1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { 95 MIRBuilder.setChangeObserver(Observer); 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &B) 101 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 102 TLI(*MF.getSubtarget().getTargetLowering()) { 103 MIRBuilder.setChangeObserver(Observer); 104 } 105 LegalizerHelper::LegalizeResult 106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 107 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 108 109 MIRBuilder.setInstrAndDebugLoc(MI); 110 111 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 112 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 113 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 114 auto Step = LI.getAction(MI, MRI); 115 switch (Step.Action) { 116 case Legal: 117 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 118 return AlreadyLegal; 119 case Libcall: 120 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 121 return libcall(MI); 122 case NarrowScalar: 123 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 124 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 125 case WidenScalar: 126 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 127 return widenScalar(MI, Step.TypeIdx, Step.NewType); 128 case Bitcast: 129 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 130 return bitcast(MI, Step.TypeIdx, Step.NewType); 131 case Lower: 132 LLVM_DEBUG(dbgs() << ".. Lower\n"); 133 return lower(MI, Step.TypeIdx, Step.NewType); 134 case FewerElements: 135 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 136 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case MoreElements: 138 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 139 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case Custom: 141 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 142 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 143 default: 144 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 145 return UnableToLegalize; 146 } 147 } 148 149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 150 SmallVectorImpl<Register> &VRegs) { 151 for (int i = 0; i < NumParts; ++i) 152 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 153 MIRBuilder.buildUnmerge(VRegs, Reg); 154 } 155 156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 157 LLT MainTy, LLT &LeftoverTy, 158 SmallVectorImpl<Register> &VRegs, 159 SmallVectorImpl<Register> &LeftoverRegs) { 160 assert(!LeftoverTy.isValid() && "this is an out argument"); 161 162 unsigned RegSize = RegTy.getSizeInBits(); 163 unsigned MainSize = MainTy.getSizeInBits(); 164 unsigned NumParts = RegSize / MainSize; 165 unsigned LeftoverSize = RegSize - NumParts * MainSize; 166 167 // Use an unmerge when possible. 168 if (LeftoverSize == 0) { 169 for (unsigned I = 0; I < NumParts; ++I) 170 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 171 MIRBuilder.buildUnmerge(VRegs, Reg); 172 return true; 173 } 174 175 if (MainTy.isVector()) { 176 unsigned EltSize = MainTy.getScalarSizeInBits(); 177 if (LeftoverSize % EltSize != 0) 178 return false; 179 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 180 } else { 181 LeftoverTy = LLT::scalar(LeftoverSize); 182 } 183 184 // For irregular sizes, extract the individual parts. 185 for (unsigned I = 0; I != NumParts; ++I) { 186 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 187 VRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 189 } 190 191 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 192 Offset += LeftoverSize) { 193 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 194 LeftoverRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, Offset); 196 } 197 198 return true; 199 } 200 201 void LegalizerHelper::insertParts(Register DstReg, 202 LLT ResultTy, LLT PartTy, 203 ArrayRef<Register> PartRegs, 204 LLT LeftoverTy, 205 ArrayRef<Register> LeftoverRegs) { 206 if (!LeftoverTy.isValid()) { 207 assert(LeftoverRegs.empty()); 208 209 if (!ResultTy.isVector()) { 210 MIRBuilder.buildMerge(DstReg, PartRegs); 211 return; 212 } 213 214 if (PartTy.isVector()) 215 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 216 else 217 MIRBuilder.buildBuildVector(DstReg, PartRegs); 218 return; 219 } 220 221 unsigned PartSize = PartTy.getSizeInBits(); 222 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 223 224 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 225 MIRBuilder.buildUndef(CurResultReg); 226 227 unsigned Offset = 0; 228 for (Register PartReg : PartRegs) { 229 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 230 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 231 CurResultReg = NewResultReg; 232 Offset += PartSize; 233 } 234 235 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 236 // Use the original output register for the final insert to avoid a copy. 237 Register NewResultReg = (I + 1 == E) ? 238 DstReg : MRI.createGenericVirtualRegister(ResultTy); 239 240 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 241 CurResultReg = NewResultReg; 242 Offset += LeftoverPartSize; 243 } 244 } 245 246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 248 const MachineInstr &MI) { 249 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 250 251 const int StartIdx = Regs.size(); 252 const int NumResults = MI.getNumOperands() - 1; 253 Regs.resize(Regs.size() + NumResults); 254 for (int I = 0; I != NumResults; ++I) 255 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 256 } 257 258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 259 LLT GCDTy, Register SrcReg) { 260 LLT SrcTy = MRI.getType(SrcReg); 261 if (SrcTy == GCDTy) { 262 // If the source already evenly divides the result type, we don't need to do 263 // anything. 264 Parts.push_back(SrcReg); 265 } else { 266 // Need to split into common type sized pieces. 267 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 268 getUnmergeResults(Parts, *Unmerge); 269 } 270 } 271 272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 273 LLT NarrowTy, Register SrcReg) { 274 LLT SrcTy = MRI.getType(SrcReg); 275 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 276 extractGCDType(Parts, GCDTy, SrcReg); 277 return GCDTy; 278 } 279 280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 281 SmallVectorImpl<Register> &VRegs, 282 unsigned PadStrategy) { 283 LLT LCMTy = getLCMType(DstTy, NarrowTy); 284 285 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 286 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 287 int NumOrigSrc = VRegs.size(); 288 289 Register PadReg; 290 291 // Get a value we can use to pad the source value if the sources won't evenly 292 // cover the result type. 293 if (NumOrigSrc < NumParts * NumSubParts) { 294 if (PadStrategy == TargetOpcode::G_ZEXT) 295 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 296 else if (PadStrategy == TargetOpcode::G_ANYEXT) 297 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 298 else { 299 assert(PadStrategy == TargetOpcode::G_SEXT); 300 301 // Shift the sign bit of the low register through the high register. 302 auto ShiftAmt = 303 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 304 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 305 } 306 } 307 308 // Registers for the final merge to be produced. 309 SmallVector<Register, 4> Remerge(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge(NumSubParts); 314 315 // Once we've fully read off the end of the original source bits, we can reuse 316 // the same high bits for remaining padding elements. 317 Register AllPadReg; 318 319 // Build merges to the LCM type to cover the original result type. 320 for (int I = 0; I != NumParts; ++I) { 321 bool AllMergePartsArePadding = true; 322 323 // Build the requested merges to the requested type. 324 for (int J = 0; J != NumSubParts; ++J) { 325 int Idx = I * NumSubParts + J; 326 if (Idx >= NumOrigSrc) { 327 SubMerge[J] = PadReg; 328 continue; 329 } 330 331 SubMerge[J] = VRegs[Idx]; 332 333 // There are meaningful bits here we can't reuse later. 334 AllMergePartsArePadding = false; 335 } 336 337 // If we've filled up a complete piece with padding bits, we can directly 338 // emit the natural sized constant if applicable, rather than a merge of 339 // smaller constants. 340 if (AllMergePartsArePadding && !AllPadReg) { 341 if (PadStrategy == TargetOpcode::G_ANYEXT) 342 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 343 else if (PadStrategy == TargetOpcode::G_ZEXT) 344 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 345 346 // If this is a sign extension, we can't materialize a trivial constant 347 // with the right type and have to produce a merge. 348 } 349 350 if (AllPadReg) { 351 // Avoid creating additional instructions if we're just adding additional 352 // copies of padding bits. 353 Remerge[I] = AllPadReg; 354 continue; 355 } 356 357 if (NumSubParts == 1) 358 Remerge[I] = SubMerge[0]; 359 else 360 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 361 362 // In the sign extend padding case, re-use the first all-signbit merge. 363 if (AllMergePartsArePadding && !AllPadReg) 364 AllPadReg = Remerge[I]; 365 } 366 367 VRegs = std::move(Remerge); 368 return LCMTy; 369 } 370 371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 372 ArrayRef<Register> RemergeRegs) { 373 LLT DstTy = MRI.getType(DstReg); 374 375 // Create the merge to the widened source, and extract the relevant bits into 376 // the result. 377 378 if (DstTy == LCMTy) { 379 MIRBuilder.buildMerge(DstReg, RemergeRegs); 380 return; 381 } 382 383 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 384 if (DstTy.isScalar() && LCMTy.isScalar()) { 385 MIRBuilder.buildTrunc(DstReg, Remerge); 386 return; 387 } 388 389 if (LCMTy.isVector()) { 390 MIRBuilder.buildExtract(DstReg, Remerge, 0); 391 return; 392 } 393 394 llvm_unreachable("unhandled case"); 395 } 396 397 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 398 #define RTLIBCASE_INT(LibcallPrefix) \ 399 do { \ 400 switch (Size) { \ 401 case 32: \ 402 return RTLIB::LibcallPrefix##32; \ 403 case 64: \ 404 return RTLIB::LibcallPrefix##64; \ 405 case 128: \ 406 return RTLIB::LibcallPrefix##128; \ 407 default: \ 408 llvm_unreachable("unexpected size"); \ 409 } \ 410 } while (0) 411 412 #define RTLIBCASE(LibcallPrefix) \ 413 do { \ 414 switch (Size) { \ 415 case 32: \ 416 return RTLIB::LibcallPrefix##32; \ 417 case 64: \ 418 return RTLIB::LibcallPrefix##64; \ 419 case 80: \ 420 return RTLIB::LibcallPrefix##80; \ 421 case 128: \ 422 return RTLIB::LibcallPrefix##128; \ 423 default: \ 424 llvm_unreachable("unexpected size"); \ 425 } \ 426 } while (0) 427 428 switch (Opcode) { 429 case TargetOpcode::G_SDIV: 430 RTLIBCASE_INT(SDIV_I); 431 case TargetOpcode::G_UDIV: 432 RTLIBCASE_INT(UDIV_I); 433 case TargetOpcode::G_SREM: 434 RTLIBCASE_INT(SREM_I); 435 case TargetOpcode::G_UREM: 436 RTLIBCASE_INT(UREM_I); 437 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 438 RTLIBCASE_INT(CTLZ_I); 439 case TargetOpcode::G_FADD: 440 RTLIBCASE(ADD_F); 441 case TargetOpcode::G_FSUB: 442 RTLIBCASE(SUB_F); 443 case TargetOpcode::G_FMUL: 444 RTLIBCASE(MUL_F); 445 case TargetOpcode::G_FDIV: 446 RTLIBCASE(DIV_F); 447 case TargetOpcode::G_FEXP: 448 RTLIBCASE(EXP_F); 449 case TargetOpcode::G_FEXP2: 450 RTLIBCASE(EXP2_F); 451 case TargetOpcode::G_FREM: 452 RTLIBCASE(REM_F); 453 case TargetOpcode::G_FPOW: 454 RTLIBCASE(POW_F); 455 case TargetOpcode::G_FMA: 456 RTLIBCASE(FMA_F); 457 case TargetOpcode::G_FSIN: 458 RTLIBCASE(SIN_F); 459 case TargetOpcode::G_FCOS: 460 RTLIBCASE(COS_F); 461 case TargetOpcode::G_FLOG10: 462 RTLIBCASE(LOG10_F); 463 case TargetOpcode::G_FLOG: 464 RTLIBCASE(LOG_F); 465 case TargetOpcode::G_FLOG2: 466 RTLIBCASE(LOG2_F); 467 case TargetOpcode::G_FCEIL: 468 RTLIBCASE(CEIL_F); 469 case TargetOpcode::G_FFLOOR: 470 RTLIBCASE(FLOOR_F); 471 case TargetOpcode::G_FMINNUM: 472 RTLIBCASE(FMIN_F); 473 case TargetOpcode::G_FMAXNUM: 474 RTLIBCASE(FMAX_F); 475 case TargetOpcode::G_FSQRT: 476 RTLIBCASE(SQRT_F); 477 case TargetOpcode::G_FRINT: 478 RTLIBCASE(RINT_F); 479 case TargetOpcode::G_FNEARBYINT: 480 RTLIBCASE(NEARBYINT_F); 481 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 482 RTLIBCASE(ROUNDEVEN_F); 483 } 484 llvm_unreachable("Unknown libcall function"); 485 } 486 487 /// True if an instruction is in tail position in its caller. Intended for 488 /// legalizing libcalls as tail calls when possible. 489 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 490 MachineInstr &MI) { 491 MachineBasicBlock &MBB = *MI.getParent(); 492 const Function &F = MBB.getParent()->getFunction(); 493 494 // Conservatively require the attributes of the call to match those of 495 // the return. Ignore NoAlias and NonNull because they don't affect the 496 // call sequence. 497 AttributeList CallerAttrs = F.getAttributes(); 498 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 499 .removeAttribute(Attribute::NoAlias) 500 .removeAttribute(Attribute::NonNull) 501 .hasAttributes()) 502 return false; 503 504 // It's not safe to eliminate the sign / zero extension of the return value. 505 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 506 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 507 return false; 508 509 // Only tail call if the following instruction is a standard return. 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 512 return false; 513 514 return true; 515 } 516 517 LegalizerHelper::LegalizeResult 518 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 519 const CallLowering::ArgInfo &Result, 520 ArrayRef<CallLowering::ArgInfo> Args, 521 const CallingConv::ID CC) { 522 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 523 524 CallLowering::CallLoweringInfo Info; 525 Info.CallConv = CC; 526 Info.Callee = MachineOperand::CreateES(Name); 527 Info.OrigRet = Result; 528 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 529 if (!CLI.lowerCall(MIRBuilder, Info)) 530 return LegalizerHelper::UnableToLegalize; 531 532 return LegalizerHelper::Legalized; 533 } 534 535 LegalizerHelper::LegalizeResult 536 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 537 const CallLowering::ArgInfo &Result, 538 ArrayRef<CallLowering::ArgInfo> Args) { 539 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 540 const char *Name = TLI.getLibcallName(Libcall); 541 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 542 return createLibcall(MIRBuilder, Name, Result, Args, CC); 543 } 544 545 // Useful for libcalls where all operands have the same type. 546 static LegalizerHelper::LegalizeResult 547 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 548 Type *OpType) { 549 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 550 551 SmallVector<CallLowering::ArgInfo, 3> Args; 552 for (unsigned i = 1; i < MI.getNumOperands(); i++) 553 Args.push_back({MI.getOperand(i).getReg(), OpType}); 554 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 555 Args); 556 } 557 558 LegalizerHelper::LegalizeResult 559 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 560 MachineInstr &MI) { 561 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 562 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 563 564 SmallVector<CallLowering::ArgInfo, 3> Args; 565 // Add all the args, except for the last which is an imm denoting 'tail'. 566 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 567 Register Reg = MI.getOperand(i).getReg(); 568 569 // Need derive an IR type for call lowering. 570 LLT OpLLT = MRI.getType(Reg); 571 Type *OpTy = nullptr; 572 if (OpLLT.isPointer()) 573 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 574 else 575 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 576 Args.push_back({Reg, OpTy}); 577 } 578 579 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 580 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 581 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 582 RTLIB::Libcall RTLibcall; 583 switch (ID) { 584 case Intrinsic::memcpy: 585 RTLibcall = RTLIB::MEMCPY; 586 break; 587 case Intrinsic::memset: 588 RTLibcall = RTLIB::MEMSET; 589 break; 590 case Intrinsic::memmove: 591 RTLibcall = RTLIB::MEMMOVE; 592 break; 593 default: 594 return LegalizerHelper::UnableToLegalize; 595 } 596 const char *Name = TLI.getLibcallName(RTLibcall); 597 598 MIRBuilder.setInstrAndDebugLoc(MI); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 } 752 753 MI.eraseFromParent(); 754 return Legalized; 755 } 756 757 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 758 unsigned TypeIdx, 759 LLT NarrowTy) { 760 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 761 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 762 763 switch (MI.getOpcode()) { 764 default: 765 return UnableToLegalize; 766 case TargetOpcode::G_IMPLICIT_DEF: { 767 Register DstReg = MI.getOperand(0).getReg(); 768 LLT DstTy = MRI.getType(DstReg); 769 770 // If SizeOp0 is not an exact multiple of NarrowSize, emit 771 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 772 // FIXME: Although this would also be legal for the general case, it causes 773 // a lot of regressions in the emitted code (superfluous COPYs, artifact 774 // combines not being hit). This seems to be a problem related to the 775 // artifact combiner. 776 if (SizeOp0 % NarrowSize != 0) { 777 LLT ImplicitTy = NarrowTy; 778 if (DstTy.isVector()) 779 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 780 781 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 782 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 783 784 MI.eraseFromParent(); 785 return Legalized; 786 } 787 788 int NumParts = SizeOp0 / NarrowSize; 789 790 SmallVector<Register, 2> DstRegs; 791 for (int i = 0; i < NumParts; ++i) 792 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 793 794 if (DstTy.isVector()) 795 MIRBuilder.buildBuildVector(DstReg, DstRegs); 796 else 797 MIRBuilder.buildMerge(DstReg, DstRegs); 798 MI.eraseFromParent(); 799 return Legalized; 800 } 801 case TargetOpcode::G_CONSTANT: { 802 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 803 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 804 unsigned TotalSize = Ty.getSizeInBits(); 805 unsigned NarrowSize = NarrowTy.getSizeInBits(); 806 int NumParts = TotalSize / NarrowSize; 807 808 SmallVector<Register, 4> PartRegs; 809 for (int I = 0; I != NumParts; ++I) { 810 unsigned Offset = I * NarrowSize; 811 auto K = MIRBuilder.buildConstant(NarrowTy, 812 Val.lshr(Offset).trunc(NarrowSize)); 813 PartRegs.push_back(K.getReg(0)); 814 } 815 816 LLT LeftoverTy; 817 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 818 SmallVector<Register, 1> LeftoverRegs; 819 if (LeftoverBits != 0) { 820 LeftoverTy = LLT::scalar(LeftoverBits); 821 auto K = MIRBuilder.buildConstant( 822 LeftoverTy, 823 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 824 LeftoverRegs.push_back(K.getReg(0)); 825 } 826 827 insertParts(MI.getOperand(0).getReg(), 828 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 829 830 MI.eraseFromParent(); 831 return Legalized; 832 } 833 case TargetOpcode::G_SEXT: 834 case TargetOpcode::G_ZEXT: 835 case TargetOpcode::G_ANYEXT: 836 return narrowScalarExt(MI, TypeIdx, NarrowTy); 837 case TargetOpcode::G_TRUNC: { 838 if (TypeIdx != 1) 839 return UnableToLegalize; 840 841 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 842 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 843 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 844 return UnableToLegalize; 845 } 846 847 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 848 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 849 MI.eraseFromParent(); 850 return Legalized; 851 } 852 853 case TargetOpcode::G_FREEZE: 854 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 855 856 case TargetOpcode::G_ADD: { 857 // FIXME: add support for when SizeOp0 isn't an exact multiple of 858 // NarrowSize. 859 if (SizeOp0 % NarrowSize != 0) 860 return UnableToLegalize; 861 // Expand in terms of carry-setting/consuming G_ADDE instructions. 862 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 863 864 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 865 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 866 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 867 868 Register CarryIn; 869 for (int i = 0; i < NumParts; ++i) { 870 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 871 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 872 873 if (i == 0) 874 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 875 else { 876 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 877 Src2Regs[i], CarryIn); 878 } 879 880 DstRegs.push_back(DstReg); 881 CarryIn = CarryOut; 882 } 883 Register DstReg = MI.getOperand(0).getReg(); 884 if(MRI.getType(DstReg).isVector()) 885 MIRBuilder.buildBuildVector(DstReg, DstRegs); 886 else 887 MIRBuilder.buildMerge(DstReg, DstRegs); 888 MI.eraseFromParent(); 889 return Legalized; 890 } 891 case TargetOpcode::G_SUB: { 892 // FIXME: add support for when SizeOp0 isn't an exact multiple of 893 // NarrowSize. 894 if (SizeOp0 % NarrowSize != 0) 895 return UnableToLegalize; 896 897 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 898 899 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 900 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 901 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 902 903 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 904 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 905 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 906 {Src1Regs[0], Src2Regs[0]}); 907 DstRegs.push_back(DstReg); 908 Register BorrowIn = BorrowOut; 909 for (int i = 1; i < NumParts; ++i) { 910 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 913 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 914 {Src1Regs[i], Src2Regs[i], BorrowIn}); 915 916 DstRegs.push_back(DstReg); 917 BorrowIn = BorrowOut; 918 } 919 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 920 MI.eraseFromParent(); 921 return Legalized; 922 } 923 case TargetOpcode::G_MUL: 924 case TargetOpcode::G_UMULH: 925 return narrowScalarMul(MI, NarrowTy); 926 case TargetOpcode::G_EXTRACT: 927 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 928 case TargetOpcode::G_INSERT: 929 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 930 case TargetOpcode::G_LOAD: { 931 auto &MMO = **MI.memoperands_begin(); 932 Register DstReg = MI.getOperand(0).getReg(); 933 LLT DstTy = MRI.getType(DstReg); 934 if (DstTy.isVector()) 935 return UnableToLegalize; 936 937 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 938 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 939 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 940 MIRBuilder.buildAnyExt(DstReg, TmpReg); 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 945 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 946 } 947 case TargetOpcode::G_ZEXTLOAD: 948 case TargetOpcode::G_SEXTLOAD: { 949 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 950 Register DstReg = MI.getOperand(0).getReg(); 951 Register PtrReg = MI.getOperand(1).getReg(); 952 953 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 954 auto &MMO = **MI.memoperands_begin(); 955 if (MMO.getSizeInBits() == NarrowSize) { 956 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 957 } else { 958 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 959 } 960 961 if (ZExt) 962 MIRBuilder.buildZExt(DstReg, TmpReg); 963 else 964 MIRBuilder.buildSExt(DstReg, TmpReg); 965 966 MI.eraseFromParent(); 967 return Legalized; 968 } 969 case TargetOpcode::G_STORE: { 970 const auto &MMO = **MI.memoperands_begin(); 971 972 Register SrcReg = MI.getOperand(0).getReg(); 973 LLT SrcTy = MRI.getType(SrcReg); 974 if (SrcTy.isVector()) 975 return UnableToLegalize; 976 977 int NumParts = SizeOp0 / NarrowSize; 978 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 979 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 980 if (SrcTy.isVector() && LeftoverBits != 0) 981 return UnableToLegalize; 982 983 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 984 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 985 auto &MMO = **MI.memoperands_begin(); 986 MIRBuilder.buildTrunc(TmpReg, SrcReg); 987 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 988 MI.eraseFromParent(); 989 return Legalized; 990 } 991 992 return reduceLoadStoreWidth(MI, 0, NarrowTy); 993 } 994 case TargetOpcode::G_SELECT: 995 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 996 case TargetOpcode::G_AND: 997 case TargetOpcode::G_OR: 998 case TargetOpcode::G_XOR: { 999 // Legalize bitwise operation: 1000 // A = BinOp<Ty> B, C 1001 // into: 1002 // B1, ..., BN = G_UNMERGE_VALUES B 1003 // C1, ..., CN = G_UNMERGE_VALUES C 1004 // A1 = BinOp<Ty/N> B1, C2 1005 // ... 