   case TargetOpcode::G_UITOFP:
2130     Observer.changingInstr(MI);
2131 
2132     if (TypeIdx == 0)
2133       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2134     else
2135       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2136 
2137     Observer.changedInstr(MI);
2138     return Legalized;
2139   case TargetOpcode::G_LOAD:
2140   case TargetOpcode::G_SEXTLOAD:
2141   case TargetOpcode::G_ZEXTLOAD:
2142     Observer.changingInstr(MI);
2143     widenScalarDst(MI, WideTy);
2144     Observer.changedInstr(MI);
2145     return Legalized;
2146 
2147   case TargetOpcode::G_STORE: {
2148     if (TypeIdx != 0)
2149       return UnableToLegalize;
2150 
2151     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2152     if (!Ty.isScalar())
2153       return UnableToLegalize;
2154 
2155     Observer.changingInstr(MI);
2156 
2157     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2158       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2159     widenScalarSrc(MI, WideTy, 0, ExtType);
2160 
2161     Observer.changedInstr(MI);
2162     return Legalized;
2163   }
2164   case TargetOpcode::G_CONSTANT: {
2165     MachineOperand &SrcMO = MI.getOperand(1);
2166     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2167     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2168         MRI.getType(MI.getOperand(0).getReg()));
2169     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2170             ExtOpc == TargetOpcode::G_ANYEXT) &&
2171            "Illegal Extend");
2172     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2173     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2174                            ? SrcVal.sext(WideTy.getSizeInBits())
2175                            : SrcVal.zext(WideTy.getSizeInBits());
2176     Observer.changingInstr(MI);
2177     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2178 
2179     widenScalarDst(MI, WideTy);
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182   }
2183   case TargetOpcode::G_FCONSTANT: {
2184     MachineOperand &SrcMO = MI.getOperand(1);
2185     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2186     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2187     bool LosesInfo;
2188     switch (WideTy.getSizeInBits()) {
2189     case 32:
2190       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2191                   &LosesInfo);
2192       break;
2193     case 64:
2194       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2195                   &LosesInfo);
2196       break;
2197     default:
2198       return UnableToLegalize;
2199     }
2200 
2201     assert(!LosesInfo && "extend should always be lossless");
2202 
2203     Observer.changingInstr(MI);
2204     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2205 
2206     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209   }
2210   case TargetOpcode::G_IMPLICIT_DEF: {
2211     Observer.changingInstr(MI);
2212     widenScalarDst(MI, WideTy);
2213     Observer.changedInstr(MI);
2214     return Legalized;
2215   }
2216   case TargetOpcode::G_BRCOND:
2217     Observer.changingInstr(MI);
2218     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221 
2222   case TargetOpcode::G_FCMP:
2223     Observer.changingInstr(MI);
2224     if (TypeIdx == 0)
2225       widenScalarDst(MI, WideTy);
2226     else {
2227       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2228       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2229     }
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232 
2233   case TargetOpcode::G_ICMP:
2234     Observer.changingInstr(MI);
2235     if (TypeIdx == 0)
2236       widenScalarDst(MI, WideTy);
2237     else {
2238       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2239                                MI.getOperand(1).getPredicate()))
2240                                ? TargetOpcode::G_SEXT
2241                                : TargetOpcode::G_ZEXT;
2242       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2243       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2244     }
2245     Observer.changedInstr(MI);
2246     return Legalized;
2247 
2248   case TargetOpcode::G_PTR_ADD:
2249     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2250     Observer.changingInstr(MI);
2251     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2252     Observer.changedInstr(MI);
2253     return Legalized;
2254 
2255   case TargetOpcode::G_PHI: {
2256     assert(TypeIdx == 0 && "Expecting only Idx 0");
2257 
2258     Observer.changingInstr(MI);
2259     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2260       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2261       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2262       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2263     }
2264 
2265     MachineBasicBlock &MBB = *MI.getParent();
2266     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2267     widenScalarDst(MI, WideTy);
2268     Observer.changedInstr(MI);
2269     return Legalized;
2270   }
2271   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2272     if (TypeIdx == 0) {
2273       Register VecReg = MI.getOperand(1).getReg();
2274       LLT VecTy = MRI.getType(VecReg);
2275       Observer.changingInstr(MI);
2276 
2277       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2278                                      WideTy.getSizeInBits()),
2279                      1, TargetOpcode::G_SEXT);
2280 
2281       widenScalarDst(MI, WideTy, 0);
2282       Observer.changedInstr(MI);
2283       return Legalized;
2284     }
2285 
2286     if (TypeIdx != 2)
2287       return UnableToLegalize;
2288     Observer.changingInstr(MI);
2289     // TODO: Probably should be zext
2290     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   }
2294   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2295     if (TypeIdx == 1) {
2296       Observer.changingInstr(MI);
2297 
2298       Register VecReg = MI.getOperand(1).getReg();
2299       LLT VecTy = MRI.getType(VecReg);
2300       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2301 
2302       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2303       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2304       widenScalarDst(MI, WideVecTy, 0);
2305       Observer.changedInstr(MI);
2306       return Legalized;
2307     }
2308 
2309     if (TypeIdx == 2) {
2310       Observer.changingInstr(MI);
2311       // TODO: Probably should be zext
2312       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2313       Observer.changedInstr(MI);
2314       return Legalized;
2315     }
2316 
2317     return UnableToLegalize;
2318   }
2319   case TargetOpcode::G_FADD:
2320   case TargetOpcode::G_FMUL:
2321   case TargetOpcode::G_FSUB:
2322   case TargetOpcode::G_FMA:
2323   case TargetOpcode::G_FMAD:
2324   case TargetOpcode::G_FNEG:
2325   case TargetOpcode::G_FABS:
2326   case TargetOpcode::G_FCANONICALIZE:
2327   case TargetOpcode::G_FMINNUM:
2328   case TargetOpcode::G_FMAXNUM:
2329   case TargetOpcode::G_FMINNUM_IEEE:
2330   case TargetOpcode::G_FMAXNUM_IEEE:
2331   case TargetOpcode::G_FMINIMUM:
2332   case TargetOpcode::G_FMAXIMUM:
2333   case TargetOpcode::G_FDIV:
2334   case TargetOpcode::G_FREM:
2335   case TargetOpcode::G_FCEIL:
2336   case TargetOpcode::G_FFLOOR:
2337   case TargetOpcode::G_FCOS:
2338   case TargetOpcode::G_FSIN:
2339   case TargetOpcode::G_FLOG10:
2340   case TargetOpcode::G_FLOG:
2341   case TargetOpcode::G_FLOG2:
2342   case TargetOpcode::G_FRINT:
2343   case TargetOpcode::G_FNEARBYINT:
2344   case TargetOpcode::G_FSQRT:
2345   case TargetOpcode::G_FEXP:
2346   case TargetOpcode::G_FEXP2:
2347   case TargetOpcode::G_FPOW:
2348   case TargetOpcode::G_INTRINSIC_TRUNC:
2349   case TargetOpcode::G_INTRINSIC_ROUND:
2350   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2351     assert(TypeIdx == 0);
2352     Observer.changingInstr(MI);
2353 
2354     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2355       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2356 
2357     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2358     Observer.changedInstr(MI);
2359     return Legalized;
2360   case TargetOpcode::G_FPOWI: {
2361     if (TypeIdx != 0)
2362       return UnableToLegalize;
2363     Observer.changingInstr(MI);
2364     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2365     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2366     Observer.changedInstr(MI);
2367     return Legalized;
2368   }
2369   case TargetOpcode::G_INTTOPTR:
2370     if (TypeIdx != 1)
2371       return UnableToLegalize;
2372 
2373     Observer.changingInstr(MI);
2374     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2375     Observer.changedInstr(MI);
2376     return Legalized;
2377   case TargetOpcode::G_PTRTOINT:
2378     if (TypeIdx != 0)
2379       return UnableToLegalize;
2380 
2381     Observer.changingInstr(MI);
2382     widenScalarDst(MI, WideTy, 0);
2383     Observer.changedInstr(MI);
2384     return Legalized;
2385   case TargetOpcode::G_BUILD_VECTOR: {
2386     Observer.changingInstr(MI);
2387 
2388     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2389     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2390       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2391 
2392     // Avoid changing the result vector type if the source element type was
2393     // requested.
2394     if (TypeIdx == 1) {
2395       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2396     } else {
2397       widenScalarDst(MI, WideTy, 0);
2398     }
2399 
2400     Observer.changedInstr(MI);
2401     return Legalized;
2402   }
2403   case TargetOpcode::G_SEXT_INREG:
2404     if (TypeIdx != 0)
2405       return UnableToLegalize;
2406 
2407     Observer.changingInstr(MI);
2408     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2409     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2410     Observer.changedInstr(MI);
2411     return Legalized;
2412   case TargetOpcode::G_PTRMASK: {
2413     if (TypeIdx != 1)
2414       return UnableToLegalize;
2415     Observer.changingInstr(MI);
2416     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2417     Observer.changedInstr(MI);
2418     return Legalized;
2419   }
2420   }
2421 }
2422 
2423 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2424                              MachineIRBuilder &B, Register Src, LLT Ty) {
2425   auto Unmerge = B.buildUnmerge(Ty, Src);
2426   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2427     Pieces.push_back(Unmerge.getReg(I));
2428 }
2429 
2430 LegalizerHelper::LegalizeResult
2431 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2432   Register Dst = MI.getOperand(0).getReg();
2433   Register Src = MI.getOperand(1).getReg();
2434   LLT DstTy = MRI.getType(Dst);
2435   LLT SrcTy = MRI.getType(Src);
2436 
2437   if (SrcTy.isVector()) {
2438     LLT SrcEltTy = SrcTy.getElementType();
2439     SmallVector<Register, 8> SrcRegs;
2440 
2441     if (DstTy.isVector()) {
2442       int NumDstElt = DstTy.getNumElements();
2443       int NumSrcElt = SrcTy.getNumElements();
2444 
2445       LLT DstEltTy = DstTy.getElementType();
2446       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2447       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2448 
2449       // If there's an element size mismatch, insert intermediate casts to match
2450       // the result element type.
2451       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2452         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2453         //
2454         // =>
2455         //
2456         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2457         // %3:_(<2 x s8>) = G_BITCAST %2
2458         // %4:_(<2 x s8>) = G_BITCAST %3
2459         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2460         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2461         SrcPartTy = SrcEltTy;
2462       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2463         //
2464         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2465         //
2466         // =>
2467         //
2468         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2469         // %3:_(s16) = G_BITCAST %2
2470         // %4:_(s16) = G_BITCAST %3
2471         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2472         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2473         DstCastTy = DstEltTy;
2474       }
2475 
2476       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2477       for (Register &SrcReg : SrcRegs)
2478         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2479     } else
2480       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2481 
2482     MIRBuilder.buildMerge(Dst, SrcRegs);
2483     MI.eraseFromParent();
2484     return Legalized;
2485   }
2486 
2487   if (DstTy.isVector()) {
2488     SmallVector<Register, 8> SrcRegs;
2489     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2490     MIRBuilder.buildMerge(Dst, SrcRegs);
2491     MI.eraseFromParent();
2492     return Legalized;
2493   }
2494 
2495   return UnableToLegalize;
2496 }
2497 
2498 /// Figure out the bit offset into a register when coercing a vector index for
2499 /// the wide element type. This is only for the case when promoting vector to
2500 /// one with larger elements.
2501 //
2502 ///
2503 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2504 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2505 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2506                                                    Register Idx,
2507                                                    unsigned NewEltSize,
2508                                                    unsigned OldEltSize) {
2509   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2510   LLT IdxTy = B.getMRI()->getType(Idx);
2511 
2512   // Now figure out the amount we need to shift to get the target bits.
2513   auto OffsetMask = B.buildConstant(
2514     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2515   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2516   return B.buildShl(IdxTy, OffsetIdx,
2517                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2518 }
2519 
2520 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2521 /// is casting to a vector with a smaller element size, perform multiple element
2522 /// extracts and merge the results. If this is coercing to a vector with larger
2523 /// elements, index the bitcasted vector and extract the target element with bit
2524 /// operations. This is intended to force the indexing in the native register
2525 /// size for architectures that can dynamically index the register file.
2526 LegalizerHelper::LegalizeResult
2527 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2528                                          LLT CastTy) {
2529   if (TypeIdx != 1)
2530     return UnableToLegalize;
2531 
2532   Register Dst = MI.getOperand(0).getReg();
2533   Register SrcVec = MI.getOperand(1).getReg();
2534   Register Idx = MI.getOperand(2).getReg();
2535   LLT SrcVecTy = MRI.getType(SrcVec);
2536   LLT IdxTy = MRI.getType(Idx);
2537 
2538   LLT SrcEltTy = SrcVecTy.getElementType();
2539   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2540   unsigned OldNumElts = SrcVecTy.getNumElements();
2541 
2542   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2543   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2544 
2545   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2546   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2547   if (NewNumElts > OldNumElts) {
2548     // Decreasing the vector element size
2549     //
2550     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2551     //  =>
2552     //  v4i32:castx = bitcast x:v2i64
2553     //
2554     // i64 = bitcast
2555     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2556     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2557     //
2558     if (NewNumElts % OldNumElts != 0)
2559       return UnableToLegalize;
2560 
2561     // Type of the intermediate result vector.
2562     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2563     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2564 
2565     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2566 
2567     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2568     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2569 
2570     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2571       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2572       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2573       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2574       NewOps[I] = Elt.getReg(0);
2575     }
2576 
2577     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2578     MIRBuilder.buildBitcast(Dst, NewVec);
2579     MI.eraseFromParent();
2580     return Legalized;
2581   }
2582 
2583   if (NewNumElts < OldNumElts) {
2584     if (NewEltSize % OldEltSize != 0)
2585       return UnableToLegalize;
2586 
2587     // This only depends on powers of 2 because we use bit tricks to figure out
2588     // the bit offset we need to shift to get the target element. A general
2589     // expansion could emit division/multiply.
2590     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2591       return UnableToLegalize;
2592 
2593     // Increasing the vector element size.
2594     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2595     //
2596     //   =>
2597     //
2598     // %cast = G_BITCAST %vec
2599     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2600     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2601     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2602     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2603     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2604     // %elt = G_TRUNC %elt_bits
2605 
2606     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2607     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2608 
2609     // Divide to get the index in the wider element type.
2610     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2611 
2612     Register WideElt = CastVec;
2613     if (CastTy.isVector()) {
2614       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2615                                                      ScaledIdx).getReg(0);
2616     }
2617 
2618     // Compute the bit offset into the register of the target element.
2619     Register OffsetBits = getBitcastWiderVectorElementOffset(
2620       MIRBuilder, Idx, NewEltSize, OldEltSize);
2621 
2622     // Shift the wide element to get the target element.
2623     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2624     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2625     MI.eraseFromParent();
2626     return Legalized;
2627   }
2628 
2629   return UnableToLegalize;
2630 }
2631 
2632 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2633 /// TargetReg, while preserving other bits in \p TargetReg.
2634 ///
2635 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2636 static Register buildBitFieldInsert(MachineIRBuilder &B,
2637                                     Register TargetReg, Register InsertReg,
2638                                     Register OffsetBits) {
2639   LLT TargetTy = B.getMRI()->getType(TargetReg);
2640   LLT InsertTy = B.getMRI()->getType(InsertReg);
2641   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2642   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2643 
2644   // Produce a bitmask of the value to insert
2645   auto EltMask = B.buildConstant(
2646     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2647                                    InsertTy.getSizeInBits()));
2648   // Shift it into position
2649   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2650   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2651 
2652   // Clear out the bits in the wide element
2653   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2654 
2655   // The value to insert has all zeros already, so stick it into the masked
2656   // wide element.
2657   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2658 }
2659 
2660 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2661 /// is increasing the element size, perform the indexing in the target element
2662 /// type, and use bit operations to insert at the element position. This is
2663 /// intended for architectures that can dynamically index the register file and
2664 /// want to force indexing in the native register size.
2665 LegalizerHelper::LegalizeResult
2666 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2667                                         LLT CastTy) {
2668   if (TypeIdx != 0)
2669     return UnableToLegalize;
2670 
2671   Register Dst = MI.getOperand(0).getReg();
2672   Register SrcVec = MI.getOperand(1).getReg();
2673   Register Val = MI.getOperand(2).getReg();
2674   Register Idx = MI.getOperand(3).getReg();
2675 
2676   LLT VecTy = MRI.getType(Dst);
2677   LLT IdxTy = MRI.getType(Idx);
2678 
2679   LLT VecEltTy = VecTy.getElementType();
2680   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2681   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2682   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2683 
2684   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2685   unsigned OldNumElts = VecTy.getNumElements();
2686 
2687   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2688   if (NewNumElts < OldNumElts) {
2689     if (NewEltSize % OldEltSize != 0)
2690       return UnableToLegalize;
2691 
2692     // This only depends on powers of 2 because we use bit tricks to figure out
2693     // the bit offset we need to shift to get the target element. A general
2694     // expansion could emit division/multiply.
