1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { 95 MIRBuilder.setChangeObserver(Observer); 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &B) 101 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 102 TLI(*MF.getSubtarget().getTargetLowering()) { 103 MIRBuilder.setChangeObserver(Observer); 104 } 105 LegalizerHelper::LegalizeResult 106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 107 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 108 109 MIRBuilder.setInstrAndDebugLoc(MI); 110 111 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 112 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 113 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 114 auto Step = LI.getAction(MI, MRI); 115 switch (Step.Action) { 116 case Legal: 117 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 118 return AlreadyLegal; 119 case Libcall: 120 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 121 return libcall(MI); 122 case NarrowScalar: 123 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 124 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 125 case WidenScalar: 126 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 127 return widenScalar(MI, Step.TypeIdx, Step.NewType); 128 case Bitcast: 129 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 130 return bitcast(MI, Step.TypeIdx, Step.NewType); 131 case Lower: 132 LLVM_DEBUG(dbgs() << ".. Lower\n"); 133 return lower(MI, Step.TypeIdx, Step.NewType); 134 case FewerElements: 135 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 136 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case MoreElements: 138 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 139 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case Custom: 141 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 142 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 143 default: 144 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 145 return UnableToLegalize; 146 } 147 } 148 149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 150 SmallVectorImpl<Register> &VRegs) { 151 for (int i = 0; i < NumParts; ++i) 152 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 153 MIRBuilder.buildUnmerge(VRegs, Reg); 154 } 155 156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 157 LLT MainTy, LLT &LeftoverTy, 158 SmallVectorImpl<Register> &VRegs, 159 SmallVectorImpl<Register> &LeftoverRegs) { 160 assert(!LeftoverTy.isValid() && "this is an out argument"); 161 162 unsigned RegSize = RegTy.getSizeInBits(); 163 unsigned MainSize = MainTy.getSizeInBits(); 164 unsigned NumParts = RegSize / MainSize; 165 unsigned LeftoverSize = RegSize - NumParts * MainSize; 166 167 // Use an unmerge when possible. 168 if (LeftoverSize == 0) { 169 for (unsigned I = 0; I < NumParts; ++I) 170 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 171 MIRBuilder.buildUnmerge(VRegs, Reg); 172 return true; 173 } 174 175 if (MainTy.isVector()) { 176 unsigned EltSize = MainTy.getScalarSizeInBits(); 177 if (LeftoverSize % EltSize != 0) 178 return false; 179 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 180 } else { 181 LeftoverTy = LLT::scalar(LeftoverSize); 182 } 183 184 // For irregular sizes, extract the individual parts. 185 for (unsigned I = 0; I != NumParts; ++I) { 186 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 187 VRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 189 } 190 191 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 192 Offset += LeftoverSize) { 193 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 194 LeftoverRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, Offset); 196 } 197 198 return true; 199 } 200 201 void LegalizerHelper::insertParts(Register DstReg, 202 LLT ResultTy, LLT PartTy, 203 ArrayRef<Register> PartRegs, 204 LLT LeftoverTy, 205 ArrayRef<Register> LeftoverRegs) { 206 if (!LeftoverTy.isValid()) { 207 assert(LeftoverRegs.empty()); 208 209 if (!ResultTy.isVector()) { 210 MIRBuilder.buildMerge(DstReg, PartRegs); 211 return; 212 } 213 214 if (PartTy.isVector()) 215 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 216 else 217 MIRBuilder.buildBuildVector(DstReg, PartRegs); 218 return; 219 } 220 221 unsigned PartSize = PartTy.getSizeInBits(); 222 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 223 224 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 225 MIRBuilder.buildUndef(CurResultReg); 226 227 unsigned Offset = 0; 228 for (Register PartReg : PartRegs) { 229 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 230 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 231 CurResultReg = NewResultReg; 232 Offset += PartSize; 233 } 234 235 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 236 // Use the original output register for the final insert to avoid a copy. 237 Register NewResultReg = (I + 1 == E) ? 238 DstReg : MRI.createGenericVirtualRegister(ResultTy); 239 240 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 241 CurResultReg = NewResultReg; 242 Offset += LeftoverPartSize; 243 } 244 } 245 246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 248 const MachineInstr &MI) { 249 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 250 251 const int StartIdx = Regs.size(); 252 const int NumResults = MI.getNumOperands() - 1; 253 Regs.resize(Regs.size() + NumResults); 254 for (int I = 0; I != NumResults; ++I) 255 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 256 } 257 258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 259 LLT GCDTy, Register SrcReg) { 260 LLT SrcTy = MRI.getType(SrcReg); 261 if (SrcTy == GCDTy) { 262 // If the source already evenly divides the result type, we don't need to do 263 // anything. 264 Parts.push_back(SrcReg); 265 } else { 266 // Need to split into common type sized pieces. 267 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 268 getUnmergeResults(Parts, *Unmerge); 269 } 270 } 271 272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 273 LLT NarrowTy, Register SrcReg) { 274 LLT SrcTy = MRI.getType(SrcReg); 275 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 276 extractGCDType(Parts, GCDTy, SrcReg); 277 return GCDTy; 278 } 279 280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 281 SmallVectorImpl<Register> &VRegs, 282 unsigned PadStrategy) { 283 LLT LCMTy = getLCMType(DstTy, NarrowTy); 284 285 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 286 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 287 int NumOrigSrc = VRegs.size(); 288 289 Register PadReg; 290 291 // Get a value we can use to pad the source value if the sources won't evenly 292 // cover the result type. 293 if (NumOrigSrc < NumParts * NumSubParts) { 294 if (PadStrategy == TargetOpcode::G_ZEXT) 295 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 296 else if (PadStrategy == TargetOpcode::G_ANYEXT) 297 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 298 else { 299 assert(PadStrategy == TargetOpcode::G_SEXT); 300 301 // Shift the sign bit of the low register through the high register. 302 auto ShiftAmt = 303 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 304 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 305 } 306 } 307 308 // Registers for the final merge to be produced. 309 SmallVector<Register, 4> Remerge(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge(NumSubParts); 314 315 // Once we've fully read off the end of the original source bits, we can reuse 316 // the same high bits for remaining padding elements. 317 Register AllPadReg; 318 319 // Build merges to the LCM type to cover the original result type. 320 for (int I = 0; I != NumParts; ++I) { 321 bool AllMergePartsArePadding = true; 322 323 // Build the requested merges to the requested type. 324 for (int J = 0; J != NumSubParts; ++J) { 325 int Idx = I * NumSubParts + J; 326 if (Idx >= NumOrigSrc) { 327 SubMerge[J] = PadReg; 328 continue; 329 } 330 331 SubMerge[J] = VRegs[Idx]; 332 333 // There are meaningful bits here we can't reuse later. 334 AllMergePartsArePadding = false; 335 } 336 337 // If we've filled up a complete piece with padding bits, we can directly 338 // emit the natural sized constant if applicable, rather than a merge of 339 // smaller constants. 340 if (AllMergePartsArePadding && !AllPadReg) { 341 if (PadStrategy == TargetOpcode::G_ANYEXT) 342 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 343 else if (PadStrategy == TargetOpcode::G_ZEXT) 344 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 345 346 // If this is a sign extension, we can't materialize a trivial constant 347 // with the right type and have to produce a merge. 348 } 349 350 if (AllPadReg) { 351 // Avoid creating additional instructions if we're just adding additional 352 // copies of padding bits. 353 Remerge[I] = AllPadReg; 354 continue; 355 } 356 357 if (NumSubParts == 1) 358 Remerge[I] = SubMerge[0]; 359 else 360 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 361 362 // In the sign extend padding case, re-use the first all-signbit merge. 363 if (AllMergePartsArePadding && !AllPadReg) 364 AllPadReg = Remerge[I]; 365 } 366 367 VRegs = std::move(Remerge); 368 return LCMTy; 369 } 370 371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 372 ArrayRef<Register> RemergeRegs) { 373 LLT DstTy = MRI.getType(DstReg); 374 375 // Create the merge to the widened source, and extract the relevant bits into 376 // the result. 377 378 if (DstTy == LCMTy) { 379 MIRBuilder.buildMerge(DstReg, RemergeRegs); 380 return; 381 } 382 383 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 384 if (DstTy.isScalar() && LCMTy.isScalar()) { 385 MIRBuilder.buildTrunc(DstReg, Remerge); 386 return; 387 } 388 389 if (LCMTy.isVector()) { 390 MIRBuilder.buildExtract(DstReg, Remerge, 0); 391 return; 392 } 393 394 llvm_unreachable("unhandled case"); 395 } 396 397 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 398 #define RTLIBCASE_INT(LibcallPrefix) \ 399 do { \ 400 switch (Size) { \ 401 case 32: \ 402 return RTLIB::LibcallPrefix##32; \ 403 case 64: \ 404 return RTLIB::LibcallPrefix##64; \ 405 case 128: \ 406 return RTLIB::LibcallPrefix##128; \ 407 default: \ 408 llvm_unreachable("unexpected size"); \ 409 } \ 410 } while (0) 411 412 #define RTLIBCASE(LibcallPrefix) \ 413 do { \ 414 switch (Size) { \ 415 case 32: \ 416 return RTLIB::LibcallPrefix##32; \ 417 case 64: \ 418 return RTLIB::LibcallPrefix##64; \ 419 case 80: \ 420 return RTLIB::LibcallPrefix##80; \ 421 case 128: \ 422 return RTLIB::LibcallPrefix##128; \ 423 default: \ 424 llvm_unreachable("unexpected size"); \ 425 } \ 426 } while (0) 427 428 switch (Opcode) { 429 case TargetOpcode::G_SDIV: 430 RTLIBCASE_INT(SDIV_I); 431 case TargetOpcode::G_UDIV: 432 RTLIBCASE_INT(UDIV_I); 433 case TargetOpcode::G_SREM: 434 RTLIBCASE_INT(SREM_I); 435 case TargetOpcode::G_UREM: 436 RTLIBCASE_INT(UREM_I); 437 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 438 RTLIBCASE_INT(CTLZ_I); 439 case TargetOpcode::G_FADD: 440 RTLIBCASE(ADD_F); 441 case TargetOpcode::G_FSUB: 442 RTLIBCASE(SUB_F); 443 case TargetOpcode::G_FMUL: 444 RTLIBCASE(MUL_F); 445 case TargetOpcode::G_FDIV: 446 RTLIBCASE(DIV_F); 447 case TargetOpcode::G_FEXP: 448 RTLIBCASE(EXP_F); 449 case TargetOpcode::G_FEXP2: 450 RTLIBCASE(EXP2_F); 451 case TargetOpcode::G_FREM: 452 RTLIBCASE(REM_F); 453 case TargetOpcode::G_FPOW: 454 RTLIBCASE(POW_F); 455 case TargetOpcode::G_FMA: 456 RTLIBCASE(FMA_F); 457 case TargetOpcode::G_FSIN: 458 RTLIBCASE(SIN_F); 459 case TargetOpcode::G_FCOS: 460 RTLIBCASE(COS_F); 461 case TargetOpcode::G_FLOG10: 462 RTLIBCASE(LOG10_F); 463 case TargetOpcode::G_FLOG: 464 RTLIBCASE(LOG_F); 465 case TargetOpcode::G_FLOG2: 466 RTLIBCASE(LOG2_F); 467 case TargetOpcode::G_FCEIL: 468 RTLIBCASE(CEIL_F); 469 case TargetOpcode::G_FFLOOR: 470 RTLIBCASE(FLOOR_F); 471 case TargetOpcode::G_FMINNUM: 472 RTLIBCASE(FMIN_F); 473 case TargetOpcode::G_FMAXNUM: 474 RTLIBCASE(FMAX_F); 475 case TargetOpcode::G_FSQRT: 476 RTLIBCASE(SQRT_F); 477 case TargetOpcode::G_FRINT: 478 RTLIBCASE(RINT_F); 479 case TargetOpcode::G_FNEARBYINT: 480 RTLIBCASE(NEARBYINT_F); 481 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 482 RTLIBCASE(ROUNDEVEN_F); 483 } 484 llvm_unreachable("Unknown libcall function"); 485 } 486 487 /// True if an instruction is in tail position in its caller. Intended for 488 /// legalizing libcalls as tail calls when possible. 489 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 490 MachineInstr &MI) { 491 MachineBasicBlock &MBB = *MI.getParent(); 492 const Function &F = MBB.getParent()->getFunction(); 493 494 // Conservatively require the attributes of the call to match those of 495 // the return. Ignore NoAlias and NonNull because they don't affect the 496 // call sequence. 497 AttributeList CallerAttrs = F.getAttributes(); 498 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 499 .removeAttribute(Attribute::NoAlias) 500 .removeAttribute(Attribute::NonNull) 501 .hasAttributes()) 502 return false; 503 504 // It's not safe to eliminate the sign / zero extension of the return value. 505 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 506 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 507 return false; 508 509 // Only tail call if the following instruction is a standard return. 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 512 return false; 513 514 return true; 515 } 516 517 LegalizerHelper::LegalizeResult 518 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 519 const CallLowering::ArgInfo &Result, 520 ArrayRef<CallLowering::ArgInfo> Args, 521 const CallingConv::ID CC) { 522 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 523 524 CallLowering::CallLoweringInfo Info; 525 Info.CallConv = CC; 526 Info.Callee = MachineOperand::CreateES(Name); 527 Info.OrigRet = Result; 528 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 529 if (!CLI.lowerCall(MIRBuilder, Info)) 530 return LegalizerHelper::UnableToLegalize; 531 532 return LegalizerHelper::Legalized; 533 } 534 535 LegalizerHelper::LegalizeResult 536 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 537 const CallLowering::ArgInfo &Result, 538 ArrayRef<CallLowering::ArgInfo> Args) { 539 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 540 const char *Name = TLI.getLibcallName(Libcall); 541 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 542 return createLibcall(MIRBuilder, Name, Result, Args, CC); 543 } 544 545 // Useful for libcalls where all operands have the same type. 546 static LegalizerHelper::LegalizeResult 547 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 548 Type *OpType) { 549 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 550 551 SmallVector<CallLowering::ArgInfo, 3> Args; 552 for (unsigned i = 1; i < MI.getNumOperands(); i++) 553 Args.push_back({MI.getOperand(i).getReg(), OpType}); 554 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 555 Args); 556 } 557 558 LegalizerHelper::LegalizeResult 559 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 560 MachineInstr &MI) { 561 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 562 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 563 564 SmallVector<CallLowering::ArgInfo, 3> Args; 565 // Add all the args, except for the last which is an imm denoting 'tail'. 566 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 567 Register Reg = MI.getOperand(i).getReg(); 568 569 // Need derive an IR type for call lowering. 570 LLT OpLLT = MRI.getType(Reg); 571 Type *OpTy = nullptr; 572 if (OpLLT.isPointer()) 573 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 574 else 575 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 576 Args.push_back({Reg, OpTy}); 577 } 578 579 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 580 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 581 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 582 RTLIB::Libcall RTLibcall; 583 switch (ID) { 584 case Intrinsic::memcpy: 585 RTLibcall = RTLIB::MEMCPY; 586 break; 587 case Intrinsic::memset: 588 RTLibcall = RTLIB::MEMSET; 589 break; 590 case Intrinsic::memmove: 591 RTLibcall = RTLIB::MEMMOVE; 592 break; 593 default: 594 return LegalizerHelper::UnableToLegalize; 595 } 596 const char *Name = TLI.getLibcallName(RTLibcall); 597 598 MIRBuilder.setInstrAndDebugLoc(MI); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 } 752 753 MI.eraseFromParent(); 754 return Legalized; 755 } 756 757 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 758 unsigned TypeIdx, 759 LLT NarrowTy) { 760 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 761 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 762 763 switch (MI.getOpcode()) { 764 default: 765 return UnableToLegalize; 766 case TargetOpcode::G_IMPLICIT_DEF: { 767 Register DstReg = MI.getOperand(0).getReg(); 768 LLT DstTy = MRI.getType(DstReg); 769 770 // If SizeOp0 is not an exact multiple of NarrowSize, emit 771 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 772 // FIXME: Although this would also be legal for the general case, it causes 773 // a lot of regressions in the emitted code (superfluous COPYs, artifact 774 // combines not being hit). This seems to be a problem related to the 775 // artifact combiner. 776 if (SizeOp0 % NarrowSize != 0) { 777 LLT ImplicitTy = NarrowTy; 778 if (DstTy.isVector()) 779 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 780 781 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 782 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 783 784 MI.eraseFromParent(); 785 return Legalized; 786 } 787 788 int NumParts = SizeOp0 / NarrowSize; 789 790 SmallVector<Register, 2> DstRegs; 791 for (int i = 0; i < NumParts; ++i) 792 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 793 794 if (DstTy.isVector()) 795 MIRBuilder.buildBuildVector(DstReg, DstRegs); 796 else 797 MIRBuilder.buildMerge(DstReg, DstRegs); 798 MI.eraseFromParent(); 799 return Legalized; 800 } 801 case TargetOpcode::G_CONSTANT: { 802 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 803 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 804 unsigned TotalSize = Ty.getSizeInBits(); 805 unsigned NarrowSize = NarrowTy.getSizeInBits(); 806 int NumParts = TotalSize / NarrowSize; 807 808 SmallVector<Register, 4> PartRegs; 809 for (int I = 0; I != NumParts; ++I) { 810 unsigned Offset = I * NarrowSize; 811 auto K = MIRBuilder.buildConstant(NarrowTy, 812 Val.lshr(Offset).trunc(NarrowSize)); 813 PartRegs.push_back(K.getReg(0)); 814 } 815 816 LLT LeftoverTy; 817 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 818 SmallVector<Register, 1> LeftoverRegs; 819 if (LeftoverBits != 0) { 820 LeftoverTy = LLT::scalar(LeftoverBits); 821 auto K = MIRBuilder.buildConstant( 822 LeftoverTy, 823 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 824 LeftoverRegs.push_back(K.getReg(0)); 825 } 826 827 insertParts(MI.getOperand(0).getReg(), 828 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 829 830 MI.eraseFromParent(); 831 return Legalized; 832 } 833 case TargetOpcode::G_SEXT: 834 case TargetOpcode::G_ZEXT: 835 case TargetOpcode::G_ANYEXT: 836 return narrowScalarExt(MI, TypeIdx, NarrowTy); 837 case TargetOpcode::G_TRUNC: { 838 if (TypeIdx != 1) 839 return UnableToLegalize; 840 841 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 842 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 843 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 844 return UnableToLegalize; 845 } 846 847 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 848 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 849 MI.eraseFromParent(); 850 return Legalized; 851 } 852 853 case TargetOpcode::G_FREEZE: 854 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 855 856 case TargetOpcode::G_ADD: { 857 // FIXME: add support for when SizeOp0 isn't an exact multiple of 858 // NarrowSize. 859 if (SizeOp0 % NarrowSize != 0) 860 return UnableToLegalize; 861 // Expand in terms of carry-setting/consuming G_ADDE instructions. 862 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 863 864 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 865 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 866 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 867 868 Register CarryIn; 869 for (int i = 0; i < NumParts; ++i) { 870 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 871 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 872 873 if (i == 0) 874 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 875 else { 876 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 877 Src2Regs[i], CarryIn); 878 } 879 880 DstRegs.push_back(DstReg); 881 CarryIn = CarryOut; 882 } 883 Register DstReg = MI.getOperand(0).getReg(); 884 if(MRI.getType(DstReg).isVector()) 885 MIRBuilder.buildBuildVector(DstReg, DstRegs); 886 else 887 MIRBuilder.buildMerge(DstReg, DstRegs); 888 MI.eraseFromParent(); 889 return Legalized; 890 } 891 case TargetOpcode::G_SUB: { 892 // FIXME: add support for when SizeOp0 isn't an exact multiple of 893 // NarrowSize. 894 if (SizeOp0 % NarrowSize != 0) 895 return UnableToLegalize; 896 897 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 898 899 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 900 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 901 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 902 903 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 904 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 905 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 906 {Src1Regs[0], Src2Regs[0]}); 907 DstRegs.push_back(DstReg); 908 Register BorrowIn = BorrowOut; 909 for (int i = 1; i < NumParts; ++i) { 910 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 913 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 914 {Src1Regs[i], Src2Regs[i], BorrowIn}); 915 916 DstRegs.push_back(DstReg); 917 BorrowIn = BorrowOut; 918 } 919 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 920 MI.eraseFromParent(); 921 return Legalized; 922 } 923 case TargetOpcode::G_MUL: 924 case TargetOpcode::G_UMULH: 925 return narrowScalarMul(MI, NarrowTy); 926 case TargetOpcode::G_EXTRACT: 927 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 928 case TargetOpcode::G_INSERT: 929 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 930 case TargetOpcode::G_LOAD: { 931 auto &MMO = **MI.memoperands_begin(); 932 Register DstReg = MI.getOperand(0).getReg(); 933 LLT DstTy = MRI.getType(DstReg); 934 if (DstTy.isVector()) 935 return UnableToLegalize; 936 937 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 938 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 939 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 940 MIRBuilder.buildAnyExt(DstReg, TmpReg); 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 945 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 946 } 947 case TargetOpcode::G_ZEXTLOAD: 948 case TargetOpcode::G_SEXTLOAD: { 949 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 950 Register DstReg = MI.getOperand(0).getReg(); 951 Register PtrReg = MI.getOperand(1).getReg(); 952 953 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 954 auto &MMO = **MI.memoperands_begin(); 955 if (MMO.getSizeInBits() == NarrowSize) { 956 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 957 } else { 958 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 959 } 960 961 if (ZExt) 962 MIRBuilder.buildZExt(DstReg, TmpReg); 963 else 964 MIRBuilder.buildSExt(DstReg, TmpReg); 965 966 MI.eraseFromParent(); 967 return Legalized; 968 } 969 case TargetOpcode::G_STORE: { 970 const auto &MMO = **MI.memoperands_begin(); 971 972 Register SrcReg = MI.getOperand(0).getReg(); 973 LLT SrcTy = MRI.getType(SrcReg); 974 if (SrcTy.isVector()) 975 return UnableToLegalize; 976 977 int NumParts = SizeOp0 / NarrowSize; 978 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 979 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 980 if (SrcTy.isVector() && LeftoverBits != 0) 981 return UnableToLegalize; 982 983 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 984 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 985 auto &MMO = **MI.memoperands_begin(); 986 MIRBuilder.buildTrunc(TmpReg, SrcReg); 987 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 988 MI.eraseFromParent(); 989 return Legalized; 990 } 991 992 return reduceLoadStoreWidth(MI, 0, NarrowTy); 993 } 994 case TargetOpcode::G_SELECT: 995 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 996 case TargetOpcode::G_AND: 997 case TargetOpcode::G_OR: 998 case TargetOpcode::G_XOR: { 999 // Legalize bitwise operation: 1000 // A = BinOp<Ty> B, C 1001 // into: 1002 // B1, ..., BN = G_UNMERGE_VALUES B 1003 // C1, ..., CN = G_UNMERGE_VALUES C 1004 // A1 = BinOp<Ty/N> B1, C2 1005 // ... 