1006 // AN = BinOp<Ty/N> BN, CN 1007 // A = G_MERGE_VALUES A1, ..., AN 1008 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1009 } 1010 case TargetOpcode::G_SHL: 1011 case TargetOpcode::G_LSHR: 1012 case TargetOpcode::G_ASHR: 1013 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1014 case TargetOpcode::G_CTLZ: 1015 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1016 case TargetOpcode::G_CTTZ: 1017 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1018 case TargetOpcode::G_CTPOP: 1019 if (TypeIdx == 1) 1020 switch (MI.getOpcode()) { 1021 case TargetOpcode::G_CTLZ: 1022 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1023 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1024 case TargetOpcode::G_CTTZ: 1025 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1026 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1027 case TargetOpcode::G_CTPOP: 1028 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1029 default: 1030 return UnableToLegalize; 1031 } 1032 1033 Observer.changingInstr(MI); 1034 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1035 Observer.changedInstr(MI); 1036 return Legalized; 1037 case TargetOpcode::G_INTTOPTR: 1038 if (TypeIdx != 1) 1039 return UnableToLegalize; 1040 1041 Observer.changingInstr(MI); 1042 narrowScalarSrc(MI, NarrowTy, 1); 1043 Observer.changedInstr(MI); 1044 return Legalized; 1045 case TargetOpcode::G_PTRTOINT: 1046 if (TypeIdx != 0) 1047 return UnableToLegalize; 1048 1049 Observer.changingInstr(MI); 1050 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1051 Observer.changedInstr(MI); 1052 return Legalized; 1053 case TargetOpcode::G_PHI: { 1054 unsigned NumParts = SizeOp0 / NarrowSize; 1055 SmallVector<Register, 2> DstRegs(NumParts); 1056 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1057 Observer.changingInstr(MI); 1058 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1059 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1060 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1061 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1062 SrcRegs[i / 2]); 1063 } 1064 MachineBasicBlock &MBB = *MI.getParent(); 1065 MIRBuilder.setInsertPt(MBB, MI); 1066 for (unsigned i = 0; i < NumParts; ++i) { 1067 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1068 MachineInstrBuilder MIB = 1069 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1070 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1071 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1072 } 1073 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1074 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1075 Observer.changedInstr(MI); 1076 MI.eraseFromParent(); 1077 return Legalized; 1078 } 1079 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1080 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1081 if (TypeIdx != 2) 1082 return UnableToLegalize; 1083 1084 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1085 Observer.changingInstr(MI); 1086 narrowScalarSrc(MI, NarrowTy, OpIdx); 1087 Observer.changedInstr(MI); 1088 return Legalized; 1089 } 1090 case TargetOpcode::G_ICMP: { 1091 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1092 if (NarrowSize * 2 != SrcSize) 1093 return UnableToLegalize; 1094 1095 Observer.changingInstr(MI); 1096 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1097 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1098 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1099 1100 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1101 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1102 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1103 1104 CmpInst::Predicate Pred = 1105 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1106 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1107 1108 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1109 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1110 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1111 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1112 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1113 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1114 } else { 1115 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1116 MachineInstrBuilder CmpHEQ = 1117 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1118 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1119 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1120 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1121 } 1122 Observer.changedInstr(MI); 1123 MI.eraseFromParent(); 1124 return Legalized; 1125 } 1126 case TargetOpcode::G_SEXT_INREG: { 1127 if (TypeIdx != 0) 1128 return UnableToLegalize; 1129 1130 int64_t SizeInBits = MI.getOperand(2).getImm(); 1131 1132 // So long as the new type has more bits than the bits we're extending we 1133 // don't need to break it apart. 1134 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1135 Observer.changingInstr(MI); 1136 // We don't lose any non-extension bits by truncating the src and 1137 // sign-extending the dst. 1138 MachineOperand &MO1 = MI.getOperand(1); 1139 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1140 MO1.setReg(TruncMIB.getReg(0)); 1141 1142 MachineOperand &MO2 = MI.getOperand(0); 1143 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1144 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1145 MIRBuilder.buildSExt(MO2, DstExt); 1146 MO2.setReg(DstExt); 1147 Observer.changedInstr(MI); 1148 return Legalized; 1149 } 1150 1151 // Break it apart. Components below the extension point are unmodified. The 1152 // component containing the extension point becomes a narrower SEXT_INREG. 1153 // Components above it are ashr'd from the component containing the 1154 // extension point. 1155 if (SizeOp0 % NarrowSize != 0) 1156 return UnableToLegalize; 1157 int NumParts = SizeOp0 / NarrowSize; 1158 1159 // List the registers where the destination will be scattered. 1160 SmallVector<Register, 2> DstRegs; 1161 // List the registers where the source will be split. 1162 SmallVector<Register, 2> SrcRegs; 1163 1164 // Create all the temporary registers. 1165 for (int i = 0; i < NumParts; ++i) { 1166 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1167 1168 SrcRegs.push_back(SrcReg); 1169 } 1170 1171 // Explode the big arguments into smaller chunks. 1172 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1173 1174 Register AshrCstReg = 1175 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1176 .getReg(0); 1177 Register FullExtensionReg = 0; 1178 Register PartialExtensionReg = 0; 1179 1180 // Do the operation on each small part. 1181 for (int i = 0; i < NumParts; ++i) { 1182 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1183 DstRegs.push_back(SrcRegs[i]); 1184 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1185 assert(PartialExtensionReg && 1186 "Expected to visit partial extension before full"); 1187 if (FullExtensionReg) { 1188 DstRegs.push_back(FullExtensionReg); 1189 continue; 1190 } 1191 DstRegs.push_back( 1192 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1193 .getReg(0)); 1194 FullExtensionReg = DstRegs.back(); 1195 } else { 1196 DstRegs.push_back( 1197 MIRBuilder 1198 .buildInstr( 1199 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1200 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1201 .getReg(0)); 1202 PartialExtensionReg = DstRegs.back(); 1203 } 1204 } 1205 1206 // Gather the destination registers into the final destination. 1207 Register DstReg = MI.getOperand(0).getReg(); 1208 MIRBuilder.buildMerge(DstReg, DstRegs); 1209 MI.eraseFromParent(); 1210 return Legalized; 1211 } 1212 case TargetOpcode::G_BSWAP: 1213 case TargetOpcode::G_BITREVERSE: { 1214 if (SizeOp0 % NarrowSize != 0) 1215 return UnableToLegalize; 1216 1217 Observer.changingInstr(MI); 1218 SmallVector<Register, 2> SrcRegs, DstRegs; 1219 unsigned NumParts = SizeOp0 / NarrowSize; 1220 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1221 1222 for (unsigned i = 0; i < NumParts; ++i) { 1223 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1224 {SrcRegs[NumParts - 1 - i]}); 1225 DstRegs.push_back(DstPart.getReg(0)); 1226 } 1227 1228 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1229 1230 Observer.changedInstr(MI); 1231 MI.eraseFromParent(); 1232 return Legalized; 1233 } 1234 case TargetOpcode::G_PTR_ADD: 1235 case TargetOpcode::G_PTRMASK: { 1236 if (TypeIdx != 1) 1237 return UnableToLegalize; 1238 Observer.changingInstr(MI); 1239 narrowScalarSrc(MI, NarrowTy, 2); 1240 Observer.changedInstr(MI); 1241 return Legalized; 1242 } 1243 case TargetOpcode::G_FPTOUI: { 1244 if (TypeIdx != 0) 1245 return UnableToLegalize; 1246 Observer.changingInstr(MI); 1247 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1248 Observer.changedInstr(MI); 1249 return Legalized; 1250 } 1251 case TargetOpcode::G_FPTOSI: { 1252 if (TypeIdx != 0) 1253 return UnableToLegalize; 1254 Observer.changingInstr(MI); 1255 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1256 Observer.changedInstr(MI); 1257 return Legalized; 1258 } 1259 case TargetOpcode::G_FPEXT: 1260 if (TypeIdx != 0) 1261 return UnableToLegalize; 1262 Observer.changingInstr(MI); 1263 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1264 Observer.changedInstr(MI); 1265 return Legalized; 1266 } 1267 } 1268 1269 Register LegalizerHelper::coerceToScalar(Register Val) { 1270 LLT Ty = MRI.getType(Val); 1271 if (Ty.isScalar()) 1272 return Val; 1273 1274 const DataLayout &DL = MIRBuilder.getDataLayout(); 1275 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1276 if (Ty.isPointer()) { 1277 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1278 return Register(); 1279 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1280 } 1281 1282 Register NewVal = Val; 1283 1284 assert(Ty.isVector()); 1285 LLT EltTy = Ty.getElementType(); 1286 if (EltTy.isPointer()) 1287 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1288 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1289 } 1290 1291 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1292 unsigned OpIdx, unsigned ExtOpcode) { 1293 MachineOperand &MO = MI.getOperand(OpIdx); 1294 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1295 MO.setReg(ExtB.getReg(0)); 1296 } 1297 1298 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1299 unsigned OpIdx) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1302 MO.setReg(ExtB.getReg(0)); 1303 } 1304 1305 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1306 unsigned OpIdx, unsigned TruncOpcode) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1309 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1310 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1311 MO.setReg(DstExt); 1312 } 1313 1314 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1315 unsigned OpIdx, unsigned ExtOpcode) { 1316 MachineOperand &MO = MI.getOperand(OpIdx); 1317 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1318 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1319 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1320 MO.setReg(DstTrunc); 1321 } 1322 1323 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1324 unsigned OpIdx) { 1325 MachineOperand &MO = MI.getOperand(OpIdx); 1326 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1327 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1328 } 1329 1330 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1331 unsigned OpIdx) { 1332 MachineOperand &MO = MI.getOperand(OpIdx); 1333 1334 LLT OldTy = MRI.getType(MO.getReg()); 1335 unsigned OldElts = OldTy.getNumElements(); 1336 unsigned NewElts = MoreTy.getNumElements(); 1337 1338 unsigned NumParts = NewElts / OldElts; 1339 1340 // Use concat_vectors if the result is a multiple of the number of elements. 1341 if (NumParts * OldElts == NewElts) { 1342 SmallVector<Register, 8> Parts; 1343 Parts.push_back(MO.getReg()); 1344 1345 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1346 for (unsigned I = 1; I != NumParts; ++I) 1347 Parts.push_back(ImpDef); 1348 1349 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1350 MO.setReg(Concat.getReg(0)); 1351 return; 1352 } 1353 1354 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1355 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1356 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1357 MO.setReg(MoreReg); 1358 } 1359 1360 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1361 MachineOperand &Op = MI.getOperand(OpIdx); 1362 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1363 } 1364 1365 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1366 MachineOperand &MO = MI.getOperand(OpIdx); 1367 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1368 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1369 MIRBuilder.buildBitcast(MO, CastDst); 1370 MO.setReg(CastDst); 1371 } 1372 1373 LegalizerHelper::LegalizeResult 1374 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1375 LLT WideTy) { 1376 if (TypeIdx != 1) 1377 return UnableToLegalize; 1378 1379 Register DstReg = MI.getOperand(0).getReg(); 1380 LLT DstTy = MRI.getType(DstReg); 1381 if (DstTy.isVector()) 1382 return UnableToLegalize; 1383 1384 Register Src1 = MI.getOperand(1).getReg(); 1385 LLT SrcTy = MRI.getType(Src1); 1386 const int DstSize = DstTy.getSizeInBits(); 1387 const int SrcSize = SrcTy.getSizeInBits(); 1388 const int WideSize = WideTy.getSizeInBits(); 1389 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1390 1391 unsigned NumOps = MI.getNumOperands(); 1392 unsigned NumSrc = MI.getNumOperands() - 1; 1393 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1394 1395 if (WideSize >= DstSize) { 1396 // Directly pack the bits in the target type. 1397 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1398 1399 for (unsigned I = 2; I != NumOps; ++I) { 1400 const unsigned Offset = (I - 1) * PartSize; 1401 1402 Register SrcReg = MI.getOperand(I).getReg(); 1403 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1404 1405 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1406 1407 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1408 MRI.createGenericVirtualRegister(WideTy); 1409 1410 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1411 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1412 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1413 ResultReg = NextResult; 1414 } 1415 1416 if (WideSize > DstSize) 1417 MIRBuilder.buildTrunc(DstReg, ResultReg); 1418 else if (DstTy.isPointer()) 1419 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1420 1421 MI.eraseFromParent(); 1422 return Legalized; 1423 } 1424 1425 // Unmerge the original values to the GCD type, and recombine to the next 1426 // multiple greater than the original type. 1427 // 1428 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1429 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1430 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1431 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1432 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1433 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1434 // %12:_(s12) = G_MERGE_VALUES %10, %11 1435 // 1436 // Padding with undef if necessary: 1437 // 1438 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1439 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1440 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1441 // %7:_(s2) = G_IMPLICIT_DEF 1442 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1443 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1444 // %10:_(s12) = G_MERGE_VALUES %8, %9 1445 1446 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1447 LLT GCDTy = LLT::scalar(GCD); 1448 1449 SmallVector<Register, 8> Parts; 1450 SmallVector<Register, 8> NewMergeRegs; 1451 SmallVector<Register, 8> Unmerges; 1452 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1453 1454 // Decompose the original operands if they don't evenly divide. 1455 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1456 Register SrcReg = MI.getOperand(I).getReg(); 1457 if (GCD == SrcSize) { 1458 Unmerges.push_back(SrcReg); 1459 } else { 1460 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1461 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1462 Unmerges.push_back(Unmerge.getReg(J)); 1463 } 1464 } 1465 1466 // Pad with undef to the next size that is a multiple of the requested size. 1467 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1468 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1469 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1470 Unmerges.push_back(UndefReg); 1471 } 1472 1473 const int PartsPerGCD = WideSize / GCD; 1474 1475 // Build merges of each piece. 1476 ArrayRef<Register> Slicer(Unmerges); 1477 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1478 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1479 NewMergeRegs.push_back(Merge.getReg(0)); 1480 } 1481 1482 // A truncate may be necessary if the requested type doesn't evenly divide the 1483 // original result type. 1484 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1485 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1486 } else { 1487 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1488 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1489 } 1490 1491 MI.eraseFromParent(); 1492 return Legalized; 1493 } 1494 1495 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1496 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1497 LLT OrigTy = MRI.getType(OrigReg); 1498 LLT LCMTy = getLCMType(WideTy, OrigTy); 1499 1500 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1501 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1502 1503 Register UnmergeSrc = WideReg; 1504 1505 // Create a merge to the LCM type, padding with undef 1506 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1507 // => 1508 // %1:_(<4 x s32>) = G_FOO 1509 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1510 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1511 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1512 if (NumMergeParts > 1) { 1513 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1514 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1515 MergeParts[0] = WideReg; 1516 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1517 } 1518 1519 // Unmerge to the original register and pad with dead defs. 1520 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1521 UnmergeResults[0] = OrigReg; 1522 for (int I = 1; I != NumUnmergeParts; ++I) 1523 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1524 1525 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1526 return WideReg; 1527 } 1528 1529 LegalizerHelper::LegalizeResult 1530 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1531 LLT WideTy) { 1532 if (TypeIdx != 0) 1533 return UnableToLegalize; 1534 1535 int NumDst = MI.getNumOperands() - 1; 1536 Register SrcReg = MI.getOperand(NumDst).getReg(); 1537 LLT SrcTy = MRI.getType(SrcReg); 1538 if (SrcTy.isVector()) 1539 return UnableToLegalize; 1540 1541 Register Dst0Reg = MI.getOperand(0).getReg(); 1542 LLT DstTy = MRI.getType(Dst0Reg); 1543 if (!DstTy.isScalar()) 1544 return UnableToLegalize; 1545 1546 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1547 if (SrcTy.isPointer()) { 1548 const DataLayout &DL = MIRBuilder.getDataLayout(); 1549 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1550 LLVM_DEBUG( 1551 dbgs() << "Not casting non-integral address space integer\n"); 1552 return UnableToLegalize; 1553 } 1554 1555 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1556 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1557 } 1558 1559 // Widen SrcTy to WideTy. This does not affect the result, but since the 1560 // user requested this size, it is probably better handled than SrcTy and 1561 // should reduce the total number of legalization artifacts 1562 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1563 SrcTy = WideTy; 1564 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1565 } 1566 1567 // Theres no unmerge type to target. Directly extract the bits from the 1568 // source type 1569 unsigned DstSize = DstTy.getSizeInBits(); 1570 1571 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1572 for (int I = 1; I != NumDst; ++I) { 1573 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1574 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1575 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1576 } 1577 1578 MI.eraseFromParent(); 1579 return Legalized; 1580 } 1581 1582 // Extend the source to a wider type. 1583 LLT LCMTy = getLCMType(SrcTy, WideTy); 1584 1585 Register WideSrc = SrcReg; 1586 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1587 // TODO: If this is an integral address space, cast to integer and anyext. 1588 if (SrcTy.isPointer()) { 1589 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1590 return UnableToLegalize; 1591 } 1592 1593 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1594 } 1595 1596 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1597 1598 // Create a sequence of unmerges to the original results. since we may have 1599 // widened the source, we will need to pad the results with dead defs to cover 1600 // the source register. 1601 // e.g. widen s16 to s32: 1602 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1603 // 1604 // => 1605 // %4:_(s64) = G_ANYEXT %0:_(s48) 1606 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1607 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1608 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1609 1610 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1611 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1612 1613 for (int I = 0; I != NumUnmerge; ++I) { 1614 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1615 1616 for (int J = 0; J != PartsPerUnmerge; ++J) { 1617 int Idx = I * PartsPerUnmerge + J; 1618 if (Idx < NumDst) 1619 MIB.addDef(MI.getOperand(Idx).getReg()); 1620 else { 1621 // Create dead def for excess components. 1622 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1623 } 1624 } 1625 1626 MIB.addUse(Unmerge.getReg(I)); 1627 } 1628 1629 MI.eraseFromParent(); 1630 return Legalized; 1631 } 1632 1633 LegalizerHelper::LegalizeResult 1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1635 LLT WideTy) { 1636 Register DstReg = MI.getOperand(0).getReg(); 1637 Register SrcReg = MI.getOperand(1).getReg(); 1638 LLT SrcTy = MRI.getType(SrcReg); 1639 1640 LLT DstTy = MRI.getType(DstReg); 1641 unsigned Offset = MI.getOperand(2).getImm(); 1642 1643 if (TypeIdx == 0) { 1644 if (SrcTy.isVector() || DstTy.isVector()) 1645 return UnableToLegalize; 1646 1647 SrcOp Src(SrcReg); 1648 if (SrcTy.isPointer()) { 1649 // Extracts from pointers can be handled only if they are really just 1650 // simple integers. 1651 const DataLayout &DL = MIRBuilder.getDataLayout(); 1652 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1653 return UnableToLegalize; 1654 1655 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1656 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1657 SrcTy = SrcAsIntTy; 1658 } 1659 1660 if (DstTy.isPointer()) 1661 return UnableToLegalize; 1662 1663 if (Offset == 0) { 1664 // Avoid a shift in the degenerate case. 1665 MIRBuilder.buildTrunc(DstReg, 1666 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1667 MI.eraseFromParent(); 1668 return Legalized; 1669 } 1670 1671 // Do a shift in the source type. 1672 LLT ShiftTy = SrcTy; 1673 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1674 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1675 ShiftTy = WideTy; 1676 } 1677 1678 auto LShr = MIRBuilder.buildLShr( 1679 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1680 MIRBuilder.buildTrunc(DstReg, LShr); 1681 MI.eraseFromParent(); 1682 return Legalized; 1683 } 1684 1685 if (SrcTy.isScalar()) { 1686 Observer.changingInstr(MI); 1687 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1688 Observer.changedInstr(MI); 1689 return Legalized; 1690 } 1691 1692 if (!SrcTy.isVector()) 1693 return UnableToLegalize; 1694 1695 if (DstTy != SrcTy.getElementType()) 1696 return UnableToLegalize; 1697 1698 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1699 return UnableToLegalize; 1700 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1703 1704 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1705 Offset); 1706 widenScalarDst(MI, WideTy.getScalarType(), 0); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx != 0 || WideTy.isVector()) 1715 return UnableToLegalize; 1716 Observer.changingInstr(MI); 1717 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1718 widenScalarDst(MI, WideTy); 1719 Observer.changedInstr(MI); 1720 return Legalized; 1721 } 1722 1723 LegalizerHelper::LegalizeResult 1724 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1725 LLT WideTy) { 1726 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1727 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1728 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1729 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1730 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1731 // We can convert this to: 1732 // 1. Any extend iN to iM 1733 // 2. SHL by M-N 1734 // 3. [US][ADD|SUB|SHL]SAT 1735 // 4. L/ASHR by M-N 1736 // 1737 // It may be more efficient to lower this to a min and a max operation in 1738 // the higher precision arithmetic if the promoted operation isn't legal, 1739 // but this decision is up to the target's lowering request. 1740 Register DstReg = MI.getOperand(0).getReg(); 1741 1742 unsigned NewBits = WideTy.getScalarSizeInBits(); 1743 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1744 1745 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1746 // must not left shift the RHS to preserve the shift amount. 