1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { 95 MIRBuilder.setChangeObserver(Observer); 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &B) 101 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 102 TLI(*MF.getSubtarget().getTargetLowering()) { 103 MIRBuilder.setChangeObserver(Observer); 104 } 105 LegalizerHelper::LegalizeResult 106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 107 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 108 109 MIRBuilder.setInstrAndDebugLoc(MI); 110 111 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 112 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 113 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 114 auto Step = LI.getAction(MI, MRI); 115 switch (Step.Action) { 116 case Legal: 117 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 118 return AlreadyLegal; 119 case Libcall: 120 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 121 return libcall(MI); 122 case NarrowScalar: 123 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 124 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 125 case WidenScalar: 126 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 127 return widenScalar(MI, Step.TypeIdx, Step.NewType); 128 case Bitcast: 129 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 130 return bitcast(MI, Step.TypeIdx, Step.NewType); 131 case Lower: 132 LLVM_DEBUG(dbgs() << ".. Lower\n"); 133 return lower(MI, Step.TypeIdx, Step.NewType); 134 case FewerElements: 135 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 136 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case MoreElements: 138 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 139 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case Custom: 141 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 142 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 143 default: 144 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 145 return UnableToLegalize; 146 } 147 } 148 149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 150 SmallVectorImpl<Register> &VRegs) { 151 for (int i = 0; i < NumParts; ++i) 152 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 153 MIRBuilder.buildUnmerge(VRegs, Reg); 154 } 155 156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 157 LLT MainTy, LLT &LeftoverTy, 158 SmallVectorImpl<Register> &VRegs, 159 SmallVectorImpl<Register> &LeftoverRegs) { 160 assert(!LeftoverTy.isValid() && "this is an out argument"); 161 162 unsigned RegSize = RegTy.getSizeInBits(); 163 unsigned MainSize = MainTy.getSizeInBits(); 164 unsigned NumParts = RegSize / MainSize; 165 unsigned LeftoverSize = RegSize - NumParts * MainSize; 166 167 // Use an unmerge when possible. 168 if (LeftoverSize == 0) { 169 for (unsigned I = 0; I < NumParts; ++I) 170 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 171 MIRBuilder.buildUnmerge(VRegs, Reg); 172 return true; 173 } 174 175 if (MainTy.isVector()) { 176 unsigned EltSize = MainTy.getScalarSizeInBits(); 177 if (LeftoverSize % EltSize != 0) 178 return false; 179 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 180 } else { 181 LeftoverTy = LLT::scalar(LeftoverSize); 182 } 183 184 // For irregular sizes, extract the individual parts. 185 for (unsigned I = 0; I != NumParts; ++I) { 186 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 187 VRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 189 } 190 191 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 192 Offset += LeftoverSize) { 193 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 194 LeftoverRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, Offset); 196 } 197 198 return true; 199 } 200 201 void LegalizerHelper::insertParts(Register DstReg, 202 LLT ResultTy, LLT PartTy, 203 ArrayRef<Register> PartRegs, 204 LLT LeftoverTy, 205 ArrayRef<Register> LeftoverRegs) { 206 if (!LeftoverTy.isValid()) { 207 assert(LeftoverRegs.empty()); 208 209 if (!ResultTy.isVector()) { 210 MIRBuilder.buildMerge(DstReg, PartRegs); 211 return; 212 } 213 214 if (PartTy.isVector()) 215 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 216 else 217 MIRBuilder.buildBuildVector(DstReg, PartRegs); 218 return; 219 } 220 221 unsigned PartSize = PartTy.getSizeInBits(); 222 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 223 224 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 225 MIRBuilder.buildUndef(CurResultReg); 226 227 unsigned Offset = 0; 228 for (Register PartReg : PartRegs) { 229 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 230 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 231 CurResultReg = NewResultReg; 232 Offset += PartSize; 233 } 234 235 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 236 // Use the original output register for the final insert to avoid a copy. 237 Register NewResultReg = (I + 1 == E) ? 238 DstReg : MRI.createGenericVirtualRegister(ResultTy); 239 240 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 241 CurResultReg = NewResultReg; 242 Offset += LeftoverPartSize; 243 } 244 } 245 246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 248 const MachineInstr &MI) { 249 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 250 251 const int StartIdx = Regs.size(); 252 const int NumResults = MI.getNumOperands() - 1; 253 Regs.resize(Regs.size() + NumResults); 254 for (int I = 0; I != NumResults; ++I) 255 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 256 } 257 258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 259 LLT GCDTy, Register SrcReg) { 260 LLT SrcTy = MRI.getType(SrcReg); 261 if (SrcTy == GCDTy) { 262 // If the source already evenly divides the result type, we don't need to do 263 // anything. 264 Parts.push_back(SrcReg); 265 } else { 266 // Need to split into common type sized pieces. 267 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 268 getUnmergeResults(Parts, *Unmerge); 269 } 270 } 271 272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 273 LLT NarrowTy, Register SrcReg) { 274 LLT SrcTy = MRI.getType(SrcReg); 275 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 276 extractGCDType(Parts, GCDTy, SrcReg); 277 return GCDTy; 278 } 279 280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 281 SmallVectorImpl<Register> &VRegs, 282 unsigned PadStrategy) { 283 LLT LCMTy = getLCMType(DstTy, NarrowTy); 284 285 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 286 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 287 int NumOrigSrc = VRegs.size(); 288 289 Register PadReg; 290 291 // Get a value we can use to pad the source value if the sources won't evenly 292 // cover the result type. 293 if (NumOrigSrc < NumParts * NumSubParts) { 294 if (PadStrategy == TargetOpcode::G_ZEXT) 295 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 296 else if (PadStrategy == TargetOpcode::G_ANYEXT) 297 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 298 else { 299 assert(PadStrategy == TargetOpcode::G_SEXT); 300 301 // Shift the sign bit of the low register through the high register. 302 auto ShiftAmt = 303 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 304 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 305 } 306 } 307 308 // Registers for the final merge to be produced. 309 SmallVector<Register, 4> Remerge(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge(NumSubParts); 314 315 // Once we've fully read off the end of the original source bits, we can reuse 316 // the same high bits for remaining padding elements. 317 Register AllPadReg; 318 319 // Build merges to the LCM type to cover the original result type. 320 for (int I = 0; I != NumParts; ++I) { 321 bool AllMergePartsArePadding = true; 322 323 // Build the requested merges to the requested type. 324 for (int J = 0; J != NumSubParts; ++J) { 325 int Idx = I * NumSubParts + J; 326 if (Idx >= NumOrigSrc) { 327 SubMerge[J] = PadReg; 328 continue; 329 } 330 331 SubMerge[J] = VRegs[Idx]; 332 333 // There are meaningful bits here we can't reuse later. 334 AllMergePartsArePadding = false; 335 } 336 337 // If we've filled up a complete piece with padding bits, we can directly 338 // emit the natural sized constant if applicable, rather than a merge of 339 // smaller constants. 340 if (AllMergePartsArePadding && !AllPadReg) { 341 if (PadStrategy == TargetOpcode::G_ANYEXT) 342 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 343 else if (PadStrategy == TargetOpcode::G_ZEXT) 344 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 345 346 // If this is a sign extension, we can't materialize a trivial constant 347 // with the right type and have to produce a merge. 348 } 349 350 if (AllPadReg) { 351 // Avoid creating additional instructions if we're just adding additional 352 // copies of padding bits. 353 Remerge[I] = AllPadReg; 354 continue; 355 } 356 357 if (NumSubParts == 1) 358 Remerge[I] = SubMerge[0]; 359 else 360 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 361 362 // In the sign extend padding case, re-use the first all-signbit merge. 363 if (AllMergePartsArePadding && !AllPadReg) 364 AllPadReg = Remerge[I]; 365 } 366 367 VRegs = std::move(Remerge); 368 return LCMTy; 369 } 370 371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 372 ArrayRef<Register> RemergeRegs) { 373 LLT DstTy = MRI.getType(DstReg); 374 375 // Create the merge to the widened source, and extract the relevant bits into 376 // the result. 377 378 if (DstTy == LCMTy) { 379 MIRBuilder.buildMerge(DstReg, RemergeRegs); 380 return; 381 } 382 383 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 384 if (DstTy.isScalar() && LCMTy.isScalar()) { 385 MIRBuilder.buildTrunc(DstReg, Remerge); 386 return; 387 } 388 389 if (LCMTy.isVector()) { 390 MIRBuilder.buildExtract(DstReg, Remerge, 0); 391 return; 392 } 393 394 llvm_unreachable("unhandled case"); 395 } 396 397 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 398 #define RTLIBCASE_INT(LibcallPrefix) \ 399 do { \ 400 switch (Size) { \ 401 case 32: \ 402 return RTLIB::LibcallPrefix##32; \ 403 case 64: \ 404 return RTLIB::LibcallPrefix##64; \ 405 case 128: \ 406 return RTLIB::LibcallPrefix##128; \ 407 default: \ 408 llvm_unreachable("unexpected size"); \ 409 } \ 410 } while (0) 411 412 #define RTLIBCASE(LibcallPrefix) \ 413 do { \ 414 switch (Size) { \ 415 case 32: \ 416 return RTLIB::LibcallPrefix##32; \ 417 case 64: \ 418 return RTLIB::LibcallPrefix##64; \ 419 case 80: \ 420 return RTLIB::LibcallPrefix##80; \ 421 case 128: \ 422 return RTLIB::LibcallPrefix##128; \ 423 default: \ 424 llvm_unreachable("unexpected size"); \ 425 } \ 426 } while (0) 427 428 switch (Opcode) { 429 case TargetOpcode::G_SDIV: 430 RTLIBCASE_INT(SDIV_I); 431 case TargetOpcode::G_UDIV: 432 RTLIBCASE_INT(UDIV_I); 433 case TargetOpcode::G_SREM: 434 RTLIBCASE_INT(SREM_I); 435 case TargetOpcode::G_UREM: 436 RTLIBCASE_INT(UREM_I); 437 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 438 RTLIBCASE_INT(CTLZ_I); 439 case TargetOpcode::G_FADD: 440 RTLIBCASE(ADD_F); 441 case TargetOpcode::G_FSUB: 442 RTLIBCASE(SUB_F); 443 case TargetOpcode::G_FMUL: 444 RTLIBCASE(MUL_F); 445 case TargetOpcode::G_FDIV: 446 RTLIBCASE(DIV_F); 447 case TargetOpcode::G_FEXP: 448 RTLIBCASE(EXP_F); 449 case TargetOpcode::G_FEXP2: 450 RTLIBCASE(EXP2_F); 451 case TargetOpcode::G_FREM: 452 RTLIBCASE(REM_F); 453 case TargetOpcode::G_FPOW: 454 RTLIBCASE(POW_F); 455 case TargetOpcode::G_FMA: 456 RTLIBCASE(FMA_F); 457 case TargetOpcode::G_FSIN: 458 RTLIBCASE(SIN_F); 459 case TargetOpcode::G_FCOS: 460 RTLIBCASE(COS_F); 461 case TargetOpcode::G_FLOG10: 462 RTLIBCASE(LOG10_F); 463 case TargetOpcode::G_FLOG: 464 RTLIBCASE(LOG_F); 465 case TargetOpcode::G_FLOG2: 466 RTLIBCASE(LOG2_F); 467 case TargetOpcode::G_FCEIL: 468 RTLIBCASE(CEIL_F); 469 case TargetOpcode::G_FFLOOR: 470 RTLIBCASE(FLOOR_F); 471 case TargetOpcode::G_FMINNUM: 472 RTLIBCASE(FMIN_F); 473 case TargetOpcode::G_FMAXNUM: 474 RTLIBCASE(FMAX_F); 475 case TargetOpcode::G_FSQRT: 476 RTLIBCASE(SQRT_F); 477 case TargetOpcode::G_FRINT: 478 RTLIBCASE(RINT_F); 479 case TargetOpcode::G_FNEARBYINT: 480 RTLIBCASE(NEARBYINT_F); 481 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 482 RTLIBCASE(ROUNDEVEN_F); 483 } 484 llvm_unreachable("Unknown libcall function"); 485 } 486 487 /// True if an instruction is in tail position in its caller. Intended for 488 /// legalizing libcalls as tail calls when possible. 489 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 490 MachineInstr &MI) { 491 MachineBasicBlock &MBB = *MI.getParent(); 492 const Function &F = MBB.getParent()->getFunction(); 493 494 // Conservatively require the attributes of the call to match those of 495 // the return. Ignore NoAlias and NonNull because they don't affect the 496 // call sequence. 497 AttributeList CallerAttrs = F.getAttributes(); 498 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 499 .removeAttribute(Attribute::NoAlias) 500 .removeAttribute(Attribute::NonNull) 501 .hasAttributes()) 502 return false; 503 504 // It's not safe to eliminate the sign / zero extension of the return value. 505 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 506 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 507 return false; 508 509 // Only tail call if the following instruction is a standard return. 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 512 return false; 513 514 return true; 515 } 516 517 LegalizerHelper::LegalizeResult 518 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 519 const CallLowering::ArgInfo &Result, 520 ArrayRef<CallLowering::ArgInfo> Args, 521 const CallingConv::ID CC) { 522 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 523 524 CallLowering::CallLoweringInfo Info; 525 Info.CallConv = CC; 526 Info.Callee = MachineOperand::CreateES(Name); 527 Info.OrigRet = Result; 528 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 529 if (!CLI.lowerCall(MIRBuilder, Info)) 530 return LegalizerHelper::UnableToLegalize; 531 532 return LegalizerHelper::Legalized; 533 } 534 535 LegalizerHelper::LegalizeResult 536 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 537 const CallLowering::ArgInfo &Result, 538 ArrayRef<CallLowering::ArgInfo> Args) { 539 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 540 const char *Name = TLI.getLibcallName(Libcall); 541 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 542 return createLibcall(MIRBuilder, Name, Result, Args, CC); 543 } 544 545 // Useful for libcalls where all operands have the same type. 546 static LegalizerHelper::LegalizeResult 547 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 548 Type *OpType) { 549 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 550 551 SmallVector<CallLowering::ArgInfo, 3> Args; 552 for (unsigned i = 1; i < MI.getNumOperands(); i++) 553 Args.push_back({MI.getOperand(i).getReg(), OpType}); 554 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 555 Args); 556 } 557 558 LegalizerHelper::LegalizeResult 559 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 560 MachineInstr &MI) { 561 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 562 563 SmallVector<CallLowering::ArgInfo, 3> Args; 564 // Add all the args, except for the last which is an imm denoting 'tail'. 565 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 566 Register Reg = MI.getOperand(i).getReg(); 567 568 // Need derive an IR type for call lowering. 569 LLT OpLLT = MRI.getType(Reg); 570 Type *OpTy = nullptr; 571 if (OpLLT.isPointer()) 572 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 573 else 574 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 575 Args.push_back({Reg, OpTy}); 576 } 577 578 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 579 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 580 RTLIB::Libcall RTLibcall; 581 switch (MI.getOpcode()) { 582 case TargetOpcode::G_MEMCPY: 583 RTLibcall = RTLIB::MEMCPY; 584 break; 585 case TargetOpcode::G_MEMMOVE: 586 RTLibcall = RTLIB::MEMMOVE; 587 break; 588 case TargetOpcode::G_MEMSET: 589 RTLibcall = RTLIB::MEMSET; 590 break; 591 default: 592 return LegalizerHelper::UnableToLegalize; 593 } 594 const char *Name = TLI.getLibcallName(RTLibcall); 595 596 CallLowering::CallLoweringInfo Info; 597 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 598 Info.Callee = MachineOperand::CreateES(Name); 599 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 600 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 601 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 602 603 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 604 if (!CLI.lowerCall(MIRBuilder, Info)) 605 return LegalizerHelper::UnableToLegalize; 606 607 if (Info.LoweredTailCall) { 608 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 609 // We must have a return following the call (or debug insts) to get past 610 // isLibCallInTailPosition. 611 do { 612 MachineInstr *Next = MI.getNextNode(); 613 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 614 "Expected instr following MI to be return or debug inst?"); 615 // We lowered a tail call, so the call is now the return from the block. 616 // Delete the old return. 617 Next->eraseFromParent(); 618 } while (MI.getNextNode()); 619 } 620 621 return LegalizerHelper::Legalized; 622 } 623 624 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 625 Type *FromType) { 626 auto ToMVT = MVT::getVT(ToType); 627 auto FromMVT = MVT::getVT(FromType); 628 629 switch (Opcode) { 630 case TargetOpcode::G_FPEXT: 631 return RTLIB::getFPEXT(FromMVT, ToMVT); 632 case TargetOpcode::G_FPTRUNC: 633 return RTLIB::getFPROUND(FromMVT, ToMVT); 634 case TargetOpcode::G_FPTOSI: 635 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTOUI: 637 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 638 case TargetOpcode::G_SITOFP: 639 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 640 case TargetOpcode::G_UITOFP: 641 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 642 } 643 llvm_unreachable("Unsupported libcall function"); 644 } 645 646 static LegalizerHelper::LegalizeResult 647 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 648 Type *FromType) { 649 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 650 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 651 {{MI.getOperand(1).getReg(), FromType}}); 652 } 653 654 LegalizerHelper::LegalizeResult 655 LegalizerHelper::libcall(MachineInstr &MI) { 656 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 657 unsigned Size = LLTy.getSizeInBits(); 658 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 659 660 switch (MI.getOpcode()) { 661 default: 662 return UnableToLegalize; 663 case TargetOpcode::G_SDIV: 664 case TargetOpcode::G_UDIV: 665 case TargetOpcode::G_SREM: 666 case TargetOpcode::G_UREM: 667 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 668 Type *HLTy = IntegerType::get(Ctx, Size); 669 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 670 if (Status != Legalized) 671 return Status; 672 break; 673 } 674 case TargetOpcode::G_FADD: 675 case TargetOpcode::G_FSUB: 676 case TargetOpcode::G_FMUL: 677 case TargetOpcode::G_FDIV: 678 case TargetOpcode::G_FMA: 679 case TargetOpcode::G_FPOW: 680 case TargetOpcode::G_FREM: 681 case TargetOpcode::G_FCOS: 682 case TargetOpcode::G_FSIN: 683 case TargetOpcode::G_FLOG10: 684 case TargetOpcode::G_FLOG: 685 case TargetOpcode::G_FLOG2: 686 case TargetOpcode::G_FEXP: 687 case TargetOpcode::G_FEXP2: 688 case TargetOpcode::G_FCEIL: 689 case TargetOpcode::G_FFLOOR: 690 case TargetOpcode::G_FMINNUM: 691 case TargetOpcode::G_FMAXNUM: 692 case TargetOpcode::G_FSQRT: 693 case TargetOpcode::G_FRINT: 694 case TargetOpcode::G_FNEARBYINT: 695 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 696 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 697 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 698 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 699 return UnableToLegalize; 700 } 701 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 702 if (Status != Legalized) 703 return Status; 704 break; 705 } 706 case TargetOpcode::G_FPEXT: 707 case TargetOpcode::G_FPTRUNC: { 708 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 709 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 710 if (!FromTy || !ToTy) 711 return UnableToLegalize; 712 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 713 if (Status != Legalized) 714 return Status; 715 break; 716 } 717 case TargetOpcode::G_FPTOSI: 718 case TargetOpcode::G_FPTOUI: { 719 // FIXME: Support other types 720 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 721 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 722 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 723 return UnableToLegalize; 724 LegalizeResult Status = conversionLibcall( 725 MI, MIRBuilder, 726 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 727 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 728 if (Status != Legalized) 729 return Status; 730 break; 731 } 732 case TargetOpcode::G_SITOFP: 733 case TargetOpcode::G_UITOFP: { 734 // FIXME: Support other types 735 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 736 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 737 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 738 return UnableToLegalize; 739 LegalizeResult Status = conversionLibcall( 740 MI, MIRBuilder, 741 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 742 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 743 if (Status != Legalized) 744 return Status; 745 break; 746 } 747 case TargetOpcode::G_MEMCPY: 748 case TargetOpcode::G_MEMMOVE: 749 case TargetOpcode::G_MEMSET: { 750 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 751 MI.eraseFromParent(); 752 return Result; 753 } 754 } 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 761 unsigned TypeIdx, 762 LLT NarrowTy) { 763 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 764 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 765 766 switch (MI.getOpcode()) { 767 default: 768 return UnableToLegalize; 769 case TargetOpcode::G_IMPLICIT_DEF: { 770 Register DstReg = MI.getOperand(0).getReg(); 771 LLT DstTy = MRI.getType(DstReg); 772 773 // If SizeOp0 is not an exact multiple of NarrowSize, emit 774 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 775 // FIXME: Although this would also be legal for the general case, it causes 776 // a lot of regressions in the emitted code (superfluous COPYs, artifact 777 // combines not being hit). This seems to be a problem related to the 778 // artifact combiner. 779 if (SizeOp0 % NarrowSize != 0) { 780 LLT ImplicitTy = NarrowTy; 781 if (DstTy.isVector()) 782 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 783 784 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 785 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 786 787 MI.eraseFromParent(); 788 return Legalized; 789 } 790 791 int NumParts = SizeOp0 / NarrowSize; 792 793 SmallVector<Register, 2> DstRegs; 794 for (int i = 0; i < NumParts; ++i) 795 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 796 797 if (DstTy.isVector()) 798 MIRBuilder.buildBuildVector(DstReg, DstRegs); 799 else 800 MIRBuilder.buildMerge(DstReg, DstRegs); 801 MI.eraseFromParent(); 802 return Legalized; 803 } 804 case TargetOpcode::G_CONSTANT: { 805 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 806 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 807 unsigned TotalSize = Ty.getSizeInBits(); 808 unsigned NarrowSize = NarrowTy.getSizeInBits(); 809 int NumParts = TotalSize / NarrowSize; 810 811 SmallVector<Register, 4> PartRegs; 812 for (int I = 0; I != NumParts; ++I) { 813 unsigned Offset = I * NarrowSize; 814 auto K = MIRBuilder.buildConstant(NarrowTy, 815 Val.lshr(Offset).trunc(NarrowSize)); 816 PartRegs.push_back(K.getReg(0)); 817 } 818 819 LLT LeftoverTy; 820 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 821 SmallVector<Register, 1> LeftoverRegs; 822 if (LeftoverBits != 0) { 823 LeftoverTy = LLT::scalar(LeftoverBits); 824 auto K = MIRBuilder.buildConstant( 825 LeftoverTy, 826 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 827 LeftoverRegs.push_back(K.getReg(0)); 828 } 829 830 insertParts(MI.getOperand(0).getReg(), 831 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 832 833 MI.eraseFromParent(); 834 return Legalized; 835 } 836 case TargetOpcode::G_SEXT: 837 case TargetOpcode::G_ZEXT: 838 case TargetOpcode::G_ANYEXT: 839 return narrowScalarExt(MI, TypeIdx, NarrowTy); 840 case TargetOpcode::G_TRUNC: { 841 if (TypeIdx != 1) 842 return UnableToLegalize; 843 844 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 845 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 846 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 847 return UnableToLegalize; 848 } 849 850 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 851 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 852 MI.eraseFromParent(); 853 return Legalized; 854 } 855 856 case TargetOpcode::G_FREEZE: 857 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 858 859 case TargetOpcode::G_ADD: { 860 // FIXME: add support for when SizeOp0 isn't an exact multiple of 861 // NarrowSize. 862 if (SizeOp0 % NarrowSize != 0) 863 return UnableToLegalize; 864 // Expand in terms of carry-setting/consuming G_ADDE instructions. 865 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 866 867 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 868 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 869 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 870 871 Register CarryIn; 872 for (int i = 0; i < NumParts; ++i) { 873 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 874 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 875 876 if (i == 0) 877 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 878 else { 879 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 880 Src2Regs[i], CarryIn); 881 } 882 883 DstRegs.push_back(DstReg); 884 CarryIn = CarryOut; 885 } 886 Register DstReg = MI.getOperand(0).getReg(); 887 if(MRI.getType(DstReg).isVector()) 888 MIRBuilder.buildBuildVector(DstReg, DstRegs); 889 else 890 MIRBuilder.buildMerge(DstReg, DstRegs); 891 MI.eraseFromParent(); 892 return Legalized; 893 } 894 case TargetOpcode::G_SUB: { 895 // FIXME: add support for when SizeOp0 isn't an exact multiple of 896 // NarrowSize. 