2695     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2696       return UnableToLegalize;
2697 
2698     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2699     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2700 
2701     // Divide to get the index in the wider element type.
2702     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2703 
2704     Register ExtractedElt = CastVec;
2705     if (CastTy.isVector()) {
2706       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2707                                                           ScaledIdx).getReg(0);
2708     }
2709 
2710     // Compute the bit offset into the register of the target element.
2711     Register OffsetBits = getBitcastWiderVectorElementOffset(
2712       MIRBuilder, Idx, NewEltSize, OldEltSize);
2713 
2714     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2715                                                Val, OffsetBits);
2716     if (CastTy.isVector()) {
2717       InsertedElt = MIRBuilder.buildInsertVectorElement(
2718         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2719     }
2720 
2721     MIRBuilder.buildBitcast(Dst, InsertedElt);
2722     MI.eraseFromParent();
2723     return Legalized;
2724   }
2725 
2726   return UnableToLegalize;
2727 }
2728 
2729 LegalizerHelper::LegalizeResult
2730 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2731   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2732   Register DstReg = MI.getOperand(0).getReg();
2733   Register PtrReg = MI.getOperand(1).getReg();
2734   LLT DstTy = MRI.getType(DstReg);
2735   auto &MMO = **MI.memoperands_begin();
2736 
2737   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2738     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2739       // This load needs splitting into power of 2 sized loads.
2740       if (DstTy.isVector())
2741         return UnableToLegalize;
2742       if (isPowerOf2_32(DstTy.getSizeInBits()))
2743         return UnableToLegalize; // Don't know what we're being asked to do.
2744 
2745       // Our strategy here is to generate anyextending loads for the smaller
2746       // types up to next power-2 result type, and then combine the two larger
2747       // result values together, before truncating back down to the non-pow-2
2748       // type.
2749       // E.g. v1 = i24 load =>
2750       // v2 = i32 zextload (2 byte)
2751       // v3 = i32 load (1 byte)
2752       // v4 = i32 shl v3, 16
2753       // v5 = i32 or v4, v2
2754       // v1 = i24 trunc v5
2755       // By doing this we generate the correct truncate which should get
2756       // combined away as an artifact with a matching extend.
2757       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2758       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2759 
2760       MachineFunction &MF = MIRBuilder.getMF();
2761       MachineMemOperand *LargeMMO =
2762         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2763       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2764         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2765 
2766       LLT PtrTy = MRI.getType(PtrReg);
2767       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2768       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2769       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2770       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2771       auto LargeLoad = MIRBuilder.buildLoadInstr(
2772         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2773 
2774       auto OffsetCst = MIRBuilder.buildConstant(
2775         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2776       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2777       auto SmallPtr =
2778         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2779       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2780                                             *SmallMMO);
2781 
2782       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2783       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2784       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2785       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2786       MI.eraseFromParent();
2787       return Legalized;
2788     }
2789 
2790     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2791     MI.eraseFromParent();
2792     return Legalized;
2793   }
2794 
2795   if (DstTy.isScalar()) {
2796     Register TmpReg =
2797       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2798     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2799     switch (MI.getOpcode()) {
2800     default:
2801       llvm_unreachable("Unexpected opcode");
2802     case TargetOpcode::G_LOAD:
2803       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2804       break;
2805     case TargetOpcode::G_SEXTLOAD:
2806       MIRBuilder.buildSExt(DstReg, TmpReg);
2807       break;
2808     case TargetOpcode::G_ZEXTLOAD:
2809       MIRBuilder.buildZExt(DstReg, TmpReg);
2810       break;
2811     }
2812 
2813     MI.eraseFromParent();
2814     return Legalized;
2815   }
2816 
2817   return UnableToLegalize;
2818 }
2819 
2820 LegalizerHelper::LegalizeResult
2821 LegalizerHelper::lowerStore(MachineInstr &MI) {
2822   // Lower a non-power of 2 store into multiple pow-2 stores.
2823   // E.g. split an i24 store into an i16 store + i8 store.
2824   // We do this by first extending the stored value to the next largest power
2825   // of 2 type, and then using truncating stores to store the components.
2826   // By doing this, likewise with G_LOAD, generate an extend that can be
2827   // artifact-combined away instead of leaving behind extracts.
2828   Register SrcReg = MI.getOperand(0).getReg();
2829   Register PtrReg = MI.getOperand(1).getReg();
2830   LLT SrcTy = MRI.getType(SrcReg);
2831   MachineMemOperand &MMO = **MI.memoperands_begin();
2832   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2833     return UnableToLegalize;
2834   if (SrcTy.isVector())
2835     return UnableToLegalize;
2836   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2837     return UnableToLegalize; // Don't know what we're being asked to do.
2838 
2839   // Extend to the next pow-2.
2840   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2841   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2842 
2843   // Obtain the smaller value by shifting away the larger value.
2844   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2845   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2846   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2847   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2848 
2849   // Generate the PtrAdd and truncating stores.
2850   LLT PtrTy = MRI.getType(PtrReg);
2851   auto OffsetCst = MIRBuilder.buildConstant(
2852     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2853   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2854   auto SmallPtr =
2855     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2856 
2857   MachineFunction &MF = MIRBuilder.getMF();
2858   MachineMemOperand *LargeMMO =
2859     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2860   MachineMemOperand *SmallMMO =
2861     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2862   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2863   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2864   MI.eraseFromParent();
2865   return Legalized;
2866 }
2867 
2868 LegalizerHelper::LegalizeResult
2869 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2870   switch (MI.getOpcode()) {
2871   case TargetOpcode::G_LOAD: {
2872     if (TypeIdx != 0)
2873       return UnableToLegalize;
2874 
2875     Observer.changingInstr(MI);
2876     bitcastDst(MI, CastTy, 0);
2877     Observer.changedInstr(MI);
2878     return Legalized;
2879   }
2880   case TargetOpcode::G_STORE: {
2881     if (TypeIdx != 0)
2882       return UnableToLegalize;
2883 
2884     Observer.changingInstr(MI);
2885     bitcastSrc(MI, CastTy, 0);
2886     Observer.changedInstr(MI);
2887     return Legalized;
2888   }
2889   case TargetOpcode::G_SELECT: {
2890     if (TypeIdx != 0)
2891       return UnableToLegalize;
2892 
2893     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2894       LLVM_DEBUG(
2895           dbgs() << "bitcast action not implemented for vector select\n");
2896       return UnableToLegalize;
2897     }
2898 
2899     Observer.changingInstr(MI);
2900     bitcastSrc(MI, CastTy, 2);
2901     bitcastSrc(MI, CastTy, 3);
2902     bitcastDst(MI, CastTy, 0);
2903     Observer.changedInstr(MI);
2904     return Legalized;
2905   }
2906   case TargetOpcode::G_AND:
2907   case TargetOpcode::G_OR:
2908   case TargetOpcode::G_XOR: {
2909     Observer.changingInstr(MI);
2910     bitcastSrc(MI, CastTy, 1);
2911     bitcastSrc(MI, CastTy, 2);
2912     bitcastDst(MI, CastTy, 0);
2913     Observer.changedInstr(MI);
2914     return Legalized;
2915   }
2916   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2917     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2918   case TargetOpcode::G_INSERT_VECTOR_ELT:
2919     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2920   default:
2921     return UnableToLegalize;
2922   }
2923 }
2924 
2925 // Legalize an instruction by changing the opcode in place.
2926 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2927     Observer.changingInstr(MI);
2928     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2929     Observer.changedInstr(MI);
2930 }
2931 
2932 LegalizerHelper::LegalizeResult
2933 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2934   using namespace TargetOpcode;
2935 
2936   switch(MI.getOpcode()) {
2937   default:
2938     return UnableToLegalize;
2939   case TargetOpcode::G_BITCAST:
2940     return lowerBitcast(MI);
2941   case TargetOpcode::G_SREM:
2942   case TargetOpcode::G_UREM: {
2943     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2944     auto Quot =
2945         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2946                               {MI.getOperand(1), MI.getOperand(2)});
2947 
2948     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2949     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2950     MI.eraseFromParent();
2951     return Legalized;
2952   }
2953   case TargetOpcode::G_SADDO:
2954   case TargetOpcode::G_SSUBO:
2955     return lowerSADDO_SSUBO(MI);
2956   case TargetOpcode::G_UMULH:
2957   case TargetOpcode::G_SMULH:
2958     return lowerSMULH_UMULH(MI);
2959   case TargetOpcode::G_SMULO:
2960   case TargetOpcode::G_UMULO: {
2961     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2962     // result.
2963     Register Res = MI.getOperand(0).getReg();
2964     Register Overflow = MI.getOperand(1).getReg();
2965     Register LHS = MI.getOperand(2).getReg();
2966     Register RHS = MI.getOperand(3).getReg();
2967     LLT Ty = MRI.getType(Res);
2968 
2969     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2970                           ? TargetOpcode::G_SMULH
2971                           : TargetOpcode::G_UMULH;
2972 
2973     Observer.changingInstr(MI);
2974     const auto &TII = MIRBuilder.getTII();
2975     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2976     MI.RemoveOperand(1);
2977     Observer.changedInstr(MI);
2978 
2979     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2980     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2981 
2982     // Move insert point forward so we can use the Res register if needed.
2983     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2984 
2985     // For *signed* multiply, overflow is detected by checking:
2986     // (hi != (lo >> bitwidth-1))
2987     if (Opcode == TargetOpcode::G_SMULH) {
2988       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2989       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2990       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2991     } else {
2992       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2993     }
2994     return Legalized;
2995   }
2996   case TargetOpcode::G_FNEG: {
2997     Register Res = MI.getOperand(0).getReg();
2998     LLT Ty = MRI.getType(Res);
2999 
3000     // TODO: Handle vector types once we are able to
3001     // represent them.
3002     if (Ty.isVector())
3003       return UnableToLegalize;
3004     auto SignMask =
3005         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3006     Register SubByReg = MI.getOperand(1).getReg();
3007     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3008     MI.eraseFromParent();
3009     return Legalized;
3010   }
3011   case TargetOpcode::G_FSUB: {
3012     Register Res = MI.getOperand(0).getReg();
3013     LLT Ty = MRI.getType(Res);
3014 
3015     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3016     // First, check if G_FNEG is marked as Lower. If so, we may
3017     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3018     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3019       return UnableToLegalize;
3020     Register LHS = MI.getOperand(1).getReg();
3021     Register RHS = MI.getOperand(2).getReg();
3022     Register Neg = MRI.createGenericVirtualRegister(Ty);
3023     MIRBuilder.buildFNeg(Neg, RHS);
3024     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3025     MI.eraseFromParent();
3026     return Legalized;
3027   }
3028   case TargetOpcode::G_FMAD:
3029     return lowerFMad(MI);
3030   case TargetOpcode::G_FFLOOR:
3031     return lowerFFloor(MI);
3032   case TargetOpcode::G_INTRINSIC_ROUND:
3033     return lowerIntrinsicRound(MI);
3034   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3035     // Since round even is the assumed rounding mode for unconstrained FP
3036     // operations, rint and roundeven are the same operation.
3037     changeOpcode(MI, TargetOpcode::G_FRINT);
3038     return Legalized;
3039   }
3040   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3041     Register OldValRes = MI.getOperand(0).getReg();
3042     Register SuccessRes = MI.getOperand(1).getReg();
3043     Register Addr = MI.getOperand(2).getReg();
3044     Register CmpVal = MI.getOperand(3).getReg();
3045     Register NewVal = MI.getOperand(4).getReg();
3046     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3047                                   **MI.memoperands_begin());
3048     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3049     MI.eraseFromParent();
3050     return Legalized;
3051   }
3052   case TargetOpcode::G_LOAD:
3053   case TargetOpcode::G_SEXTLOAD:
3054   case TargetOpcode::G_ZEXTLOAD:
3055     return lowerLoad(MI);
3056   case TargetOpcode::G_STORE:
3057     return lowerStore(MI);
3058   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3059   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3060   case TargetOpcode::G_CTLZ:
3061   case TargetOpcode::G_CTTZ:
3062   case TargetOpcode::G_CTPOP:
3063     return lowerBitCount(MI);
3064   case G_UADDO: {
3065     Register Res = MI.getOperand(0).getReg();
3066     Register CarryOut = MI.getOperand(1).getReg();
3067     Register LHS = MI.getOperand(2).getReg();
3068     Register RHS = MI.getOperand(3).getReg();
3069 
3070     MIRBuilder.buildAdd(Res, LHS, RHS);
3071     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3072 
3073     MI.eraseFromParent();
3074     return Legalized;
3075   }
3076   case G_UADDE: {
3077     Register Res = MI.getOperand(0).getReg();
3078     Register CarryOut = MI.getOperand(1).getReg();
3079     Register LHS = MI.getOperand(2).getReg();
3080     Register RHS = MI.getOperand(3).getReg();
3081     Register CarryIn = MI.getOperand(4).getReg();
3082     LLT Ty = MRI.getType(Res);
3083 
3084     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3085     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3086     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3087     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3088 
3089     MI.eraseFromParent();
3090     return Legalized;
3091   }
3092   case G_USUBO: {
3093     Register Res = MI.getOperand(0).getReg();
3094     Register BorrowOut = MI.getOperand(1).getReg();
3095     Register LHS = MI.getOperand(2).getReg();
3096     Register RHS = MI.getOperand(3).getReg();
3097 
3098     MIRBuilder.buildSub(Res, LHS, RHS);
3099     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3100 
3101     MI.eraseFromParent();
3102     return Legalized;
3103   }
3104   case G_USUBE: {
3105     Register Res = MI.getOperand(0).getReg();
3106     Register BorrowOut = MI.getOperand(1).getReg();
3107     Register LHS = MI.getOperand(2).getReg();
3108     Register RHS = MI.getOperand(3).getReg();
3109     Register BorrowIn = MI.getOperand(4).getReg();
3110     const LLT CondTy = MRI.getType(BorrowOut);
3111     const LLT Ty = MRI.getType(Res);
3112 
3113     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3114     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3115     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3116 
3117     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3118     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3119     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3120 
3121     MI.eraseFromParent();
3122     return Legalized;
3123   }
3124   case G_UITOFP:
3125     return lowerUITOFP(MI);
3126   case G_SITOFP:
3127     return lowerSITOFP(MI);
3128   case G_FPTOUI:
3129     return lowerFPTOUI(MI);
3130   case G_FPTOSI:
3131     return lowerFPTOSI(MI);
3132   case G_FPTRUNC:
3133     return lowerFPTRUNC(MI);
3134   case G_FPOWI:
3135     return lowerFPOWI(MI);
3136   case G_SMIN:
3137   case G_SMAX:
3138   case G_UMIN:
3139   case G_UMAX:
3140     return lowerMinMax(MI);
3141   case G_FCOPYSIGN:
3142     return lowerFCopySign(MI);
3143   case G_FMINNUM:
3144   case G_FMAXNUM:
3145     return lowerFMinNumMaxNum(MI);
3146   case G_MERGE_VALUES:
3147     return lowerMergeValues(MI);
3148   case G_UNMERGE_VALUES:
3149     return lowerUnmergeValues(MI);
3150   case TargetOpcode::G_SEXT_INREG: {
3151     assert(MI.getOperand(2).isImm() && "Expected immediate");
3152     int64_t SizeInBits = MI.getOperand(2).getImm();
3153 
3154     Register DstReg = MI.getOperand(0).getReg();
3155     Register SrcReg = MI.getOperand(1).getReg();
3156     LLT DstTy = MRI.getType(DstReg);
3157     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3158 
3159     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3160     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3161     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3162     MI.eraseFromParent();
3163     return Legalized;
3164   }
3165   case G_EXTRACT_VECTOR_ELT:
3166   case G_INSERT_VECTOR_ELT:
3167     return lowerExtractInsertVectorElt(MI);
3168   case G_SHUFFLE_VECTOR:
3169     return lowerShuffleVector(MI);
3170   case G_DYN_STACKALLOC:
3171     return lowerDynStackAlloc(MI);
3172   case G_EXTRACT:
3173     return lowerExtract(MI);
3174   case G_INSERT:
3175     return lowerInsert(MI);
3176   case G_BSWAP:
3177     return lowerBswap(MI);
3178   case G_BITREVERSE:
3179     return lowerBitreverse(MI);
3180   case G_READ_REGISTER:
3181   case G_WRITE_REGISTER:
3182     return lowerReadWriteRegister(MI);
3183   case G_UADDSAT:
3184   case G_USUBSAT: {
3185     // Try to make a reasonable guess about which lowering strategy to use. The
3186     // target can override this with custom lowering and calling the
3187     // implementation functions.