1747 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1748 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1749 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1750 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1751 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1752 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1753 1754 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1755 {ShiftL, ShiftR}, MI.getFlags()); 1756 1757 // Use a shift that will preserve the number of sign bits when the trunc is 1758 // folded away. 1759 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1760 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1761 1762 MIRBuilder.buildTrunc(DstReg, Result); 1763 MI.eraseFromParent(); 1764 return Legalized; 1765 } 1766 1767 LegalizerHelper::LegalizeResult 1768 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1769 switch (MI.getOpcode()) { 1770 default: 1771 return UnableToLegalize; 1772 case TargetOpcode::G_EXTRACT: 1773 return widenScalarExtract(MI, TypeIdx, WideTy); 1774 case TargetOpcode::G_INSERT: 1775 return widenScalarInsert(MI, TypeIdx, WideTy); 1776 case TargetOpcode::G_MERGE_VALUES: 1777 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1778 case TargetOpcode::G_UNMERGE_VALUES: 1779 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1780 case TargetOpcode::G_UADDO: 1781 case TargetOpcode::G_USUBO: { 1782 if (TypeIdx == 1) 1783 return UnableToLegalize; // TODO 1784 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1785 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1786 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1787 ? TargetOpcode::G_ADD 1788 : TargetOpcode::G_SUB; 1789 // Do the arithmetic in the larger type. 1790 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1791 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1792 APInt Mask = 1793 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1794 auto AndOp = MIRBuilder.buildAnd( 1795 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1796 // There is no overflow if the AndOp is the same as NewOp. 1797 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1798 // Now trunc the NewOp to the original result. 1799 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 case TargetOpcode::G_SADDSAT: 1804 case TargetOpcode::G_SSUBSAT: 1805 case TargetOpcode::G_SSHLSAT: 1806 case TargetOpcode::G_UADDSAT: 1807 case TargetOpcode::G_USUBSAT: 1808 case TargetOpcode::G_USHLSAT: 1809 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1810 case TargetOpcode::G_CTTZ: 1811 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1812 case TargetOpcode::G_CTLZ: 1813 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1814 case TargetOpcode::G_CTPOP: { 1815 if (TypeIdx == 0) { 1816 Observer.changingInstr(MI); 1817 widenScalarDst(MI, WideTy, 0); 1818 Observer.changedInstr(MI); 1819 return Legalized; 1820 } 1821 1822 Register SrcReg = MI.getOperand(1).getReg(); 1823 1824 // First ZEXT the input. 1825 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1826 LLT CurTy = MRI.getType(SrcReg); 1827 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1828 // The count is the same in the larger type except if the original 1829 // value was zero. This can be handled by setting the bit just off 1830 // the top of the original type. 1831 auto TopBit = 1832 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1833 MIBSrc = MIRBuilder.buildOr( 1834 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1835 } 1836 1837 // Perform the operation at the larger size. 1838 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1839 // This is already the correct result for CTPOP and CTTZs 1840 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1841 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1842 // The correct result is NewOp - (Difference in widety and current ty). 1843 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1844 MIBNewOp = MIRBuilder.buildSub( 1845 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1846 } 1847 1848 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1849 MI.eraseFromParent(); 1850 return Legalized; 1851 } 1852 case TargetOpcode::G_BSWAP: { 1853 Observer.changingInstr(MI); 1854 Register DstReg = MI.getOperand(0).getReg(); 1855 1856 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1857 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1858 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1859 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1860 1861 MI.getOperand(0).setReg(DstExt); 1862 1863 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1864 1865 LLT Ty = MRI.getType(DstReg); 1866 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1867 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1868 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1869 1870 MIRBuilder.buildTrunc(DstReg, ShrReg); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 } 1874 case TargetOpcode::G_BITREVERSE: { 1875 Observer.changingInstr(MI); 1876 1877 Register DstReg = MI.getOperand(0).getReg(); 1878 LLT Ty = MRI.getType(DstReg); 1879 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1880 1881 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1882 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1883 MI.getOperand(0).setReg(DstExt); 1884 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1885 1886 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1887 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1888 MIRBuilder.buildTrunc(DstReg, Shift); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 } 1892 case TargetOpcode::G_FREEZE: 1893 Observer.changingInstr(MI); 1894 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1895 widenScalarDst(MI, WideTy); 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 1899 case TargetOpcode::G_ADD: 1900 case TargetOpcode::G_AND: 1901 case TargetOpcode::G_MUL: 1902 case TargetOpcode::G_OR: 1903 case TargetOpcode::G_XOR: 1904 case TargetOpcode::G_SUB: 1905 // Perform operation at larger width (any extension is fines here, high bits 1906 // don't affect the result) and then truncate the result back to the 1907 // original type. 1908 Observer.changingInstr(MI); 1909 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1910 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1911 widenScalarDst(MI, WideTy); 1912 Observer.changedInstr(MI); 1913 return Legalized; 1914 1915 case TargetOpcode::G_SHL: 1916 Observer.changingInstr(MI); 1917 1918 if (TypeIdx == 0) { 1919 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1920 widenScalarDst(MI, WideTy); 1921 } else { 1922 assert(TypeIdx == 1); 1923 // The "number of bits to shift" operand must preserve its value as an 1924 // unsigned integer: 1925 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1926 } 1927 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 1931 case TargetOpcode::G_SDIV: 1932 case TargetOpcode::G_SREM: 1933 case TargetOpcode::G_SMIN: 1934 case TargetOpcode::G_SMAX: 1935 Observer.changingInstr(MI); 1936 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1937 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1938 widenScalarDst(MI, WideTy); 1939 Observer.changedInstr(MI); 1940 return Legalized; 1941 1942 case TargetOpcode::G_ASHR: 1943 case TargetOpcode::G_LSHR: 1944 Observer.changingInstr(MI); 1945 1946 if (TypeIdx == 0) { 1947 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1948 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1949 1950 widenScalarSrc(MI, WideTy, 1, CvtOp); 1951 widenScalarDst(MI, WideTy); 1952 } else { 1953 assert(TypeIdx == 1); 1954 // The "number of bits to shift" operand must preserve its value as an 1955 // unsigned integer: 1956 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1957 } 1958 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 case TargetOpcode::G_UDIV: 1962 case TargetOpcode::G_UREM: 1963 case TargetOpcode::G_UMIN: 1964 case TargetOpcode::G_UMAX: 1965 Observer.changingInstr(MI); 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1967 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1968 widenScalarDst(MI, WideTy); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 1972 case TargetOpcode::G_SELECT: 1973 Observer.changingInstr(MI); 1974 if (TypeIdx == 0) { 1975 // Perform operation at larger width (any extension is fine here, high 1976 // bits don't affect the result) and then truncate the result back to the 1977 // original type. 1978 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1979 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1980 widenScalarDst(MI, WideTy); 1981 } else { 1982 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1983 // Explicit extension is required here since high bits affect the result. 1984 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1985 } 1986 Observer.changedInstr(MI); 1987 return Legalized; 1988 1989 case TargetOpcode::G_FPTOSI: 1990 case TargetOpcode::G_FPTOUI: 1991 Observer.changingInstr(MI); 1992 1993 if (TypeIdx == 0) 1994 widenScalarDst(MI, WideTy); 1995 else 1996 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1997 1998 Observer.changedInstr(MI); 1999 return Legalized; 2000 case TargetOpcode::G_SITOFP: 2001 Observer.changingInstr(MI); 2002 2003 if (TypeIdx == 0) 2004 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2005 else 2006 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2007 2008 Observer.changedInstr(MI); 2009 return Legalized; 2010 case TargetOpcode::G_UITOFP: 2011 Observer.changingInstr(MI); 2012 2013 if (TypeIdx == 0) 2014 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2015 else 2016 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2017 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 case TargetOpcode::G_LOAD: 2021 case TargetOpcode::G_SEXTLOAD: 2022 case TargetOpcode::G_ZEXTLOAD: 2023 Observer.changingInstr(MI); 2024 widenScalarDst(MI, WideTy); 2025 Observer.changedInstr(MI); 2026 return Legalized; 2027 2028 case TargetOpcode::G_STORE: { 2029 if (TypeIdx != 0) 2030 return UnableToLegalize; 2031 2032 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2033 if (!isPowerOf2_32(Ty.getSizeInBits())) 2034 return UnableToLegalize; 2035 2036 Observer.changingInstr(MI); 2037 2038 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2039 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2040 widenScalarSrc(MI, WideTy, 0, ExtType); 2041 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 } 2045 case TargetOpcode::G_CONSTANT: { 2046 MachineOperand &SrcMO = MI.getOperand(1); 2047 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2048 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2049 MRI.getType(MI.getOperand(0).getReg())); 2050 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2051 ExtOpc == TargetOpcode::G_ANYEXT) && 2052 "Illegal Extend"); 2053 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2054 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2055 ? SrcVal.sext(WideTy.getSizeInBits()) 2056 : SrcVal.zext(WideTy.getSizeInBits()); 2057 Observer.changingInstr(MI); 2058 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2059 2060 widenScalarDst(MI, WideTy); 2061 Observer.changedInstr(MI); 2062 return Legalized; 2063 } 2064 case TargetOpcode::G_FCONSTANT: { 2065 MachineOperand &SrcMO = MI.getOperand(1); 2066 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2067 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2068 bool LosesInfo; 2069 switch (WideTy.getSizeInBits()) { 2070 case 32: 2071 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2072 &LosesInfo); 2073 break; 2074 case 64: 2075 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2076 &LosesInfo); 2077 break; 2078 default: 2079 return UnableToLegalize; 2080 } 2081 2082 assert(!LosesInfo && "extend should always be lossless"); 2083 2084 Observer.changingInstr(MI); 2085 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2086 2087 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2088 Observer.changedInstr(MI); 2089 return Legalized; 2090 } 2091 case TargetOpcode::G_IMPLICIT_DEF: { 2092 Observer.changingInstr(MI); 2093 widenScalarDst(MI, WideTy); 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 } 2097 case TargetOpcode::G_BRCOND: 2098 Observer.changingInstr(MI); 2099 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 2103 case TargetOpcode::G_FCMP: 2104 Observer.changingInstr(MI); 2105 if (TypeIdx == 0) 2106 widenScalarDst(MI, WideTy); 2107 else { 2108 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2109 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2110 } 2111 Observer.changedInstr(MI); 2112 return Legalized; 2113 2114 case TargetOpcode::G_ICMP: 2115 Observer.changingInstr(MI); 2116 if (TypeIdx == 0) 2117 widenScalarDst(MI, WideTy); 2118 else { 2119 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2120 MI.getOperand(1).getPredicate())) 2121 ? TargetOpcode::G_SEXT 2122 : TargetOpcode::G_ZEXT; 2123 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2124 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2125 } 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_PTR_ADD: 2130 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2131 Observer.changingInstr(MI); 2132 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 2136 case TargetOpcode::G_PHI: { 2137 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2138 2139 Observer.changingInstr(MI); 2140 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2141 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2142 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2143 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2144 } 2145 2146 MachineBasicBlock &MBB = *MI.getParent(); 2147 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2148 widenScalarDst(MI, WideTy); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 } 2152 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2153 if (TypeIdx == 0) { 2154 Register VecReg = MI.getOperand(1).getReg(); 2155 LLT VecTy = MRI.getType(VecReg); 2156 Observer.changingInstr(MI); 2157 2158 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2159 WideTy.getSizeInBits()), 2160 1, TargetOpcode::G_SEXT); 2161 2162 widenScalarDst(MI, WideTy, 0); 2163 Observer.changedInstr(MI); 2164 return Legalized; 2165 } 2166 2167 if (TypeIdx != 2) 2168 return UnableToLegalize; 2169 Observer.changingInstr(MI); 2170 // TODO: Probably should be zext 2171 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 } 2175 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2176 if (TypeIdx == 1) { 2177 Observer.changingInstr(MI); 2178 2179 Register VecReg = MI.getOperand(1).getReg(); 2180 LLT VecTy = MRI.getType(VecReg); 2181 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2182 2183 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2184 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2185 widenScalarDst(MI, WideVecTy, 0); 2186 Observer.changedInstr(MI); 2187 return Legalized; 2188 } 2189 2190 if (TypeIdx == 2) { 2191 Observer.changingInstr(MI); 2192 // TODO: Probably should be zext 2193 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 } 2197 2198 return UnableToLegalize; 2199 } 2200 case TargetOpcode::G_FADD: 2201 case TargetOpcode::G_FMUL: 2202 case TargetOpcode::G_FSUB: 2203 case TargetOpcode::G_FMA: 2204 case TargetOpcode::G_FMAD: 2205 case TargetOpcode::G_FNEG: 2206 case TargetOpcode::G_FABS: 2207 case TargetOpcode::G_FCANONICALIZE: 2208 case TargetOpcode::G_FMINNUM: 2209 case TargetOpcode::G_FMAXNUM: 2210 case TargetOpcode::G_FMINNUM_IEEE: 2211 case TargetOpcode::G_FMAXNUM_IEEE: 2212 case TargetOpcode::G_FMINIMUM: 2213 case TargetOpcode::G_FMAXIMUM: 2214 case TargetOpcode::G_FDIV: 2215 case TargetOpcode::G_FREM: 2216 case TargetOpcode::G_FCEIL: 2217 case TargetOpcode::G_FFLOOR: 2218 case TargetOpcode::G_FCOS: 2219 case TargetOpcode::G_FSIN: 2220 case TargetOpcode::G_FLOG10: 2221 case TargetOpcode::G_FLOG: 2222 case TargetOpcode::G_FLOG2: 2223 case TargetOpcode::G_FRINT: 2224 case TargetOpcode::G_FNEARBYINT: 2225 case TargetOpcode::G_FSQRT: 2226 case TargetOpcode::G_FEXP: 2227 case TargetOpcode::G_FEXP2: 2228 case TargetOpcode::G_FPOW: 2229 case TargetOpcode::G_INTRINSIC_TRUNC: 2230 case TargetOpcode::G_INTRINSIC_ROUND: 2231 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2232 assert(TypeIdx == 0); 2233 Observer.changingInstr(MI); 2234 2235 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2236 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2237 2238 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 case TargetOpcode::G_FPOWI: { 2242 if (TypeIdx != 0) 2243 return UnableToLegalize; 2244 Observer.changingInstr(MI); 2245 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2246 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2247 Observer.changedInstr(MI); 2248 return Legalized; 2249 } 2250 case TargetOpcode::G_INTTOPTR: 2251 if (TypeIdx != 1) 2252 return UnableToLegalize; 2253 2254 Observer.changingInstr(MI); 2255 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2256 Observer.changedInstr(MI); 2257 return Legalized; 2258 case TargetOpcode::G_PTRTOINT: 2259 if (TypeIdx != 0) 2260 return UnableToLegalize; 2261 2262 Observer.changingInstr(MI); 2263 widenScalarDst(MI, WideTy, 0); 2264 Observer.changedInstr(MI); 2265 return Legalized; 2266 case TargetOpcode::G_BUILD_VECTOR: { 2267 Observer.changingInstr(MI); 2268 2269 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2270 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2271 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2272 2273 // Avoid changing the result vector type if the source element type was 2274 // requested. 2275 if (TypeIdx == 1) { 2276 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2277 } else { 2278 widenScalarDst(MI, WideTy, 0); 2279 } 2280 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 } 2284 case TargetOpcode::G_SEXT_INREG: 2285 if (TypeIdx != 0) 2286 return UnableToLegalize; 2287 2288 Observer.changingInstr(MI); 2289 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2290 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 case TargetOpcode::G_PTRMASK: { 2294 if (TypeIdx != 1) 2295 return UnableToLegalize; 2296 Observer.changingInstr(MI); 2297 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2298 Observer.changedInstr(MI); 2299 return Legalized; 2300 } 2301 } 2302 } 2303 2304 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2305 MachineIRBuilder &B, Register Src, LLT Ty) { 2306 auto Unmerge = B.buildUnmerge(Ty, Src); 2307 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2308 Pieces.push_back(Unmerge.getReg(I)); 2309 } 2310 2311 LegalizerHelper::LegalizeResult 2312 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2313 Register Dst = MI.getOperand(0).getReg(); 2314 Register Src = MI.getOperand(1).getReg(); 2315 LLT DstTy = MRI.getType(Dst); 2316 LLT SrcTy = MRI.getType(Src); 2317 2318 if (SrcTy.isVector()) { 2319 LLT SrcEltTy = SrcTy.getElementType(); 2320 SmallVector<Register, 8> SrcRegs; 2321 2322 if (DstTy.isVector()) { 2323 int NumDstElt = DstTy.getNumElements(); 2324 int NumSrcElt = SrcTy.getNumElements(); 2325 2326 LLT DstEltTy = DstTy.getElementType(); 2327 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2328 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2329 2330 // If there's an element size mismatch, insert intermediate casts to match 2331 // the result element type. 2332 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2333 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2334 // 2335 // => 2336 // 2337 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2338 // %3:_(<2 x s8>) = G_BITCAST %2 2339 // %4:_(<2 x s8>) = G_BITCAST %3 2340 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2341 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2342 SrcPartTy = SrcEltTy; 2343 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2344 // 2345 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2346 // 2347 // => 2348 // 2349 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2350 // %3:_(s16) = G_BITCAST %2 2351 // %4:_(s16) = G_BITCAST %3 2352 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2353 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2354 DstCastTy = DstEltTy; 2355 } 2356 2357 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2358 for (Register &SrcReg : SrcRegs) 2359 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2360 } else 2361 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2362 2363 MIRBuilder.buildMerge(Dst, SrcRegs); 2364 MI.eraseFromParent(); 2365 return Legalized; 2366 } 2367 2368 if (DstTy.isVector()) { 2369 SmallVector<Register, 8> SrcRegs; 2370 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2371 MIRBuilder.buildMerge(Dst, SrcRegs); 2372 MI.eraseFromParent(); 2373 return Legalized; 2374 } 2375 2376 return UnableToLegalize; 2377 } 2378 2379 /// Figure out the bit offset into a register when coercing a vector index for 2380 /// the wide element type. This is only for the case when promoting vector to 2381 /// one with larger elements. 2382 // 2383 /// 2384 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2385 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2386 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2387 Register Idx, 2388 unsigned NewEltSize, 2389 unsigned OldEltSize) { 2390 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2391 LLT IdxTy = B.getMRI()->getType(Idx); 2392 2393 // Now figure out the amount we need to shift to get the target bits. 2394 auto OffsetMask = B.buildConstant( 2395 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2396 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2397 return B.buildShl(IdxTy, OffsetIdx, 2398 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2399 } 2400 2401 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2402 /// is casting to a vector with a smaller element size, perform multiple element 2403 /// extracts and merge the results. If this is coercing to a vector with larger 2404 /// elements, index the bitcasted vector and extract the target element with bit 2405 /// operations. This is intended to force the indexing in the native register 2406 /// size for architectures that can dynamically index the register file. 2407 LegalizerHelper::LegalizeResult 2408 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2409 LLT CastTy) { 2410 if (TypeIdx != 1) 2411 return UnableToLegalize; 2412 2413 Register Dst = MI.getOperand(0).getReg(); 2414 Register SrcVec = MI.getOperand(1).getReg(); 2415 Register Idx = MI.getOperand(2).getReg(); 2416 LLT SrcVecTy = MRI.getType(SrcVec); 2417 LLT IdxTy = MRI.getType(Idx); 2418 2419 LLT SrcEltTy = SrcVecTy.getElementType(); 2420 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2421 unsigned OldNumElts = SrcVecTy.getNumElements(); 2422 2423 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2424 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2425 2426 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2427 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2428 if (NewNumElts > OldNumElts) { 2429 // Decreasing the vector element size 2430 // 2431 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2432 // => 2433 // v4i32:castx = bitcast x:v2i64 2434 // 2435 // i64 = bitcast 2436 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2437 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2438 // 2439 if (NewNumElts % OldNumElts != 0) 2440 return UnableToLegalize; 2441 2442 // Type of the intermediate result vector. 2443 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2444 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2445 2446 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2447 2448 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2449 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2450 2451 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2452 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2453 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2454 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2455 NewOps[I] = Elt.getReg(0); 2456 } 2457 2458 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2459 MIRBuilder.buildBitcast(Dst, NewVec); 2460 MI.eraseFromParent(); 2461 return Legalized; 2462 } 2463 2464 if (NewNumElts < OldNumElts) { 2465 if (NewEltSize % OldEltSize != 0) 2466 return UnableToLegalize; 2467 2468 // This only depends on powers of 2 because we use bit tricks to figure out 2469 // the bit offset we need to shift to get the target element. A general 2470 // expansion could emit division/multiply. 2471 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2472 return UnableToLegalize; 2473 2474 // Increasing the vector element size. 2475 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2476 // 2477 // => 2478 // 2479 // %cast = G_BITCAST %vec 2480 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2481 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2482 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2483 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2484 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2485 // %elt = G_TRUNC %elt_bits 2486 2487 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2488 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2489 2490 // Divide to get the index in the wider element type. 2491 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2492 2493 Register WideElt = CastVec; 2494 if (CastTy.isVector()) { 2495 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2496 ScaledIdx).getReg(0); 2497 } 2498 2499 // Compute the bit offset into the register of the target element. 2500 Register OffsetBits = getBitcastWiderVectorElementOffset( 2501 MIRBuilder, Idx, NewEltSize, OldEltSize); 2502 2503 // Shift the wide element to get the target element. 2504 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2505 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2506 MI.eraseFromParent(); 2507 return Legalized; 2508 } 2509 2510 return UnableToLegalize; 2511 } 2512 2513 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2514 /// TargetReg, while preserving other bits in \p TargetReg. 