1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int StartIdx = Regs.size();
252   const int NumResults = MI.getNumOperands() - 1;
253   Regs.resize(Regs.size() + NumResults);
254   for (int I = 0; I != NumResults; ++I)
255     Regs[StartIdx + I] = MI.getOperand(I).getReg();
256 }
257 
258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
259                                      LLT GCDTy, Register SrcReg) {
260   LLT SrcTy = MRI.getType(SrcReg);
261   if (SrcTy == GCDTy) {
262     // If the source already evenly divides the result type, we don't need to do
263     // anything.
264     Parts.push_back(SrcReg);
265   } else {
266     // Need to split into common type sized pieces.
267     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
268     getUnmergeResults(Parts, *Unmerge);
269   }
270 }
271 
272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
273                                     LLT NarrowTy, Register SrcReg) {
274   LLT SrcTy = MRI.getType(SrcReg);
275   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
276   extractGCDType(Parts, GCDTy, SrcReg);
277   return GCDTy;
278 }
279 
280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
281                                          SmallVectorImpl<Register> &VRegs,
282                                          unsigned PadStrategy) {
283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
284 
285   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
286   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
287   int NumOrigSrc = VRegs.size();
288 
289   Register PadReg;
290 
291   // Get a value we can use to pad the source value if the sources won't evenly
292   // cover the result type.
293   if (NumOrigSrc < NumParts * NumSubParts) {
294     if (PadStrategy == TargetOpcode::G_ZEXT)
295       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
296     else if (PadStrategy == TargetOpcode::G_ANYEXT)
297       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
298     else {
299       assert(PadStrategy == TargetOpcode::G_SEXT);
300 
301       // Shift the sign bit of the low register through the high register.
302       auto ShiftAmt =
303         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
304       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
305     }
306   }
307 
308   // Registers for the final merge to be produced.
309   SmallVector<Register, 4> Remerge(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge(NumSubParts);
314 
315   // Once we've fully read off the end of the original source bits, we can reuse
316   // the same high bits for remaining padding elements.
317   Register AllPadReg;
318 
319   // Build merges to the LCM type to cover the original result type.
320   for (int I = 0; I != NumParts; ++I) {
321     bool AllMergePartsArePadding = true;
322 
323     // Build the requested merges to the requested type.
324     for (int J = 0; J != NumSubParts; ++J) {
325       int Idx = I * NumSubParts + J;
326       if (Idx >= NumOrigSrc) {
327         SubMerge[J] = PadReg;
328         continue;
329       }
330 
331       SubMerge[J] = VRegs[Idx];
332 
333       // There are meaningful bits here we can't reuse later.
334       AllMergePartsArePadding = false;
335     }
336 
337     // If we've filled up a complete piece with padding bits, we can directly
338     // emit the natural sized constant if applicable, rather than a merge of
339     // smaller constants.
340     if (AllMergePartsArePadding && !AllPadReg) {
341       if (PadStrategy == TargetOpcode::G_ANYEXT)
342         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
343       else if (PadStrategy == TargetOpcode::G_ZEXT)
344         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
345 
346       // If this is a sign extension, we can't materialize a trivial constant
347       // with the right type and have to produce a merge.
348     }
349 
350     if (AllPadReg) {
351       // Avoid creating additional instructions if we're just adding additional
352       // copies of padding bits.
353       Remerge[I] = AllPadReg;
354       continue;
355     }
356 
357     if (NumSubParts == 1)
358       Remerge[I] = SubMerge[0];
359     else
360       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
361 
362     // In the sign extend padding case, re-use the first all-signbit merge.
363     if (AllMergePartsArePadding && !AllPadReg)
364       AllPadReg = Remerge[I];
365   }
366 
367   VRegs = std::move(Remerge);
368   return LCMTy;
369 }
370 
371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
372                                                ArrayRef<Register> RemergeRegs) {
373   LLT DstTy = MRI.getType(DstReg);
374 
375   // Create the merge to the widened source, and extract the relevant bits into
376   // the result.
377 
378   if (DstTy == LCMTy) {
379     MIRBuilder.buildMerge(DstReg, RemergeRegs);
380     return;
381   }
382 
383   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
384   if (DstTy.isScalar() && LCMTy.isScalar()) {
385     MIRBuilder.buildTrunc(DstReg, Remerge);
386     return;
387   }
388 
389   if (LCMTy.isVector()) {
390     MIRBuilder.buildExtract(DstReg, Remerge, 0);
391     return;
392   }
393 
394   llvm_unreachable("unhandled case");
395 }
396 
397 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
398 #define RTLIBCASE_INT(LibcallPrefix)                                           \
399   do {                                                                         \
400     switch (Size) {                                                            \
401     case 32:                                                                   \
402       return RTLIB::LibcallPrefix##32;                                         \
403     case 64:                                                                   \
404       return RTLIB::LibcallPrefix##64;                                         \
405     case 128:                                                                  \
406       return RTLIB::LibcallPrefix##128;                                        \
407     default:                                                                   \
408       llvm_unreachable("unexpected size");                                     \
409     }                                                                          \
410   } while (0)
411 
412 #define RTLIBCASE(LibcallPrefix)                                               \
413   do {                                                                         \
414     switch (Size) {                                                            \
415     case 32:                                                                   \
416       return RTLIB::LibcallPrefix##32;                                         \
417     case 64:                                                                   \
418       return RTLIB::LibcallPrefix##64;                                         \
419     case 80:                                                                   \
420       return RTLIB::LibcallPrefix##80;                                         \
421     case 128:                                                                  \
422       return RTLIB::LibcallPrefix##128;                                        \
423     default:                                                                   \
424       llvm_unreachable("unexpected size");                                     \
425     }                                                                          \
426   } while (0)
427 
428   switch (Opcode) {
429   case TargetOpcode::G_SDIV:
430     RTLIBCASE_INT(SDIV_I);
431   case TargetOpcode::G_UDIV:
432     RTLIBCASE_INT(UDIV_I);
433   case TargetOpcode::G_SREM:
434     RTLIBCASE_INT(SREM_I);
435   case TargetOpcode::G_UREM:
436     RTLIBCASE_INT(UREM_I);
437   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
438     RTLIBCASE_INT(CTLZ_I);
439   case TargetOpcode::G_FADD:
440     RTLIBCASE(ADD_F);
441   case TargetOpcode::G_FSUB:
442     RTLIBCASE(SUB_F);
443   case TargetOpcode::G_FMUL:
444     RTLIBCASE(MUL_F);
445   case TargetOpcode::G_FDIV:
446     RTLIBCASE(DIV_F);
447   case TargetOpcode::G_FEXP:
448     RTLIBCASE(EXP_F);
449   case TargetOpcode::G_FEXP2:
450     RTLIBCASE(EXP2_F);
451   case TargetOpcode::G_FREM:
452     RTLIBCASE(REM_F);
453   case TargetOpcode::G_FPOW:
454     RTLIBCASE(POW_F);
455   case TargetOpcode::G_FMA:
456     RTLIBCASE(FMA_F);
457   case TargetOpcode::G_FSIN:
458     RTLIBCASE(SIN_F);
459   case TargetOpcode::G_FCOS:
460     RTLIBCASE(COS_F);
461   case TargetOpcode::G_FLOG10:
462     RTLIBCASE(LOG10_F);
463   case TargetOpcode::G_FLOG:
464     RTLIBCASE(LOG_F);
465   case TargetOpcode::G_FLOG2:
466     RTLIBCASE(LOG2_F);
467   case TargetOpcode::G_FCEIL:
468     RTLIBCASE(CEIL_F);
469   case TargetOpcode::G_FFLOOR:
470     RTLIBCASE(FLOOR_F);
471   case TargetOpcode::G_FMINNUM:
472     RTLIBCASE(FMIN_F);
473   case TargetOpcode::G_FMAXNUM:
474     RTLIBCASE(FMAX_F);
475   case TargetOpcode::G_FSQRT:
476     RTLIBCASE(SQRT_F);
477   case TargetOpcode::G_FRINT:
478     RTLIBCASE(RINT_F);
479   case TargetOpcode::G_FNEARBYINT:
480     RTLIBCASE(NEARBYINT_F);
481   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
482     RTLIBCASE(ROUNDEVEN_F);
483   }
484   llvm_unreachable("Unknown libcall function");
485 }
486 
487 /// True if an instruction is in tail position in its caller. Intended for
488 /// legalizing libcalls as tail calls when possible.
489 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
490                                     MachineInstr &MI) {
491   MachineBasicBlock &MBB = *MI.getParent();
492   const Function &F = MBB.getParent()->getFunction();
493 
494   // Conservatively require the attributes of the call to match those of
495   // the return. Ignore NoAlias and NonNull because they don't affect the
496   // call sequence.
497   AttributeList CallerAttrs = F.getAttributes();
498   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
499           .removeAttribute(Attribute::NoAlias)
500           .removeAttribute(Attribute::NonNull)
501           .hasAttributes())
502     return false;
503 
504   // It's not safe to eliminate the sign / zero extension of the return value.
505   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
506       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
507     return false;
508 
509   // Only tail call if the following instruction is a standard return.