1006 // AN = BinOp<Ty/N> BN, CN 1007 // A = G_MERGE_VALUES A1, ..., AN 1008 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1009 } 1010 case TargetOpcode::G_SHL: 1011 case TargetOpcode::G_LSHR: 1012 case TargetOpcode::G_ASHR: 1013 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1014 case TargetOpcode::G_CTLZ: 1015 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1016 case TargetOpcode::G_CTTZ: 1017 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1018 case TargetOpcode::G_CTPOP: 1019 if (TypeIdx == 1) 1020 switch (MI.getOpcode()) { 1021 case TargetOpcode::G_CTLZ: 1022 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1023 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1024 case TargetOpcode::G_CTTZ: 1025 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1026 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1027 case TargetOpcode::G_CTPOP: 1028 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1029 default: 1030 return UnableToLegalize; 1031 } 1032 1033 Observer.changingInstr(MI); 1034 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1035 Observer.changedInstr(MI); 1036 return Legalized; 1037 case TargetOpcode::G_INTTOPTR: 1038 if (TypeIdx != 1) 1039 return UnableToLegalize; 1040 1041 Observer.changingInstr(MI); 1042 narrowScalarSrc(MI, NarrowTy, 1); 1043 Observer.changedInstr(MI); 1044 return Legalized; 1045 case TargetOpcode::G_PTRTOINT: 1046 if (TypeIdx != 0) 1047 return UnableToLegalize; 1048 1049 Observer.changingInstr(MI); 1050 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1051 Observer.changedInstr(MI); 1052 return Legalized; 1053 case TargetOpcode::G_PHI: { 1054 unsigned NumParts = SizeOp0 / NarrowSize; 1055 SmallVector<Register, 2> DstRegs(NumParts); 1056 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1057 Observer.changingInstr(MI); 1058 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1059 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1060 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1061 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1062 SrcRegs[i / 2]); 1063 } 1064 MachineBasicBlock &MBB = *MI.getParent(); 1065 MIRBuilder.setInsertPt(MBB, MI); 1066 for (unsigned i = 0; i < NumParts; ++i) { 1067 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1068 MachineInstrBuilder MIB = 1069 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1070 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1071 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1072 } 1073 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1074 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1075 Observer.changedInstr(MI); 1076 MI.eraseFromParent(); 1077 return Legalized; 1078 } 1079 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1080 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1081 if (TypeIdx != 2) 1082 return UnableToLegalize; 1083 1084 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1085 Observer.changingInstr(MI); 1086 narrowScalarSrc(MI, NarrowTy, OpIdx); 1087 Observer.changedInstr(MI); 1088 return Legalized; 1089 } 1090 case TargetOpcode::G_ICMP: { 1091 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1092 if (NarrowSize * 2 != SrcSize) 1093 return UnableToLegalize; 1094 1095 Observer.changingInstr(MI); 1096 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1097 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1098 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1099 1100 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1101 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1102 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1103 1104 CmpInst::Predicate Pred = 1105 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1106 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1107 1108 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1109 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1110 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1111 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1112 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1113 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1114 } else { 1115 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1116 MachineInstrBuilder CmpHEQ = 1117 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1118 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1119 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1120 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1121 } 1122 Observer.changedInstr(MI); 1123 MI.eraseFromParent(); 1124 return Legalized; 1125 } 1126 case TargetOpcode::G_SEXT_INREG: { 1127 if (TypeIdx != 0) 1128 return UnableToLegalize; 1129 1130 int64_t SizeInBits = MI.getOperand(2).getImm(); 1131 1132 // So long as the new type has more bits than the bits we're extending we 1133 // don't need to break it apart. 1134 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1135 Observer.changingInstr(MI); 1136 // We don't lose any non-extension bits by truncating the src and 1137 // sign-extending the dst. 1138 MachineOperand &MO1 = MI.getOperand(1); 1139 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1140 MO1.setReg(TruncMIB.getReg(0)); 1141 1142 MachineOperand &MO2 = MI.getOperand(0); 1143 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1144 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1145 MIRBuilder.buildSExt(MO2, DstExt); 1146 MO2.setReg(DstExt); 1147 Observer.changedInstr(MI); 1148 return Legalized; 1149 } 1150 1151 // Break it apart. Components below the extension point are unmodified. The 1152 // component containing the extension point becomes a narrower SEXT_INREG. 1153 // Components above it are ashr'd from the component containing the 1154 // extension point. 1155 if (SizeOp0 % NarrowSize != 0) 1156 return UnableToLegalize; 1157 int NumParts = SizeOp0 / NarrowSize; 1158 1159 // List the registers where the destination will be scattered. 1160 SmallVector<Register, 2> DstRegs; 1161 // List the registers where the source will be split. 1162 SmallVector<Register, 2> SrcRegs; 1163 1164 // Create all the temporary registers. 1165 for (int i = 0; i < NumParts; ++i) { 1166 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1167 1168 SrcRegs.push_back(SrcReg); 1169 } 1170 1171 // Explode the big arguments into smaller chunks. 1172 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1173 1174 Register AshrCstReg = 1175 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1176 .getReg(0); 1177 Register FullExtensionReg = 0; 1178 Register PartialExtensionReg = 0; 1179 1180 // Do the operation on each small part. 1181 for (int i = 0; i < NumParts; ++i) { 1182 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1183 DstRegs.push_back(SrcRegs[i]); 1184 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1185 assert(PartialExtensionReg && 1186 "Expected to visit partial extension before full"); 1187 if (FullExtensionReg) { 1188 DstRegs.push_back(FullExtensionReg); 1189 continue; 1190 } 1191 DstRegs.push_back( 1192 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1193 .getReg(0)); 1194 FullExtensionReg = DstRegs.back(); 1195 } else { 1196 DstRegs.push_back( 1197 MIRBuilder 1198 .buildInstr( 1199 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1200 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1201 .getReg(0)); 1202 PartialExtensionReg = DstRegs.back(); 1203 } 1204 } 1205 1206 // Gather the destination registers into the final destination. 1207 Register DstReg = MI.getOperand(0).getReg(); 1208 MIRBuilder.buildMerge(DstReg, DstRegs); 1209 MI.eraseFromParent(); 1210 return Legalized; 1211 } 1212 case TargetOpcode::G_BSWAP: 1213 case TargetOpcode::G_BITREVERSE: { 1214 if (SizeOp0 % NarrowSize != 0) 1215 return UnableToLegalize; 1216 1217 Observer.changingInstr(MI); 1218 SmallVector<Register, 2> SrcRegs, DstRegs; 1219 unsigned NumParts = SizeOp0 / NarrowSize; 1220 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1221 1222 for (unsigned i = 0; i < NumParts; ++i) { 1223 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1224 {SrcRegs[NumParts - 1 - i]}); 1225 DstRegs.push_back(DstPart.getReg(0)); 1226 } 1227 1228 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1229 1230 Observer.changedInstr(MI); 1231 MI.eraseFromParent(); 1232 return Legalized; 1233 } 1234 case TargetOpcode::G_PTR_ADD: 1235 case TargetOpcode::G_PTRMASK: { 1236 if (TypeIdx != 1) 1237 return UnableToLegalize; 1238 Observer.changingInstr(MI); 1239 narrowScalarSrc(MI, NarrowTy, 2); 1240 Observer.changedInstr(MI); 1241 return Legalized; 1242 } 1243 case TargetOpcode::G_FPTOUI: { 1244 if (TypeIdx != 0) 1245 return UnableToLegalize; 1246 Observer.changingInstr(MI); 1247 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1248 Observer.changedInstr(MI); 1249 return Legalized; 1250 } 1251 case TargetOpcode::G_FPTOSI: { 1252 if (TypeIdx != 0) 1253 return UnableToLegalize; 1254 Observer.changingInstr(MI); 1255 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1256 Observer.changedInstr(MI); 1257 return Legalized; 1258 } 1259 case TargetOpcode::G_FPEXT: 1260 if (TypeIdx != 0) 1261 return UnableToLegalize; 1262 Observer.changingInstr(MI); 1263 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1264 Observer.changedInstr(MI); 1265 return Legalized; 1266 } 1267 } 1268 1269 Register LegalizerHelper::coerceToScalar(Register Val) { 1270 LLT Ty = MRI.getType(Val); 1271 if (Ty.isScalar()) 1272 return Val; 1273 1274 const DataLayout &DL = MIRBuilder.getDataLayout(); 1275 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1276 if (Ty.isPointer()) { 1277 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1278 return Register(); 1279 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1280 } 1281 1282 Register NewVal = Val; 1283 1284 assert(Ty.isVector()); 1285 LLT EltTy = Ty.getElementType(); 1286 if (EltTy.isPointer()) 1287 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1288 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1289 } 1290 1291 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1292 unsigned OpIdx, unsigned ExtOpcode) { 1293 MachineOperand &MO = MI.getOperand(OpIdx); 1294 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1295 MO.setReg(ExtB.getReg(0)); 1296 } 1297 1298 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1299 unsigned OpIdx) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1302 MO.setReg(ExtB.getReg(0)); 1303 } 1304 1305 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1306 unsigned OpIdx, unsigned TruncOpcode) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1309 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1310 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1311 MO.setReg(DstExt); 1312 } 1313 1314 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1315 unsigned OpIdx, unsigned ExtOpcode) { 1316 MachineOperand &MO = MI.getOperand(OpIdx); 1317 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1318 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1319 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1320 MO.setReg(DstTrunc); 1321 } 1322 1323 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1324 unsigned OpIdx) { 1325 MachineOperand &MO = MI.getOperand(OpIdx); 1326 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1327 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1328 } 1329 1330 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1331 unsigned OpIdx) { 1332 MachineOperand &MO = MI.getOperand(OpIdx); 1333 1334 LLT OldTy = MRI.getType(MO.getReg()); 1335 unsigned OldElts = OldTy.getNumElements(); 1336 unsigned NewElts = MoreTy.getNumElements(); 1337 1338 unsigned NumParts = NewElts / OldElts; 1339 1340 // Use concat_vectors if the result is a multiple of the number of elements. 1341 if (NumParts * OldElts == NewElts) { 1342 SmallVector<Register, 8> Parts; 1343 Parts.push_back(MO.getReg()); 1344 1345 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1346 for (unsigned I = 1; I != NumParts; ++I) 1347 Parts.push_back(ImpDef); 1348 1349 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1350 MO.setReg(Concat.getReg(0)); 1351 return; 1352 } 1353 1354 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1355 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1356 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1357 MO.setReg(MoreReg); 1358 } 1359 1360 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1361 MachineOperand &Op = MI.getOperand(OpIdx); 1362 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1363 } 1364 1365 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1366 MachineOperand &MO = MI.getOperand(OpIdx); 1367 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1368 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1369 MIRBuilder.buildBitcast(MO, CastDst); 1370 MO.setReg(CastDst); 1371 } 1372 1373 LegalizerHelper::LegalizeResult 1374 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1375 LLT WideTy) { 1376 if (TypeIdx != 1) 1377 return UnableToLegalize; 1378 1379 Register DstReg = MI.getOperand(0).getReg(); 1380 LLT DstTy = MRI.getType(DstReg); 1381 if (DstTy.isVector()) 1382 return UnableToLegalize; 1383 1384 Register Src1 = MI.getOperand(1).getReg(); 1385 LLT SrcTy = MRI.getType(Src1); 1386 const int DstSize = DstTy.getSizeInBits(); 1387 const int SrcSize = SrcTy.getSizeInBits(); 1388 const int WideSize = WideTy.getSizeInBits(); 1389 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1390 1391 unsigned NumOps = MI.getNumOperands(); 1392 unsigned NumSrc = MI.getNumOperands() - 1; 1393 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1394 1395 if (WideSize >= DstSize) { 1396 // Directly pack the bits in the target type. 1397 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1398 1399 for (unsigned I = 2; I != NumOps; ++I) { 1400 const unsigned Offset = (I - 1) * PartSize; 1401 1402 Register SrcReg = MI.getOperand(I).getReg(); 1403 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1404 1405 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1406 1407 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1408 MRI.createGenericVirtualRegister(WideTy); 1409 1410 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1411 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1412 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1413 ResultReg = NextResult; 1414 } 1415 1416 if (WideSize > DstSize) 1417 MIRBuilder.buildTrunc(DstReg, ResultReg); 1418 else if (DstTy.isPointer()) 1419 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1420 1421 MI.eraseFromParent(); 1422 return Legalized; 1423 } 1424 1425 // Unmerge the original values to the GCD type, and recombine to the next 1426 // multiple greater than the original type. 1427 // 1428 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1429 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1430 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1431 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1432 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1433 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1434 // %12:_(s12) = G_MERGE_VALUES %10, %11 1435 // 1436 // Padding with undef if necessary: 1437 // 1438 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1439 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1440 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1441 // %7:_(s2) = G_IMPLICIT_DEF 1442 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1443 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1444 // %10:_(s12) = G_MERGE_VALUES %8, %9 1445 1446 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1447 LLT GCDTy = LLT::scalar(GCD); 1448 1449 SmallVector<Register, 8> Parts; 1450 SmallVector<Register, 8> NewMergeRegs; 1451 SmallVector<Register, 8> Unmerges; 1452 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1453 1454 // Decompose the original operands if they don't evenly divide. 1455 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1456 Register SrcReg = MI.getOperand(I).getReg(); 1457 if (GCD == SrcSize) { 1458 Unmerges.push_back(SrcReg); 1459 } else { 1460 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1461 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1462 Unmerges.push_back(Unmerge.getReg(J)); 1463 } 1464 } 1465 1466 // Pad with undef to the next size that is a multiple of the requested size. 1467 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1468 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1469 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1470 Unmerges.push_back(UndefReg); 1471 } 1472 1473 const int PartsPerGCD = WideSize / GCD; 1474 1475 // Build merges of each piece. 1476 ArrayRef<Register> Slicer(Unmerges); 1477 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1478 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1479 NewMergeRegs.push_back(Merge.getReg(0)); 1480 } 1481 1482 // A truncate may be necessary if the requested type doesn't evenly divide the 1483 // original result type. 1484 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1485 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1486 } else { 1487 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1488 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1489 } 1490 1491 MI.eraseFromParent(); 1492 return Legalized; 1493 } 1494 1495 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1496 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1497 LLT OrigTy = MRI.getType(OrigReg); 1498 LLT LCMTy = getLCMType(WideTy, OrigTy); 1499 1500 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1501 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1502 1503 Register UnmergeSrc = WideReg; 1504 1505 // Create a merge to the LCM type, padding with undef 1506 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1507 // => 1508 // %1:_(<4 x s32>) = G_FOO 1509 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1510 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1511 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1512 if (NumMergeParts > 1) { 1513 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1514 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1515 MergeParts[0] = WideReg; 1516 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1517 } 1518 1519 // Unmerge to the original register and pad with dead defs. 1520 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1521 UnmergeResults[0] = OrigReg; 1522 for (int I = 1; I != NumUnmergeParts; ++I) 1523 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1524 1525 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1526 return WideReg; 1527 } 1528 1529 LegalizerHelper::LegalizeResult 1530 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1531 LLT WideTy) { 1532 if (TypeIdx != 0) 1533 return UnableToLegalize; 1534 1535 int NumDst = MI.getNumOperands() - 1; 1536 Register SrcReg = MI.getOperand(NumDst).getReg(); 1537 LLT SrcTy = MRI.getType(SrcReg); 1538 if (SrcTy.isVector()) 1539 return UnableToLegalize; 1540 1541 Register Dst0Reg = MI.getOperand(0).getReg(); 1542 LLT DstTy = MRI.getType(Dst0Reg); 1543 if (!DstTy.isScalar()) 1544 return UnableToLegalize; 1545 1546 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1547 if (SrcTy.isPointer()) { 1548 const DataLayout &DL = MIRBuilder.getDataLayout(); 1549 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1550 LLVM_DEBUG( 1551 dbgs() << "Not casting non-integral address space integer\n"); 1552 return UnableToLegalize; 1553 } 1554 1555 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1556 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1557 } 1558 1559 // Widen SrcTy to WideTy. This does not affect the result, but since the 1560 // user requested this size, it is probably better handled than SrcTy and 1561 // should reduce the total number of legalization artifacts 1562 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1563 SrcTy = WideTy; 1564 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1565 } 1566 1567 // Theres no unmerge type to target. Directly extract the bits from the 1568 // source type 1569 unsigned DstSize = DstTy.getSizeInBits(); 1570 1571 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1572 for (int I = 1; I != NumDst; ++I) { 1573 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1574 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1575 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1576 } 1577 1578 MI.eraseFromParent(); 1579 return Legalized; 1580 } 1581 1582 // Extend the source to a wider type. 1583 LLT LCMTy = getLCMType(SrcTy, WideTy); 1584 1585 Register WideSrc = SrcReg; 1586 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1587 // TODO: If this is an integral address space, cast to integer and anyext. 1588 if (SrcTy.isPointer()) { 1589 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1590 return UnableToLegalize; 1591 } 1592 1593 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1594 } 1595 1596 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1597 1598 // Create a sequence of unmerges to the original results. since we may have 1599 // widened the source, we will need to pad the results with dead defs to cover 1600 // the source register. 1601 // e.g. widen s16 to s32: 1602 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1603 // 1604 // => 1605 // %4:_(s64) = G_ANYEXT %0:_(s48) 1606 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1607 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1608 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1609 1610 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1611 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1612 1613 for (int I = 0; I != NumUnmerge; ++I) { 1614 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1615 1616 for (int J = 0; J != PartsPerUnmerge; ++J) { 1617 int Idx = I * PartsPerUnmerge + J; 1618 if (Idx < NumDst) 1619 MIB.addDef(MI.getOperand(Idx).getReg()); 1620 else { 1621 // Create dead def for excess components. 1622 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1623 } 1624 } 1625 1626 MIB.addUse(Unmerge.getReg(I)); 1627 } 1628 1629 MI.eraseFromParent(); 1630 return Legalized; 1631 } 1632 1633 LegalizerHelper::LegalizeResult 1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1635 LLT WideTy) { 1636 Register DstReg = MI.getOperand(0).getReg(); 1637 Register SrcReg = MI.getOperand(1).getReg(); 1638 LLT SrcTy = MRI.getType(SrcReg); 1639 1640 LLT DstTy = MRI.getType(DstReg); 1641 unsigned Offset = MI.getOperand(2).getImm(); 1642 1643 if (TypeIdx == 0) { 1644 if (SrcTy.isVector() || DstTy.isVector()) 1645 return UnableToLegalize; 1646 1647 SrcOp Src(SrcReg); 1648 if (SrcTy.isPointer()) { 1649 // Extracts from pointers can be handled only if they are really just 1650 // simple integers. 1651 const DataLayout &DL = MIRBuilder.getDataLayout(); 1652 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1653 return UnableToLegalize; 1654 1655 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1656 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1657 SrcTy = SrcAsIntTy; 1658 } 1659 1660 if (DstTy.isPointer()) 1661 return UnableToLegalize; 1662 1663 if (Offset == 0) { 1664 // Avoid a shift in the degenerate case. 1665 MIRBuilder.buildTrunc(DstReg, 1666 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1667 MI.eraseFromParent(); 1668 return Legalized; 1669 } 1670 1671 // Do a shift in the source type. 1672 LLT ShiftTy = SrcTy; 1673 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1674 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1675 ShiftTy = WideTy; 1676 } 1677 1678 auto LShr = MIRBuilder.buildLShr( 1679 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1680 MIRBuilder.buildTrunc(DstReg, LShr); 1681 MI.eraseFromParent(); 1682 return Legalized; 1683 } 1684 1685 if (SrcTy.isScalar()) { 1686 Observer.changingInstr(MI); 1687 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1688 Observer.changedInstr(MI); 1689 return Legalized; 1690 } 1691 1692 if (!SrcTy.isVector()) 1693 return UnableToLegalize; 1694 1695 if (DstTy != SrcTy.getElementType()) 1696 return UnableToLegalize; 1697 1698 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1699 return UnableToLegalize; 1700 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1703 1704 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1705 Offset); 1706 widenScalarDst(MI, WideTy.getScalarType(), 0); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx != 0 || WideTy.isVector()) 1715 return UnableToLegalize; 1716 Observer.changingInstr(MI); 1717 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1718 widenScalarDst(MI, WideTy); 1719 Observer.changedInstr(MI); 1720 return Legalized; 1721 } 1722 1723 LegalizerHelper::LegalizeResult 1724 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1725 LLT WideTy) { 1726 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1727 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1728 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1729 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1730 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1731 // We can convert this to: 1732 // 1. Any extend iN to iM 1733 // 2. SHL by M-N 1734 // 3. [US][ADD|SUB|SHL]SAT 1735 // 4. L/ASHR by M-N 1736 // 1737 // It may be more efficient to lower this to a min and a max operation in 1738 // the higher precision arithmetic if the promoted operation isn't legal, 1739 // but this decision is up to the target's lowering request. 1740 Register DstReg = MI.getOperand(0).getReg(); 1741 1742 unsigned NewBits = WideTy.getScalarSizeInBits(); 1743 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1744 1745 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1746 // must not left shift the RHS to preserve the shift amount. 