897 if (SizeOp0 % NarrowSize != 0) 898 return UnableToLegalize; 899 900 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 901 902 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 903 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 904 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 905 906 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 907 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 908 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 909 {Src1Regs[0], Src2Regs[0]}); 910 DstRegs.push_back(DstReg); 911 Register BorrowIn = BorrowOut; 912 for (int i = 1; i < NumParts; ++i) { 913 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 914 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 915 916 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 917 {Src1Regs[i], Src2Regs[i], BorrowIn}); 918 919 DstRegs.push_back(DstReg); 920 BorrowIn = BorrowOut; 921 } 922 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 923 MI.eraseFromParent(); 924 return Legalized; 925 } 926 case TargetOpcode::G_MUL: 927 case TargetOpcode::G_UMULH: 928 return narrowScalarMul(MI, NarrowTy); 929 case TargetOpcode::G_EXTRACT: 930 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 931 case TargetOpcode::G_INSERT: 932 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 933 case TargetOpcode::G_LOAD: { 934 auto &MMO = **MI.memoperands_begin(); 935 Register DstReg = MI.getOperand(0).getReg(); 936 LLT DstTy = MRI.getType(DstReg); 937 if (DstTy.isVector()) 938 return UnableToLegalize; 939 940 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 941 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 942 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 943 MIRBuilder.buildAnyExt(DstReg, TmpReg); 944 MI.eraseFromParent(); 945 return Legalized; 946 } 947 948 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 949 } 950 case TargetOpcode::G_ZEXTLOAD: 951 case TargetOpcode::G_SEXTLOAD: { 952 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 953 Register DstReg = MI.getOperand(0).getReg(); 954 Register PtrReg = MI.getOperand(1).getReg(); 955 956 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 957 auto &MMO = **MI.memoperands_begin(); 958 if (MMO.getSizeInBits() == NarrowSize) { 959 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 960 } else { 961 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 962 } 963 964 if (ZExt) 965 MIRBuilder.buildZExt(DstReg, TmpReg); 966 else 967 MIRBuilder.buildSExt(DstReg, TmpReg); 968 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_STORE: { 973 const auto &MMO = **MI.memoperands_begin(); 974 975 Register SrcReg = MI.getOperand(0).getReg(); 976 LLT SrcTy = MRI.getType(SrcReg); 977 if (SrcTy.isVector()) 978 return UnableToLegalize; 979 980 int NumParts = SizeOp0 / NarrowSize; 981 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 982 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 983 if (SrcTy.isVector() && LeftoverBits != 0) 984 return UnableToLegalize; 985 986 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 987 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 988 auto &MMO = **MI.memoperands_begin(); 989 MIRBuilder.buildTrunc(TmpReg, SrcReg); 990 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 return reduceLoadStoreWidth(MI, 0, NarrowTy); 996 } 997 case TargetOpcode::G_SELECT: 998 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_AND: 1000 case TargetOpcode::G_OR: 1001 case TargetOpcode::G_XOR: { 1002 // Legalize bitwise operation: 1003 // A = BinOp<Ty> B, C 1004 // into: 1005 // B1, ..., BN = G_UNMERGE_VALUES B 1006 // C1, ..., CN = G_UNMERGE_VALUES C 1007 // A1 = BinOp<Ty/N> B1, C2 1008 // ... 1009 // AN = BinOp<Ty/N> BN, CN 1010 // A = G_MERGE_VALUES A1, ..., AN 1011 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1012 } 1013 case TargetOpcode::G_SHL: 1014 case TargetOpcode::G_LSHR: 1015 case TargetOpcode::G_ASHR: 1016 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1017 case TargetOpcode::G_CTLZ: 1018 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1019 case TargetOpcode::G_CTTZ: 1020 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1021 case TargetOpcode::G_CTPOP: 1022 if (TypeIdx == 1) 1023 switch (MI.getOpcode()) { 1024 case TargetOpcode::G_CTLZ: 1025 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1026 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1027 case TargetOpcode::G_CTTZ: 1028 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1029 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1030 case TargetOpcode::G_CTPOP: 1031 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1032 default: 1033 return UnableToLegalize; 1034 } 1035 1036 Observer.changingInstr(MI); 1037 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1038 Observer.changedInstr(MI); 1039 return Legalized; 1040 case TargetOpcode::G_INTTOPTR: 1041 if (TypeIdx != 1) 1042 return UnableToLegalize; 1043 1044 Observer.changingInstr(MI); 1045 narrowScalarSrc(MI, NarrowTy, 1); 1046 Observer.changedInstr(MI); 1047 return Legalized; 1048 case TargetOpcode::G_PTRTOINT: 1049 if (TypeIdx != 0) 1050 return UnableToLegalize; 1051 1052 Observer.changingInstr(MI); 1053 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1054 Observer.changedInstr(MI); 1055 return Legalized; 1056 case TargetOpcode::G_PHI: { 1057 unsigned NumParts = SizeOp0 / NarrowSize; 1058 SmallVector<Register, 2> DstRegs(NumParts); 1059 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1060 Observer.changingInstr(MI); 1061 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1062 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1063 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1064 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1065 SrcRegs[i / 2]); 1066 } 1067 MachineBasicBlock &MBB = *MI.getParent(); 1068 MIRBuilder.setInsertPt(MBB, MI); 1069 for (unsigned i = 0; i < NumParts; ++i) { 1070 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1071 MachineInstrBuilder MIB = 1072 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1073 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1074 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1075 } 1076 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1077 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1078 Observer.changedInstr(MI); 1079 MI.eraseFromParent(); 1080 return Legalized; 1081 } 1082 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1083 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1084 if (TypeIdx != 2) 1085 return UnableToLegalize; 1086 1087 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1088 Observer.changingInstr(MI); 1089 narrowScalarSrc(MI, NarrowTy, OpIdx); 1090 Observer.changedInstr(MI); 1091 return Legalized; 1092 } 1093 case TargetOpcode::G_ICMP: { 1094 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1095 if (NarrowSize * 2 != SrcSize) 1096 return UnableToLegalize; 1097 1098 Observer.changingInstr(MI); 1099 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1100 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1101 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1102 1103 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1104 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1105 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1106 1107 CmpInst::Predicate Pred = 1108 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1109 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1110 1111 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1112 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1113 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1114 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1115 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1116 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1117 } else { 1118 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1119 MachineInstrBuilder CmpHEQ = 1120 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1121 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1122 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1123 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1124 } 1125 Observer.changedInstr(MI); 1126 MI.eraseFromParent(); 1127 return Legalized; 1128 } 1129 case TargetOpcode::G_SEXT_INREG: { 1130 if (TypeIdx != 0) 1131 return UnableToLegalize; 1132 1133 int64_t SizeInBits = MI.getOperand(2).getImm(); 1134 1135 // So long as the new type has more bits than the bits we're extending we 1136 // don't need to break it apart. 1137 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1138 Observer.changingInstr(MI); 1139 // We don't lose any non-extension bits by truncating the src and 1140 // sign-extending the dst. 1141 MachineOperand &MO1 = MI.getOperand(1); 1142 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1143 MO1.setReg(TruncMIB.getReg(0)); 1144 1145 MachineOperand &MO2 = MI.getOperand(0); 1146 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1147 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1148 MIRBuilder.buildSExt(MO2, DstExt); 1149 MO2.setReg(DstExt); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 } 1153 1154 // Break it apart. Components below the extension point are unmodified. The 1155 // component containing the extension point becomes a narrower SEXT_INREG. 1156 // Components above it are ashr'd from the component containing the 1157 // extension point. 1158 if (SizeOp0 % NarrowSize != 0) 1159 return UnableToLegalize; 1160 int NumParts = SizeOp0 / NarrowSize; 1161 1162 // List the registers where the destination will be scattered. 1163 SmallVector<Register, 2> DstRegs; 1164 // List the registers where the source will be split. 1165 SmallVector<Register, 2> SrcRegs; 1166 1167 // Create all the temporary registers. 1168 for (int i = 0; i < NumParts; ++i) { 1169 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1170 1171 SrcRegs.push_back(SrcReg); 1172 } 1173 1174 // Explode the big arguments into smaller chunks. 1175 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1176 1177 Register AshrCstReg = 1178 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1179 .getReg(0); 1180 Register FullExtensionReg = 0; 1181 Register PartialExtensionReg = 0; 1182 1183 // Do the operation on each small part. 1184 for (int i = 0; i < NumParts; ++i) { 1185 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1186 DstRegs.push_back(SrcRegs[i]); 1187 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1188 assert(PartialExtensionReg && 1189 "Expected to visit partial extension before full"); 1190 if (FullExtensionReg) { 1191 DstRegs.push_back(FullExtensionReg); 1192 continue; 1193 } 1194 DstRegs.push_back( 1195 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1196 .getReg(0)); 1197 FullExtensionReg = DstRegs.back(); 1198 } else { 1199 DstRegs.push_back( 1200 MIRBuilder 1201 .buildInstr( 1202 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1203 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1204 .getReg(0)); 1205 PartialExtensionReg = DstRegs.back(); 1206 } 1207 } 1208 1209 // Gather the destination registers into the final destination. 1210 Register DstReg = MI.getOperand(0).getReg(); 1211 MIRBuilder.buildMerge(DstReg, DstRegs); 1212 MI.eraseFromParent(); 1213 return Legalized; 1214 } 1215 case TargetOpcode::G_BSWAP: 1216 case TargetOpcode::G_BITREVERSE: { 1217 if (SizeOp0 % NarrowSize != 0) 1218 return UnableToLegalize; 1219 1220 Observer.changingInstr(MI); 1221 SmallVector<Register, 2> SrcRegs, DstRegs; 1222 unsigned NumParts = SizeOp0 / NarrowSize; 1223 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1224 1225 for (unsigned i = 0; i < NumParts; ++i) { 1226 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1227 {SrcRegs[NumParts - 1 - i]}); 1228 DstRegs.push_back(DstPart.getReg(0)); 1229 } 1230 1231 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1232 1233 Observer.changedInstr(MI); 1234 MI.eraseFromParent(); 1235 return Legalized; 1236 } 1237 case TargetOpcode::G_PTR_ADD: 1238 case TargetOpcode::G_PTRMASK: { 1239 if (TypeIdx != 1) 1240 return UnableToLegalize; 1241 Observer.changingInstr(MI); 1242 narrowScalarSrc(MI, NarrowTy, 2); 1243 Observer.changedInstr(MI); 1244 return Legalized; 1245 } 1246 case TargetOpcode::G_FPTOUI: { 1247 if (TypeIdx != 0) 1248 return UnableToLegalize; 1249 Observer.changingInstr(MI); 1250 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1251 Observer.changedInstr(MI); 1252 return Legalized; 1253 } 1254 case TargetOpcode::G_FPTOSI: { 1255 if (TypeIdx != 0) 1256 return UnableToLegalize; 1257 Observer.changingInstr(MI); 1258 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1259 Observer.changedInstr(MI); 1260 return Legalized; 1261 } 1262 case TargetOpcode::G_FPEXT: 1263 if (TypeIdx != 0) 1264 return UnableToLegalize; 1265 Observer.changingInstr(MI); 1266 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1267 Observer.changedInstr(MI); 1268 return Legalized; 1269 } 1270 } 1271 1272 Register LegalizerHelper::coerceToScalar(Register Val) { 1273 LLT Ty = MRI.getType(Val); 1274 if (Ty.isScalar()) 1275 return Val; 1276 1277 const DataLayout &DL = MIRBuilder.getDataLayout(); 1278 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1279 if (Ty.isPointer()) { 1280 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1281 return Register(); 1282 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1283 } 1284 1285 Register NewVal = Val; 1286 1287 assert(Ty.isVector()); 1288 LLT EltTy = Ty.getElementType(); 1289 if (EltTy.isPointer()) 1290 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1291 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1292 } 1293 1294 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1295 unsigned OpIdx, unsigned ExtOpcode) { 1296 MachineOperand &MO = MI.getOperand(OpIdx); 1297 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1298 MO.setReg(ExtB.getReg(0)); 1299 } 1300 1301 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1302 unsigned OpIdx) { 1303 MachineOperand &MO = MI.getOperand(OpIdx); 1304 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1305 MO.setReg(ExtB.getReg(0)); 1306 } 1307 1308 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1309 unsigned OpIdx, unsigned TruncOpcode) { 1310 MachineOperand &MO = MI.getOperand(OpIdx); 1311 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1312 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1313 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1314 MO.setReg(DstExt); 1315 } 1316 1317 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1318 unsigned OpIdx, unsigned ExtOpcode) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1323 MO.setReg(DstTrunc); 1324 } 1325 1326 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1327 unsigned OpIdx) { 1328 MachineOperand &MO = MI.getOperand(OpIdx); 1329 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1330 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1331 } 1332 1333 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1334 unsigned OpIdx) { 1335 MachineOperand &MO = MI.getOperand(OpIdx); 1336 1337 LLT OldTy = MRI.getType(MO.getReg()); 1338 unsigned OldElts = OldTy.getNumElements(); 1339 unsigned NewElts = MoreTy.getNumElements(); 1340 1341 unsigned NumParts = NewElts / OldElts; 1342 1343 // Use concat_vectors if the result is a multiple of the number of elements. 1344 if (NumParts * OldElts == NewElts) { 1345 SmallVector<Register, 8> Parts; 1346 Parts.push_back(MO.getReg()); 1347 1348 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1349 for (unsigned I = 1; I != NumParts; ++I) 1350 Parts.push_back(ImpDef); 1351 1352 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1353 MO.setReg(Concat.getReg(0)); 1354 return; 1355 } 1356 1357 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1358 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1359 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1360 MO.setReg(MoreReg); 1361 } 1362 1363 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1364 MachineOperand &Op = MI.getOperand(OpIdx); 1365 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1366 } 1367 1368 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1369 MachineOperand &MO = MI.getOperand(OpIdx); 1370 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1371 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1372 MIRBuilder.buildBitcast(MO, CastDst); 1373 MO.setReg(CastDst); 1374 } 1375 1376 LegalizerHelper::LegalizeResult 1377 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1378 LLT WideTy) { 1379 if (TypeIdx != 1) 1380 return UnableToLegalize; 1381 1382 Register DstReg = MI.getOperand(0).getReg(); 1383 LLT DstTy = MRI.getType(DstReg); 1384 if (DstTy.isVector()) 1385 return UnableToLegalize; 1386 1387 Register Src1 = MI.getOperand(1).getReg(); 1388 LLT SrcTy = MRI.getType(Src1); 1389 const int DstSize = DstTy.getSizeInBits(); 1390 const int SrcSize = SrcTy.getSizeInBits(); 1391 const int WideSize = WideTy.getSizeInBits(); 1392 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1393 1394 unsigned NumOps = MI.getNumOperands(); 1395 unsigned NumSrc = MI.getNumOperands() - 1; 1396 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1397 1398 if (WideSize >= DstSize) { 1399 // Directly pack the bits in the target type. 1400 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1401 1402 for (unsigned I = 2; I != NumOps; ++I) { 1403 const unsigned Offset = (I - 1) * PartSize; 1404 1405 Register SrcReg = MI.getOperand(I).getReg(); 1406 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1407 1408 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1409 1410 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1411 MRI.createGenericVirtualRegister(WideTy); 1412 1413 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1414 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1415 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1416 ResultReg = NextResult; 1417 } 1418 1419 if (WideSize > DstSize) 1420 MIRBuilder.buildTrunc(DstReg, ResultReg); 1421 else if (DstTy.isPointer()) 1422 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1423 1424 MI.eraseFromParent(); 1425 return Legalized; 1426 } 1427 1428 // Unmerge the original values to the GCD type, and recombine to the next 1429 // multiple greater than the original type. 1430 // 1431 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1432 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1433 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1434 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1435 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1436 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1437 // %12:_(s12) = G_MERGE_VALUES %10, %11 1438 // 1439 // Padding with undef if necessary: 1440 // 1441 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1442 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1443 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1444 // %7:_(s2) = G_IMPLICIT_DEF 1445 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1446 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1447 // %10:_(s12) = G_MERGE_VALUES %8, %9 1448 1449 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1450 LLT GCDTy = LLT::scalar(GCD); 1451 1452 SmallVector<Register, 8> Parts; 1453 SmallVector<Register, 8> NewMergeRegs; 1454 SmallVector<Register, 8> Unmerges; 1455 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1456 1457 // Decompose the original operands if they don't evenly divide. 1458 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1459 Register SrcReg = MI.getOperand(I).getReg(); 1460 if (GCD == SrcSize) { 1461 Unmerges.push_back(SrcReg); 1462 } else { 1463 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1464 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1465 Unmerges.push_back(Unmerge.getReg(J)); 1466 } 1467 } 1468 1469 // Pad with undef to the next size that is a multiple of the requested size. 1470 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1471 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1472 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1473 Unmerges.push_back(UndefReg); 1474 } 1475 1476 const int PartsPerGCD = WideSize / GCD; 1477 1478 // Build merges of each piece. 1479 ArrayRef<Register> Slicer(Unmerges); 1480 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1481 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1482 NewMergeRegs.push_back(Merge.getReg(0)); 1483 } 1484 1485 // A truncate may be necessary if the requested type doesn't evenly divide the 1486 // original result type. 1487 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1488 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1489 } else { 1490 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1491 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1492 } 1493 1494 MI.eraseFromParent(); 1495 return Legalized; 1496 } 1497 1498 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1499 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1500 LLT OrigTy = MRI.getType(OrigReg); 1501 LLT LCMTy = getLCMType(WideTy, OrigTy); 1502 1503 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1504 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1505 1506 Register UnmergeSrc = WideReg; 1507 1508 // Create a merge to the LCM type, padding with undef 1509 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1510 // => 1511 // %1:_(<4 x s32>) = G_FOO 1512 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1513 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1514 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1515 if (NumMergeParts > 1) { 1516 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1517 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1518 MergeParts[0] = WideReg; 1519 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1520 } 1521 1522 // Unmerge to the original register and pad with dead defs. 1523 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1524 UnmergeResults[0] = OrigReg; 1525 for (int I = 1; I != NumUnmergeParts; ++I) 1526 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1527 1528 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1529 return WideReg; 1530 } 1531 1532 LegalizerHelper::LegalizeResult 1533 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1534 LLT WideTy) { 1535 if (TypeIdx != 0) 1536 return UnableToLegalize; 1537 1538 int NumDst = MI.getNumOperands() - 1; 1539 Register SrcReg = MI.getOperand(NumDst).getReg(); 1540 LLT SrcTy = MRI.getType(SrcReg); 1541 if (SrcTy.isVector()) 1542 return UnableToLegalize; 1543 1544 Register Dst0Reg = MI.getOperand(0).getReg(); 1545 LLT DstTy = MRI.getType(Dst0Reg); 1546 if (!DstTy.isScalar()) 1547 return UnableToLegalize; 1548 1549 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1550 if (SrcTy.isPointer()) { 1551 const DataLayout &DL = MIRBuilder.getDataLayout(); 1552 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1553 LLVM_DEBUG( 1554 dbgs() << "Not casting non-integral address space integer\n"); 1555 return UnableToLegalize; 1556 } 1557 1558 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1559 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1560 } 1561 1562 // Widen SrcTy to WideTy. This does not affect the result, but since the 1563 // user requested this size, it is probably better handled than SrcTy and 1564 // should reduce the total number of legalization artifacts 1565 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1566 SrcTy = WideTy; 1567 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1568 } 1569 1570 // Theres no unmerge type to target. Directly extract the bits from the 1571 // source type 1572 unsigned DstSize = DstTy.getSizeInBits(); 1573 1574 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1575 for (int I = 1; I != NumDst; ++I) { 1576 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1577 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1578 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1579 } 1580 1581 MI.eraseFromParent(); 1582 return Legalized; 1583 } 1584 1585 // Extend the source to a wider type. 1586 LLT LCMTy = getLCMType(SrcTy, WideTy); 1587 1588 Register WideSrc = SrcReg; 1589 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1590 // TODO: If this is an integral address space, cast to integer and anyext. 1591 if (SrcTy.isPointer()) { 1592 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1593 return UnableToLegalize; 1594 } 1595 1596 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1597 } 1598 1599 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1600 1601 // Create a sequence of unmerges to the original results. since we may have 1602 // widened the source, we will need to pad the results with dead defs to cover 1603 // the source register. 1604 // e.g. widen s16 to s32: 1605 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1606 // 1607 // => 1608 // %4:_(s64) = G_ANYEXT %0:_(s48) 1609 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1610 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1611 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1612 1613 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1614 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1615 1616 for (int I = 0; I != NumUnmerge; ++I) { 1617 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1618 1619 for (int J = 0; J != PartsPerUnmerge; ++J) { 1620 int Idx = I * PartsPerUnmerge + J; 1621 if (Idx < NumDst) 1622 MIB.addDef(MI.getOperand(Idx).getReg()); 1623 else { 1624 // Create dead def for excess components. 1625 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1626 } 1627 } 1628 1629 MIB.addUse(Unmerge.getReg(I)); 1630 } 1631 1632 MI.eraseFromParent(); 1633 return Legalized; 1634 } 1635 1636 LegalizerHelper::LegalizeResult 1637 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1638 LLT WideTy) { 1639 Register DstReg = MI.getOperand(0).getReg(); 1640 Register SrcReg = MI.getOperand(1).getReg(); 1641 LLT SrcTy = MRI.getType(SrcReg); 1642 1643 LLT DstTy = MRI.getType(DstReg); 1644 unsigned Offset = MI.getOperand(2).getImm(); 1645 1646 if (TypeIdx == 0) { 1647 if (SrcTy.isVector() || DstTy.isVector()) 1648 return UnableToLegalize; 1649 1650 SrcOp Src(SrcReg); 1651 if (SrcTy.isPointer()) { 1652 // Extracts from pointers can be handled only if they are really just 1653 // simple integers. 