2515 /// 2516 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2517 static Register buildBitFieldInsert(MachineIRBuilder &B, 2518 Register TargetReg, Register InsertReg, 2519 Register OffsetBits) { 2520 LLT TargetTy = B.getMRI()->getType(TargetReg); 2521 LLT InsertTy = B.getMRI()->getType(InsertReg); 2522 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2523 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2524 2525 // Produce a bitmask of the value to insert 2526 auto EltMask = B.buildConstant( 2527 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2528 InsertTy.getSizeInBits())); 2529 // Shift it into position 2530 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2531 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2532 2533 // Clear out the bits in the wide element 2534 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2535 2536 // The value to insert has all zeros already, so stick it into the masked 2537 // wide element. 2538 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2539 } 2540 2541 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2542 /// is increasing the element size, perform the indexing in the target element 2543 /// type, and use bit operations to insert at the element position. This is 2544 /// intended for architectures that can dynamically index the register file and 2545 /// want to force indexing in the native register size. 2546 LegalizerHelper::LegalizeResult 2547 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2548 LLT CastTy) { 2549 if (TypeIdx != 0) 2550 return UnableToLegalize; 2551 2552 Register Dst = MI.getOperand(0).getReg(); 2553 Register SrcVec = MI.getOperand(1).getReg(); 2554 Register Val = MI.getOperand(2).getReg(); 2555 Register Idx = MI.getOperand(3).getReg(); 2556 2557 LLT VecTy = MRI.getType(Dst); 2558 LLT IdxTy = MRI.getType(Idx); 2559 2560 LLT VecEltTy = VecTy.getElementType(); 2561 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2562 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2563 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2564 2565 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2566 unsigned OldNumElts = VecTy.getNumElements(); 2567 2568 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2569 if (NewNumElts < OldNumElts) { 2570 if (NewEltSize % OldEltSize != 0) 2571 return UnableToLegalize; 2572 2573 // This only depends on powers of 2 because we use bit tricks to figure out 2574 // the bit offset we need to shift to get the target element. A general 2575 // expansion could emit division/multiply. 2576 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2577 return UnableToLegalize; 2578 2579 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2580 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2581 2582 // Divide to get the index in the wider element type. 2583 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2584 2585 Register ExtractedElt = CastVec; 2586 if (CastTy.isVector()) { 2587 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2588 ScaledIdx).getReg(0); 2589 } 2590 2591 // Compute the bit offset into the register of the target element. 2592 Register OffsetBits = getBitcastWiderVectorElementOffset( 2593 MIRBuilder, Idx, NewEltSize, OldEltSize); 2594 2595 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2596 Val, OffsetBits); 2597 if (CastTy.isVector()) { 2598 InsertedElt = MIRBuilder.buildInsertVectorElement( 2599 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2600 } 2601 2602 MIRBuilder.buildBitcast(Dst, InsertedElt); 2603 MI.eraseFromParent(); 2604 return Legalized; 2605 } 2606 2607 return UnableToLegalize; 2608 } 2609 2610 LegalizerHelper::LegalizeResult 2611 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2612 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2613 Register DstReg = MI.getOperand(0).getReg(); 2614 Register PtrReg = MI.getOperand(1).getReg(); 2615 LLT DstTy = MRI.getType(DstReg); 2616 auto &MMO = **MI.memoperands_begin(); 2617 2618 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2619 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2620 // This load needs splitting into power of 2 sized loads. 2621 if (DstTy.isVector()) 2622 return UnableToLegalize; 2623 if (isPowerOf2_32(DstTy.getSizeInBits())) 2624 return UnableToLegalize; // Don't know what we're being asked to do. 2625 2626 // Our strategy here is to generate anyextending loads for the smaller 2627 // types up to next power-2 result type, and then combine the two larger 2628 // result values together, before truncating back down to the non-pow-2 2629 // type. 2630 // E.g. v1 = i24 load => 2631 // v2 = i32 zextload (2 byte) 2632 // v3 = i32 load (1 byte) 2633 // v4 = i32 shl v3, 16 2634 // v5 = i32 or v4, v2 2635 // v1 = i24 trunc v5 2636 // By doing this we generate the correct truncate which should get 2637 // combined away as an artifact with a matching extend. 2638 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2639 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2640 2641 MachineFunction &MF = MIRBuilder.getMF(); 2642 MachineMemOperand *LargeMMO = 2643 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2644 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2645 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2646 2647 LLT PtrTy = MRI.getType(PtrReg); 2648 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2649 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2650 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2651 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2652 auto LargeLoad = MIRBuilder.buildLoadInstr( 2653 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2654 2655 auto OffsetCst = MIRBuilder.buildConstant( 2656 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2657 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2658 auto SmallPtr = 2659 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2660 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2661 *SmallMMO); 2662 2663 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2664 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2665 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2666 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2667 MI.eraseFromParent(); 2668 return Legalized; 2669 } 2670 2671 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2672 MI.eraseFromParent(); 2673 return Legalized; 2674 } 2675 2676 if (DstTy.isScalar()) { 2677 Register TmpReg = 2678 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2679 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2680 switch (MI.getOpcode()) { 2681 default: 2682 llvm_unreachable("Unexpected opcode"); 2683 case TargetOpcode::G_LOAD: 2684 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2685 break; 2686 case TargetOpcode::G_SEXTLOAD: 2687 MIRBuilder.buildSExt(DstReg, TmpReg); 2688 break; 2689 case TargetOpcode::G_ZEXTLOAD: 2690 MIRBuilder.buildZExt(DstReg, TmpReg); 2691 break; 2692 } 2693 2694 MI.eraseFromParent(); 2695 return Legalized; 2696 } 2697 2698 return UnableToLegalize; 2699 } 2700 2701 LegalizerHelper::LegalizeResult 2702 LegalizerHelper::lowerStore(MachineInstr &MI) { 2703 // Lower a non-power of 2 store into multiple pow-2 stores. 2704 // E.g. split an i24 store into an i16 store + i8 store. 2705 // We do this by first extending the stored value to the next largest power 2706 // of 2 type, and then using truncating stores to store the components. 2707 // By doing this, likewise with G_LOAD, generate an extend that can be 2708 // artifact-combined away instead of leaving behind extracts. 2709 Register SrcReg = MI.getOperand(0).getReg(); 2710 Register PtrReg = MI.getOperand(1).getReg(); 2711 LLT SrcTy = MRI.getType(SrcReg); 2712 MachineMemOperand &MMO = **MI.memoperands_begin(); 2713 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2714 return UnableToLegalize; 2715 if (SrcTy.isVector()) 2716 return UnableToLegalize; 2717 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2718 return UnableToLegalize; // Don't know what we're being asked to do. 2719 2720 // Extend to the next pow-2. 2721 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2722 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2723 2724 // Obtain the smaller value by shifting away the larger value. 2725 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2726 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2727 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2728 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2729 2730 // Generate the PtrAdd and truncating stores. 2731 LLT PtrTy = MRI.getType(PtrReg); 2732 auto OffsetCst = MIRBuilder.buildConstant( 2733 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2734 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2735 auto SmallPtr = 2736 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2737 2738 MachineFunction &MF = MIRBuilder.getMF(); 2739 MachineMemOperand *LargeMMO = 2740 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2741 MachineMemOperand *SmallMMO = 2742 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2743 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2744 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2745 MI.eraseFromParent(); 2746 return Legalized; 2747 } 2748 2749 LegalizerHelper::LegalizeResult 2750 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2751 switch (MI.getOpcode()) { 2752 case TargetOpcode::G_LOAD: { 2753 if (TypeIdx != 0) 2754 return UnableToLegalize; 2755 2756 Observer.changingInstr(MI); 2757 bitcastDst(MI, CastTy, 0); 2758 Observer.changedInstr(MI); 2759 return Legalized; 2760 } 2761 case TargetOpcode::G_STORE: { 2762 if (TypeIdx != 0) 2763 return UnableToLegalize; 2764 2765 Observer.changingInstr(MI); 2766 bitcastSrc(MI, CastTy, 0); 2767 Observer.changedInstr(MI); 2768 return Legalized; 2769 } 2770 case TargetOpcode::G_SELECT: { 2771 if (TypeIdx != 0) 2772 return UnableToLegalize; 2773 2774 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2775 LLVM_DEBUG( 2776 dbgs() << "bitcast action not implemented for vector select\n"); 2777 return UnableToLegalize; 2778 } 2779 2780 Observer.changingInstr(MI); 2781 bitcastSrc(MI, CastTy, 2); 2782 bitcastSrc(MI, CastTy, 3); 2783 bitcastDst(MI, CastTy, 0); 2784 Observer.changedInstr(MI); 2785 return Legalized; 2786 } 2787 case TargetOpcode::G_AND: 2788 case TargetOpcode::G_OR: 2789 case TargetOpcode::G_XOR: { 2790 Observer.changingInstr(MI); 2791 bitcastSrc(MI, CastTy, 1); 2792 bitcastSrc(MI, CastTy, 2); 2793 bitcastDst(MI, CastTy, 0); 2794 Observer.changedInstr(MI); 2795 return Legalized; 2796 } 2797 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2798 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2799 case TargetOpcode::G_INSERT_VECTOR_ELT: 2800 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2801 default: 2802 return UnableToLegalize; 2803 } 2804 } 2805 2806 // Legalize an instruction by changing the opcode in place. 2807 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2808 Observer.changingInstr(MI); 2809 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2810 Observer.changedInstr(MI); 2811 } 2812 2813 LegalizerHelper::LegalizeResult 2814 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2815 using namespace TargetOpcode; 2816 2817 switch(MI.getOpcode()) { 2818 default: 2819 return UnableToLegalize; 2820 case TargetOpcode::G_BITCAST: 2821 return lowerBitcast(MI); 2822 case TargetOpcode::G_SREM: 2823 case TargetOpcode::G_UREM: { 2824 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2825 auto Quot = 2826 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2827 {MI.getOperand(1), MI.getOperand(2)}); 2828 2829 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2830 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2831 MI.eraseFromParent(); 2832 return Legalized; 2833 } 2834 case TargetOpcode::G_SADDO: 2835 case TargetOpcode::G_SSUBO: 2836 return lowerSADDO_SSUBO(MI); 2837 case TargetOpcode::G_SMULO: 2838 case TargetOpcode::G_UMULO: { 2839 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2840 // result. 2841 Register Res = MI.getOperand(0).getReg(); 2842 Register Overflow = MI.getOperand(1).getReg(); 2843 Register LHS = MI.getOperand(2).getReg(); 2844 Register RHS = MI.getOperand(3).getReg(); 2845 LLT Ty = MRI.getType(Res); 2846 2847 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2848 ? TargetOpcode::G_SMULH 2849 : TargetOpcode::G_UMULH; 2850 2851 Observer.changingInstr(MI); 2852 const auto &TII = MIRBuilder.getTII(); 2853 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2854 MI.RemoveOperand(1); 2855 Observer.changedInstr(MI); 2856 2857 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2858 2859 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2860 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2861 2862 // For *signed* multiply, overflow is detected by checking: 2863 // (hi != (lo >> bitwidth-1)) 2864 if (Opcode == TargetOpcode::G_SMULH) { 2865 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2866 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2867 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2868 } else { 2869 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2870 } 2871 return Legalized; 2872 } 2873 case TargetOpcode::G_FNEG: { 2874 Register Res = MI.getOperand(0).getReg(); 2875 LLT Ty = MRI.getType(Res); 2876 2877 // TODO: Handle vector types once we are able to 2878 // represent them. 2879 if (Ty.isVector()) 2880 return UnableToLegalize; 2881 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2882 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2883 if (!ZeroTy) 2884 return UnableToLegalize; 2885 ConstantFP &ZeroForNegation = 2886 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2887 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2888 Register SubByReg = MI.getOperand(1).getReg(); 2889 Register ZeroReg = Zero.getReg(0); 2890 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2891 MI.eraseFromParent(); 2892 return Legalized; 2893 } 2894 case TargetOpcode::G_FSUB: { 2895 Register Res = MI.getOperand(0).getReg(); 2896 LLT Ty = MRI.getType(Res); 2897 2898 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2899 // First, check if G_FNEG is marked as Lower. If so, we may 2900 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2901 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2902 return UnableToLegalize; 2903 Register LHS = MI.getOperand(1).getReg(); 2904 Register RHS = MI.getOperand(2).getReg(); 2905 Register Neg = MRI.createGenericVirtualRegister(Ty); 2906 MIRBuilder.buildFNeg(Neg, RHS); 2907 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2908 MI.eraseFromParent(); 2909 return Legalized; 2910 } 2911 case TargetOpcode::G_FMAD: 2912 return lowerFMad(MI); 2913 case TargetOpcode::G_FFLOOR: 2914 return lowerFFloor(MI); 2915 case TargetOpcode::G_INTRINSIC_ROUND: 2916 return lowerIntrinsicRound(MI); 2917 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2918 // Since round even is the assumed rounding mode for unconstrained FP 2919 // operations, rint and roundeven are the same operation. 2920 changeOpcode(MI, TargetOpcode::G_FRINT); 2921 return Legalized; 2922 } 2923 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2924 Register OldValRes = MI.getOperand(0).getReg(); 2925 Register SuccessRes = MI.getOperand(1).getReg(); 2926 Register Addr = MI.getOperand(2).getReg(); 2927 Register CmpVal = MI.getOperand(3).getReg(); 2928 Register NewVal = MI.getOperand(4).getReg(); 2929 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2930 **MI.memoperands_begin()); 2931 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2932 MI.eraseFromParent(); 2933 return Legalized; 2934 } 2935 case TargetOpcode::G_LOAD: 2936 case TargetOpcode::G_SEXTLOAD: 2937 case TargetOpcode::G_ZEXTLOAD: 2938 return lowerLoad(MI); 2939 case TargetOpcode::G_STORE: 2940 return lowerStore(MI); 2941 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2942 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2943 case TargetOpcode::G_CTLZ: 2944 case TargetOpcode::G_CTTZ: 2945 case TargetOpcode::G_CTPOP: 2946 return lowerBitCount(MI); 2947 case G_UADDO: { 2948 Register Res = MI.getOperand(0).getReg(); 2949 Register CarryOut = MI.getOperand(1).getReg(); 2950 Register LHS = MI.getOperand(2).getReg(); 2951 Register RHS = MI.getOperand(3).getReg(); 2952 2953 MIRBuilder.buildAdd(Res, LHS, RHS); 2954 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2955 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 case G_UADDE: { 2960 Register Res = MI.getOperand(0).getReg(); 2961 Register CarryOut = MI.getOperand(1).getReg(); 2962 Register LHS = MI.getOperand(2).getReg(); 2963 Register RHS = MI.getOperand(3).getReg(); 2964 Register CarryIn = MI.getOperand(4).getReg(); 2965 LLT Ty = MRI.getType(Res); 2966 2967 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2968 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2969 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2970 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2971 2972 MI.eraseFromParent(); 2973 return Legalized; 2974 } 2975 case G_USUBO: { 2976 Register Res = MI.getOperand(0).getReg(); 2977 Register BorrowOut = MI.getOperand(1).getReg(); 2978 Register LHS = MI.getOperand(2).getReg(); 2979 Register RHS = MI.getOperand(3).getReg(); 2980 2981 MIRBuilder.buildSub(Res, LHS, RHS); 2982 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2983 2984 MI.eraseFromParent(); 2985 return Legalized; 2986 } 2987 case G_USUBE: { 2988 Register Res = MI.getOperand(0).getReg(); 2989 Register BorrowOut = MI.getOperand(1).getReg(); 2990 Register LHS = MI.getOperand(2).getReg(); 2991 Register RHS = MI.getOperand(3).getReg(); 2992 Register BorrowIn = MI.getOperand(4).getReg(); 2993 const LLT CondTy = MRI.getType(BorrowOut); 2994 const LLT Ty = MRI.getType(Res); 2995 2996 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2997 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2998 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2999 3000 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3001 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3002 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3003 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 case G_UITOFP: 3008 return lowerUITOFP(MI); 3009 case G_SITOFP: 3010 return lowerSITOFP(MI); 3011 case G_FPTOUI: 3012 return lowerFPTOUI(MI); 3013 case G_FPTOSI: 3014 return lowerFPTOSI(MI); 3015 case G_FPTRUNC: 3016 return lowerFPTRUNC(MI); 3017 case G_FPOWI: 3018 return lowerFPOWI(MI); 3019 case G_SMIN: 3020 case G_SMAX: 3021 case G_UMIN: 3022 case G_UMAX: 3023 return lowerMinMax(MI); 3024 case G_FCOPYSIGN: 3025 return lowerFCopySign(MI); 3026 case G_FMINNUM: 3027 case G_FMAXNUM: 3028 return lowerFMinNumMaxNum(MI); 3029 case G_MERGE_VALUES: 3030 return lowerMergeValues(MI); 3031 case G_UNMERGE_VALUES: 3032 return lowerUnmergeValues(MI); 3033 case TargetOpcode::G_SEXT_INREG: { 3034 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3035 int64_t SizeInBits = MI.getOperand(2).getImm(); 3036 3037 Register DstReg = MI.getOperand(0).getReg(); 3038 Register SrcReg = MI.getOperand(1).getReg(); 3039 LLT DstTy = MRI.getType(DstReg); 3040 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3041 3042 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3043 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3044 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3045 MI.eraseFromParent(); 3046 return Legalized; 3047 } 3048 case G_EXTRACT_VECTOR_ELT: 3049 case G_INSERT_VECTOR_ELT: 3050 return lowerExtractInsertVectorElt(MI); 3051 case G_SHUFFLE_VECTOR: 3052 return lowerShuffleVector(MI); 3053 case G_DYN_STACKALLOC: 3054 return lowerDynStackAlloc(MI); 3055 case G_EXTRACT: 3056 return lowerExtract(MI); 3057 case G_INSERT: 3058 return lowerInsert(MI); 3059 case G_BSWAP: 3060 return lowerBswap(MI); 3061 case G_BITREVERSE: 3062 return lowerBitreverse(MI); 3063 case G_READ_REGISTER: 3064 case G_WRITE_REGISTER: 3065 return lowerReadWriteRegister(MI); 3066 case G_UADDSAT: 3067 case G_USUBSAT: { 3068 // Try to make a reasonable guess about which lowering strategy to use. The 3069 // target can override this with custom lowering and calling the 3070 // implementation functions. 3071 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3072 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3073 return lowerAddSubSatToMinMax(MI); 3074 return lowerAddSubSatToAddoSubo(MI); 3075 } 3076 case G_SADDSAT: 3077 case G_SSUBSAT: { 3078 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3079 3080 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3081 // since it's a shorter expansion. However, we would need to figure out the 3082 // preferred boolean type for the carry out for the query. 3083 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3084 return lowerAddSubSatToMinMax(MI); 3085 return lowerAddSubSatToAddoSubo(MI); 3086 } 3087 case G_SSHLSAT: 3088 case G_USHLSAT: 3089 return lowerShlSat(MI); 3090 } 3091 } 3092 3093 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3094 Align MinAlign) const { 3095 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3096 // datalayout for the preferred alignment. Also there should be a target hook 3097 // for this to allow targets to reduce the alignment and ignore the 3098 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3099 // the type. 3100 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3101 } 3102 3103 MachineInstrBuilder 3104 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3105 MachinePointerInfo &PtrInfo) { 3106 MachineFunction &MF = MIRBuilder.getMF(); 3107 const DataLayout &DL = MIRBuilder.getDataLayout(); 3108 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3109 3110 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3111 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3112 3113 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3114 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3115 } 3116 3117 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3118 LLT VecTy) { 3119 int64_t IdxVal; 3120 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3121 return IdxReg; 3122 3123 LLT IdxTy = B.getMRI()->getType(IdxReg); 3124 unsigned NElts = VecTy.getNumElements(); 3125 if (isPowerOf2_32(NElts)) { 3126 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3127 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3128 } 3129 3130 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3131 .getReg(0); 3132 } 3133 3134 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3135 Register Index) { 3136 LLT EltTy = VecTy.getElementType(); 3137 3138 // Calculate the element offset and add it to the pointer. 3139 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3140 assert(EltSize * 8 == EltTy.getSizeInBits() && 3141 "Converting bits to bytes lost precision"); 3142 3143 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3144 3145 LLT IdxTy = MRI.getType(Index); 3146 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3147 MIRBuilder.buildConstant(IdxTy, EltSize)); 3148 3149 LLT PtrTy = MRI.getType(VecPtr); 3150 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3151 } 3152 3153 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3154 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3155 Register DstReg = MI.getOperand(0).getReg(); 3156 LLT DstTy = MRI.getType(DstReg); 3157 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3158 3159 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3160 3161 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3162 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3163 3164 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3165 MI.eraseFromParent(); 3166 return Legalized; 3167 } 3168 3169 // Handle splitting vector operations which need to have the same number of 3170 // elements in each type index, but each type index may have a different element 3171 // type. 3172 // 3173 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3174 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3175 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3176 // 3177 // Also handles some irregular breakdown cases, e.g. 3178 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3179 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3180 // s64 = G_SHL s64, s32 3181 LegalizerHelper::LegalizeResult 3182 LegalizerHelper::fewerElementsVectorMultiEltType( 3183 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3184 if (TypeIdx != 0) 3185 return UnableToLegalize; 3186 3187 const LLT NarrowTy0 = NarrowTyArg; 3188 const unsigned NewNumElts = 3189 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3190 3191 const Register DstReg = MI.getOperand(0).getReg(); 3192 LLT DstTy = MRI.getType(DstReg); 3193 LLT LeftoverTy0; 3194 3195 // All of the operands need to have the same number of elements, so if we can 3196 // determine a type breakdown for the result type, we can for all of the 3197 // source types. 3198 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3199 if (NumParts < 0) 3200 return UnableToLegalize; 3201 3202 SmallVector<MachineInstrBuilder, 4> NewInsts; 3203 3204 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3205 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3206 3207 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3208 Register SrcReg = MI.getOperand(I).getReg(); 3209 LLT SrcTyI = MRI.getType(SrcReg); 3210 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3211 LLT LeftoverTyI; 3212 3213 // Split this operand into the requested typed registers, and any leftover 3214 // required to reproduce the original type. 3215 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3216 LeftoverRegs)) 3217 return UnableToLegalize; 3218 3219 if (I == 1) { 3220 // For the first operand, create an instruction for each part and setup 3221 // the result. 