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
512     return false;
513 
514   return true;
515 }
516 
517 LegalizerHelper::LegalizeResult
518 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
519                     const CallLowering::ArgInfo &Result,
520                     ArrayRef<CallLowering::ArgInfo> Args,
521                     const CallingConv::ID CC) {
522   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
523 
524   CallLowering::CallLoweringInfo Info;
525   Info.CallConv = CC;
526   Info.Callee = MachineOperand::CreateES(Name);
527   Info.OrigRet = Result;
528   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
529   if (!CLI.lowerCall(MIRBuilder, Info))
530     return LegalizerHelper::UnableToLegalize;
531 
532   return LegalizerHelper::Legalized;
533 }
534 
535 LegalizerHelper::LegalizeResult
536 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
537                     const CallLowering::ArgInfo &Result,
538                     ArrayRef<CallLowering::ArgInfo> Args) {
539   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
540   const char *Name = TLI.getLibcallName(Libcall);
541   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
542   return createLibcall(MIRBuilder, Name, Result, Args, CC);
543 }
544 
545 // Useful for libcalls where all operands have the same type.
546 static LegalizerHelper::LegalizeResult
547 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
548               Type *OpType) {
549   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
550 
551   SmallVector<CallLowering::ArgInfo, 3> Args;
552   for (unsigned i = 1; i < MI.getNumOperands(); i++)
553     Args.push_back({MI.getOperand(i).getReg(), OpType});
554   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
555                        Args);
556 }
557 
558 LegalizerHelper::LegalizeResult
559 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
560                        MachineInstr &MI) {
561   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
562   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
563 
564   SmallVector<CallLowering::ArgInfo, 3> Args;
565   // Add all the args, except for the last which is an imm denoting 'tail'.
566   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
567     Register Reg = MI.getOperand(i).getReg();
568 
569     // Need derive an IR type for call lowering.
570     LLT OpLLT = MRI.getType(Reg);
571     Type *OpTy = nullptr;
572     if (OpLLT.isPointer())
573       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
574     else
575       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
576     Args.push_back({Reg, OpTy});
577   }
578 
579   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
580   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
581   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
582   RTLIB::Libcall RTLibcall;
583   switch (ID) {
584   case Intrinsic::memcpy:
585     RTLibcall = RTLIB::MEMCPY;
586     break;
587   case Intrinsic::memset:
588     RTLibcall = RTLIB::MEMSET;
589     break;
590   case Intrinsic::memmove:
591     RTLibcall = RTLIB::MEMMOVE;
592     break;
593   default:
594     return LegalizerHelper::UnableToLegalize;
595   }
596   const char *Name = TLI.getLibcallName(RTLibcall);
597 
598   MIRBuilder.setInstrAndDebugLoc(MI);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   }
752 
753   MI.eraseFromParent();
754   return Legalized;
755 }
756 
757 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
758                                                               unsigned TypeIdx,
759                                                               LLT NarrowTy) {
760   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
761   uint64_t NarrowSize = NarrowTy.getSizeInBits();
762 
763   switch (MI.getOpcode()) {
764   default:
765     return UnableToLegalize;
766   case TargetOpcode::G_IMPLICIT_DEF: {
767     Register DstReg = MI.getOperand(0).getReg();
768     LLT DstTy = MRI.getType(DstReg);
769 
770     // If SizeOp0 is not an exact multiple of NarrowSize, emit
771     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
772     // FIXME: Although this would also be legal for the general case, it causes
773     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
774     //  combines not being hit). This seems to be a problem related to the
775     //  artifact combiner.
776     if (SizeOp0 % NarrowSize != 0) {
777       LLT ImplicitTy = NarrowTy;
778       if (DstTy.isVector())
779         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
780 
781       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
782       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
783 
784       MI.eraseFromParent();
785       return Legalized;
786     }
787 
788     int NumParts = SizeOp0 / NarrowSize;
789 
790     SmallVector<Register, 2> DstRegs;
791     for (int i = 0; i < NumParts; ++i)
792       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
793 
794     if (DstTy.isVector())
795       MIRBuilder.buildBuildVector(DstReg, DstRegs);
796     else
797       MIRBuilder.buildMerge(DstReg, DstRegs);
798     MI.eraseFromParent();
799     return Legalized;
800   }
801   case TargetOpcode::G_CONSTANT: {
802     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
803     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
804     unsigned TotalSize = Ty.getSizeInBits();
805     unsigned NarrowSize = NarrowTy.getSizeInBits();
806     int NumParts = TotalSize / NarrowSize;
807 
808     SmallVector<Register, 4> PartRegs;
809     for (int I = 0; I != NumParts; ++I) {
810       unsigned Offset = I * NarrowSize;
811       auto K = MIRBuilder.buildConstant(NarrowTy,
812                                         Val.lshr(Offset).trunc(NarrowSize));
813       PartRegs.push_back(K.getReg(0));
814     }
815 
816     LLT LeftoverTy;
817     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
818     SmallVector<Register, 1> LeftoverRegs;
819     if (LeftoverBits != 0) {
820       LeftoverTy = LLT::scalar(LeftoverBits);
821       auto K = MIRBuilder.buildConstant(
822         LeftoverTy,
823         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
824       LeftoverRegs.push_back(K.getReg(0));
825     }
826 
827     insertParts(MI.getOperand(0).getReg(),
828                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
829 
830     MI.eraseFromParent();
831     return Legalized;
832   }
833   case TargetOpcode::G_SEXT:
834   case TargetOpcode::G_ZEXT:
835   case TargetOpcode::G_ANYEXT:
836     return narrowScalarExt(MI, TypeIdx, NarrowTy);
837   case TargetOpcode::G_TRUNC: {
838     if (TypeIdx != 1)
839       return UnableToLegalize;
840 
841     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
842     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
843       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
844       return UnableToLegalize;
845     }
846 
847     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
848     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
849     MI.eraseFromParent();
850     return Legalized;
851   }
852 
853   case TargetOpcode::G_FREEZE:
854     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
855 
856   case TargetOpcode::G_ADD: {
857     // FIXME: add support for when SizeOp0 isn't an exact multiple of
858     // NarrowSize.
859     if (SizeOp0 % NarrowSize != 0)
860       return UnableToLegalize;
861     // Expand in terms of carry-setting/consuming G_ADDE instructions.
862     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
863 
864     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
865     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
866     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
867 
868     Register CarryIn;
869     for (int i = 0; i < NumParts; ++i) {
870       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
871       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
872 
873       if (i == 0)
874         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
875       else {
876         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
877                               Src2Regs[i], CarryIn);
878       }
879 
880       DstRegs.push_back(DstReg);
881       CarryIn = CarryOut;
882     }
883     Register DstReg = MI.getOperand(0).getReg();
884     if(MRI.getType(DstReg).isVector())
885       MIRBuilder.buildBuildVector(DstReg, DstRegs);
886     else
887       MIRBuilder.buildMerge(DstReg, DstRegs);
888     MI.eraseFromParent();
889     return Legalized;
890   }
891   case TargetOpcode::G_SUB: {
892     // FIXME: add support for when SizeOp0 isn't an exact multiple of
893     // NarrowSize.
894     if (SizeOp0 % NarrowSize != 0)
895       return UnableToLegalize;
896 
897     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
898 
899     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
900     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
901     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
902 
903     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
904     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
905     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
906                           {Src1Regs[0], Src2Regs[0]});
907     DstRegs.push_back(DstReg);
908     Register BorrowIn = BorrowOut;
909     for (int i = 1; i < NumParts; ++i) {
910       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912 
913       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
914                             {Src1Regs[i], Src2Regs[i], BorrowIn});
915 
916       DstRegs.push_back(DstReg);
917       BorrowIn = BorrowOut;
918     }
919     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
920     MI.eraseFromParent();
921     return Legalized;
922   }
923   case TargetOpcode::G_MUL:
924   case TargetOpcode::G_UMULH:
925     return narrowScalarMul(MI, NarrowTy);
926   case TargetOpcode::G_EXTRACT:
927     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
928   case TargetOpcode::G_INSERT:
929     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
930   case TargetOpcode::G_LOAD: {
931     auto &MMO = **MI.memoperands_begin();
932     Register DstReg = MI.getOperand(0).getReg();
933     LLT DstTy = MRI.getType(DstReg);
934     if (DstTy.isVector())
935       return UnableToLegalize;
936 
937     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
938       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
939       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
940       MIRBuilder.buildAnyExt(DstReg, TmpReg);
941       MI.eraseFromParent();
942       return Legalized;
943     }
944 
945     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
946   }
947   case TargetOpcode::G_ZEXTLOAD:
948   case TargetOpcode::G_SEXTLOAD: {
949     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
950     Register DstReg = MI.getOperand(0).getReg();
951     Register PtrReg = MI.getOperand(1).getReg();
952 
953     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
954     auto &MMO = **MI.memoperands_begin();
955     if (MMO.getSizeInBits() == NarrowSize) {
956       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
957     } else {
958       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
959     }
960 
961     if (ZExt)
962       MIRBuilder.buildZExt(DstReg, TmpReg);
963     else
964       MIRBuilder.buildSExt(DstReg, TmpReg);
965 
966     MI.eraseFromParent();
967     return Legalized;
968   }
969   case TargetOpcode::G_STORE: {
970     const auto &MMO = **MI.memoperands_begin();
971 
972     Register SrcReg = MI.getOperand(0).getReg();
973     LLT SrcTy = MRI.getType(SrcReg);
974     if (SrcTy.isVector())
975       return UnableToLegalize;
976 
977     int NumParts = SizeOp0 / NarrowSize;
978     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
979     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
980     if (SrcTy.isVector() && LeftoverBits != 0)
981       return UnableToLegalize;
982 
983     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
984       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
985       auto &MMO = **MI.memoperands_begin();
986       MIRBuilder.buildTrunc(TmpReg, SrcReg);
987       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
988       MI.eraseFromParent();
989       return Legalized;
990     }
991 
992     return reduceLoadStoreWidth(MI, 0, NarrowTy);
993   }
994   case TargetOpcode::G_SELECT:
995     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
996   case TargetOpcode::G_AND:
997   case TargetOpcode::G_OR:
998   case TargetOpcode::G_XOR: {
999     // Legalize bitwise operation:
1000     // A = BinOp<Ty> B, C
1001     // into:
1002     // B1, ..., BN = G_UNMERGE_VALUES B
1003     // C1, ..., CN = G_UNMERGE_VALUES C
1004     // A1 = BinOp<Ty/N> B1, C2
1005     // ...