1747 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1748 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1749 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1750 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1751 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1752 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1753 1754 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1755 {ShiftL, ShiftR}, MI.getFlags()); 1756 1757 // Use a shift that will preserve the number of sign bits when the trunc is 1758 // folded away. 1759 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1760 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1761 1762 MIRBuilder.buildTrunc(DstReg, Result); 1763 MI.eraseFromParent(); 1764 return Legalized; 1765 } 1766 1767 LegalizerHelper::LegalizeResult 1768 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1769 switch (MI.getOpcode()) { 1770 default: 1771 return UnableToLegalize; 1772 case TargetOpcode::G_EXTRACT: 1773 return widenScalarExtract(MI, TypeIdx, WideTy); 1774 case TargetOpcode::G_INSERT: 1775 return widenScalarInsert(MI, TypeIdx, WideTy); 1776 case TargetOpcode::G_MERGE_VALUES: 1777 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1778 case TargetOpcode::G_UNMERGE_VALUES: 1779 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1780 case TargetOpcode::G_UADDO: 1781 case TargetOpcode::G_USUBO: { 1782 if (TypeIdx == 1) 1783 return UnableToLegalize; // TODO 1784 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1785 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1786 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1787 ? TargetOpcode::G_ADD 1788 : TargetOpcode::G_SUB; 1789 // Do the arithmetic in the larger type. 1790 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1791 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1792 APInt Mask = 1793 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1794 auto AndOp = MIRBuilder.buildAnd( 1795 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1796 // There is no overflow if the AndOp is the same as NewOp. 1797 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1798 // Now trunc the NewOp to the original result. 1799 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 case TargetOpcode::G_SADDSAT: 1804 case TargetOpcode::G_SSUBSAT: 1805 case TargetOpcode::G_SSHLSAT: 1806 case TargetOpcode::G_UADDSAT: 1807 case TargetOpcode::G_USUBSAT: 1808 case TargetOpcode::G_USHLSAT: 1809 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1810 case TargetOpcode::G_CTTZ: 1811 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1812 case TargetOpcode::G_CTLZ: 1813 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1814 case TargetOpcode::G_CTPOP: { 1815 if (TypeIdx == 0) { 1816 Observer.changingInstr(MI); 1817 widenScalarDst(MI, WideTy, 0); 1818 Observer.changedInstr(MI); 1819 return Legalized; 1820 } 1821 1822 Register SrcReg = MI.getOperand(1).getReg(); 1823 1824 // First ZEXT the input. 1825 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1826 LLT CurTy = MRI.getType(SrcReg); 1827 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1828 // The count is the same in the larger type except if the original 1829 // value was zero. This can be handled by setting the bit just off 1830 // the top of the original type. 1831 auto TopBit = 1832 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1833 MIBSrc = MIRBuilder.buildOr( 1834 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1835 } 1836 1837 // Perform the operation at the larger size. 1838 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1839 // This is already the correct result for CTPOP and CTTZs 1840 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1841 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1842 // The correct result is NewOp - (Difference in widety and current ty). 1843 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1844 MIBNewOp = MIRBuilder.buildSub( 1845 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1846 } 1847 1848 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1849 MI.eraseFromParent(); 1850 return Legalized; 1851 } 1852 case TargetOpcode::G_BSWAP: { 1853 Observer.changingInstr(MI); 1854 Register DstReg = MI.getOperand(0).getReg(); 1855 1856 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1857 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1858 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1859 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1860 1861 MI.getOperand(0).setReg(DstExt); 1862 1863 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1864 1865 LLT Ty = MRI.getType(DstReg); 1866 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1867 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1868 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1869 1870 MIRBuilder.buildTrunc(DstReg, ShrReg); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 } 1874 case TargetOpcode::G_BITREVERSE: { 1875 Observer.changingInstr(MI); 1876 1877 Register DstReg = MI.getOperand(0).getReg(); 1878 LLT Ty = MRI.getType(DstReg); 1879 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1880 1881 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1882 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1883 MI.getOperand(0).setReg(DstExt); 1884 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1885 1886 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1887 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1888 MIRBuilder.buildTrunc(DstReg, Shift); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 } 1892 case TargetOpcode::G_FREEZE: 1893 Observer.changingInstr(MI); 1894 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1895 widenScalarDst(MI, WideTy); 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 1899 case TargetOpcode::G_ADD: 1900 case TargetOpcode::G_AND: 1901 case TargetOpcode::G_MUL: 1902 case TargetOpcode::G_OR: 1903 case TargetOpcode::G_XOR: 1904 case TargetOpcode::G_SUB: 1905 // Perform operation at larger width (any extension is fines here, high bits 1906 // don't affect the result) and then truncate the result back to the 1907 // original type. 1908 Observer.changingInstr(MI); 1909 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1910 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1911 widenScalarDst(MI, WideTy); 1912 Observer.changedInstr(MI); 1913 return Legalized; 1914 1915 case TargetOpcode::G_SHL: 1916 Observer.changingInstr(MI); 1917 1918 if (TypeIdx == 0) { 1919 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1920 widenScalarDst(MI, WideTy); 1921 } else { 1922 assert(TypeIdx == 1); 1923 // The "number of bits to shift" operand must preserve its value as an 1924 // unsigned integer: 1925 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1926 } 1927 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 1931 case TargetOpcode::G_SDIV: 1932 case TargetOpcode::G_SREM: 1933 case TargetOpcode::G_SMIN: 1934 case TargetOpcode::G_SMAX: 1935 Observer.changingInstr(MI); 1936 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1937 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1938 widenScalarDst(MI, WideTy); 1939 Observer.changedInstr(MI); 1940 return Legalized; 1941 1942 case TargetOpcode::G_ASHR: 1943 case TargetOpcode::G_LSHR: 1944 Observer.changingInstr(MI); 1945 1946 if (TypeIdx == 0) { 1947 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1948 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1949 1950 widenScalarSrc(MI, WideTy, 1, CvtOp); 1951 widenScalarDst(MI, WideTy); 1952 } else { 1953 assert(TypeIdx == 1); 1954 // The "number of bits to shift" operand must preserve its value as an 1955 // unsigned integer: 1956 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1957 } 1958 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 case TargetOpcode::G_UDIV: 1962 case TargetOpcode::G_UREM: 1963 case TargetOpcode::G_UMIN: 1964 case TargetOpcode::G_UMAX: 1965 Observer.changingInstr(MI); 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1967 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1968 widenScalarDst(MI, WideTy); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 1972 case TargetOpcode::G_SELECT: 1973 Observer.changingInstr(MI); 1974 if (TypeIdx == 0) { 1975 // Perform operation at larger width (any extension is fine here, high 1976 // bits don't affect the result) and then truncate the result back to the 1977 // original type. 1978 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1979 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1980 widenScalarDst(MI, WideTy); 1981 } else { 1982 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1983 // Explicit extension is required here since high bits affect the result. 1984 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1985 } 1986 Observer.changedInstr(MI); 1987 return Legalized; 1988 1989 case TargetOpcode::G_FPTOSI: 1990 case TargetOpcode::G_FPTOUI: 1991 Observer.changingInstr(MI); 1992 1993 if (TypeIdx == 0) 1994 widenScalarDst(MI, WideTy); 1995 else 1996 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1997 1998 Observer.changedInstr(MI); 1999 return Legalized; 2000 case TargetOpcode::G_SITOFP: 2001 Observer.changingInstr(MI); 2002 2003 if (TypeIdx == 0) 2004 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2005 else 2006 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2007 2008 Observer.changedInstr(MI); 2009 return Legalized; 2010 case TargetOpcode::G_UITOFP: 2011 Observer.changingInstr(MI); 2012 2013 if (TypeIdx == 0) 2014 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2015 else 2016 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2017 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 case TargetOpcode::G_LOAD: 2021 case TargetOpcode::G_SEXTLOAD: 2022 case TargetOpcode::G_ZEXTLOAD: 2023 Observer.changingInstr(MI); 2024 widenScalarDst(MI, WideTy); 2025 Observer.changedInstr(MI); 2026 return Legalized; 2027 2028 case TargetOpcode::G_STORE: { 2029 if (TypeIdx != 0) 2030 return UnableToLegalize; 2031 2032 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2033 if (!isPowerOf2_32(Ty.getSizeInBits())) 2034 return UnableToLegalize; 2035 2036 Observer.changingInstr(MI); 2037 2038 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2039 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2040 widenScalarSrc(MI, WideTy, 0, ExtType); 2041 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 } 2045 case TargetOpcode::G_CONSTANT: { 2046 MachineOperand &SrcMO = MI.getOperand(1); 2047 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2048 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2049 MRI.getType(MI.getOperand(0).getReg())); 2050 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2051 ExtOpc == TargetOpcode::G_ANYEXT) && 2052 "Illegal Extend"); 2053 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2054 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2055 ? SrcVal.sext(WideTy.getSizeInBits()) 2056 : SrcVal.zext(WideTy.getSizeInBits()); 2057 Observer.changingInstr(MI); 2058 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2059 2060 widenScalarDst(MI, WideTy); 2061 Observer.changedInstr(MI); 2062 return Legalized; 2063 } 2064 case TargetOpcode::G_FCONSTANT: { 2065 MachineOperand &SrcMO = MI.getOperand(1); 2066 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2067 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2068 bool LosesInfo; 2069 switch (WideTy.getSizeInBits()) { 2070 case 32: 2071 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2072 &LosesInfo); 2073 break; 2074 case 64: 2075 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2076 &LosesInfo); 2077 break; 2078 default: 2079 return UnableToLegalize; 2080 } 2081 2082 assert(!LosesInfo && "extend should always be lossless"); 2083 2084 Observer.changingInstr(MI); 2085 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2086 2087 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2088 Observer.changedInstr(MI); 2089 return Legalized; 2090 } 2091 case TargetOpcode::G_IMPLICIT_DEF: { 2092 Observer.changingInstr(MI); 2093 widenScalarDst(MI, WideTy); 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 } 2097 case TargetOpcode::G_BRCOND: 2098 Observer.changingInstr(MI); 2099 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 2103 case TargetOpcode::G_FCMP: 2104 Observer.changingInstr(MI); 2105 if (TypeIdx == 0) 2106 widenScalarDst(MI, WideTy); 2107 else { 2108 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2109 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2110 } 2111 Observer.changedInstr(MI); 2112 return Legalized; 2113 2114 case TargetOpcode::G_ICMP: 2115 Observer.changingInstr(MI); 2116 if (TypeIdx == 0) 2117 widenScalarDst(MI, WideTy); 2118 else { 2119 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2120 MI.getOperand(1).getPredicate())) 2121 ? TargetOpcode::G_SEXT 2122 : TargetOpcode::G_ZEXT; 2123 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2124 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2125 } 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_PTR_ADD: 2130 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2131 Observer.changingInstr(MI); 2132 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 2136 case TargetOpcode::G_PHI: { 2137 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2138 2139 Observer.changingInstr(MI); 2140 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2141 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2142 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2143 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2144 } 2145 2146 MachineBasicBlock &MBB = *MI.getParent(); 2147 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2148 widenScalarDst(MI, WideTy); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 } 2152 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2153 if (TypeIdx == 0) { 2154 Register VecReg = MI.getOperand(1).getReg(); 2155 LLT VecTy = MRI.getType(VecReg); 2156 Observer.changingInstr(MI); 2157 2158 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2159 WideTy.getSizeInBits()), 2160 1, TargetOpcode::G_SEXT); 2161 2162 widenScalarDst(MI, WideTy, 0); 2163 Observer.changedInstr(MI); 2164 return Legalized; 2165 } 2166 2167 if (TypeIdx != 2) 2168 return UnableToLegalize; 2169 Observer.changingInstr(MI); 2170 // TODO: Probably should be zext 2171 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 } 2175 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2176 if (TypeIdx == 1) { 2177 Observer.changingInstr(MI); 2178 2179 Register VecReg = MI.getOperand(1).getReg(); 2180 LLT VecTy = MRI.getType(VecReg); 2181 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2182 2183 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2184 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2185 widenScalarDst(MI, WideVecTy, 0); 2186 Observer.changedInstr(MI); 2187 return Legalized; 2188 } 2189 2190 if (TypeIdx == 2) { 2191 Observer.changingInstr(MI); 2192 // TODO: Probably should be zext 2193 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 } 2197 2198 return UnableToLegalize; 2199 } 2200 case TargetOpcode::G_FADD: 2201 case TargetOpcode::G_FMUL: 2202 case TargetOpcode::G_FSUB: 2203 case TargetOpcode::G_FMA: 2204 case TargetOpcode::G_FMAD: 2205 case TargetOpcode::G_FNEG: 2206 case TargetOpcode::G_FABS: 2207 case TargetOpcode::G_FCANONICALIZE: 2208 case TargetOpcode::G_FMINNUM: 2209 case TargetOpcode::G_FMAXNUM: 2210 case TargetOpcode::G_FMINNUM_IEEE: 2211 case TargetOpcode::G_FMAXNUM_IEEE: 2212 case TargetOpcode::G_FMINIMUM: 2213 case TargetOpcode::G_FMAXIMUM: 2214 case TargetOpcode::G_FDIV: 2215 case TargetOpcode::G_FREM: 2216 case TargetOpcode::G_FCEIL: 2217 case TargetOpcode::G_FFLOOR: 2218 case TargetOpcode::G_FCOS: 2219 case TargetOpcode::G_FSIN: 2220 case TargetOpcode::G_FLOG10: 2221 case TargetOpcode::G_FLOG: 2222 case TargetOpcode::G_FLOG2: 2223 case TargetOpcode::G_FRINT: 2224 case TargetOpcode::G_FNEARBYINT: 2225 case TargetOpcode::G_FSQRT: 2226 case TargetOpcode::G_FEXP: 2227 case TargetOpcode::G_FEXP2: 2228 case TargetOpcode::G_FPOW: 2229 case TargetOpcode::G_INTRINSIC_TRUNC: 2230 case TargetOpcode::G_INTRINSIC_ROUND: 2231 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2232 assert(TypeIdx == 0); 2233 Observer.changingInstr(MI); 2234 2235 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2236 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2237 2238 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 case TargetOpcode::G_FPOWI: { 2242 if (TypeIdx != 0) 2243 return UnableToLegalize; 2244 Observer.changingInstr(MI); 2245 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2246 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2247 Observer.changedInstr(MI); 2248 return Legalized; 2249 } 2250 case TargetOpcode::G_INTTOPTR: 2251 if (TypeIdx != 1) 2252 return UnableToLegalize; 2253 2254 Observer.changingInstr(MI); 2255 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2256 Observer.changedInstr(MI); 2257 return Legalized; 2258 case TargetOpcode::G_PTRTOINT: 2259 if (TypeIdx != 0) 2260 return UnableToLegalize; 2261 2262 Observer.changingInstr(MI); 2263 widenScalarDst(MI, WideTy, 0); 2264 Observer.changedInstr(MI); 2265 return Legalized; 2266 case TargetOpcode::G_BUILD_VECTOR: { 2267 Observer.changingInstr(MI); 2268 2269 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2270 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2271 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2272 2273 // Avoid changing the result vector type if the source element type was 2274 // requested. 2275 if (TypeIdx == 1) { 2276 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2277 } else { 2278 widenScalarDst(MI, WideTy, 0); 2279 } 2280 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 } 2284 case TargetOpcode::G_SEXT_INREG: 2285 if (TypeIdx != 0) 2286 return UnableToLegalize; 2287 2288 Observer.changingInstr(MI); 2289 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2290 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 case TargetOpcode::G_PTRMASK: { 2294 if (TypeIdx != 1) 2295 return UnableToLegalize; 2296 Observer.changingInstr(MI); 2297 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2298 Observer.changedInstr(MI); 2299 return Legalized; 2300 } 2301 } 2302 } 2303 2304 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2305 MachineIRBuilder &B, Register Src, LLT Ty) { 2306 auto Unmerge = B.buildUnmerge(Ty, Src); 2307 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2308 Pieces.push_back(Unmerge.getReg(I)); 2309 } 2310 2311 LegalizerHelper::LegalizeResult 2312 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2313 Register Dst = MI.getOperand(0).getReg(); 2314 Register Src = MI.getOperand(1).getReg(); 2315 LLT DstTy = MRI.getType(Dst); 2316 LLT SrcTy = MRI.getType(Src); 2317 2318 if (SrcTy.isVector()) { 2319 LLT SrcEltTy = SrcTy.getElementType(); 2320 SmallVector<Register, 8> SrcRegs; 2321 2322 if (DstTy.isVector()) { 2323 int NumDstElt = DstTy.getNumElements(); 2324 int NumSrcElt = SrcTy.getNumElements(); 2325 2326 LLT DstEltTy = DstTy.getElementType(); 2327 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2328 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2329 2330 // If there's an element size mismatch, insert intermediate casts to match 2331 // the result element type. 2332 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2333 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2334 // 2335 // => 2336 // 2337 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2338 // %3:_(<2 x s8>) = G_BITCAST %2 2339 // %4:_(<2 x s8>) = G_BITCAST %3 2340 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2341 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2342 SrcPartTy = SrcEltTy; 2343 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2344 // 2345 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2346 // 2347 // => 2348 // 2349 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2350 // %3:_(s16) = G_BITCAST %2 2351 // %4:_(s16) = G_BITCAST %3 2352 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2353 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2354 DstCastTy = DstEltTy; 2355 } 2356 2357 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2358 for (Register &SrcReg : SrcRegs) 2359 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2360 } else 2361 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2362 2363 MIRBuilder.buildMerge(Dst, SrcRegs); 2364 MI.eraseFromParent(); 2365 return Legalized; 2366 } 2367 2368 if (DstTy.isVector()) { 2369 SmallVector<Register, 8> SrcRegs; 2370 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2371 MIRBuilder.buildMerge(Dst, SrcRegs); 2372 MI.eraseFromParent(); 2373 return Legalized; 2374 } 2375 2376 return UnableToLegalize; 2377 } 2378 2379 /// Figure out the bit offset into a register when coercing a vector index for 2380 /// the wide element type. This is only for the case when promoting vector to 2381 /// one with larger elements. 2382 // 2383 /// 2384 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2385 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2386 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2387 Register Idx, 2388 unsigned NewEltSize, 2389 unsigned OldEltSize) { 2390 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2391 LLT IdxTy = B.getMRI()->getType(Idx); 2392 2393 // Now figure out the amount we need to shift to get the target bits. 2394 auto OffsetMask = B.buildConstant( 2395 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2396 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2397 return B.buildShl(IdxTy, OffsetIdx, 2398 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2399 } 2400 2401 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2402 /// is casting to a vector with a smaller element size, perform multiple element 2403 /// extracts and merge the results. If this is coercing to a vector with larger 2404 /// elements, index the bitcasted vector and extract the target element with bit 2405 /// operations. This is intended to force the indexing in the native register 2406 /// size for architectures that can dynamically index the register file. 2407 LegalizerHelper::LegalizeResult 2408 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2409 LLT CastTy) { 2410 if (TypeIdx != 1) 2411 return UnableToLegalize; 2412 2413 Register Dst = MI.getOperand(0).getReg(); 2414 Register SrcVec = MI.getOperand(1).getReg(); 2415 Register Idx = MI.getOperand(2).getReg(); 2416 LLT SrcVecTy = MRI.getType(SrcVec); 2417 LLT IdxTy = MRI.getType(Idx); 2418 2419 LLT SrcEltTy = SrcVecTy.getElementType(); 2420 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2421 unsigned OldNumElts = SrcVecTy.getNumElements(); 2422 2423 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2424 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2425 2426 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2427 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2428 if (NewNumElts > OldNumElts) { 2429 // Decreasing the vector element size 2430 // 2431 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2432 // => 2433 // v4i32:castx = bitcast x:v2i64 2434 // 2435 // i64 = bitcast 2436 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2437 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2438 // 2439 if (NewNumElts % OldNumElts != 0) 2440 return UnableToLegalize; 2441 2442 // Type of the intermediate result vector. 2443 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2444 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2445 2446 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2447 2448 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2449 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2450 2451 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2452 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2453 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2454 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2455 NewOps[I] = Elt.getReg(0); 2456 } 2457 2458 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2459 MIRBuilder.buildBitcast(Dst, NewVec); 2460 MI.eraseFromParent(); 2461 return Legalized; 2462 } 2463 2464 if (NewNumElts < OldNumElts) { 2465 if (NewEltSize % OldEltSize != 0) 2466 return UnableToLegalize; 2467 2468 // This only depends on powers of 2 because we use bit tricks to figure out 2469 // the bit offset we need to shift to get the target element. A general 2470 // expansion could emit division/multiply. 2471 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2472 return UnableToLegalize; 2473 2474 // Increasing the vector element size. 2475 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2476 // 2477 // => 2478 // 2479 // %cast = G_BITCAST %vec 2480 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2481 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2482 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2483 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2484 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2485 // %elt = G_TRUNC %elt_bits 2486 2487 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2488 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2489 2490 // Divide to get the index in the wider element type. 2491 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2492 2493 Register WideElt = CastVec; 2494 if (CastTy.isVector()) { 2495 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2496 ScaledIdx).getReg(0); 2497 } 2498 2499 // Compute the bit offset into the register of the target element. 2500 Register OffsetBits = getBitcastWiderVectorElementOffset( 2501 MIRBuilder, Idx, NewEltSize, OldEltSize); 2502 2503 // Shift the wide element to get the target element. 2504 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2505 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2506 MI.eraseFromParent(); 2507 return Legalized; 2508 } 2509 2510 return UnableToLegalize; 2511 } 2512 2513 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2514 /// TargetReg, while preserving other bits in \p TargetReg. 