1654 const DataLayout &DL = MIRBuilder.getDataLayout(); 1655 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1656 return UnableToLegalize; 1657 1658 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1659 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1660 SrcTy = SrcAsIntTy; 1661 } 1662 1663 if (DstTy.isPointer()) 1664 return UnableToLegalize; 1665 1666 if (Offset == 0) { 1667 // Avoid a shift in the degenerate case. 1668 MIRBuilder.buildTrunc(DstReg, 1669 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1670 MI.eraseFromParent(); 1671 return Legalized; 1672 } 1673 1674 // Do a shift in the source type. 1675 LLT ShiftTy = SrcTy; 1676 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1677 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1678 ShiftTy = WideTy; 1679 } 1680 1681 auto LShr = MIRBuilder.buildLShr( 1682 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1683 MIRBuilder.buildTrunc(DstReg, LShr); 1684 MI.eraseFromParent(); 1685 return Legalized; 1686 } 1687 1688 if (SrcTy.isScalar()) { 1689 Observer.changingInstr(MI); 1690 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1691 Observer.changedInstr(MI); 1692 return Legalized; 1693 } 1694 1695 if (!SrcTy.isVector()) 1696 return UnableToLegalize; 1697 1698 if (DstTy != SrcTy.getElementType()) 1699 return UnableToLegalize; 1700 1701 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1702 return UnableToLegalize; 1703 1704 Observer.changingInstr(MI); 1705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1706 1707 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1708 Offset); 1709 widenScalarDst(MI, WideTy.getScalarType(), 0); 1710 Observer.changedInstr(MI); 1711 return Legalized; 1712 } 1713 1714 LegalizerHelper::LegalizeResult 1715 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1716 LLT WideTy) { 1717 if (TypeIdx != 0 || WideTy.isVector()) 1718 return UnableToLegalize; 1719 Observer.changingInstr(MI); 1720 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1721 widenScalarDst(MI, WideTy); 1722 Observer.changedInstr(MI); 1723 return Legalized; 1724 } 1725 1726 LegalizerHelper::LegalizeResult 1727 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1728 LLT WideTy) { 1729 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1730 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1731 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1732 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1733 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1734 // We can convert this to: 1735 // 1. Any extend iN to iM 1736 // 2. SHL by M-N 1737 // 3. [US][ADD|SUB|SHL]SAT 1738 // 4. L/ASHR by M-N 1739 // 1740 // It may be more efficient to lower this to a min and a max operation in 1741 // the higher precision arithmetic if the promoted operation isn't legal, 1742 // but this decision is up to the target's lowering request. 1743 Register DstReg = MI.getOperand(0).getReg(); 1744 1745 unsigned NewBits = WideTy.getScalarSizeInBits(); 1746 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1747 1748 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1749 // must not left shift the RHS to preserve the shift amount. 1750 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1751 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1752 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1753 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1754 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1755 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1756 1757 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1758 {ShiftL, ShiftR}, MI.getFlags()); 1759 1760 // Use a shift that will preserve the number of sign bits when the trunc is 1761 // folded away. 1762 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1763 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1764 1765 MIRBuilder.buildTrunc(DstReg, Result); 1766 MI.eraseFromParent(); 1767 return Legalized; 1768 } 1769 1770 LegalizerHelper::LegalizeResult 1771 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1772 switch (MI.getOpcode()) { 1773 default: 1774 return UnableToLegalize; 1775 case TargetOpcode::G_EXTRACT: 1776 return widenScalarExtract(MI, TypeIdx, WideTy); 1777 case TargetOpcode::G_INSERT: 1778 return widenScalarInsert(MI, TypeIdx, WideTy); 1779 case TargetOpcode::G_MERGE_VALUES: 1780 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1781 case TargetOpcode::G_UNMERGE_VALUES: 1782 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1783 case TargetOpcode::G_UADDO: 1784 case TargetOpcode::G_USUBO: { 1785 if (TypeIdx == 1) 1786 return UnableToLegalize; // TODO 1787 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1788 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1789 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1790 ? TargetOpcode::G_ADD 1791 : TargetOpcode::G_SUB; 1792 // Do the arithmetic in the larger type. 1793 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1794 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1795 APInt Mask = 1796 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1797 auto AndOp = MIRBuilder.buildAnd( 1798 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1799 // There is no overflow if the AndOp is the same as NewOp. 1800 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1801 // Now trunc the NewOp to the original result. 1802 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1803 MI.eraseFromParent(); 1804 return Legalized; 1805 } 1806 case TargetOpcode::G_SADDSAT: 1807 case TargetOpcode::G_SSUBSAT: 1808 case TargetOpcode::G_SSHLSAT: 1809 case TargetOpcode::G_UADDSAT: 1810 case TargetOpcode::G_USUBSAT: 1811 case TargetOpcode::G_USHLSAT: 1812 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1813 case TargetOpcode::G_CTTZ: 1814 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1815 case TargetOpcode::G_CTLZ: 1816 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1817 case TargetOpcode::G_CTPOP: { 1818 if (TypeIdx == 0) { 1819 Observer.changingInstr(MI); 1820 widenScalarDst(MI, WideTy, 0); 1821 Observer.changedInstr(MI); 1822 return Legalized; 1823 } 1824 1825 Register SrcReg = MI.getOperand(1).getReg(); 1826 1827 // First ZEXT the input. 1828 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1829 LLT CurTy = MRI.getType(SrcReg); 1830 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1831 // The count is the same in the larger type except if the original 1832 // value was zero. This can be handled by setting the bit just off 1833 // the top of the original type. 1834 auto TopBit = 1835 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1836 MIBSrc = MIRBuilder.buildOr( 1837 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1838 } 1839 1840 // Perform the operation at the larger size. 1841 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1842 // This is already the correct result for CTPOP and CTTZs 1843 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1844 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1845 // The correct result is NewOp - (Difference in widety and current ty). 1846 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1847 MIBNewOp = MIRBuilder.buildSub( 1848 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1849 } 1850 1851 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1852 MI.eraseFromParent(); 1853 return Legalized; 1854 } 1855 case TargetOpcode::G_BSWAP: { 1856 Observer.changingInstr(MI); 1857 Register DstReg = MI.getOperand(0).getReg(); 1858 1859 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1860 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1861 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1862 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1863 1864 MI.getOperand(0).setReg(DstExt); 1865 1866 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1867 1868 LLT Ty = MRI.getType(DstReg); 1869 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1870 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1871 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1872 1873 MIRBuilder.buildTrunc(DstReg, ShrReg); 1874 Observer.changedInstr(MI); 1875 return Legalized; 1876 } 1877 case TargetOpcode::G_BITREVERSE: { 1878 Observer.changingInstr(MI); 1879 1880 Register DstReg = MI.getOperand(0).getReg(); 1881 LLT Ty = MRI.getType(DstReg); 1882 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1883 1884 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1885 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1886 MI.getOperand(0).setReg(DstExt); 1887 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1888 1889 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1890 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1891 MIRBuilder.buildTrunc(DstReg, Shift); 1892 Observer.changedInstr(MI); 1893 return Legalized; 1894 } 1895 case TargetOpcode::G_FREEZE: 1896 Observer.changingInstr(MI); 1897 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1898 widenScalarDst(MI, WideTy); 1899 Observer.changedInstr(MI); 1900 return Legalized; 1901 1902 case TargetOpcode::G_ADD: 1903 case TargetOpcode::G_AND: 1904 case TargetOpcode::G_MUL: 1905 case TargetOpcode::G_OR: 1906 case TargetOpcode::G_XOR: 1907 case TargetOpcode::G_SUB: 1908 // Perform operation at larger width (any extension is fines here, high bits 1909 // don't affect the result) and then truncate the result back to the 1910 // original type. 1911 Observer.changingInstr(MI); 1912 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1913 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1914 widenScalarDst(MI, WideTy); 1915 Observer.changedInstr(MI); 1916 return Legalized; 1917 1918 case TargetOpcode::G_SHL: 1919 Observer.changingInstr(MI); 1920 1921 if (TypeIdx == 0) { 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1923 widenScalarDst(MI, WideTy); 1924 } else { 1925 assert(TypeIdx == 1); 1926 // The "number of bits to shift" operand must preserve its value as an 1927 // unsigned integer: 1928 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1929 } 1930 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 1934 case TargetOpcode::G_SDIV: 1935 case TargetOpcode::G_SREM: 1936 case TargetOpcode::G_SMIN: 1937 case TargetOpcode::G_SMAX: 1938 Observer.changingInstr(MI); 1939 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1940 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1941 widenScalarDst(MI, WideTy); 1942 Observer.changedInstr(MI); 1943 return Legalized; 1944 1945 case TargetOpcode::G_ASHR: 1946 case TargetOpcode::G_LSHR: 1947 Observer.changingInstr(MI); 1948 1949 if (TypeIdx == 0) { 1950 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1951 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1952 1953 widenScalarSrc(MI, WideTy, 1, CvtOp); 1954 widenScalarDst(MI, WideTy); 1955 } else { 1956 assert(TypeIdx == 1); 1957 // The "number of bits to shift" operand must preserve its value as an 1958 // unsigned integer: 1959 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1960 } 1961 1962 Observer.changedInstr(MI); 1963 return Legalized; 1964 case TargetOpcode::G_UDIV: 1965 case TargetOpcode::G_UREM: 1966 case TargetOpcode::G_UMIN: 1967 case TargetOpcode::G_UMAX: 1968 Observer.changingInstr(MI); 1969 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1970 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1971 widenScalarDst(MI, WideTy); 1972 Observer.changedInstr(MI); 1973 return Legalized; 1974 1975 case TargetOpcode::G_SELECT: 1976 Observer.changingInstr(MI); 1977 if (TypeIdx == 0) { 1978 // Perform operation at larger width (any extension is fine here, high 1979 // bits don't affect the result) and then truncate the result back to the 1980 // original type. 1981 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1982 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1983 widenScalarDst(MI, WideTy); 1984 } else { 1985 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1986 // Explicit extension is required here since high bits affect the result. 1987 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1988 } 1989 Observer.changedInstr(MI); 1990 return Legalized; 1991 1992 case TargetOpcode::G_FPTOSI: 1993 case TargetOpcode::G_FPTOUI: 1994 Observer.changingInstr(MI); 1995 1996 if (TypeIdx == 0) 1997 widenScalarDst(MI, WideTy); 1998 else 1999 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2000 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 case TargetOpcode::G_SITOFP: 2004 Observer.changingInstr(MI); 2005 2006 if (TypeIdx == 0) 2007 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2008 else 2009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2010 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_UITOFP: 2014 Observer.changingInstr(MI); 2015 2016 if (TypeIdx == 0) 2017 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2018 else 2019 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2020 2021 Observer.changedInstr(MI); 2022 return Legalized; 2023 case TargetOpcode::G_LOAD: 2024 case TargetOpcode::G_SEXTLOAD: 2025 case TargetOpcode::G_ZEXTLOAD: 2026 Observer.changingInstr(MI); 2027 widenScalarDst(MI, WideTy); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 2031 case TargetOpcode::G_STORE: { 2032 if (TypeIdx != 0) 2033 return UnableToLegalize; 2034 2035 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2036 if (!Ty.isScalar()) 2037 return UnableToLegalize; 2038 2039 Observer.changingInstr(MI); 2040 2041 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2042 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2043 widenScalarSrc(MI, WideTy, 0, ExtType); 2044 2045 Observer.changedInstr(MI); 2046 return Legalized; 2047 } 2048 case TargetOpcode::G_CONSTANT: { 2049 MachineOperand &SrcMO = MI.getOperand(1); 2050 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2051 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2052 MRI.getType(MI.getOperand(0).getReg())); 2053 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2054 ExtOpc == TargetOpcode::G_ANYEXT) && 2055 "Illegal Extend"); 2056 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2057 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2058 ? SrcVal.sext(WideTy.getSizeInBits()) 2059 : SrcVal.zext(WideTy.getSizeInBits()); 2060 Observer.changingInstr(MI); 2061 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2062 2063 widenScalarDst(MI, WideTy); 2064 Observer.changedInstr(MI); 2065 return Legalized; 2066 } 2067 case TargetOpcode::G_FCONSTANT: { 2068 MachineOperand &SrcMO = MI.getOperand(1); 2069 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2070 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2071 bool LosesInfo; 2072 switch (WideTy.getSizeInBits()) { 2073 case 32: 2074 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2075 &LosesInfo); 2076 break; 2077 case 64: 2078 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2079 &LosesInfo); 2080 break; 2081 default: 2082 return UnableToLegalize; 2083 } 2084 2085 assert(!LosesInfo && "extend should always be lossless"); 2086 2087 Observer.changingInstr(MI); 2088 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2089 2090 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2091 Observer.changedInstr(MI); 2092 return Legalized; 2093 } 2094 case TargetOpcode::G_IMPLICIT_DEF: { 2095 Observer.changingInstr(MI); 2096 widenScalarDst(MI, WideTy); 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 } 2100 case TargetOpcode::G_BRCOND: 2101 Observer.changingInstr(MI); 2102 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2103 Observer.changedInstr(MI); 2104 return Legalized; 2105 2106 case TargetOpcode::G_FCMP: 2107 Observer.changingInstr(MI); 2108 if (TypeIdx == 0) 2109 widenScalarDst(MI, WideTy); 2110 else { 2111 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2112 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2113 } 2114 Observer.changedInstr(MI); 2115 return Legalized; 2116 2117 case TargetOpcode::G_ICMP: 2118 Observer.changingInstr(MI); 2119 if (TypeIdx == 0) 2120 widenScalarDst(MI, WideTy); 2121 else { 2122 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2123 MI.getOperand(1).getPredicate())) 2124 ? TargetOpcode::G_SEXT 2125 : TargetOpcode::G_ZEXT; 2126 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2127 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2128 } 2129 Observer.changedInstr(MI); 2130 return Legalized; 2131 2132 case TargetOpcode::G_PTR_ADD: 2133 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2134 Observer.changingInstr(MI); 2135 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2136 Observer.changedInstr(MI); 2137 return Legalized; 2138 2139 case TargetOpcode::G_PHI: { 2140 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2141 2142 Observer.changingInstr(MI); 2143 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2144 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2145 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2146 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2147 } 2148 2149 MachineBasicBlock &MBB = *MI.getParent(); 2150 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2151 widenScalarDst(MI, WideTy); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 } 2155 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2156 if (TypeIdx == 0) { 2157 Register VecReg = MI.getOperand(1).getReg(); 2158 LLT VecTy = MRI.getType(VecReg); 2159 Observer.changingInstr(MI); 2160 2161 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2162 WideTy.getSizeInBits()), 2163 1, TargetOpcode::G_SEXT); 2164 2165 widenScalarDst(MI, WideTy, 0); 2166 Observer.changedInstr(MI); 2167 return Legalized; 2168 } 2169 2170 if (TypeIdx != 2) 2171 return UnableToLegalize; 2172 Observer.changingInstr(MI); 2173 // TODO: Probably should be zext 2174 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2175 Observer.changedInstr(MI); 2176 return Legalized; 2177 } 2178 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2179 if (TypeIdx == 1) { 2180 Observer.changingInstr(MI); 2181 2182 Register VecReg = MI.getOperand(1).getReg(); 2183 LLT VecTy = MRI.getType(VecReg); 2184 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2185 2186 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2187 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2188 widenScalarDst(MI, WideVecTy, 0); 2189 Observer.changedInstr(MI); 2190 return Legalized; 2191 } 2192 2193 if (TypeIdx == 2) { 2194 Observer.changingInstr(MI); 2195 // TODO: Probably should be zext 2196 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2197 Observer.changedInstr(MI); 2198 return Legalized; 2199 } 2200 2201 return UnableToLegalize; 2202 } 2203 case TargetOpcode::G_FADD: 2204 case TargetOpcode::G_FMUL: 2205 case TargetOpcode::G_FSUB: 2206 case TargetOpcode::G_FMA: 2207 case TargetOpcode::G_FMAD: 2208 case TargetOpcode::G_FNEG: 2209 case TargetOpcode::G_FABS: 2210 case TargetOpcode::G_FCANONICALIZE: 2211 case TargetOpcode::G_FMINNUM: 2212 case TargetOpcode::G_FMAXNUM: 2213 case TargetOpcode::G_FMINNUM_IEEE: 2214 case TargetOpcode::G_FMAXNUM_IEEE: 2215 case TargetOpcode::G_FMINIMUM: 2216 case TargetOpcode::G_FMAXIMUM: 2217 case TargetOpcode::G_FDIV: 2218 case TargetOpcode::G_FREM: 2219 case TargetOpcode::G_FCEIL: 2220 case TargetOpcode::G_FFLOOR: 2221 case TargetOpcode::G_FCOS: 2222 case TargetOpcode::G_FSIN: 2223 case TargetOpcode::G_FLOG10: 2224 case TargetOpcode::G_FLOG: 2225 case TargetOpcode::G_FLOG2: 2226 case TargetOpcode::G_FRINT: 2227 case TargetOpcode::G_FNEARBYINT: 2228 case TargetOpcode::G_FSQRT: 2229 case TargetOpcode::G_FEXP: 2230 case TargetOpcode::G_FEXP2: 2231 case TargetOpcode::G_FPOW: 2232 case TargetOpcode::G_INTRINSIC_TRUNC: 2233 case TargetOpcode::G_INTRINSIC_ROUND: 2234 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2235 assert(TypeIdx == 0); 2236 Observer.changingInstr(MI); 2237 2238 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2239 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2240 2241 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2242 Observer.changedInstr(MI); 2243 return Legalized; 2244 case TargetOpcode::G_FPOWI: { 2245 if (TypeIdx != 0) 2246 return UnableToLegalize; 2247 Observer.changingInstr(MI); 2248 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2249 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2250 Observer.changedInstr(MI); 2251 return Legalized; 2252 } 2253 case TargetOpcode::G_INTTOPTR: 2254 if (TypeIdx != 1) 2255 return UnableToLegalize; 2256 2257 Observer.changingInstr(MI); 2258 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 case TargetOpcode::G_PTRTOINT: 2262 if (TypeIdx != 0) 2263 return UnableToLegalize; 2264 2265 Observer.changingInstr(MI); 2266 widenScalarDst(MI, WideTy, 0); 2267 Observer.changedInstr(MI); 2268 return Legalized; 2269 case TargetOpcode::G_BUILD_VECTOR: { 2270 Observer.changingInstr(MI); 2271 2272 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2273 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2274 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2275 2276 // Avoid changing the result vector type if the source element type was 2277 // requested. 2278 if (TypeIdx == 1) { 2279 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2280 } else { 2281 widenScalarDst(MI, WideTy, 0); 2282 } 2283 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 } 2287 case TargetOpcode::G_SEXT_INREG: 2288 if (TypeIdx != 0) 2289 return UnableToLegalize; 2290 2291 Observer.changingInstr(MI); 2292 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2293 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2294 Observer.changedInstr(MI); 2295 return Legalized; 2296 case TargetOpcode::G_PTRMASK: { 2297 if (TypeIdx != 1) 2298 return UnableToLegalize; 2299 Observer.changingInstr(MI); 2300 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2301 Observer.changedInstr(MI); 2302 return Legalized; 2303 } 2304 } 2305 } 2306 2307 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2308 MachineIRBuilder &B, Register Src, LLT Ty) { 2309 auto Unmerge = B.buildUnmerge(Ty, Src); 2310 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2311 Pieces.push_back(Unmerge.getReg(I)); 2312 } 2313 2314 LegalizerHelper::LegalizeResult 2315 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2316 Register Dst = MI.getOperand(0).getReg(); 2317 Register Src = MI.getOperand(1).getReg(); 2318 LLT DstTy = MRI.getType(Dst); 2319 LLT SrcTy = MRI.getType(Src); 2320 2321 if (SrcTy.isVector()) { 2322 LLT SrcEltTy = SrcTy.getElementType(); 2323 SmallVector<Register, 8> SrcRegs; 2324 2325 if (DstTy.isVector()) { 2326 int NumDstElt = DstTy.getNumElements(); 2327 int NumSrcElt = SrcTy.getNumElements(); 2328 2329 LLT DstEltTy = DstTy.getElementType(); 2330 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2331 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2332 2333 // If there's an element size mismatch, insert intermediate casts to match 2334 // the result element type. 2335 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2336 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2337 // 2338 // => 2339 // 2340 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2341 // %3:_(<2 x s8>) = G_BITCAST %2 2342 // %4:_(<2 x s8>) = G_BITCAST %3 2343 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2344 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2345 SrcPartTy = SrcEltTy; 2346 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2347 // 2348 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2349 // 2350 // => 2351 // 2352 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2353 // %3:_(s16) = G_BITCAST %2 2354 // %4:_(s16) = G_BITCAST %3 2355 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2356 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2357 DstCastTy = DstEltTy; 2358 } 2359 2360 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2361 for (Register &SrcReg : SrcRegs) 2362 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2363 } else 2364 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2365 2366 MIRBuilder.buildMerge(Dst, SrcRegs); 2367 MI.eraseFromParent(); 2368 return Legalized; 2369 } 2370 2371 if (DstTy.isVector()) { 2372 SmallVector<Register, 8> SrcRegs; 2373 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2374 MIRBuilder.buildMerge(Dst, SrcRegs); 2375 MI.eraseFromParent(); 2376 return Legalized; 2377 } 2378 2379 return UnableToLegalize; 2380 } 2381 2382 /// Figure out the bit offset into a register when coercing a vector index for 2383 /// the wide element type. This is only for the case when promoting vector to 2384 /// one with larger elements. 2385 // 2386 /// 2387 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2388 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2389 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2390 Register Idx, 2391 unsigned NewEltSize, 2392 unsigned OldEltSize) { 2393 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2394 LLT IdxTy = B.getMRI()->getType(Idx); 2395 2396 // Now figure out the amount we need to shift to get the target bits. 2397 auto OffsetMask = B.buildConstant( 2398 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2399 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2400 return B.buildShl(IdxTy, OffsetIdx, 2401 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2402 } 2403 2404 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2405 /// is casting to a vector with a smaller element size, perform multiple element 2406 /// extracts and merge the results. If this is coercing to a vector with larger 2407 /// elements, index the bitcasted vector and extract the target element with bit 2408 /// operations. This is intended to force the indexing in the native register 2409 /// size for architectures that can dynamically index the register file. 2410 LegalizerHelper::LegalizeResult 2411 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2412 LLT CastTy) { 2413 if (TypeIdx != 1) 2414 return UnableToLegalize; 2415 2416 Register Dst = MI.getOperand(0).getReg(); 2417 Register SrcVec = MI.getOperand(1).getReg(); 2418 Register Idx = MI.getOperand(2).getReg(); 2419 LLT SrcVecTy = MRI.getType(SrcVec); 2420 LLT IdxTy = MRI.getType(Idx); 2421 2422 LLT SrcEltTy = SrcVecTy.getElementType(); 2423 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2424 unsigned OldNumElts = SrcVecTy.getNumElements(); 2425 2426 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2427 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2428 2429 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2430 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2431 if (NewNumElts > OldNumElts) { 2432 // Decreasing the vector element size 2433 // 2434 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2435 // => 2436 // v4i32:castx = bitcast x:v2i64 2437 // 2438 // i64 = bitcast 2439 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2440 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2441 // 2442 if (NewNumElts % OldNumElts != 0) 2443 return UnableToLegalize; 2444 2445 // Type of the intermediate result vector. 