1006     // AN = BinOp<Ty/N> BN, CN
1007     // A = G_MERGE_VALUES A1, ..., AN
1008     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1009   }
1010   case TargetOpcode::G_SHL:
1011   case TargetOpcode::G_LSHR:
1012   case TargetOpcode::G_ASHR:
1013     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1014   case TargetOpcode::G_CTLZ:
1015   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1016   case TargetOpcode::G_CTTZ:
1017   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1018   case TargetOpcode::G_CTPOP:
1019     if (TypeIdx == 1)
1020       switch (MI.getOpcode()) {
1021       case TargetOpcode::G_CTLZ:
1022       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1023         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1024       case TargetOpcode::G_CTTZ:
1025       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1026         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1027       case TargetOpcode::G_CTPOP:
1028         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1029       default:
1030         return UnableToLegalize;
1031       }
1032 
1033     Observer.changingInstr(MI);
1034     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1035     Observer.changedInstr(MI);
1036     return Legalized;
1037   case TargetOpcode::G_INTTOPTR:
1038     if (TypeIdx != 1)
1039       return UnableToLegalize;
1040 
1041     Observer.changingInstr(MI);
1042     narrowScalarSrc(MI, NarrowTy, 1);
1043     Observer.changedInstr(MI);
1044     return Legalized;
1045   case TargetOpcode::G_PTRTOINT:
1046     if (TypeIdx != 0)
1047       return UnableToLegalize;
1048 
1049     Observer.changingInstr(MI);
1050     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1051     Observer.changedInstr(MI);
1052     return Legalized;
1053   case TargetOpcode::G_PHI: {
1054     unsigned NumParts = SizeOp0 / NarrowSize;
1055     SmallVector<Register, 2> DstRegs(NumParts);
1056     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1057     Observer.changingInstr(MI);
1058     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1059       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1060       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1061       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1062                    SrcRegs[i / 2]);
1063     }
1064     MachineBasicBlock &MBB = *MI.getParent();
1065     MIRBuilder.setInsertPt(MBB, MI);
1066     for (unsigned i = 0; i < NumParts; ++i) {
1067       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1068       MachineInstrBuilder MIB =
1069           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1070       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1071         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1072     }
1073     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1074     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1075     Observer.changedInstr(MI);
1076     MI.eraseFromParent();
1077     return Legalized;
1078   }
1079   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1080   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1081     if (TypeIdx != 2)
1082       return UnableToLegalize;
1083 
1084     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1085     Observer.changingInstr(MI);
1086     narrowScalarSrc(MI, NarrowTy, OpIdx);
1087     Observer.changedInstr(MI);
1088     return Legalized;
1089   }
1090   case TargetOpcode::G_ICMP: {
1091     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1092     if (NarrowSize * 2 != SrcSize)
1093       return UnableToLegalize;
1094 
1095     Observer.changingInstr(MI);
1096     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1097     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1098     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1099 
1100     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1101     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1102     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1103 
1104     CmpInst::Predicate Pred =
1105         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1106     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1107 
1108     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1109       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1110       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1111       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1112       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1113       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1114     } else {
1115       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1116       MachineInstrBuilder CmpHEQ =
1117           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1118       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1119           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1120       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1121     }
1122     Observer.changedInstr(MI);
1123     MI.eraseFromParent();
1124     return Legalized;
1125   }
1126   case TargetOpcode::G_SEXT_INREG: {
1127     if (TypeIdx != 0)
1128       return UnableToLegalize;
1129 
1130     int64_t SizeInBits = MI.getOperand(2).getImm();
1131 
1132     // So long as the new type has more bits than the bits we're extending we
1133     // don't need to break it apart.
1134     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1135       Observer.changingInstr(MI);
1136       // We don't lose any non-extension bits by truncating the src and
1137       // sign-extending the dst.
1138       MachineOperand &MO1 = MI.getOperand(1);
1139       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1140       MO1.setReg(TruncMIB.getReg(0));
1141 
1142       MachineOperand &MO2 = MI.getOperand(0);
1143       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1144       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1145       MIRBuilder.buildSExt(MO2, DstExt);
1146       MO2.setReg(DstExt);
1147       Observer.changedInstr(MI);
1148       return Legalized;
1149     }
1150 
1151     // Break it apart. Components below the extension point are unmodified. The
1152     // component containing the extension point becomes a narrower SEXT_INREG.
1153     // Components above it are ashr'd from the component containing the
1154     // extension point.
1155     if (SizeOp0 % NarrowSize != 0)
1156       return UnableToLegalize;
1157     int NumParts = SizeOp0 / NarrowSize;
1158 
1159     // List the registers where the destination will be scattered.
1160     SmallVector<Register, 2> DstRegs;
1161     // List the registers where the source will be split.
1162     SmallVector<Register, 2> SrcRegs;
1163 
1164     // Create all the temporary registers.
1165     for (int i = 0; i < NumParts; ++i) {
1166       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1167 
1168       SrcRegs.push_back(SrcReg);
1169     }
1170 
1171     // Explode the big arguments into smaller chunks.
1172     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1173 
1174     Register AshrCstReg =
1175         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1176             .getReg(0);
1177     Register FullExtensionReg = 0;
1178     Register PartialExtensionReg = 0;
1179 
1180     // Do the operation on each small part.
1181     for (int i = 0; i < NumParts; ++i) {
1182       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1183         DstRegs.push_back(SrcRegs[i]);
1184       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1185         assert(PartialExtensionReg &&
1186                "Expected to visit partial extension before full");
1187         if (FullExtensionReg) {
1188           DstRegs.push_back(FullExtensionReg);
1189           continue;
1190         }
1191         DstRegs.push_back(
1192             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1193                 .getReg(0));
1194         FullExtensionReg = DstRegs.back();
1195       } else {
1196         DstRegs.push_back(
1197             MIRBuilder
1198                 .buildInstr(
1199                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1200                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1201                 .getReg(0));
1202         PartialExtensionReg = DstRegs.back();
1203       }
1204     }
1205 
1206     // Gather the destination registers into the final destination.
1207     Register DstReg = MI.getOperand(0).getReg();
1208     MIRBuilder.buildMerge(DstReg, DstRegs);
1209     MI.eraseFromParent();
1210     return Legalized;
1211   }
1212   case TargetOpcode::G_BSWAP:
1213   case TargetOpcode::G_BITREVERSE: {
1214     if (SizeOp0 % NarrowSize != 0)
1215       return UnableToLegalize;
1216 
1217     Observer.changingInstr(MI);
1218     SmallVector<Register, 2> SrcRegs, DstRegs;
1219     unsigned NumParts = SizeOp0 / NarrowSize;
1220     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1221 
1222     for (unsigned i = 0; i < NumParts; ++i) {
1223       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1224                                            {SrcRegs[NumParts - 1 - i]});
1225       DstRegs.push_back(DstPart.getReg(0));
1226     }
1227 
1228     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1229 
1230     Observer.changedInstr(MI);
1231     MI.eraseFromParent();
1232     return Legalized;
1233   }
1234   case TargetOpcode::G_PTR_ADD:
1235   case TargetOpcode::G_PTRMASK: {
1236     if (TypeIdx != 1)
1237       return UnableToLegalize;
1238     Observer.changingInstr(MI);
1239     narrowScalarSrc(MI, NarrowTy, 2);
1240     Observer.changedInstr(MI);
1241     return Legalized;
1242   }
1243   case TargetOpcode::G_FPTOUI: {
1244     if (TypeIdx != 0)
1245       return UnableToLegalize;
1246     Observer.changingInstr(MI);
1247     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1248     Observer.changedInstr(MI);
1249     return Legalized;
1250   }
1251   case TargetOpcode::G_FPTOSI: {
1252     if (TypeIdx != 0)
1253       return UnableToLegalize;
1254     Observer.changingInstr(MI);
1255     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1256     Observer.changedInstr(MI);
1257     return Legalized;
1258   }
1259   case TargetOpcode::G_FPEXT:
1260     if (TypeIdx != 0)
1261       return UnableToLegalize;
1262     Observer.changingInstr(MI);
1263     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1264     Observer.changedInstr(MI);
1265     return Legalized;
1266   }
1267 }
1268 
1269 Register LegalizerHelper::coerceToScalar(Register Val) {
1270   LLT Ty = MRI.getType(Val);
1271   if (Ty.isScalar())
1272     return Val;
1273 
1274   const DataLayout &DL = MIRBuilder.getDataLayout();
1275   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1276   if (Ty.isPointer()) {
1277     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1278       return Register();
1279     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1280   }
1281 
1282   Register NewVal = Val;
1283 
1284   assert(Ty.isVector());
1285   LLT EltTy = Ty.getElementType();
1286   if (EltTy.isPointer())
1287     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1288   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1289 }
1290 
1291 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1292                                      unsigned OpIdx, unsigned ExtOpcode) {
1293   MachineOperand &MO = MI.getOperand(OpIdx);
1294   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1295   MO.setReg(ExtB.getReg(0));
1296 }
1297 
1298 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1299                                       unsigned OpIdx) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1302   MO.setReg(ExtB.getReg(0));
1303 }
1304 
1305 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1306                                      unsigned OpIdx, unsigned TruncOpcode) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1309   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1310   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1311   MO.setReg(DstExt);
1312 }
1313 
1314 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1315                                       unsigned OpIdx, unsigned ExtOpcode) {
1316   MachineOperand &MO = MI.getOperand(OpIdx);
1317   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1318   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1319   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1320   MO.setReg(DstTrunc);
1321 }
1322 
1323 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1324                                             unsigned OpIdx) {
1325   MachineOperand &MO = MI.getOperand(OpIdx);
1326   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1327   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1328 }
1329 
1330 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1331                                             unsigned OpIdx) {
1332   MachineOperand &MO = MI.getOperand(OpIdx);
1333 
1334   LLT OldTy = MRI.getType(MO.getReg());
1335   unsigned OldElts = OldTy.getNumElements();
1336   unsigned NewElts = MoreTy.getNumElements();
1337 
1338   unsigned NumParts = NewElts / OldElts;
1339 
1340   // Use concat_vectors if the result is a multiple of the number of elements.