2515 /// 2516 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2517 static Register buildBitFieldInsert(MachineIRBuilder &B, 2518 Register TargetReg, Register InsertReg, 2519 Register OffsetBits) { 2520 LLT TargetTy = B.getMRI()->getType(TargetReg); 2521 LLT InsertTy = B.getMRI()->getType(InsertReg); 2522 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2523 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2524 2525 // Produce a bitmask of the value to insert 2526 auto EltMask = B.buildConstant( 2527 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2528 InsertTy.getSizeInBits())); 2529 // Shift it into position 2530 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2531 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2532 2533 // Clear out the bits in the wide element 2534 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2535 2536 // The value to insert has all zeros already, so stick it into the masked 2537 // wide element. 2538 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2539 } 2540 2541 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2542 /// is increasing the element size, perform the indexing in the target element 2543 /// type, and use bit operations to insert at the element position. This is 2544 /// intended for architectures that can dynamically index the register file and 2545 /// want to force indexing in the native register size. 2546 LegalizerHelper::LegalizeResult 2547 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2548 LLT CastTy) { 2549 if (TypeIdx != 0) 2550 return UnableToLegalize; 2551 2552 Register Dst = MI.getOperand(0).getReg(); 2553 Register SrcVec = MI.getOperand(1).getReg(); 2554 Register Val = MI.getOperand(2).getReg(); 2555 Register Idx = MI.getOperand(3).getReg(); 2556 2557 LLT VecTy = MRI.getType(Dst); 2558 LLT IdxTy = MRI.getType(Idx); 2559 2560 LLT VecEltTy = VecTy.getElementType(); 2561 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2562 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2563 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2564 2565 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2566 unsigned OldNumElts = VecTy.getNumElements(); 2567 2568 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2569 if (NewNumElts < OldNumElts) { 2570 if (NewEltSize % OldEltSize != 0) 2571 return UnableToLegalize; 2572 2573 // This only depends on powers of 2 because we use bit tricks to figure out 2574 // the bit offset we need to shift to get the target element. A general 2575 // expansion could emit division/multiply. 2576 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2577 return UnableToLegalize; 2578 2579 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2580 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2581 2582 // Divide to get the index in the wider element type. 2583 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2584 2585 Register ExtractedElt = CastVec; 2586 if (CastTy.isVector()) { 2587 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2588 ScaledIdx).getReg(0); 2589 } 2590 2591 // Compute the bit offset into the register of the target element. 2592 Register OffsetBits = getBitcastWiderVectorElementOffset( 2593 MIRBuilder, Idx, NewEltSize, OldEltSize); 2594 2595 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2596 Val, OffsetBits); 2597 if (CastTy.isVector()) { 2598 InsertedElt = MIRBuilder.buildInsertVectorElement( 2599 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2600 } 2601 2602 MIRBuilder.buildBitcast(Dst, InsertedElt); 2603 MI.eraseFromParent(); 2604 return Legalized; 2605 } 2606 2607 return UnableToLegalize; 2608 } 2609 2610 LegalizerHelper::LegalizeResult 2611 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2612 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2613 Register DstReg = MI.getOperand(0).getReg(); 2614 Register PtrReg = MI.getOperand(1).getReg(); 2615 LLT DstTy = MRI.getType(DstReg); 2616 auto &MMO = **MI.memoperands_begin(); 2617 2618 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2619 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2620 // This load needs splitting into power of 2 sized loads. 2621 if (DstTy.isVector()) 2622 return UnableToLegalize; 2623 if (isPowerOf2_32(DstTy.getSizeInBits())) 2624 return UnableToLegalize; // Don't know what we're being asked to do. 2625 2626 // Our strategy here is to generate anyextending loads for the smaller 2627 // types up to next power-2 result type, and then combine the two larger 2628 // result values together, before truncating back down to the non-pow-2 2629 // type. 2630 // E.g. v1 = i24 load => 2631 // v2 = i32 zextload (2 byte) 2632 // v3 = i32 load (1 byte) 2633 // v4 = i32 shl v3, 16 2634 // v5 = i32 or v4, v2 2635 // v1 = i24 trunc v5 2636 // By doing this we generate the correct truncate which should get 2637 // combined away as an artifact with a matching extend. 2638 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2639 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2640 2641 MachineFunction &MF = MIRBuilder.getMF(); 2642 MachineMemOperand *LargeMMO = 2643 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2644 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2645 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2646 2647 LLT PtrTy = MRI.getType(PtrReg); 2648 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2649 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2650 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2651 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2652 auto LargeLoad = MIRBuilder.buildLoadInstr( 2653 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2654 2655 auto OffsetCst = MIRBuilder.buildConstant( 2656 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2657 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2658 auto SmallPtr = 2659 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2660 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2661 *SmallMMO); 2662 2663 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2664 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2665 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2666 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2667 MI.eraseFromParent(); 2668 return Legalized; 2669 } 2670 2671 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2672 MI.eraseFromParent(); 2673 return Legalized; 2674 } 2675 2676 if (DstTy.isScalar()) { 2677 Register TmpReg = 2678 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2679 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2680 switch (MI.getOpcode()) { 2681 default: 2682 llvm_unreachable("Unexpected opcode"); 2683 case TargetOpcode::G_LOAD: 2684 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2685 break; 2686 case TargetOpcode::G_SEXTLOAD: 2687 MIRBuilder.buildSExt(DstReg, TmpReg); 2688 break; 2689 case TargetOpcode::G_ZEXTLOAD: 2690 MIRBuilder.buildZExt(DstReg, TmpReg); 2691 break; 2692 } 2693 2694 MI.eraseFromParent(); 2695 return Legalized; 2696 } 2697 2698 return UnableToLegalize; 2699 } 2700 2701 LegalizerHelper::LegalizeResult 2702 LegalizerHelper::lowerStore(MachineInstr &MI) { 2703 // Lower a non-power of 2 store into multiple pow-2 stores. 2704 // E.g. split an i24 store into an i16 store + i8 store. 2705 // We do this by first extending the stored value to the next largest power 2706 // of 2 type, and then using truncating stores to store the components. 2707 // By doing this, likewise with G_LOAD, generate an extend that can be 2708 // artifact-combined away instead of leaving behind extracts. 2709 Register SrcReg = MI.getOperand(0).getReg(); 2710 Register PtrReg = MI.getOperand(1).getReg(); 2711 LLT SrcTy = MRI.getType(SrcReg); 2712 MachineMemOperand &MMO = **MI.memoperands_begin(); 2713 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2714 return UnableToLegalize; 2715 if (SrcTy.isVector()) 2716 return UnableToLegalize; 2717 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2718 return UnableToLegalize; // Don't know what we're being asked to do. 2719 2720 // Extend to the next pow-2. 2721 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2722 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2723 2724 // Obtain the smaller value by shifting away the larger value. 2725 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2726 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2727 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2728 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2729 2730 // Generate the PtrAdd and truncating stores. 2731 LLT PtrTy = MRI.getType(PtrReg); 2732 auto OffsetCst = MIRBuilder.buildConstant( 2733 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2734 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2735 auto SmallPtr = 2736 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2737 2738 MachineFunction &MF = MIRBuilder.getMF(); 2739 MachineMemOperand *LargeMMO = 2740 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2741 MachineMemOperand *SmallMMO = 2742 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2743 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2744 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2745 MI.eraseFromParent(); 2746 return Legalized; 2747 } 2748 2749 LegalizerHelper::LegalizeResult 2750 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2751 switch (MI.getOpcode()) { 2752 case TargetOpcode::G_LOAD: { 2753 if (TypeIdx != 0) 2754 return UnableToLegalize; 2755 2756 Observer.changingInstr(MI); 2757 bitcastDst(MI, CastTy, 0); 2758 Observer.changedInstr(MI); 2759 return Legalized; 2760 } 2761 case TargetOpcode::G_STORE: { 2762 if (TypeIdx != 0) 2763 return UnableToLegalize; 2764 2765 Observer.changingInstr(MI); 2766 bitcastSrc(MI, CastTy, 0); 2767 Observer.changedInstr(MI); 2768 return Legalized; 2769 } 2770 case TargetOpcode::G_SELECT: { 2771 if (TypeIdx != 0) 2772 return UnableToLegalize; 2773 2774 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2775 LLVM_DEBUG( 2776 dbgs() << "bitcast action not implemented for vector select\n"); 2777 return UnableToLegalize; 2778 } 2779 2780 Observer.changingInstr(MI); 2781 bitcastSrc(MI, CastTy, 2); 2782 bitcastSrc(MI, CastTy, 3); 2783 bitcastDst(MI, CastTy, 0); 2784 Observer.changedInstr(MI); 2785 return Legalized; 2786 } 2787 case TargetOpcode::G_AND: 2788 case TargetOpcode::G_OR: 2789 case TargetOpcode::G_XOR: { 2790 Observer.changingInstr(MI); 2791 bitcastSrc(MI, CastTy, 1); 2792 bitcastSrc(MI, CastTy, 2); 2793 bitcastDst(MI, CastTy, 0); 2794 Observer.changedInstr(MI); 2795 return Legalized; 2796 } 2797 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2798 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2799 case TargetOpcode::G_INSERT_VECTOR_ELT: 2800 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2801 default: 2802 return UnableToLegalize; 2803 } 2804 } 2805 2806 // Legalize an instruction by changing the opcode in place. 2807 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2808 Observer.changingInstr(MI); 2809 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2810 Observer.changedInstr(MI); 2811 } 2812 2813 LegalizerHelper::LegalizeResult 2814 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2815 using namespace TargetOpcode; 2816 2817 switch(MI.getOpcode()) { 2818 default: 2819 return UnableToLegalize; 2820 case TargetOpcode::G_BITCAST: 2821 return lowerBitcast(MI); 2822 case TargetOpcode::G_SREM: 2823 case TargetOpcode::G_UREM: { 2824 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2825 auto Quot = 2826 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2827 {MI.getOperand(1), MI.getOperand(2)}); 2828 2829 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2830 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2831 MI.eraseFromParent(); 2832 return Legalized; 2833 } 2834 case TargetOpcode::G_SADDO: 2835 case TargetOpcode::G_SSUBO: 2836 return lowerSADDO_SSUBO(MI); 2837 case TargetOpcode::G_SMULO: 2838 case TargetOpcode::G_UMULO: { 2839 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2840 // result. 2841 Register Res = MI.getOperand(0).getReg(); 2842 Register Overflow = MI.getOperand(1).getReg(); 2843 Register LHS = MI.getOperand(2).getReg(); 2844 Register RHS = MI.getOperand(3).getReg(); 2845 LLT Ty = MRI.getType(Res); 2846 2847 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2848 ? TargetOpcode::G_SMULH 2849 : TargetOpcode::G_UMULH; 2850 2851 Observer.changingInstr(MI); 2852 const auto &TII = MIRBuilder.getTII(); 2853 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2854 MI.RemoveOperand(1); 2855 Observer.changedInstr(MI); 2856 2857 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2858 2859 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2860 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2861 2862 // For *signed* multiply, overflow is detected by checking: 2863 // (hi != (lo >> bitwidth-1)) 2864 if (Opcode == TargetOpcode::G_SMULH) { 2865 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2866 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2867 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2868 } else { 2869 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2870 } 2871 return Legalized; 2872 } 2873 case TargetOpcode::G_FNEG: { 2874 Register Res = MI.getOperand(0).getReg(); 2875 LLT Ty = MRI.getType(Res); 2876 2877 // TODO: Handle vector types once we are able to 2878 // represent them. 2879 if (Ty.isVector()) 2880 return UnableToLegalize; 2881 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2882 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2883 if (!ZeroTy) 2884 return UnableToLegalize; 2885 ConstantFP &ZeroForNegation = 2886 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2887 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2888 Register SubByReg = MI.getOperand(1).getReg(); 2889 Register ZeroReg = Zero.getReg(0); 2890 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2891 MI.eraseFromParent(); 2892 return Legalized; 2893 } 2894 case TargetOpcode::G_FSUB: { 2895 Register Res = MI.getOperand(0).getReg(); 2896 LLT Ty = MRI.getType(Res); 2897 2898 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2899 // First, check if G_FNEG is marked as Lower. If so, we may 2900 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2901 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2902 return UnableToLegalize; 2903 Register LHS = MI.getOperand(1).getReg(); 2904 Register RHS = MI.getOperand(2).getReg(); 2905 Register Neg = MRI.createGenericVirtualRegister(Ty); 2906 MIRBuilder.buildFNeg(Neg, RHS); 2907 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2908 MI.eraseFromParent(); 2909 return Legalized; 2910 } 2911 case TargetOpcode::G_FMAD: 2912 return lowerFMad(MI); 2913 case TargetOpcode::G_FFLOOR: 2914 return lowerFFloor(MI); 2915 case TargetOpcode::G_INTRINSIC_ROUND: 2916 return lowerIntrinsicRound(MI); 2917 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2918 // Since round even is the assumed rounding mode for unconstrained FP 2919 // operations, rint and roundeven are the same operation. 2920 changeOpcode(MI, TargetOpcode::G_FRINT); 2921 return Legalized; 2922 } 2923 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2924 Register OldValRes = MI.getOperand(0).getReg(); 2925 Register SuccessRes = MI.getOperand(1).getReg(); 2926 Register Addr = MI.getOperand(2).getReg(); 2927 Register CmpVal = MI.getOperand(3).getReg(); 2928 Register NewVal = MI.getOperand(4).getReg(); 2929 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2930 **MI.memoperands_begin()); 2931 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2932 MI.eraseFromParent(); 2933 return Legalized; 2934 } 2935 case TargetOpcode::G_LOAD: 2936 case TargetOpcode::G_SEXTLOAD: 2937 case TargetOpcode::G_ZEXTLOAD: 2938 return lowerLoad(MI); 2939 case TargetOpcode::G_STORE: 2940 return lowerStore(MI); 2941 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2942 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2943 case TargetOpcode::G_CTLZ: 2944 case TargetOpcode::G_CTTZ: 2945 case TargetOpcode::G_CTPOP: 2946 return lowerBitCount(MI); 2947 case G_UADDO: { 2948 Register Res = MI.getOperand(0).getReg(); 2949 Register CarryOut = MI.getOperand(1).getReg(); 2950 Register LHS = MI.getOperand(2).getReg(); 2951 Register RHS = MI.getOperand(3).getReg(); 2952 2953 MIRBuilder.buildAdd(Res, LHS, RHS); 2954 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2955 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 case G_UADDE: { 2960 Register Res = MI.getOperand(0).getReg(); 2961 Register CarryOut = MI.getOperand(1).getReg(); 2962 Register LHS = MI.getOperand(2).getReg(); 2963 Register RHS = MI.getOperand(3).getReg(); 2964 Register CarryIn = MI.getOperand(4).getReg(); 2965 LLT Ty = MRI.getType(Res); 2966 2967 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2968 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2969 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2970 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2971 2972 MI.eraseFromParent(); 2973 return Legalized; 2974 } 2975 case G_USUBO: { 2976 Register Res = MI.getOperand(0).getReg(); 2977 Register BorrowOut = MI.getOperand(1).getReg(); 2978 Register LHS = MI.getOperand(2).getReg(); 2979 Register RHS = MI.getOperand(3).getReg(); 2980 2981 MIRBuilder.buildSub(Res, LHS, RHS); 2982 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2983 2984 MI.eraseFromParent(); 2985 return Legalized; 2986 } 2987 case G_USUBE: { 2988 Register Res = MI.getOperand(0).getReg(); 2989 Register BorrowOut = MI.getOperand(1).getReg(); 2990 Register LHS = MI.getOperand(2).getReg(); 2991 Register RHS = MI.getOperand(3).getReg(); 2992 Register BorrowIn = MI.getOperand(4).getReg(); 2993 const LLT CondTy = MRI.getType(BorrowOut); 2994 const LLT Ty = MRI.getType(Res); 2995 2996 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2997 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2998 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2999 3000 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3001 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3002 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3003 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 case G_UITOFP: 3008 return lowerUITOFP(MI); 3009 case G_SITOFP: 3010 return lowerSITOFP(MI); 3011 case G_FPTOUI: 3012 return lowerFPTOUI(MI); 3013 case G_FPTOSI: 3014 return lowerFPTOSI(MI); 3015 case G_FPTRUNC: 3016 return lowerFPTRUNC(MI); 3017 case G_FPOWI: 3018 return lowerFPOWI(MI); 3019 case G_SMIN: 3020 case G_SMAX: 3021 case G_UMIN: 3022 case G_UMAX: 3023 return lowerMinMax(MI); 3024 case G_FCOPYSIGN: 3025 return lowerFCopySign(MI); 3026 case G_FMINNUM: 3027 case G_FMAXNUM: 3028 return lowerFMinNumMaxNum(MI); 3029 case G_MERGE_VALUES: 3030 return lowerMergeValues(MI); 3031 case G_UNMERGE_VALUES: 3032 return lowerUnmergeValues(MI); 3033 case TargetOpcode::G_SEXT_INREG: { 3034 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3035 int64_t SizeInBits = MI.getOperand(2).getImm(); 3036 3037 Register DstReg = MI.getOperand(0).getReg(); 3038 Register SrcReg = MI.getOperand(1).getReg(); 3039 LLT DstTy = MRI.getType(DstReg); 3040 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3041 3042 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3043 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3044 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3045 MI.eraseFromParent(); 3046 return Legalized; 3047 } 3048 case G_EXTRACT_VECTOR_ELT: 3049 case G_INSERT_VECTOR_ELT: 3050 return lowerExtractInsertVectorElt(MI); 3051 case G_SHUFFLE_VECTOR: 3052 return lowerShuffleVector(MI); 3053 case G_DYN_STACKALLOC: 3054 return lowerDynStackAlloc(MI); 3055 case G_EXTRACT: 3056 return lowerExtract(MI); 3057 case G_INSERT: 3058 return lowerInsert(MI); 3059 case G_BSWAP: 3060 return lowerBswap(MI); 3061 case G_BITREVERSE: 3062 return lowerBitreverse(MI); 3063 case G_READ_REGISTER: 3064 case G_WRITE_REGISTER: 3065 return lowerReadWriteRegister(MI); 3066 case G_UADDSAT: 3067 case G_USUBSAT: { 3068 // Try to make a reasonable guess about which lowering strategy to use. The 3069 // target can override this with custom lowering and calling the 3070 // implementation functions. 3071 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3072 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3073 return lowerAddSubSatToMinMax(MI); 3074 return lowerAddSubSatToAddoSubo(MI); 3075 } 3076 case G_SADDSAT: 3077 case G_SSUBSAT: { 3078 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3079 3080 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3081 // since it's a shorter expansion. However, we would need to figure out the 3082 // preferred boolean type for the carry out for the query. 3083 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3084 return lowerAddSubSatToMinMax(MI); 3085 return lowerAddSubSatToAddoSubo(MI); 3086 } 3087 case G_SSHLSAT: 3088 case G_USHLSAT: 3089 return lowerShlSat(MI); 3090 } 3091 } 3092 3093 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3094 Align MinAlign) const { 3095 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3096 // datalayout for the preferred alignment. Also there should be a target hook 3097 // for this to allow targets to reduce the alignment and ignore the 3098 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3099 // the type. 3100 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3101 } 3102 3103 MachineInstrBuilder 3104 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3105 MachinePointerInfo &PtrInfo) { 3106 MachineFunction &MF = MIRBuilder.getMF(); 3107 const DataLayout &DL = MIRBuilder.getDataLayout(); 3108 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3109 3110 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3111 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3112 3113 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3114 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3115 } 3116 3117 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3118 LLT VecTy) { 3119 int64_t IdxVal; 3120 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3121 return IdxReg; 3122 3123 LLT IdxTy = B.getMRI()->getType(IdxReg); 3124 unsigned NElts = VecTy.getNumElements(); 3125 if (isPowerOf2_32(NElts)) { 3126 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3127 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3128 } 3129 3130 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3131 .getReg(0); 3132 } 3133 3134 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3135 Register Index) { 3136 LLT EltTy = VecTy.getElementType(); 3137 3138 // Calculate the element offset and add it to the pointer. 3139 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3140 assert(EltSize * 8 == EltTy.getSizeInBits() && 3141 "Converting bits to bytes lost precision"); 3142 3143 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3144 3145 LLT IdxTy = MRI.getType(Index); 3146 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3147 MIRBuilder.buildConstant(IdxTy, EltSize)); 3148 3149 LLT PtrTy = MRI.getType(VecPtr); 3150 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3151 } 3152 3153 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3154 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3155 Register DstReg = MI.getOperand(0).getReg(); 3156 LLT DstTy = MRI.getType(DstReg); 3157 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3158 3159 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3160 3161 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3162 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3163 3164 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3165 MI.eraseFromParent(); 3166 return Legalized; 3167 } 3168 3169 // Handle splitting vector operations which need to have the same number of 3170 // elements in each type index, but each type index may have a different element 3171 // type. 3172 // 3173 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3174 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3175 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3176 // 3177 // Also handles some irregular breakdown cases, e.g. 3178 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3179 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3180 // s64 = G_SHL s64, s32 3181 LegalizerHelper::LegalizeResult 3182 LegalizerHelper::fewerElementsVectorMultiEltType( 3183 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3184 if (TypeIdx != 0) 3185 return UnableToLegalize; 3186 3187 const LLT NarrowTy0 = NarrowTyArg; 3188 const unsigned NewNumElts = 3189 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3190 3191 const Register DstReg = MI.getOperand(0).getReg(); 3192 LLT DstTy = MRI.getType(DstReg); 3193 LLT LeftoverTy0; 3194 3195 // All of the operands need to have the same number of elements, so if we can 3196 // determine a type breakdown for the result type, we can for all of the 3197 // source types. 