2446 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2447 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2448 2449 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2450 2451 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2452 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2453 2454 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2455 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2456 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2457 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2458 NewOps[I] = Elt.getReg(0); 2459 } 2460 2461 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2462 MIRBuilder.buildBitcast(Dst, NewVec); 2463 MI.eraseFromParent(); 2464 return Legalized; 2465 } 2466 2467 if (NewNumElts < OldNumElts) { 2468 if (NewEltSize % OldEltSize != 0) 2469 return UnableToLegalize; 2470 2471 // This only depends on powers of 2 because we use bit tricks to figure out 2472 // the bit offset we need to shift to get the target element. A general 2473 // expansion could emit division/multiply. 2474 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2475 return UnableToLegalize; 2476 2477 // Increasing the vector element size. 2478 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2479 // 2480 // => 2481 // 2482 // %cast = G_BITCAST %vec 2483 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2484 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2485 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2486 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2487 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2488 // %elt = G_TRUNC %elt_bits 2489 2490 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2491 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2492 2493 // Divide to get the index in the wider element type. 2494 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2495 2496 Register WideElt = CastVec; 2497 if (CastTy.isVector()) { 2498 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2499 ScaledIdx).getReg(0); 2500 } 2501 2502 // Compute the bit offset into the register of the target element. 2503 Register OffsetBits = getBitcastWiderVectorElementOffset( 2504 MIRBuilder, Idx, NewEltSize, OldEltSize); 2505 2506 // Shift the wide element to get the target element. 2507 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2508 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2509 MI.eraseFromParent(); 2510 return Legalized; 2511 } 2512 2513 return UnableToLegalize; 2514 } 2515 2516 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2517 /// TargetReg, while preserving other bits in \p TargetReg. 2518 /// 2519 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2520 static Register buildBitFieldInsert(MachineIRBuilder &B, 2521 Register TargetReg, Register InsertReg, 2522 Register OffsetBits) { 2523 LLT TargetTy = B.getMRI()->getType(TargetReg); 2524 LLT InsertTy = B.getMRI()->getType(InsertReg); 2525 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2526 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2527 2528 // Produce a bitmask of the value to insert 2529 auto EltMask = B.buildConstant( 2530 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2531 InsertTy.getSizeInBits())); 2532 // Shift it into position 2533 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2534 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2535 2536 // Clear out the bits in the wide element 2537 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2538 2539 // The value to insert has all zeros already, so stick it into the masked 2540 // wide element. 2541 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2542 } 2543 2544 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2545 /// is increasing the element size, perform the indexing in the target element 2546 /// type, and use bit operations to insert at the element position. This is 2547 /// intended for architectures that can dynamically index the register file and 2548 /// want to force indexing in the native register size. 2549 LegalizerHelper::LegalizeResult 2550 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2551 LLT CastTy) { 2552 if (TypeIdx != 0) 2553 return UnableToLegalize; 2554 2555 Register Dst = MI.getOperand(0).getReg(); 2556 Register SrcVec = MI.getOperand(1).getReg(); 2557 Register Val = MI.getOperand(2).getReg(); 2558 Register Idx = MI.getOperand(3).getReg(); 2559 2560 LLT VecTy = MRI.getType(Dst); 2561 LLT IdxTy = MRI.getType(Idx); 2562 2563 LLT VecEltTy = VecTy.getElementType(); 2564 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2565 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2566 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2567 2568 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2569 unsigned OldNumElts = VecTy.getNumElements(); 2570 2571 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2572 if (NewNumElts < OldNumElts) { 2573 if (NewEltSize % OldEltSize != 0) 2574 return UnableToLegalize; 2575 2576 // This only depends on powers of 2 because we use bit tricks to figure out 2577 // the bit offset we need to shift to get the target element. A general 2578 // expansion could emit division/multiply. 2579 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2580 return UnableToLegalize; 2581 2582 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2583 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2584 2585 // Divide to get the index in the wider element type. 2586 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2587 2588 Register ExtractedElt = CastVec; 2589 if (CastTy.isVector()) { 2590 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2591 ScaledIdx).getReg(0); 2592 } 2593 2594 // Compute the bit offset into the register of the target element. 2595 Register OffsetBits = getBitcastWiderVectorElementOffset( 2596 MIRBuilder, Idx, NewEltSize, OldEltSize); 2597 2598 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2599 Val, OffsetBits); 2600 if (CastTy.isVector()) { 2601 InsertedElt = MIRBuilder.buildInsertVectorElement( 2602 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2603 } 2604 2605 MIRBuilder.buildBitcast(Dst, InsertedElt); 2606 MI.eraseFromParent(); 2607 return Legalized; 2608 } 2609 2610 return UnableToLegalize; 2611 } 2612 2613 LegalizerHelper::LegalizeResult 2614 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2615 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2616 Register DstReg = MI.getOperand(0).getReg(); 2617 Register PtrReg = MI.getOperand(1).getReg(); 2618 LLT DstTy = MRI.getType(DstReg); 2619 auto &MMO = **MI.memoperands_begin(); 2620 2621 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2622 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2623 // This load needs splitting into power of 2 sized loads. 2624 if (DstTy.isVector()) 2625 return UnableToLegalize; 2626 if (isPowerOf2_32(DstTy.getSizeInBits())) 2627 return UnableToLegalize; // Don't know what we're being asked to do. 2628 2629 // Our strategy here is to generate anyextending loads for the smaller 2630 // types up to next power-2 result type, and then combine the two larger 2631 // result values together, before truncating back down to the non-pow-2 2632 // type. 2633 // E.g. v1 = i24 load => 2634 // v2 = i32 zextload (2 byte) 2635 // v3 = i32 load (1 byte) 2636 // v4 = i32 shl v3, 16 2637 // v5 = i32 or v4, v2 2638 // v1 = i24 trunc v5 2639 // By doing this we generate the correct truncate which should get 2640 // combined away as an artifact with a matching extend. 2641 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2642 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2643 2644 MachineFunction &MF = MIRBuilder.getMF(); 2645 MachineMemOperand *LargeMMO = 2646 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2647 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2648 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2649 2650 LLT PtrTy = MRI.getType(PtrReg); 2651 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2652 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2653 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2654 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2655 auto LargeLoad = MIRBuilder.buildLoadInstr( 2656 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2657 2658 auto OffsetCst = MIRBuilder.buildConstant( 2659 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2660 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2661 auto SmallPtr = 2662 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2663 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2664 *SmallMMO); 2665 2666 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2667 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2668 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2669 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2670 MI.eraseFromParent(); 2671 return Legalized; 2672 } 2673 2674 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2675 MI.eraseFromParent(); 2676 return Legalized; 2677 } 2678 2679 if (DstTy.isScalar()) { 2680 Register TmpReg = 2681 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2682 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2683 switch (MI.getOpcode()) { 2684 default: 2685 llvm_unreachable("Unexpected opcode"); 2686 case TargetOpcode::G_LOAD: 2687 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2688 break; 2689 case TargetOpcode::G_SEXTLOAD: 2690 MIRBuilder.buildSExt(DstReg, TmpReg); 2691 break; 2692 case TargetOpcode::G_ZEXTLOAD: 2693 MIRBuilder.buildZExt(DstReg, TmpReg); 2694 break; 2695 } 2696 2697 MI.eraseFromParent(); 2698 return Legalized; 2699 } 2700 2701 return UnableToLegalize; 2702 } 2703 2704 LegalizerHelper::LegalizeResult 2705 LegalizerHelper::lowerStore(MachineInstr &MI) { 2706 // Lower a non-power of 2 store into multiple pow-2 stores. 2707 // E.g. split an i24 store into an i16 store + i8 store. 2708 // We do this by first extending the stored value to the next largest power 2709 // of 2 type, and then using truncating stores to store the components. 2710 // By doing this, likewise with G_LOAD, generate an extend that can be 2711 // artifact-combined away instead of leaving behind extracts. 2712 Register SrcReg = MI.getOperand(0).getReg(); 2713 Register PtrReg = MI.getOperand(1).getReg(); 2714 LLT SrcTy = MRI.getType(SrcReg); 2715 MachineMemOperand &MMO = **MI.memoperands_begin(); 2716 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2717 return UnableToLegalize; 2718 if (SrcTy.isVector()) 2719 return UnableToLegalize; 2720 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2721 return UnableToLegalize; // Don't know what we're being asked to do. 2722 2723 // Extend to the next pow-2. 2724 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2725 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2726 2727 // Obtain the smaller value by shifting away the larger value. 2728 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2729 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2730 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2731 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2732 2733 // Generate the PtrAdd and truncating stores. 2734 LLT PtrTy = MRI.getType(PtrReg); 2735 auto OffsetCst = MIRBuilder.buildConstant( 2736 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2737 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2738 auto SmallPtr = 2739 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2740 2741 MachineFunction &MF = MIRBuilder.getMF(); 2742 MachineMemOperand *LargeMMO = 2743 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2744 MachineMemOperand *SmallMMO = 2745 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2746 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2747 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2748 MI.eraseFromParent(); 2749 return Legalized; 2750 } 2751 2752 LegalizerHelper::LegalizeResult 2753 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2754 switch (MI.getOpcode()) { 2755 case TargetOpcode::G_LOAD: { 2756 if (TypeIdx != 0) 2757 return UnableToLegalize; 2758 2759 Observer.changingInstr(MI); 2760 bitcastDst(MI, CastTy, 0); 2761 Observer.changedInstr(MI); 2762 return Legalized; 2763 } 2764 case TargetOpcode::G_STORE: { 2765 if (TypeIdx != 0) 2766 return UnableToLegalize; 2767 2768 Observer.changingInstr(MI); 2769 bitcastSrc(MI, CastTy, 0); 2770 Observer.changedInstr(MI); 2771 return Legalized; 2772 } 2773 case TargetOpcode::G_SELECT: { 2774 if (TypeIdx != 0) 2775 return UnableToLegalize; 2776 2777 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2778 LLVM_DEBUG( 2779 dbgs() << "bitcast action not implemented for vector select\n"); 2780 return UnableToLegalize; 2781 } 2782 2783 Observer.changingInstr(MI); 2784 bitcastSrc(MI, CastTy, 2); 2785 bitcastSrc(MI, CastTy, 3); 2786 bitcastDst(MI, CastTy, 0); 2787 Observer.changedInstr(MI); 2788 return Legalized; 2789 } 2790 case TargetOpcode::G_AND: 2791 case TargetOpcode::G_OR: 2792 case TargetOpcode::G_XOR: { 2793 Observer.changingInstr(MI); 2794 bitcastSrc(MI, CastTy, 1); 2795 bitcastSrc(MI, CastTy, 2); 2796 bitcastDst(MI, CastTy, 0); 2797 Observer.changedInstr(MI); 2798 return Legalized; 2799 } 2800 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2801 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2802 case TargetOpcode::G_INSERT_VECTOR_ELT: 2803 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2804 default: 2805 return UnableToLegalize; 2806 } 2807 } 2808 2809 // Legalize an instruction by changing the opcode in place. 2810 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2811 Observer.changingInstr(MI); 2812 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2813 Observer.changedInstr(MI); 2814 } 2815 2816 LegalizerHelper::LegalizeResult 2817 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2818 using namespace TargetOpcode; 2819 2820 switch(MI.getOpcode()) { 2821 default: 2822 return UnableToLegalize; 2823 case TargetOpcode::G_BITCAST: 2824 return lowerBitcast(MI); 2825 case TargetOpcode::G_SREM: 2826 case TargetOpcode::G_UREM: { 2827 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2828 auto Quot = 2829 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2830 {MI.getOperand(1), MI.getOperand(2)}); 2831 2832 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2833 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2834 MI.eraseFromParent(); 2835 return Legalized; 2836 } 2837 case TargetOpcode::G_SADDO: 2838 case TargetOpcode::G_SSUBO: 2839 return lowerSADDO_SSUBO(MI); 2840 case TargetOpcode::G_SMULO: 2841 case TargetOpcode::G_UMULO: { 2842 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2843 // result. 2844 Register Res = MI.getOperand(0).getReg(); 2845 Register Overflow = MI.getOperand(1).getReg(); 2846 Register LHS = MI.getOperand(2).getReg(); 2847 Register RHS = MI.getOperand(3).getReg(); 2848 LLT Ty = MRI.getType(Res); 2849 2850 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2851 ? TargetOpcode::G_SMULH 2852 : TargetOpcode::G_UMULH; 2853 2854 Observer.changingInstr(MI); 2855 const auto &TII = MIRBuilder.getTII(); 2856 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2857 MI.RemoveOperand(1); 2858 Observer.changedInstr(MI); 2859 2860 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2861 2862 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2863 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2864 2865 // For *signed* multiply, overflow is detected by checking: 2866 // (hi != (lo >> bitwidth-1)) 2867 if (Opcode == TargetOpcode::G_SMULH) { 2868 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2869 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2870 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2871 } else { 2872 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2873 } 2874 return Legalized; 2875 } 2876 case TargetOpcode::G_FNEG: { 2877 Register Res = MI.getOperand(0).getReg(); 2878 LLT Ty = MRI.getType(Res); 2879 2880 // TODO: Handle vector types once we are able to 2881 // represent them. 2882 if (Ty.isVector()) 2883 return UnableToLegalize; 2884 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2885 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2886 if (!ZeroTy) 2887 return UnableToLegalize; 2888 ConstantFP &ZeroForNegation = 2889 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2890 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2891 Register SubByReg = MI.getOperand(1).getReg(); 2892 Register ZeroReg = Zero.getReg(0); 2893 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2894 MI.eraseFromParent(); 2895 return Legalized; 2896 } 2897 case TargetOpcode::G_FSUB: { 2898 Register Res = MI.getOperand(0).getReg(); 2899 LLT Ty = MRI.getType(Res); 2900 2901 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2902 // First, check if G_FNEG is marked as Lower. If so, we may 2903 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2904 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2905 return UnableToLegalize; 2906 Register LHS = MI.getOperand(1).getReg(); 2907 Register RHS = MI.getOperand(2).getReg(); 2908 Register Neg = MRI.createGenericVirtualRegister(Ty); 2909 MIRBuilder.buildFNeg(Neg, RHS); 2910 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2911 MI.eraseFromParent(); 2912 return Legalized; 2913 } 2914 case TargetOpcode::G_FMAD: 2915 return lowerFMad(MI); 2916 case TargetOpcode::G_FFLOOR: 2917 return lowerFFloor(MI); 2918 case TargetOpcode::G_INTRINSIC_ROUND: 2919 return lowerIntrinsicRound(MI); 2920 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2921 // Since round even is the assumed rounding mode for unconstrained FP 2922 // operations, rint and roundeven are the same operation. 2923 changeOpcode(MI, TargetOpcode::G_FRINT); 2924 return Legalized; 2925 } 2926 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2927 Register OldValRes = MI.getOperand(0).getReg(); 2928 Register SuccessRes = MI.getOperand(1).getReg(); 2929 Register Addr = MI.getOperand(2).getReg(); 2930 Register CmpVal = MI.getOperand(3).getReg(); 2931 Register NewVal = MI.getOperand(4).getReg(); 2932 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2933 **MI.memoperands_begin()); 2934 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2935 MI.eraseFromParent(); 2936 return Legalized; 2937 } 2938 case TargetOpcode::G_LOAD: 2939 case TargetOpcode::G_SEXTLOAD: 2940 case TargetOpcode::G_ZEXTLOAD: 2941 return lowerLoad(MI); 2942 case TargetOpcode::G_STORE: 2943 return lowerStore(MI); 2944 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2945 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2946 case TargetOpcode::G_CTLZ: 2947 case TargetOpcode::G_CTTZ: 2948 case TargetOpcode::G_CTPOP: 2949 return lowerBitCount(MI); 2950 case G_UADDO: { 2951 Register Res = MI.getOperand(0).getReg(); 2952 Register CarryOut = MI.getOperand(1).getReg(); 2953 Register LHS = MI.getOperand(2).getReg(); 2954 Register RHS = MI.getOperand(3).getReg(); 2955 2956 MIRBuilder.buildAdd(Res, LHS, RHS); 2957 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2958 2959 MI.eraseFromParent(); 2960 return Legalized; 2961 } 2962 case G_UADDE: { 2963 Register Res = MI.getOperand(0).getReg(); 2964 Register CarryOut = MI.getOperand(1).getReg(); 2965 Register LHS = MI.getOperand(2).getReg(); 2966 Register RHS = MI.getOperand(3).getReg(); 2967 Register CarryIn = MI.getOperand(4).getReg(); 2968 LLT Ty = MRI.getType(Res); 2969 2970 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2971 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2972 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2973 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2974 2975 MI.eraseFromParent(); 2976 return Legalized; 2977 } 2978 case G_USUBO: { 2979 Register Res = MI.getOperand(0).getReg(); 2980 Register BorrowOut = MI.getOperand(1).getReg(); 2981 Register LHS = MI.getOperand(2).getReg(); 2982 Register RHS = MI.getOperand(3).getReg(); 2983 2984 MIRBuilder.buildSub(Res, LHS, RHS); 2985 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2986 2987 MI.eraseFromParent(); 2988 return Legalized; 2989 } 2990 case G_USUBE: { 2991 Register Res = MI.getOperand(0).getReg(); 2992 Register BorrowOut = MI.getOperand(1).getReg(); 2993 Register LHS = MI.getOperand(2).getReg(); 2994 Register RHS = MI.getOperand(3).getReg(); 2995 Register BorrowIn = MI.getOperand(4).getReg(); 2996 const LLT CondTy = MRI.getType(BorrowOut); 2997 const LLT Ty = MRI.getType(Res); 2998 2999 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3000 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3001 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3002 3003 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3004 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3005 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3006 3007 MI.eraseFromParent(); 3008 return Legalized; 3009 } 3010 case G_UITOFP: 3011 return lowerUITOFP(MI); 3012 case G_SITOFP: 3013 return lowerSITOFP(MI); 3014 case G_FPTOUI: 3015 return lowerFPTOUI(MI); 3016 case G_FPTOSI: 3017 return lowerFPTOSI(MI); 3018 case G_FPTRUNC: 3019 return lowerFPTRUNC(MI); 3020 case G_FPOWI: 3021 return lowerFPOWI(MI); 3022 case G_SMIN: 3023 case G_SMAX: 3024 case G_UMIN: 3025 case G_UMAX: 3026 return lowerMinMax(MI); 3027 case G_FCOPYSIGN: 3028 return lowerFCopySign(MI); 3029 case G_FMINNUM: 3030 case G_FMAXNUM: 3031 return lowerFMinNumMaxNum(MI); 3032 case G_MERGE_VALUES: 3033 return lowerMergeValues(MI); 3034 case G_UNMERGE_VALUES: 3035 return lowerUnmergeValues(MI); 3036 case TargetOpcode::G_SEXT_INREG: { 3037 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3038 int64_t SizeInBits = MI.getOperand(2).getImm(); 3039 3040 Register DstReg = MI.getOperand(0).getReg(); 3041 Register SrcReg = MI.getOperand(1).getReg(); 3042 LLT DstTy = MRI.getType(DstReg); 3043 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3044 3045 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3046 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3047 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3048 MI.eraseFromParent(); 3049 return Legalized; 3050 } 3051 case G_EXTRACT_VECTOR_ELT: 3052 case G_INSERT_VECTOR_ELT: 3053 return lowerExtractInsertVectorElt(MI); 3054 case G_SHUFFLE_VECTOR: 3055 return lowerShuffleVector(MI); 3056 case G_DYN_STACKALLOC: 3057 return lowerDynStackAlloc(MI); 3058 case G_EXTRACT: 3059 return lowerExtract(MI); 3060 case G_INSERT: 3061 return lowerInsert(MI); 3062 case G_BSWAP: 3063 return lowerBswap(MI); 3064 case G_BITREVERSE: 3065 return lowerBitreverse(MI); 3066 case G_READ_REGISTER: 3067 case G_WRITE_REGISTER: 3068 return lowerReadWriteRegister(MI); 3069 case G_UADDSAT: 3070 case G_USUBSAT: { 3071 // Try to make a reasonable guess about which lowering strategy to use. The 3072 // target can override this with custom lowering and calling the 3073 // implementation functions. 3074 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3075 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3076 return lowerAddSubSatToMinMax(MI); 3077 return lowerAddSubSatToAddoSubo(MI); 3078 } 3079 case G_SADDSAT: 3080 case G_SSUBSAT: { 3081 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3082 3083 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3084 // since it's a shorter expansion. However, we would need to figure out the 3085 // preferred boolean type for the carry out for the query. 3086 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3087 return lowerAddSubSatToMinMax(MI); 3088 return lowerAddSubSatToAddoSubo(MI); 3089 } 3090 case G_SSHLSAT: 3091 case G_USHLSAT: 3092 return lowerShlSat(MI); 3093 case G_ABS: { 3094 // Expand %res = G_ABS %a into: 3095 // %v1 = G_ASHR %a, scalar_size-1 3096 // %v2 = G_ADD %a, %v1 3097 // %res = G_XOR %v2, %v1 3098 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3099 Register OpReg = MI.getOperand(1).getReg(); 3100 auto ShiftAmt = 3101 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3102 auto Shift = 3103 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3104 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3105 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3106 MI.eraseFromParent(); 3107 return Legalized; 3108 } 3109 } 3110 } 3111 3112 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3113 Align MinAlign) const { 3114 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3115 // datalayout for the preferred alignment. Also there should be a target hook 3116 // for this to allow targets to reduce the alignment and ignore the 3117 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3118 // the type. 3119 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3120 } 3121 3122 MachineInstrBuilder 3123 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3124 MachinePointerInfo &PtrInfo) { 3125 MachineFunction &MF = MIRBuilder.getMF(); 3126 const DataLayout &DL = MIRBuilder.getDataLayout(); 3127 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3128 3129 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3130 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3131 3132 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3133 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3134 } 3135 3136 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3137 LLT VecTy) { 3138 int64_t IdxVal; 3139 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3140 return IdxReg; 3141 3142 LLT IdxTy = B.getMRI()->getType(IdxReg); 3143 unsigned NElts = VecTy.getNumElements(); 3144 if (isPowerOf2_32(NElts)) { 3145 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3146 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3147 } 3148 3149 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3150 .getReg(0); 3151 } 3152 3153 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3154 Register Index) { 3155 LLT EltTy = VecTy.getElementType(); 3156 3157 // Calculate the element offset and add it to the pointer. 