3222 for (Register PartReg : PartRegs) { 3223 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3224 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3225 .addDef(PartDstReg) 3226 .addUse(PartReg)); 3227 DstRegs.push_back(PartDstReg); 3228 } 3229 3230 for (Register LeftoverReg : LeftoverRegs) { 3231 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3232 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3233 .addDef(PartDstReg) 3234 .addUse(LeftoverReg)); 3235 LeftoverDstRegs.push_back(PartDstReg); 3236 } 3237 } else { 3238 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3239 3240 // Add the newly created operand splits to the existing instructions. The 3241 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3242 // pieces. 3243 unsigned InstCount = 0; 3244 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3245 NewInsts[InstCount++].addUse(PartRegs[J]); 3246 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3247 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3248 } 3249 3250 PartRegs.clear(); 3251 LeftoverRegs.clear(); 3252 } 3253 3254 // Insert the newly built operations and rebuild the result register. 3255 for (auto &MIB : NewInsts) 3256 MIRBuilder.insertInstr(MIB); 3257 3258 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3259 3260 MI.eraseFromParent(); 3261 return Legalized; 3262 } 3263 3264 LegalizerHelper::LegalizeResult 3265 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3266 LLT NarrowTy) { 3267 if (TypeIdx != 0) 3268 return UnableToLegalize; 3269 3270 Register DstReg = MI.getOperand(0).getReg(); 3271 Register SrcReg = MI.getOperand(1).getReg(); 3272 LLT DstTy = MRI.getType(DstReg); 3273 LLT SrcTy = MRI.getType(SrcReg); 3274 3275 LLT NarrowTy0 = NarrowTy; 3276 LLT NarrowTy1; 3277 unsigned NumParts; 3278 3279 if (NarrowTy.isVector()) { 3280 // Uneven breakdown not handled. 3281 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3282 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3283 return UnableToLegalize; 3284 3285 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 3286 } else { 3287 NumParts = DstTy.getNumElements(); 3288 NarrowTy1 = SrcTy.getElementType(); 3289 } 3290 3291 SmallVector<Register, 4> SrcRegs, DstRegs; 3292 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3293 3294 for (unsigned I = 0; I < NumParts; ++I) { 3295 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3296 MachineInstr *NewInst = 3297 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3298 3299 NewInst->setFlags(MI.getFlags()); 3300 DstRegs.push_back(DstReg); 3301 } 3302 3303 if (NarrowTy.isVector()) 3304 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3305 else 3306 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3307 3308 MI.eraseFromParent(); 3309 return Legalized; 3310 } 3311 3312 LegalizerHelper::LegalizeResult 3313 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3314 LLT NarrowTy) { 3315 Register DstReg = MI.getOperand(0).getReg(); 3316 Register Src0Reg = MI.getOperand(2).getReg(); 3317 LLT DstTy = MRI.getType(DstReg); 3318 LLT SrcTy = MRI.getType(Src0Reg); 3319 3320 unsigned NumParts; 3321 LLT NarrowTy0, NarrowTy1; 3322 3323 if (TypeIdx == 0) { 3324 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3325 unsigned OldElts = DstTy.getNumElements(); 3326 3327 NarrowTy0 = NarrowTy; 3328 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3329 NarrowTy1 = NarrowTy.isVector() ? 3330 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3331 SrcTy.getElementType(); 3332 3333 } else { 3334 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3335 unsigned OldElts = SrcTy.getNumElements(); 3336 3337 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3338 NarrowTy.getNumElements(); 3339 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3340 DstTy.getScalarSizeInBits()); 3341 NarrowTy1 = NarrowTy; 3342 } 3343 3344 // FIXME: Don't know how to handle the situation where the small vectors 3345 // aren't all the same size yet. 3346 if (NarrowTy1.isVector() && 3347 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3348 return UnableToLegalize; 3349 3350 CmpInst::Predicate Pred 3351 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3352 3353 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3354 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3355 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3356 3357 for (unsigned I = 0; I < NumParts; ++I) { 3358 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3359 DstRegs.push_back(DstReg); 3360 3361 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3362 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3363 else { 3364 MachineInstr *NewCmp 3365 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3366 NewCmp->setFlags(MI.getFlags()); 3367 } 3368 } 3369 3370 if (NarrowTy1.isVector()) 3371 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3372 else 3373 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3374 3375 MI.eraseFromParent(); 3376 return Legalized; 3377 } 3378 3379 LegalizerHelper::LegalizeResult 3380 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3381 LLT NarrowTy) { 3382 Register DstReg = MI.getOperand(0).getReg(); 3383 Register CondReg = MI.getOperand(1).getReg(); 3384 3385 unsigned NumParts = 0; 3386 LLT NarrowTy0, NarrowTy1; 3387 3388 LLT DstTy = MRI.getType(DstReg); 3389 LLT CondTy = MRI.getType(CondReg); 3390 unsigned Size = DstTy.getSizeInBits(); 3391 3392 assert(TypeIdx == 0 || CondTy.isVector()); 3393 3394 if (TypeIdx == 0) { 3395 NarrowTy0 = NarrowTy; 3396 NarrowTy1 = CondTy; 3397 3398 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3399 // FIXME: Don't know how to handle the situation where the small vectors 3400 // aren't all the same size yet. 3401 if (Size % NarrowSize != 0) 3402 return UnableToLegalize; 3403 3404 NumParts = Size / NarrowSize; 3405 3406 // Need to break down the condition type 3407 if (CondTy.isVector()) { 3408 if (CondTy.getNumElements() == NumParts) 3409 NarrowTy1 = CondTy.getElementType(); 3410 else 3411 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3412 CondTy.getScalarSizeInBits()); 3413 } 3414 } else { 3415 NumParts = CondTy.getNumElements(); 3416 if (NarrowTy.isVector()) { 3417 // TODO: Handle uneven breakdown. 3418 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3419 return UnableToLegalize; 3420 3421 return UnableToLegalize; 3422 } else { 3423 NarrowTy0 = DstTy.getElementType(); 3424 NarrowTy1 = NarrowTy; 3425 } 3426 } 3427 3428 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3429 if (CondTy.isVector()) 3430 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3431 3432 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3433 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3434 3435 for (unsigned i = 0; i < NumParts; ++i) { 3436 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3437 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3438 Src1Regs[i], Src2Regs[i]); 3439 DstRegs.push_back(DstReg); 3440 } 3441 3442 if (NarrowTy0.isVector()) 3443 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3444 else 3445 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3446 3447 MI.eraseFromParent(); 3448 return Legalized; 3449 } 3450 3451 LegalizerHelper::LegalizeResult 3452 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3453 LLT NarrowTy) { 3454 const Register DstReg = MI.getOperand(0).getReg(); 3455 LLT PhiTy = MRI.getType(DstReg); 3456 LLT LeftoverTy; 3457 3458 // All of the operands need to have the same number of elements, so if we can 3459 // determine a type breakdown for the result type, we can for all of the 3460 // source types. 3461 int NumParts, NumLeftover; 3462 std::tie(NumParts, NumLeftover) 3463 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3464 if (NumParts < 0) 3465 return UnableToLegalize; 3466 3467 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3468 SmallVector<MachineInstrBuilder, 4> NewInsts; 3469 3470 const int TotalNumParts = NumParts + NumLeftover; 3471 3472 // Insert the new phis in the result block first. 3473 for (int I = 0; I != TotalNumParts; ++I) { 3474 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3475 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3476 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3477 .addDef(PartDstReg)); 3478 if (I < NumParts) 3479 DstRegs.push_back(PartDstReg); 3480 else 3481 LeftoverDstRegs.push_back(PartDstReg); 3482 } 3483 3484 MachineBasicBlock *MBB = MI.getParent(); 3485 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3486 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3487 3488 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3489 3490 // Insert code to extract the incoming values in each predecessor block. 3491 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3492 PartRegs.clear(); 3493 LeftoverRegs.clear(); 3494 3495 Register SrcReg = MI.getOperand(I).getReg(); 3496 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3497 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3498 3499 LLT Unused; 3500 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3501 LeftoverRegs)) 3502 return UnableToLegalize; 3503 3504 // Add the newly created operand splits to the existing instructions. The 3505 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3506 // pieces. 3507 for (int J = 0; J != TotalNumParts; ++J) { 3508 MachineInstrBuilder MIB = NewInsts[J]; 3509 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3510 MIB.addMBB(&OpMBB); 3511 } 3512 } 3513 3514 MI.eraseFromParent(); 3515 return Legalized; 3516 } 3517 3518 LegalizerHelper::LegalizeResult 3519 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3520 unsigned TypeIdx, 3521 LLT NarrowTy) { 3522 if (TypeIdx != 1) 3523 return UnableToLegalize; 3524 3525 const int NumDst = MI.getNumOperands() - 1; 3526 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3527 LLT SrcTy = MRI.getType(SrcReg); 3528 3529 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3530 3531 // TODO: Create sequence of extracts. 3532 if (DstTy == NarrowTy) 3533 return UnableToLegalize; 3534 3535 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3536 if (DstTy == GCDTy) { 3537 // This would just be a copy of the same unmerge. 3538 // TODO: Create extracts, pad with undef and create intermediate merges. 3539 return UnableToLegalize; 3540 } 3541 3542 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3543 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3544 const int PartsPerUnmerge = NumDst / NumUnmerge; 3545 3546 for (int I = 0; I != NumUnmerge; ++I) { 3547 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3548 3549 for (int J = 0; J != PartsPerUnmerge; ++J) 3550 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3551 MIB.addUse(Unmerge.getReg(I)); 3552 } 3553 3554 MI.eraseFromParent(); 3555 return Legalized; 3556 } 3557 3558 LegalizerHelper::LegalizeResult 3559 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3560 unsigned TypeIdx, 3561 LLT NarrowTy) { 3562 assert(TypeIdx == 0 && "not a vector type index"); 3563 Register DstReg = MI.getOperand(0).getReg(); 3564 LLT DstTy = MRI.getType(DstReg); 3565 LLT SrcTy = DstTy.getElementType(); 3566 3567 int DstNumElts = DstTy.getNumElements(); 3568 int NarrowNumElts = NarrowTy.getNumElements(); 3569 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3570 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3571 3572 SmallVector<Register, 8> ConcatOps; 3573 SmallVector<Register, 8> SubBuildVector; 3574 3575 Register UndefReg; 3576 if (WidenedDstTy != DstTy) 3577 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3578 3579 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3580 // necessary. 3581 // 3582 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3583 // -> <2 x s16> 3584 // 3585 // %4:_(s16) = G_IMPLICIT_DEF 3586 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3587 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3588 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3589 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3590 for (int I = 0; I != NumConcat; ++I) { 3591 for (int J = 0; J != NarrowNumElts; ++J) { 3592 int SrcIdx = NarrowNumElts * I + J; 3593 3594 if (SrcIdx < DstNumElts) { 3595 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3596 SubBuildVector.push_back(SrcReg); 3597 } else 3598 SubBuildVector.push_back(UndefReg); 3599 } 3600 3601 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3602 ConcatOps.push_back(BuildVec.getReg(0)); 3603 SubBuildVector.clear(); 3604 } 3605 3606 if (DstTy == WidenedDstTy) 3607 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3608 else { 3609 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3610 MIRBuilder.buildExtract(DstReg, Concat, 0); 3611 } 3612 3613 MI.eraseFromParent(); 3614 return Legalized; 3615 } 3616 3617 LegalizerHelper::LegalizeResult 3618 LegalizerHelper::fewerElementsVectorConcatVectors(MachineInstr &MI, 3619 unsigned TypeIdx, 3620 LLT NarrowTy) { 3621 if (TypeIdx != 1) 3622 return UnableToLegalize; 3623 3624 Register DstReg = MI.getOperand(0).getReg(); 3625 LLT DstTy = MRI.getType(DstReg); 3626 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3627 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3628 3629 // Break into a common type 3630 SmallVector<Register, 16> Parts; 3631 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3632 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3633 3634 // Build the requested new merge, padding with undef. 3635 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3636 TargetOpcode::G_ANYEXT); 3637 3638 // Pack into the original result register. 3639 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3640 3641 MI.eraseFromParent(); 3642 return Legalized; 3643 } 3644 3645 LegalizerHelper::LegalizeResult 3646 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3647 unsigned TypeIdx, 3648 LLT NarrowVecTy) { 3649 Register DstReg = MI.getOperand(0).getReg(); 3650 Register SrcVec = MI.getOperand(1).getReg(); 3651 Register InsertVal; 3652 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3653 3654 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3655 if (IsInsert) 3656 InsertVal = MI.getOperand(2).getReg(); 3657 3658 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3659 3660 // TODO: Handle total scalarization case. 3661 if (!NarrowVecTy.isVector()) 3662 return UnableToLegalize; 3663 3664 LLT VecTy = MRI.getType(SrcVec); 3665 3666 // If the index is a constant, we can really break this down as you would 3667 // expect, and index into the target size pieces. 3668 int64_t IdxVal; 3669 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3670 // Avoid out of bounds indexing the pieces. 3671 if (IdxVal >= VecTy.getNumElements()) { 3672 MIRBuilder.buildUndef(DstReg); 3673 MI.eraseFromParent(); 3674 return Legalized; 3675 } 3676 3677 SmallVector<Register, 8> VecParts; 3678 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3679 3680 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3681 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3682 TargetOpcode::G_ANYEXT); 3683 3684 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3685 3686 LLT IdxTy = MRI.getType(Idx); 3687 int64_t PartIdx = IdxVal / NewNumElts; 3688 auto NewIdx = 3689 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3690 3691 if (IsInsert) { 3692 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3693 3694 // Use the adjusted index to insert into one of the subvectors. 3695 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3696 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3697 VecParts[PartIdx] = InsertPart.getReg(0); 3698 3699 // Recombine the inserted subvector with the others to reform the result 3700 // vector. 3701 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3702 } else { 3703 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3704 } 3705 3706 MI.eraseFromParent(); 3707 return Legalized; 3708 } 3709 3710 // With a variable index, we can't perform the operation in a smaller type, so 3711 // we're forced to expand this. 3712 // 3713 // TODO: We could emit a chain of compare/select to figure out which piece to 3714 // index. 3715 return lowerExtractInsertVectorElt(MI); 3716 } 3717 3718 LegalizerHelper::LegalizeResult 3719 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3720 LLT NarrowTy) { 3721 // FIXME: Don't know how to handle secondary types yet. 3722 if (TypeIdx != 0) 3723 return UnableToLegalize; 3724 3725 MachineMemOperand *MMO = *MI.memoperands_begin(); 3726 3727 // This implementation doesn't work for atomics. Give up instead of doing 3728 // something invalid. 3729 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3730 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3731 return UnableToLegalize; 3732 3733 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3734 Register ValReg = MI.getOperand(0).getReg(); 3735 Register AddrReg = MI.getOperand(1).getReg(); 3736 LLT ValTy = MRI.getType(ValReg); 3737 3738 // FIXME: Do we need a distinct NarrowMemory legalize action? 3739 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3740 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3741 return UnableToLegalize; 3742 } 3743 3744 int NumParts = -1; 3745 int NumLeftover = -1; 3746 LLT LeftoverTy; 3747 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3748 if (IsLoad) { 3749 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3750 } else { 3751 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3752 NarrowLeftoverRegs)) { 3753 NumParts = NarrowRegs.size(); 3754 NumLeftover = NarrowLeftoverRegs.size(); 3755 } 3756 } 3757 3758 if (NumParts == -1) 3759 return UnableToLegalize; 3760 3761 LLT PtrTy = MRI.getType(AddrReg); 3762 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3763 3764 unsigned TotalSize = ValTy.getSizeInBits(); 3765 3766 // Split the load/store into PartTy sized pieces starting at Offset. If this 3767 // is a load, return the new registers in ValRegs. For a store, each elements 3768 // of ValRegs should be PartTy. Returns the next offset that needs to be 3769 // handled. 3770 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3771 unsigned Offset) -> unsigned { 3772 MachineFunction &MF = MIRBuilder.getMF(); 3773 unsigned PartSize = PartTy.getSizeInBits(); 3774 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3775 Offset += PartSize, ++Idx) { 3776 unsigned ByteSize = PartSize / 8; 3777 unsigned ByteOffset = Offset / 8; 3778 Register NewAddrReg; 3779 3780 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3781 3782 MachineMemOperand *NewMMO = 3783 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3784 3785 if (IsLoad) { 3786 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3787 ValRegs.push_back(Dst); 3788 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3789 } else { 3790 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3791 } 3792 } 3793 3794 return Offset; 3795 }; 3796 3797 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3798 3799 // Handle the rest of the register if this isn't an even type breakdown. 3800 if (LeftoverTy.isValid()) 3801 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3802 3803 if (IsLoad) { 3804 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3805 LeftoverTy, NarrowLeftoverRegs); 3806 } 3807 3808 MI.eraseFromParent(); 3809 return Legalized; 3810 } 3811 3812 LegalizerHelper::LegalizeResult 3813 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3814 LLT NarrowTy) { 3815 assert(TypeIdx == 0 && "only one type index expected"); 3816 3817 const unsigned Opc = MI.getOpcode(); 3818 const int NumOps = MI.getNumOperands() - 1; 3819 const Register DstReg = MI.getOperand(0).getReg(); 3820 const unsigned Flags = MI.getFlags(); 3821 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3822 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3823 3824 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3825 3826 // First of all check whether we are narrowing (changing the element type) 3827 // or reducing the vector elements 3828 const LLT DstTy = MRI.getType(DstReg); 3829 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3830 3831 SmallVector<Register, 8> ExtractedRegs[3]; 3832 SmallVector<Register, 8> Parts; 3833 3834 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3835 3836 // Break down all the sources into NarrowTy pieces we can operate on. This may 3837 // involve creating merges to a wider type, padded with undef. 3838 for (int I = 0; I != NumOps; ++I) { 3839 Register SrcReg = MI.getOperand(I + 1).getReg(); 3840 LLT SrcTy = MRI.getType(SrcReg); 3841 3842 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3843 // For fewerElements, this is a smaller vector with the same element type. 3844 LLT OpNarrowTy; 3845 if (IsNarrow) { 3846 OpNarrowTy = NarrowScalarTy; 3847 3848 // In case of narrowing, we need to cast vectors to scalars for this to 3849 // work properly 3850 // FIXME: Can we do without the bitcast here if we're narrowing? 3851 if (SrcTy.isVector()) { 3852 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3853 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3854 } 3855 } else { 3856 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3857 } 3858 3859 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3860 3861 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3862 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3863 TargetOpcode::G_ANYEXT); 3864 } 3865 3866 SmallVector<Register, 8> ResultRegs; 3867 3868 // Input operands for each sub-instruction. 3869 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3870 3871 int NumParts = ExtractedRegs[0].size(); 3872 const unsigned DstSize = DstTy.getSizeInBits(); 3873 const LLT DstScalarTy = LLT::scalar(DstSize); 3874 3875 // Narrowing needs to use scalar types 3876 LLT DstLCMTy, NarrowDstTy; 3877 if (IsNarrow) { 3878 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3879 NarrowDstTy = NarrowScalarTy; 3880 } else { 3881 DstLCMTy = getLCMType(DstTy, NarrowTy); 3882 NarrowDstTy = NarrowTy; 3883 } 3884 3885 // We widened the source registers to satisfy merge/unmerge size 3886 // constraints. We'll have some extra fully undef parts. 3887 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3888 3889 for (int I = 0; I != NumRealParts; ++I) { 3890 // Emit this instruction on each of the split pieces. 3891 for (int J = 0; J != NumOps; ++J) 3892 InputRegs[J] = ExtractedRegs[J][I]; 3893 3894 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3895 ResultRegs.push_back(Inst.getReg(0)); 3896 } 3897 3898 // Fill out the widened result with undef instead of creating instructions 3899 // with undef inputs. 3900 int NumUndefParts = NumParts - NumRealParts; 3901 if (NumUndefParts != 0) 3902 ResultRegs.append(NumUndefParts, 3903 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3904 3905 // Extract the possibly padded result. Use a scratch register if we need to do 3906 // a final bitcast, otherwise use the original result register. 