3198 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3199 if (NumParts < 0) 3200 return UnableToLegalize; 3201 3202 SmallVector<MachineInstrBuilder, 4> NewInsts; 3203 3204 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3205 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3206 3207 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3208 Register SrcReg = MI.getOperand(I).getReg(); 3209 LLT SrcTyI = MRI.getType(SrcReg); 3210 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3211 LLT LeftoverTyI; 3212 3213 // Split this operand into the requested typed registers, and any leftover 3214 // required to reproduce the original type. 3215 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3216 LeftoverRegs)) 3217 return UnableToLegalize; 3218 3219 if (I == 1) { 3220 // For the first operand, create an instruction for each part and setup 3221 // the result. 3222 for (Register PartReg : PartRegs) { 3223 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3224 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3225 .addDef(PartDstReg) 3226 .addUse(PartReg)); 3227 DstRegs.push_back(PartDstReg); 3228 } 3229 3230 for (Register LeftoverReg : LeftoverRegs) { 3231 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3232 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3233 .addDef(PartDstReg) 3234 .addUse(LeftoverReg)); 3235 LeftoverDstRegs.push_back(PartDstReg); 3236 } 3237 } else { 3238 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3239 3240 // Add the newly created operand splits to the existing instructions. The 3241 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3242 // pieces. 3243 unsigned InstCount = 0; 3244 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3245 NewInsts[InstCount++].addUse(PartRegs[J]); 3246 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3247 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3248 } 3249 3250 PartRegs.clear(); 3251 LeftoverRegs.clear(); 3252 } 3253 3254 // Insert the newly built operations and rebuild the result register. 3255 for (auto &MIB : NewInsts) 3256 MIRBuilder.insertInstr(MIB); 3257 3258 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3259 3260 MI.eraseFromParent(); 3261 return Legalized; 3262 } 3263 3264 LegalizerHelper::LegalizeResult 3265 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3266 LLT NarrowTy) { 3267 if (TypeIdx != 0) 3268 return UnableToLegalize; 3269 3270 Register DstReg = MI.getOperand(0).getReg(); 3271 Register SrcReg = MI.getOperand(1).getReg(); 3272 LLT DstTy = MRI.getType(DstReg); 3273 LLT SrcTy = MRI.getType(SrcReg); 3274 3275 LLT NarrowTy0 = NarrowTy; 3276 LLT NarrowTy1; 3277 unsigned NumParts; 3278 3279 if (NarrowTy.isVector()) { 3280 // Uneven breakdown not handled. 3281 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3282 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3283 return UnableToLegalize; 3284 3285 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 3286 } else { 3287 NumParts = DstTy.getNumElements(); 3288 NarrowTy1 = SrcTy.getElementType(); 3289 } 3290 3291 SmallVector<Register, 4> SrcRegs, DstRegs; 3292 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3293 3294 for (unsigned I = 0; I < NumParts; ++I) { 3295 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3296 MachineInstr *NewInst = 3297 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3298 3299 NewInst->setFlags(MI.getFlags()); 3300 DstRegs.push_back(DstReg); 3301 } 3302 3303 if (NarrowTy.isVector()) 3304 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3305 else 3306 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3307 3308 MI.eraseFromParent(); 3309 return Legalized; 3310 } 3311 3312 LegalizerHelper::LegalizeResult 3313 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3314 LLT NarrowTy) { 3315 Register DstReg = MI.getOperand(0).getReg(); 3316 Register Src0Reg = MI.getOperand(2).getReg(); 3317 LLT DstTy = MRI.getType(DstReg); 3318 LLT SrcTy = MRI.getType(Src0Reg); 3319 3320 unsigned NumParts; 3321 LLT NarrowTy0, NarrowTy1; 3322 3323 if (TypeIdx == 0) { 3324 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3325 unsigned OldElts = DstTy.getNumElements(); 3326 3327 NarrowTy0 = NarrowTy; 3328 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3329 NarrowTy1 = NarrowTy.isVector() ? 3330 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3331 SrcTy.getElementType(); 3332 3333 } else { 3334 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3335 unsigned OldElts = SrcTy.getNumElements(); 3336 3337 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3338 NarrowTy.getNumElements(); 3339 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3340 DstTy.getScalarSizeInBits()); 3341 NarrowTy1 = NarrowTy; 3342 } 3343 3344 // FIXME: Don't know how to handle the situation where the small vectors 3345 // aren't all the same size yet. 3346 if (NarrowTy1.isVector() && 3347 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3348 return UnableToLegalize; 3349 3350 CmpInst::Predicate Pred 3351 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3352 3353 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3354 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3355 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3356 3357 for (unsigned I = 0; I < NumParts; ++I) { 3358 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3359 DstRegs.push_back(DstReg); 3360 3361 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3362 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3363 else { 3364 MachineInstr *NewCmp 3365 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3366 NewCmp->setFlags(MI.getFlags()); 3367 } 3368 } 3369 3370 if (NarrowTy1.isVector()) 3371 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3372 else 3373 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3374 3375 MI.eraseFromParent(); 3376 return Legalized; 3377 } 3378 3379 LegalizerHelper::LegalizeResult 3380 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3381 LLT NarrowTy) { 3382 Register DstReg = MI.getOperand(0).getReg(); 3383 Register CondReg = MI.getOperand(1).getReg(); 3384 3385 unsigned NumParts = 0; 3386 LLT NarrowTy0, NarrowTy1; 3387 3388 LLT DstTy = MRI.getType(DstReg); 3389 LLT CondTy = MRI.getType(CondReg); 3390 unsigned Size = DstTy.getSizeInBits(); 3391 3392 assert(TypeIdx == 0 || CondTy.isVector()); 3393 3394 if (TypeIdx == 0) { 3395 NarrowTy0 = NarrowTy; 3396 NarrowTy1 = CondTy; 3397 3398 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3399 // FIXME: Don't know how to handle the situation where the small vectors 3400 // aren't all the same size yet. 3401 if (Size % NarrowSize != 0) 3402 return UnableToLegalize; 3403 3404 NumParts = Size / NarrowSize; 3405 3406 // Need to break down the condition type 3407 if (CondTy.isVector()) { 3408 if (CondTy.getNumElements() == NumParts) 3409 NarrowTy1 = CondTy.getElementType(); 3410 else 3411 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3412 CondTy.getScalarSizeInBits()); 3413 } 3414 } else { 3415 NumParts = CondTy.getNumElements(); 3416 if (NarrowTy.isVector()) { 3417 // TODO: Handle uneven breakdown. 3418 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3419 return UnableToLegalize; 3420 3421 return UnableToLegalize; 3422 } else { 3423 NarrowTy0 = DstTy.getElementType(); 3424 NarrowTy1 = NarrowTy; 3425 } 3426 } 3427 3428 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3429 if (CondTy.isVector()) 3430 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3431 3432 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3433 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3434 3435 for (unsigned i = 0; i < NumParts; ++i) { 3436 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3437 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3438 Src1Regs[i], Src2Regs[i]); 3439 DstRegs.push_back(DstReg); 3440 } 3441 3442 if (NarrowTy0.isVector()) 3443 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3444 else 3445 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3446 3447 MI.eraseFromParent(); 3448 return Legalized; 3449 } 3450 3451 LegalizerHelper::LegalizeResult 3452 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3453 LLT NarrowTy) { 3454 const Register DstReg = MI.getOperand(0).getReg(); 3455 LLT PhiTy = MRI.getType(DstReg); 3456 LLT LeftoverTy; 3457 3458 // All of the operands need to have the same number of elements, so if we can 3459 // determine a type breakdown for the result type, we can for all of the 3460 // source types. 3461 int NumParts, NumLeftover; 3462 std::tie(NumParts, NumLeftover) 3463 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3464 if (NumParts < 0) 3465 return UnableToLegalize; 3466 3467 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3468 SmallVector<MachineInstrBuilder, 4> NewInsts; 3469 3470 const int TotalNumParts = NumParts + NumLeftover; 3471 3472 // Insert the new phis in the result block first. 3473 for (int I = 0; I != TotalNumParts; ++I) { 3474 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3475 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3476 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3477 .addDef(PartDstReg)); 3478 if (I < NumParts) 3479 DstRegs.push_back(PartDstReg); 3480 else 3481 LeftoverDstRegs.push_back(PartDstReg); 3482 } 3483 3484 MachineBasicBlock *MBB = MI.getParent(); 3485 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3486 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3487 3488 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3489 3490 // Insert code to extract the incoming values in each predecessor block. 3491 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3492 PartRegs.clear(); 3493 LeftoverRegs.clear(); 3494 3495 Register SrcReg = MI.getOperand(I).getReg(); 3496 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3497 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3498 3499 LLT Unused; 3500 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3501 LeftoverRegs)) 3502 return UnableToLegalize; 3503 3504 // Add the newly created operand splits to the existing instructions. The 3505 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3506 // pieces. 3507 for (int J = 0; J != TotalNumParts; ++J) { 3508 MachineInstrBuilder MIB = NewInsts[J]; 3509 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3510 MIB.addMBB(&OpMBB); 3511 } 3512 } 3513 3514 MI.eraseFromParent(); 3515 return Legalized; 3516 } 3517 3518 LegalizerHelper::LegalizeResult 3519 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3520 unsigned TypeIdx, 3521 LLT NarrowTy) { 3522 if (TypeIdx != 1) 3523 return UnableToLegalize; 3524 3525 const int NumDst = MI.getNumOperands() - 1; 3526 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3527 LLT SrcTy = MRI.getType(SrcReg); 3528 3529 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3530 3531 // TODO: Create sequence of extracts. 3532 if (DstTy == NarrowTy) 3533 return UnableToLegalize; 3534 3535 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3536 if (DstTy == GCDTy) { 3537 // This would just be a copy of the same unmerge. 3538 // TODO: Create extracts, pad with undef and create intermediate merges. 3539 return UnableToLegalize; 3540 } 3541 3542 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3543 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3544 const int PartsPerUnmerge = NumDst / NumUnmerge; 3545 3546 for (int I = 0; I != NumUnmerge; ++I) { 3547 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3548 3549 for (int J = 0; J != PartsPerUnmerge; ++J) 3550 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3551 MIB.addUse(Unmerge.getReg(I)); 3552 } 3553 3554 MI.eraseFromParent(); 3555 return Legalized; 3556 } 3557 3558 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3559 // a vector 3560 // 3561 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3562 // undef as necessary. 3563 // 3564 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3565 // -> <2 x s16> 3566 // 3567 // %4:_(s16) = G_IMPLICIT_DEF 3568 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3569 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3570 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3571 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3572 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3573 LegalizerHelper::LegalizeResult 3574 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3575 LLT NarrowTy) { 3576 Register DstReg = MI.getOperand(0).getReg(); 3577 LLT DstTy = MRI.getType(DstReg); 3578 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3579 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3580 3581 // Break into a common type 3582 SmallVector<Register, 16> Parts; 3583 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3584 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3585 3586 // Build the requested new merge, padding with undef. 3587 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3588 TargetOpcode::G_ANYEXT); 3589 3590 // Pack into the original result register. 3591 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3592 3593 MI.eraseFromParent(); 3594 return Legalized; 3595 } 3596 3597 LegalizerHelper::LegalizeResult 3598 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3599 unsigned TypeIdx, 3600 LLT NarrowVecTy) { 3601 Register DstReg = MI.getOperand(0).getReg(); 3602 Register SrcVec = MI.getOperand(1).getReg(); 3603 Register InsertVal; 3604 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3605 3606 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3607 if (IsInsert) 3608 InsertVal = MI.getOperand(2).getReg(); 3609 3610 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3611 3612 // TODO: Handle total scalarization case. 3613 if (!NarrowVecTy.isVector()) 3614 return UnableToLegalize; 3615 3616 LLT VecTy = MRI.getType(SrcVec); 3617 3618 // If the index is a constant, we can really break this down as you would 3619 // expect, and index into the target size pieces. 3620 int64_t IdxVal; 3621 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3622 // Avoid out of bounds indexing the pieces. 3623 if (IdxVal >= VecTy.getNumElements()) { 3624 MIRBuilder.buildUndef(DstReg); 3625 MI.eraseFromParent(); 3626 return Legalized; 3627 } 3628 3629 SmallVector<Register, 8> VecParts; 3630 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3631 3632 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3633 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3634 TargetOpcode::G_ANYEXT); 3635 3636 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3637 3638 LLT IdxTy = MRI.getType(Idx); 3639 int64_t PartIdx = IdxVal / NewNumElts; 3640 auto NewIdx = 3641 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3642 3643 if (IsInsert) { 3644 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3645 3646 // Use the adjusted index to insert into one of the subvectors. 3647 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3648 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3649 VecParts[PartIdx] = InsertPart.getReg(0); 3650 3651 // Recombine the inserted subvector with the others to reform the result 3652 // vector. 3653 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3654 } else { 3655 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3656 } 3657 3658 MI.eraseFromParent(); 3659 return Legalized; 3660 } 3661 3662 // With a variable index, we can't perform the operation in a smaller type, so 3663 // we're forced to expand this. 3664 // 3665 // TODO: We could emit a chain of compare/select to figure out which piece to 3666 // index. 3667 return lowerExtractInsertVectorElt(MI); 3668 } 3669 3670 LegalizerHelper::LegalizeResult 3671 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3672 LLT NarrowTy) { 3673 // FIXME: Don't know how to handle secondary types yet. 3674 if (TypeIdx != 0) 3675 return UnableToLegalize; 3676 3677 MachineMemOperand *MMO = *MI.memoperands_begin(); 3678 3679 // This implementation doesn't work for atomics. Give up instead of doing 3680 // something invalid. 3681 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3682 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3683 return UnableToLegalize; 3684 3685 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3686 Register ValReg = MI.getOperand(0).getReg(); 3687 Register AddrReg = MI.getOperand(1).getReg(); 3688 LLT ValTy = MRI.getType(ValReg); 3689 3690 // FIXME: Do we need a distinct NarrowMemory legalize action? 3691 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3692 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3693 return UnableToLegalize; 3694 } 3695 3696 int NumParts = -1; 3697 int NumLeftover = -1; 3698 LLT LeftoverTy; 3699 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3700 if (IsLoad) { 3701 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3702 } else { 3703 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3704 NarrowLeftoverRegs)) { 3705 NumParts = NarrowRegs.size(); 3706 NumLeftover = NarrowLeftoverRegs.size(); 3707 } 3708 } 3709 3710 if (NumParts == -1) 3711 return UnableToLegalize; 3712 3713 LLT PtrTy = MRI.getType(AddrReg); 3714 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3715 3716 unsigned TotalSize = ValTy.getSizeInBits(); 3717 3718 // Split the load/store into PartTy sized pieces starting at Offset. If this 3719 // is a load, return the new registers in ValRegs. For a store, each elements 3720 // of ValRegs should be PartTy. Returns the next offset that needs to be 3721 // handled. 3722 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3723 unsigned Offset) -> unsigned { 3724 MachineFunction &MF = MIRBuilder.getMF(); 3725 unsigned PartSize = PartTy.getSizeInBits(); 3726 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3727 Offset += PartSize, ++Idx) { 3728 unsigned ByteSize = PartSize / 8; 3729 unsigned ByteOffset = Offset / 8; 3730 Register NewAddrReg; 3731 3732 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3733 3734 MachineMemOperand *NewMMO = 3735 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3736 3737 if (IsLoad) { 3738 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3739 ValRegs.push_back(Dst); 3740 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3741 } else { 3742 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3743 } 3744 } 3745 3746 return Offset; 3747 }; 3748 3749 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3750 3751 // Handle the rest of the register if this isn't an even type breakdown. 3752 if (LeftoverTy.isValid()) 3753 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3754 3755 if (IsLoad) { 3756 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3757 LeftoverTy, NarrowLeftoverRegs); 3758 } 3759 3760 MI.eraseFromParent(); 3761 return Legalized; 3762 } 3763 3764 LegalizerHelper::LegalizeResult 3765 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3766 LLT NarrowTy) { 3767 assert(TypeIdx == 0 && "only one type index expected"); 3768 3769 const unsigned Opc = MI.getOpcode(); 3770 const int NumOps = MI.getNumOperands() - 1; 3771 const Register DstReg = MI.getOperand(0).getReg(); 3772 const unsigned Flags = MI.getFlags(); 3773 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3774 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3775 3776 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3777 3778 // First of all check whether we are narrowing (changing the element type) 3779 // or reducing the vector elements 3780 const LLT DstTy = MRI.getType(DstReg); 3781 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3782 3783 SmallVector<Register, 8> ExtractedRegs[3]; 3784 SmallVector<Register, 8> Parts; 3785 3786 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3787 3788 // Break down all the sources into NarrowTy pieces we can operate on. This may 3789 // involve creating merges to a wider type, padded with undef. 3790 for (int I = 0; I != NumOps; ++I) { 3791 Register SrcReg = MI.getOperand(I + 1).getReg(); 3792 LLT SrcTy = MRI.getType(SrcReg); 3793 3794 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3795 // For fewerElements, this is a smaller vector with the same element type. 3796 LLT OpNarrowTy; 3797 if (IsNarrow) { 3798 OpNarrowTy = NarrowScalarTy; 3799 3800 // In case of narrowing, we need to cast vectors to scalars for this to 3801 // work properly 3802 // FIXME: Can we do without the bitcast here if we're narrowing? 3803 if (SrcTy.isVector()) { 3804 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3805 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3806 } 3807 } else { 3808 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3809 } 3810 3811 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3812 3813 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3814 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3815 TargetOpcode::G_ANYEXT); 3816 } 3817 3818 SmallVector<Register, 8> ResultRegs; 3819 3820 // Input operands for each sub-instruction. 3821 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3822 3823 int NumParts = ExtractedRegs[0].size(); 3824 const unsigned DstSize = DstTy.getSizeInBits(); 3825 const LLT DstScalarTy = LLT::scalar(DstSize); 3826 3827 // Narrowing needs to use scalar types 3828 LLT DstLCMTy, NarrowDstTy; 3829 if (IsNarrow) { 3830 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3831 NarrowDstTy = NarrowScalarTy; 3832 } else { 3833 DstLCMTy = getLCMType(DstTy, NarrowTy); 3834 NarrowDstTy = NarrowTy; 3835 } 3836 3837 // We widened the source registers to satisfy merge/unmerge size 3838 // constraints. We'll have some extra fully undef parts. 3839 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3840 3841 for (int I = 0; I != NumRealParts; ++I) { 3842 // Emit this instruction on each of the split pieces. 3843 for (int J = 0; J != NumOps; ++J) 3844 InputRegs[J] = ExtractedRegs[J][I]; 3845 3846 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3847 ResultRegs.push_back(Inst.getReg(0)); 3848 } 3849 3850 // Fill out the widened result with undef instead of creating instructions 3851 // with undef inputs. 3852 int NumUndefParts = NumParts - NumRealParts; 3853 if (NumUndefParts != 0) 3854 ResultRegs.append(NumUndefParts, 3855 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3856 3857 // Extract the possibly padded result. Use a scratch register if we need to do 3858 // a final bitcast, otherwise use the original result register. 