3158 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3159 assert(EltSize * 8 == EltTy.getSizeInBits() && 3160 "Converting bits to bytes lost precision"); 3161 3162 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3163 3164 LLT IdxTy = MRI.getType(Index); 3165 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3166 MIRBuilder.buildConstant(IdxTy, EltSize)); 3167 3168 LLT PtrTy = MRI.getType(VecPtr); 3169 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3170 } 3171 3172 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3173 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3174 Register DstReg = MI.getOperand(0).getReg(); 3175 LLT DstTy = MRI.getType(DstReg); 3176 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3177 3178 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3179 3180 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3181 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3182 3183 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3184 MI.eraseFromParent(); 3185 return Legalized; 3186 } 3187 3188 // Handle splitting vector operations which need to have the same number of 3189 // elements in each type index, but each type index may have a different element 3190 // type. 3191 // 3192 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3193 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3194 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3195 // 3196 // Also handles some irregular breakdown cases, e.g. 3197 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3198 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3199 // s64 = G_SHL s64, s32 3200 LegalizerHelper::LegalizeResult 3201 LegalizerHelper::fewerElementsVectorMultiEltType( 3202 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3203 if (TypeIdx != 0) 3204 return UnableToLegalize; 3205 3206 const LLT NarrowTy0 = NarrowTyArg; 3207 const unsigned NewNumElts = 3208 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3209 3210 const Register DstReg = MI.getOperand(0).getReg(); 3211 LLT DstTy = MRI.getType(DstReg); 3212 LLT LeftoverTy0; 3213 3214 // All of the operands need to have the same number of elements, so if we can 3215 // determine a type breakdown for the result type, we can for all of the 3216 // source types. 3217 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3218 if (NumParts < 0) 3219 return UnableToLegalize; 3220 3221 SmallVector<MachineInstrBuilder, 4> NewInsts; 3222 3223 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3224 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3225 3226 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3227 Register SrcReg = MI.getOperand(I).getReg(); 3228 LLT SrcTyI = MRI.getType(SrcReg); 3229 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3230 LLT LeftoverTyI; 3231 3232 // Split this operand into the requested typed registers, and any leftover 3233 // required to reproduce the original type. 3234 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3235 LeftoverRegs)) 3236 return UnableToLegalize; 3237 3238 if (I == 1) { 3239 // For the first operand, create an instruction for each part and setup 3240 // the result. 3241 for (Register PartReg : PartRegs) { 3242 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3243 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3244 .addDef(PartDstReg) 3245 .addUse(PartReg)); 3246 DstRegs.push_back(PartDstReg); 3247 } 3248 3249 for (Register LeftoverReg : LeftoverRegs) { 3250 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3251 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3252 .addDef(PartDstReg) 3253 .addUse(LeftoverReg)); 3254 LeftoverDstRegs.push_back(PartDstReg); 3255 } 3256 } else { 3257 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3258 3259 // Add the newly created operand splits to the existing instructions. The 3260 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3261 // pieces. 3262 unsigned InstCount = 0; 3263 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3264 NewInsts[InstCount++].addUse(PartRegs[J]); 3265 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3266 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3267 } 3268 3269 PartRegs.clear(); 3270 LeftoverRegs.clear(); 3271 } 3272 3273 // Insert the newly built operations and rebuild the result register. 3274 for (auto &MIB : NewInsts) 3275 MIRBuilder.insertInstr(MIB); 3276 3277 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3278 3279 MI.eraseFromParent(); 3280 return Legalized; 3281 } 3282 3283 LegalizerHelper::LegalizeResult 3284 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3285 LLT NarrowTy) { 3286 if (TypeIdx != 0) 3287 return UnableToLegalize; 3288 3289 Register DstReg = MI.getOperand(0).getReg(); 3290 Register SrcReg = MI.getOperand(1).getReg(); 3291 LLT DstTy = MRI.getType(DstReg); 3292 LLT SrcTy = MRI.getType(SrcReg); 3293 3294 LLT NarrowTy0 = NarrowTy; 3295 LLT NarrowTy1; 3296 unsigned NumParts; 3297 3298 if (NarrowTy.isVector()) { 3299 // Uneven breakdown not handled. 3300 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3301 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3302 return UnableToLegalize; 3303 3304 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3305 } else { 3306 NumParts = DstTy.getNumElements(); 3307 NarrowTy1 = SrcTy.getElementType(); 3308 } 3309 3310 SmallVector<Register, 4> SrcRegs, DstRegs; 3311 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3312 3313 for (unsigned I = 0; I < NumParts; ++I) { 3314 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3315 MachineInstr *NewInst = 3316 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3317 3318 NewInst->setFlags(MI.getFlags()); 3319 DstRegs.push_back(DstReg); 3320 } 3321 3322 if (NarrowTy.isVector()) 3323 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3324 else 3325 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3326 3327 MI.eraseFromParent(); 3328 return Legalized; 3329 } 3330 3331 LegalizerHelper::LegalizeResult 3332 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3333 LLT NarrowTy) { 3334 Register DstReg = MI.getOperand(0).getReg(); 3335 Register Src0Reg = MI.getOperand(2).getReg(); 3336 LLT DstTy = MRI.getType(DstReg); 3337 LLT SrcTy = MRI.getType(Src0Reg); 3338 3339 unsigned NumParts; 3340 LLT NarrowTy0, NarrowTy1; 3341 3342 if (TypeIdx == 0) { 3343 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3344 unsigned OldElts = DstTy.getNumElements(); 3345 3346 NarrowTy0 = NarrowTy; 3347 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3348 NarrowTy1 = NarrowTy.isVector() ? 3349 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3350 SrcTy.getElementType(); 3351 3352 } else { 3353 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3354 unsigned OldElts = SrcTy.getNumElements(); 3355 3356 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3357 NarrowTy.getNumElements(); 3358 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3359 DstTy.getScalarSizeInBits()); 3360 NarrowTy1 = NarrowTy; 3361 } 3362 3363 // FIXME: Don't know how to handle the situation where the small vectors 3364 // aren't all the same size yet. 3365 if (NarrowTy1.isVector() && 3366 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3367 return UnableToLegalize; 3368 3369 CmpInst::Predicate Pred 3370 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3371 3372 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3373 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3374 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3375 3376 for (unsigned I = 0; I < NumParts; ++I) { 3377 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3378 DstRegs.push_back(DstReg); 3379 3380 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3381 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3382 else { 3383 MachineInstr *NewCmp 3384 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3385 NewCmp->setFlags(MI.getFlags()); 3386 } 3387 } 3388 3389 if (NarrowTy1.isVector()) 3390 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3391 else 3392 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3393 3394 MI.eraseFromParent(); 3395 return Legalized; 3396 } 3397 3398 LegalizerHelper::LegalizeResult 3399 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3400 LLT NarrowTy) { 3401 Register DstReg = MI.getOperand(0).getReg(); 3402 Register CondReg = MI.getOperand(1).getReg(); 3403 3404 unsigned NumParts = 0; 3405 LLT NarrowTy0, NarrowTy1; 3406 3407 LLT DstTy = MRI.getType(DstReg); 3408 LLT CondTy = MRI.getType(CondReg); 3409 unsigned Size = DstTy.getSizeInBits(); 3410 3411 assert(TypeIdx == 0 || CondTy.isVector()); 3412 3413 if (TypeIdx == 0) { 3414 NarrowTy0 = NarrowTy; 3415 NarrowTy1 = CondTy; 3416 3417 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3418 // FIXME: Don't know how to handle the situation where the small vectors 3419 // aren't all the same size yet. 3420 if (Size % NarrowSize != 0) 3421 return UnableToLegalize; 3422 3423 NumParts = Size / NarrowSize; 3424 3425 // Need to break down the condition type 3426 if (CondTy.isVector()) { 3427 if (CondTy.getNumElements() == NumParts) 3428 NarrowTy1 = CondTy.getElementType(); 3429 else 3430 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3431 CondTy.getScalarSizeInBits()); 3432 } 3433 } else { 3434 NumParts = CondTy.getNumElements(); 3435 if (NarrowTy.isVector()) { 3436 // TODO: Handle uneven breakdown. 3437 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3438 return UnableToLegalize; 3439 3440 return UnableToLegalize; 3441 } else { 3442 NarrowTy0 = DstTy.getElementType(); 3443 NarrowTy1 = NarrowTy; 3444 } 3445 } 3446 3447 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3448 if (CondTy.isVector()) 3449 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3450 3451 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3452 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3453 3454 for (unsigned i = 0; i < NumParts; ++i) { 3455 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3456 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3457 Src1Regs[i], Src2Regs[i]); 3458 DstRegs.push_back(DstReg); 3459 } 3460 3461 if (NarrowTy0.isVector()) 3462 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3463 else 3464 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3465 3466 MI.eraseFromParent(); 3467 return Legalized; 3468 } 3469 3470 LegalizerHelper::LegalizeResult 3471 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3472 LLT NarrowTy) { 3473 const Register DstReg = MI.getOperand(0).getReg(); 3474 LLT PhiTy = MRI.getType(DstReg); 3475 LLT LeftoverTy; 3476 3477 // All of the operands need to have the same number of elements, so if we can 3478 // determine a type breakdown for the result type, we can for all of the 3479 // source types. 3480 int NumParts, NumLeftover; 3481 std::tie(NumParts, NumLeftover) 3482 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3483 if (NumParts < 0) 3484 return UnableToLegalize; 3485 3486 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3487 SmallVector<MachineInstrBuilder, 4> NewInsts; 3488 3489 const int TotalNumParts = NumParts + NumLeftover; 3490 3491 // Insert the new phis in the result block first. 3492 for (int I = 0; I != TotalNumParts; ++I) { 3493 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3494 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3495 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3496 .addDef(PartDstReg)); 3497 if (I < NumParts) 3498 DstRegs.push_back(PartDstReg); 3499 else 3500 LeftoverDstRegs.push_back(PartDstReg); 3501 } 3502 3503 MachineBasicBlock *MBB = MI.getParent(); 3504 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3505 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3506 3507 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3508 3509 // Insert code to extract the incoming values in each predecessor block. 3510 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3511 PartRegs.clear(); 3512 LeftoverRegs.clear(); 3513 3514 Register SrcReg = MI.getOperand(I).getReg(); 3515 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3516 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3517 3518 LLT Unused; 3519 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3520 LeftoverRegs)) 3521 return UnableToLegalize; 3522 3523 // Add the newly created operand splits to the existing instructions. The 3524 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3525 // pieces. 3526 for (int J = 0; J != TotalNumParts; ++J) { 3527 MachineInstrBuilder MIB = NewInsts[J]; 3528 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3529 MIB.addMBB(&OpMBB); 3530 } 3531 } 3532 3533 MI.eraseFromParent(); 3534 return Legalized; 3535 } 3536 3537 LegalizerHelper::LegalizeResult 3538 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3539 unsigned TypeIdx, 3540 LLT NarrowTy) { 3541 if (TypeIdx != 1) 3542 return UnableToLegalize; 3543 3544 const int NumDst = MI.getNumOperands() - 1; 3545 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3546 LLT SrcTy = MRI.getType(SrcReg); 3547 3548 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3549 3550 // TODO: Create sequence of extracts. 3551 if (DstTy == NarrowTy) 3552 return UnableToLegalize; 3553 3554 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3555 if (DstTy == GCDTy) { 3556 // This would just be a copy of the same unmerge. 3557 // TODO: Create extracts, pad with undef and create intermediate merges. 3558 return UnableToLegalize; 3559 } 3560 3561 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3562 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3563 const int PartsPerUnmerge = NumDst / NumUnmerge; 3564 3565 for (int I = 0; I != NumUnmerge; ++I) { 3566 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3567 3568 for (int J = 0; J != PartsPerUnmerge; ++J) 3569 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3570 MIB.addUse(Unmerge.getReg(I)); 3571 } 3572 3573 MI.eraseFromParent(); 3574 return Legalized; 3575 } 3576 3577 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3578 // a vector 3579 // 3580 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3581 // undef as necessary. 3582 // 3583 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3584 // -> <2 x s16> 3585 // 3586 // %4:_(s16) = G_IMPLICIT_DEF 3587 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3588 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3589 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3590 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3591 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3592 LegalizerHelper::LegalizeResult 3593 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3594 LLT NarrowTy) { 3595 Register DstReg = MI.getOperand(0).getReg(); 3596 LLT DstTy = MRI.getType(DstReg); 3597 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3598 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3599 3600 // Break into a common type 3601 SmallVector<Register, 16> Parts; 3602 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3603 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3604 3605 // Build the requested new merge, padding with undef. 3606 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3607 TargetOpcode::G_ANYEXT); 3608 3609 // Pack into the original result register. 3610 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3611 3612 MI.eraseFromParent(); 3613 return Legalized; 3614 } 3615 3616 LegalizerHelper::LegalizeResult 3617 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3618 unsigned TypeIdx, 3619 LLT NarrowVecTy) { 3620 Register DstReg = MI.getOperand(0).getReg(); 3621 Register SrcVec = MI.getOperand(1).getReg(); 3622 Register InsertVal; 3623 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3624 3625 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3626 if (IsInsert) 3627 InsertVal = MI.getOperand(2).getReg(); 3628 3629 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3630 3631 // TODO: Handle total scalarization case. 3632 if (!NarrowVecTy.isVector()) 3633 return UnableToLegalize; 3634 3635 LLT VecTy = MRI.getType(SrcVec); 3636 3637 // If the index is a constant, we can really break this down as you would 3638 // expect, and index into the target size pieces. 3639 int64_t IdxVal; 3640 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3641 // Avoid out of bounds indexing the pieces. 3642 if (IdxVal >= VecTy.getNumElements()) { 3643 MIRBuilder.buildUndef(DstReg); 3644 MI.eraseFromParent(); 3645 return Legalized; 3646 } 3647 3648 SmallVector<Register, 8> VecParts; 3649 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3650 3651 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3652 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3653 TargetOpcode::G_ANYEXT); 3654 3655 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3656 3657 LLT IdxTy = MRI.getType(Idx); 3658 int64_t PartIdx = IdxVal / NewNumElts; 3659 auto NewIdx = 3660 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3661 3662 if (IsInsert) { 3663 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3664 3665 // Use the adjusted index to insert into one of the subvectors. 3666 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3667 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3668 VecParts[PartIdx] = InsertPart.getReg(0); 3669 3670 // Recombine the inserted subvector with the others to reform the result 3671 // vector. 3672 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3673 } else { 3674 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3675 } 3676 3677 MI.eraseFromParent(); 3678 return Legalized; 3679 } 3680 3681 // With a variable index, we can't perform the operation in a smaller type, so 3682 // we're forced to expand this. 3683 // 3684 // TODO: We could emit a chain of compare/select to figure out which piece to 3685 // index. 3686 return lowerExtractInsertVectorElt(MI); 3687 } 3688 3689 LegalizerHelper::LegalizeResult 3690 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3691 LLT NarrowTy) { 3692 // FIXME: Don't know how to handle secondary types yet. 3693 if (TypeIdx != 0) 3694 return UnableToLegalize; 3695 3696 MachineMemOperand *MMO = *MI.memoperands_begin(); 3697 3698 // This implementation doesn't work for atomics. Give up instead of doing 3699 // something invalid. 3700 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3701 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3702 return UnableToLegalize; 3703 3704 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3705 Register ValReg = MI.getOperand(0).getReg(); 3706 Register AddrReg = MI.getOperand(1).getReg(); 3707 LLT ValTy = MRI.getType(ValReg); 3708 3709 // FIXME: Do we need a distinct NarrowMemory legalize action? 3710 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3711 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3712 return UnableToLegalize; 3713 } 3714 3715 int NumParts = -1; 3716 int NumLeftover = -1; 3717 LLT LeftoverTy; 3718 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3719 if (IsLoad) { 3720 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3721 } else { 3722 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3723 NarrowLeftoverRegs)) { 3724 NumParts = NarrowRegs.size(); 3725 NumLeftover = NarrowLeftoverRegs.size(); 3726 } 3727 } 3728 3729 if (NumParts == -1) 3730 return UnableToLegalize; 3731 3732 LLT PtrTy = MRI.getType(AddrReg); 3733 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3734 3735 unsigned TotalSize = ValTy.getSizeInBits(); 3736 3737 // Split the load/store into PartTy sized pieces starting at Offset. If this 3738 // is a load, return the new registers in ValRegs. For a store, each elements 3739 // of ValRegs should be PartTy. Returns the next offset that needs to be 3740 // handled. 3741 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3742 unsigned Offset) -> unsigned { 3743 MachineFunction &MF = MIRBuilder.getMF(); 3744 unsigned PartSize = PartTy.getSizeInBits(); 3745 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3746 Offset += PartSize, ++Idx) { 3747 unsigned ByteSize = PartSize / 8; 3748 unsigned ByteOffset = Offset / 8; 3749 Register NewAddrReg; 3750 3751 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3752 3753 MachineMemOperand *NewMMO = 3754 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3755 3756 if (IsLoad) { 3757 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3758 ValRegs.push_back(Dst); 3759 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3760 } else { 3761 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3762 } 3763 } 3764 3765 return Offset; 3766 }; 3767 3768 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3769 3770 // Handle the rest of the register if this isn't an even type breakdown. 3771 if (LeftoverTy.isValid()) 3772 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3773 3774 if (IsLoad) { 3775 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3776 LeftoverTy, NarrowLeftoverRegs); 3777 } 3778 3779 MI.eraseFromParent(); 3780 return Legalized; 3781 } 3782 3783 LegalizerHelper::LegalizeResult 3784 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3785 LLT NarrowTy) { 3786 assert(TypeIdx == 0 && "only one type index expected"); 3787 3788 const unsigned Opc = MI.getOpcode(); 3789 const int NumOps = MI.getNumOperands() - 1; 3790 const Register DstReg = MI.getOperand(0).getReg(); 3791 const unsigned Flags = MI.getFlags(); 3792 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3793 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3794 3795 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3796 3797 // First of all check whether we are narrowing (changing the element type) 3798 // or reducing the vector elements 3799 const LLT DstTy = MRI.getType(DstReg); 3800 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3801 3802 SmallVector<Register, 8> ExtractedRegs[3]; 3803 SmallVector<Register, 8> Parts; 3804 3805 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3806 3807 // Break down all the sources into NarrowTy pieces we can operate on. This may 3808 // involve creating merges to a wider type, padded with undef. 3809 for (int I = 0; I != NumOps; ++I) { 3810 Register SrcReg = MI.getOperand(I + 1).getReg(); 3811 LLT SrcTy = MRI.getType(SrcReg); 3812 3813 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3814 // For fewerElements, this is a smaller vector with the same element type. 3815 LLT OpNarrowTy; 3816 if (IsNarrow) { 3817 OpNarrowTy = NarrowScalarTy; 3818 3819 // In case of narrowing, we need to cast vectors to scalars for this to 3820 // work properly 3821 // FIXME: Can we do without the bitcast here if we're narrowing? 3822 if (SrcTy.isVector()) { 3823 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3824 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3825 } 3826 } else { 3827 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3828 } 3829 3830 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3831 3832 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3833 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3834 TargetOpcode::G_ANYEXT); 3835 } 3836 3837 SmallVector<Register, 8> ResultRegs; 3838 3839 // Input operands for each sub-instruction. 3840 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3841 3842 int NumParts = ExtractedRegs[0].size(); 3843 const unsigned DstSize = DstTy.getSizeInBits(); 3844 const LLT DstScalarTy = LLT::scalar(DstSize); 3845 3846 // Narrowing needs to use scalar types 3847 LLT DstLCMTy, NarrowDstTy; 3848 if (IsNarrow) { 3849 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3850 NarrowDstTy = NarrowScalarTy; 3851 } else { 3852 DstLCMTy = getLCMType(DstTy, NarrowTy); 3853 NarrowDstTy = NarrowTy; 3854 } 3855 3856 // We widened the source registers to satisfy merge/unmerge size 3857 // constraints. We'll have some extra fully undef parts. 3858 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3859 3860 for (int I = 0; I != NumRealParts; ++I) { 3861 // Emit this instruction on each of the split pieces. 3862 for (int J = 0; J != NumOps; ++J) 3863 InputRegs[J] = ExtractedRegs[J][I]; 3864 3865 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3866 ResultRegs.push_back(Inst.getReg(0)); 3867 } 3868 3869 // Fill out the widened result with undef instead of creating instructions 3870 // with undef inputs. 3871 int NumUndefParts = NumParts - NumRealParts; 3872 if (NumUndefParts != 0) 3873 ResultRegs.append(NumUndefParts, 3874 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3875 3876 // Extract the possibly padded result. Use a scratch register if we need to do 3877 // a final bitcast, otherwise use the original result register. 