1341   if (NumParts * OldElts == NewElts) {
1342     SmallVector<Register, 8> Parts;
1343     Parts.push_back(MO.getReg());
1344 
1345     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1346     for (unsigned I = 1; I != NumParts; ++I)
1347       Parts.push_back(ImpDef);
1348 
1349     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1350     MO.setReg(Concat.getReg(0));
1351     return;
1352   }
1353 
1354   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1355   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1356   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1357   MO.setReg(MoreReg);
1358 }
1359 
1360 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1361   MachineOperand &Op = MI.getOperand(OpIdx);
1362   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1363 }
1364 
1365 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1366   MachineOperand &MO = MI.getOperand(OpIdx);
1367   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1368   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1369   MIRBuilder.buildBitcast(MO, CastDst);
1370   MO.setReg(CastDst);
1371 }
1372 
1373 LegalizerHelper::LegalizeResult
1374 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1375                                         LLT WideTy) {
1376   if (TypeIdx != 1)
1377     return UnableToLegalize;
1378 
1379   Register DstReg = MI.getOperand(0).getReg();
1380   LLT DstTy = MRI.getType(DstReg);
1381   if (DstTy.isVector())
1382     return UnableToLegalize;
1383 
1384   Register Src1 = MI.getOperand(1).getReg();
1385   LLT SrcTy = MRI.getType(Src1);
1386   const int DstSize = DstTy.getSizeInBits();
1387   const int SrcSize = SrcTy.getSizeInBits();
1388   const int WideSize = WideTy.getSizeInBits();
1389   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1390 
1391   unsigned NumOps = MI.getNumOperands();
1392   unsigned NumSrc = MI.getNumOperands() - 1;
1393   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1394 
1395   if (WideSize >= DstSize) {
1396     // Directly pack the bits in the target type.
1397     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1398 
1399     for (unsigned I = 2; I != NumOps; ++I) {
1400       const unsigned Offset = (I - 1) * PartSize;
1401 
1402       Register SrcReg = MI.getOperand(I).getReg();
1403       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1404 
1405       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1406 
1407       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1408         MRI.createGenericVirtualRegister(WideTy);
1409 
1410       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1411       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1412       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1413       ResultReg = NextResult;
1414     }
1415 
1416     if (WideSize > DstSize)
1417       MIRBuilder.buildTrunc(DstReg, ResultReg);
1418     else if (DstTy.isPointer())
1419       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1420 
1421     MI.eraseFromParent();
1422     return Legalized;
1423   }
1424 
1425   // Unmerge the original values to the GCD type, and recombine to the next
1426   // multiple greater than the original type.
1427   //
1428   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1429   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1430   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1431   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1432   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1433   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1434   // %12:_(s12) = G_MERGE_VALUES %10, %11
1435   //
1436   // Padding with undef if necessary:
1437   //
1438   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1439   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1440   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1441   // %7:_(s2) = G_IMPLICIT_DEF
1442   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1443   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1444   // %10:_(s12) = G_MERGE_VALUES %8, %9
1445 
1446   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1447   LLT GCDTy = LLT::scalar(GCD);
1448 
1449   SmallVector<Register, 8> Parts;
1450   SmallVector<Register, 8> NewMergeRegs;
1451   SmallVector<Register, 8> Unmerges;
1452   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1453 
1454   // Decompose the original operands if they don't evenly divide.
1455   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1456     Register SrcReg = MI.getOperand(I).getReg();
1457     if (GCD == SrcSize) {
1458       Unmerges.push_back(SrcReg);
1459     } else {
1460       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1461       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1462         Unmerges.push_back(Unmerge.getReg(J));
1463     }
1464   }
1465 
1466   // Pad with undef to the next size that is a multiple of the requested size.
1467   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1468     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1469     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1470       Unmerges.push_back(UndefReg);
1471   }
1472 
1473   const int PartsPerGCD = WideSize / GCD;
1474 
1475   // Build merges of each piece.
1476   ArrayRef<Register> Slicer(Unmerges);
1477   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1478     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1479     NewMergeRegs.push_back(Merge.getReg(0));
1480   }
1481 
1482   // A truncate may be necessary if the requested type doesn't evenly divide the
1483   // original result type.
1484   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1485     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1486   } else {
1487     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1488     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1489   }
1490 
1491   MI.eraseFromParent();
1492   return Legalized;
1493 }
1494 
1495 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1496   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1497   LLT OrigTy = MRI.getType(OrigReg);
1498   LLT LCMTy = getLCMType(WideTy, OrigTy);
1499 
1500   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1501   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1502 
1503   Register UnmergeSrc = WideReg;
1504 
1505   // Create a merge to the LCM type, padding with undef
1506   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1507   // =>
1508   // %1:_(<4 x s32>) = G_FOO
1509   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1510   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1511   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1512   if (NumMergeParts > 1) {
1513     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1514     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1515     MergeParts[0] = WideReg;
1516     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1517   }
1518 
1519   // Unmerge to the original register and pad with dead defs.
1520   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1521   UnmergeResults[0] = OrigReg;
1522   for (int I = 1; I != NumUnmergeParts; ++I)
1523     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1524 
1525   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1526   return WideReg;
1527 }
1528 
1529 LegalizerHelper::LegalizeResult
1530 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1531                                           LLT WideTy) {
1532   if (TypeIdx != 0)
1533     return UnableToLegalize;
1534 
1535   int NumDst = MI.getNumOperands() - 1;
1536   Register SrcReg = MI.getOperand(NumDst).getReg();
1537   LLT SrcTy = MRI.getType(SrcReg);
1538   if (SrcTy.isVector())
1539     return UnableToLegalize;
1540 
1541   Register Dst0Reg = MI.getOperand(0).getReg();
1542   LLT DstTy = MRI.getType(Dst0Reg);
1543   if (!DstTy.isScalar())
1544     return UnableToLegalize;
1545 
1546   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1547     if (SrcTy.isPointer()) {
1548       const DataLayout &DL = MIRBuilder.getDataLayout();
1549       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1550         LLVM_DEBUG(
1551             dbgs() << "Not casting non-integral address space integer\n");
1552         return UnableToLegalize;
1553       }
1554 
1555       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1556       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1557     }
1558 
1559     // Widen SrcTy to WideTy. This does not affect the result, but since the
1560     // user requested this size, it is probably better handled than SrcTy and
1561     // should reduce the total number of legalization artifacts
1562     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1563       SrcTy = WideTy;
1564       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1565     }
1566 
1567     // Theres no unmerge type to target. Directly extract the bits from the
1568     // source type
1569     unsigned DstSize = DstTy.getSizeInBits();
1570 
1571     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1572     for (int I = 1; I != NumDst; ++I) {
1573       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1574       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1575       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1576     }
1577 
1578     MI.eraseFromParent();
1579     return Legalized;
1580   }
1581 
1582   // Extend the source to a wider type.
1583   LLT LCMTy = getLCMType(SrcTy, WideTy);
1584 
1585   Register WideSrc = SrcReg;
1586   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1587     // TODO: If this is an integral address space, cast to integer and anyext.
1588     if (SrcTy.isPointer()) {
1589       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1590       return UnableToLegalize;
1591     }
1592 
1593     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1594   }
1595 
1596   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1597 
1598   // Create a sequence of unmerges to the original results. since we may have
1599   // widened the source, we will need to pad the results with dead defs to cover
1600   // the source register.