3907 Register MergeDstReg; 3908 if (IsNarrow && DstTy.isVector()) 3909 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3910 else 3911 MergeDstReg = DstReg; 3912 3913 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3914 3915 // Recast to vector if we narrowed a vector 3916 if (IsNarrow && DstTy.isVector()) 3917 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3918 3919 MI.eraseFromParent(); 3920 return Legalized; 3921 } 3922 3923 LegalizerHelper::LegalizeResult 3924 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3925 LLT NarrowTy) { 3926 Register DstReg = MI.getOperand(0).getReg(); 3927 Register SrcReg = MI.getOperand(1).getReg(); 3928 int64_t Imm = MI.getOperand(2).getImm(); 3929 3930 LLT DstTy = MRI.getType(DstReg); 3931 3932 SmallVector<Register, 8> Parts; 3933 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3934 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3935 3936 for (Register &R : Parts) 3937 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3938 3939 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3940 3941 MI.eraseFromParent(); 3942 return Legalized; 3943 } 3944 3945 LegalizerHelper::LegalizeResult 3946 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3947 LLT NarrowTy) { 3948 using namespace TargetOpcode; 3949 3950 switch (MI.getOpcode()) { 3951 case G_IMPLICIT_DEF: 3952 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3953 case G_TRUNC: 3954 case G_AND: 3955 case G_OR: 3956 case G_XOR: 3957 case G_ADD: 3958 case G_SUB: 3959 case G_MUL: 3960 case G_PTR_ADD: 3961 case G_SMULH: 3962 case G_UMULH: 3963 case G_FADD: 3964 case G_FMUL: 3965 case G_FSUB: 3966 case G_FNEG: 3967 case G_FABS: 3968 case G_FCANONICALIZE: 3969 case G_FDIV: 3970 case G_FREM: 3971 case G_FMA: 3972 case G_FMAD: 3973 case G_FPOW: 3974 case G_FEXP: 3975 case G_FEXP2: 3976 case G_FLOG: 3977 case G_FLOG2: 3978 case G_FLOG10: 3979 case G_FNEARBYINT: 3980 case G_FCEIL: 3981 case G_FFLOOR: 3982 case G_FRINT: 3983 case G_INTRINSIC_ROUND: 3984 case G_INTRINSIC_ROUNDEVEN: 3985 case G_INTRINSIC_TRUNC: 3986 case G_FCOS: 3987 case G_FSIN: 3988 case G_FSQRT: 3989 case G_BSWAP: 3990 case G_BITREVERSE: 3991 case G_SDIV: 3992 case G_UDIV: 3993 case G_SREM: 3994 case G_UREM: 3995 case G_SMIN: 3996 case G_SMAX: 3997 case G_UMIN: 3998 case G_UMAX: 3999 case G_FMINNUM: 4000 case G_FMAXNUM: 4001 case G_FMINNUM_IEEE: 4002 case G_FMAXNUM_IEEE: 4003 case G_FMINIMUM: 4004 case G_FMAXIMUM: 4005 case G_FSHL: 4006 case G_FSHR: 4007 case G_FREEZE: 4008 case G_SADDSAT: 4009 case G_SSUBSAT: 4010 case G_UADDSAT: 4011 case G_USUBSAT: 4012 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4013 case G_SHL: 4014 case G_LSHR: 4015 case G_ASHR: 4016 case G_SSHLSAT: 4017 case G_USHLSAT: 4018 case G_CTLZ: 4019 case G_CTLZ_ZERO_UNDEF: 4020 case G_CTTZ: 4021 case G_CTTZ_ZERO_UNDEF: 4022 case G_CTPOP: 4023 case G_FCOPYSIGN: 4024 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4025 case G_ZEXT: 4026 case G_SEXT: 4027 case G_ANYEXT: 4028 case G_FPEXT: 4029 case G_FPTRUNC: 4030 case G_SITOFP: 4031 case G_UITOFP: 4032 case G_FPTOSI: 4033 case G_FPTOUI: 4034 case G_INTTOPTR: 4035 case G_PTRTOINT: 4036 case G_ADDRSPACE_CAST: 4037 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4038 case G_ICMP: 4039 case G_FCMP: 4040 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4041 case G_SELECT: 4042 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4043 case G_PHI: 4044 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4045 case G_UNMERGE_VALUES: 4046 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4047 case G_BUILD_VECTOR: 4048 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 4049 case G_CONCAT_VECTORS: 4050 return fewerElementsVectorConcatVectors(MI, TypeIdx, NarrowTy); 4051 case G_EXTRACT_VECTOR_ELT: 4052 case G_INSERT_VECTOR_ELT: 4053 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4054 case G_LOAD: 4055 case G_STORE: 4056 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4057 case G_SEXT_INREG: 4058 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4059 default: 4060 return UnableToLegalize; 4061 } 4062 } 4063 4064 LegalizerHelper::LegalizeResult 4065 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4066 const LLT HalfTy, const LLT AmtTy) { 4067 4068 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4069 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4070 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4071 4072 if (Amt.isNullValue()) { 4073 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4074 MI.eraseFromParent(); 4075 return Legalized; 4076 } 4077 4078 LLT NVT = HalfTy; 4079 unsigned NVTBits = HalfTy.getSizeInBits(); 4080 unsigned VTBits = 2 * NVTBits; 4081 4082 SrcOp Lo(Register(0)), Hi(Register(0)); 4083 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4084 if (Amt.ugt(VTBits)) { 4085 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4086 } else if (Amt.ugt(NVTBits)) { 4087 Lo = MIRBuilder.buildConstant(NVT, 0); 4088 Hi = MIRBuilder.buildShl(NVT, InL, 4089 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4090 } else if (Amt == NVTBits) { 4091 Lo = MIRBuilder.buildConstant(NVT, 0); 4092 Hi = InL; 4093 } else { 4094 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4095 auto OrLHS = 4096 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4097 auto OrRHS = MIRBuilder.buildLShr( 4098 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4099 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4100 } 4101 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4102 if (Amt.ugt(VTBits)) { 4103 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4104 } else if (Amt.ugt(NVTBits)) { 4105 Lo = MIRBuilder.buildLShr(NVT, InH, 4106 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4107 Hi = MIRBuilder.buildConstant(NVT, 0); 4108 } else if (Amt == NVTBits) { 4109 Lo = InH; 4110 Hi = MIRBuilder.buildConstant(NVT, 0); 4111 } else { 4112 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4113 4114 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4115 auto OrRHS = MIRBuilder.buildShl( 4116 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4117 4118 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4119 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4120 } 4121 } else { 4122 if (Amt.ugt(VTBits)) { 4123 Hi = Lo = MIRBuilder.buildAShr( 4124 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4125 } else if (Amt.ugt(NVTBits)) { 4126 Lo = MIRBuilder.buildAShr(NVT, InH, 4127 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4128 Hi = MIRBuilder.buildAShr(NVT, InH, 4129 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4130 } else if (Amt == NVTBits) { 4131 Lo = InH; 4132 Hi = MIRBuilder.buildAShr(NVT, InH, 4133 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4134 } else { 4135 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4136 4137 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4138 auto OrRHS = MIRBuilder.buildShl( 4139 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4140 4141 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4142 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4143 } 4144 } 4145 4146 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4147 MI.eraseFromParent(); 4148 4149 return Legalized; 4150 } 4151 4152 // TODO: Optimize if constant shift amount. 4153 LegalizerHelper::LegalizeResult 4154 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4155 LLT RequestedTy) { 4156 if (TypeIdx == 1) { 4157 Observer.changingInstr(MI); 4158 narrowScalarSrc(MI, RequestedTy, 2); 4159 Observer.changedInstr(MI); 4160 return Legalized; 4161 } 4162 4163 Register DstReg = MI.getOperand(0).getReg(); 4164 LLT DstTy = MRI.getType(DstReg); 4165 if (DstTy.isVector()) 4166 return UnableToLegalize; 4167 4168 Register Amt = MI.getOperand(2).getReg(); 4169 LLT ShiftAmtTy = MRI.getType(Amt); 4170 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4171 if (DstEltSize % 2 != 0) 4172 return UnableToLegalize; 4173 4174 // Ignore the input type. We can only go to exactly half the size of the 4175 // input. If that isn't small enough, the resulting pieces will be further 4176 // legalized. 4177 const unsigned NewBitSize = DstEltSize / 2; 4178 const LLT HalfTy = LLT::scalar(NewBitSize); 4179 const LLT CondTy = LLT::scalar(1); 4180 4181 if (const MachineInstr *KShiftAmt = 4182 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4183 return narrowScalarShiftByConstant( 4184 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4185 } 4186 4187 // TODO: Expand with known bits. 4188 4189 // Handle the fully general expansion by an unknown amount. 4190 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4191 4192 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4193 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4194 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4195 4196 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4197 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4198 4199 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4200 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4201 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4202 4203 Register ResultRegs[2]; 4204 switch (MI.getOpcode()) { 4205 case TargetOpcode::G_SHL: { 4206 // Short: ShAmt < NewBitSize 4207 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4208 4209 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4210 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4211 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4212 4213 // Long: ShAmt >= NewBitSize 4214 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4215 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4216 4217 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4218 auto Hi = MIRBuilder.buildSelect( 4219 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4220 4221 ResultRegs[0] = Lo.getReg(0); 4222 ResultRegs[1] = Hi.getReg(0); 4223 break; 4224 } 4225 case TargetOpcode::G_LSHR: 4226 case TargetOpcode::G_ASHR: { 4227 // Short: ShAmt < NewBitSize 4228 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4229 4230 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4231 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4232 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4233 4234 // Long: ShAmt >= NewBitSize 4235 MachineInstrBuilder HiL; 4236 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4237 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4238 } else { 4239 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4240 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4241 } 4242 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4243 {InH, AmtExcess}); // Lo from Hi part. 4244 4245 auto Lo = MIRBuilder.buildSelect( 4246 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4247 4248 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4249 4250 ResultRegs[0] = Lo.getReg(0); 4251 ResultRegs[1] = Hi.getReg(0); 4252 break; 4253 } 4254 default: 4255 llvm_unreachable("not a shift"); 4256 } 4257 4258 MIRBuilder.buildMerge(DstReg, ResultRegs); 4259 MI.eraseFromParent(); 4260 return Legalized; 4261 } 4262 4263 LegalizerHelper::LegalizeResult 4264 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4265 LLT MoreTy) { 4266 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4267 4268 Observer.changingInstr(MI); 4269 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4270 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4271 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4272 moreElementsVectorSrc(MI, MoreTy, I); 4273 } 4274 4275 MachineBasicBlock &MBB = *MI.getParent(); 4276 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4277 moreElementsVectorDst(MI, MoreTy, 0); 4278 Observer.changedInstr(MI); 4279 return Legalized; 4280 } 4281 4282 LegalizerHelper::LegalizeResult 4283 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4284 LLT MoreTy) { 4285 unsigned Opc = MI.getOpcode(); 4286 switch (Opc) { 4287 case TargetOpcode::G_IMPLICIT_DEF: 4288 case TargetOpcode::G_LOAD: { 4289 if (TypeIdx != 0) 4290 return UnableToLegalize; 4291 Observer.changingInstr(MI); 4292 moreElementsVectorDst(MI, MoreTy, 0); 4293 Observer.changedInstr(MI); 4294 return Legalized; 4295 } 4296 case TargetOpcode::G_STORE: 4297 if (TypeIdx != 0) 4298 return UnableToLegalize; 4299 Observer.changingInstr(MI); 4300 moreElementsVectorSrc(MI, MoreTy, 0); 4301 Observer.changedInstr(MI); 4302 return Legalized; 4303 case TargetOpcode::G_AND: 4304 case TargetOpcode::G_OR: 4305 case TargetOpcode::G_XOR: 4306 case TargetOpcode::G_SMIN: 4307 case TargetOpcode::G_SMAX: 4308 case TargetOpcode::G_UMIN: 4309 case TargetOpcode::G_UMAX: 4310 case TargetOpcode::G_FMINNUM: 4311 case TargetOpcode::G_FMAXNUM: 4312 case TargetOpcode::G_FMINNUM_IEEE: 4313 case TargetOpcode::G_FMAXNUM_IEEE: 4314 case TargetOpcode::G_FMINIMUM: 4315 case TargetOpcode::G_FMAXIMUM: { 4316 Observer.changingInstr(MI); 4317 moreElementsVectorSrc(MI, MoreTy, 1); 4318 moreElementsVectorSrc(MI, MoreTy, 2); 4319 moreElementsVectorDst(MI, MoreTy, 0); 4320 Observer.changedInstr(MI); 4321 return Legalized; 4322 } 4323 case TargetOpcode::G_EXTRACT: 4324 if (TypeIdx != 1) 4325 return UnableToLegalize; 4326 Observer.changingInstr(MI); 4327 moreElementsVectorSrc(MI, MoreTy, 1); 4328 Observer.changedInstr(MI); 4329 return Legalized; 4330 case TargetOpcode::G_INSERT: 4331 case TargetOpcode::G_FREEZE: 4332 if (TypeIdx != 0) 4333 return UnableToLegalize; 4334 Observer.changingInstr(MI); 4335 moreElementsVectorSrc(MI, MoreTy, 1); 4336 moreElementsVectorDst(MI, MoreTy, 0); 4337 Observer.changedInstr(MI); 4338 return Legalized; 4339 case TargetOpcode::G_SELECT: 4340 if (TypeIdx != 0) 4341 return UnableToLegalize; 4342 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4343 return UnableToLegalize; 4344 4345 Observer.changingInstr(MI); 4346 moreElementsVectorSrc(MI, MoreTy, 2); 4347 moreElementsVectorSrc(MI, MoreTy, 3); 4348 moreElementsVectorDst(MI, MoreTy, 0); 4349 Observer.changedInstr(MI); 4350 return Legalized; 4351 case TargetOpcode::G_UNMERGE_VALUES: { 4352 if (TypeIdx != 1) 4353 return UnableToLegalize; 4354 4355 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4356 int NumDst = MI.getNumOperands() - 1; 4357 moreElementsVectorSrc(MI, MoreTy, NumDst); 4358 4359 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4360 for (int I = 0; I != NumDst; ++I) 4361 MIB.addDef(MI.getOperand(I).getReg()); 4362 4363 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4364 for (int I = NumDst; I != NewNumDst; ++I) 4365 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4366 4367 MIB.addUse(MI.getOperand(NumDst).getReg()); 4368 MI.eraseFromParent(); 4369 return Legalized; 4370 } 4371 case TargetOpcode::G_PHI: 4372 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4373 default: 4374 return UnableToLegalize; 4375 } 4376 } 4377 4378 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4379 ArrayRef<Register> Src1Regs, 4380 ArrayRef<Register> Src2Regs, 4381 LLT NarrowTy) { 4382 MachineIRBuilder &B = MIRBuilder; 4383 unsigned SrcParts = Src1Regs.size(); 4384 unsigned DstParts = DstRegs.size(); 4385 4386 unsigned DstIdx = 0; // Low bits of the result. 4387 Register FactorSum = 4388 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4389 DstRegs[DstIdx] = FactorSum; 4390 4391 unsigned CarrySumPrevDstIdx; 4392 SmallVector<Register, 4> Factors; 4393 4394 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4395 // Collect low parts of muls for DstIdx. 4396 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4397 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4398 MachineInstrBuilder Mul = 4399 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4400 Factors.push_back(Mul.getReg(0)); 4401 } 4402 // Collect high parts of muls from previous DstIdx. 4403 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4404 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4405 MachineInstrBuilder Umulh = 4406 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4407 Factors.push_back(Umulh.getReg(0)); 4408 } 4409 // Add CarrySum from additions calculated for previous DstIdx. 4410 if (DstIdx != 1) { 4411 Factors.push_back(CarrySumPrevDstIdx); 4412 } 4413 4414 Register CarrySum; 4415 // Add all factors and accumulate all carries into CarrySum. 4416 if (DstIdx != DstParts - 1) { 4417 MachineInstrBuilder Uaddo = 4418 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4419 FactorSum = Uaddo.getReg(0); 4420 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4421 for (unsigned i = 2; i < Factors.size(); ++i) { 4422 MachineInstrBuilder Uaddo = 4423 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4424 FactorSum = Uaddo.getReg(0); 4425 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4426 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4427 } 4428 } else { 4429 // Since value for the next index is not calculated, neither is CarrySum. 4430 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4431 for (unsigned i = 2; i < Factors.size(); ++i) 4432 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4433 } 4434 4435 CarrySumPrevDstIdx = CarrySum; 4436 DstRegs[DstIdx] = FactorSum; 4437 Factors.clear(); 4438 } 4439 } 4440 4441 LegalizerHelper::LegalizeResult 4442 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4443 Register DstReg = MI.getOperand(0).getReg(); 4444 Register Src1 = MI.getOperand(1).getReg(); 4445 Register Src2 = MI.getOperand(2).getReg(); 4446 4447 LLT Ty = MRI.getType(DstReg); 4448 if (Ty.isVector()) 4449 return UnableToLegalize; 4450 4451 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4452 unsigned DstSize = Ty.getSizeInBits(); 4453 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4454 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4455 return UnableToLegalize; 4456 4457 unsigned NumDstParts = DstSize / NarrowSize; 4458 unsigned NumSrcParts = SrcSize / NarrowSize; 4459 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4460 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4461 4462 SmallVector<Register, 2> Src1Parts, Src2Parts; 4463 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4464 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4465 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4466 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4467 4468 // Take only high half of registers if this is high mul. 4469 ArrayRef<Register> DstRegs( 4470 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4471 MIRBuilder.buildMerge(DstReg, DstRegs); 4472 MI.eraseFromParent(); 4473 return Legalized; 4474 } 4475 4476 LegalizerHelper::LegalizeResult 4477 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4478 LLT NarrowTy) { 4479 if (TypeIdx != 1) 4480 return UnableToLegalize; 4481 4482 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4483 4484 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4485 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4486 // NarrowSize. 4487 if (SizeOp1 % NarrowSize != 0) 4488 return UnableToLegalize; 4489 int NumParts = SizeOp1 / NarrowSize; 4490 4491 SmallVector<Register, 2> SrcRegs, DstRegs; 4492 SmallVector<uint64_t, 2> Indexes; 4493 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4494 4495 Register OpReg = MI.getOperand(0).getReg(); 4496 uint64_t OpStart = MI.getOperand(2).getImm(); 4497 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4498 for (int i = 0; i < NumParts; ++i) { 4499 unsigned SrcStart = i * NarrowSize; 4500 4501 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4502 // No part of the extract uses this subregister, ignore it. 4503 continue; 4504 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4505 // The entire subregister is extracted, forward the value. 4506 DstRegs.push_back(SrcRegs[i]); 4507 continue; 4508 } 4509 4510 // OpSegStart is where this destination segment would start in OpReg if it 4511 // extended infinitely in both directions. 4512 int64_t ExtractOffset; 4513 uint64_t SegSize; 4514 if (OpStart < SrcStart) { 4515 ExtractOffset = 0; 4516 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4517 } else { 4518 ExtractOffset = OpStart - SrcStart; 4519 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4520 } 4521 4522 Register SegReg = SrcRegs[i]; 4523 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4524 // A genuine extract is needed. 4525 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4526 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4527 } 4528 4529 DstRegs.push_back(SegReg); 4530 } 4531 4532 Register DstReg = MI.getOperand(0).getReg(); 4533 if (MRI.getType(DstReg).isVector()) 4534 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4535 else if (DstRegs.size() > 1) 4536 MIRBuilder.buildMerge(DstReg, DstRegs); 4537 else 4538 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4539 MI.eraseFromParent(); 4540 return Legalized; 4541 } 4542 4543 LegalizerHelper::LegalizeResult 4544 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4545 LLT NarrowTy) { 4546 // FIXME: Don't know how to handle secondary types yet. 4547 if (TypeIdx != 0) 4548 return UnableToLegalize; 4549 4550 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4551 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4552 4553 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4554 // NarrowSize. 4555 if (SizeOp0 % NarrowSize != 0) 4556 return UnableToLegalize; 4557 4558 int NumParts = SizeOp0 / NarrowSize; 4559 4560 SmallVector<Register, 2> SrcRegs, DstRegs; 4561 SmallVector<uint64_t, 2> Indexes; 4562 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4563 4564 Register OpReg = MI.getOperand(2).getReg(); 4565 uint64_t OpStart = MI.getOperand(3).getImm(); 4566 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4567 for (int i = 0; i < NumParts; ++i) { 4568 unsigned DstStart = i * NarrowSize; 4569 4570 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4571 // No part of the insert affects this subregister, forward the original. 4572 DstRegs.push_back(SrcRegs[i]); 4573 continue; 4574 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4575 // The entire subregister is defined by this insert, forward the new 4576 // value. 4577 DstRegs.push_back(OpReg); 4578 continue; 4579 } 4580 4581 // OpSegStart is where this destination segment would start in OpReg if it 4582 // extended infinitely in both directions. 4583 int64_t ExtractOffset, InsertOffset; 4584 uint64_t SegSize; 4585 if (OpStart < DstStart) { 4586 InsertOffset = 0; 4587 ExtractOffset = DstStart - OpStart; 4588 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4589 } else { 4590 InsertOffset = OpStart - DstStart; 4591 ExtractOffset = 0; 4592 SegSize = 4593 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4594 } 4595 4596 Register SegReg = OpReg; 4597 if (ExtractOffset != 0 || SegSize != OpSize) { 4598 // A genuine extract is needed. 4599 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4600 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4601 } 4602 4603 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4604 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4605 DstRegs.push_back(DstReg); 4606 } 4607 4608 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4609 Register DstReg = MI.getOperand(0).getReg(); 4610 if(MRI.getType(DstReg).isVector()) 4611 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4612 else 4613 MIRBuilder.buildMerge(DstReg, DstRegs); 4614 MI.eraseFromParent(); 4615 return Legalized; 4616 } 4617 4618 LegalizerHelper::LegalizeResult 4619 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4620 LLT NarrowTy) { 4621 Register DstReg = MI.getOperand(0).getReg(); 4622 LLT DstTy = MRI.getType(DstReg); 4623 4624 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4625 4626 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4627 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4628 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4629 LLT LeftoverTy; 4630 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4631 Src0Regs, Src0LeftoverRegs)) 4632 return UnableToLegalize; 4633 4634 LLT Unused; 4635 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4636 Src1Regs, Src1LeftoverRegs)) 4637 llvm_unreachable("inconsistent extractParts result"); 4638 4639 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4640 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4641 {Src0Regs[I], Src1Regs[I]}); 4642 DstRegs.push_back(Inst.getReg(0)); 4643 } 4644 4645 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4646 auto Inst = MIRBuilder.buildInstr( 4647 MI.getOpcode(), 4648 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4649 DstLeftoverRegs.push_back(Inst.getReg(0)); 4650 } 4651 4652 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4653 LeftoverTy, DstLeftoverRegs); 4654 4655 MI.eraseFromParent(); 4656 return Legalized; 4657 } 4658 4659 LegalizerHelper::LegalizeResult 4660 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4661 LLT NarrowTy) { 4662 if (TypeIdx != 0) 4663 return UnableToLegalize; 4664 4665 Register DstReg = MI.getOperand(0).getReg(); 4666 Register SrcReg = MI.getOperand(1).getReg(); 4667 4668 LLT DstTy = MRI.getType(DstReg); 4669 if (DstTy.isVector()) 4670 return UnableToLegalize; 4671 4672 SmallVector<Register, 8> Parts; 4673 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4674 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4675 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4676 4677 MI.eraseFromParent(); 4678 return Legalized; 4679 } 4680 4681 LegalizerHelper::LegalizeResult 4682 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4683 LLT NarrowTy) { 4684 if (TypeIdx != 0) 4685 return UnableToLegalize; 4686 4687 Register CondReg = MI.getOperand(1).getReg(); 4688 LLT CondTy = MRI.getType(CondReg); 4689 if (CondTy.isVector()) // TODO: Handle vselect 4690 return UnableToLegalize; 4691 4692 Register DstReg = MI.getOperand(0).getReg(); 4693 LLT DstTy = MRI.getType(DstReg); 4694 4695 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4696 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4697 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4698 LLT LeftoverTy; 4699 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4700 Src1Regs, Src1LeftoverRegs)) 4701 return UnableToLegalize; 4702 4703 LLT Unused; 4704 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4705 Src2Regs, Src2LeftoverRegs)) 4706 llvm_unreachable("inconsistent extractParts result"); 4707 4708 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4709 auto Select = MIRBuilder.buildSelect(NarrowTy, 4710 CondReg, Src1Regs[I], Src2Regs[I]); 4711 DstRegs.push_back(Select.getReg(0)); 4712 } 4713 4714 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4715 auto Select = MIRBuilder.buildSelect( 4716 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4717 DstLeftoverRegs.push_back(Select.getReg(0)); 4718 } 4719 4720 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4721 LeftoverTy, DstLeftoverRegs); 4722 4723 MI.eraseFromParent(); 4724 return Legalized; 4725 } 4726 4727 LegalizerHelper::LegalizeResult 4728 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4729 LLT NarrowTy) { 4730 if (TypeIdx != 1) 4731 return UnableToLegalize; 4732 4733 Register DstReg = MI.getOperand(0).getReg(); 4734 Register SrcReg = MI.getOperand(1).getReg(); 4735 LLT DstTy = MRI.getType(DstReg); 4736 LLT SrcTy = MRI.getType(SrcReg); 4737 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4738 4739 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4740 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4741 4742 MachineIRBuilder &B = MIRBuilder; 4743 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4744 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4745 auto C_0 = B.buildConstant(NarrowTy, 0); 4746 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4747 UnmergeSrc.getReg(1), C_0); 4748 auto LoCTLZ = IsUndef ? 