3878 Register MergeDstReg; 3879 if (IsNarrow && DstTy.isVector()) 3880 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3881 else 3882 MergeDstReg = DstReg; 3883 3884 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3885 3886 // Recast to vector if we narrowed a vector 3887 if (IsNarrow && DstTy.isVector()) 3888 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3889 3890 MI.eraseFromParent(); 3891 return Legalized; 3892 } 3893 3894 LegalizerHelper::LegalizeResult 3895 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3896 LLT NarrowTy) { 3897 Register DstReg = MI.getOperand(0).getReg(); 3898 Register SrcReg = MI.getOperand(1).getReg(); 3899 int64_t Imm = MI.getOperand(2).getImm(); 3900 3901 LLT DstTy = MRI.getType(DstReg); 3902 3903 SmallVector<Register, 8> Parts; 3904 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3905 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3906 3907 for (Register &R : Parts) 3908 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3909 3910 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3911 3912 MI.eraseFromParent(); 3913 return Legalized; 3914 } 3915 3916 LegalizerHelper::LegalizeResult 3917 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3918 LLT NarrowTy) { 3919 using namespace TargetOpcode; 3920 3921 switch (MI.getOpcode()) { 3922 case G_IMPLICIT_DEF: 3923 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3924 case G_TRUNC: 3925 case G_AND: 3926 case G_OR: 3927 case G_XOR: 3928 case G_ADD: 3929 case G_SUB: 3930 case G_MUL: 3931 case G_PTR_ADD: 3932 case G_SMULH: 3933 case G_UMULH: 3934 case G_FADD: 3935 case G_FMUL: 3936 case G_FSUB: 3937 case G_FNEG: 3938 case G_FABS: 3939 case G_FCANONICALIZE: 3940 case G_FDIV: 3941 case G_FREM: 3942 case G_FMA: 3943 case G_FMAD: 3944 case G_FPOW: 3945 case G_FEXP: 3946 case G_FEXP2: 3947 case G_FLOG: 3948 case G_FLOG2: 3949 case G_FLOG10: 3950 case G_FNEARBYINT: 3951 case G_FCEIL: 3952 case G_FFLOOR: 3953 case G_FRINT: 3954 case G_INTRINSIC_ROUND: 3955 case G_INTRINSIC_ROUNDEVEN: 3956 case G_INTRINSIC_TRUNC: 3957 case G_FCOS: 3958 case G_FSIN: 3959 case G_FSQRT: 3960 case G_BSWAP: 3961 case G_BITREVERSE: 3962 case G_SDIV: 3963 case G_UDIV: 3964 case G_SREM: 3965 case G_UREM: 3966 case G_SMIN: 3967 case G_SMAX: 3968 case G_UMIN: 3969 case G_UMAX: 3970 case G_FMINNUM: 3971 case G_FMAXNUM: 3972 case G_FMINNUM_IEEE: 3973 case G_FMAXNUM_IEEE: 3974 case G_FMINIMUM: 3975 case G_FMAXIMUM: 3976 case G_FSHL: 3977 case G_FSHR: 3978 case G_FREEZE: 3979 case G_SADDSAT: 3980 case G_SSUBSAT: 3981 case G_UADDSAT: 3982 case G_USUBSAT: 3983 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3984 case G_SHL: 3985 case G_LSHR: 3986 case G_ASHR: 3987 case G_SSHLSAT: 3988 case G_USHLSAT: 3989 case G_CTLZ: 3990 case G_CTLZ_ZERO_UNDEF: 3991 case G_CTTZ: 3992 case G_CTTZ_ZERO_UNDEF: 3993 case G_CTPOP: 3994 case G_FCOPYSIGN: 3995 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3996 case G_ZEXT: 3997 case G_SEXT: 3998 case G_ANYEXT: 3999 case G_FPEXT: 4000 case G_FPTRUNC: 4001 case G_SITOFP: 4002 case G_UITOFP: 4003 case G_FPTOSI: 4004 case G_FPTOUI: 4005 case G_INTTOPTR: 4006 case G_PTRTOINT: 4007 case G_ADDRSPACE_CAST: 4008 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4009 case G_ICMP: 4010 case G_FCMP: 4011 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4012 case G_SELECT: 4013 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4014 case G_PHI: 4015 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4016 case G_UNMERGE_VALUES: 4017 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4018 case G_BUILD_VECTOR: 4019 assert(TypeIdx == 0 && "not a vector type index"); 4020 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4021 case G_CONCAT_VECTORS: 4022 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4023 return UnableToLegalize; 4024 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4025 case G_EXTRACT_VECTOR_ELT: 4026 case G_INSERT_VECTOR_ELT: 4027 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4028 case G_LOAD: 4029 case G_STORE: 4030 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4031 case G_SEXT_INREG: 4032 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4033 default: 4034 return UnableToLegalize; 4035 } 4036 } 4037 4038 LegalizerHelper::LegalizeResult 4039 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4040 const LLT HalfTy, const LLT AmtTy) { 4041 4042 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4043 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4044 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4045 4046 if (Amt.isNullValue()) { 4047 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4048 MI.eraseFromParent(); 4049 return Legalized; 4050 } 4051 4052 LLT NVT = HalfTy; 4053 unsigned NVTBits = HalfTy.getSizeInBits(); 4054 unsigned VTBits = 2 * NVTBits; 4055 4056 SrcOp Lo(Register(0)), Hi(Register(0)); 4057 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4058 if (Amt.ugt(VTBits)) { 4059 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4060 } else if (Amt.ugt(NVTBits)) { 4061 Lo = MIRBuilder.buildConstant(NVT, 0); 4062 Hi = MIRBuilder.buildShl(NVT, InL, 4063 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4064 } else if (Amt == NVTBits) { 4065 Lo = MIRBuilder.buildConstant(NVT, 0); 4066 Hi = InL; 4067 } else { 4068 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4069 auto OrLHS = 4070 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4071 auto OrRHS = MIRBuilder.buildLShr( 4072 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4073 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4074 } 4075 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4076 if (Amt.ugt(VTBits)) { 4077 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4078 } else if (Amt.ugt(NVTBits)) { 4079 Lo = MIRBuilder.buildLShr(NVT, InH, 4080 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4081 Hi = MIRBuilder.buildConstant(NVT, 0); 4082 } else if (Amt == NVTBits) { 4083 Lo = InH; 4084 Hi = MIRBuilder.buildConstant(NVT, 0); 4085 } else { 4086 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4087 4088 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4089 auto OrRHS = MIRBuilder.buildShl( 4090 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4091 4092 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4093 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4094 } 4095 } else { 4096 if (Amt.ugt(VTBits)) { 4097 Hi = Lo = MIRBuilder.buildAShr( 4098 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4099 } else if (Amt.ugt(NVTBits)) { 4100 Lo = MIRBuilder.buildAShr(NVT, InH, 4101 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4102 Hi = MIRBuilder.buildAShr(NVT, InH, 4103 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4104 } else if (Amt == NVTBits) { 4105 Lo = InH; 4106 Hi = MIRBuilder.buildAShr(NVT, InH, 4107 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4108 } else { 4109 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4110 4111 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4112 auto OrRHS = MIRBuilder.buildShl( 4113 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4114 4115 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4116 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4117 } 4118 } 4119 4120 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4121 MI.eraseFromParent(); 4122 4123 return Legalized; 4124 } 4125 4126 // TODO: Optimize if constant shift amount. 4127 LegalizerHelper::LegalizeResult 4128 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4129 LLT RequestedTy) { 4130 if (TypeIdx == 1) { 4131 Observer.changingInstr(MI); 4132 narrowScalarSrc(MI, RequestedTy, 2); 4133 Observer.changedInstr(MI); 4134 return Legalized; 4135 } 4136 4137 Register DstReg = MI.getOperand(0).getReg(); 4138 LLT DstTy = MRI.getType(DstReg); 4139 if (DstTy.isVector()) 4140 return UnableToLegalize; 4141 4142 Register Amt = MI.getOperand(2).getReg(); 4143 LLT ShiftAmtTy = MRI.getType(Amt); 4144 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4145 if (DstEltSize % 2 != 0) 4146 return UnableToLegalize; 4147 4148 // Ignore the input type. We can only go to exactly half the size of the 4149 // input. If that isn't small enough, the resulting pieces will be further 4150 // legalized. 4151 const unsigned NewBitSize = DstEltSize / 2; 4152 const LLT HalfTy = LLT::scalar(NewBitSize); 4153 const LLT CondTy = LLT::scalar(1); 4154 4155 if (const MachineInstr *KShiftAmt = 4156 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4157 return narrowScalarShiftByConstant( 4158 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4159 } 4160 4161 // TODO: Expand with known bits. 4162 4163 // Handle the fully general expansion by an unknown amount. 4164 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4165 4166 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4167 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4168 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4169 4170 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4171 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4172 4173 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4174 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4175 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4176 4177 Register ResultRegs[2]; 4178 switch (MI.getOpcode()) { 4179 case TargetOpcode::G_SHL: { 4180 // Short: ShAmt < NewBitSize 4181 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4182 4183 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4184 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4185 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4186 4187 // Long: ShAmt >= NewBitSize 4188 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4189 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4190 4191 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4192 auto Hi = MIRBuilder.buildSelect( 4193 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4194 4195 ResultRegs[0] = Lo.getReg(0); 4196 ResultRegs[1] = Hi.getReg(0); 4197 break; 4198 } 4199 case TargetOpcode::G_LSHR: 4200 case TargetOpcode::G_ASHR: { 4201 // Short: ShAmt < NewBitSize 4202 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4203 4204 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4205 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4206 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4207 4208 // Long: ShAmt >= NewBitSize 4209 MachineInstrBuilder HiL; 4210 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4211 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4212 } else { 4213 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4214 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4215 } 4216 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4217 {InH, AmtExcess}); // Lo from Hi part. 4218 4219 auto Lo = MIRBuilder.buildSelect( 4220 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4221 4222 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4223 4224 ResultRegs[0] = Lo.getReg(0); 4225 ResultRegs[1] = Hi.getReg(0); 4226 break; 4227 } 4228 default: 4229 llvm_unreachable("not a shift"); 4230 } 4231 4232 MIRBuilder.buildMerge(DstReg, ResultRegs); 4233 MI.eraseFromParent(); 4234 return Legalized; 4235 } 4236 4237 LegalizerHelper::LegalizeResult 4238 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4239 LLT MoreTy) { 4240 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4241 4242 Observer.changingInstr(MI); 4243 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4244 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4245 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4246 moreElementsVectorSrc(MI, MoreTy, I); 4247 } 4248 4249 MachineBasicBlock &MBB = *MI.getParent(); 4250 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4251 moreElementsVectorDst(MI, MoreTy, 0); 4252 Observer.changedInstr(MI); 4253 return Legalized; 4254 } 4255 4256 LegalizerHelper::LegalizeResult 4257 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4258 LLT MoreTy) { 4259 unsigned Opc = MI.getOpcode(); 4260 switch (Opc) { 4261 case TargetOpcode::G_IMPLICIT_DEF: 4262 case TargetOpcode::G_LOAD: { 4263 if (TypeIdx != 0) 4264 return UnableToLegalize; 4265 Observer.changingInstr(MI); 4266 moreElementsVectorDst(MI, MoreTy, 0); 4267 Observer.changedInstr(MI); 4268 return Legalized; 4269 } 4270 case TargetOpcode::G_STORE: 4271 if (TypeIdx != 0) 4272 return UnableToLegalize; 4273 Observer.changingInstr(MI); 4274 moreElementsVectorSrc(MI, MoreTy, 0); 4275 Observer.changedInstr(MI); 4276 return Legalized; 4277 case TargetOpcode::G_AND: 4278 case TargetOpcode::G_OR: 4279 case TargetOpcode::G_XOR: 4280 case TargetOpcode::G_SMIN: 4281 case TargetOpcode::G_SMAX: 4282 case TargetOpcode::G_UMIN: 4283 case TargetOpcode::G_UMAX: 4284 case TargetOpcode::G_FMINNUM: 4285 case TargetOpcode::G_FMAXNUM: 4286 case TargetOpcode::G_FMINNUM_IEEE: 4287 case TargetOpcode::G_FMAXNUM_IEEE: 4288 case TargetOpcode::G_FMINIMUM: 4289 case TargetOpcode::G_FMAXIMUM: { 4290 Observer.changingInstr(MI); 4291 moreElementsVectorSrc(MI, MoreTy, 1); 4292 moreElementsVectorSrc(MI, MoreTy, 2); 4293 moreElementsVectorDst(MI, MoreTy, 0); 4294 Observer.changedInstr(MI); 4295 return Legalized; 4296 } 4297 case TargetOpcode::G_EXTRACT: 4298 if (TypeIdx != 1) 4299 return UnableToLegalize; 4300 Observer.changingInstr(MI); 4301 moreElementsVectorSrc(MI, MoreTy, 1); 4302 Observer.changedInstr(MI); 4303 return Legalized; 4304 case TargetOpcode::G_INSERT: 4305 case TargetOpcode::G_FREEZE: 4306 if (TypeIdx != 0) 4307 return UnableToLegalize; 4308 Observer.changingInstr(MI); 4309 moreElementsVectorSrc(MI, MoreTy, 1); 4310 moreElementsVectorDst(MI, MoreTy, 0); 4311 Observer.changedInstr(MI); 4312 return Legalized; 4313 case TargetOpcode::G_SELECT: 4314 if (TypeIdx != 0) 4315 return UnableToLegalize; 4316 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4317 return UnableToLegalize; 4318 4319 Observer.changingInstr(MI); 4320 moreElementsVectorSrc(MI, MoreTy, 2); 4321 moreElementsVectorSrc(MI, MoreTy, 3); 4322 moreElementsVectorDst(MI, MoreTy, 0); 4323 Observer.changedInstr(MI); 4324 return Legalized; 4325 case TargetOpcode::G_UNMERGE_VALUES: { 4326 if (TypeIdx != 1) 4327 return UnableToLegalize; 4328 4329 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4330 int NumDst = MI.getNumOperands() - 1; 4331 moreElementsVectorSrc(MI, MoreTy, NumDst); 4332 4333 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4334 for (int I = 0; I != NumDst; ++I) 4335 MIB.addDef(MI.getOperand(I).getReg()); 4336 4337 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4338 for (int I = NumDst; I != NewNumDst; ++I) 4339 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4340 4341 MIB.addUse(MI.getOperand(NumDst).getReg()); 4342 MI.eraseFromParent(); 4343 return Legalized; 4344 } 4345 case TargetOpcode::G_PHI: 4346 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4347 default: 4348 return UnableToLegalize; 4349 } 4350 } 4351 4352 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4353 ArrayRef<Register> Src1Regs, 4354 ArrayRef<Register> Src2Regs, 4355 LLT NarrowTy) { 4356 MachineIRBuilder &B = MIRBuilder; 4357 unsigned SrcParts = Src1Regs.size(); 4358 unsigned DstParts = DstRegs.size(); 4359 4360 unsigned DstIdx = 0; // Low bits of the result. 4361 Register FactorSum = 4362 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4363 DstRegs[DstIdx] = FactorSum; 4364 4365 unsigned CarrySumPrevDstIdx; 4366 SmallVector<Register, 4> Factors; 4367 4368 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4369 // Collect low parts of muls for DstIdx. 4370 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4371 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4372 MachineInstrBuilder Mul = 4373 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4374 Factors.push_back(Mul.getReg(0)); 4375 } 4376 // Collect high parts of muls from previous DstIdx. 4377 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4378 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4379 MachineInstrBuilder Umulh = 4380 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4381 Factors.push_back(Umulh.getReg(0)); 4382 } 4383 // Add CarrySum from additions calculated for previous DstIdx. 4384 if (DstIdx != 1) { 4385 Factors.push_back(CarrySumPrevDstIdx); 4386 } 4387 4388 Register CarrySum; 4389 // Add all factors and accumulate all carries into CarrySum. 4390 if (DstIdx != DstParts - 1) { 4391 MachineInstrBuilder Uaddo = 4392 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4393 FactorSum = Uaddo.getReg(0); 4394 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4395 for (unsigned i = 2; i < Factors.size(); ++i) { 4396 MachineInstrBuilder Uaddo = 4397 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4398 FactorSum = Uaddo.getReg(0); 4399 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4400 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4401 } 4402 } else { 4403 // Since value for the next index is not calculated, neither is CarrySum. 4404 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4405 for (unsigned i = 2; i < Factors.size(); ++i) 4406 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4407 } 4408 4409 CarrySumPrevDstIdx = CarrySum; 4410 DstRegs[DstIdx] = FactorSum; 4411 Factors.clear(); 4412 } 4413 } 4414 4415 LegalizerHelper::LegalizeResult 4416 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4417 Register DstReg = MI.getOperand(0).getReg(); 4418 Register Src1 = MI.getOperand(1).getReg(); 4419 Register Src2 = MI.getOperand(2).getReg(); 4420 4421 LLT Ty = MRI.getType(DstReg); 4422 if (Ty.isVector()) 4423 return UnableToLegalize; 4424 4425 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4426 unsigned DstSize = Ty.getSizeInBits(); 4427 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4428 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4429 return UnableToLegalize; 4430 4431 unsigned NumDstParts = DstSize / NarrowSize; 4432 unsigned NumSrcParts = SrcSize / NarrowSize; 4433 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4434 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4435 4436 SmallVector<Register, 2> Src1Parts, Src2Parts; 4437 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4438 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4439 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4440 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4441 4442 // Take only high half of registers if this is high mul. 4443 ArrayRef<Register> DstRegs( 4444 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4445 MIRBuilder.buildMerge(DstReg, DstRegs); 4446 MI.eraseFromParent(); 4447 return Legalized; 4448 } 4449 4450 LegalizerHelper::LegalizeResult 4451 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4452 LLT NarrowTy) { 4453 if (TypeIdx != 1) 4454 return UnableToLegalize; 4455 4456 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4457 4458 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4459 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4460 // NarrowSize. 4461 if (SizeOp1 % NarrowSize != 0) 4462 return UnableToLegalize; 4463 int NumParts = SizeOp1 / NarrowSize; 4464 4465 SmallVector<Register, 2> SrcRegs, DstRegs; 4466 SmallVector<uint64_t, 2> Indexes; 4467 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4468 4469 Register OpReg = MI.getOperand(0).getReg(); 4470 uint64_t OpStart = MI.getOperand(2).getImm(); 4471 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4472 for (int i = 0; i < NumParts; ++i) { 4473 unsigned SrcStart = i * NarrowSize; 4474 4475 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4476 // No part of the extract uses this subregister, ignore it. 4477 continue; 4478 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4479 // The entire subregister is extracted, forward the value. 4480 DstRegs.push_back(SrcRegs[i]); 4481 continue; 4482 } 4483 4484 // OpSegStart is where this destination segment would start in OpReg if it 4485 // extended infinitely in both directions. 4486 int64_t ExtractOffset; 4487 uint64_t SegSize; 4488 if (OpStart < SrcStart) { 4489 ExtractOffset = 0; 4490 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4491 } else { 4492 ExtractOffset = OpStart - SrcStart; 4493 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4494 } 4495 4496 Register SegReg = SrcRegs[i]; 4497 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4498 // A genuine extract is needed. 4499 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4500 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4501 } 4502 4503 DstRegs.push_back(SegReg); 4504 } 4505 4506 Register DstReg = MI.getOperand(0).getReg(); 4507 if (MRI.getType(DstReg).isVector()) 4508 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4509 else if (DstRegs.size() > 1) 4510 MIRBuilder.buildMerge(DstReg, DstRegs); 4511 else 4512 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4513 MI.eraseFromParent(); 4514 return Legalized; 4515 } 4516 4517 LegalizerHelper::LegalizeResult 4518 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4519 LLT NarrowTy) { 4520 // FIXME: Don't know how to handle secondary types yet. 4521 if (TypeIdx != 0) 4522 return UnableToLegalize; 4523 4524 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4525 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4526 4527 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4528 // NarrowSize. 4529 if (SizeOp0 % NarrowSize != 0) 4530 return UnableToLegalize; 4531 4532 int NumParts = SizeOp0 / NarrowSize; 4533 4534 SmallVector<Register, 2> SrcRegs, DstRegs; 4535 SmallVector<uint64_t, 2> Indexes; 4536 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4537 4538 Register OpReg = MI.getOperand(2).getReg(); 4539 uint64_t OpStart = MI.getOperand(3).getImm(); 4540 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4541 for (int i = 0; i < NumParts; ++i) { 4542 unsigned DstStart = i * NarrowSize; 4543 4544 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4545 // No part of the insert affects this subregister, forward the original. 4546 DstRegs.push_back(SrcRegs[i]); 4547 continue; 4548 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4549 // The entire subregister is defined by this insert, forward the new 4550 // value. 4551 DstRegs.push_back(OpReg); 4552 continue; 4553 } 4554 4555 // OpSegStart is where this destination segment would start in OpReg if it 4556 // extended infinitely in both directions. 4557 int64_t ExtractOffset, InsertOffset; 4558 uint64_t SegSize; 4559 if (OpStart < DstStart) { 4560 InsertOffset = 0; 4561 ExtractOffset = DstStart - OpStart; 4562 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4563 } else { 4564 InsertOffset = OpStart - DstStart; 4565 ExtractOffset = 0; 4566 SegSize = 4567 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4568 } 4569 4570 Register SegReg = OpReg; 4571 if (ExtractOffset != 0 || SegSize != OpSize) { 4572 // A genuine extract is needed. 4573 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4574 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4575 } 4576 4577 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4578 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4579 DstRegs.push_back(DstReg); 4580 } 4581 4582 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4583 Register DstReg = MI.getOperand(0).getReg(); 4584 if(MRI.getType(DstReg).isVector()) 4585 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4586 else 4587 MIRBuilder.buildMerge(DstReg, DstRegs); 4588 MI.eraseFromParent(); 4589 return Legalized; 4590 } 4591 4592 LegalizerHelper::LegalizeResult 4593 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4594 LLT NarrowTy) { 4595 Register DstReg = MI.getOperand(0).getReg(); 4596 LLT DstTy = MRI.getType(DstReg); 4597 4598 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4599 4600 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4601 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4602 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4603 LLT LeftoverTy; 4604 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4605 Src0Regs, Src0LeftoverRegs)) 4606 return UnableToLegalize; 4607 4608 LLT Unused; 4609 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4610 Src1Regs, Src1LeftoverRegs)) 4611 llvm_unreachable("inconsistent extractParts result"); 4612 4613 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4614 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4615 {Src0Regs[I], Src1Regs[I]}); 4616 DstRegs.push_back(Inst.getReg(0)); 4617 } 4618 4619 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4620 auto Inst = MIRBuilder.buildInstr( 4621 MI.getOpcode(), 4622 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4623 DstLeftoverRegs.push_back(Inst.getReg(0)); 4624 } 4625 4626 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4627 LeftoverTy, DstLeftoverRegs); 4628 4629 MI.eraseFromParent(); 4630 return Legalized; 4631 } 4632 4633 LegalizerHelper::LegalizeResult 4634 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4635 LLT NarrowTy) { 4636 if (TypeIdx != 0) 4637 return UnableToLegalize; 4638 4639 Register DstReg = MI.getOperand(0).getReg(); 4640 Register SrcReg = MI.getOperand(1).getReg(); 4641 4642 LLT DstTy = MRI.getType(DstReg); 4643 if (DstTy.isVector()) 4644 return UnableToLegalize; 4645 4646 SmallVector<Register, 8> Parts; 4647 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4648 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4649 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4650 4651 MI.eraseFromParent(); 4652 return Legalized; 4653 } 4654 4655 LegalizerHelper::LegalizeResult 4656 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4657 LLT NarrowTy) { 4658 if (TypeIdx != 0) 4659 return UnableToLegalize; 4660 4661 Register CondReg = MI.getOperand(1).getReg(); 4662 LLT CondTy = MRI.getType(CondReg); 4663 if (CondTy.isVector()) // TODO: Handle vselect 4664 return UnableToLegalize; 4665 4666 Register DstReg = MI.getOperand(0).getReg(); 4667 LLT DstTy = MRI.getType(DstReg); 4668 4669 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4670 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4671 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4672 LLT LeftoverTy; 4673 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4674 Src1Regs, Src1LeftoverRegs)) 4675 return UnableToLegalize; 4676 4677 LLT Unused; 4678 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4679 Src2Regs, Src2LeftoverRegs)) 4680 llvm_unreachable("inconsistent extractParts result"); 4681 4682 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4683 auto Select = MIRBuilder.buildSelect(NarrowTy, 4684 CondReg, Src1Regs[I], Src2Regs[I]); 4685 DstRegs.push_back(Select.getReg(0)); 4686 } 4687 4688 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4689 auto Select = MIRBuilder.buildSelect( 4690 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4691 DstLeftoverRegs.push_back(Select.getReg(0)); 4692 } 4693 4694 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4695 LeftoverTy, DstLeftoverRegs); 4696 4697 MI.eraseFromParent(); 4698 return Legalized; 4699 } 4700 4701 LegalizerHelper::LegalizeResult 4702 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4703 LLT NarrowTy) { 4704 if (TypeIdx != 1) 4705 return UnableToLegalize; 4706 4707 Register DstReg = MI.getOperand(0).getReg(); 4708 Register SrcReg = MI.getOperand(1).getReg(); 4709 LLT DstTy = MRI.getType(DstReg); 4710 LLT SrcTy = MRI.getType(SrcReg); 4711 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4712 4713 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4714 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4715 4716 MachineIRBuilder &B = MIRBuilder; 4717 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4718 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4719 auto C_0 = B.buildConstant(NarrowTy, 0); 4720 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4721 UnmergeSrc.getReg(1), C_0); 4722 auto LoCTLZ = IsUndef ? 