1601   // e.g. widen s16 to s32:
1602   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1603   //
1604   // =>
1605   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1606   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1607   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1608   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1609 
1610   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1611   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1612 
1613   for (int I = 0; I != NumUnmerge; ++I) {
1614     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1615 
1616     for (int J = 0; J != PartsPerUnmerge; ++J) {
1617       int Idx = I * PartsPerUnmerge + J;
1618       if (Idx < NumDst)
1619         MIB.addDef(MI.getOperand(Idx).getReg());
1620       else {
1621         // Create dead def for excess components.
1622         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1623       }
1624     }
1625 
1626     MIB.addUse(Unmerge.getReg(I));
1627   }
1628 
1629   MI.eraseFromParent();
1630   return Legalized;
1631 }
1632 
1633 LegalizerHelper::LegalizeResult
1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1635                                     LLT WideTy) {
1636   Register DstReg = MI.getOperand(0).getReg();
1637   Register SrcReg = MI.getOperand(1).getReg();
1638   LLT SrcTy = MRI.getType(SrcReg);
1639 
1640   LLT DstTy = MRI.getType(DstReg);
1641   unsigned Offset = MI.getOperand(2).getImm();
1642 
1643   if (TypeIdx == 0) {
1644     if (SrcTy.isVector() || DstTy.isVector())
1645       return UnableToLegalize;
1646 
1647     SrcOp Src(SrcReg);
1648     if (SrcTy.isPointer()) {
1649       // Extracts from pointers can be handled only if they are really just
1650       // simple integers.
1651       const DataLayout &DL = MIRBuilder.getDataLayout();
1652       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1653         return UnableToLegalize;
1654 
1655       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1656       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1657       SrcTy = SrcAsIntTy;
1658     }
1659 
1660     if (DstTy.isPointer())
1661       return UnableToLegalize;
1662 
1663     if (Offset == 0) {
1664       // Avoid a shift in the degenerate case.
1665       MIRBuilder.buildTrunc(DstReg,
1666                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1667       MI.eraseFromParent();
1668       return Legalized;
1669     }
1670 
1671     // Do a shift in the source type.
1672     LLT ShiftTy = SrcTy;
1673     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1674       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1675       ShiftTy = WideTy;
1676     }
1677 
1678     auto LShr = MIRBuilder.buildLShr(
1679       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1680     MIRBuilder.buildTrunc(DstReg, LShr);
1681     MI.eraseFromParent();
1682     return Legalized;
1683   }
1684 
1685   if (SrcTy.isScalar()) {
1686     Observer.changingInstr(MI);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     Observer.changedInstr(MI);
1689     return Legalized;
1690   }
1691 
1692   if (!SrcTy.isVector())
1693     return UnableToLegalize;
1694 
1695   if (DstTy != SrcTy.getElementType())
1696     return UnableToLegalize;
1697 
1698   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1699     return UnableToLegalize;
1700 
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703 
1704   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1705                           Offset);
1706   widenScalarDst(MI, WideTy.getScalarType(), 0);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1713                                    LLT WideTy) {
1714   if (TypeIdx != 0 || WideTy.isVector())
1715     return UnableToLegalize;
1716   Observer.changingInstr(MI);
1717   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718   widenScalarDst(MI, WideTy);
1719   Observer.changedInstr(MI);
1720   return Legalized;
1721 }
1722 
1723 LegalizerHelper::LegalizeResult
1724 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1725                                          LLT WideTy) {
1726   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1727                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1728                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1729   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1730                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1731   // We can convert this to:
1732   //   1. Any extend iN to iM
1733   //   2. SHL by M-N
1734   //   3. [US][ADD|SUB|SHL]SAT
1735   //   4. L/ASHR by M-N
1736   //
1737   // It may be more efficient to lower this to a min and a max operation in
1738   // the higher precision arithmetic if the promoted operation isn't legal,
1739   // but this decision is up to the target's lowering request.
1740   Register DstReg = MI.getOperand(0).getReg();
1741 
1742   unsigned NewBits = WideTy.getScalarSizeInBits();
1743   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1744 
1745   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1746   // must not left shift the RHS to preserve the shift amount.
1747   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1748   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1749                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1750   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1751   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1752   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1753 
1754   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1755                                         {ShiftL, ShiftR}, MI.getFlags());
1756 
1757   // Use a shift that will preserve the number of sign bits when the trunc is
1758   // folded away.
1759   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1760                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1761 
1762   MIRBuilder.buildTrunc(DstReg, Result);
1763   MI.eraseFromParent();
1764   return Legalized;
1765 }
1766 
1767 LegalizerHelper::LegalizeResult
1768 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1769   switch (MI.getOpcode()) {
1770   default:
1771     return UnableToLegalize;
1772   case TargetOpcode::G_EXTRACT:
1773     return widenScalarExtract(MI, TypeIdx, WideTy);
1774   case TargetOpcode::G_INSERT:
1775     return widenScalarInsert(MI, TypeIdx, WideTy);
1776   case TargetOpcode::G_MERGE_VALUES:
1777     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1778   case TargetOpcode::G_UNMERGE_VALUES:
1779     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1780   case TargetOpcode::G_UADDO:
1781   case TargetOpcode::G_USUBO: {
1782     if (TypeIdx == 1)
1783       return UnableToLegalize; // TODO
1784     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1785     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1786     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1787                           ? TargetOpcode::G_ADD
1788                           : TargetOpcode::G_SUB;
1789     // Do the arithmetic in the larger type.
1790     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1791     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1792     APInt Mask =
1793         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1794     auto AndOp = MIRBuilder.buildAnd(
1795         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1796     // There is no overflow if the AndOp is the same as NewOp.
1797     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1798     // Now trunc the NewOp to the original result.
1799     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1800     MI.eraseFromParent();
1801     return Legalized;
1802   }
1803   case TargetOpcode::G_SADDSAT:
1804   case TargetOpcode::G_SSUBSAT:
1805   case TargetOpcode::G_SSHLSAT:
1806   case TargetOpcode::G_UADDSAT:
1807   case TargetOpcode::G_USUBSAT:
1808   case TargetOpcode::G_USHLSAT:
1809     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1810   case TargetOpcode::G_CTTZ:
1811   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1812   case TargetOpcode::G_CTLZ:
1813   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1814   case TargetOpcode::G_CTPOP: {
1815     if (TypeIdx == 0) {
1816       Observer.changingInstr(MI);
1817       widenScalarDst(MI, WideTy, 0);
1818       Observer.changedInstr(MI);
1819       return Legalized;
1820     }
1821 
1822     Register SrcReg = MI.getOperand(1).getReg();
1823 
1824     // First ZEXT the input.
1825     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1826     LLT CurTy = MRI.getType(SrcReg);
1827     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1828       // The count is the same in the larger type except if the original
1829       // value was zero.  This can be handled by setting the bit just off
1830       // the top of the original type.
1831       auto TopBit =
1832           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1833       MIBSrc = MIRBuilder.buildOr(
1834         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1835     }
1836 
1837     // Perform the operation at the larger size.
1838     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1839     // This is already the correct result for CTPOP and CTTZs
1840     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1841         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1842       // The correct result is NewOp - (Difference in widety and current ty).
1843       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1844       MIBNewOp = MIRBuilder.buildSub(
1845           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1846     }
1847 
1848     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1849     MI.eraseFromParent();
1850     return Legalized;
1851   }
1852   case TargetOpcode::G_BSWAP: {
1853     Observer.changingInstr(MI);
1854     Register DstReg = MI.getOperand(0).getReg();
1855 
1856     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1857     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1858     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1859     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1860 
1861     MI.getOperand(0).setReg(DstExt);
1862 
1863     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1864 
1865     LLT Ty = MRI.getType(DstReg);
1866     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1867     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1868     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1869 
1870     MIRBuilder.buildTrunc(DstReg, ShrReg);
1871     Observer.changedInstr(MI);
1872     return Legalized;
1873   }
1874   case TargetOpcode::G_BITREVERSE: {
1875     Observer.changingInstr(MI);
1876 
1877     Register DstReg = MI.getOperand(0).getReg();
1878     LLT Ty = MRI.getType(DstReg);
1879     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1880 
1881     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1882     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1883     MI.getOperand(0).setReg(DstExt);
1884     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1885 
1886     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1887     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1888     MIRBuilder.buildTrunc(DstReg, Shift);
1889     Observer.changedInstr(MI);
1890     return Legalized;
1891   }
1892   case TargetOpcode::G_FREEZE:
1893     Observer.changingInstr(MI);
1894     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1895     widenScalarDst(MI, WideTy);
1896     Observer.changedInstr(MI);
1897     return Legalized;
1898 
1899   case TargetOpcode::G_ADD:
1900   case TargetOpcode::G_AND:
1901   case TargetOpcode::G_MUL:
1902   case TargetOpcode::G_OR:
1903   case TargetOpcode::G_XOR:
1904   case TargetOpcode::G_SUB:
1905     // Perform operation at larger width (any extension is fines here, high bits
1906     // don't affect the result) and then truncate the result back to the
1907     // original type.