4749 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4750 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4751 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4752 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4753 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4754 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4755 4756 MI.eraseFromParent(); 4757 return Legalized; 4758 } 4759 4760 return UnableToLegalize; 4761 } 4762 4763 LegalizerHelper::LegalizeResult 4764 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4765 LLT NarrowTy) { 4766 if (TypeIdx != 1) 4767 return UnableToLegalize; 4768 4769 Register DstReg = MI.getOperand(0).getReg(); 4770 Register SrcReg = MI.getOperand(1).getReg(); 4771 LLT DstTy = MRI.getType(DstReg); 4772 LLT SrcTy = MRI.getType(SrcReg); 4773 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4774 4775 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4776 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4777 4778 MachineIRBuilder &B = MIRBuilder; 4779 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4780 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4781 auto C_0 = B.buildConstant(NarrowTy, 0); 4782 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4783 UnmergeSrc.getReg(0), C_0); 4784 auto HiCTTZ = IsUndef ? 4785 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4786 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4787 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4788 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4789 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4790 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4791 4792 MI.eraseFromParent(); 4793 return Legalized; 4794 } 4795 4796 return UnableToLegalize; 4797 } 4798 4799 LegalizerHelper::LegalizeResult 4800 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4801 LLT NarrowTy) { 4802 if (TypeIdx != 1) 4803 return UnableToLegalize; 4804 4805 Register DstReg = MI.getOperand(0).getReg(); 4806 LLT DstTy = MRI.getType(DstReg); 4807 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4808 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4809 4810 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4811 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4812 4813 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4814 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4815 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4816 4817 MI.eraseFromParent(); 4818 return Legalized; 4819 } 4820 4821 return UnableToLegalize; 4822 } 4823 4824 LegalizerHelper::LegalizeResult 4825 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4826 unsigned Opc = MI.getOpcode(); 4827 const auto &TII = MIRBuilder.getTII(); 4828 auto isSupported = [this](const LegalityQuery &Q) { 4829 auto QAction = LI.getAction(Q).Action; 4830 return QAction == Legal || QAction == Libcall || QAction == Custom; 4831 }; 4832 switch (Opc) { 4833 default: 4834 return UnableToLegalize; 4835 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4836 // This trivially expands to CTLZ. 4837 Observer.changingInstr(MI); 4838 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4839 Observer.changedInstr(MI); 4840 return Legalized; 4841 } 4842 case TargetOpcode::G_CTLZ: { 4843 Register DstReg = MI.getOperand(0).getReg(); 4844 Register SrcReg = MI.getOperand(1).getReg(); 4845 LLT DstTy = MRI.getType(DstReg); 4846 LLT SrcTy = MRI.getType(SrcReg); 4847 unsigned Len = SrcTy.getSizeInBits(); 4848 4849 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4850 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4851 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4852 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4853 auto ICmp = MIRBuilder.buildICmp( 4854 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4855 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4856 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4857 MI.eraseFromParent(); 4858 return Legalized; 4859 } 4860 // for now, we do this: 4861 // NewLen = NextPowerOf2(Len); 4862 // x = x | (x >> 1); 4863 // x = x | (x >> 2); 4864 // ... 4865 // x = x | (x >>16); 4866 // x = x | (x >>32); // for 64-bit input 4867 // Upto NewLen/2 4868 // return Len - popcount(x); 4869 // 4870 // Ref: "Hacker's Delight" by Henry Warren 4871 Register Op = SrcReg; 4872 unsigned NewLen = PowerOf2Ceil(Len); 4873 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4874 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4875 auto MIBOp = MIRBuilder.buildOr( 4876 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4877 Op = MIBOp.getReg(0); 4878 } 4879 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4880 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4881 MIBPop); 4882 MI.eraseFromParent(); 4883 return Legalized; 4884 } 4885 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4886 // This trivially expands to CTTZ. 4887 Observer.changingInstr(MI); 4888 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4889 Observer.changedInstr(MI); 4890 return Legalized; 4891 } 4892 case TargetOpcode::G_CTTZ: { 4893 Register DstReg = MI.getOperand(0).getReg(); 4894 Register SrcReg = MI.getOperand(1).getReg(); 4895 LLT DstTy = MRI.getType(DstReg); 4896 LLT SrcTy = MRI.getType(SrcReg); 4897 4898 unsigned Len = SrcTy.getSizeInBits(); 4899 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4900 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4901 // zero. 4902 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4903 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4904 auto ICmp = MIRBuilder.buildICmp( 4905 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4906 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4907 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4908 MI.eraseFromParent(); 4909 return Legalized; 4910 } 4911 // for now, we use: { return popcount(~x & (x - 1)); } 4912 // unless the target has ctlz but not ctpop, in which case we use: 4913 // { return 32 - nlz(~x & (x-1)); } 4914 // Ref: "Hacker's Delight" by Henry Warren 4915 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4916 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4917 auto MIBTmp = MIRBuilder.buildAnd( 4918 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4919 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4920 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4921 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4922 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4923 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4924 MI.eraseFromParent(); 4925 return Legalized; 4926 } 4927 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4928 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4929 return Legalized; 4930 } 4931 case TargetOpcode::G_CTPOP: { 4932 Register SrcReg = MI.getOperand(1).getReg(); 4933 LLT Ty = MRI.getType(SrcReg); 4934 unsigned Size = Ty.getSizeInBits(); 4935 MachineIRBuilder &B = MIRBuilder; 4936 4937 // Count set bits in blocks of 2 bits. Default approach would be 4938 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4939 // We use following formula instead: 4940 // B2Count = val - { (val >> 1) & 0x55555555 } 4941 // since it gives same result in blocks of 2 with one instruction less. 4942 auto C_1 = B.buildConstant(Ty, 1); 4943 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4944 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4945 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4946 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4947 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4948 4949 // In order to get count in blocks of 4 add values from adjacent block of 2. 4950 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4951 auto C_2 = B.buildConstant(Ty, 2); 4952 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4953 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4954 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4955 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4956 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4957 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4958 4959 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4960 // addition since count value sits in range {0,...,8} and 4 bits are enough 4961 // to hold such binary values. After addition high 4 bits still hold count 4962 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4963 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4964 auto C_4 = B.buildConstant(Ty, 4); 4965 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4966 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4967 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4968 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4969 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4970 4971 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4972 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4973 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4974 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4975 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4976 4977 // Shift count result from 8 high bits to low bits. 4978 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4979 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4980 4981 MI.eraseFromParent(); 4982 return Legalized; 4983 } 4984 } 4985 } 4986 4987 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4988 // representation. 4989 LegalizerHelper::LegalizeResult 4990 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4991 Register Dst = MI.getOperand(0).getReg(); 4992 Register Src = MI.getOperand(1).getReg(); 4993 const LLT S64 = LLT::scalar(64); 4994 const LLT S32 = LLT::scalar(32); 4995 const LLT S1 = LLT::scalar(1); 4996 4997 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4998 4999 // unsigned cul2f(ulong u) { 5000 // uint lz = clz(u); 5001 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5002 // u = (u << lz) & 0x7fffffffffffffffUL; 5003 // ulong t = u & 0xffffffffffUL; 5004 // uint v = (e << 23) | (uint)(u >> 40); 5005 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5006 // return as_float(v + r); 5007 // } 5008 5009 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5010 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5011 5012 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5013 5014 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5015 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5016 5017 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5018 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5019 5020 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5021 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5022 5023 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5024 5025 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5026 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5027 5028 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5029 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5030 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5031 5032 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5033 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5034 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5035 auto One = MIRBuilder.buildConstant(S32, 1); 5036 5037 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5038 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5039 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5040 MIRBuilder.buildAdd(Dst, V, R); 5041 5042 MI.eraseFromParent(); 5043 return Legalized; 5044 } 5045 5046 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5047 Register Dst = MI.getOperand(0).getReg(); 5048 Register Src = MI.getOperand(1).getReg(); 5049 LLT DstTy = MRI.getType(Dst); 5050 LLT SrcTy = MRI.getType(Src); 5051 5052 if (SrcTy == LLT::scalar(1)) { 5053 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5054 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5055 MIRBuilder.buildSelect(Dst, Src, True, False); 5056 MI.eraseFromParent(); 5057 return Legalized; 5058 } 5059 5060 if (SrcTy != LLT::scalar(64)) 5061 return UnableToLegalize; 5062 5063 if (DstTy == LLT::scalar(32)) { 5064 // TODO: SelectionDAG has several alternative expansions to port which may 5065 // be more reasonble depending on the available instructions. If a target 5066 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5067 // intermediate type, this is probably worse. 5068 return lowerU64ToF32BitOps(MI); 5069 } 5070 5071 return UnableToLegalize; 5072 } 5073 5074 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5075 Register Dst = MI.getOperand(0).getReg(); 5076 Register Src = MI.getOperand(1).getReg(); 5077 LLT DstTy = MRI.getType(Dst); 5078 LLT SrcTy = MRI.getType(Src); 5079 5080 const LLT S64 = LLT::scalar(64); 5081 const LLT S32 = LLT::scalar(32); 5082 const LLT S1 = LLT::scalar(1); 5083 5084 if (SrcTy == S1) { 5085 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5086 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5087 MIRBuilder.buildSelect(Dst, Src, True, False); 5088 MI.eraseFromParent(); 5089 return Legalized; 5090 } 5091 5092 if (SrcTy != S64) 5093 return UnableToLegalize; 5094 5095 if (DstTy == S32) { 5096 // signed cl2f(long l) { 5097 // long s = l >> 63; 5098 // float r = cul2f((l + s) ^ s); 5099 // return s ? -r : r; 5100 // } 5101 Register L = Src; 5102 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5103 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5104 5105 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5106 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5107 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5108 5109 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5110 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5111 MIRBuilder.buildConstant(S64, 0)); 5112 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5113 MI.eraseFromParent(); 5114 return Legalized; 5115 } 5116 5117 return UnableToLegalize; 5118 } 5119 5120 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5121 Register Dst = MI.getOperand(0).getReg(); 5122 Register Src = MI.getOperand(1).getReg(); 5123 LLT DstTy = MRI.getType(Dst); 5124 LLT SrcTy = MRI.getType(Src); 5125 const LLT S64 = LLT::scalar(64); 5126 const LLT S32 = LLT::scalar(32); 5127 5128 if (SrcTy != S64 && SrcTy != S32) 5129 return UnableToLegalize; 5130 if (DstTy != S32 && DstTy != S64) 5131 return UnableToLegalize; 5132 5133 // FPTOSI gives same result as FPTOUI for positive signed integers. 5134 // FPTOUI needs to deal with fp values that convert to unsigned integers 5135 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5136 5137 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5138 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5139 : APFloat::IEEEdouble(), 5140 APInt::getNullValue(SrcTy.getSizeInBits())); 5141 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5142 5143 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5144 5145 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5146 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5147 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5148 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5149 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5150 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5151 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5152 5153 const LLT S1 = LLT::scalar(1); 5154 5155 MachineInstrBuilder FCMP = 5156 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5157 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5158 5159 MI.eraseFromParent(); 5160 return Legalized; 5161 } 5162 5163 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5164 Register Dst = MI.getOperand(0).getReg(); 5165 Register Src = MI.getOperand(1).getReg(); 5166 LLT DstTy = MRI.getType(Dst); 5167 LLT SrcTy = MRI.getType(Src); 5168 const LLT S64 = LLT::scalar(64); 5169 const LLT S32 = LLT::scalar(32); 5170 5171 // FIXME: Only f32 to i64 conversions are supported. 5172 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5173 return UnableToLegalize; 5174 5175 // Expand f32 -> i64 conversion 5176 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5177 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5178 5179 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5180 5181 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5182 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5183 5184 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5185 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5186 5187 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5188 APInt::getSignMask(SrcEltBits)); 5189 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5190 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5191 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5192 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5193 5194 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5195 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5196 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5197 5198 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5199 R = MIRBuilder.buildZExt(DstTy, R); 5200 5201 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5202 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5203 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5204 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5205 5206 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5207 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5208 5209 const LLT S1 = LLT::scalar(1); 5210 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5211 S1, Exponent, ExponentLoBit); 5212 5213 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5214 5215 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5216 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5217 5218 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5219 5220 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5221 S1, Exponent, ZeroSrcTy); 5222 5223 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5224 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5225 5226 MI.eraseFromParent(); 5227 return Legalized; 5228 } 5229 5230 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5231 LegalizerHelper::LegalizeResult 5232 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5233 Register Dst = MI.getOperand(0).getReg(); 5234 Register Src = MI.getOperand(1).getReg(); 5235 5236 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5237 return UnableToLegalize; 5238 5239 const unsigned ExpMask = 0x7ff; 5240 const unsigned ExpBiasf64 = 1023; 5241 const unsigned ExpBiasf16 = 15; 5242 const LLT S32 = LLT::scalar(32); 5243 const LLT S1 = LLT::scalar(1); 5244 5245 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5246 Register U = Unmerge.getReg(0); 5247 Register UH = Unmerge.getReg(1); 5248 5249 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5250 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5251 5252 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5253 // add the f16 bias (15) to get the biased exponent for the f16 format. 5254 E = MIRBuilder.buildAdd( 5255 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5256 5257 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5258 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5259 5260 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5261 MIRBuilder.buildConstant(S32, 0x1ff)); 5262 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5263 5264 auto Zero = MIRBuilder.buildConstant(S32, 0); 5265 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5266 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5267 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5268 5269 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5270 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5271 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5272 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5273 5274 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5275 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5276 5277 // N = M | (E << 12); 5278 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5279 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5280 5281 // B = clamp(1-E, 0, 13); 5282 auto One = MIRBuilder.buildConstant(S32, 1); 5283 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5284 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5285 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5286 5287 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5288 MIRBuilder.buildConstant(S32, 0x1000)); 5289 5290 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5291 auto D0 = MIRBuilder.buildShl(S32, D, B); 5292 5293 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5294 D0, SigSetHigh); 5295 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5296 D = MIRBuilder.buildOr(S32, D, D1); 5297 5298 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5299 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5300 5301 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5302 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5303 5304 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5305 MIRBuilder.buildConstant(S32, 3)); 5306 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5307 5308 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5309 MIRBuilder.buildConstant(S32, 5)); 5310 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5311 5312 V1 = MIRBuilder.buildOr(S32, V0, V1); 5313 V = MIRBuilder.buildAdd(S32, V, V1); 5314 5315 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5316 E, MIRBuilder.buildConstant(S32, 30)); 5317 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5318 MIRBuilder.buildConstant(S32, 0x7c00), V); 5319 5320 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5321 E, MIRBuilder.buildConstant(S32, 1039)); 5322 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5323 5324 // Extract the sign bit. 5325 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5326 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5327 5328 // Insert the sign bit 5329 V = MIRBuilder.buildOr(S32, Sign, V); 5330 5331 MIRBuilder.buildTrunc(Dst, V); 5332 MI.eraseFromParent(); 5333 return Legalized; 5334 } 5335 5336 LegalizerHelper::LegalizeResult 5337 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5338 Register Dst = MI.getOperand(0).getReg(); 5339 Register Src = MI.getOperand(1).getReg(); 5340 5341 LLT DstTy = MRI.getType(Dst); 5342 LLT SrcTy = MRI.getType(Src); 5343 const LLT S64 = LLT::scalar(64); 5344 const LLT S16 = LLT::scalar(16); 5345 5346 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5347 return lowerFPTRUNC_F64_TO_F16(MI); 5348 5349 return UnableToLegalize; 5350 } 5351 5352 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5353 // multiplication tree. 5354 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5355 Register Dst = MI.getOperand(0).getReg(); 5356 Register Src0 = MI.getOperand(1).getReg(); 5357 Register Src1 = MI.getOperand(2).getReg(); 5358 LLT Ty = MRI.getType(Dst); 5359 5360 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5361 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5362 MI.eraseFromParent(); 5363 return Legalized; 5364 } 5365 5366 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5367 switch (Opc) { 5368 case TargetOpcode::G_SMIN: 5369 return CmpInst::ICMP_SLT; 5370 case TargetOpcode::G_SMAX: 5371 return CmpInst::ICMP_SGT; 5372 case TargetOpcode::G_UMIN: 5373 return CmpInst::ICMP_ULT; 5374 case TargetOpcode::G_UMAX: 5375 return CmpInst::ICMP_UGT; 5376 default: 5377 llvm_unreachable("not in integer min/max"); 5378 } 5379 } 5380 5381 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5382 Register Dst = MI.getOperand(0).getReg(); 5383 Register Src0 = MI.getOperand(1).getReg(); 5384 Register Src1 = MI.getOperand(2).getReg(); 5385 5386 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5387 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5388 5389 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5390 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5391 5392 MI.eraseFromParent(); 5393 return Legalized; 5394 } 5395 5396 LegalizerHelper::LegalizeResult 5397 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5398 Register Dst = MI.getOperand(0).getReg(); 5399 Register Src0 = MI.getOperand(1).getReg(); 5400 Register Src1 = MI.getOperand(2).getReg(); 5401 5402 const LLT Src0Ty = MRI.getType(Src0); 5403 const LLT Src1Ty = MRI.getType(Src1); 5404 5405 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5406 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5407 5408 auto SignBitMask = MIRBuilder.buildConstant( 5409 Src0Ty, APInt::getSignMask(Src0Size)); 5410 5411 auto NotSignBitMask = MIRBuilder.buildConstant( 5412 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5413 5414 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5415 MachineInstr *Or; 5416 5417 if (Src0Ty == Src1Ty) { 5418 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5419 Or = MIRBuilder.buildOr(Dst, And0, And1); 5420 } else if (Src0Size > Src1Size) { 5421 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5422 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5423 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5424 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5425 Or = MIRBuilder.buildOr(Dst, And0, And1); 5426 } else { 5427 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5428 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5429 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5430 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5431 Or = MIRBuilder.buildOr(Dst, And0, And1); 5432 } 5433 5434 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5435 // constants are a nan and -0.0, but the final result should preserve 5436 // everything. 