3188     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3189     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3190       return lowerAddSubSatToMinMax(MI);
3191     return lowerAddSubSatToAddoSubo(MI);
3192   }
3193   case G_SADDSAT:
3194   case G_SSUBSAT: {
3195     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3196 
3197     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3198     // since it's a shorter expansion. However, we would need to figure out the
3199     // preferred boolean type for the carry out for the query.
3200     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3201       return lowerAddSubSatToMinMax(MI);
3202     return lowerAddSubSatToAddoSubo(MI);
3203   }
3204   case G_SSHLSAT:
3205   case G_USHLSAT:
3206     return lowerShlSat(MI);
3207   case G_ABS: {
3208     // Expand %res = G_ABS %a into:
3209     // %v1 = G_ASHR %a, scalar_size-1
3210     // %v2 = G_ADD %a, %v1
3211     // %res = G_XOR %v2, %v1
3212     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3213     Register OpReg = MI.getOperand(1).getReg();
3214     auto ShiftAmt =
3215         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3216     auto Shift =
3217         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3218     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3219     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3220     MI.eraseFromParent();
3221     return Legalized;
3222   }
3223   case G_SELECT:
3224     return lowerSelect(MI);
3225   case G_SDIVREM:
3226   case G_UDIVREM:
3227     return lowerDIVREM(MI);
3228   case G_FSHL:
3229   case G_FSHR:
3230     return lowerFunnelShift(MI);
3231   }
3232 }
3233 
3234 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3235                                                   Align MinAlign) const {
3236   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3237   // datalayout for the preferred alignment. Also there should be a target hook
3238   // for this to allow targets to reduce the alignment and ignore the
3239   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3240   // the type.
3241   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3242 }
3243 
3244 MachineInstrBuilder
3245 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3246                                       MachinePointerInfo &PtrInfo) {
3247   MachineFunction &MF = MIRBuilder.getMF();
3248   const DataLayout &DL = MIRBuilder.getDataLayout();
3249   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3250 
3251   unsigned AddrSpace = DL.getAllocaAddrSpace();
3252   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3253 
3254   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3255   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3256 }
3257 
3258 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3259                                         LLT VecTy) {
3260   int64_t IdxVal;
3261   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3262     return IdxReg;
3263 
3264   LLT IdxTy = B.getMRI()->getType(IdxReg);
3265   unsigned NElts = VecTy.getNumElements();
3266   if (isPowerOf2_32(NElts)) {
3267     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3268     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3269   }
3270 
3271   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3272       .getReg(0);
3273 }
3274 
3275 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3276                                                   Register Index) {
3277   LLT EltTy = VecTy.getElementType();
3278 
3279   // Calculate the element offset and add it to the pointer.
3280   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3281   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3282          "Converting bits to bytes lost precision");
3283 
3284   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3285 
3286   LLT IdxTy = MRI.getType(Index);
3287   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3288                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3289 
3290   LLT PtrTy = MRI.getType(VecPtr);
3291   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3292 }
3293 
3294 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3295     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3296   Register DstReg = MI.getOperand(0).getReg();
3297   LLT DstTy = MRI.getType(DstReg);
3298   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3299 
3300   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3301 
3302   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3303   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3304 
3305   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3306   MI.eraseFromParent();
3307   return Legalized;
3308 }
3309 
3310 // Handle splitting vector operations which need to have the same number of
3311 // elements in each type index, but each type index may have a different element
3312 // type.
3313 //
3314 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3315 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3316 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3317 //
3318 // Also handles some irregular breakdown cases, e.g.
3319 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3320 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3321 //             s64 = G_SHL s64, s32
3322 LegalizerHelper::LegalizeResult
3323 LegalizerHelper::fewerElementsVectorMultiEltType(
3324   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3325   if (TypeIdx != 0)
3326     return UnableToLegalize;
3327 
3328   const LLT NarrowTy0 = NarrowTyArg;
3329   const unsigned NewNumElts =
3330       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3331 
3332   const Register DstReg = MI.getOperand(0).getReg();
3333   LLT DstTy = MRI.getType(DstReg);
3334   LLT LeftoverTy0;
3335 
3336   // All of the operands need to have the same number of elements, so if we can
3337   // determine a type breakdown for the result type, we can for all of the
3338   // source types.
3339   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3340   if (NumParts < 0)
3341     return UnableToLegalize;
3342 
3343   SmallVector<MachineInstrBuilder, 4> NewInsts;
3344 
3345   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3346   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3347 
3348   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3349     Register SrcReg = MI.getOperand(I).getReg();
3350     LLT SrcTyI = MRI.getType(SrcReg);
3351     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3352     LLT LeftoverTyI;
3353 
3354     // Split this operand into the requested typed registers, and any leftover
3355     // required to reproduce the original type.
3356     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3357                       LeftoverRegs))
3358       return UnableToLegalize;
3359 
3360     if (I == 1) {
3361       // For the first operand, create an instruction for each part and setup
3362       // the result.
3363       for (Register PartReg : PartRegs) {
3364         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3365         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3366                                .addDef(PartDstReg)
3367                                .addUse(PartReg));
3368         DstRegs.push_back(PartDstReg);
3369       }
3370 
3371       for (Register LeftoverReg : LeftoverRegs) {
3372         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3373         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3374                                .addDef(PartDstReg)
3375                                .addUse(LeftoverReg));
3376         LeftoverDstRegs.push_back(PartDstReg);
3377       }
3378     } else {
3379       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3380 
3381       // Add the newly created operand splits to the existing instructions. The
3382       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3383       // pieces.
3384       unsigned InstCount = 0;
3385       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3386         NewInsts[InstCount++].addUse(PartRegs[J]);
3387       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3388         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3389     }
3390 
3391     PartRegs.clear();
3392     LeftoverRegs.clear();
3393   }
3394 
3395   // Insert the newly built operations and rebuild the result register.
3396   for (auto &MIB : NewInsts)
3397     MIRBuilder.insertInstr(MIB);
3398 
3399   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3400 
3401   MI.eraseFromParent();
3402   return Legalized;
3403 }
3404 
3405 LegalizerHelper::LegalizeResult
3406 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3407                                           LLT NarrowTy) {
3408   if (TypeIdx != 0)
3409     return UnableToLegalize;
3410 
3411   Register DstReg = MI.getOperand(0).getReg();
3412   Register SrcReg = MI.getOperand(1).getReg();
3413   LLT DstTy = MRI.getType(DstReg);
3414   LLT SrcTy = MRI.getType(SrcReg);
3415 
3416   LLT NarrowTy0 = NarrowTy;
3417   LLT NarrowTy1;
3418   unsigned NumParts;
3419 
3420   if (NarrowTy.isVector()) {
3421     // Uneven breakdown not handled.
3422     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3423     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3424       return UnableToLegalize;
3425 
3426     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3427   } else {
3428     NumParts = DstTy.getNumElements();
3429     NarrowTy1 = SrcTy.getElementType();
3430   }
3431 
3432   SmallVector<Register, 4> SrcRegs, DstRegs;
3433   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3434 
3435   for (unsigned I = 0; I < NumParts; ++I) {
3436     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3437     MachineInstr *NewInst =
3438         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3439 
3440     NewInst->setFlags(MI.getFlags());
3441     DstRegs.push_back(DstReg);
3442   }
3443 
3444   if (NarrowTy.isVector())
3445     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3446   else
3447     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3448 
3449   MI.eraseFromParent();
3450   return Legalized;
3451 }
3452 
3453 LegalizerHelper::LegalizeResult
3454 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3455                                         LLT NarrowTy) {
3456   Register DstReg = MI.getOperand(0).getReg();
3457   Register Src0Reg = MI.getOperand(2).getReg();
3458   LLT DstTy = MRI.getType(DstReg);
3459   LLT SrcTy = MRI.getType(Src0Reg);
3460 
3461   unsigned NumParts;
3462   LLT NarrowTy0, NarrowTy1;
3463 
3464   if (TypeIdx == 0) {
3465     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3466     unsigned OldElts = DstTy.getNumElements();
3467 
3468     NarrowTy0 = NarrowTy;
3469     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3470     NarrowTy1 = NarrowTy.isVector() ?
3471       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3472       SrcTy.getElementType();
3473 
3474   } else {
3475     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3476     unsigned OldElts = SrcTy.getNumElements();
3477 
3478     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3479       NarrowTy.getNumElements();
3480     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3481                             DstTy.getScalarSizeInBits());
3482     NarrowTy1 = NarrowTy;
3483   }
3484 
3485   // FIXME: Don't know how to handle the situation where the small vectors
3486   // aren't all the same size yet.
3487   if (NarrowTy1.isVector() &&
3488       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3489     return UnableToLegalize;
3490 
3491   CmpInst::Predicate Pred
3492     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3493 
3494   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3495   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3496   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3497 
3498   for (unsigned I = 0; I < NumParts; ++I) {
3499     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3500     DstRegs.push_back(DstReg);
3501 
3502     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3503       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3504     else {
3505       MachineInstr *NewCmp
3506         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3507       NewCmp->setFlags(MI.getFlags());
3508     }
3509   }
3510 
3511   if (NarrowTy1.isVector())
3512     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3513   else
3514     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3515 
3516   MI.eraseFromParent();
3517   return Legalized;
3518 }
3519 
3520 LegalizerHelper::LegalizeResult
3521 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3522                                            LLT NarrowTy) {
3523   Register DstReg = MI.getOperand(0).getReg();
3524   Register CondReg = MI.getOperand(1).getReg();
3525 
3526   unsigned NumParts = 0;
3527   LLT NarrowTy0, NarrowTy1;
3528 
3529   LLT DstTy = MRI.getType(DstReg);
3530   LLT CondTy = MRI.getType(CondReg);
3531   unsigned Size = DstTy.getSizeInBits();
3532 
3533   assert(TypeIdx == 0 || CondTy.isVector());
3534 
3535   if (TypeIdx == 0) {
3536     NarrowTy0 = NarrowTy;
3537     NarrowTy1 = CondTy;
3538 
3539     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3540     // FIXME: Don't know how to handle the situation where the small vectors
3541     // aren't all the same size yet.
3542     if (Size % NarrowSize != 0)
3543       return UnableToLegalize;
3544 
3545     NumParts = Size / NarrowSize;
3546 
3547     // Need to break down the condition type
3548     if (CondTy.isVector()) {
3549       if (CondTy.getNumElements() == NumParts)
3550         NarrowTy1 = CondTy.getElementType();
3551       else
3552         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3553                                 CondTy.getScalarSizeInBits());
3554     }
3555   } else {
3556     NumParts = CondTy.getNumElements();
3557     if (NarrowTy.isVector()) {
3558       // TODO: Handle uneven breakdown.
3559       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3560         return UnableToLegalize;
3561 
3562       return UnableToLegalize;
3563     } else {
3564       NarrowTy0 = DstTy.getElementType();
3565       NarrowTy1 = NarrowTy;
3566     }
3567   }
3568 
3569   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3570   if (CondTy.isVector())
3571     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3572 
3573   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3574   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3575 
3576   for (unsigned i = 0; i < NumParts; ++i) {
3577     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3578     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3579                            Src1Regs[i], Src2Regs[i]);
3580     DstRegs.push_back(DstReg);
3581   }
3582 
3583   if (NarrowTy0.isVector())
3584     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3585   else
3586     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3587 
3588   MI.eraseFromParent();
3589   return Legalized;
3590 }
3591 
3592 LegalizerHelper::LegalizeResult
3593 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3594                                         LLT NarrowTy) {
3595   const Register DstReg = MI.getOperand(0).getReg();
3596   LLT PhiTy = MRI.getType(DstReg);
3597   LLT LeftoverTy;
3598 
3599   // All of the operands need to have the same number of elements, so if we can
3600   // determine a type breakdown for the result type, we can for all of the
3601   // source types.
3602   int NumParts, NumLeftover;
3603   std::tie(NumParts, NumLeftover)
3604     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3605   if (NumParts < 0)
3606     return UnableToLegalize;
3607 
3608   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3609   SmallVector<MachineInstrBuilder, 4> NewInsts;
3610 
3611   const int TotalNumParts = NumParts + NumLeftover;
3612 
3613   // Insert the new phis in the result block first.
3614   for (int I = 0; I != TotalNumParts; ++I) {
3615     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3616     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3617     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3618                        .addDef(PartDstReg));
3619     if (I < NumParts)
3620       DstRegs.push_back(PartDstReg);
3621     else
3622       LeftoverDstRegs.push_back(PartDstReg);
3623   }
3624 
3625   MachineBasicBlock *MBB = MI.getParent();
3626   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3627   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3628 
3629   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3630 
3631   // Insert code to extract the incoming values in each predecessor block.
3632   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3633     PartRegs.clear();
3634     LeftoverRegs.clear();
3635 
3636     Register SrcReg = MI.getOperand(I).getReg();
3637     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3638     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3639 
3640     LLT Unused;
3641     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3642                       LeftoverRegs))
3643       return UnableToLegalize;
3644 
3645     // Add the newly created operand splits to the existing instructions. The
3646     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3647     // pieces.
3648     for (int J = 0; J != TotalNumParts; ++J) {
3649       MachineInstrBuilder MIB = NewInsts[J];
3650       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3651       MIB.addMBB(&OpMBB);
3652     }
3653   }
3654 
3655   MI.eraseFromParent();
3656   return Legalized;
3657 }
3658 
3659 LegalizerHelper::LegalizeResult
3660 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3661                                                   unsigned TypeIdx,
3662                                                   LLT NarrowTy) {
3663   if (TypeIdx != 1)
3664     return UnableToLegalize;
3665 
3666   const int NumDst = MI.getNumOperands() - 1;
3667   const Register SrcReg = MI.getOperand(NumDst).getReg();
3668   LLT SrcTy = MRI.getType(SrcReg);
3669 
3670   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3671 
3672   // TODO: Create sequence of extracts.
3673   if (DstTy == NarrowTy)
3674     return UnableToLegalize;
3675 
3676   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3677   if (DstTy == GCDTy) {
3678     // This would just be a copy of the same unmerge.
3679     // TODO: Create extracts, pad with undef and create intermediate merges.
3680     return UnableToLegalize;
3681   }
3682 
3683   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3684   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3685   const int PartsPerUnmerge = NumDst / NumUnmerge;
3686 
3687   for (int I = 0; I != NumUnmerge; ++I) {
3688     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3689 
3690     for (int J = 0; J != PartsPerUnmerge; ++J)
3691       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3692     MIB.addUse(Unmerge.getReg(I));
3693   }
3694 
3695   MI.eraseFromParent();
3696   return Legalized;
3697 }
3698 
3699 LegalizerHelper::LegalizeResult
3700 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3701                                          LLT NarrowTy) {
3702   Register Result = MI.getOperand(0).getReg();
3703   Register Overflow = MI.getOperand(1).getReg();
3704   Register LHS = MI.getOperand(2).getReg();
3705   Register RHS = MI.getOperand(3).getReg();
3706 
3707   LLT SrcTy = MRI.getType(LHS);
3708   if (!SrcTy.isVector())
3709     return UnableToLegalize;
3710 
3711   LLT ElementType = SrcTy.getElementType();
3712   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3713   const int NumResult = SrcTy.getNumElements();
3714   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3715 
3716   // Unmerge the operands to smaller parts of GCD type.
3717   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3718   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3719 
3720   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3721   const int PartsPerUnmerge = NumResult / NumOps;
3722   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3723   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3724 
3725   // Perform the operation over unmerged parts.
3726   SmallVector<Register, 8> ResultParts;
3727   SmallVector<Register, 8> OverflowParts;
3728   for (int I = 0; I != NumOps; ++I) {
3729     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3730     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3731     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3732                                          {Operand1, Operand2});
3733     ResultParts.push_back(PartMul->getOperand(0).getReg());
3734     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3735   }
3736 
3737   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3738   LLT OverflowLCMTy =
3739       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3740 
3741   // Recombine the pieces to the original result and overflow registers.
3742   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3743   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3744   MI.eraseFromParent();
3745   return Legalized;
3746 }
3747 
3748 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3749 // a vector
3750 //
3751 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3752 // undef as necessary.
3753 //
3754 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3755 //   -> <2 x s16>
3756 //
3757 // %4:_(s16) = G_IMPLICIT_DEF
3758 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3759 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3760 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3761 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3762 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3763 LegalizerHelper::LegalizeResult
3764 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3765                                           LLT NarrowTy) {
3766   Register DstReg = MI.getOperand(0).getReg();
3767   LLT DstTy = MRI.getType(DstReg);
3768   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3769   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3770 
3771   // Break into a common type
3772   SmallVector<Register, 16> Parts;
3773   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3774     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3775 
3776   // Build the requested new merge, padding with undef.