1908     Observer.changingInstr(MI);
1909     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1910     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1911     widenScalarDst(MI, WideTy);
1912     Observer.changedInstr(MI);
1913     return Legalized;
1914 
1915   case TargetOpcode::G_SHL:
1916     Observer.changingInstr(MI);
1917 
1918     if (TypeIdx == 0) {
1919       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1920       widenScalarDst(MI, WideTy);
1921     } else {
1922       assert(TypeIdx == 1);
1923       // The "number of bits to shift" operand must preserve its value as an
1924       // unsigned integer:
1925       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1926     }
1927 
1928     Observer.changedInstr(MI);
1929     return Legalized;
1930 
1931   case TargetOpcode::G_SDIV:
1932   case TargetOpcode::G_SREM:
1933   case TargetOpcode::G_SMIN:
1934   case TargetOpcode::G_SMAX:
1935     Observer.changingInstr(MI);
1936     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1937     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1938     widenScalarDst(MI, WideTy);
1939     Observer.changedInstr(MI);
1940     return Legalized;
1941 
1942   case TargetOpcode::G_ASHR:
1943   case TargetOpcode::G_LSHR:
1944     Observer.changingInstr(MI);
1945 
1946     if (TypeIdx == 0) {
1947       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1948         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1949 
1950       widenScalarSrc(MI, WideTy, 1, CvtOp);
1951       widenScalarDst(MI, WideTy);
1952     } else {
1953       assert(TypeIdx == 1);
1954       // The "number of bits to shift" operand must preserve its value as an
1955       // unsigned integer:
1956       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1957     }
1958 
1959     Observer.changedInstr(MI);
1960     return Legalized;
1961   case TargetOpcode::G_UDIV:
1962   case TargetOpcode::G_UREM:
1963   case TargetOpcode::G_UMIN:
1964   case TargetOpcode::G_UMAX:
1965     Observer.changingInstr(MI);
1966     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1967     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1968     widenScalarDst(MI, WideTy);
1969     Observer.changedInstr(MI);
1970     return Legalized;
1971 
1972   case TargetOpcode::G_SELECT:
1973     Observer.changingInstr(MI);
1974     if (TypeIdx == 0) {
1975       // Perform operation at larger width (any extension is fine here, high
1976       // bits don't affect the result) and then truncate the result back to the
1977       // original type.
1978       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1979       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1980       widenScalarDst(MI, WideTy);
1981     } else {
1982       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1983       // Explicit extension is required here since high bits affect the result.
1984       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1985     }
1986     Observer.changedInstr(MI);
1987     return Legalized;
1988 
1989   case TargetOpcode::G_FPTOSI:
1990   case TargetOpcode::G_FPTOUI:
1991     Observer.changingInstr(MI);
1992 
1993     if (TypeIdx == 0)
1994       widenScalarDst(MI, WideTy);
1995     else
1996       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1997 
1998     Observer.changedInstr(MI);
1999     return Legalized;
2000   case TargetOpcode::G_SITOFP:
2001     Observer.changingInstr(MI);
2002 
2003     if (TypeIdx == 0)
2004       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2005     else
2006       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2007 
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010   case TargetOpcode::G_UITOFP:
2011     Observer.changingInstr(MI);
2012 
2013     if (TypeIdx == 0)
2014       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2015     else
2016       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2017 
2018     Observer.changedInstr(MI);
2019     return Legalized;
2020   case TargetOpcode::G_LOAD:
2021   case TargetOpcode::G_SEXTLOAD:
2022   case TargetOpcode::G_ZEXTLOAD:
2023     Observer.changingInstr(MI);
2024     widenScalarDst(MI, WideTy);
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_STORE: {
2029     if (TypeIdx != 0)
2030       return UnableToLegalize;
2031 
2032     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2033     if (!isPowerOf2_32(Ty.getSizeInBits()))
2034       return UnableToLegalize;
2035 
2036     Observer.changingInstr(MI);
2037 
2038     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2039       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2040     widenScalarSrc(MI, WideTy, 0, ExtType);
2041 
2042     Observer.changedInstr(MI);
2043     return Legalized;
2044   }
2045   case TargetOpcode::G_CONSTANT: {
2046     MachineOperand &SrcMO = MI.getOperand(1);
2047     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2048     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2049         MRI.getType(MI.getOperand(0).getReg()));
2050     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2051             ExtOpc == TargetOpcode::G_ANYEXT) &&
2052            "Illegal Extend");
2053     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2054     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2055                            ? SrcVal.sext(WideTy.getSizeInBits())
2056                            : SrcVal.zext(WideTy.getSizeInBits());
2057     Observer.changingInstr(MI);
2058     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2059 
2060     widenScalarDst(MI, WideTy);
2061     Observer.changedInstr(MI);
2062     return Legalized;
2063   }
2064   case TargetOpcode::G_FCONSTANT: {
2065     MachineOperand &SrcMO = MI.getOperand(1);
2066     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2067     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2068     bool LosesInfo;
2069     switch (WideTy.getSizeInBits()) {
2070     case 32:
2071       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2072                   &LosesInfo);
2073       break;
2074     case 64:
2075       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2076                   &LosesInfo);
2077       break;
2078     default:
2079       return UnableToLegalize;
2080     }
2081 
2082     assert(!LosesInfo && "extend should always be lossless");
2083 
2084     Observer.changingInstr(MI);
2085     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2086 
2087     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2088     Observer.changedInstr(MI);
2089     return Legalized;
2090   }
2091   case TargetOpcode::G_IMPLICIT_DEF: {
2092     Observer.changingInstr(MI);
2093     widenScalarDst(MI, WideTy);
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096   }
2097   case TargetOpcode::G_BRCOND:
2098     Observer.changingInstr(MI);
2099     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2100     Observer.changedInstr(MI);
2101     return Legalized;
2102 
2103   case TargetOpcode::G_FCMP:
2104     Observer.changingInstr(MI);
2105     if (TypeIdx == 0)
2106       widenScalarDst(MI, WideTy);
2107     else {
2108       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2109       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2110     }
2111     Observer.changedInstr(MI);
2112     return Legalized;
2113 
2114   case TargetOpcode::G_ICMP:
2115     Observer.changingInstr(MI);
2116     if (TypeIdx == 0)
2117       widenScalarDst(MI, WideTy);
2118     else {
2119       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2120                                MI.getOperand(1).getPredicate()))
2121                                ? TargetOpcode::G_SEXT
2122                                : TargetOpcode::G_ZEXT;
2123       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2124       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2125     }
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128 
2129   case TargetOpcode::G_PTR_ADD:
2130     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2131     Observer.changingInstr(MI);
2132     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135 
2136   case TargetOpcode::G_PHI: {
2137     assert(TypeIdx == 0 && "Expecting only Idx 0");
2138 
2139     Observer.changingInstr(MI);
2140     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2141       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2142       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2143       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2144     }
2145 
2146     MachineBasicBlock &MBB = *MI.getParent();
2147     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2148     widenScalarDst(MI, WideTy);
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151   }
2152   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2153     if (TypeIdx == 0) {
2154       Register VecReg = MI.getOperand(1).getReg();
2155       LLT VecTy = MRI.getType(VecReg);
2156       Observer.changingInstr(MI);
2157 
2158       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2159                                      WideTy.getSizeInBits()),
2160                      1, TargetOpcode::G_SEXT);
2161 
2162       widenScalarDst(MI, WideTy, 0);
2163       Observer.changedInstr(MI);
2164       return Legalized;
2165     }
2166 
2167     if (TypeIdx != 2)
2168       return UnableToLegalize;
2169     Observer.changingInstr(MI);
2170     // TODO: Probably should be zext
2171     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2172     Observer.changedInstr(MI);
2173     return Legalized;
2174   }
2175   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2176     if (TypeIdx == 1) {
2177       Observer.changingInstr(MI);
2178 
2179       Register VecReg = MI.getOperand(1).getReg();
2180       LLT VecTy = MRI.getType(VecReg);
2181       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2182 
2183       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2184       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2185       widenScalarDst(MI, WideVecTy, 0);
2186       Observer.changedInstr(MI);
2187       return Legalized;
2188     }
2189 
2190     if (TypeIdx == 2) {
2191       Observer.changingInstr(MI);
2192       // TODO: Probably should be zext
2193       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2194       Observer.changedInstr(MI);
2195       return Legalized;
2196     }
2197 
2198     return UnableToLegalize;
2199   }
2200   case TargetOpcode::G_FADD:
2201   case TargetOpcode::G_FMUL:
2202   case TargetOpcode::G_FSUB:
2203   case TargetOpcode::G_FMA:
2204   case TargetOpcode::G_FMAD:
2205   case TargetOpcode::G_FNEG:
2206   case TargetOpcode::G_FABS:
2207   case TargetOpcode::G_FCANONICALIZE:
2208   case TargetOpcode::G_FMINNUM:
2209   case TargetOpcode::G_FMAXNUM:
2210   case TargetOpcode::G_FMINNUM_IEEE:
2211   case TargetOpcode::G_FMAXNUM_IEEE:
2212   case TargetOpcode::G_FMINIMUM:
2213   case TargetOpcode::G_FMAXIMUM:
2214   case TargetOpcode::G_FDIV:
2215   case TargetOpcode::G_FREM:
2216   case TargetOpcode::G_FCEIL:
2217   case TargetOpcode::G_FFLOOR:
2218   case TargetOpcode::G_FCOS:
2219   case TargetOpcode::G_FSIN:
2220   case TargetOpcode::G_FLOG10:
2221   case TargetOpcode::G_FLOG:
2222   case TargetOpcode::G_FLOG2:
2223   case TargetOpcode::G_FRINT:
2224   case TargetOpcode::G_FNEARBYINT:
2225   case TargetOpcode::G_FSQRT:
2226   case TargetOpcode::G_FEXP:
2227   case TargetOpcode::G_FEXP2:
2228   case TargetOpcode::G_FPOW:
2229   case TargetOpcode::G_INTRINSIC_TRUNC:
2230   case TargetOpcode::G_INTRINSIC_ROUND:
2231   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2232     assert(TypeIdx == 0);
2233     Observer.changingInstr(MI);
2234 
2235     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2236       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2237 
2238     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2239     Observer.changedInstr(MI);
2240     return Legalized;
2241   case TargetOpcode::G_FPOWI: {
2242     if (TypeIdx != 0)
2243       return UnableToLegalize;
2244     Observer.changingInstr(MI);
2245     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2246     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2247     Observer.changedInstr(MI);
2248     return Legalized;
2249   }
2250   case TargetOpcode::G_INTTOPTR:
2251     if (TypeIdx != 1)
2252       return UnableToLegalize;
2253 
2254     Observer.changingInstr(MI);
2255     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2256     Observer.changedInstr(MI);
2257     return Legalized;
2258   case TargetOpcode::G_PTRTOINT:
2259     if (TypeIdx != 0)
2260       return UnableToLegalize;
2261 
2262     Observer.changingInstr(MI);
2263     widenScalarDst(MI, WideTy, 0);
2264     Observer.changedInstr(MI);
2265     return Legalized;
2266   case TargetOpcode::G_BUILD_VECTOR: {
2267     Observer.changingInstr(MI);
2268 
2269     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2270     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2271       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2272 
2273     // Avoid changing the result vector type if the source element type was
2274     // requested.