3859 Register MergeDstReg; 3860 if (IsNarrow && DstTy.isVector()) 3861 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3862 else 3863 MergeDstReg = DstReg; 3864 3865 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3866 3867 // Recast to vector if we narrowed a vector 3868 if (IsNarrow && DstTy.isVector()) 3869 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3870 3871 MI.eraseFromParent(); 3872 return Legalized; 3873 } 3874 3875 LegalizerHelper::LegalizeResult 3876 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3877 LLT NarrowTy) { 3878 Register DstReg = MI.getOperand(0).getReg(); 3879 Register SrcReg = MI.getOperand(1).getReg(); 3880 int64_t Imm = MI.getOperand(2).getImm(); 3881 3882 LLT DstTy = MRI.getType(DstReg); 3883 3884 SmallVector<Register, 8> Parts; 3885 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3886 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3887 3888 for (Register &R : Parts) 3889 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3890 3891 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3892 3893 MI.eraseFromParent(); 3894 return Legalized; 3895 } 3896 3897 LegalizerHelper::LegalizeResult 3898 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3899 LLT NarrowTy) { 3900 using namespace TargetOpcode; 3901 3902 switch (MI.getOpcode()) { 3903 case G_IMPLICIT_DEF: 3904 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3905 case G_TRUNC: 3906 case G_AND: 3907 case G_OR: 3908 case G_XOR: 3909 case G_ADD: 3910 case G_SUB: 3911 case G_MUL: 3912 case G_PTR_ADD: 3913 case G_SMULH: 3914 case G_UMULH: 3915 case G_FADD: 3916 case G_FMUL: 3917 case G_FSUB: 3918 case G_FNEG: 3919 case G_FABS: 3920 case G_FCANONICALIZE: 3921 case G_FDIV: 3922 case G_FREM: 3923 case G_FMA: 3924 case G_FMAD: 3925 case G_FPOW: 3926 case G_FEXP: 3927 case G_FEXP2: 3928 case G_FLOG: 3929 case G_FLOG2: 3930 case G_FLOG10: 3931 case G_FNEARBYINT: 3932 case G_FCEIL: 3933 case G_FFLOOR: 3934 case G_FRINT: 3935 case G_INTRINSIC_ROUND: 3936 case G_INTRINSIC_ROUNDEVEN: 3937 case G_INTRINSIC_TRUNC: 3938 case G_FCOS: 3939 case G_FSIN: 3940 case G_FSQRT: 3941 case G_BSWAP: 3942 case G_BITREVERSE: 3943 case G_SDIV: 3944 case G_UDIV: 3945 case G_SREM: 3946 case G_UREM: 3947 case G_SMIN: 3948 case G_SMAX: 3949 case G_UMIN: 3950 case G_UMAX: 3951 case G_FMINNUM: 3952 case G_FMAXNUM: 3953 case G_FMINNUM_IEEE: 3954 case G_FMAXNUM_IEEE: 3955 case G_FMINIMUM: 3956 case G_FMAXIMUM: 3957 case G_FSHL: 3958 case G_FSHR: 3959 case G_FREEZE: 3960 case G_SADDSAT: 3961 case G_SSUBSAT: 3962 case G_UADDSAT: 3963 case G_USUBSAT: 3964 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3965 case G_SHL: 3966 case G_LSHR: 3967 case G_ASHR: 3968 case G_SSHLSAT: 3969 case G_USHLSAT: 3970 case G_CTLZ: 3971 case G_CTLZ_ZERO_UNDEF: 3972 case G_CTTZ: 3973 case G_CTTZ_ZERO_UNDEF: 3974 case G_CTPOP: 3975 case G_FCOPYSIGN: 3976 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3977 case G_ZEXT: 3978 case G_SEXT: 3979 case G_ANYEXT: 3980 case G_FPEXT: 3981 case G_FPTRUNC: 3982 case G_SITOFP: 3983 case G_UITOFP: 3984 case G_FPTOSI: 3985 case G_FPTOUI: 3986 case G_INTTOPTR: 3987 case G_PTRTOINT: 3988 case G_ADDRSPACE_CAST: 3989 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3990 case G_ICMP: 3991 case G_FCMP: 3992 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3993 case G_SELECT: 3994 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3995 case G_PHI: 3996 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3997 case G_UNMERGE_VALUES: 3998 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3999 case G_BUILD_VECTOR: 4000 assert(TypeIdx == 0 && "not a vector type index"); 4001 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4002 case G_CONCAT_VECTORS: 4003 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4004 return UnableToLegalize; 4005 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4006 case G_EXTRACT_VECTOR_ELT: 4007 case G_INSERT_VECTOR_ELT: 4008 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4009 case G_LOAD: 4010 case G_STORE: 4011 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4012 case G_SEXT_INREG: 4013 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4014 default: 4015 return UnableToLegalize; 4016 } 4017 } 4018 4019 LegalizerHelper::LegalizeResult 4020 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4021 const LLT HalfTy, const LLT AmtTy) { 4022 4023 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4024 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4025 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4026 4027 if (Amt.isNullValue()) { 4028 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4029 MI.eraseFromParent(); 4030 return Legalized; 4031 } 4032 4033 LLT NVT = HalfTy; 4034 unsigned NVTBits = HalfTy.getSizeInBits(); 4035 unsigned VTBits = 2 * NVTBits; 4036 4037 SrcOp Lo(Register(0)), Hi(Register(0)); 4038 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4039 if (Amt.ugt(VTBits)) { 4040 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4041 } else if (Amt.ugt(NVTBits)) { 4042 Lo = MIRBuilder.buildConstant(NVT, 0); 4043 Hi = MIRBuilder.buildShl(NVT, InL, 4044 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4045 } else if (Amt == NVTBits) { 4046 Lo = MIRBuilder.buildConstant(NVT, 0); 4047 Hi = InL; 4048 } else { 4049 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4050 auto OrLHS = 4051 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4052 auto OrRHS = MIRBuilder.buildLShr( 4053 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4054 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4055 } 4056 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4057 if (Amt.ugt(VTBits)) { 4058 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4059 } else if (Amt.ugt(NVTBits)) { 4060 Lo = MIRBuilder.buildLShr(NVT, InH, 4061 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4062 Hi = MIRBuilder.buildConstant(NVT, 0); 4063 } else if (Amt == NVTBits) { 4064 Lo = InH; 4065 Hi = MIRBuilder.buildConstant(NVT, 0); 4066 } else { 4067 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4068 4069 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4070 auto OrRHS = MIRBuilder.buildShl( 4071 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4072 4073 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4074 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4075 } 4076 } else { 4077 if (Amt.ugt(VTBits)) { 4078 Hi = Lo = MIRBuilder.buildAShr( 4079 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4080 } else if (Amt.ugt(NVTBits)) { 4081 Lo = MIRBuilder.buildAShr(NVT, InH, 4082 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4083 Hi = MIRBuilder.buildAShr(NVT, InH, 4084 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4085 } else if (Amt == NVTBits) { 4086 Lo = InH; 4087 Hi = MIRBuilder.buildAShr(NVT, InH, 4088 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4089 } else { 4090 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4091 4092 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4093 auto OrRHS = MIRBuilder.buildShl( 4094 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4095 4096 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4097 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4098 } 4099 } 4100 4101 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4102 MI.eraseFromParent(); 4103 4104 return Legalized; 4105 } 4106 4107 // TODO: Optimize if constant shift amount. 4108 LegalizerHelper::LegalizeResult 4109 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4110 LLT RequestedTy) { 4111 if (TypeIdx == 1) { 4112 Observer.changingInstr(MI); 4113 narrowScalarSrc(MI, RequestedTy, 2); 4114 Observer.changedInstr(MI); 4115 return Legalized; 4116 } 4117 4118 Register DstReg = MI.getOperand(0).getReg(); 4119 LLT DstTy = MRI.getType(DstReg); 4120 if (DstTy.isVector()) 4121 return UnableToLegalize; 4122 4123 Register Amt = MI.getOperand(2).getReg(); 4124 LLT ShiftAmtTy = MRI.getType(Amt); 4125 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4126 if (DstEltSize % 2 != 0) 4127 return UnableToLegalize; 4128 4129 // Ignore the input type. We can only go to exactly half the size of the 4130 // input. If that isn't small enough, the resulting pieces will be further 4131 // legalized. 4132 const unsigned NewBitSize = DstEltSize / 2; 4133 const LLT HalfTy = LLT::scalar(NewBitSize); 4134 const LLT CondTy = LLT::scalar(1); 4135 4136 if (const MachineInstr *KShiftAmt = 4137 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4138 return narrowScalarShiftByConstant( 4139 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4140 } 4141 4142 // TODO: Expand with known bits. 4143 4144 // Handle the fully general expansion by an unknown amount. 4145 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4146 4147 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4148 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4149 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4150 4151 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4152 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4153 4154 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4155 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4156 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4157 4158 Register ResultRegs[2]; 4159 switch (MI.getOpcode()) { 4160 case TargetOpcode::G_SHL: { 4161 // Short: ShAmt < NewBitSize 4162 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4163 4164 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4165 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4166 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4167 4168 // Long: ShAmt >= NewBitSize 4169 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4170 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4171 4172 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4173 auto Hi = MIRBuilder.buildSelect( 4174 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4175 4176 ResultRegs[0] = Lo.getReg(0); 4177 ResultRegs[1] = Hi.getReg(0); 4178 break; 4179 } 4180 case TargetOpcode::G_LSHR: 4181 case TargetOpcode::G_ASHR: { 4182 // Short: ShAmt < NewBitSize 4183 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4184 4185 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4186 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4187 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4188 4189 // Long: ShAmt >= NewBitSize 4190 MachineInstrBuilder HiL; 4191 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4192 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4193 } else { 4194 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4195 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4196 } 4197 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4198 {InH, AmtExcess}); // Lo from Hi part. 4199 4200 auto Lo = MIRBuilder.buildSelect( 4201 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4202 4203 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4204 4205 ResultRegs[0] = Lo.getReg(0); 4206 ResultRegs[1] = Hi.getReg(0); 4207 break; 4208 } 4209 default: 4210 llvm_unreachable("not a shift"); 4211 } 4212 4213 MIRBuilder.buildMerge(DstReg, ResultRegs); 4214 MI.eraseFromParent(); 4215 return Legalized; 4216 } 4217 4218 LegalizerHelper::LegalizeResult 4219 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4220 LLT MoreTy) { 4221 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4222 4223 Observer.changingInstr(MI); 4224 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4225 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4226 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4227 moreElementsVectorSrc(MI, MoreTy, I); 4228 } 4229 4230 MachineBasicBlock &MBB = *MI.getParent(); 4231 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4232 moreElementsVectorDst(MI, MoreTy, 0); 4233 Observer.changedInstr(MI); 4234 return Legalized; 4235 } 4236 4237 LegalizerHelper::LegalizeResult 4238 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4239 LLT MoreTy) { 4240 unsigned Opc = MI.getOpcode(); 4241 switch (Opc) { 4242 case TargetOpcode::G_IMPLICIT_DEF: 4243 case TargetOpcode::G_LOAD: { 4244 if (TypeIdx != 0) 4245 return UnableToLegalize; 4246 Observer.changingInstr(MI); 4247 moreElementsVectorDst(MI, MoreTy, 0); 4248 Observer.changedInstr(MI); 4249 return Legalized; 4250 } 4251 case TargetOpcode::G_STORE: 4252 if (TypeIdx != 0) 4253 return UnableToLegalize; 4254 Observer.changingInstr(MI); 4255 moreElementsVectorSrc(MI, MoreTy, 0); 4256 Observer.changedInstr(MI); 4257 return Legalized; 4258 case TargetOpcode::G_AND: 4259 case TargetOpcode::G_OR: 4260 case TargetOpcode::G_XOR: 4261 case TargetOpcode::G_SMIN: 4262 case TargetOpcode::G_SMAX: 4263 case TargetOpcode::G_UMIN: 4264 case TargetOpcode::G_UMAX: 4265 case TargetOpcode::G_FMINNUM: 4266 case TargetOpcode::G_FMAXNUM: 4267 case TargetOpcode::G_FMINNUM_IEEE: 4268 case TargetOpcode::G_FMAXNUM_IEEE: 4269 case TargetOpcode::G_FMINIMUM: 4270 case TargetOpcode::G_FMAXIMUM: { 4271 Observer.changingInstr(MI); 4272 moreElementsVectorSrc(MI, MoreTy, 1); 4273 moreElementsVectorSrc(MI, MoreTy, 2); 4274 moreElementsVectorDst(MI, MoreTy, 0); 4275 Observer.changedInstr(MI); 4276 return Legalized; 4277 } 4278 case TargetOpcode::G_EXTRACT: 4279 if (TypeIdx != 1) 4280 return UnableToLegalize; 4281 Observer.changingInstr(MI); 4282 moreElementsVectorSrc(MI, MoreTy, 1); 4283 Observer.changedInstr(MI); 4284 return Legalized; 4285 case TargetOpcode::G_INSERT: 4286 case TargetOpcode::G_FREEZE: 4287 if (TypeIdx != 0) 4288 return UnableToLegalize; 4289 Observer.changingInstr(MI); 4290 moreElementsVectorSrc(MI, MoreTy, 1); 4291 moreElementsVectorDst(MI, MoreTy, 0); 4292 Observer.changedInstr(MI); 4293 return Legalized; 4294 case TargetOpcode::G_SELECT: 4295 if (TypeIdx != 0) 4296 return UnableToLegalize; 4297 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4298 return UnableToLegalize; 4299 4300 Observer.changingInstr(MI); 4301 moreElementsVectorSrc(MI, MoreTy, 2); 4302 moreElementsVectorSrc(MI, MoreTy, 3); 4303 moreElementsVectorDst(MI, MoreTy, 0); 4304 Observer.changedInstr(MI); 4305 return Legalized; 4306 case TargetOpcode::G_UNMERGE_VALUES: { 4307 if (TypeIdx != 1) 4308 return UnableToLegalize; 4309 4310 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4311 int NumDst = MI.getNumOperands() - 1; 4312 moreElementsVectorSrc(MI, MoreTy, NumDst); 4313 4314 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4315 for (int I = 0; I != NumDst; ++I) 4316 MIB.addDef(MI.getOperand(I).getReg()); 4317 4318 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4319 for (int I = NumDst; I != NewNumDst; ++I) 4320 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4321 4322 MIB.addUse(MI.getOperand(NumDst).getReg()); 4323 MI.eraseFromParent(); 4324 return Legalized; 4325 } 4326 case TargetOpcode::G_PHI: 4327 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4328 default: 4329 return UnableToLegalize; 4330 } 4331 } 4332 4333 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4334 ArrayRef<Register> Src1Regs, 4335 ArrayRef<Register> Src2Regs, 4336 LLT NarrowTy) { 4337 MachineIRBuilder &B = MIRBuilder; 4338 unsigned SrcParts = Src1Regs.size(); 4339 unsigned DstParts = DstRegs.size(); 4340 4341 unsigned DstIdx = 0; // Low bits of the result. 4342 Register FactorSum = 4343 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4344 DstRegs[DstIdx] = FactorSum; 4345 4346 unsigned CarrySumPrevDstIdx; 4347 SmallVector<Register, 4> Factors; 4348 4349 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4350 // Collect low parts of muls for DstIdx. 4351 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4352 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4353 MachineInstrBuilder Mul = 4354 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4355 Factors.push_back(Mul.getReg(0)); 4356 } 4357 // Collect high parts of muls from previous DstIdx. 4358 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4359 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4360 MachineInstrBuilder Umulh = 4361 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4362 Factors.push_back(Umulh.getReg(0)); 4363 } 4364 // Add CarrySum from additions calculated for previous DstIdx. 4365 if (DstIdx != 1) { 4366 Factors.push_back(CarrySumPrevDstIdx); 4367 } 4368 4369 Register CarrySum; 4370 // Add all factors and accumulate all carries into CarrySum. 4371 if (DstIdx != DstParts - 1) { 4372 MachineInstrBuilder Uaddo = 4373 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4374 FactorSum = Uaddo.getReg(0); 4375 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4376 for (unsigned i = 2; i < Factors.size(); ++i) { 4377 MachineInstrBuilder Uaddo = 4378 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4379 FactorSum = Uaddo.getReg(0); 4380 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4381 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4382 } 4383 } else { 4384 // Since value for the next index is not calculated, neither is CarrySum. 4385 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4386 for (unsigned i = 2; i < Factors.size(); ++i) 4387 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4388 } 4389 4390 CarrySumPrevDstIdx = CarrySum; 4391 DstRegs[DstIdx] = FactorSum; 4392 Factors.clear(); 4393 } 4394 } 4395 4396 LegalizerHelper::LegalizeResult 4397 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4398 Register DstReg = MI.getOperand(0).getReg(); 4399 Register Src1 = MI.getOperand(1).getReg(); 4400 Register Src2 = MI.getOperand(2).getReg(); 4401 4402 LLT Ty = MRI.getType(DstReg); 4403 if (Ty.isVector()) 4404 return UnableToLegalize; 4405 4406 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4407 unsigned DstSize = Ty.getSizeInBits(); 4408 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4409 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4410 return UnableToLegalize; 4411 4412 unsigned NumDstParts = DstSize / NarrowSize; 4413 unsigned NumSrcParts = SrcSize / NarrowSize; 4414 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4415 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4416 4417 SmallVector<Register, 2> Src1Parts, Src2Parts; 4418 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4419 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4420 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4421 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4422 4423 // Take only high half of registers if this is high mul. 4424 ArrayRef<Register> DstRegs( 4425 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4426 MIRBuilder.buildMerge(DstReg, DstRegs); 4427 MI.eraseFromParent(); 4428 return Legalized; 4429 } 4430 4431 LegalizerHelper::LegalizeResult 4432 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4433 LLT NarrowTy) { 4434 if (TypeIdx != 1) 4435 return UnableToLegalize; 4436 4437 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4438 4439 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4440 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4441 // NarrowSize. 4442 if (SizeOp1 % NarrowSize != 0) 4443 return UnableToLegalize; 4444 int NumParts = SizeOp1 / NarrowSize; 4445 4446 SmallVector<Register, 2> SrcRegs, DstRegs; 4447 SmallVector<uint64_t, 2> Indexes; 4448 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4449 4450 Register OpReg = MI.getOperand(0).getReg(); 4451 uint64_t OpStart = MI.getOperand(2).getImm(); 4452 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4453 for (int i = 0; i < NumParts; ++i) { 4454 unsigned SrcStart = i * NarrowSize; 4455 4456 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4457 // No part of the extract uses this subregister, ignore it. 4458 continue; 4459 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4460 // The entire subregister is extracted, forward the value. 4461 DstRegs.push_back(SrcRegs[i]); 4462 continue; 4463 } 4464 4465 // OpSegStart is where this destination segment would start in OpReg if it 4466 // extended infinitely in both directions. 4467 int64_t ExtractOffset; 4468 uint64_t SegSize; 4469 if (OpStart < SrcStart) { 4470 ExtractOffset = 0; 4471 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4472 } else { 4473 ExtractOffset = OpStart - SrcStart; 4474 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4475 } 4476 4477 Register SegReg = SrcRegs[i]; 4478 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4479 // A genuine extract is needed. 4480 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4481 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4482 } 4483 4484 DstRegs.push_back(SegReg); 4485 } 4486 4487 Register DstReg = MI.getOperand(0).getReg(); 4488 if (MRI.getType(DstReg).isVector()) 4489 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4490 else if (DstRegs.size() > 1) 4491 MIRBuilder.buildMerge(DstReg, DstRegs); 4492 else 4493 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4494 MI.eraseFromParent(); 4495 return Legalized; 4496 } 4497 4498 LegalizerHelper::LegalizeResult 4499 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4500 LLT NarrowTy) { 4501 // FIXME: Don't know how to handle secondary types yet. 4502 if (TypeIdx != 0) 4503 return UnableToLegalize; 4504 4505 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4506 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4507 4508 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4509 // NarrowSize. 4510 if (SizeOp0 % NarrowSize != 0) 4511 return UnableToLegalize; 4512 4513 int NumParts = SizeOp0 / NarrowSize; 4514 4515 SmallVector<Register, 2> SrcRegs, DstRegs; 4516 SmallVector<uint64_t, 2> Indexes; 4517 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4518 4519 Register OpReg = MI.getOperand(2).getReg(); 4520 uint64_t OpStart = MI.getOperand(3).getImm(); 4521 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4522 for (int i = 0; i < NumParts; ++i) { 4523 unsigned DstStart = i * NarrowSize; 4524 4525 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4526 // No part of the insert affects this subregister, forward the original. 4527 DstRegs.push_back(SrcRegs[i]); 4528 continue; 4529 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4530 // The entire subregister is defined by this insert, forward the new 4531 // value. 4532 DstRegs.push_back(OpReg); 4533 continue; 4534 } 4535 4536 // OpSegStart is where this destination segment would start in OpReg if it 4537 // extended infinitely in both directions. 4538 int64_t ExtractOffset, InsertOffset; 4539 uint64_t SegSize; 4540 if (OpStart < DstStart) { 4541 InsertOffset = 0; 4542 ExtractOffset = DstStart - OpStart; 4543 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4544 } else { 4545 InsertOffset = OpStart - DstStart; 4546 ExtractOffset = 0; 4547 SegSize = 4548 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4549 } 4550 4551 Register SegReg = OpReg; 4552 if (ExtractOffset != 0 || SegSize != OpSize) { 4553 // A genuine extract is needed. 4554 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4555 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4556 } 4557 4558 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4559 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4560 DstRegs.push_back(DstReg); 4561 } 4562 4563 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4564 Register DstReg = MI.getOperand(0).getReg(); 4565 if(MRI.getType(DstReg).isVector()) 4566 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4567 else 4568 MIRBuilder.buildMerge(DstReg, DstRegs); 4569 MI.eraseFromParent(); 4570 return Legalized; 4571 } 4572 4573 LegalizerHelper::LegalizeResult 4574 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4575 LLT NarrowTy) { 4576 Register DstReg = MI.getOperand(0).getReg(); 4577 LLT DstTy = MRI.getType(DstReg); 4578 4579 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4580 4581 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4582 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4583 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4584 LLT LeftoverTy; 4585 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4586 Src0Regs, Src0LeftoverRegs)) 4587 return UnableToLegalize; 4588 4589 LLT Unused; 4590 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4591 Src1Regs, Src1LeftoverRegs)) 4592 llvm_unreachable("inconsistent extractParts result"); 4593 4594 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4595 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4596 {Src0Regs[I], Src1Regs[I]}); 4597 DstRegs.push_back(Inst.getReg(0)); 4598 } 4599 4600 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4601 auto Inst = MIRBuilder.buildInstr( 4602 MI.getOpcode(), 4603 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4604 DstLeftoverRegs.push_back(Inst.getReg(0)); 4605 } 4606 4607 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4608 LeftoverTy, DstLeftoverRegs); 4609 4610 MI.eraseFromParent(); 4611 return Legalized; 4612 } 4613 4614 LegalizerHelper::LegalizeResult 4615 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4616 LLT NarrowTy) { 4617 if (TypeIdx != 0) 4618 return UnableToLegalize; 4619 4620 Register DstReg = MI.getOperand(0).getReg(); 4621 Register SrcReg = MI.getOperand(1).getReg(); 4622 4623 LLT DstTy = MRI.getType(DstReg); 4624 if (DstTy.isVector()) 4625 return UnableToLegalize; 4626 4627 SmallVector<Register, 8> Parts; 4628 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4629 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4630 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4631 4632 MI.eraseFromParent(); 4633 return Legalized; 4634 } 4635 4636 LegalizerHelper::LegalizeResult 4637 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4638 LLT NarrowTy) { 4639 if (TypeIdx != 0) 4640 return UnableToLegalize; 4641 4642 Register CondReg = MI.getOperand(1).getReg(); 4643 LLT CondTy = MRI.getType(CondReg); 4644 if (CondTy.isVector()) // TODO: Handle vselect 4645 return UnableToLegalize; 4646 4647 Register DstReg = MI.getOperand(0).getReg(); 4648 LLT DstTy = MRI.getType(DstReg); 4649 4650 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4651 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4652 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4653 LLT LeftoverTy; 4654 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4655 Src1Regs, Src1LeftoverRegs)) 4656 return UnableToLegalize; 4657 4658 LLT Unused; 4659 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4660 Src2Regs, Src2LeftoverRegs)) 4661 llvm_unreachable("inconsistent extractParts result"); 4662 4663 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4664 auto Select = MIRBuilder.buildSelect(NarrowTy, 4665 CondReg, Src1Regs[I], Src2Regs[I]); 4666 DstRegs.push_back(Select.getReg(0)); 4667 } 4668 4669 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4670 auto Select = MIRBuilder.buildSelect( 4671 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4672 DstLeftoverRegs.push_back(Select.getReg(0)); 4673 } 4674 4675 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4676 LeftoverTy, DstLeftoverRegs); 4677 4678 MI.eraseFromParent(); 4679 return Legalized; 4680 } 4681 4682 LegalizerHelper::LegalizeResult 4683 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4684 LLT NarrowTy) { 4685 if (TypeIdx != 1) 4686 return UnableToLegalize; 4687 4688 Register DstReg = MI.getOperand(0).getReg(); 4689 Register SrcReg = MI.getOperand(1).getReg(); 4690 LLT DstTy = MRI.getType(DstReg); 4691 LLT SrcTy = MRI.getType(SrcReg); 4692 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4693 4694 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4695 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4696 4697 MachineIRBuilder &B = MIRBuilder; 4698 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4699 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4700 auto C_0 = B.buildConstant(NarrowTy, 0); 4701 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4702 UnmergeSrc.getReg(1), C_0); 4703 auto LoCTLZ = IsUndef ? 4704 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4705 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4706 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4707 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4708 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4709 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4710 4711 MI.eraseFromParent(); 4712 return Legalized; 4713 } 4714 4715 return UnableToLegalize; 4716 } 4717 4718 LegalizerHelper::LegalizeResult 4719 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4720 LLT NarrowTy) { 4721 if (TypeIdx != 1) 4722 return UnableToLegalize; 4723 4724 Register DstReg = MI.getOperand(0).getReg(); 4725 Register SrcReg = MI.getOperand(1).getReg(); 4726 LLT DstTy = MRI.getType(DstReg); 4727 LLT SrcTy = MRI.getType(SrcReg); 4728 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4729 4730 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4731 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4732 4733 MachineIRBuilder &B = MIRBuilder; 4734 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4735 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4736 auto C_0 = B.buildConstant(NarrowTy, 0); 4737 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4738 UnmergeSrc.getReg(0), C_0); 4739 auto HiCTTZ = IsUndef ? 