4723 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4724 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4725 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4726 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4727 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4728 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4729 4730 MI.eraseFromParent(); 4731 return Legalized; 4732 } 4733 4734 return UnableToLegalize; 4735 } 4736 4737 LegalizerHelper::LegalizeResult 4738 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4739 LLT NarrowTy) { 4740 if (TypeIdx != 1) 4741 return UnableToLegalize; 4742 4743 Register DstReg = MI.getOperand(0).getReg(); 4744 Register SrcReg = MI.getOperand(1).getReg(); 4745 LLT DstTy = MRI.getType(DstReg); 4746 LLT SrcTy = MRI.getType(SrcReg); 4747 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4748 4749 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4750 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4751 4752 MachineIRBuilder &B = MIRBuilder; 4753 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4754 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4755 auto C_0 = B.buildConstant(NarrowTy, 0); 4756 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4757 UnmergeSrc.getReg(0), C_0); 4758 auto HiCTTZ = IsUndef ? 4759 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4760 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4761 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4762 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4763 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4764 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4765 4766 MI.eraseFromParent(); 4767 return Legalized; 4768 } 4769 4770 return UnableToLegalize; 4771 } 4772 4773 LegalizerHelper::LegalizeResult 4774 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4775 LLT NarrowTy) { 4776 if (TypeIdx != 1) 4777 return UnableToLegalize; 4778 4779 Register DstReg = MI.getOperand(0).getReg(); 4780 LLT DstTy = MRI.getType(DstReg); 4781 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4782 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4783 4784 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4785 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4786 4787 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4788 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4789 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4790 4791 MI.eraseFromParent(); 4792 return Legalized; 4793 } 4794 4795 return UnableToLegalize; 4796 } 4797 4798 LegalizerHelper::LegalizeResult 4799 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4800 unsigned Opc = MI.getOpcode(); 4801 const auto &TII = MIRBuilder.getTII(); 4802 auto isSupported = [this](const LegalityQuery &Q) { 4803 auto QAction = LI.getAction(Q).Action; 4804 return QAction == Legal || QAction == Libcall || QAction == Custom; 4805 }; 4806 switch (Opc) { 4807 default: 4808 return UnableToLegalize; 4809 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4810 // This trivially expands to CTLZ. 4811 Observer.changingInstr(MI); 4812 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4813 Observer.changedInstr(MI); 4814 return Legalized; 4815 } 4816 case TargetOpcode::G_CTLZ: { 4817 Register DstReg = MI.getOperand(0).getReg(); 4818 Register SrcReg = MI.getOperand(1).getReg(); 4819 LLT DstTy = MRI.getType(DstReg); 4820 LLT SrcTy = MRI.getType(SrcReg); 4821 unsigned Len = SrcTy.getSizeInBits(); 4822 4823 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4824 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4825 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4826 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4827 auto ICmp = MIRBuilder.buildICmp( 4828 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4829 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4830 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4831 MI.eraseFromParent(); 4832 return Legalized; 4833 } 4834 // for now, we do this: 4835 // NewLen = NextPowerOf2(Len); 4836 // x = x | (x >> 1); 4837 // x = x | (x >> 2); 4838 // ... 4839 // x = x | (x >>16); 4840 // x = x | (x >>32); // for 64-bit input 4841 // Upto NewLen/2 4842 // return Len - popcount(x); 4843 // 4844 // Ref: "Hacker's Delight" by Henry Warren 4845 Register Op = SrcReg; 4846 unsigned NewLen = PowerOf2Ceil(Len); 4847 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4848 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4849 auto MIBOp = MIRBuilder.buildOr( 4850 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4851 Op = MIBOp.getReg(0); 4852 } 4853 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4854 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4855 MIBPop); 4856 MI.eraseFromParent(); 4857 return Legalized; 4858 } 4859 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4860 // This trivially expands to CTTZ. 4861 Observer.changingInstr(MI); 4862 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4863 Observer.changedInstr(MI); 4864 return Legalized; 4865 } 4866 case TargetOpcode::G_CTTZ: { 4867 Register DstReg = MI.getOperand(0).getReg(); 4868 Register SrcReg = MI.getOperand(1).getReg(); 4869 LLT DstTy = MRI.getType(DstReg); 4870 LLT SrcTy = MRI.getType(SrcReg); 4871 4872 unsigned Len = SrcTy.getSizeInBits(); 4873 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4874 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4875 // zero. 4876 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4877 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4878 auto ICmp = MIRBuilder.buildICmp( 4879 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4880 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4881 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4882 MI.eraseFromParent(); 4883 return Legalized; 4884 } 4885 // for now, we use: { return popcount(~x & (x - 1)); } 4886 // unless the target has ctlz but not ctpop, in which case we use: 4887 // { return 32 - nlz(~x & (x-1)); } 4888 // Ref: "Hacker's Delight" by Henry Warren 4889 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4890 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4891 auto MIBTmp = MIRBuilder.buildAnd( 4892 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4893 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4894 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4895 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4896 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4897 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4898 MI.eraseFromParent(); 4899 return Legalized; 4900 } 4901 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4902 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4903 return Legalized; 4904 } 4905 case TargetOpcode::G_CTPOP: { 4906 Register SrcReg = MI.getOperand(1).getReg(); 4907 LLT Ty = MRI.getType(SrcReg); 4908 unsigned Size = Ty.getSizeInBits(); 4909 MachineIRBuilder &B = MIRBuilder; 4910 4911 // Count set bits in blocks of 2 bits. Default approach would be 4912 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4913 // We use following formula instead: 4914 // B2Count = val - { (val >> 1) & 0x55555555 } 4915 // since it gives same result in blocks of 2 with one instruction less. 4916 auto C_1 = B.buildConstant(Ty, 1); 4917 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4918 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4919 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4920 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4921 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4922 4923 // In order to get count in blocks of 4 add values from adjacent block of 2. 4924 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4925 auto C_2 = B.buildConstant(Ty, 2); 4926 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4927 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4928 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4929 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4930 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4931 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4932 4933 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4934 // addition since count value sits in range {0,...,8} and 4 bits are enough 4935 // to hold such binary values. After addition high 4 bits still hold count 4936 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4937 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4938 auto C_4 = B.buildConstant(Ty, 4); 4939 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4940 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4941 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4942 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4943 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4944 4945 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4946 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4947 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4948 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4949 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4950 4951 // Shift count result from 8 high bits to low bits. 4952 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4953 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4954 4955 MI.eraseFromParent(); 4956 return Legalized; 4957 } 4958 } 4959 } 4960 4961 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4962 // representation. 4963 LegalizerHelper::LegalizeResult 4964 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4965 Register Dst = MI.getOperand(0).getReg(); 4966 Register Src = MI.getOperand(1).getReg(); 4967 const LLT S64 = LLT::scalar(64); 4968 const LLT S32 = LLT::scalar(32); 4969 const LLT S1 = LLT::scalar(1); 4970 4971 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4972 4973 // unsigned cul2f(ulong u) { 4974 // uint lz = clz(u); 4975 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4976 // u = (u << lz) & 0x7fffffffffffffffUL; 4977 // ulong t = u & 0xffffffffffUL; 4978 // uint v = (e << 23) | (uint)(u >> 40); 4979 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4980 // return as_float(v + r); 4981 // } 4982 4983 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4984 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4985 4986 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4987 4988 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4989 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4990 4991 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4992 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4993 4994 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4995 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4996 4997 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4998 4999 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5000 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5001 5002 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5003 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5004 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5005 5006 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5007 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5008 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5009 auto One = MIRBuilder.buildConstant(S32, 1); 5010 5011 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5012 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5013 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5014 MIRBuilder.buildAdd(Dst, V, R); 5015 5016 MI.eraseFromParent(); 5017 return Legalized; 5018 } 5019 5020 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5021 Register Dst = MI.getOperand(0).getReg(); 5022 Register Src = MI.getOperand(1).getReg(); 5023 LLT DstTy = MRI.getType(Dst); 5024 LLT SrcTy = MRI.getType(Src); 5025 5026 if (SrcTy == LLT::scalar(1)) { 5027 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5028 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5029 MIRBuilder.buildSelect(Dst, Src, True, False); 5030 MI.eraseFromParent(); 5031 return Legalized; 5032 } 5033 5034 if (SrcTy != LLT::scalar(64)) 5035 return UnableToLegalize; 5036 5037 if (DstTy == LLT::scalar(32)) { 5038 // TODO: SelectionDAG has several alternative expansions to port which may 5039 // be more reasonble depending on the available instructions. If a target 5040 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5041 // intermediate type, this is probably worse. 5042 return lowerU64ToF32BitOps(MI); 5043 } 5044 5045 return UnableToLegalize; 5046 } 5047 5048 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5049 Register Dst = MI.getOperand(0).getReg(); 5050 Register Src = MI.getOperand(1).getReg(); 5051 LLT DstTy = MRI.getType(Dst); 5052 LLT SrcTy = MRI.getType(Src); 5053 5054 const LLT S64 = LLT::scalar(64); 5055 const LLT S32 = LLT::scalar(32); 5056 const LLT S1 = LLT::scalar(1); 5057 5058 if (SrcTy == S1) { 5059 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5060 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5061 MIRBuilder.buildSelect(Dst, Src, True, False); 5062 MI.eraseFromParent(); 5063 return Legalized; 5064 } 5065 5066 if (SrcTy != S64) 5067 return UnableToLegalize; 5068 5069 if (DstTy == S32) { 5070 // signed cl2f(long l) { 5071 // long s = l >> 63; 5072 // float r = cul2f((l + s) ^ s); 5073 // return s ? -r : r; 5074 // } 5075 Register L = Src; 5076 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5077 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5078 5079 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5080 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5081 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5082 5083 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5084 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5085 MIRBuilder.buildConstant(S64, 0)); 5086 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5087 MI.eraseFromParent(); 5088 return Legalized; 5089 } 5090 5091 return UnableToLegalize; 5092 } 5093 5094 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5095 Register Dst = MI.getOperand(0).getReg(); 5096 Register Src = MI.getOperand(1).getReg(); 5097 LLT DstTy = MRI.getType(Dst); 5098 LLT SrcTy = MRI.getType(Src); 5099 const LLT S64 = LLT::scalar(64); 5100 const LLT S32 = LLT::scalar(32); 5101 5102 if (SrcTy != S64 && SrcTy != S32) 5103 return UnableToLegalize; 5104 if (DstTy != S32 && DstTy != S64) 5105 return UnableToLegalize; 5106 5107 // FPTOSI gives same result as FPTOUI for positive signed integers. 5108 // FPTOUI needs to deal with fp values that convert to unsigned integers 5109 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5110 5111 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5112 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5113 : APFloat::IEEEdouble(), 5114 APInt::getNullValue(SrcTy.getSizeInBits())); 5115 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5116 5117 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5118 5119 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5120 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5121 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5122 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5123 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5124 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5125 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5126 5127 const LLT S1 = LLT::scalar(1); 5128 5129 MachineInstrBuilder FCMP = 5130 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5131 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5132 5133 MI.eraseFromParent(); 5134 return Legalized; 5135 } 5136 5137 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5138 Register Dst = MI.getOperand(0).getReg(); 5139 Register Src = MI.getOperand(1).getReg(); 5140 LLT DstTy = MRI.getType(Dst); 5141 LLT SrcTy = MRI.getType(Src); 5142 const LLT S64 = LLT::scalar(64); 5143 const LLT S32 = LLT::scalar(32); 5144 5145 // FIXME: Only f32 to i64 conversions are supported. 5146 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5147 return UnableToLegalize; 5148 5149 // Expand f32 -> i64 conversion 5150 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5151 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5152 5153 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5154 5155 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5156 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5157 5158 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5159 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5160 5161 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5162 APInt::getSignMask(SrcEltBits)); 5163 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5164 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5165 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5166 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5167 5168 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5169 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5170 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5171 5172 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5173 R = MIRBuilder.buildZExt(DstTy, R); 5174 5175 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5176 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5177 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5178 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5179 5180 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5181 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5182 5183 const LLT S1 = LLT::scalar(1); 5184 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5185 S1, Exponent, ExponentLoBit); 5186 5187 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5188 5189 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5190 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5191 5192 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5193 5194 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5195 S1, Exponent, ZeroSrcTy); 5196 5197 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5198 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5199 5200 MI.eraseFromParent(); 5201 return Legalized; 5202 } 5203 5204 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5205 LegalizerHelper::LegalizeResult 5206 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5207 Register Dst = MI.getOperand(0).getReg(); 5208 Register Src = MI.getOperand(1).getReg(); 5209 5210 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5211 return UnableToLegalize; 5212 5213 const unsigned ExpMask = 0x7ff; 5214 const unsigned ExpBiasf64 = 1023; 5215 const unsigned ExpBiasf16 = 15; 5216 const LLT S32 = LLT::scalar(32); 5217 const LLT S1 = LLT::scalar(1); 5218 5219 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5220 Register U = Unmerge.getReg(0); 5221 Register UH = Unmerge.getReg(1); 5222 5223 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5224 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5225 5226 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5227 // add the f16 bias (15) to get the biased exponent for the f16 format. 5228 E = MIRBuilder.buildAdd( 5229 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5230 5231 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5232 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5233 5234 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5235 MIRBuilder.buildConstant(S32, 0x1ff)); 5236 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5237 5238 auto Zero = MIRBuilder.buildConstant(S32, 0); 5239 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5240 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5241 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5242 5243 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5244 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5245 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5246 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5247 5248 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5249 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5250 5251 // N = M | (E << 12); 5252 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5253 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5254 5255 // B = clamp(1-E, 0, 13); 5256 auto One = MIRBuilder.buildConstant(S32, 1); 5257 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5258 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5259 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5260 5261 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5262 MIRBuilder.buildConstant(S32, 0x1000)); 5263 5264 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5265 auto D0 = MIRBuilder.buildShl(S32, D, B); 5266 5267 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5268 D0, SigSetHigh); 5269 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5270 D = MIRBuilder.buildOr(S32, D, D1); 5271 5272 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5273 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5274 5275 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5276 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5277 5278 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5279 MIRBuilder.buildConstant(S32, 3)); 5280 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5281 5282 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5283 MIRBuilder.buildConstant(S32, 5)); 5284 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5285 5286 V1 = MIRBuilder.buildOr(S32, V0, V1); 5287 V = MIRBuilder.buildAdd(S32, V, V1); 5288 5289 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5290 E, MIRBuilder.buildConstant(S32, 30)); 5291 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5292 MIRBuilder.buildConstant(S32, 0x7c00), V); 5293 5294 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5295 E, MIRBuilder.buildConstant(S32, 1039)); 5296 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5297 5298 // Extract the sign bit. 5299 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5300 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5301 5302 // Insert the sign bit 5303 V = MIRBuilder.buildOr(S32, Sign, V); 5304 5305 MIRBuilder.buildTrunc(Dst, V); 5306 MI.eraseFromParent(); 5307 return Legalized; 5308 } 5309 5310 LegalizerHelper::LegalizeResult 5311 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5312 Register Dst = MI.getOperand(0).getReg(); 5313 Register Src = MI.getOperand(1).getReg(); 5314 5315 LLT DstTy = MRI.getType(Dst); 5316 LLT SrcTy = MRI.getType(Src); 5317 const LLT S64 = LLT::scalar(64); 5318 const LLT S16 = LLT::scalar(16); 5319 5320 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5321 return lowerFPTRUNC_F64_TO_F16(MI); 5322 5323 return UnableToLegalize; 5324 } 5325 5326 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5327 // multiplication tree. 5328 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5329 Register Dst = MI.getOperand(0).getReg(); 5330 Register Src0 = MI.getOperand(1).getReg(); 5331 Register Src1 = MI.getOperand(2).getReg(); 5332 LLT Ty = MRI.getType(Dst); 5333 5334 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5335 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5336 MI.eraseFromParent(); 5337 return Legalized; 5338 } 5339 5340 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5341 switch (Opc) { 5342 case TargetOpcode::G_SMIN: 5343 return CmpInst::ICMP_SLT; 5344 case TargetOpcode::G_SMAX: 5345 return CmpInst::ICMP_SGT; 5346 case TargetOpcode::G_UMIN: 5347 return CmpInst::ICMP_ULT; 5348 case TargetOpcode::G_UMAX: 5349 return CmpInst::ICMP_UGT; 5350 default: 5351 llvm_unreachable("not in integer min/max"); 5352 } 5353 } 5354 5355 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5356 Register Dst = MI.getOperand(0).getReg(); 5357 Register Src0 = MI.getOperand(1).getReg(); 5358 Register Src1 = MI.getOperand(2).getReg(); 5359 5360 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5361 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5362 5363 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5364 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5365 5366 MI.eraseFromParent(); 5367 return Legalized; 5368 } 5369 5370 LegalizerHelper::LegalizeResult 5371 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5372 Register Dst = MI.getOperand(0).getReg(); 5373 Register Src0 = MI.getOperand(1).getReg(); 5374 Register Src1 = MI.getOperand(2).getReg(); 5375 5376 const LLT Src0Ty = MRI.getType(Src0); 5377 const LLT Src1Ty = MRI.getType(Src1); 5378 5379 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5380 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5381 5382 auto SignBitMask = MIRBuilder.buildConstant( 5383 Src0Ty, APInt::getSignMask(Src0Size)); 5384 5385 auto NotSignBitMask = MIRBuilder.buildConstant( 5386 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5387 5388 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5389 MachineInstr *Or; 5390 5391 if (Src0Ty == Src1Ty) { 5392 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5393 Or = MIRBuilder.buildOr(Dst, And0, And1); 5394 } else if (Src0Size > Src1Size) { 5395 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5396 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5397 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5398 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5399 Or = MIRBuilder.buildOr(Dst, And0, And1); 5400 } else { 5401 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5402 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5403 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5404 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5405 Or = MIRBuilder.buildOr(Dst, And0, And1); 5406 } 5407 5408 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5409 // constants are a nan and -0.0, but the final result should preserve 5410 // everything. 