2275     if (TypeIdx == 1) {
2276       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2277     } else {
2278       widenScalarDst(MI, WideTy, 0);
2279     }
2280 
2281     Observer.changedInstr(MI);
2282     return Legalized;
2283   }
2284   case TargetOpcode::G_SEXT_INREG:
2285     if (TypeIdx != 0)
2286       return UnableToLegalize;
2287 
2288     Observer.changingInstr(MI);
2289     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2290     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   case TargetOpcode::G_PTRMASK: {
2294     if (TypeIdx != 1)
2295       return UnableToLegalize;
2296     Observer.changingInstr(MI);
2297     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2298     Observer.changedInstr(MI);
2299     return Legalized;
2300   }
2301   }
2302 }
2303 
2304 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2305                              MachineIRBuilder &B, Register Src, LLT Ty) {
2306   auto Unmerge = B.buildUnmerge(Ty, Src);
2307   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2308     Pieces.push_back(Unmerge.getReg(I));
2309 }
2310 
2311 LegalizerHelper::LegalizeResult
2312 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2313   Register Dst = MI.getOperand(0).getReg();
2314   Register Src = MI.getOperand(1).getReg();
2315   LLT DstTy = MRI.getType(Dst);
2316   LLT SrcTy = MRI.getType(Src);
2317 
2318   if (SrcTy.isVector()) {
2319     LLT SrcEltTy = SrcTy.getElementType();
2320     SmallVector<Register, 8> SrcRegs;
2321 
2322     if (DstTy.isVector()) {
2323       int NumDstElt = DstTy.getNumElements();
2324       int NumSrcElt = SrcTy.getNumElements();
2325 
2326       LLT DstEltTy = DstTy.getElementType();
2327       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2328       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2329 
2330       // If there's an element size mismatch, insert intermediate casts to match
2331       // the result element type.
2332       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2333         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2334         //
2335         // =>
2336         //
2337         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2338         // %3:_(<2 x s8>) = G_BITCAST %2
2339         // %4:_(<2 x s8>) = G_BITCAST %3
2340         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2341         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2342         SrcPartTy = SrcEltTy;
2343       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2344         //
2345         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2346         //
2347         // =>
2348         //
2349         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2350         // %3:_(s16) = G_BITCAST %2
2351         // %4:_(s16) = G_BITCAST %3
2352         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2353         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2354         DstCastTy = DstEltTy;
2355       }
2356 
2357       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2358       for (Register &SrcReg : SrcRegs)
2359         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2360     } else
2361       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2362 
2363     MIRBuilder.buildMerge(Dst, SrcRegs);
2364     MI.eraseFromParent();
2365     return Legalized;
2366   }
2367 
2368   if (DstTy.isVector()) {
2369     SmallVector<Register, 8> SrcRegs;
2370     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2371     MIRBuilder.buildMerge(Dst, SrcRegs);
2372     MI.eraseFromParent();
2373     return Legalized;
2374   }
2375 
2376   return UnableToLegalize;
2377 }
2378 
2379 /// Figure out the bit offset into a register when coercing a vector index for
2380 /// the wide element type. This is only for the case when promoting vector to
2381 /// one with larger elements.
2382 //
2383 ///
2384 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2385 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2386 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2387                                                    Register Idx,
2388                                                    unsigned NewEltSize,
2389                                                    unsigned OldEltSize) {
2390   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2391   LLT IdxTy = B.getMRI()->getType(Idx);
2392 
2393   // Now figure out the amount we need to shift to get the target bits.
2394   auto OffsetMask = B.buildConstant(
2395     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2396   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2397   return B.buildShl(IdxTy, OffsetIdx,
2398                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2399 }
2400 
2401 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2402 /// is casting to a vector with a smaller element size, perform multiple element
2403 /// extracts and merge the results. If this is coercing to a vector with larger
2404 /// elements, index the bitcasted vector and extract the target element with bit
2405 /// operations. This is intended to force the indexing in the native register
2406 /// size for architectures that can dynamically index the register file.
2407 LegalizerHelper::LegalizeResult
2408 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2409                                          LLT CastTy) {
2410   if (TypeIdx != 1)
2411     return UnableToLegalize;
2412 
2413   Register Dst = MI.getOperand(0).getReg();
2414   Register SrcVec = MI.getOperand(1).getReg();
2415   Register Idx = MI.getOperand(2).getReg();
2416   LLT SrcVecTy = MRI.getType(SrcVec);
2417   LLT IdxTy = MRI.getType(Idx);
2418 
2419   LLT SrcEltTy = SrcVecTy.getElementType();
2420   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2421   unsigned OldNumElts = SrcVecTy.getNumElements();
2422 
2423   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2424   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2425 
2426   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2427   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2428   if (NewNumElts > OldNumElts) {
2429     // Decreasing the vector element size
2430     //
2431     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2432     //  =>
2433     //  v4i32:castx = bitcast x:v2i64
2434     //
2435     // i64 = bitcast
2436     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2437     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2438     //
2439     if (NewNumElts % OldNumElts != 0)
2440       return UnableToLegalize;
2441 
2442     // Type of the intermediate result vector.
2443     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2444     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2445 
2446     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2447 
2448     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2449     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2450 
2451     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2452       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2453       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2454       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2455       NewOps[I] = Elt.getReg(0);
2456     }
2457 
2458     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2459     MIRBuilder.buildBitcast(Dst, NewVec);
2460     MI.eraseFromParent();
2461     return Legalized;
2462   }
2463 
2464   if (NewNumElts < OldNumElts) {
2465     if (NewEltSize % OldEltSize != 0)
2466       return UnableToLegalize;
2467 
2468     // This only depends on powers of 2 because we use bit tricks to figure out
2469     // the bit offset we need to shift to get the target element. A general
2470     // expansion could emit division/multiply.
2471     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2472       return UnableToLegalize;
2473 
2474     // Increasing the vector element size.
2475     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2476     //
2477     //   =>
2478     //
2479     // %cast = G_BITCAST %vec
2480     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2481     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2482     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2483     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2484     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2485     // %elt = G_TRUNC %elt_bits
2486 
2487     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2488     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2489 
2490     // Divide to get the index in the wider element type.
2491     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2492 
2493     Register WideElt = CastVec;
2494     if (CastTy.isVector()) {
2495       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2496                                                      ScaledIdx).getReg(0);
2497     }
2498 
2499     // Compute the bit offset into the register of the target element.
2500     Register OffsetBits = getBitcastWiderVectorElementOffset(
2501       MIRBuilder, Idx, NewEltSize, OldEltSize);
2502 
2503     // Shift the wide element to get the target element.
2504     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2505     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2506     MI.eraseFromParent();
2507     return Legalized;
2508   }
2509 
2510   return UnableToLegalize;
2511 }
2512 
2513 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2514 /// TargetReg, while preserving other bits in \p TargetReg.
2515 ///
2516 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2517 static Register buildBitFieldInsert(MachineIRBuilder &B,
2518                                     Register TargetReg, Register InsertReg,
2519                                     Register OffsetBits) {
2520   LLT TargetTy = B.getMRI()->getType(TargetReg);
2521   LLT InsertTy = B.getMRI()->getType(InsertReg);
2522   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2523   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2524 
2525   // Produce a bitmask of the value to insert
2526   auto EltMask = B.buildConstant(
2527     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2528                                    InsertTy.getSizeInBits()));
2529   // Shift it into position
2530   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2531   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2532 
2533   // Clear out the bits in the wide element
2534   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2535 
2536   // The value to insert has all zeros already, so stick it into the masked
2537   // wide element.