3777   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3778                                   TargetOpcode::G_ANYEXT);
3779 
3780   // Pack into the original result register.
3781   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3782 
3783   MI.eraseFromParent();
3784   return Legalized;
3785 }
3786 
3787 LegalizerHelper::LegalizeResult
3788 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3789                                                            unsigned TypeIdx,
3790                                                            LLT NarrowVecTy) {
3791   Register DstReg = MI.getOperand(0).getReg();
3792   Register SrcVec = MI.getOperand(1).getReg();
3793   Register InsertVal;
3794   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3795 
3796   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3797   if (IsInsert)
3798     InsertVal = MI.getOperand(2).getReg();
3799 
3800   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3801 
3802   // TODO: Handle total scalarization case.
3803   if (!NarrowVecTy.isVector())
3804     return UnableToLegalize;
3805 
3806   LLT VecTy = MRI.getType(SrcVec);
3807 
3808   // If the index is a constant, we can really break this down as you would
3809   // expect, and index into the target size pieces.
3810   int64_t IdxVal;
3811   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3812     // Avoid out of bounds indexing the pieces.
3813     if (IdxVal >= VecTy.getNumElements()) {
3814       MIRBuilder.buildUndef(DstReg);
3815       MI.eraseFromParent();
3816       return Legalized;
3817     }
3818 
3819     SmallVector<Register, 8> VecParts;
3820     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3821 
3822     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3823     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3824                                     TargetOpcode::G_ANYEXT);
3825 
3826     unsigned NewNumElts = NarrowVecTy.getNumElements();
3827 
3828     LLT IdxTy = MRI.getType(Idx);
3829     int64_t PartIdx = IdxVal / NewNumElts;
3830     auto NewIdx =
3831         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3832 
3833     if (IsInsert) {
3834       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3835 
3836       // Use the adjusted index to insert into one of the subvectors.
3837       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3838           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3839       VecParts[PartIdx] = InsertPart.getReg(0);
3840 
3841       // Recombine the inserted subvector with the others to reform the result
3842       // vector.
3843       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3844     } else {
3845       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3846     }
3847 
3848     MI.eraseFromParent();
3849     return Legalized;
3850   }
3851 
3852   // With a variable index, we can't perform the operation in a smaller type, so
3853   // we're forced to expand this.
3854   //
3855   // TODO: We could emit a chain of compare/select to figure out which piece to
3856   // index.
3857   return lowerExtractInsertVectorElt(MI);
3858 }
3859 
3860 LegalizerHelper::LegalizeResult
3861 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3862                                       LLT NarrowTy) {
3863   // FIXME: Don't know how to handle secondary types yet.
3864   if (TypeIdx != 0)
3865     return UnableToLegalize;
3866 
3867   MachineMemOperand *MMO = *MI.memoperands_begin();
3868 
3869   // This implementation doesn't work for atomics. Give up instead of doing
3870   // something invalid.
3871   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3872       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3873     return UnableToLegalize;
3874 
3875   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3876   Register ValReg = MI.getOperand(0).getReg();
3877   Register AddrReg = MI.getOperand(1).getReg();
3878   LLT ValTy = MRI.getType(ValReg);
3879 
3880   // FIXME: Do we need a distinct NarrowMemory legalize action?
3881   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3882     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3883     return UnableToLegalize;
3884   }
3885 
3886   int NumParts = -1;
3887   int NumLeftover = -1;
3888   LLT LeftoverTy;
3889   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3890   if (IsLoad) {
3891     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3892   } else {
3893     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3894                      NarrowLeftoverRegs)) {
3895       NumParts = NarrowRegs.size();
3896       NumLeftover = NarrowLeftoverRegs.size();
3897     }
3898   }
3899 
3900   if (NumParts == -1)
3901     return UnableToLegalize;
3902 
3903   LLT PtrTy = MRI.getType(AddrReg);
3904   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3905 
3906   unsigned TotalSize = ValTy.getSizeInBits();
3907 
3908   // Split the load/store into PartTy sized pieces starting at Offset. If this
3909   // is a load, return the new registers in ValRegs. For a store, each elements
3910   // of ValRegs should be PartTy. Returns the next offset that needs to be
3911   // handled.
3912   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3913                              unsigned Offset) -> unsigned {
3914     MachineFunction &MF = MIRBuilder.getMF();
3915     unsigned PartSize = PartTy.getSizeInBits();
3916     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3917          Offset += PartSize, ++Idx) {
3918       unsigned ByteSize = PartSize / 8;
3919       unsigned ByteOffset = Offset / 8;
3920       Register NewAddrReg;
3921 
3922       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3923 
3924       MachineMemOperand *NewMMO =
3925         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3926 
3927       if (IsLoad) {
3928         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3929         ValRegs.push_back(Dst);
3930         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3931       } else {
3932         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3933       }
3934     }
3935 
3936     return Offset;
3937   };
3938 
3939   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3940 
3941   // Handle the rest of the register if this isn't an even type breakdown.
3942   if (LeftoverTy.isValid())
3943     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3944 
3945   if (IsLoad) {
3946     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3947                 LeftoverTy, NarrowLeftoverRegs);
3948   }
3949 
3950   MI.eraseFromParent();
3951   return Legalized;
3952 }
3953 
3954 LegalizerHelper::LegalizeResult
3955 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3956                                       LLT NarrowTy) {
3957   assert(TypeIdx == 0 && "only one type index expected");
3958 
3959   const unsigned Opc = MI.getOpcode();
3960   const int NumOps = MI.getNumOperands() - 1;
3961   const Register DstReg = MI.getOperand(0).getReg();
3962   const unsigned Flags = MI.getFlags();
3963   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3964   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3965 
3966   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3967 
3968   // First of all check whether we are narrowing (changing the element type)
3969   // or reducing the vector elements
3970   const LLT DstTy = MRI.getType(DstReg);
3971   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3972 
3973   SmallVector<Register, 8> ExtractedRegs[3];
3974   SmallVector<Register, 8> Parts;
3975 
3976   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3977 
3978   // Break down all the sources into NarrowTy pieces we can operate on. This may
3979   // involve creating merges to a wider type, padded with undef.
3980   for (int I = 0; I != NumOps; ++I) {
3981     Register SrcReg = MI.getOperand(I + 1).getReg();
3982     LLT SrcTy = MRI.getType(SrcReg);
3983 
3984     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3985     // For fewerElements, this is a smaller vector with the same element type.
3986     LLT OpNarrowTy;
3987     if (IsNarrow) {
3988       OpNarrowTy = NarrowScalarTy;
3989 
3990       // In case of narrowing, we need to cast vectors to scalars for this to
3991       // work properly
3992       // FIXME: Can we do without the bitcast here if we're narrowing?
3993       if (SrcTy.isVector()) {
3994         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3995         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3996       }
3997     } else {
3998       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3999     }
4000 
4001     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4002 
4003     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4004     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4005                         TargetOpcode::G_ANYEXT);
4006   }
4007 
4008   SmallVector<Register, 8> ResultRegs;
4009 
4010   // Input operands for each sub-instruction.
4011   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
4012 
4013   int NumParts = ExtractedRegs[0].size();
4014   const unsigned DstSize = DstTy.getSizeInBits();
4015   const LLT DstScalarTy = LLT::scalar(DstSize);
4016 
4017   // Narrowing needs to use scalar types
4018   LLT DstLCMTy, NarrowDstTy;
4019   if (IsNarrow) {
4020     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4021     NarrowDstTy = NarrowScalarTy;
4022   } else {
4023     DstLCMTy = getLCMType(DstTy, NarrowTy);
4024     NarrowDstTy = NarrowTy;
4025   }
4026 
4027   // We widened the source registers to satisfy merge/unmerge size
4028   // constraints. We'll have some extra fully undef parts.
4029   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4030 
4031   for (int I = 0; I != NumRealParts; ++I) {
4032     // Emit this instruction on each of the split pieces.
4033     for (int J = 0; J != NumOps; ++J)
4034       InputRegs[J] = ExtractedRegs[J][I];
4035 
4036     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4037     ResultRegs.push_back(Inst.getReg(0));
4038   }
4039 
4040   // Fill out the widened result with undef instead of creating instructions
4041   // with undef inputs.
4042   int NumUndefParts = NumParts - NumRealParts;
4043   if (NumUndefParts != 0)
4044     ResultRegs.append(NumUndefParts,
4045                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
4046 
4047   // Extract the possibly padded result. Use a scratch register if we need to do
4048   // a final bitcast, otherwise use the original result register.
4049   Register MergeDstReg;
4050   if (IsNarrow && DstTy.isVector())
4051     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4052   else
4053     MergeDstReg = DstReg;
4054 
4055   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
4056 
4057   // Recast to vector if we narrowed a vector
4058   if (IsNarrow && DstTy.isVector())
4059     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
4060 
4061   MI.eraseFromParent();
4062   return Legalized;
4063 }
4064 
4065 LegalizerHelper::LegalizeResult
4066 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4067                                               LLT NarrowTy) {
4068   Register DstReg = MI.getOperand(0).getReg();
4069   Register SrcReg = MI.getOperand(1).getReg();
4070   int64_t Imm = MI.getOperand(2).getImm();
4071 
4072   LLT DstTy = MRI.getType(DstReg);
4073 
4074   SmallVector<Register, 8> Parts;
4075   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4076   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4077 
4078   for (Register &R : Parts)
4079     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4080 
4081   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4082 
4083   MI.eraseFromParent();
4084   return Legalized;
4085 }
4086 
4087 LegalizerHelper::LegalizeResult
4088 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4089                                      LLT NarrowTy) {
4090   using namespace TargetOpcode;
4091 
4092   switch (MI.getOpcode()) {
4093   case G_IMPLICIT_DEF:
4094     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4095   case G_TRUNC:
4096   case G_AND:
4097   case G_OR:
4098   case G_XOR:
4099   case G_ADD:
4100   case G_SUB:
4101   case G_MUL:
4102   case G_PTR_ADD:
4103   case G_SMULH:
4104   case G_UMULH:
4105   case G_FADD:
4106   case G_FMUL:
4107   case G_FSUB:
4108   case G_FNEG:
4109   case G_FABS:
4110   case G_FCANONICALIZE:
4111   case G_FDIV:
4112   case G_FREM:
4113   case G_FMA:
4114   case G_FMAD:
4115   case G_FPOW:
4116   case G_FEXP:
4117   case G_FEXP2:
4118   case G_FLOG:
4119   case G_FLOG2:
4120   case G_FLOG10:
4121   case G_FNEARBYINT:
4122   case G_FCEIL:
4123   case G_FFLOOR:
4124   case G_FRINT:
4125   case G_INTRINSIC_ROUND:
4126   case G_INTRINSIC_ROUNDEVEN:
4127   case G_INTRINSIC_TRUNC:
4128   case G_FCOS:
4129   case G_FSIN:
4130   case G_FSQRT:
4131   case G_BSWAP:
4132   case G_BITREVERSE:
4133   case G_SDIV:
4134   case G_UDIV:
4135   case G_SREM:
4136   case G_UREM:
4137   case G_SMIN:
4138   case G_SMAX:
4139   case G_UMIN:
4140   case G_UMAX:
4141   case G_FMINNUM:
4142   case G_FMAXNUM:
4143   case G_FMINNUM_IEEE:
4144   case G_FMAXNUM_IEEE:
4145   case G_FMINIMUM:
4146   case G_FMAXIMUM:
4147   case G_FSHL:
4148   case G_FSHR:
4149   case G_FREEZE:
4150   case G_SADDSAT:
4151   case G_SSUBSAT:
4152   case G_UADDSAT:
4153   case G_USUBSAT:
4154     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4155   case G_UMULO:
4156   case G_SMULO:
4157     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4158   case G_SHL:
4159   case G_LSHR:
4160   case G_ASHR:
4161   case G_SSHLSAT:
4162   case G_USHLSAT:
4163   case G_CTLZ:
4164   case G_CTLZ_ZERO_UNDEF:
4165   case G_CTTZ:
4166   case G_CTTZ_ZERO_UNDEF:
4167   case G_CTPOP:
4168   case G_FCOPYSIGN:
4169     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4170   case G_ZEXT:
4171   case G_SEXT:
4172   case G_ANYEXT:
4173   case G_FPEXT:
4174   case G_FPTRUNC:
4175   case G_SITOFP:
4176   case G_UITOFP:
4177   case G_FPTOSI:
4178   case G_FPTOUI:
4179   case G_INTTOPTR:
4180   case G_PTRTOINT:
4181   case G_ADDRSPACE_CAST:
4182     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4183   case G_ICMP:
4184   case G_FCMP:
4185     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4186   case G_SELECT:
4187     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4188   case G_PHI:
4189     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4190   case G_UNMERGE_VALUES:
4191     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4192   case G_BUILD_VECTOR:
4193     assert(TypeIdx == 0 && "not a vector type index");
4194     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4195   case G_CONCAT_VECTORS:
4196     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4197       return UnableToLegalize;
4198     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4199   case G_EXTRACT_VECTOR_ELT:
4200   case G_INSERT_VECTOR_ELT:
4201     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4202   case G_LOAD:
4203   case G_STORE:
4204     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4205   case G_SEXT_INREG:
4206     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4207   default:
4208     return UnableToLegalize;
4209   }
4210 }
4211 
4212 LegalizerHelper::LegalizeResult
4213 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4214                                              const LLT HalfTy, const LLT AmtTy) {
4215 
4216   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4217   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4218   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4219 
4220   if (Amt.isNullValue()) {
4221     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4222     MI.eraseFromParent();
4223     return Legalized;
4224   }
4225 
4226   LLT NVT = HalfTy;
4227   unsigned NVTBits = HalfTy.getSizeInBits();
4228   unsigned VTBits = 2 * NVTBits;
4229 
4230   SrcOp Lo(Register(0)), Hi(Register(0));
4231   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4232     if (Amt.ugt(VTBits)) {
4233       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4234     } else if (Amt.ugt(NVTBits)) {
4235       Lo = MIRBuilder.buildConstant(NVT, 0);
4236       Hi = MIRBuilder.buildShl(NVT, InL,
4237                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4238     } else if (Amt == NVTBits) {
4239       Lo = MIRBuilder.buildConstant(NVT, 0);
4240       Hi = InL;
4241     } else {
4242       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4243       auto OrLHS =
4244           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4245       auto OrRHS = MIRBuilder.buildLShr(
4246           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4247       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4248     }
4249   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4250     if (Amt.ugt(VTBits)) {
4251       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4252     } else if (Amt.ugt(NVTBits)) {
4253       Lo = MIRBuilder.buildLShr(NVT, InH,
4254                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4255       Hi = MIRBuilder.buildConstant(NVT, 0);
4256     } else if (Amt == NVTBits) {
4257       Lo = InH;
4258       Hi = MIRBuilder.buildConstant(NVT, 0);
4259     } else {
4260       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4261 
4262       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4263       auto OrRHS = MIRBuilder.buildShl(
4264           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4265 
4266       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4267       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4268     }
4269   } else {
4270     if (Amt.ugt(VTBits)) {
4271       Hi = Lo = MIRBuilder.buildAShr(
4272           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4273     } else if (Amt.ugt(NVTBits)) {
4274       Lo = MIRBuilder.buildAShr(NVT, InH,
4275                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4276       Hi = MIRBuilder.buildAShr(NVT, InH,
4277                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4278     } else if (Amt == NVTBits) {
4279       Lo = InH;
4280       Hi = MIRBuilder.buildAShr(NVT, InH,
4281                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4282     } else {
4283       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4284 
4285       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4286       auto OrRHS = MIRBuilder.buildShl(
4287           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4288 
4289       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4290       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4291     }
4292   }
4293 
4294   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4295   MI.eraseFromParent();
4296 
4297   return Legalized;
4298 }
4299 
4300 // TODO: Optimize if constant shift amount.
4301 LegalizerHelper::LegalizeResult
4302 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4303                                    LLT RequestedTy) {
4304   if (TypeIdx == 1) {
4305     Observer.changingInstr(MI);
4306     narrowScalarSrc(MI, RequestedTy, 2);
4307     Observer.changedInstr(MI);
4308     return Legalized;
4309   }
4310 
4311   Register DstReg = MI.getOperand(0).getReg();
4312   LLT DstTy = MRI.getType(DstReg);
4313   if (DstTy.isVector())
4314     return UnableToLegalize;
4315 
4316   Register Amt = MI.getOperand(2).getReg();
4317   LLT ShiftAmtTy = MRI.getType(Amt);
4318   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4319   if (DstEltSize % 2 != 0)
4320     return UnableToLegalize;
4321 
4322   // Ignore the input type. We can only go to exactly half the size of the
4323   // input. If that isn't small enough, the resulting pieces will be further
4324   // legalized.