5437 if (unsigned Flags = MI.getFlags()) 5438 Or->setFlags(Flags); 5439 5440 MI.eraseFromParent(); 5441 return Legalized; 5442 } 5443 5444 LegalizerHelper::LegalizeResult 5445 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5446 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5447 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5448 5449 Register Dst = MI.getOperand(0).getReg(); 5450 Register Src0 = MI.getOperand(1).getReg(); 5451 Register Src1 = MI.getOperand(2).getReg(); 5452 LLT Ty = MRI.getType(Dst); 5453 5454 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5455 // Insert canonicalizes if it's possible we need to quiet to get correct 5456 // sNaN behavior. 5457 5458 // Note this must be done here, and not as an optimization combine in the 5459 // absence of a dedicate quiet-snan instruction as we're using an 5460 // omni-purpose G_FCANONICALIZE. 5461 if (!isKnownNeverSNaN(Src0, MRI)) 5462 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5463 5464 if (!isKnownNeverSNaN(Src1, MRI)) 5465 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5466 } 5467 5468 // If there are no nans, it's safe to simply replace this with the non-IEEE 5469 // version. 5470 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5471 MI.eraseFromParent(); 5472 return Legalized; 5473 } 5474 5475 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5476 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5477 Register DstReg = MI.getOperand(0).getReg(); 5478 LLT Ty = MRI.getType(DstReg); 5479 unsigned Flags = MI.getFlags(); 5480 5481 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5482 Flags); 5483 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5484 MI.eraseFromParent(); 5485 return Legalized; 5486 } 5487 5488 LegalizerHelper::LegalizeResult 5489 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5490 Register DstReg = MI.getOperand(0).getReg(); 5491 Register X = MI.getOperand(1).getReg(); 5492 const unsigned Flags = MI.getFlags(); 5493 const LLT Ty = MRI.getType(DstReg); 5494 const LLT CondTy = Ty.changeElementSize(1); 5495 5496 // round(x) => 5497 // t = trunc(x); 5498 // d = fabs(x - t); 5499 // o = copysign(1.0f, x); 5500 // return t + (d >= 0.5 ? o : 0.0); 5501 5502 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5503 5504 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5505 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5506 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5507 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5508 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5509 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5510 5511 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5512 Flags); 5513 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5514 5515 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5516 5517 MI.eraseFromParent(); 5518 return Legalized; 5519 } 5520 5521 LegalizerHelper::LegalizeResult 5522 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5523 Register DstReg = MI.getOperand(0).getReg(); 5524 Register SrcReg = MI.getOperand(1).getReg(); 5525 unsigned Flags = MI.getFlags(); 5526 LLT Ty = MRI.getType(DstReg); 5527 const LLT CondTy = Ty.changeElementSize(1); 5528 5529 // result = trunc(src); 5530 // if (src < 0.0 && src != result) 5531 // result += -1.0. 5532 5533 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5534 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5535 5536 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5537 SrcReg, Zero, Flags); 5538 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5539 SrcReg, Trunc, Flags); 5540 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5541 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5542 5543 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5544 MI.eraseFromParent(); 5545 return Legalized; 5546 } 5547 5548 LegalizerHelper::LegalizeResult 5549 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5550 const unsigned NumOps = MI.getNumOperands(); 5551 Register DstReg = MI.getOperand(0).getReg(); 5552 Register Src0Reg = MI.getOperand(1).getReg(); 5553 LLT DstTy = MRI.getType(DstReg); 5554 LLT SrcTy = MRI.getType(Src0Reg); 5555 unsigned PartSize = SrcTy.getSizeInBits(); 5556 5557 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5558 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5559 5560 for (unsigned I = 2; I != NumOps; ++I) { 5561 const unsigned Offset = (I - 1) * PartSize; 5562 5563 Register SrcReg = MI.getOperand(I).getReg(); 5564 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5565 5566 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5567 MRI.createGenericVirtualRegister(WideTy); 5568 5569 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5570 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5571 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5572 ResultReg = NextResult; 5573 } 5574 5575 if (DstTy.isPointer()) { 5576 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5577 DstTy.getAddressSpace())) { 5578 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5579 return UnableToLegalize; 5580 } 5581 5582 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5583 } 5584 5585 MI.eraseFromParent(); 5586 return Legalized; 5587 } 5588 5589 LegalizerHelper::LegalizeResult 5590 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5591 const unsigned NumDst = MI.getNumOperands() - 1; 5592 Register SrcReg = MI.getOperand(NumDst).getReg(); 5593 Register Dst0Reg = MI.getOperand(0).getReg(); 5594 LLT DstTy = MRI.getType(Dst0Reg); 5595 if (DstTy.isPointer()) 5596 return UnableToLegalize; // TODO 5597 5598 SrcReg = coerceToScalar(SrcReg); 5599 if (!SrcReg) 5600 return UnableToLegalize; 5601 5602 // Expand scalarizing unmerge as bitcast to integer and shift. 5603 LLT IntTy = MRI.getType(SrcReg); 5604 5605 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5606 5607 const unsigned DstSize = DstTy.getSizeInBits(); 5608 unsigned Offset = DstSize; 5609 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5610 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5611 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5612 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5613 } 5614 5615 MI.eraseFromParent(); 5616 return Legalized; 5617 } 5618 5619 /// Lower a vector extract or insert by writing the vector to a stack temporary 5620 /// and reloading the element or vector. 5621 /// 5622 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5623 /// => 5624 /// %stack_temp = G_FRAME_INDEX 5625 /// G_STORE %vec, %stack_temp 5626 /// %idx = clamp(%idx, %vec.getNumElements()) 5627 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5628 /// %dst = G_LOAD %element_ptr 5629 LegalizerHelper::LegalizeResult 5630 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5631 Register DstReg = MI.getOperand(0).getReg(); 5632 Register SrcVec = MI.getOperand(1).getReg(); 5633 Register InsertVal; 5634 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5635 InsertVal = MI.getOperand(2).getReg(); 5636 5637 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5638 5639 LLT VecTy = MRI.getType(SrcVec); 5640 LLT EltTy = VecTy.getElementType(); 5641 if (!EltTy.isByteSized()) { // Not implemented. 5642 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5643 return UnableToLegalize; 5644 } 5645 5646 unsigned EltBytes = EltTy.getSizeInBytes(); 5647 Align VecAlign = getStackTemporaryAlignment(VecTy); 5648 Align EltAlign; 5649 5650 MachinePointerInfo PtrInfo; 5651 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5652 VecAlign, PtrInfo); 5653 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5654 5655 // Get the pointer to the element, and be sure not to hit undefined behavior 5656 // if the index is out of bounds. 5657 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5658 5659 int64_t IdxVal; 5660 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5661 int64_t Offset = IdxVal * EltBytes; 5662 PtrInfo = PtrInfo.getWithOffset(Offset); 5663 EltAlign = commonAlignment(VecAlign, Offset); 5664 } else { 5665 // We lose information with a variable offset. 5666 EltAlign = getStackTemporaryAlignment(EltTy); 5667 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5668 } 5669 5670 if (InsertVal) { 5671 // Write the inserted element 5672 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5673 5674 // Reload the whole vector. 5675 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5676 } else { 5677 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5678 } 5679 5680 MI.eraseFromParent(); 5681 return Legalized; 5682 } 5683 5684 LegalizerHelper::LegalizeResult 5685 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5686 Register DstReg = MI.getOperand(0).getReg(); 5687 Register Src0Reg = MI.getOperand(1).getReg(); 5688 Register Src1Reg = MI.getOperand(2).getReg(); 5689 LLT Src0Ty = MRI.getType(Src0Reg); 5690 LLT DstTy = MRI.getType(DstReg); 5691 LLT IdxTy = LLT::scalar(32); 5692 5693 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5694 5695 if (DstTy.isScalar()) { 5696 if (Src0Ty.isVector()) 5697 return UnableToLegalize; 5698 5699 // This is just a SELECT. 5700 assert(Mask.size() == 1 && "Expected a single mask element"); 5701 Register Val; 5702 if (Mask[0] < 0 || Mask[0] > 1) 5703 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5704 else 5705 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5706 MIRBuilder.buildCopy(DstReg, Val); 5707 MI.eraseFromParent(); 5708 return Legalized; 5709 } 5710 5711 Register Undef; 5712 SmallVector<Register, 32> BuildVec; 5713 LLT EltTy = DstTy.getElementType(); 5714 5715 for (int Idx : Mask) { 5716 if (Idx < 0) { 5717 if (!Undef.isValid()) 5718 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5719 BuildVec.push_back(Undef); 5720 continue; 5721 } 5722 5723 if (Src0Ty.isScalar()) { 5724 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5725 } else { 5726 int NumElts = Src0Ty.getNumElements(); 5727 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5728 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5729 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5730 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5731 BuildVec.push_back(Extract.getReg(0)); 5732 } 5733 } 5734 5735 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5736 MI.eraseFromParent(); 5737 return Legalized; 5738 } 5739 5740 LegalizerHelper::LegalizeResult 5741 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5742 const auto &MF = *MI.getMF(); 5743 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5744 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5745 return UnableToLegalize; 5746 5747 Register Dst = MI.getOperand(0).getReg(); 5748 Register AllocSize = MI.getOperand(1).getReg(); 5749 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5750 5751 LLT PtrTy = MRI.getType(Dst); 5752 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5753 5754 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5755 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5756 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5757 5758 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5759 // have to generate an extra instruction to negate the alloc and then use 5760 // G_PTR_ADD to add the negative offset. 5761 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5762 if (Alignment > Align(1)) { 5763 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5764 AlignMask.negate(); 5765 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5766 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5767 } 5768 5769 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5770 MIRBuilder.buildCopy(SPReg, SPTmp); 5771 MIRBuilder.buildCopy(Dst, SPTmp); 5772 5773 MI.eraseFromParent(); 5774 return Legalized; 5775 } 5776 5777 LegalizerHelper::LegalizeResult 5778 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5779 Register Dst = MI.getOperand(0).getReg(); 5780 Register Src = MI.getOperand(1).getReg(); 5781 unsigned Offset = MI.getOperand(2).getImm(); 5782 5783 LLT DstTy = MRI.getType(Dst); 5784 LLT SrcTy = MRI.getType(Src); 5785 5786 if (DstTy.isScalar() && 5787 (SrcTy.isScalar() || 5788 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5789 LLT SrcIntTy = SrcTy; 5790 if (!SrcTy.isScalar()) { 5791 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5792 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5793 } 5794 5795 if (Offset == 0) 5796 MIRBuilder.buildTrunc(Dst, Src); 5797 else { 5798 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5799 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5800 MIRBuilder.buildTrunc(Dst, Shr); 5801 } 5802 5803 MI.eraseFromParent(); 5804 return Legalized; 5805 } 5806 5807 return UnableToLegalize; 5808 } 5809 5810 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5811 Register Dst = MI.getOperand(0).getReg(); 5812 Register Src = MI.getOperand(1).getReg(); 5813 Register InsertSrc = MI.getOperand(2).getReg(); 5814 uint64_t Offset = MI.getOperand(3).getImm(); 5815 5816 LLT DstTy = MRI.getType(Src); 5817 LLT InsertTy = MRI.getType(InsertSrc); 5818 5819 if (InsertTy.isVector() || 5820 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5821 return UnableToLegalize; 5822 5823 const DataLayout &DL = MIRBuilder.getDataLayout(); 5824 if ((DstTy.isPointer() && 5825 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5826 (InsertTy.isPointer() && 5827 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5828 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5829 return UnableToLegalize; 5830 } 5831 5832 LLT IntDstTy = DstTy; 5833 5834 if (!DstTy.isScalar()) { 5835 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5836 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5837 } 5838 5839 if (!InsertTy.isScalar()) { 5840 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5841 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5842 } 5843 5844 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5845 if (Offset != 0) { 5846 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5847 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5848 } 5849 5850 APInt MaskVal = APInt::getBitsSetWithWrap( 5851 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5852 5853 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5854 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5855 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5856 5857 MIRBuilder.buildCast(Dst, Or); 5858 MI.eraseFromParent(); 5859 return Legalized; 5860 } 5861 5862 LegalizerHelper::LegalizeResult 5863 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5864 Register Dst0 = MI.getOperand(0).getReg(); 5865 Register Dst1 = MI.getOperand(1).getReg(); 5866 Register LHS = MI.getOperand(2).getReg(); 5867 Register RHS = MI.getOperand(3).getReg(); 5868 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5869 5870 LLT Ty = MRI.getType(Dst0); 5871 LLT BoolTy = MRI.getType(Dst1); 5872 5873 if (IsAdd) 5874 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5875 else 5876 MIRBuilder.buildSub(Dst0, LHS, RHS); 5877 5878 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5879 5880 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5881 5882 // For an addition, the result should be less than one of the operands (LHS) 5883 // if and only if the other operand (RHS) is negative, otherwise there will 5884 // be overflow. 5885 // For a subtraction, the result should be less than one of the operands 5886 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5887 // otherwise there will be overflow. 5888 auto ResultLowerThanLHS = 5889 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5890 auto ConditionRHS = MIRBuilder.buildICmp( 5891 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5892 5893 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5894 MI.eraseFromParent(); 5895 return Legalized; 5896 } 5897 5898 LegalizerHelper::LegalizeResult 5899 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5900 Register Res = MI.getOperand(0).getReg(); 5901 Register LHS = MI.getOperand(1).getReg(); 5902 Register RHS = MI.getOperand(2).getReg(); 5903 LLT Ty = MRI.getType(Res); 5904 bool IsSigned; 5905 bool IsAdd; 5906 unsigned BaseOp; 5907 switch (MI.getOpcode()) { 5908 default: 5909 llvm_unreachable("unexpected addsat/subsat opcode"); 5910 case TargetOpcode::G_UADDSAT: 5911 IsSigned = false; 5912 IsAdd = true; 5913 BaseOp = TargetOpcode::G_ADD; 5914 break; 5915 case TargetOpcode::G_SADDSAT: 5916 IsSigned = true; 5917 IsAdd = true; 5918 BaseOp = TargetOpcode::G_ADD; 5919 break; 5920 case TargetOpcode::G_USUBSAT: 5921 IsSigned = false; 5922 IsAdd = false; 5923 BaseOp = TargetOpcode::G_SUB; 5924 break; 5925 case TargetOpcode::G_SSUBSAT: 5926 IsSigned = true; 5927 IsAdd = false; 5928 BaseOp = TargetOpcode::G_SUB; 5929 break; 5930 } 5931 5932 if (IsSigned) { 5933 // sadd.sat(a, b) -> 5934 // hi = 0x7fffffff - smax(a, 0) 5935 // lo = 0x80000000 - smin(a, 0) 5936 // a + smin(smax(lo, b), hi) 5937 // ssub.sat(a, b) -> 5938 // lo = smax(a, -1) - 0x7fffffff 5939 // hi = smin(a, -1) - 0x80000000 5940 // a - smin(smax(lo, b), hi) 5941 // TODO: AMDGPU can use a "median of 3" instruction here: 5942 // a +/- med3(lo, b, hi) 5943 uint64_t NumBits = Ty.getScalarSizeInBits(); 5944 auto MaxVal = 5945 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5946 auto MinVal = 5947 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5948 MachineInstrBuilder Hi, Lo; 5949 if (IsAdd) { 5950 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5951 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5952 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5953 } else { 5954 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5955 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5956 MaxVal); 5957 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5958 MinVal); 5959 } 5960 auto RHSClamped = 5961 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5962 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5963 } else { 5964 // uadd.sat(a, b) -> a + umin(~a, b) 5965 // usub.sat(a, b) -> a - umin(a, b) 5966 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5967 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5968 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5969 } 5970 5971 MI.eraseFromParent(); 5972 return Legalized; 5973 } 5974 5975 LegalizerHelper::LegalizeResult 5976 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5977 Register Res = MI.getOperand(0).getReg(); 5978 Register LHS = MI.getOperand(1).getReg(); 5979 Register RHS = MI.getOperand(2).getReg(); 5980 LLT Ty = MRI.getType(Res); 5981 LLT BoolTy = Ty.changeElementSize(1); 5982 bool IsSigned; 5983 bool IsAdd; 5984 unsigned OverflowOp; 5985 switch (MI.getOpcode()) { 5986 default: 5987 llvm_unreachable("unexpected addsat/subsat opcode"); 5988 case TargetOpcode::G_UADDSAT: 5989 IsSigned = false; 5990 IsAdd = true; 5991 OverflowOp = TargetOpcode::G_UADDO; 5992 break; 5993 case TargetOpcode::G_SADDSAT: 5994 IsSigned = true; 5995 IsAdd = true; 5996 OverflowOp = TargetOpcode::G_SADDO; 5997 break; 5998 case TargetOpcode::G_USUBSAT: 5999 IsSigned = false; 6000 IsAdd = false; 6001 OverflowOp = TargetOpcode::G_USUBO; 6002 break; 6003 case TargetOpcode::G_SSUBSAT: 6004 IsSigned = true; 6005 IsAdd = false; 6006 OverflowOp = TargetOpcode::G_SSUBO; 6007 break; 6008 } 6009 6010 auto OverflowRes = 6011 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6012 Register Tmp = OverflowRes.getReg(0); 6013 Register Ov = OverflowRes.getReg(1); 6014 MachineInstrBuilder Clamp; 6015 if (IsSigned) { 6016 // sadd.sat(a, b) -> 6017 // {tmp, ov} = saddo(a, b) 6018 // ov ? (tmp >>s 31) + 0x80000000 : r 6019 // ssub.sat(a, b) -> 6020 // {tmp, ov} = ssubo(a, b) 6021 // ov ? (tmp >>s 31) + 0x80000000 : r 6022 uint64_t NumBits = Ty.getScalarSizeInBits(); 6023 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6024 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6025 auto MinVal = 6026 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6027 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6028 } else { 6029 // uadd.sat(a, b) -> 6030 // {tmp, ov} = uaddo(a, b) 6031 // ov ? 0xffffffff : tmp 6032 // usub.sat(a, b) -> 6033 // {tmp, ov} = usubo(a, b) 6034 // ov ? 0 : tmp 6035 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6036 } 6037 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6038 6039 MI.eraseFromParent(); 6040 return Legalized; 6041 } 6042 6043 LegalizerHelper::LegalizeResult 6044 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6045 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6046 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6047 "Expected shlsat opcode!"); 6048 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6049 Register Res = MI.getOperand(0).getReg(); 6050 Register LHS = MI.getOperand(1).getReg(); 6051 Register RHS = MI.getOperand(2).getReg(); 6052 LLT Ty = MRI.getType(Res); 6053 LLT BoolTy = Ty.changeElementSize(1); 6054 6055 unsigned BW = Ty.getScalarSizeInBits(); 6056 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6057 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6058 : MIRBuilder.buildLShr(Ty, Result, RHS); 6059 6060 MachineInstrBuilder SatVal; 6061 if (IsSigned) { 6062 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6063 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6064 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6065 MIRBuilder.buildConstant(Ty, 0)); 6066 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6067 } else { 6068 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6069 } 6070 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig); 6071 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6072 6073 MI.eraseFromParent(); 6074 return Legalized; 6075 } 6076 6077 LegalizerHelper::LegalizeResult 6078 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6079 Register Dst = MI.getOperand(0).getReg(); 6080 Register Src = MI.getOperand(1).getReg(); 6081 const LLT Ty = MRI.getType(Src); 6082 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6083 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6084 6085 // Swap most and least significant byte, set remaining bytes in Res to zero. 6086 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6087 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6088 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6089 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6090 6091 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6092 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6093 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6094 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6095 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6096 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6097 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6098 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6099 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6100 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6101 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6102 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6103 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6104 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6105 } 6106 Res.getInstr()->getOperand(0).setReg(Dst); 6107 6108 MI.eraseFromParent(); 6109 return Legalized; 6110 } 6111 6112 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6113 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6114 MachineInstrBuilder Src, APInt Mask) { 6115 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6116 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6117 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6118 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6119 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6120 return B.buildOr(Dst, LHS, RHS); 6121 } 6122 6123 LegalizerHelper::LegalizeResult 6124 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6125 Register Dst = MI.getOperand(0).getReg(); 6126 Register Src = MI.getOperand(1).getReg(); 6127 const LLT Ty = MRI.getType(Src); 6128 unsigned Size = Ty.getSizeInBits(); 6129 6130 MachineInstrBuilder BSWAP = 6131 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6132 6133 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6134 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6135 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6136 MachineInstrBuilder Swap4 = 6137 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6138 6139 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6140 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6141 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6142 MachineInstrBuilder Swap2 = 6143 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6144 6145 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6146 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6147 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6148 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6149 6150 MI.eraseFromParent(); 6151 return Legalized; 6152 } 6153 6154 LegalizerHelper::LegalizeResult 6155 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6156 MachineFunction &MF = MIRBuilder.getMF(); 6157 6158 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6159 int NameOpIdx = IsRead ? 1 : 0; 6160 int ValRegIndex = IsRead ? 0 : 1; 6161 6162 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6163 const LLT Ty = MRI.getType(ValReg); 6164 const MDString *RegStr = cast<MDString>( 6165 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6166 6167 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6168 if (!PhysReg.isValid()) 6169 return UnableToLegalize; 6170 6171 if (IsRead) 6172 MIRBuilder.buildCopy(ValReg, PhysReg); 6173 else 6174 MIRBuilder.buildCopy(PhysReg, ValReg); 6175 6176 MI.eraseFromParent(); 6177 return Legalized; 6178 } 6179