4740 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4741 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4742 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4743 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4744 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4745 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4746 4747 MI.eraseFromParent(); 4748 return Legalized; 4749 } 4750 4751 return UnableToLegalize; 4752 } 4753 4754 LegalizerHelper::LegalizeResult 4755 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4756 LLT NarrowTy) { 4757 if (TypeIdx != 1) 4758 return UnableToLegalize; 4759 4760 Register DstReg = MI.getOperand(0).getReg(); 4761 LLT DstTy = MRI.getType(DstReg); 4762 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4763 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4764 4765 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4766 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4767 4768 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4769 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4770 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4771 4772 MI.eraseFromParent(); 4773 return Legalized; 4774 } 4775 4776 return UnableToLegalize; 4777 } 4778 4779 LegalizerHelper::LegalizeResult 4780 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4781 unsigned Opc = MI.getOpcode(); 4782 const auto &TII = MIRBuilder.getTII(); 4783 auto isSupported = [this](const LegalityQuery &Q) { 4784 auto QAction = LI.getAction(Q).Action; 4785 return QAction == Legal || QAction == Libcall || QAction == Custom; 4786 }; 4787 switch (Opc) { 4788 default: 4789 return UnableToLegalize; 4790 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4791 // This trivially expands to CTLZ. 4792 Observer.changingInstr(MI); 4793 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4794 Observer.changedInstr(MI); 4795 return Legalized; 4796 } 4797 case TargetOpcode::G_CTLZ: { 4798 Register DstReg = MI.getOperand(0).getReg(); 4799 Register SrcReg = MI.getOperand(1).getReg(); 4800 LLT DstTy = MRI.getType(DstReg); 4801 LLT SrcTy = MRI.getType(SrcReg); 4802 unsigned Len = SrcTy.getSizeInBits(); 4803 4804 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4805 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4806 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4807 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4808 auto ICmp = MIRBuilder.buildICmp( 4809 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4810 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4811 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4812 MI.eraseFromParent(); 4813 return Legalized; 4814 } 4815 // for now, we do this: 4816 // NewLen = NextPowerOf2(Len); 4817 // x = x | (x >> 1); 4818 // x = x | (x >> 2); 4819 // ... 4820 // x = x | (x >>16); 4821 // x = x | (x >>32); // for 64-bit input 4822 // Upto NewLen/2 4823 // return Len - popcount(x); 4824 // 4825 // Ref: "Hacker's Delight" by Henry Warren 4826 Register Op = SrcReg; 4827 unsigned NewLen = PowerOf2Ceil(Len); 4828 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4829 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4830 auto MIBOp = MIRBuilder.buildOr( 4831 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4832 Op = MIBOp.getReg(0); 4833 } 4834 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4835 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4836 MIBPop); 4837 MI.eraseFromParent(); 4838 return Legalized; 4839 } 4840 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4841 // This trivially expands to CTTZ. 4842 Observer.changingInstr(MI); 4843 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4844 Observer.changedInstr(MI); 4845 return Legalized; 4846 } 4847 case TargetOpcode::G_CTTZ: { 4848 Register DstReg = MI.getOperand(0).getReg(); 4849 Register SrcReg = MI.getOperand(1).getReg(); 4850 LLT DstTy = MRI.getType(DstReg); 4851 LLT SrcTy = MRI.getType(SrcReg); 4852 4853 unsigned Len = SrcTy.getSizeInBits(); 4854 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4855 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4856 // zero. 4857 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4858 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4859 auto ICmp = MIRBuilder.buildICmp( 4860 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4861 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4862 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4863 MI.eraseFromParent(); 4864 return Legalized; 4865 } 4866 // for now, we use: { return popcount(~x & (x - 1)); } 4867 // unless the target has ctlz but not ctpop, in which case we use: 4868 // { return 32 - nlz(~x & (x-1)); } 4869 // Ref: "Hacker's Delight" by Henry Warren 4870 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4871 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4872 auto MIBTmp = MIRBuilder.buildAnd( 4873 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4874 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4875 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4876 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4877 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4878 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4879 MI.eraseFromParent(); 4880 return Legalized; 4881 } 4882 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4883 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4884 return Legalized; 4885 } 4886 case TargetOpcode::G_CTPOP: { 4887 Register SrcReg = MI.getOperand(1).getReg(); 4888 LLT Ty = MRI.getType(SrcReg); 4889 unsigned Size = Ty.getSizeInBits(); 4890 MachineIRBuilder &B = MIRBuilder; 4891 4892 // Count set bits in blocks of 2 bits. Default approach would be 4893 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4894 // We use following formula instead: 4895 // B2Count = val - { (val >> 1) & 0x55555555 } 4896 // since it gives same result in blocks of 2 with one instruction less. 4897 auto C_1 = B.buildConstant(Ty, 1); 4898 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4899 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4900 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4901 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4902 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4903 4904 // In order to get count in blocks of 4 add values from adjacent block of 2. 4905 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4906 auto C_2 = B.buildConstant(Ty, 2); 4907 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4908 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4909 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4910 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4911 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4912 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4913 4914 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4915 // addition since count value sits in range {0,...,8} and 4 bits are enough 4916 // to hold such binary values. After addition high 4 bits still hold count 4917 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4918 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4919 auto C_4 = B.buildConstant(Ty, 4); 4920 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4921 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4922 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4923 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4924 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4925 4926 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4927 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4928 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4929 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4930 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4931 4932 // Shift count result from 8 high bits to low bits. 4933 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4934 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4935 4936 MI.eraseFromParent(); 4937 return Legalized; 4938 } 4939 } 4940 } 4941 4942 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4943 // representation. 4944 LegalizerHelper::LegalizeResult 4945 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4946 Register Dst = MI.getOperand(0).getReg(); 4947 Register Src = MI.getOperand(1).getReg(); 4948 const LLT S64 = LLT::scalar(64); 4949 const LLT S32 = LLT::scalar(32); 4950 const LLT S1 = LLT::scalar(1); 4951 4952 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4953 4954 // unsigned cul2f(ulong u) { 4955 // uint lz = clz(u); 4956 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4957 // u = (u << lz) & 0x7fffffffffffffffUL; 4958 // ulong t = u & 0xffffffffffUL; 4959 // uint v = (e << 23) | (uint)(u >> 40); 4960 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4961 // return as_float(v + r); 4962 // } 4963 4964 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4965 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4966 4967 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4968 4969 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4970 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4971 4972 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4973 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4974 4975 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4976 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4977 4978 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4979 4980 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4981 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4982 4983 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4984 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4985 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4986 4987 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4988 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4989 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4990 auto One = MIRBuilder.buildConstant(S32, 1); 4991 4992 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4993 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4994 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4995 MIRBuilder.buildAdd(Dst, V, R); 4996 4997 MI.eraseFromParent(); 4998 return Legalized; 4999 } 5000 5001 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5002 Register Dst = MI.getOperand(0).getReg(); 5003 Register Src = MI.getOperand(1).getReg(); 5004 LLT DstTy = MRI.getType(Dst); 5005 LLT SrcTy = MRI.getType(Src); 5006 5007 if (SrcTy == LLT::scalar(1)) { 5008 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5009 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5010 MIRBuilder.buildSelect(Dst, Src, True, False); 5011 MI.eraseFromParent(); 5012 return Legalized; 5013 } 5014 5015 if (SrcTy != LLT::scalar(64)) 5016 return UnableToLegalize; 5017 5018 if (DstTy == LLT::scalar(32)) { 5019 // TODO: SelectionDAG has several alternative expansions to port which may 5020 // be more reasonble depending on the available instructions. If a target 5021 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5022 // intermediate type, this is probably worse. 5023 return lowerU64ToF32BitOps(MI); 5024 } 5025 5026 return UnableToLegalize; 5027 } 5028 5029 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5030 Register Dst = MI.getOperand(0).getReg(); 5031 Register Src = MI.getOperand(1).getReg(); 5032 LLT DstTy = MRI.getType(Dst); 5033 LLT SrcTy = MRI.getType(Src); 5034 5035 const LLT S64 = LLT::scalar(64); 5036 const LLT S32 = LLT::scalar(32); 5037 const LLT S1 = LLT::scalar(1); 5038 5039 if (SrcTy == S1) { 5040 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5041 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5042 MIRBuilder.buildSelect(Dst, Src, True, False); 5043 MI.eraseFromParent(); 5044 return Legalized; 5045 } 5046 5047 if (SrcTy != S64) 5048 return UnableToLegalize; 5049 5050 if (DstTy == S32) { 5051 // signed cl2f(long l) { 5052 // long s = l >> 63; 5053 // float r = cul2f((l + s) ^ s); 5054 // return s ? -r : r; 5055 // } 5056 Register L = Src; 5057 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5058 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5059 5060 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5061 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5062 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5063 5064 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5065 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5066 MIRBuilder.buildConstant(S64, 0)); 5067 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5068 MI.eraseFromParent(); 5069 return Legalized; 5070 } 5071 5072 return UnableToLegalize; 5073 } 5074 5075 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5076 Register Dst = MI.getOperand(0).getReg(); 5077 Register Src = MI.getOperand(1).getReg(); 5078 LLT DstTy = MRI.getType(Dst); 5079 LLT SrcTy = MRI.getType(Src); 5080 const LLT S64 = LLT::scalar(64); 5081 const LLT S32 = LLT::scalar(32); 5082 5083 if (SrcTy != S64 && SrcTy != S32) 5084 return UnableToLegalize; 5085 if (DstTy != S32 && DstTy != S64) 5086 return UnableToLegalize; 5087 5088 // FPTOSI gives same result as FPTOUI for positive signed integers. 5089 // FPTOUI needs to deal with fp values that convert to unsigned integers 5090 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5091 5092 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5093 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5094 : APFloat::IEEEdouble(), 5095 APInt::getNullValue(SrcTy.getSizeInBits())); 5096 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5097 5098 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5099 5100 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5101 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5102 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5103 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5104 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5105 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5106 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5107 5108 const LLT S1 = LLT::scalar(1); 5109 5110 MachineInstrBuilder FCMP = 5111 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5112 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5113 5114 MI.eraseFromParent(); 5115 return Legalized; 5116 } 5117 5118 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5119 Register Dst = MI.getOperand(0).getReg(); 5120 Register Src = MI.getOperand(1).getReg(); 5121 LLT DstTy = MRI.getType(Dst); 5122 LLT SrcTy = MRI.getType(Src); 5123 const LLT S64 = LLT::scalar(64); 5124 const LLT S32 = LLT::scalar(32); 5125 5126 // FIXME: Only f32 to i64 conversions are supported. 5127 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5128 return UnableToLegalize; 5129 5130 // Expand f32 -> i64 conversion 5131 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5132 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5133 5134 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5135 5136 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5137 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5138 5139 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5140 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5141 5142 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5143 APInt::getSignMask(SrcEltBits)); 5144 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5145 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5146 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5147 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5148 5149 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5150 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5151 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5152 5153 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5154 R = MIRBuilder.buildZExt(DstTy, R); 5155 5156 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5157 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5158 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5159 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5160 5161 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5162 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5163 5164 const LLT S1 = LLT::scalar(1); 5165 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5166 S1, Exponent, ExponentLoBit); 5167 5168 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5169 5170 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5171 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5172 5173 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5174 5175 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5176 S1, Exponent, ZeroSrcTy); 5177 5178 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5179 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5180 5181 MI.eraseFromParent(); 5182 return Legalized; 5183 } 5184 5185 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5186 LegalizerHelper::LegalizeResult 5187 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5188 Register Dst = MI.getOperand(0).getReg(); 5189 Register Src = MI.getOperand(1).getReg(); 5190 5191 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5192 return UnableToLegalize; 5193 5194 const unsigned ExpMask = 0x7ff; 5195 const unsigned ExpBiasf64 = 1023; 5196 const unsigned ExpBiasf16 = 15; 5197 const LLT S32 = LLT::scalar(32); 5198 const LLT S1 = LLT::scalar(1); 5199 5200 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5201 Register U = Unmerge.getReg(0); 5202 Register UH = Unmerge.getReg(1); 5203 5204 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5205 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5206 5207 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5208 // add the f16 bias (15) to get the biased exponent for the f16 format. 5209 E = MIRBuilder.buildAdd( 5210 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5211 5212 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5213 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5214 5215 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5216 MIRBuilder.buildConstant(S32, 0x1ff)); 5217 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5218 5219 auto Zero = MIRBuilder.buildConstant(S32, 0); 5220 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5221 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5222 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5223 5224 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5225 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5226 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5227 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5228 5229 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5230 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5231 5232 // N = M | (E << 12); 5233 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5234 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5235 5236 // B = clamp(1-E, 0, 13); 5237 auto One = MIRBuilder.buildConstant(S32, 1); 5238 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5239 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5240 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5241 5242 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5243 MIRBuilder.buildConstant(S32, 0x1000)); 5244 5245 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5246 auto D0 = MIRBuilder.buildShl(S32, D, B); 5247 5248 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5249 D0, SigSetHigh); 5250 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5251 D = MIRBuilder.buildOr(S32, D, D1); 5252 5253 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5254 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5255 5256 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5257 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5258 5259 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5260 MIRBuilder.buildConstant(S32, 3)); 5261 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5262 5263 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5264 MIRBuilder.buildConstant(S32, 5)); 5265 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5266 5267 V1 = MIRBuilder.buildOr(S32, V0, V1); 5268 V = MIRBuilder.buildAdd(S32, V, V1); 5269 5270 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5271 E, MIRBuilder.buildConstant(S32, 30)); 5272 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5273 MIRBuilder.buildConstant(S32, 0x7c00), V); 5274 5275 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5276 E, MIRBuilder.buildConstant(S32, 1039)); 5277 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5278 5279 // Extract the sign bit. 5280 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5281 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5282 5283 // Insert the sign bit 5284 V = MIRBuilder.buildOr(S32, Sign, V); 5285 5286 MIRBuilder.buildTrunc(Dst, V); 5287 MI.eraseFromParent(); 5288 return Legalized; 5289 } 5290 5291 LegalizerHelper::LegalizeResult 5292 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5293 Register Dst = MI.getOperand(0).getReg(); 5294 Register Src = MI.getOperand(1).getReg(); 5295 5296 LLT DstTy = MRI.getType(Dst); 5297 LLT SrcTy = MRI.getType(Src); 5298 const LLT S64 = LLT::scalar(64); 5299 const LLT S16 = LLT::scalar(16); 5300 5301 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5302 return lowerFPTRUNC_F64_TO_F16(MI); 5303 5304 return UnableToLegalize; 5305 } 5306 5307 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5308 // multiplication tree. 5309 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5310 Register Dst = MI.getOperand(0).getReg(); 5311 Register Src0 = MI.getOperand(1).getReg(); 5312 Register Src1 = MI.getOperand(2).getReg(); 5313 LLT Ty = MRI.getType(Dst); 5314 5315 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5316 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5317 MI.eraseFromParent(); 5318 return Legalized; 5319 } 5320 5321 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5322 switch (Opc) { 5323 case TargetOpcode::G_SMIN: 5324 return CmpInst::ICMP_SLT; 5325 case TargetOpcode::G_SMAX: 5326 return CmpInst::ICMP_SGT; 5327 case TargetOpcode::G_UMIN: 5328 return CmpInst::ICMP_ULT; 5329 case TargetOpcode::G_UMAX: 5330 return CmpInst::ICMP_UGT; 5331 default: 5332 llvm_unreachable("not in integer min/max"); 5333 } 5334 } 5335 5336 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5337 Register Dst = MI.getOperand(0).getReg(); 5338 Register Src0 = MI.getOperand(1).getReg(); 5339 Register Src1 = MI.getOperand(2).getReg(); 5340 5341 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5342 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5343 5344 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5345 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5346 5347 MI.eraseFromParent(); 5348 return Legalized; 5349 } 5350 5351 LegalizerHelper::LegalizeResult 5352 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5353 Register Dst = MI.getOperand(0).getReg(); 5354 Register Src0 = MI.getOperand(1).getReg(); 5355 Register Src1 = MI.getOperand(2).getReg(); 5356 5357 const LLT Src0Ty = MRI.getType(Src0); 5358 const LLT Src1Ty = MRI.getType(Src1); 5359 5360 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5361 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5362 5363 auto SignBitMask = MIRBuilder.buildConstant( 5364 Src0Ty, APInt::getSignMask(Src0Size)); 5365 5366 auto NotSignBitMask = MIRBuilder.buildConstant( 5367 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5368 5369 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5370 MachineInstr *Or; 5371 5372 if (Src0Ty == Src1Ty) { 5373 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5374 Or = MIRBuilder.buildOr(Dst, And0, And1); 5375 } else if (Src0Size > Src1Size) { 5376 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5377 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5378 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5379 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5380 Or = MIRBuilder.buildOr(Dst, And0, And1); 5381 } else { 5382 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5383 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5384 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5385 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5386 Or = MIRBuilder.buildOr(Dst, And0, And1); 5387 } 5388 5389 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5390 // constants are a nan and -0.0, but the final result should preserve 5391 // everything. 5392 if (unsigned Flags = MI.getFlags()) 5393 Or->setFlags(Flags); 5394 5395 MI.eraseFromParent(); 5396 return Legalized; 5397 } 5398 5399 LegalizerHelper::LegalizeResult 5400 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5401 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5402 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5403 5404 Register Dst = MI.getOperand(0).getReg(); 5405 Register Src0 = MI.getOperand(1).getReg(); 5406 Register Src1 = MI.getOperand(2).getReg(); 5407 LLT Ty = MRI.getType(Dst); 5408 5409 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5410 // Insert canonicalizes if it's possible we need to quiet to get correct 5411 // sNaN behavior. 