4325   const unsigned NewBitSize = DstEltSize / 2;
4326   const LLT HalfTy = LLT::scalar(NewBitSize);
4327   const LLT CondTy = LLT::scalar(1);
4328 
4329   if (const MachineInstr *KShiftAmt =
4330           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4331     return narrowScalarShiftByConstant(
4332         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4333   }
4334 
4335   // TODO: Expand with known bits.
4336 
4337   // Handle the fully general expansion by an unknown amount.
4338   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4339 
4340   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4341   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4342   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4343 
4344   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4345   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4346 
4347   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4348   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4349   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4350 
4351   Register ResultRegs[2];
4352   switch (MI.getOpcode()) {
4353   case TargetOpcode::G_SHL: {
4354     // Short: ShAmt < NewBitSize
4355     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4356 
4357     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4358     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4359     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4360 
4361     // Long: ShAmt >= NewBitSize
4362     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4363     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4364 
4365     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4366     auto Hi = MIRBuilder.buildSelect(
4367         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4368 
4369     ResultRegs[0] = Lo.getReg(0);
4370     ResultRegs[1] = Hi.getReg(0);
4371     break;
4372   }
4373   case TargetOpcode::G_LSHR:
4374   case TargetOpcode::G_ASHR: {
4375     // Short: ShAmt < NewBitSize
4376     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4377 
4378     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4379     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4380     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4381 
4382     // Long: ShAmt >= NewBitSize
4383     MachineInstrBuilder HiL;
4384     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4385       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4386     } else {
4387       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4388       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4389     }
4390     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4391                                      {InH, AmtExcess});     // Lo from Hi part.
4392 
4393     auto Lo = MIRBuilder.buildSelect(
4394         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4395 
4396     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4397 
4398     ResultRegs[0] = Lo.getReg(0);
4399     ResultRegs[1] = Hi.getReg(0);
4400     break;
4401   }
4402   default:
4403     llvm_unreachable("not a shift");
4404   }
4405 
4406   MIRBuilder.buildMerge(DstReg, ResultRegs);
4407   MI.eraseFromParent();
4408   return Legalized;
4409 }
4410 
4411 LegalizerHelper::LegalizeResult
4412 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4413                                        LLT MoreTy) {
4414   assert(TypeIdx == 0 && "Expecting only Idx 0");
4415 
4416   Observer.changingInstr(MI);
4417   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4418     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4419     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4420     moreElementsVectorSrc(MI, MoreTy, I);
4421   }
4422 
4423   MachineBasicBlock &MBB = *MI.getParent();
4424   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4425   moreElementsVectorDst(MI, MoreTy, 0);
4426   Observer.changedInstr(MI);
4427   return Legalized;
4428 }
4429 
4430 LegalizerHelper::LegalizeResult
4431 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4432                                     LLT MoreTy) {
4433   unsigned Opc = MI.getOpcode();
4434   switch (Opc) {
4435   case TargetOpcode::G_IMPLICIT_DEF:
4436   case TargetOpcode::G_LOAD: {
4437     if (TypeIdx != 0)
4438       return UnableToLegalize;
4439     Observer.changingInstr(MI);
4440     moreElementsVectorDst(MI, MoreTy, 0);
4441     Observer.changedInstr(MI);
4442     return Legalized;
4443   }
4444   case TargetOpcode::G_STORE:
4445     if (TypeIdx != 0)
4446       return UnableToLegalize;
4447     Observer.changingInstr(MI);
4448     moreElementsVectorSrc(MI, MoreTy, 0);
4449     Observer.changedInstr(MI);
4450     return Legalized;
4451   case TargetOpcode::G_AND:
4452   case TargetOpcode::G_OR:
4453   case TargetOpcode::G_XOR:
4454   case TargetOpcode::G_SMIN:
4455   case TargetOpcode::G_SMAX:
4456   case TargetOpcode::G_UMIN:
4457   case TargetOpcode::G_UMAX:
4458   case TargetOpcode::G_FMINNUM:
4459   case TargetOpcode::G_FMAXNUM:
4460   case TargetOpcode::G_FMINNUM_IEEE:
4461   case TargetOpcode::G_FMAXNUM_IEEE:
4462   case TargetOpcode::G_FMINIMUM:
4463   case TargetOpcode::G_FMAXIMUM: {
4464     Observer.changingInstr(MI);
4465     moreElementsVectorSrc(MI, MoreTy, 1);
4466     moreElementsVectorSrc(MI, MoreTy, 2);
4467     moreElementsVectorDst(MI, MoreTy, 0);
4468     Observer.changedInstr(MI);
4469     return Legalized;
4470   }
4471   case TargetOpcode::G_EXTRACT:
4472     if (TypeIdx != 1)
4473       return UnableToLegalize;
4474     Observer.changingInstr(MI);
4475     moreElementsVectorSrc(MI, MoreTy, 1);
4476     Observer.changedInstr(MI);
4477     return Legalized;
4478   case TargetOpcode::G_INSERT:
4479   case TargetOpcode::G_FREEZE:
4480     if (TypeIdx != 0)
4481       return UnableToLegalize;
4482     Observer.changingInstr(MI);
4483     moreElementsVectorSrc(MI, MoreTy, 1);
4484     moreElementsVectorDst(MI, MoreTy, 0);
4485     Observer.changedInstr(MI);
4486     return Legalized;
4487   case TargetOpcode::G_SELECT:
4488     if (TypeIdx != 0)
4489       return UnableToLegalize;
4490     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4491       return UnableToLegalize;
4492 
4493     Observer.changingInstr(MI);
4494     moreElementsVectorSrc(MI, MoreTy, 2);
4495     moreElementsVectorSrc(MI, MoreTy, 3);
4496     moreElementsVectorDst(MI, MoreTy, 0);
4497     Observer.changedInstr(MI);
4498     return Legalized;
4499   case TargetOpcode::G_UNMERGE_VALUES: {
4500     if (TypeIdx != 1)
4501       return UnableToLegalize;
4502 
4503     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4504     int NumDst = MI.getNumOperands() - 1;
4505     moreElementsVectorSrc(MI, MoreTy, NumDst);
4506 
4507     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4508     for (int I = 0; I != NumDst; ++I)
4509       MIB.addDef(MI.getOperand(I).getReg());
4510 
4511     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4512     for (int I = NumDst; I != NewNumDst; ++I)
4513       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4514 
4515     MIB.addUse(MI.getOperand(NumDst).getReg());
4516     MI.eraseFromParent();
4517     return Legalized;
4518   }
4519   case TargetOpcode::G_PHI:
4520     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4521   default:
4522     return UnableToLegalize;
4523   }
4524 }
4525 
4526 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4527                                         ArrayRef<Register> Src1Regs,
4528                                         ArrayRef<Register> Src2Regs,
4529                                         LLT NarrowTy) {
4530   MachineIRBuilder &B = MIRBuilder;
4531   unsigned SrcParts = Src1Regs.size();
4532   unsigned DstParts = DstRegs.size();
4533 
4534   unsigned DstIdx = 0; // Low bits of the result.
4535   Register FactorSum =
4536       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4537   DstRegs[DstIdx] = FactorSum;
4538 
4539   unsigned CarrySumPrevDstIdx;
4540   SmallVector<Register, 4> Factors;
4541 
4542   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4543     // Collect low parts of muls for DstIdx.
4544     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4545          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4546       MachineInstrBuilder Mul =
4547           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4548       Factors.push_back(Mul.getReg(0));
4549     }
4550     // Collect high parts of muls from previous DstIdx.
4551     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4552          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4553       MachineInstrBuilder Umulh =
4554           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4555       Factors.push_back(Umulh.getReg(0));
4556     }
4557     // Add CarrySum from additions calculated for previous DstIdx.
4558     if (DstIdx != 1) {
4559       Factors.push_back(CarrySumPrevDstIdx);
4560     }
4561 
4562     Register CarrySum;
4563     // Add all factors and accumulate all carries into CarrySum.
4564     if (DstIdx != DstParts - 1) {
4565       MachineInstrBuilder Uaddo =
4566           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4567       FactorSum = Uaddo.getReg(0);
4568       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4569       for (unsigned i = 2; i < Factors.size(); ++i) {
4570         MachineInstrBuilder Uaddo =
4571             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4572         FactorSum = Uaddo.getReg(0);
4573         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4574         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4575       }
4576     } else {
4577       // Since value for the next index is not calculated, neither is CarrySum.
4578       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4579       for (unsigned i = 2; i < Factors.size(); ++i)
4580         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4581     }
4582 
4583     CarrySumPrevDstIdx = CarrySum;
4584     DstRegs[DstIdx] = FactorSum;
4585     Factors.clear();
4586   }
4587 }
4588 
4589 LegalizerHelper::LegalizeResult
4590 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4591                                     LLT NarrowTy) {
4592   if (TypeIdx != 0)
4593     return UnableToLegalize;
4594 
4595   Register DstReg = MI.getOperand(0).getReg();
4596   LLT DstType = MRI.getType(DstReg);
4597   // FIXME: add support for vector types
4598   if (DstType.isVector())
4599     return UnableToLegalize;
4600 
4601   uint64_t SizeOp0 = DstType.getSizeInBits();
4602   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4603 
4604   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4605   // NarrowSize.
4606   if (SizeOp0 % NarrowSize != 0)
4607     return UnableToLegalize;
4608 
4609   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4610   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4611 
4612   unsigned Opcode = MI.getOpcode();
4613   unsigned OpO, OpE, OpF;
4614   switch (Opcode) {
4615   case TargetOpcode::G_SADDO:
4616   case TargetOpcode::G_SADDE:
4617   case TargetOpcode::G_UADDO:
4618   case TargetOpcode::G_UADDE:
4619   case TargetOpcode::G_ADD:
4620     OpO = TargetOpcode::G_UADDO;
4621     OpE = TargetOpcode::G_UADDE;
4622     OpF = TargetOpcode::G_UADDE;
4623     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4624       OpF = TargetOpcode::G_SADDE;
4625     break;
4626   case TargetOpcode::G_SSUBO:
4627   case TargetOpcode::G_SSUBE:
4628   case TargetOpcode::G_USUBO:
4629   case TargetOpcode::G_USUBE:
4630   case TargetOpcode::G_SUB:
4631     OpO = TargetOpcode::G_USUBO;
4632     OpE = TargetOpcode::G_USUBE;
4633     OpF = TargetOpcode::G_USUBE;
4634     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4635       OpF = TargetOpcode::G_SSUBE;
4636     break;
4637   default:
4638     llvm_unreachable("Unexpected add/sub opcode!");
4639   }
4640 
4641   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4642   unsigned NumDefs = MI.getNumExplicitDefs();
4643   Register Src1 = MI.getOperand(NumDefs).getReg();
4644   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4645   Register CarryDst;
4646   if (NumDefs == 2)
4647     CarryDst = MI.getOperand(1).getReg();
4648   Register CarryIn;
4649   if (MI.getNumOperands() == NumDefs + 3)
4650     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4651 
4652   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4653   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4654   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4655 
4656   for (int i = 0; i < NumParts; ++i) {
4657     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4658     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4659     // Forward the final carry-out to the destination register
4660     if (i == NumParts - 1 && CarryDst)
4661       CarryOut = CarryDst;
4662 
4663     if (!CarryIn) {
4664       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4665                             {Src1Regs[i], Src2Regs[i]});
4666     } else if (i == NumParts - 1) {
4667       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4668                             {Src1Regs[i], Src2Regs[i], CarryIn});
4669     } else {
4670       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4671                             {Src1Regs[i], Src2Regs[i], CarryIn});
4672     }
4673 
4674     DstRegs.push_back(DstReg);
4675     CarryIn = CarryOut;
4676   }
4677   MIRBuilder.buildMerge(DstReg, DstRegs);
4678   MI.eraseFromParent();
4679   return Legalized;
4680 }
4681 
4682 LegalizerHelper::LegalizeResult
4683 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4684   Register DstReg = MI.getOperand(0).getReg();
4685   Register Src1 = MI.getOperand(1).getReg();
4686   Register Src2 = MI.getOperand(2).getReg();
4687 
4688   LLT Ty = MRI.getType(DstReg);
4689   if (Ty.isVector())
4690     return UnableToLegalize;
4691 
4692   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4693   unsigned DstSize = Ty.getSizeInBits();
4694   unsigned NarrowSize = NarrowTy.getSizeInBits();
4695   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4696     return UnableToLegalize;
4697 
4698   unsigned NumDstParts = DstSize / NarrowSize;
4699   unsigned NumSrcParts = SrcSize / NarrowSize;
4700   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4701   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4702 
4703   SmallVector<Register, 2> Src1Parts, Src2Parts;
4704   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4705   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4706   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4707   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4708 
4709   // Take only high half of registers if this is high mul.
4710   ArrayRef<Register> DstRegs(
4711       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4712   MIRBuilder.buildMerge(DstReg, DstRegs);
4713   MI.eraseFromParent();
4714   return Legalized;
4715 }
4716 
4717 LegalizerHelper::LegalizeResult
4718 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4719                                      LLT NarrowTy) {
4720   if (TypeIdx != 1)
4721     return UnableToLegalize;
4722 
4723   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4724 
4725   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4726   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4727   // NarrowSize.
4728   if (SizeOp1 % NarrowSize != 0)
4729     return UnableToLegalize;
4730   int NumParts = SizeOp1 / NarrowSize;
4731 
4732   SmallVector<Register, 2> SrcRegs, DstRegs;
4733   SmallVector<uint64_t, 2> Indexes;
4734   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4735 
4736   Register OpReg = MI.getOperand(0).getReg();
4737   uint64_t OpStart = MI.getOperand(2).getImm();
4738   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4739   for (int i = 0; i < NumParts; ++i) {
4740     unsigned SrcStart = i * NarrowSize;
4741 
4742     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4743       // No part of the extract uses this subregister, ignore it.
4744       continue;
4745     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4746       // The entire subregister is extracted, forward the value.
4747       DstRegs.push_back(SrcRegs[i]);
4748       continue;
4749     }
4750 
4751     // OpSegStart is where this destination segment would start in OpReg if it
4752     // extended infinitely in both directions.
4753     int64_t ExtractOffset;
4754     uint64_t SegSize;
4755     if (OpStart < SrcStart) {
4756       ExtractOffset = 0;
4757       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4758     } else {
4759       ExtractOffset = OpStart - SrcStart;
4760       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4761     }
4762 
4763     Register SegReg = SrcRegs[i];
4764     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4765       // A genuine extract is needed.
4766       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4767       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4768     }
4769 
4770     DstRegs.push_back(SegReg);
4771   }
4772 
4773   Register DstReg = MI.getOperand(0).getReg();
4774   if (MRI.getType(DstReg).isVector())
4775     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4776   else if (DstRegs.size() > 1)
4777     MIRBuilder.buildMerge(DstReg, DstRegs);
4778   else
4779     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4780   MI.eraseFromParent();
4781   return Legalized;
4782 }
4783 
4784 LegalizerHelper::LegalizeResult
4785 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4786                                     LLT NarrowTy) {
4787   // FIXME: Don't know how to handle secondary types yet.
4788   if (TypeIdx != 0)
4789     return UnableToLegalize;
4790 
4791   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4792   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4793 
4794   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4795   // NarrowSize.
4796   if (SizeOp0 % NarrowSize != 0)
4797     return UnableToLegalize;
4798 
4799   int NumParts = SizeOp0 / NarrowSize;
4800 
4801   SmallVector<Register, 2> SrcRegs, DstRegs;
4802   SmallVector<uint64_t, 2> Indexes;
4803   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4804 
4805   Register OpReg = MI.getOperand(2).getReg();
4806   uint64_t OpStart = MI.getOperand(3).getImm();
4807   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4808   for (int i = 0; i < NumParts; ++i) {
4809     unsigned DstStart = i * NarrowSize;
4810 
4811     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4812       // No part of the insert affects this subregister, forward the original.
4813       DstRegs.push_back(SrcRegs[i]);
4814       continue;
4815     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4816       // The entire subregister is defined by this insert, forward the new
4817       // value.
4818       DstRegs.push_back(OpReg);
4819       continue;
4820     }
4821 
4822     // OpSegStart is where this destination segment would start in OpReg if it
4823     // extended infinitely in both directions.