5411 if (unsigned Flags = MI.getFlags()) 5412 Or->setFlags(Flags); 5413 5414 MI.eraseFromParent(); 5415 return Legalized; 5416 } 5417 5418 LegalizerHelper::LegalizeResult 5419 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5420 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5421 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5422 5423 Register Dst = MI.getOperand(0).getReg(); 5424 Register Src0 = MI.getOperand(1).getReg(); 5425 Register Src1 = MI.getOperand(2).getReg(); 5426 LLT Ty = MRI.getType(Dst); 5427 5428 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5429 // Insert canonicalizes if it's possible we need to quiet to get correct 5430 // sNaN behavior. 5431 5432 // Note this must be done here, and not as an optimization combine in the 5433 // absence of a dedicate quiet-snan instruction as we're using an 5434 // omni-purpose G_FCANONICALIZE. 5435 if (!isKnownNeverSNaN(Src0, MRI)) 5436 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5437 5438 if (!isKnownNeverSNaN(Src1, MRI)) 5439 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5440 } 5441 5442 // If there are no nans, it's safe to simply replace this with the non-IEEE 5443 // version. 5444 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5445 MI.eraseFromParent(); 5446 return Legalized; 5447 } 5448 5449 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5450 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5451 Register DstReg = MI.getOperand(0).getReg(); 5452 LLT Ty = MRI.getType(DstReg); 5453 unsigned Flags = MI.getFlags(); 5454 5455 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5456 Flags); 5457 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5458 MI.eraseFromParent(); 5459 return Legalized; 5460 } 5461 5462 LegalizerHelper::LegalizeResult 5463 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5464 Register DstReg = MI.getOperand(0).getReg(); 5465 Register X = MI.getOperand(1).getReg(); 5466 const unsigned Flags = MI.getFlags(); 5467 const LLT Ty = MRI.getType(DstReg); 5468 const LLT CondTy = Ty.changeElementSize(1); 5469 5470 // round(x) => 5471 // t = trunc(x); 5472 // d = fabs(x - t); 5473 // o = copysign(1.0f, x); 5474 // return t + (d >= 0.5 ? o : 0.0); 5475 5476 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5477 5478 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5479 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5480 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5481 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5482 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5483 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5484 5485 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5486 Flags); 5487 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5488 5489 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5490 5491 MI.eraseFromParent(); 5492 return Legalized; 5493 } 5494 5495 LegalizerHelper::LegalizeResult 5496 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5497 Register DstReg = MI.getOperand(0).getReg(); 5498 Register SrcReg = MI.getOperand(1).getReg(); 5499 unsigned Flags = MI.getFlags(); 5500 LLT Ty = MRI.getType(DstReg); 5501 const LLT CondTy = Ty.changeElementSize(1); 5502 5503 // result = trunc(src); 5504 // if (src < 0.0 && src != result) 5505 // result += -1.0. 5506 5507 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5508 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5509 5510 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5511 SrcReg, Zero, Flags); 5512 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5513 SrcReg, Trunc, Flags); 5514 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5515 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5516 5517 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5518 MI.eraseFromParent(); 5519 return Legalized; 5520 } 5521 5522 LegalizerHelper::LegalizeResult 5523 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5524 const unsigned NumOps = MI.getNumOperands(); 5525 Register DstReg = MI.getOperand(0).getReg(); 5526 Register Src0Reg = MI.getOperand(1).getReg(); 5527 LLT DstTy = MRI.getType(DstReg); 5528 LLT SrcTy = MRI.getType(Src0Reg); 5529 unsigned PartSize = SrcTy.getSizeInBits(); 5530 5531 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5532 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5533 5534 for (unsigned I = 2; I != NumOps; ++I) { 5535 const unsigned Offset = (I - 1) * PartSize; 5536 5537 Register SrcReg = MI.getOperand(I).getReg(); 5538 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5539 5540 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5541 MRI.createGenericVirtualRegister(WideTy); 5542 5543 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5544 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5545 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5546 ResultReg = NextResult; 5547 } 5548 5549 if (DstTy.isPointer()) { 5550 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5551 DstTy.getAddressSpace())) { 5552 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5553 return UnableToLegalize; 5554 } 5555 5556 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5557 } 5558 5559 MI.eraseFromParent(); 5560 return Legalized; 5561 } 5562 5563 LegalizerHelper::LegalizeResult 5564 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5565 const unsigned NumDst = MI.getNumOperands() - 1; 5566 Register SrcReg = MI.getOperand(NumDst).getReg(); 5567 Register Dst0Reg = MI.getOperand(0).getReg(); 5568 LLT DstTy = MRI.getType(Dst0Reg); 5569 if (DstTy.isPointer()) 5570 return UnableToLegalize; // TODO 5571 5572 SrcReg = coerceToScalar(SrcReg); 5573 if (!SrcReg) 5574 return UnableToLegalize; 5575 5576 // Expand scalarizing unmerge as bitcast to integer and shift. 5577 LLT IntTy = MRI.getType(SrcReg); 5578 5579 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5580 5581 const unsigned DstSize = DstTy.getSizeInBits(); 5582 unsigned Offset = DstSize; 5583 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5584 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5585 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5586 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5587 } 5588 5589 MI.eraseFromParent(); 5590 return Legalized; 5591 } 5592 5593 /// Lower a vector extract or insert by writing the vector to a stack temporary 5594 /// and reloading the element or vector. 5595 /// 5596 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5597 /// => 5598 /// %stack_temp = G_FRAME_INDEX 5599 /// G_STORE %vec, %stack_temp 5600 /// %idx = clamp(%idx, %vec.getNumElements()) 5601 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5602 /// %dst = G_LOAD %element_ptr 5603 LegalizerHelper::LegalizeResult 5604 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5605 Register DstReg = MI.getOperand(0).getReg(); 5606 Register SrcVec = MI.getOperand(1).getReg(); 5607 Register InsertVal; 5608 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5609 InsertVal = MI.getOperand(2).getReg(); 5610 5611 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5612 5613 LLT VecTy = MRI.getType(SrcVec); 5614 LLT EltTy = VecTy.getElementType(); 5615 if (!EltTy.isByteSized()) { // Not implemented. 5616 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5617 return UnableToLegalize; 5618 } 5619 5620 unsigned EltBytes = EltTy.getSizeInBytes(); 5621 Align VecAlign = getStackTemporaryAlignment(VecTy); 5622 Align EltAlign; 5623 5624 MachinePointerInfo PtrInfo; 5625 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5626 VecAlign, PtrInfo); 5627 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5628 5629 // Get the pointer to the element, and be sure not to hit undefined behavior 5630 // if the index is out of bounds. 5631 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5632 5633 int64_t IdxVal; 5634 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5635 int64_t Offset = IdxVal * EltBytes; 5636 PtrInfo = PtrInfo.getWithOffset(Offset); 5637 EltAlign = commonAlignment(VecAlign, Offset); 5638 } else { 5639 // We lose information with a variable offset. 5640 EltAlign = getStackTemporaryAlignment(EltTy); 5641 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5642 } 5643 5644 if (InsertVal) { 5645 // Write the inserted element 5646 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5647 5648 // Reload the whole vector. 5649 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5650 } else { 5651 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5652 } 5653 5654 MI.eraseFromParent(); 5655 return Legalized; 5656 } 5657 5658 LegalizerHelper::LegalizeResult 5659 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5660 Register DstReg = MI.getOperand(0).getReg(); 5661 Register Src0Reg = MI.getOperand(1).getReg(); 5662 Register Src1Reg = MI.getOperand(2).getReg(); 5663 LLT Src0Ty = MRI.getType(Src0Reg); 5664 LLT DstTy = MRI.getType(DstReg); 5665 LLT IdxTy = LLT::scalar(32); 5666 5667 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5668 5669 if (DstTy.isScalar()) { 5670 if (Src0Ty.isVector()) 5671 return UnableToLegalize; 5672 5673 // This is just a SELECT. 5674 assert(Mask.size() == 1 && "Expected a single mask element"); 5675 Register Val; 5676 if (Mask[0] < 0 || Mask[0] > 1) 5677 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5678 else 5679 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5680 MIRBuilder.buildCopy(DstReg, Val); 5681 MI.eraseFromParent(); 5682 return Legalized; 5683 } 5684 5685 Register Undef; 5686 SmallVector<Register, 32> BuildVec; 5687 LLT EltTy = DstTy.getElementType(); 5688 5689 for (int Idx : Mask) { 5690 if (Idx < 0) { 5691 if (!Undef.isValid()) 5692 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5693 BuildVec.push_back(Undef); 5694 continue; 5695 } 5696 5697 if (Src0Ty.isScalar()) { 5698 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5699 } else { 5700 int NumElts = Src0Ty.getNumElements(); 5701 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5702 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5703 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5704 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5705 BuildVec.push_back(Extract.getReg(0)); 5706 } 5707 } 5708 5709 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5710 MI.eraseFromParent(); 5711 return Legalized; 5712 } 5713 5714 LegalizerHelper::LegalizeResult 5715 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5716 const auto &MF = *MI.getMF(); 5717 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5718 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5719 return UnableToLegalize; 5720 5721 Register Dst = MI.getOperand(0).getReg(); 5722 Register AllocSize = MI.getOperand(1).getReg(); 5723 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5724 5725 LLT PtrTy = MRI.getType(Dst); 5726 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5727 5728 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5729 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5730 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5731 5732 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5733 // have to generate an extra instruction to negate the alloc and then use 5734 // G_PTR_ADD to add the negative offset. 5735 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5736 if (Alignment > Align(1)) { 5737 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5738 AlignMask.negate(); 5739 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5740 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5741 } 5742 5743 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5744 MIRBuilder.buildCopy(SPReg, SPTmp); 5745 MIRBuilder.buildCopy(Dst, SPTmp); 5746 5747 MI.eraseFromParent(); 5748 return Legalized; 5749 } 5750 5751 LegalizerHelper::LegalizeResult 5752 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5753 Register Dst = MI.getOperand(0).getReg(); 5754 Register Src = MI.getOperand(1).getReg(); 5755 unsigned Offset = MI.getOperand(2).getImm(); 5756 5757 LLT DstTy = MRI.getType(Dst); 5758 LLT SrcTy = MRI.getType(Src); 5759 5760 if (DstTy.isScalar() && 5761 (SrcTy.isScalar() || 5762 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5763 LLT SrcIntTy = SrcTy; 5764 if (!SrcTy.isScalar()) { 5765 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5766 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5767 } 5768 5769 if (Offset == 0) 5770 MIRBuilder.buildTrunc(Dst, Src); 5771 else { 5772 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5773 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5774 MIRBuilder.buildTrunc(Dst, Shr); 5775 } 5776 5777 MI.eraseFromParent(); 5778 return Legalized; 5779 } 5780 5781 return UnableToLegalize; 5782 } 5783 5784 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5785 Register Dst = MI.getOperand(0).getReg(); 5786 Register Src = MI.getOperand(1).getReg(); 5787 Register InsertSrc = MI.getOperand(2).getReg(); 5788 uint64_t Offset = MI.getOperand(3).getImm(); 5789 5790 LLT DstTy = MRI.getType(Src); 5791 LLT InsertTy = MRI.getType(InsertSrc); 5792 5793 if (InsertTy.isVector() || 5794 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5795 return UnableToLegalize; 5796 5797 const DataLayout &DL = MIRBuilder.getDataLayout(); 5798 if ((DstTy.isPointer() && 5799 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5800 (InsertTy.isPointer() && 5801 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5802 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5803 return UnableToLegalize; 5804 } 5805 5806 LLT IntDstTy = DstTy; 5807 5808 if (!DstTy.isScalar()) { 5809 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5810 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5811 } 5812 5813 if (!InsertTy.isScalar()) { 5814 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5815 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5816 } 5817 5818 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5819 if (Offset != 0) { 5820 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5821 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5822 } 5823 5824 APInt MaskVal = APInt::getBitsSetWithWrap( 5825 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5826 5827 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5828 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5829 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5830 5831 MIRBuilder.buildCast(Dst, Or); 5832 MI.eraseFromParent(); 5833 return Legalized; 5834 } 5835 5836 LegalizerHelper::LegalizeResult 5837 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5838 Register Dst0 = MI.getOperand(0).getReg(); 5839 Register Dst1 = MI.getOperand(1).getReg(); 5840 Register LHS = MI.getOperand(2).getReg(); 5841 Register RHS = MI.getOperand(3).getReg(); 5842 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5843 5844 LLT Ty = MRI.getType(Dst0); 5845 LLT BoolTy = MRI.getType(Dst1); 5846 5847 if (IsAdd) 5848 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5849 else 5850 MIRBuilder.buildSub(Dst0, LHS, RHS); 5851 5852 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5853 5854 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5855 5856 // For an addition, the result should be less than one of the operands (LHS) 5857 // if and only if the other operand (RHS) is negative, otherwise there will 5858 // be overflow. 5859 // For a subtraction, the result should be less than one of the operands 5860 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5861 // otherwise there will be overflow. 5862 auto ResultLowerThanLHS = 5863 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5864 auto ConditionRHS = MIRBuilder.buildICmp( 5865 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5866 5867 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5868 MI.eraseFromParent(); 5869 return Legalized; 5870 } 5871 5872 LegalizerHelper::LegalizeResult 5873 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5874 Register Res = MI.getOperand(0).getReg(); 5875 Register LHS = MI.getOperand(1).getReg(); 5876 Register RHS = MI.getOperand(2).getReg(); 5877 LLT Ty = MRI.getType(Res); 5878 bool IsSigned; 5879 bool IsAdd; 5880 unsigned BaseOp; 5881 switch (MI.getOpcode()) { 5882 default: 5883 llvm_unreachable("unexpected addsat/subsat opcode"); 5884 case TargetOpcode::G_UADDSAT: 5885 IsSigned = false; 5886 IsAdd = true; 5887 BaseOp = TargetOpcode::G_ADD; 5888 break; 5889 case TargetOpcode::G_SADDSAT: 5890 IsSigned = true; 5891 IsAdd = true; 5892 BaseOp = TargetOpcode::G_ADD; 5893 break; 5894 case TargetOpcode::G_USUBSAT: 5895 IsSigned = false; 5896 IsAdd = false; 5897 BaseOp = TargetOpcode::G_SUB; 5898 break; 5899 case TargetOpcode::G_SSUBSAT: 5900 IsSigned = true; 5901 IsAdd = false; 5902 BaseOp = TargetOpcode::G_SUB; 5903 break; 5904 } 5905 5906 if (IsSigned) { 5907 // sadd.sat(a, b) -> 5908 // hi = 0x7fffffff - smax(a, 0) 5909 // lo = 0x80000000 - smin(a, 0) 5910 // a + smin(smax(lo, b), hi) 5911 // ssub.sat(a, b) -> 5912 // lo = smax(a, -1) - 0x7fffffff 5913 // hi = smin(a, -1) - 0x80000000 5914 // a - smin(smax(lo, b), hi) 5915 // TODO: AMDGPU can use a "median of 3" instruction here: 5916 // a +/- med3(lo, b, hi) 5917 uint64_t NumBits = Ty.getScalarSizeInBits(); 5918 auto MaxVal = 5919 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5920 auto MinVal = 5921 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5922 MachineInstrBuilder Hi, Lo; 5923 if (IsAdd) { 5924 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5925 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5926 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5927 } else { 5928 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5929 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5930 MaxVal); 5931 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5932 MinVal); 5933 } 5934 auto RHSClamped = 5935 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5936 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5937 } else { 5938 // uadd.sat(a, b) -> a + umin(~a, b) 5939 // usub.sat(a, b) -> a - umin(a, b) 5940 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5941 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5942 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5943 } 5944 5945 MI.eraseFromParent(); 5946 return Legalized; 5947 } 5948 5949 LegalizerHelper::LegalizeResult 5950 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5951 Register Res = MI.getOperand(0).getReg(); 5952 Register LHS = MI.getOperand(1).getReg(); 5953 Register RHS = MI.getOperand(2).getReg(); 5954 LLT Ty = MRI.getType(Res); 5955 LLT BoolTy = Ty.changeElementSize(1); 5956 bool IsSigned; 5957 bool IsAdd; 5958 unsigned OverflowOp; 5959 switch (MI.getOpcode()) { 5960 default: 5961 llvm_unreachable("unexpected addsat/subsat opcode"); 5962 case TargetOpcode::G_UADDSAT: 5963 IsSigned = false; 5964 IsAdd = true; 5965 OverflowOp = TargetOpcode::G_UADDO; 5966 break; 5967 case TargetOpcode::G_SADDSAT: 5968 IsSigned = true; 5969 IsAdd = true; 5970 OverflowOp = TargetOpcode::G_SADDO; 5971 break; 5972 case TargetOpcode::G_USUBSAT: 5973 IsSigned = false; 5974 IsAdd = false; 5975 OverflowOp = TargetOpcode::G_USUBO; 5976 break; 5977 case TargetOpcode::G_SSUBSAT: 5978 IsSigned = true; 5979 IsAdd = false; 5980 OverflowOp = TargetOpcode::G_SSUBO; 5981 break; 5982 } 5983 5984 auto OverflowRes = 5985 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5986 Register Tmp = OverflowRes.getReg(0); 5987 Register Ov = OverflowRes.getReg(1); 5988 MachineInstrBuilder Clamp; 5989 if (IsSigned) { 5990 // sadd.sat(a, b) -> 5991 // {tmp, ov} = saddo(a, b) 5992 // ov ? (tmp >>s 31) + 0x80000000 : r 5993 // ssub.sat(a, b) -> 5994 // {tmp, ov} = ssubo(a, b) 5995 // ov ? (tmp >>s 31) + 0x80000000 : r 5996 uint64_t NumBits = Ty.getScalarSizeInBits(); 5997 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5998 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5999 auto MinVal = 6000 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6001 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6002 } else { 6003 // uadd.sat(a, b) -> 6004 // {tmp, ov} = uaddo(a, b) 6005 // ov ? 0xffffffff : tmp 6006 // usub.sat(a, b) -> 6007 // {tmp, ov} = usubo(a, b) 6008 // ov ? 0 : tmp 6009 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6010 } 6011 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6012 6013 MI.eraseFromParent(); 6014 return Legalized; 6015 } 6016 6017 LegalizerHelper::LegalizeResult 6018 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6019 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6020 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6021 "Expected shlsat opcode!"); 6022 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6023 Register Res = MI.getOperand(0).getReg(); 6024 Register LHS = MI.getOperand(1).getReg(); 6025 Register RHS = MI.getOperand(2).getReg(); 6026 LLT Ty = MRI.getType(Res); 6027 LLT BoolTy = Ty.changeElementSize(1); 6028 6029 unsigned BW = Ty.getScalarSizeInBits(); 6030 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6031 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6032 : MIRBuilder.buildLShr(Ty, Result, RHS); 6033 6034 MachineInstrBuilder SatVal; 6035 if (IsSigned) { 6036 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6037 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6038 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6039 MIRBuilder.buildConstant(Ty, 0)); 6040 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6041 } else { 6042 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6043 } 6044 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig); 6045 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6046 6047 MI.eraseFromParent(); 6048 return Legalized; 6049 } 6050 6051 LegalizerHelper::LegalizeResult 6052 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6053 Register Dst = MI.getOperand(0).getReg(); 6054 Register Src = MI.getOperand(1).getReg(); 6055 const LLT Ty = MRI.getType(Src); 6056 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6057 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6058 6059 // Swap most and least significant byte, set remaining bytes in Res to zero. 6060 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6061 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6062 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6063 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6064 6065 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6066 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6067 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6068 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6069 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6070 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6071 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6072 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6073 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6074 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6075 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6076 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6077 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6078 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6079 } 6080 Res.getInstr()->getOperand(0).setReg(Dst); 6081 6082 MI.eraseFromParent(); 6083 return Legalized; 6084 } 6085 6086 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6087 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6088 MachineInstrBuilder Src, APInt Mask) { 6089 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6090 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6091 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6092 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6093 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6094 return B.buildOr(Dst, LHS, RHS); 6095 } 6096 6097 LegalizerHelper::LegalizeResult 6098 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6099 Register Dst = MI.getOperand(0).getReg(); 6100 Register Src = MI.getOperand(1).getReg(); 6101 const LLT Ty = MRI.getType(Src); 6102 unsigned Size = Ty.getSizeInBits(); 6103 6104 MachineInstrBuilder BSWAP = 6105 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6106 6107 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6108 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6109 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6110 MachineInstrBuilder Swap4 = 6111 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6112 6113 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6114 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6115 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6116 MachineInstrBuilder Swap2 = 6117 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6118 6119 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6120 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6121 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6122 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6123 6124 MI.eraseFromParent(); 6125 return Legalized; 6126 } 6127 6128 LegalizerHelper::LegalizeResult 6129 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6130 MachineFunction &MF = MIRBuilder.getMF(); 6131 6132 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6133 int NameOpIdx = IsRead ? 1 : 0; 6134 int ValRegIndex = IsRead ? 0 : 1; 6135 6136 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6137 const LLT Ty = MRI.getType(ValReg); 6138 const MDString *RegStr = cast<MDString>( 6139 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6140 6141 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6142 if (!PhysReg.isValid()) 6143 return UnableToLegalize; 6144 6145 if (IsRead) 6146 MIRBuilder.buildCopy(ValReg, PhysReg); 6147 else 6148 MIRBuilder.buildCopy(PhysReg, ValReg); 6149 6150 MI.eraseFromParent(); 6151 return Legalized; 6152 } 6153