5412 5413 // Note this must be done here, and not as an optimization combine in the 5414 // absence of a dedicate quiet-snan instruction as we're using an 5415 // omni-purpose G_FCANONICALIZE. 5416 if (!isKnownNeverSNaN(Src0, MRI)) 5417 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5418 5419 if (!isKnownNeverSNaN(Src1, MRI)) 5420 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5421 } 5422 5423 // If there are no nans, it's safe to simply replace this with the non-IEEE 5424 // version. 5425 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5426 MI.eraseFromParent(); 5427 return Legalized; 5428 } 5429 5430 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5431 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5432 Register DstReg = MI.getOperand(0).getReg(); 5433 LLT Ty = MRI.getType(DstReg); 5434 unsigned Flags = MI.getFlags(); 5435 5436 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5437 Flags); 5438 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5439 MI.eraseFromParent(); 5440 return Legalized; 5441 } 5442 5443 LegalizerHelper::LegalizeResult 5444 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5445 Register DstReg = MI.getOperand(0).getReg(); 5446 Register X = MI.getOperand(1).getReg(); 5447 const unsigned Flags = MI.getFlags(); 5448 const LLT Ty = MRI.getType(DstReg); 5449 const LLT CondTy = Ty.changeElementSize(1); 5450 5451 // round(x) => 5452 // t = trunc(x); 5453 // d = fabs(x - t); 5454 // o = copysign(1.0f, x); 5455 // return t + (d >= 0.5 ? o : 0.0); 5456 5457 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5458 5459 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5460 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5461 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5462 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5463 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5464 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5465 5466 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5467 Flags); 5468 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5469 5470 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5471 5472 MI.eraseFromParent(); 5473 return Legalized; 5474 } 5475 5476 LegalizerHelper::LegalizeResult 5477 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5478 Register DstReg = MI.getOperand(0).getReg(); 5479 Register SrcReg = MI.getOperand(1).getReg(); 5480 unsigned Flags = MI.getFlags(); 5481 LLT Ty = MRI.getType(DstReg); 5482 const LLT CondTy = Ty.changeElementSize(1); 5483 5484 // result = trunc(src); 5485 // if (src < 0.0 && src != result) 5486 // result += -1.0. 5487 5488 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5489 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5490 5491 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5492 SrcReg, Zero, Flags); 5493 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5494 SrcReg, Trunc, Flags); 5495 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5496 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5497 5498 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5499 MI.eraseFromParent(); 5500 return Legalized; 5501 } 5502 5503 LegalizerHelper::LegalizeResult 5504 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5505 const unsigned NumOps = MI.getNumOperands(); 5506 Register DstReg = MI.getOperand(0).getReg(); 5507 Register Src0Reg = MI.getOperand(1).getReg(); 5508 LLT DstTy = MRI.getType(DstReg); 5509 LLT SrcTy = MRI.getType(Src0Reg); 5510 unsigned PartSize = SrcTy.getSizeInBits(); 5511 5512 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5513 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5514 5515 for (unsigned I = 2; I != NumOps; ++I) { 5516 const unsigned Offset = (I - 1) * PartSize; 5517 5518 Register SrcReg = MI.getOperand(I).getReg(); 5519 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5520 5521 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5522 MRI.createGenericVirtualRegister(WideTy); 5523 5524 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5525 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5526 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5527 ResultReg = NextResult; 5528 } 5529 5530 if (DstTy.isPointer()) { 5531 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5532 DstTy.getAddressSpace())) { 5533 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5534 return UnableToLegalize; 5535 } 5536 5537 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5538 } 5539 5540 MI.eraseFromParent(); 5541 return Legalized; 5542 } 5543 5544 LegalizerHelper::LegalizeResult 5545 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5546 const unsigned NumDst = MI.getNumOperands() - 1; 5547 Register SrcReg = MI.getOperand(NumDst).getReg(); 5548 Register Dst0Reg = MI.getOperand(0).getReg(); 5549 LLT DstTy = MRI.getType(Dst0Reg); 5550 if (DstTy.isPointer()) 5551 return UnableToLegalize; // TODO 5552 5553 SrcReg = coerceToScalar(SrcReg); 5554 if (!SrcReg) 5555 return UnableToLegalize; 5556 5557 // Expand scalarizing unmerge as bitcast to integer and shift. 5558 LLT IntTy = MRI.getType(SrcReg); 5559 5560 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5561 5562 const unsigned DstSize = DstTy.getSizeInBits(); 5563 unsigned Offset = DstSize; 5564 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5565 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5566 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5567 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5568 } 5569 5570 MI.eraseFromParent(); 5571 return Legalized; 5572 } 5573 5574 /// Lower a vector extract or insert by writing the vector to a stack temporary 5575 /// and reloading the element or vector. 5576 /// 5577 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5578 /// => 5579 /// %stack_temp = G_FRAME_INDEX 5580 /// G_STORE %vec, %stack_temp 5581 /// %idx = clamp(%idx, %vec.getNumElements()) 5582 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5583 /// %dst = G_LOAD %element_ptr 5584 LegalizerHelper::LegalizeResult 5585 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5586 Register DstReg = MI.getOperand(0).getReg(); 5587 Register SrcVec = MI.getOperand(1).getReg(); 5588 Register InsertVal; 5589 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5590 InsertVal = MI.getOperand(2).getReg(); 5591 5592 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5593 5594 LLT VecTy = MRI.getType(SrcVec); 5595 LLT EltTy = VecTy.getElementType(); 5596 if (!EltTy.isByteSized()) { // Not implemented. 5597 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5598 return UnableToLegalize; 5599 } 5600 5601 unsigned EltBytes = EltTy.getSizeInBytes(); 5602 Align VecAlign = getStackTemporaryAlignment(VecTy); 5603 Align EltAlign; 5604 5605 MachinePointerInfo PtrInfo; 5606 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5607 VecAlign, PtrInfo); 5608 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5609 5610 // Get the pointer to the element, and be sure not to hit undefined behavior 5611 // if the index is out of bounds. 5612 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5613 5614 int64_t IdxVal; 5615 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5616 int64_t Offset = IdxVal * EltBytes; 5617 PtrInfo = PtrInfo.getWithOffset(Offset); 5618 EltAlign = commonAlignment(VecAlign, Offset); 5619 } else { 5620 // We lose information with a variable offset. 5621 EltAlign = getStackTemporaryAlignment(EltTy); 5622 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5623 } 5624 5625 if (InsertVal) { 5626 // Write the inserted element 5627 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5628 5629 // Reload the whole vector. 5630 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5631 } else { 5632 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5633 } 5634 5635 MI.eraseFromParent(); 5636 return Legalized; 5637 } 5638 5639 LegalizerHelper::LegalizeResult 5640 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5641 Register DstReg = MI.getOperand(0).getReg(); 5642 Register Src0Reg = MI.getOperand(1).getReg(); 5643 Register Src1Reg = MI.getOperand(2).getReg(); 5644 LLT Src0Ty = MRI.getType(Src0Reg); 5645 LLT DstTy = MRI.getType(DstReg); 5646 LLT IdxTy = LLT::scalar(32); 5647 5648 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5649 5650 if (DstTy.isScalar()) { 5651 if (Src0Ty.isVector()) 5652 return UnableToLegalize; 5653 5654 // This is just a SELECT. 5655 assert(Mask.size() == 1 && "Expected a single mask element"); 5656 Register Val; 5657 if (Mask[0] < 0 || Mask[0] > 1) 5658 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5659 else 5660 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5661 MIRBuilder.buildCopy(DstReg, Val); 5662 MI.eraseFromParent(); 5663 return Legalized; 5664 } 5665 5666 Register Undef; 5667 SmallVector<Register, 32> BuildVec; 5668 LLT EltTy = DstTy.getElementType(); 5669 5670 for (int Idx : Mask) { 5671 if (Idx < 0) { 5672 if (!Undef.isValid()) 5673 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5674 BuildVec.push_back(Undef); 5675 continue; 5676 } 5677 5678 if (Src0Ty.isScalar()) { 5679 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5680 } else { 5681 int NumElts = Src0Ty.getNumElements(); 5682 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5683 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5684 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5685 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5686 BuildVec.push_back(Extract.getReg(0)); 5687 } 5688 } 5689 5690 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5691 MI.eraseFromParent(); 5692 return Legalized; 5693 } 5694 5695 LegalizerHelper::LegalizeResult 5696 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5697 const auto &MF = *MI.getMF(); 5698 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5699 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5700 return UnableToLegalize; 5701 5702 Register Dst = MI.getOperand(0).getReg(); 5703 Register AllocSize = MI.getOperand(1).getReg(); 5704 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5705 5706 LLT PtrTy = MRI.getType(Dst); 5707 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5708 5709 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5710 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5711 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5712 5713 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5714 // have to generate an extra instruction to negate the alloc and then use 5715 // G_PTR_ADD to add the negative offset. 5716 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5717 if (Alignment > Align(1)) { 5718 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5719 AlignMask.negate(); 5720 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5721 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5722 } 5723 5724 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5725 MIRBuilder.buildCopy(SPReg, SPTmp); 5726 MIRBuilder.buildCopy(Dst, SPTmp); 5727 5728 MI.eraseFromParent(); 5729 return Legalized; 5730 } 5731 5732 LegalizerHelper::LegalizeResult 5733 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5734 Register Dst = MI.getOperand(0).getReg(); 5735 Register Src = MI.getOperand(1).getReg(); 5736 unsigned Offset = MI.getOperand(2).getImm(); 5737 5738 LLT DstTy = MRI.getType(Dst); 5739 LLT SrcTy = MRI.getType(Src); 5740 5741 if (DstTy.isScalar() && 5742 (SrcTy.isScalar() || 5743 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5744 LLT SrcIntTy = SrcTy; 5745 if (!SrcTy.isScalar()) { 5746 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5747 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5748 } 5749 5750 if (Offset == 0) 5751 MIRBuilder.buildTrunc(Dst, Src); 5752 else { 5753 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5754 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5755 MIRBuilder.buildTrunc(Dst, Shr); 5756 } 5757 5758 MI.eraseFromParent(); 5759 return Legalized; 5760 } 5761 5762 return UnableToLegalize; 5763 } 5764 5765 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5766 Register Dst = MI.getOperand(0).getReg(); 5767 Register Src = MI.getOperand(1).getReg(); 5768 Register InsertSrc = MI.getOperand(2).getReg(); 5769 uint64_t Offset = MI.getOperand(3).getImm(); 5770 5771 LLT DstTy = MRI.getType(Src); 5772 LLT InsertTy = MRI.getType(InsertSrc); 5773 5774 if (InsertTy.isVector() || 5775 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5776 return UnableToLegalize; 5777 5778 const DataLayout &DL = MIRBuilder.getDataLayout(); 5779 if ((DstTy.isPointer() && 5780 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5781 (InsertTy.isPointer() && 5782 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5783 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5784 return UnableToLegalize; 5785 } 5786 5787 LLT IntDstTy = DstTy; 5788 5789 if (!DstTy.isScalar()) { 5790 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5791 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5792 } 5793 5794 if (!InsertTy.isScalar()) { 5795 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5796 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5797 } 5798 5799 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5800 if (Offset != 0) { 5801 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5802 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5803 } 5804 5805 APInt MaskVal = APInt::getBitsSetWithWrap( 5806 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5807 5808 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5809 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5810 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5811 5812 MIRBuilder.buildCast(Dst, Or); 5813 MI.eraseFromParent(); 5814 return Legalized; 5815 } 5816 5817 LegalizerHelper::LegalizeResult 5818 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5819 Register Dst0 = MI.getOperand(0).getReg(); 5820 Register Dst1 = MI.getOperand(1).getReg(); 5821 Register LHS = MI.getOperand(2).getReg(); 5822 Register RHS = MI.getOperand(3).getReg(); 5823 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5824 5825 LLT Ty = MRI.getType(Dst0); 5826 LLT BoolTy = MRI.getType(Dst1); 5827 5828 if (IsAdd) 5829 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5830 else 5831 MIRBuilder.buildSub(Dst0, LHS, RHS); 5832 5833 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5834 5835 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5836 5837 // For an addition, the result should be less than one of the operands (LHS) 5838 // if and only if the other operand (RHS) is negative, otherwise there will 5839 // be overflow. 5840 // For a subtraction, the result should be less than one of the operands 5841 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5842 // otherwise there will be overflow. 5843 auto ResultLowerThanLHS = 5844 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5845 auto ConditionRHS = MIRBuilder.buildICmp( 5846 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5847 5848 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5849 MI.eraseFromParent(); 5850 return Legalized; 5851 } 5852 5853 LegalizerHelper::LegalizeResult 5854 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5855 Register Res = MI.getOperand(0).getReg(); 5856 Register LHS = MI.getOperand(1).getReg(); 5857 Register RHS = MI.getOperand(2).getReg(); 5858 LLT Ty = MRI.getType(Res); 5859 bool IsSigned; 5860 bool IsAdd; 5861 unsigned BaseOp; 5862 switch (MI.getOpcode()) { 5863 default: 5864 llvm_unreachable("unexpected addsat/subsat opcode"); 5865 case TargetOpcode::G_UADDSAT: 5866 IsSigned = false; 5867 IsAdd = true; 5868 BaseOp = TargetOpcode::G_ADD; 5869 break; 5870 case TargetOpcode::G_SADDSAT: 5871 IsSigned = true; 5872 IsAdd = true; 5873 BaseOp = TargetOpcode::G_ADD; 5874 break; 5875 case TargetOpcode::G_USUBSAT: 5876 IsSigned = false; 5877 IsAdd = false; 5878 BaseOp = TargetOpcode::G_SUB; 5879 break; 5880 case TargetOpcode::G_SSUBSAT: 5881 IsSigned = true; 5882 IsAdd = false; 5883 BaseOp = TargetOpcode::G_SUB; 5884 break; 5885 } 5886 5887 if (IsSigned) { 5888 // sadd.sat(a, b) -> 5889 // hi = 0x7fffffff - smax(a, 0) 5890 // lo = 0x80000000 - smin(a, 0) 5891 // a + smin(smax(lo, b), hi) 5892 // ssub.sat(a, b) -> 5893 // lo = smax(a, -1) - 0x7fffffff 5894 // hi = smin(a, -1) - 0x80000000 5895 // a - smin(smax(lo, b), hi) 5896 // TODO: AMDGPU can use a "median of 3" instruction here: 5897 // a +/- med3(lo, b, hi) 5898 uint64_t NumBits = Ty.getScalarSizeInBits(); 5899 auto MaxVal = 5900 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5901 auto MinVal = 5902 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5903 MachineInstrBuilder Hi, Lo; 5904 if (IsAdd) { 5905 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5906 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5907 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5908 } else { 5909 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5910 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5911 MaxVal); 5912 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5913 MinVal); 5914 } 5915 auto RHSClamped = 5916 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5917 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5918 } else { 5919 // uadd.sat(a, b) -> a + umin(~a, b) 5920 // usub.sat(a, b) -> a - umin(a, b) 5921 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5922 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5923 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5924 } 5925 5926 MI.eraseFromParent(); 5927 return Legalized; 5928 } 5929 5930 LegalizerHelper::LegalizeResult 5931 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5932 Register Res = MI.getOperand(0).getReg(); 5933 Register LHS = MI.getOperand(1).getReg(); 5934 Register RHS = MI.getOperand(2).getReg(); 5935 LLT Ty = MRI.getType(Res); 5936 LLT BoolTy = Ty.changeElementSize(1); 5937 bool IsSigned; 5938 bool IsAdd; 5939 unsigned OverflowOp; 5940 switch (MI.getOpcode()) { 5941 default: 5942 llvm_unreachable("unexpected addsat/subsat opcode"); 5943 case TargetOpcode::G_UADDSAT: 5944 IsSigned = false; 5945 IsAdd = true; 5946 OverflowOp = TargetOpcode::G_UADDO; 5947 break; 5948 case TargetOpcode::G_SADDSAT: 5949 IsSigned = true; 5950 IsAdd = true; 5951 OverflowOp = TargetOpcode::G_SADDO; 5952 break; 5953 case TargetOpcode::G_USUBSAT: 5954 IsSigned = false; 5955 IsAdd = false; 5956 OverflowOp = TargetOpcode::G_USUBO; 5957 break; 5958 case TargetOpcode::G_SSUBSAT: 5959 IsSigned = true; 5960 IsAdd = false; 5961 OverflowOp = TargetOpcode::G_SSUBO; 5962 break; 5963 } 5964 5965 auto OverflowRes = 5966 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5967 Register Tmp = OverflowRes.getReg(0); 5968 Register Ov = OverflowRes.getReg(1); 5969 MachineInstrBuilder Clamp; 5970 if (IsSigned) { 5971 // sadd.sat(a, b) -> 5972 // {tmp, ov} = saddo(a, b) 5973 // ov ? (tmp >>s 31) + 0x80000000 : r 5974 // ssub.sat(a, b) -> 5975 // {tmp, ov} = ssubo(a, b) 5976 // ov ? (tmp >>s 31) + 0x80000000 : r 5977 uint64_t NumBits = Ty.getScalarSizeInBits(); 5978 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5979 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5980 auto MinVal = 5981 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5982 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5983 } else { 5984 // uadd.sat(a, b) -> 5985 // {tmp, ov} = uaddo(a, b) 5986 // ov ? 0xffffffff : tmp 5987 // usub.sat(a, b) -> 5988 // {tmp, ov} = usubo(a, b) 5989 // ov ? 0 : tmp 5990 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5991 } 5992 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5993 5994 MI.eraseFromParent(); 5995 return Legalized; 5996 } 5997 5998 LegalizerHelper::LegalizeResult 5999 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6000 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6001 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6002 "Expected shlsat opcode!"); 6003 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6004 Register Res = MI.getOperand(0).getReg(); 6005 Register LHS = MI.getOperand(1).getReg(); 6006 Register RHS = MI.getOperand(2).getReg(); 6007 LLT Ty = MRI.getType(Res); 6008 LLT BoolTy = Ty.changeElementSize(1); 6009 6010 unsigned BW = Ty.getScalarSizeInBits(); 6011 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6012 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6013 : MIRBuilder.buildLShr(Ty, Result, RHS); 6014 6015 MachineInstrBuilder SatVal; 6016 if (IsSigned) { 6017 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6018 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6019 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6020 MIRBuilder.buildConstant(Ty, 0)); 6021 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6022 } else { 6023 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6024 } 6025 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig); 6026 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6027 6028 MI.eraseFromParent(); 6029 return Legalized; 6030 } 6031 6032 LegalizerHelper::LegalizeResult 6033 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6034 Register Dst = MI.getOperand(0).getReg(); 6035 Register Src = MI.getOperand(1).getReg(); 6036 const LLT Ty = MRI.getType(Src); 6037 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6038 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6039 6040 // Swap most and least significant byte, set remaining bytes in Res to zero. 6041 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6042 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6043 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6044 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6045 6046 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6047 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6048 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6049 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6050 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6051 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6052 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6053 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6054 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6055 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6056 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6057 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6058 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6059 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6060 } 6061 Res.getInstr()->getOperand(0).setReg(Dst); 6062 6063 MI.eraseFromParent(); 6064 return Legalized; 6065 } 6066 6067 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6068 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6069 MachineInstrBuilder Src, APInt Mask) { 6070 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6071 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6072 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6073 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6074 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6075 return B.buildOr(Dst, LHS, RHS); 6076 } 6077 6078 LegalizerHelper::LegalizeResult 6079 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6080 Register Dst = MI.getOperand(0).getReg(); 6081 Register Src = MI.getOperand(1).getReg(); 6082 const LLT Ty = MRI.getType(Src); 6083 unsigned Size = Ty.getSizeInBits(); 6084 6085 MachineInstrBuilder BSWAP = 6086 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6087 6088 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6089 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6090 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6091 MachineInstrBuilder Swap4 = 6092 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6093 6094 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6095 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6096 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6097 MachineInstrBuilder Swap2 = 6098 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6099 6100 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6101 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6102 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6103 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6104 6105 MI.eraseFromParent(); 6106 return Legalized; 6107 } 6108 6109 LegalizerHelper::LegalizeResult 6110 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6111 MachineFunction &MF = MIRBuilder.getMF(); 6112 6113 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6114 int NameOpIdx = IsRead ? 1 : 0; 6115 int ValRegIndex = IsRead ? 0 : 1; 6116 6117 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6118 const LLT Ty = MRI.getType(ValReg); 6119 const MDString *RegStr = cast<MDString>( 6120 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6121 6122 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6123 if (!PhysReg.isValid()) 6124 return UnableToLegalize; 6125 6126 if (IsRead) 6127 MIRBuilder.buildCopy(ValReg, PhysReg); 6128 else 6129 MIRBuilder.buildCopy(PhysReg, ValReg); 6130 6131 MI.eraseFromParent(); 6132 return Legalized; 6133 } 6134