4824     int64_t ExtractOffset, InsertOffset;
4825     uint64_t SegSize;
4826     if (OpStart < DstStart) {
4827       InsertOffset = 0;
4828       ExtractOffset = DstStart - OpStart;
4829       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4830     } else {
4831       InsertOffset = OpStart - DstStart;
4832       ExtractOffset = 0;
4833       SegSize =
4834         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4835     }
4836 
4837     Register SegReg = OpReg;
4838     if (ExtractOffset != 0 || SegSize != OpSize) {
4839       // A genuine extract is needed.
4840       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4841       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4842     }
4843 
4844     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4845     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4846     DstRegs.push_back(DstReg);
4847   }
4848 
4849   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4850   Register DstReg = MI.getOperand(0).getReg();
4851   if(MRI.getType(DstReg).isVector())
4852     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4853   else
4854     MIRBuilder.buildMerge(DstReg, DstRegs);
4855   MI.eraseFromParent();
4856   return Legalized;
4857 }
4858 
4859 LegalizerHelper::LegalizeResult
4860 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4861                                    LLT NarrowTy) {
4862   Register DstReg = MI.getOperand(0).getReg();
4863   LLT DstTy = MRI.getType(DstReg);
4864 
4865   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4866 
4867   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4868   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4869   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4870   LLT LeftoverTy;
4871   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4872                     Src0Regs, Src0LeftoverRegs))
4873     return UnableToLegalize;
4874 
4875   LLT Unused;
4876   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4877                     Src1Regs, Src1LeftoverRegs))
4878     llvm_unreachable("inconsistent extractParts result");
4879 
4880   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4881     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4882                                         {Src0Regs[I], Src1Regs[I]});
4883     DstRegs.push_back(Inst.getReg(0));
4884   }
4885 
4886   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4887     auto Inst = MIRBuilder.buildInstr(
4888       MI.getOpcode(),
4889       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4890     DstLeftoverRegs.push_back(Inst.getReg(0));
4891   }
4892 
4893   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4894               LeftoverTy, DstLeftoverRegs);
4895 
4896   MI.eraseFromParent();
4897   return Legalized;
4898 }
4899 
4900 LegalizerHelper::LegalizeResult
4901 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4902                                  LLT NarrowTy) {
4903   if (TypeIdx != 0)
4904     return UnableToLegalize;
4905 
4906   Register DstReg = MI.getOperand(0).getReg();
4907   Register SrcReg = MI.getOperand(1).getReg();
4908 
4909   LLT DstTy = MRI.getType(DstReg);
4910   if (DstTy.isVector())
4911     return UnableToLegalize;
4912 
4913   SmallVector<Register, 8> Parts;
4914   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4915   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4916   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4917 
4918   MI.eraseFromParent();
4919   return Legalized;
4920 }
4921 
4922 LegalizerHelper::LegalizeResult
4923 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4924                                     LLT NarrowTy) {
4925   if (TypeIdx != 0)
4926     return UnableToLegalize;
4927 
4928   Register CondReg = MI.getOperand(1).getReg();
4929   LLT CondTy = MRI.getType(CondReg);
4930   if (CondTy.isVector()) // TODO: Handle vselect
4931     return UnableToLegalize;
4932 
4933   Register DstReg = MI.getOperand(0).getReg();
4934   LLT DstTy = MRI.getType(DstReg);
4935 
4936   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4937   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4938   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4939   LLT LeftoverTy;
4940   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4941                     Src1Regs, Src1LeftoverRegs))
4942     return UnableToLegalize;
4943 
4944   LLT Unused;
4945   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4946                     Src2Regs, Src2LeftoverRegs))
4947     llvm_unreachable("inconsistent extractParts result");
4948 
4949   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4950     auto Select = MIRBuilder.buildSelect(NarrowTy,
4951                                          CondReg, Src1Regs[I], Src2Regs[I]);
4952     DstRegs.push_back(Select.getReg(0));
4953   }
4954 
4955   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4956     auto Select = MIRBuilder.buildSelect(
4957       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4958     DstLeftoverRegs.push_back(Select.getReg(0));
4959   }
4960 
4961   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4962               LeftoverTy, DstLeftoverRegs);
4963 
4964   MI.eraseFromParent();
4965   return Legalized;
4966 }
4967 
4968 LegalizerHelper::LegalizeResult
4969 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4970                                   LLT NarrowTy) {
4971   if (TypeIdx != 1)
4972     return UnableToLegalize;
4973 
4974   Register DstReg = MI.getOperand(0).getReg();
4975   Register SrcReg = MI.getOperand(1).getReg();
4976   LLT DstTy = MRI.getType(DstReg);
4977   LLT SrcTy = MRI.getType(SrcReg);
4978   unsigned NarrowSize = NarrowTy.getSizeInBits();
4979 
4980   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4981     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4982 
4983     MachineIRBuilder &B = MIRBuilder;
4984     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4985     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4986     auto C_0 = B.buildConstant(NarrowTy, 0);
4987     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4988                                 UnmergeSrc.getReg(1), C_0);
4989     auto LoCTLZ = IsUndef ?
4990       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4991       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4992     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4993     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4994     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4995     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4996 
4997     MI.eraseFromParent();
4998     return Legalized;
4999   }
5000 
5001   return UnableToLegalize;
5002 }
5003 
5004 LegalizerHelper::LegalizeResult
5005 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5006                                   LLT NarrowTy) {
5007   if (TypeIdx != 1)
5008     return UnableToLegalize;
5009 
5010   Register DstReg = MI.getOperand(0).getReg();
5011   Register SrcReg = MI.getOperand(1).getReg();
5012   LLT DstTy = MRI.getType(DstReg);
5013   LLT SrcTy = MRI.getType(SrcReg);
5014   unsigned NarrowSize = NarrowTy.getSizeInBits();
5015 
5016   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5017     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5018 
5019     MachineIRBuilder &B = MIRBuilder;
5020     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5021     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5022     auto C_0 = B.buildConstant(NarrowTy, 0);
5023     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5024                                 UnmergeSrc.getReg(0), C_0);
5025     auto HiCTTZ = IsUndef ?
5026       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5027       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5028     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5029     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5030     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5031     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5032 
5033     MI.eraseFromParent();
5034     return Legalized;
5035   }
5036 
5037   return UnableToLegalize;
5038 }
5039 
5040 LegalizerHelper::LegalizeResult
5041 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5042                                    LLT NarrowTy) {
5043   if (TypeIdx != 1)
5044     return UnableToLegalize;
5045 
5046   Register DstReg = MI.getOperand(0).getReg();
5047   LLT DstTy = MRI.getType(DstReg);
5048   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5049   unsigned NarrowSize = NarrowTy.getSizeInBits();
5050 
5051   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5052     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5053 
5054     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5055     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5056     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5057 
5058     MI.eraseFromParent();
5059     return Legalized;
5060   }
5061 
5062   return UnableToLegalize;
5063 }
5064 
5065 LegalizerHelper::LegalizeResult
5066 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5067   unsigned Opc = MI.getOpcode();
5068   const auto &TII = MIRBuilder.getTII();
5069   auto isSupported = [this](const LegalityQuery &Q) {
5070     auto QAction = LI.getAction(Q).Action;
5071     return QAction == Legal || QAction == Libcall || QAction == Custom;
5072   };
5073   switch (Opc) {
5074   default:
5075     return UnableToLegalize;
5076   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5077     // This trivially expands to CTLZ.
5078     Observer.changingInstr(MI);
5079     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5080     Observer.changedInstr(MI);
5081     return Legalized;
5082   }
5083   case TargetOpcode::G_CTLZ: {
5084     Register DstReg = MI.getOperand(0).getReg();
5085     Register SrcReg = MI.getOperand(1).getReg();
5086     LLT DstTy = MRI.getType(DstReg);
5087     LLT SrcTy = MRI.getType(SrcReg);
5088     unsigned Len = SrcTy.getSizeInBits();
5089 
5090     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5091       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5092       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5093       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5094       auto ICmp = MIRBuilder.buildICmp(
5095           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5096       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5097       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5098       MI.eraseFromParent();
5099       return Legalized;
5100     }
5101     // for now, we do this:
5102     // NewLen = NextPowerOf2(Len);
5103     // x = x | (x >> 1);
5104     // x = x | (x >> 2);
5105     // ...
5106     // x = x | (x >>16);
5107     // x = x | (x >>32); // for 64-bit input
5108     // Upto NewLen/2
5109     // return Len - popcount(x);
5110     //
5111     // Ref: "Hacker's Delight" by Henry Warren
5112     Register Op = SrcReg;
5113     unsigned NewLen = PowerOf2Ceil(Len);
5114     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5115       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5116       auto MIBOp = MIRBuilder.buildOr(
5117           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5118       Op = MIBOp.getReg(0);
5119     }
5120     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5121     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5122                         MIBPop);
5123     MI.eraseFromParent();
5124     return Legalized;
5125   }
5126   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5127     // This trivially expands to CTTZ.
5128     Observer.changingInstr(MI);
5129     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5130     Observer.changedInstr(MI);
5131     return Legalized;
5132   }
5133   case TargetOpcode::G_CTTZ: {
5134     Register DstReg = MI.getOperand(0).getReg();
5135     Register SrcReg = MI.getOperand(1).getReg();
5136     LLT DstTy = MRI.getType(DstReg);
5137     LLT SrcTy = MRI.getType(SrcReg);
5138 
5139     unsigned Len = SrcTy.getSizeInBits();
5140     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5141       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5142       // zero.
5143       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5144       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5145       auto ICmp = MIRBuilder.buildICmp(
5146           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5147       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5148       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5149       MI.eraseFromParent();
5150       return Legalized;
5151     }
5152     // for now, we use: { return popcount(~x & (x - 1)); }
5153     // unless the target has ctlz but not ctpop, in which case we use:
5154     // { return 32 - nlz(~x & (x-1)); }
5155     // Ref: "Hacker's Delight" by Henry Warren
5156     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5157     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5158     auto MIBTmp = MIRBuilder.buildAnd(
5159         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5160     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5161         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5162       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5163       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5164                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5165       MI.eraseFromParent();
5166       return Legalized;
5167     }
5168     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5169     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5170     return Legalized;
5171   }
5172   case TargetOpcode::G_CTPOP: {
5173     Register SrcReg = MI.getOperand(1).getReg();
5174     LLT Ty = MRI.getType(SrcReg);
5175     unsigned Size = Ty.getSizeInBits();
5176     MachineIRBuilder &B = MIRBuilder;
5177 
5178     // Count set bits in blocks of 2 bits. Default approach would be
5179     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5180     // We use following formula instead:
5181     // B2Count = val - { (val >> 1) & 0x55555555 }
5182     // since it gives same result in blocks of 2 with one instruction less.
5183     auto C_1 = B.buildConstant(Ty, 1);
5184     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5185     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5186     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5187     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5188     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5189 
5190     // In order to get count in blocks of 4 add values from adjacent block of 2.
5191     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5192     auto C_2 = B.buildConstant(Ty, 2);
5193     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5194     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5195     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5196     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5197     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5198     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5199 
5200     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5201     // addition since count value sits in range {0,...,8} and 4 bits are enough
5202     // to hold such binary values. After addition high 4 bits still hold count
5203     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5204     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5205     auto C_4 = B.buildConstant(Ty, 4);
5206     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5207     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5208     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5209     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5210     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5211 
5212     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5213     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5214     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5215     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5216     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5217 
5218     // Shift count result from 8 high bits to low bits.
5219     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5220     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5221 
5222     MI.eraseFromParent();
5223     return Legalized;
5224   }
5225   }
5226 }
5227 
5228 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5229 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5230                                         Register Reg, unsigned BW) {
5231   return matchUnaryPredicate(
5232       MRI, Reg,
5233       [=](const Constant *C) {
5234         // Null constant here means an undef.
5235         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5236         return !CI || CI->getValue().urem(BW) != 0;
5237       },
5238       /*AllowUndefs*/ true);
5239 }
5240 
5241 LegalizerHelper::LegalizeResult
5242 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5243   Register Dst = MI.getOperand(0).getReg();
5244   Register X = MI.getOperand(1).getReg();
5245   Register Y = MI.getOperand(2).getReg();
5246   Register Z = MI.getOperand(3).getReg();
5247   LLT Ty = MRI.getType(Dst);
5248   LLT ShTy = MRI.getType(Z);
5249 
5250   unsigned BW = Ty.getScalarSizeInBits();
5251   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5252   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5253 
5254   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5255     // fshl X, Y, Z -> fshr X, Y, -Z
5256     // fshr X, Y, Z -> fshl X, Y, -Z
5257     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5258     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5259   } else {
5260     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5261     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5262     auto One = MIRBuilder.buildConstant(ShTy, 1);
5263     if (IsFSHL) {
5264       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5265       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5266     } else {
5267       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5268       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5269     }
5270 
5271     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5272   }
5273 
5274   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5275   MI.eraseFromParent();
5276   return Legalized;
5277 }
5278 
5279 LegalizerHelper::LegalizeResult
5280 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5281   Register Dst = MI.getOperand(0).getReg();
5282   Register X = MI.getOperand(1).getReg();
5283   Register Y = MI.getOperand(2).getReg();
5284   Register Z = MI.getOperand(3).getReg();
5285   LLT Ty = MRI.getType(Dst);
5286   LLT ShTy = MRI.getType(Z);
5287 
5288   const unsigned BW = Ty.getScalarSizeInBits();
5289   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5290 
5291   Register ShX, ShY;
5292   Register ShAmt, InvShAmt;
5293 
5294   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5295   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5296     // fshl: X << C | Y >> (BW - C)
5297     // fshr: X << (BW - C) | Y >> C
5298     // where C = Z % BW is not zero
5299     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5300     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5301     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5302     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5303     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5304   } else {
5305     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5306     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5307     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5308     if (isPowerOf2_32(BW)) {
5309       // Z % BW -> Z & (BW - 1)
5310       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5311       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5312       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5313       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5314     } else {
5315       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5316       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5317       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5318     }
5319 
5320     auto One = MIRBuilder.buildConstant(ShTy, 1);
5321     if (IsFSHL) {
5322       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5323       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5324       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5325     } else {
5326       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5327       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5328       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5329     }
5330   }
5331 
5332   MIRBuilder.buildOr(Dst, ShX, ShY);
5333   MI.eraseFromParent();
5334   return Legalized;
5335 }
5336 
5337 LegalizerHelper::LegalizeResult
5338 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5339   // These operations approximately do the following (while avoiding undefined
5340   // shifts by BW):
5341   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5342   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5343   Register Dst = MI.getOperand(0).getReg();
5344   LLT Ty = MRI.getType(Dst);
5345   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5346 
5347   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5348   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5349   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5350     return lowerFunnelShiftAsShifts(MI);
5351   return lowerFunnelShiftWithInverse(MI);
5352 }
5353 
5354 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5355 // representation.
5356 LegalizerHelper::LegalizeResult
5357 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5358   Register Dst = MI.getOperand(0).getReg();
5359   Register Src = MI.getOperand(1).getReg();
5360   const LLT S64 = LLT::scalar(64);
5361   const LLT S32 = LLT::scalar(32);
5362   const LLT S1 = LLT::scalar(1);
5363 
5364   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5365 
5366   // unsigned cul2f(ulong u) {
5367   //   uint lz = clz(u);
5368   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5369   //   u = (u << lz) & 0x7fffffffffffffffUL;
5370   //   ulong t = u & 0xffffffffffUL;
5371   //   uint v = (e << 23) | (uint)(u >> 40);
5372   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5373   //   return as_float(v + r);
5374   // }
5375 
5376   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5377   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5378 
5379   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5380 
5381   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5382   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5383 
5384   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5385   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5386 
5387   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5388   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5389 
5390   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5391 
5392   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5393   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5394 
5395   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5396   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5397   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5398 
5399   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5400   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5401   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5402   auto One = MIRBuilder.buildConstant(S32, 1);
5403 
5404   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5405   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5406   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5407   MIRBuilder.buildAdd(Dst, V, R);
5408 
5409   MI.eraseFromParent();
5410   return Legalized;
5411 }
5412 
5413 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5414   Register Dst = MI.getOperand(0).getReg();
5415   Register Src = MI.getOperand(1).getReg();
5416   LLT DstTy = MRI.getType(Dst);
5417   LLT SrcTy = MRI.getType(Src);
5418 
5419   if (SrcTy == LLT::scalar(1)) {
5420     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5421     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5422     MIRBuilder.buildSelect(Dst, Src, True, False);
5423     MI.eraseFromParent();
5424     return Legalized;
5425   }
5426 
5427   if (SrcTy != LLT::scalar(64))
5428     return UnableToLegalize;
5429 
5430   if (DstTy == LLT::scalar(32)) {
5431     // TODO: SelectionDAG has several alternative expansions to port which may
5432     // be more reasonble depending on the available instructions. If a target
5433     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5434     // intermediate type, this is probably worse.
5435     return lowerU64ToF32BitOps(MI);
5436   }
5437 
5438   return UnableToLegalize;
5439 }
5440 
5441 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5442   Register Dst = MI.getOperand(0).getReg();
5443   Register Src = MI.getOperand(1).getReg();
5444   LLT DstTy = MRI.getType(Dst);
5445   LLT SrcTy = MRI.getType(Src);
5446 
5447   const LLT S64 = LLT::scalar(64);
5448   const LLT S32 = LLT::scalar(32);
5449   const LLT S1 = LLT::scalar(1);
5450 
5451   if (SrcTy == S1) {
5452     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5453     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5454     MIRBuilder.buildSelect(Dst, Src, True, False);
5455     MI.eraseFromParent();
5456     return Legalized;
5457   }
5458 
5459   if (SrcTy != S64)
5460     return UnableToLegalize;
5461 
5462   if (DstTy == S32) {
5463     // signed cl2f(long l) {
5464     //   long s = l >> 63;
5465     //   float r = cul2f((l + s) ^ s);
5466     //   return s ? -r : r;
5467     // }
5468     Register L = Src;
5469     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5470     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5471 
5472     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5473     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5474     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5475 
5476     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5477     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5478                                             MIRBuilder.buildConstant(S64, 0));
5479     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5480     MI.eraseFromParent();
5481     return Legalized;
5482   }
5483 
5484   return UnableToLegalize;
5485 }
5486 
5487 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5488   Register Dst = MI.getOperand(0).getReg();
5489   Register Src = MI.getOperand(1).getReg();
5490   LLT DstTy = MRI.getType(Dst);
5491   LLT SrcTy = MRI.getType(Src);
5492   const LLT S64 = LLT::scalar(64);
5493   const LLT S32 = LLT::scalar(32);
5494 
5495   if (SrcTy != S64 && SrcTy != S32)
5496     return UnableToLegalize;
5497   if (DstTy != S32 && DstTy != S64)
5498     return UnableToLegalize;
5499 
5500   // FPTOSI gives same result as FPTOUI for positive signed integers.
5501   // FPTOUI needs to deal with fp values that convert to unsigned integers
5502   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5503 
5504   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5505   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5506                                                 : APFloat::IEEEdouble(),
5507                     APInt::getNullValue(SrcTy.getSizeInBits()));
5508   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5509 
5510   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5511 
5512   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5513   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5514   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5515   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5516   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5517   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5518   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5519 
5520   const LLT S1 = LLT::scalar(1);
5521 
5522   MachineInstrBuilder FCMP =
5523       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5524   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5525 
5526   MI.eraseFromParent();
5527   return Legalized;
5528 }
5529 
5530 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5531   Register Dst = MI.getOperand(0).getReg();
5532   Register Src = MI.getOperand(1).getReg();
5533   LLT DstTy = MRI.getType(Dst);
5534   LLT SrcTy = MRI.getType(Src);
5535   const LLT S64 = LLT::scalar(64);
5536   const LLT S32 = LLT::scalar(32);
5537 
5538   // FIXME: Only f32 to i64 conversions are supported.
5539   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5540     return UnableToLegalize;
5541 
5542   // Expand f32 -> i64 conversion
5543   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5544   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5545 
5546   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5547 
5548   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5549   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5550 
5551   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5552   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5553 
5554   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5555                                            APInt::getSignMask(SrcEltBits));
5556   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5557   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5558   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5559   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5560 
5561   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5562   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5563   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5564 
5565   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5566   R = MIRBuilder.buildZExt(DstTy, R);
5567 
5568   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5569   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5570   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5571   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5572 
5573   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5574   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5575 
5576   const LLT S1 = LLT::scalar(1);
5577   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5578                                     S1, Exponent, ExponentLoBit);
5579 
5580   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5581 
5582   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5583   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5584 
5585   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5586 
5587   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5588                                           S1, Exponent, ZeroSrcTy);
5589 
5590   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5591   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5592 
5593   MI.eraseFromParent();
5594   return Legalized;
5595 }
5596 
5597 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5598 LegalizerHelper::LegalizeResult
5599 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5600   Register Dst = MI.getOperand(0).getReg();
5601   Register Src = MI.getOperand(1).getReg();
5602 
5603   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5604     return UnableToLegalize;
5605 
5606   const unsigned ExpMask = 0x7ff;
5607   const unsigned ExpBiasf64 = 1023;
5608   const unsigned ExpBiasf16 = 15;
5609   const LLT S32 = LLT::scalar(32);
5610   const LLT S1 = LLT::scalar(1);
5611 
5612   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5613   Register U = Unmerge.getReg(0);
5614   Register UH = Unmerge.getReg(1);
5615 
5616   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5617   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5618 
5619   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5620   // add the f16 bias (15) to get the biased exponent for the f16 format.
5621   E = MIRBuilder.buildAdd(
5622     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5623 
5624   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5625   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5626 
5627   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5628                                        MIRBuilder.buildConstant(S32, 0x1ff));
5629   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5630 
5631   auto Zero = MIRBuilder.buildConstant(S32, 0);
5632   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5633   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5634   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5635 
5636   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5637   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5638   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5639   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5640 
5641   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5642   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5643 
5644   // N = M | (E << 12);
5645   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5646   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5647 
5648   // B = clamp(1-E, 0, 13);
5649   auto One = MIRBuilder.buildConstant(S32, 1);
5650   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5651   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5652   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5653 
5654   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5655                                        MIRBuilder.buildConstant(S32, 0x1000));
5656 
5657   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5658   auto D0 = MIRBuilder.buildShl(S32, D, B);
5659 
5660   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5661                                              D0, SigSetHigh);
5662   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5663   D = MIRBuilder.buildOr(S32, D, D1);
5664 
5665   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5666   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5667 
5668   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5669   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5670 
5671   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5672                                        MIRBuilder.buildConstant(S32, 3));
5673   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5674 
5675   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5676                                        MIRBuilder.buildConstant(S32, 5));
5677   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5678 
5679   V1 = MIRBuilder.buildOr(S32, V0, V1);
5680   V = MIRBuilder.buildAdd(S32, V, V1);
5681 
5682   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5683                                        E, MIRBuilder.buildConstant(S32, 30));
5684   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5685                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5686 
5687   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5688                                          E, MIRBuilder.buildConstant(S32, 1039));
5689   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5690 
5691   // Extract the sign bit.
5692   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5693   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5694 
5695   // Insert the sign bit
5696   V = MIRBuilder.buildOr(S32, Sign, V);
5697 
5698   MIRBuilder.buildTrunc(Dst, V);
5699   MI.eraseFromParent();
5700   return Legalized;
5701 }
5702 
5703 LegalizerHelper::LegalizeResult
5704 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5705   Register Dst = MI.getOperand(0).getReg();
5706   Register Src = MI.getOperand(1).getReg();
5707 
5708   LLT DstTy = MRI.getType(Dst);
5709   LLT SrcTy = MRI.getType(Src);
5710   const LLT S64 = LLT::scalar(64);
5711   const LLT S16 = LLT::scalar(16);
5712 
5713   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5714     return lowerFPTRUNC_F64_TO_F16(MI);
5715 
5716   return UnableToLegalize;
5717 }
5718 
5719 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5720 // multiplication tree.
5721 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5722   Register Dst = MI.getOperand(0).getReg();
5723   Register Src0 = MI.getOperand(1).getReg();
5724   Register Src1 = MI.getOperand(2).getReg();
5725   LLT Ty = MRI.getType(Dst);
5726 
5727   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5728   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5729   MI.eraseFromParent();
5730   return Legalized;
5731 }
5732 
5733 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5734   switch (Opc) {
5735   case TargetOpcode::G_SMIN:
5736     return CmpInst::ICMP_SLT;
5737   case TargetOpcode::G_SMAX:
5738     return CmpInst::ICMP_SGT;
5739   case TargetOpcode::G_UMIN:
5740     return CmpInst::ICMP_ULT;
5741   case TargetOpcode::G_UMAX:
5742     return CmpInst::ICMP_UGT;
5743   default:
5744     llvm_unreachable("not in integer min/max");
5745   }
5746 }
5747 
5748 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5749   Register Dst = MI.getOperand(0).getReg();
5750   Register Src0 = MI.getOperand(1).getReg();
5751   Register Src1 = MI.getOperand(2).getReg();
5752 
5753   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5754   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5755 
5756   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5757   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5758 
5759   MI.eraseFromParent();
5760   return Legalized;
5761 }
5762 
5763 LegalizerHelper::LegalizeResult
5764 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5765   Register Dst = MI.getOperand(0).getReg();
5766   Register Src0 = MI.getOperand(1).getReg();
5767   Register Src1 = MI.getOperand(2).getReg();
5768 
5769   const LLT Src0Ty = MRI.getType(Src0);
5770   const LLT Src1Ty = MRI.getType(Src1);
5771 
5772   const int Src0Size = Src0Ty.getScalarSizeInBits();
5773   const int Src1Size = Src1Ty.getScalarSizeInBits();
5774 
5775   auto SignBitMask = MIRBuilder.buildConstant(
5776     Src0Ty, APInt::getSignMask(Src0Size));
5777 
5778   auto NotSignBitMask = MIRBuilder.buildConstant(
5779     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5780 
5781   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
5782   Register And1;
5783   if (Src0Ty == Src1Ty) {
5784     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
5785   } else if (Src0Size > Src1Size) {
5786     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5787     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5788     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5789     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
5790   } else {
5791     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5792     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5793     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5794     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
5795   }
5796 
5797   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5798   // constants are a nan and -0.0, but the final result should preserve
5799   // everything.
5800   unsigned Flags = MI.getFlags();
5801   MIRBuilder.buildOr(Dst, And0, And1, Flags);
5802 
5803   MI.eraseFromParent();
5804   return Legalized;
5805 }
5806 
5807 LegalizerHelper::LegalizeResult
5808 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5809   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5810     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5811 
5812   Register Dst = MI.getOperand(0).getReg();
5813   Register Src0 = MI.getOperand(1).getReg();
5814   Register Src1 = MI.getOperand(2).getReg();
5815   LLT Ty = MRI.getType(Dst);
5816 
5817   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5818     // Insert canonicalizes if it's possible we need to quiet to get correct
5819     // sNaN behavior.
5820 
5821     // Note this must be done here, and not as an optimization combine in the
5822     // absence of a dedicate quiet-snan instruction as we're using an
5823     // omni-purpose G_FCANONICALIZE.
5824     if (!isKnownNeverSNaN(Src0, MRI))
5825       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5826 
5827     if (!isKnownNeverSNaN(Src1, MRI))
5828       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5829   }
5830 
5831   // If there are no nans, it's safe to simply replace this with the non-IEEE
5832   // version.
5833   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5834   MI.eraseFromParent();
5835   return Legalized;
5836 }
5837 
5838 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5839   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5840   Register DstReg = MI.getOperand(0).getReg();
5841   LLT Ty = MRI.getType(DstReg);
5842   unsigned Flags = MI.getFlags();
5843 
5844   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5845                                   Flags);
5846   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5847   MI.eraseFromParent();
5848   return Legalized;
5849 }
5850 
5851 LegalizerHelper::LegalizeResult
5852 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5853   Register DstReg = MI.getOperand(0).getReg();
5854   Register X = MI.getOperand(1).getReg();
5855   const unsigned Flags = MI.getFlags();
5856   const LLT Ty = MRI.getType(DstReg);
5857   const LLT CondTy = Ty.changeElementSize(1);
5858 
5859   // round(x) =>
5860   //  t = trunc(x);
5861   //  d = fabs(x - t);
5862   //  o = copysign(1.0f, x);
5863   //  return t + (d >= 0.5 ? o : 0.0);
5864 
5865   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5866 
5867   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5868   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5869   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5870   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5871   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5872   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5873 
5874   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5875                                   Flags);
5876   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5877 
5878   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5879 
5880   MI.eraseFromParent();
5881   return Legalized;
5882 }
5883 
5884 LegalizerHelper::LegalizeResult
5885 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5886   Register DstReg = MI.getOperand(0).getReg();
5887   Register SrcReg = MI.getOperand(1).getReg();
5888   unsigned Flags = MI.getFlags();
5889   LLT Ty = MRI.getType(DstReg);
5890   const LLT CondTy = Ty.changeElementSize(1);
5891 
5892   // result = trunc(src);
5893   // if (src < 0.0 && src != result)
5894   //   result += -1.0.
5895 
5896   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5897   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5898 
5899   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5900                                   SrcReg, Zero, Flags);
5901   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5902                                       SrcReg, Trunc, Flags);
5903   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5904   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5905 
5906   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5907   MI.eraseFromParent();
5908   return Legalized;
5909 }
5910 
5911 LegalizerHelper::LegalizeResult
5912 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5913   const unsigned NumOps = MI.getNumOperands();
5914   Register DstReg = MI.getOperand(0).getReg();
5915   Register Src0Reg = MI.getOperand(1).getReg();
5916   LLT DstTy = MRI.getType(DstReg);
5917   LLT SrcTy = MRI.getType(Src0Reg);
5918   unsigned PartSize = SrcTy.getSizeInBits();
5919 
5920   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5921   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5922 
5923   for (unsigned I = 2; I != NumOps; ++I) {
5924     const unsigned Offset = (I - 1) * PartSize;
5925 
5926     Register SrcReg = MI.getOperand(I).getReg();
5927     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5928 
5929     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5930       MRI.createGenericVirtualRegister(WideTy);
5931 
5932     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5933     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5934     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5935     ResultReg = NextResult;
5936   }
5937 
5938   if (DstTy.isPointer()) {
5939     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5940           DstTy.getAddressSpace())) {
5941       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5942       return UnableToLegalize;
5943     }
5944 
5945     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5946   }
5947 
5948   MI.eraseFromParent();
5949   return Legalized;
5950 }
5951 
5952 LegalizerHelper::LegalizeResult
5953 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5954   const unsigned NumDst = MI.getNumOperands() - 1;
5955   Register SrcReg = MI.getOperand(NumDst).getReg();
5956   Register Dst0Reg = MI.getOperand(0).getReg();
5957   LLT DstTy = MRI.getType(Dst0Reg);
5958   if (DstTy.isPointer())
5959     return UnableToLegalize; // TODO
5960 
5961   SrcReg = coerceToScalar(SrcReg);
5962   if (!SrcReg)
5963     return UnableToLegalize;
5964 
5965   // Expand scalarizing unmerge as bitcast to integer and shift.
5966   LLT IntTy = MRI.getType(SrcReg);
5967 
5968   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5969 
5970   const unsigned DstSize = DstTy.getSizeInBits();
5971   unsigned Offset = DstSize;
5972   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5973     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5974     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5975     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5976   }
5977 
5978   MI.eraseFromParent();
5979   return Legalized;
5980 }
5981 
5982 /// Lower a vector extract or insert by writing the vector to a stack temporary
5983 /// and reloading the element or vector.
5984 ///
5985 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5986 ///  =>
5987 ///  %stack_temp = G_FRAME_INDEX
5988 ///  G_STORE %vec, %stack_temp
5989 ///  %idx = clamp(%idx, %vec.getNumElements())
5990 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5991 ///  %dst = G_LOAD %element_ptr
5992 LegalizerHelper::LegalizeResult
5993 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5994   Register DstReg = MI.getOperand(0).getReg();
5995   Register SrcVec = MI.getOperand(1).getReg();
5996   Register InsertVal;
5997   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5998     InsertVal = MI.getOperand(2).getReg();
5999 
6000   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6001 
6002   LLT VecTy = MRI.getType(SrcVec);
6003   LLT EltTy = VecTy.getElementType();
6004   if (!EltTy.isByteSized()) { // Not implemented.
6005     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6006     return UnableToLegalize;
6007   }
6008 
6009   unsigned EltBytes = EltTy.getSizeInBytes();
6010   Align VecAlign = getStackTemporaryAlignment(VecTy);
6011   Align EltAlign;
6012 
6013   MachinePointerInfo PtrInfo;
6014   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6015                                         VecAlign, PtrInfo);
6016   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6017 
6018   // Get the pointer to the element, and be sure not to hit undefined behavior
6019   // if the index is out of bounds.
6020   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6021 
6022   int64_t IdxVal;
6023   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6024     int64_t Offset = IdxVal * EltBytes;
6025     PtrInfo = PtrInfo.getWithOffset(Offset);
6026     EltAlign = commonAlignment(VecAlign, Offset);
6027   } else {
6028     // We lose information with a variable offset.
6029     EltAlign = getStackTemporaryAlignment(EltTy);
6030     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6031   }
6032 
6033   if (InsertVal) {
6034     // Write the inserted element
6035     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6036 
6037     // Reload the whole vector.
6038     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6039   } else {
6040     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6041   }
6042 
6043   MI.eraseFromParent();
6044   return Legalized;
6045 }
6046 
6047 LegalizerHelper::LegalizeResult
6048 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6049   Register DstReg = MI.getOperand(0).getReg();
6050   Register Src0Reg = MI.getOperand(1).getReg();
6051   Register Src1Reg = MI.getOperand(2).getReg();
6052   LLT Src0Ty = MRI.getType(Src0Reg);
6053   LLT DstTy = MRI.getType(DstReg);
6054   LLT IdxTy = LLT::scalar(32);
6055 
6056   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6057 
6058   if (DstTy.isScalar()) {
6059     if (Src0Ty.isVector())
6060       return UnableToLegalize;
6061 
6062     // This is just a SELECT.
6063     assert(Mask.size() == 1 && "Expected a single mask element");
6064     Register Val;
6065     if (Mask[0] < 0 || Mask[0] > 1)
6066       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6067     else
6068       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6069     MIRBuilder.buildCopy(DstReg, Val);
6070     MI.eraseFromParent();
6071     return Legalized;
6072   }
6073 
6074   Register Undef;
6075   SmallVector<Register, 32> BuildVec;
6076   LLT EltTy = DstTy.getElementType();
6077 
6078   for (int Idx : Mask) {
6079     if (Idx < 0) {
6080       if (!Undef.isValid())
6081         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6082       BuildVec.push_back(Undef);
6083       continue;
6084     }
6085 
6086     if (Src0Ty.isScalar()) {
6087       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6088     } else {
6089       int NumElts = Src0Ty.getNumElements();
6090       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6091       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6092       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6093       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6094       BuildVec.push_back(Extract.getReg(0));
6095     }
6096   }
6097 
6098   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6099   MI.eraseFromParent();
6100   return Legalized;
6101 }
6102 
6103 LegalizerHelper::LegalizeResult
6104 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6105   const auto &MF = *MI.getMF();
6106   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6107   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6108     return UnableToLegalize;
6109 
6110   Register Dst = MI.getOperand(0).getReg();
6111   Register AllocSize = MI.getOperand(1).getReg();
6112   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6113 
6114   LLT PtrTy = MRI.getType(Dst);
6115   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6116 
6117   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6118   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6119   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6120 
6121   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6122   // have to generate an extra instruction to negate the alloc and then use
6123   // G_PTR_ADD to add the negative offset.
6124   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6125   if (Alignment > Align(1)) {
6126     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6127     AlignMask.negate();
6128     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6129     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6130   }
6131 
6132   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6133   MIRBuilder.buildCopy(SPReg, SPTmp);
6134   MIRBuilder.buildCopy(Dst, SPTmp);
6135 
6136   MI.eraseFromParent();
6137   return Legalized;
6138 }
6139 
6140 LegalizerHelper::LegalizeResult
6141 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6142   Register Dst = MI.getOperand(0).getReg();
6143   Register Src = MI.getOperand(1).getReg();
6144   unsigned Offset = MI.getOperand(2).getImm();
6145 
6146   LLT DstTy = MRI.getType(Dst);
6147   LLT SrcTy = MRI.getType(Src);
6148 
6149   if (DstTy.isScalar() &&
6150       (SrcTy.isScalar() ||
6151        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6152     LLT SrcIntTy = SrcTy;
6153     if (!SrcTy.isScalar()) {
6154       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6155       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6156     }
6157 
6158     if (Offset == 0)
6159       MIRBuilder.buildTrunc(Dst, Src);
6160     else {
6161       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6162       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6163       MIRBuilder.buildTrunc(Dst, Shr);
6164     }
6165 
6166     MI.eraseFromParent();
6167     return Legalized;
6168   }
6169 
6170   return UnableToLegalize;
6171 }
6172 
6173 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6174   Register Dst = MI.getOperand(0).getReg();
6175   Register Src = MI.getOperand(1).getReg();
6176   Register InsertSrc = MI.getOperand(2).getReg();
6177   uint64_t Offset = MI.getOperand(3).getImm();
6178 
6179   LLT DstTy = MRI.getType(Src);
6180   LLT InsertTy = MRI.getType(InsertSrc);
6181 
6182   if (InsertTy.isVector() ||
6183       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6184     return UnableToLegalize;
6185 
6186   const DataLayout &DL = MIRBuilder.getDataLayout();
6187   if ((DstTy.isPointer() &&
6188        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6189       (InsertTy.isPointer() &&
6190        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6191     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6192     return UnableToLegalize;
6193   }
6194 
6195   LLT IntDstTy = DstTy;
6196 
6197   if (!DstTy.isScalar()) {
6198     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6199     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6200   }
6201 
6202   if (!InsertTy.isScalar()) {
6203     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6204     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6205   }
6206 
6207   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6208   if (Offset != 0) {
6209     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6210     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6211   }
6212 
6213   APInt MaskVal = APInt::getBitsSetWithWrap(
6214       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6215 
6216   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6217   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6218   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6219 
6220   MIRBuilder.buildCast(Dst, Or);
6221   MI.eraseFromParent();
6222   return Legalized;
6223 }
6224 
6225 LegalizerHelper::LegalizeResult
6226 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6227   Register Dst0 = MI.getOperand(0).getReg();
6228   Register Dst1 = MI.getOperand(1).getReg();
6229   Register LHS = MI.getOperand(2).getReg();
6230   Register RHS = MI.getOperand(3).getReg();
6231   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6232 
6233   LLT Ty = MRI.getType(Dst0);
6234   LLT BoolTy = MRI.getType(Dst1);
6235 
6236   if (IsAdd)
6237     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6238   else
6239     MIRBuilder.buildSub(Dst0, LHS, RHS);
6240 
6241   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6242 
6243   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6244 
6245   // For an addition, the result should be less than one of the operands (LHS)
6246   // if and only if the other operand (RHS) is negative, otherwise there will
6247   // be overflow.
6248   // For a subtraction, the result should be less than one of the operands
6249   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6250   // otherwise there will be overflow.
6251   auto ResultLowerThanLHS =
6252       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6253   auto ConditionRHS = MIRBuilder.buildICmp(
6254       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6255 
6256   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6257   MI.eraseFromParent();
6258   return Legalized;
6259 }
6260 
6261 LegalizerHelper::LegalizeResult
6262 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6263   Register Res = MI.getOperand(0).getReg();
6264   Register LHS = MI.getOperand(1).getReg();
6265   Register RHS = MI.getOperand(2).getReg();
6266   LLT Ty = MRI.getType(Res);
6267   bool IsSigned;
6268   bool IsAdd;
6269   unsigned BaseOp;
6270   switch (MI.getOpcode()) {
6271   default:
6272     llvm_unreachable("unexpected addsat/subsat opcode");
6273   case TargetOpcode::G_UADDSAT:
6274     IsSigned = false;
6275     IsAdd = true;
6276     BaseOp = TargetOpcode::G_ADD;
6277     break;
6278   case TargetOpcode::G_SADDSAT:
6279     IsSigned = true;
6280     IsAdd = true;
6281     BaseOp = TargetOpcode::G_ADD;
6282     break;
6283   case TargetOpcode::G_USUBSAT:
6284     IsSigned = false;
6285     IsAdd = false;
6286     BaseOp = TargetOpcode::G_SUB;
6287     break;
6288   case TargetOpcode::G_SSUBSAT:
6289     IsSigned = true;
6290     IsAdd = false;
6291     BaseOp = TargetOpcode::G_SUB;
6292     break;
6293   }
6294 
6295   if (IsSigned) {
6296     // sadd.sat(a, b) ->
6297     //   hi = 0x7fffffff - smax(a, 0)
6298     //   lo = 0x80000000 - smin(a, 0)
6299     //   a + smin(smax(lo, b), hi)
6300     // ssub.sat(a, b) ->
6301     //   lo = smax(a, -1) - 0x7fffffff
6302     //   hi = smin(a, -1) - 0x80000000
6303     //   a - smin(smax(lo, b), hi)
6304     // TODO: AMDGPU can use a "median of 3" instruction here:
6305     //   a +/- med3(lo, b, hi)
6306     uint64_t NumBits = Ty.getScalarSizeInBits();
6307     auto MaxVal =
6308         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6309     auto MinVal =
6310         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6311     MachineInstrBuilder Hi, Lo;
6312     if (IsAdd) {
6313       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6314       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6315       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6316     } else {
6317       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6318       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6319                                MaxVal);
6320       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6321                                MinVal);
6322     }
6323     auto RHSClamped =
6324         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6325     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6326   } else {
6327     // uadd.sat(a, b) -> a + umin(~a, b)
6328     // usub.sat(a, b) -> a - umin(a, b)
6329     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6330     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6331     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6332   }
6333 
6334   MI.eraseFromParent();
6335   return Legalized;
6336 }
6337 
6338 LegalizerHelper::LegalizeResult
6339 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6340   Register Res = MI.getOperand(0).getReg();
6341   Register LHS = MI.getOperand(1).getReg();
6342   Register RHS = MI.getOperand(2).getReg();
6343   LLT Ty = MRI.getType(Res);
6344   LLT BoolTy = Ty.changeElementSize(1);
6345   bool IsSigned;
6346   bool IsAdd;
6347   unsigned OverflowOp;
6348   switch (MI.getOpcode()) {
6349   default:
6350     llvm_unreachable("unexpected addsat/subsat opcode");
6351   case TargetOpcode::G_UADDSAT:
6352     IsSigned = false;
6353     IsAdd = true;
6354     OverflowOp = TargetOpcode::G_UADDO;
6355     break;
6356   case TargetOpcode::G_SADDSAT:
6357     IsSigned = true;
6358     IsAdd = true;
6359     OverflowOp = TargetOpcode::G_SADDO;
6360     break;
6361   case TargetOpcode::G_USUBSAT:
6362     IsSigned = false;
6363     IsAdd = false;
6364     OverflowOp = TargetOpcode::G_USUBO;
6365     break;
6366   case TargetOpcode::G_SSUBSAT:
6367     IsSigned = true;
6368     IsAdd = false;
6369     OverflowOp = TargetOpcode::G_SSUBO;
6370     break;
6371   }
6372 
6373   auto OverflowRes =
6374       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6375   Register Tmp = OverflowRes.getReg(0);
6376   Register Ov = OverflowRes.getReg(1);
6377   MachineInstrBuilder Clamp;
6378   if (IsSigned) {
6379     // sadd.sat(a, b) ->
6380     //   {tmp, ov} = saddo(a, b)
6381     //   ov ? (tmp >>s 31) + 0x80000000 : r
6382     // ssub.sat(a, b) ->
6383     //   {tmp, ov} = ssubo(a, b)
6384     //   ov ? (tmp >>s 31) + 0x80000000 : r
6385     uint64_t NumBits = Ty.getScalarSizeInBits();
6386     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6387     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6388     auto MinVal =
6389         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6390     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6391   } else {
6392     // uadd.sat(a, b) ->
6393     //   {tmp, ov} = uaddo(a, b)
6394     //   ov ? 0xffffffff : tmp
6395     // usub.sat(a, b) ->
6396     //   {tmp, ov} = usubo(a, b)
6397     //   ov ? 0 : tmp
6398     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6399   }
6400   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6401 
6402   MI.eraseFromParent();
6403   return Legalized;
6404 }
6405 
6406 LegalizerHelper::LegalizeResult
6407 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6408   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6409           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6410          "Expected shlsat opcode!");
6411   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6412   Register Res = MI.getOperand(0).getReg();
6413   Register LHS = MI.getOperand(1).getReg();
6414   Register RHS = MI.getOperand(2).getReg();
6415   LLT Ty = MRI.getType(Res);
6416   LLT BoolTy = Ty.changeElementSize(1);
6417 
6418   unsigned BW = Ty.getScalarSizeInBits();
6419   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6420   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6421                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6422 
6423   MachineInstrBuilder SatVal;
6424   if (IsSigned) {
6425     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6426     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6427     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6428                                     MIRBuilder.buildConstant(Ty, 0));
6429     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6430   } else {
6431     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6432   }
6433   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6434   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6435 
6436   MI.eraseFromParent();
6437   return Legalized;
6438 }
6439 
6440 LegalizerHelper::LegalizeResult
6441 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6442   Register Dst = MI.getOperand(0).getReg();
6443   Register Src = MI.getOperand(1).getReg();
6444   const LLT Ty = MRI.getType(Src);
6445   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6446   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6447 
6448   // Swap most and least significant byte, set remaining bytes in Res to zero.
6449   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6450   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6451   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6452   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6453 
6454   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6455   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6456     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6457     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6458     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6459     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6460     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6461     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6462     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6463     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6464     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6465     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6466     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6467     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6468   }
6469   Res.getInstr()->getOperand(0).setReg(Dst);
6470 
6471   MI.eraseFromParent();
6472   return Legalized;
6473 }
6474 
6475 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6476 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6477                                  MachineInstrBuilder Src, APInt Mask) {
6478   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6479   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6480   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6481   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6482   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6483   return B.buildOr(Dst, LHS, RHS);
6484 }
6485 
6486 LegalizerHelper::LegalizeResult
6487 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6488   Register Dst = MI.getOperand(0).getReg();
6489   Register Src = MI.getOperand(1).getReg();
6490   const LLT Ty = MRI.getType(Src);
6491   unsigned Size = Ty.getSizeInBits();
6492 
6493   MachineInstrBuilder BSWAP =
6494       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6495 
6496   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6497   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6498   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6499   MachineInstrBuilder Swap4 =
6500       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6501 
6502   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6503   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6504   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6505   MachineInstrBuilder Swap2 =
6506       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6507 
6508   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6509   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6510   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6511   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6512 
6513   MI.eraseFromParent();
6514   return Legalized;
6515 }
6516 
6517 LegalizerHelper::LegalizeResult
6518 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6519   MachineFunction &MF = MIRBuilder.getMF();
6520 
6521   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6522   int NameOpIdx = IsRead ? 1 : 0;
6523   int ValRegIndex = IsRead ? 0 : 1;
6524 
6525   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6526   const LLT Ty = MRI.getType(ValReg);
6527   const MDString *RegStr = cast<MDString>(
6528     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6529 
6530   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6531   if (!PhysReg.isValid())
6532     return UnableToLegalize;
6533 
6534   if (IsRead)
6535     MIRBuilder.buildCopy(ValReg, PhysReg);
6536   else
6537     MIRBuilder.buildCopy(PhysReg, ValReg);
6538 
6539   MI.eraseFromParent();
6540   return Legalized;
6541 }
6542 
6543 LegalizerHelper::LegalizeResult
6544 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6545   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6546   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6547   Register Result = MI.getOperand(0).getReg();
6548   LLT OrigTy = MRI.getType(Result);
6549   auto SizeInBits = OrigTy.getScalarSizeInBits();
6550   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6551 
6552   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6553   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6554   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6555   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6556 
6557   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6558   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6559   MIRBuilder.buildTrunc(Result, Shifted);
6560 
6561   MI.eraseFromParent();
6562   return Legalized;
6563 }
6564 
6565 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6566   // Implement vector G_SELECT in terms of XOR, AND, OR.
6567   Register DstReg = MI.getOperand(0).getReg();
6568   Register MaskReg = MI.getOperand(1).getReg();
6569   Register Op1Reg = MI.getOperand(2).getReg();
6570   Register Op2Reg = MI.getOperand(3).getReg();
6571   LLT DstTy = MRI.getType(DstReg);
6572   LLT MaskTy = MRI.getType(MaskReg);
6573   LLT Op1Ty = MRI.getType(Op1Reg);
6574   if (!DstTy.isVector())
6575     return UnableToLegalize;
6576 
6577   // Vector selects can have a scalar predicate. If so, splat into a vector and
6578   // finish for later legalization attempts to try again.
6579   if (MaskTy.isScalar()) {
6580     Register MaskElt = MaskReg;
6581     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6582       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6583     // Generate a vector splat idiom to be pattern matched later.
6584     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6585     Observer.changingInstr(MI);
6586     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6587     Observer.changedInstr(MI);
6588     return Legalized;
6589   }
6590 
6591   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6592     return UnableToLegalize;
6593   }
6594 
6595   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6596   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6597   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6598   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6599   MI.eraseFromParent();
6600   return Legalized;
6601 }
6602 
6603 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6604   // Split DIVREM into individual instructions.
6605   unsigned Opcode = MI.getOpcode();
6606 
6607   MIRBuilder.buildInstr(
6608       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6609                                         : TargetOpcode::G_UDIV,
6610       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6611   MIRBuilder.buildInstr(
6612       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6613                                         : TargetOpcode::G_UREM,
6614       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6615   MI.eraseFromParent();
6616   return Legalized;
6617 }
6618