2538   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2539 }
2540 
2541 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2542 /// is increasing the element size, perform the indexing in the target element
2543 /// type, and use bit operations to insert at the element position. This is
2544 /// intended for architectures that can dynamically index the register file and
2545 /// want to force indexing in the native register size.
2546 LegalizerHelper::LegalizeResult
2547 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2548                                         LLT CastTy) {
2549   if (TypeIdx != 0)
2550     return UnableToLegalize;
2551 
2552   Register Dst = MI.getOperand(0).getReg();
2553   Register SrcVec = MI.getOperand(1).getReg();
2554   Register Val = MI.getOperand(2).getReg();
2555   Register Idx = MI.getOperand(3).getReg();
2556 
2557   LLT VecTy = MRI.getType(Dst);
2558   LLT IdxTy = MRI.getType(Idx);
2559 
2560   LLT VecEltTy = VecTy.getElementType();
2561   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2562   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2563   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2564 
2565   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2566   unsigned OldNumElts = VecTy.getNumElements();
2567 
2568   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2569   if (NewNumElts < OldNumElts) {
2570     if (NewEltSize % OldEltSize != 0)
2571       return UnableToLegalize;
2572 
2573     // This only depends on powers of 2 because we use bit tricks to figure out
2574     // the bit offset we need to shift to get the target element. A general
2575     // expansion could emit division/multiply.
2576     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2577       return UnableToLegalize;
2578 
2579     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2580     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2581 
2582     // Divide to get the index in the wider element type.
2583     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2584 
2585     Register ExtractedElt = CastVec;
2586     if (CastTy.isVector()) {
2587       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2588                                                           ScaledIdx).getReg(0);
2589     }
2590 
2591     // Compute the bit offset into the register of the target element.
2592     Register OffsetBits = getBitcastWiderVectorElementOffset(
2593       MIRBuilder, Idx, NewEltSize, OldEltSize);
2594 
2595     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2596                                                Val, OffsetBits);
2597     if (CastTy.isVector()) {
2598       InsertedElt = MIRBuilder.buildInsertVectorElement(
2599         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2600     }
2601 
2602     MIRBuilder.buildBitcast(Dst, InsertedElt);
2603     MI.eraseFromParent();
2604     return Legalized;
2605   }
2606 
2607   return UnableToLegalize;
2608 }
2609 
2610 LegalizerHelper::LegalizeResult
2611 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2612   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2613   Register DstReg = MI.getOperand(0).getReg();
2614   Register PtrReg = MI.getOperand(1).getReg();
2615   LLT DstTy = MRI.getType(DstReg);
2616   auto &MMO = **MI.memoperands_begin();
2617 
2618   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2619     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2620       // This load needs splitting into power of 2 sized loads.
2621       if (DstTy.isVector())
2622         return UnableToLegalize;
2623       if (isPowerOf2_32(DstTy.getSizeInBits()))
2624         return UnableToLegalize; // Don't know what we're being asked to do.
2625 
2626       // Our strategy here is to generate anyextending loads for the smaller
2627       // types up to next power-2 result type, and then combine the two larger
2628       // result values together, before truncating back down to the non-pow-2
2629       // type.
2630       // E.g. v1 = i24 load =>
2631       // v2 = i32 zextload (2 byte)
2632       // v3 = i32 load (1 byte)
2633       // v4 = i32 shl v3, 16
2634       // v5 = i32 or v4, v2
2635       // v1 = i24 trunc v5
2636       // By doing this we generate the correct truncate which should get
2637       // combined away as an artifact with a matching extend.
2638       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2639       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2640 
2641       MachineFunction &MF = MIRBuilder.getMF();
2642       MachineMemOperand *LargeMMO =
2643         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2644       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2645         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2646 
2647       LLT PtrTy = MRI.getType(PtrReg);
2648       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2649       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2650       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2651       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2652       auto LargeLoad = MIRBuilder.buildLoadInstr(
2653         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2654 
2655       auto OffsetCst = MIRBuilder.buildConstant(
2656         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2657       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2658       auto SmallPtr =
2659         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2660       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2661                                             *SmallMMO);
2662 
2663       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2664       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2665       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2666       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2667       MI.eraseFromParent();
2668       return Legalized;
2669     }
2670 
2671     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2672     MI.eraseFromParent();
2673     return Legalized;
2674   }
2675 
2676   if (DstTy.isScalar()) {
2677     Register TmpReg =
2678       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2679     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2680     switch (MI.getOpcode()) {
2681     default:
2682       llvm_unreachable("Unexpected opcode");
2683     case TargetOpcode::G_LOAD:
2684       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2685       break;
2686     case TargetOpcode::G_SEXTLOAD:
2687       MIRBuilder.buildSExt(DstReg, TmpReg);
2688       break;
2689     case TargetOpcode::G_ZEXTLOAD:
2690       MIRBuilder.buildZExt(DstReg, TmpReg);
2691       break;
2692     }
2693 
2694     MI.eraseFromParent();
2695     return Legalized;
2696   }
2697 
2698   return UnableToLegalize;
2699 }
2700 
2701 LegalizerHelper::LegalizeResult
2702 LegalizerHelper::lowerStore(MachineInstr &MI) {
2703   // Lower a non-power of 2 store into multiple pow-2 stores.
2704   // E.g. split an i24 store into an i16 store + i8 store.
2705   // We do this by first extending the stored value to the next largest power
2706   // of 2 type, and then using truncating stores to store the components.
2707   // By doing this, likewise with G_LOAD, generate an extend that can be
2708   // artifact-combined away instead of leaving behind extracts.
2709   Register SrcReg = MI.getOperand(0).getReg();
2710   Register PtrReg = MI.getOperand(1).getReg();
2711   LLT SrcTy = MRI.getType(SrcReg);
2712   MachineMemOperand &MMO = **MI.memoperands_begin();
2713   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2714     return UnableToLegalize;
2715   if (SrcTy.isVector())
2716     return UnableToLegalize;
2717   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2718     return UnableToLegalize; // Don't know what we're being asked to do.
2719 
2720   // Extend to the next pow-2.
2721   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2722   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2723 
2724   // Obtain the smaller value by shifting away the larger value.
2725   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2726   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2727   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2728   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2729 
2730   // Generate the PtrAdd and truncating stores.
2731   LLT PtrTy = MRI.getType(PtrReg);
2732   auto OffsetCst = MIRBuilder.buildConstant(
2733     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2734   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2735   auto SmallPtr =
2736     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2737 
2738   MachineFunction &MF = MIRBuilder.getMF();
2739   MachineMemOperand *LargeMMO =
2740     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2741   MachineMemOperand *SmallMMO =
2742     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2743   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2744   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2745   MI.eraseFromParent();
2746   return Legalized;
2747 }
2748 
2749 LegalizerHelper::LegalizeResult
2750 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2751   switch (MI.getOpcode()) {
2752   case TargetOpcode::G_LOAD: {
2753     if (TypeIdx != 0)
2754       return UnableToLegalize;
2755 
2756     Observer.changingInstr(MI);
2757     bitcastDst(MI, CastTy, 0);
2758     Observer.changedInstr(MI);
2759     return Legalized;
2760   }
2761   case TargetOpcode::G_STORE: {
2762     if (TypeIdx != 0)
2763       return UnableToLegalize;
2764 
2765     Observer.changingInstr(MI);
2766     bitcastSrc(MI, CastTy, 0);
2767     Observer.changedInstr(MI);
2768     return Legalized;
2769   }
2770   case TargetOpcode::G_SELECT: {
2771     if (TypeIdx != 0)
2772       return UnableToLegalize;
2773 
2774     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2775       LLVM_DEBUG(
2776           dbgs() << "bitcast action not implemented for vector select\n");
2777       return UnableToLegalize;
2778     }
2779 
2780     Observer.changingInstr(MI);
2781     bitcastSrc(MI, CastTy, 2);
2782     bitcastSrc(MI, CastTy, 3);
2783     bitcastDst(MI, CastTy, 0);
2784     Observer.changedInstr(MI);
2785     return Legalized;
2786   }
2787   case TargetOpcode::G_AND:
2788   case TargetOpcode::G_OR:
2789   case TargetOpcode::G_XOR: {
2790     Observer.changingInstr(MI);
2791     bitcastSrc(MI, CastTy, 1);
2792     bitcastSrc(MI, CastTy, 2);
2793     bitcastDst(MI, CastTy, 0);
2794     Observer.changedInstr(MI);
2795     return Legalized;
2796   }
2797   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2798     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2799   case TargetOpcode::G_INSERT_VECTOR_ELT:
2800     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2801   default:
2802     return UnableToLegalize;
2803   }
2804 }
2805 
2806 // Legalize an instruction by changing the opcode in place.
2807 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2808     Observer.changingInstr(MI);
2809     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2810     Observer.changedInstr(MI);
2811 }
2812 
2813 LegalizerHelper::LegalizeResult
2814 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2815   using namespace TargetOpcode;
2816 
2817   switch(MI.getOpcode()) {
2818   default:
2819     return UnableToLegalize;
2820   case TargetOpcode::G_BITCAST:
2821     return lowerBitcast(MI);
2822   case TargetOpcode::G_SREM:
2823   case TargetOpcode::G_UREM: {
2824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2825     auto Quot =
2826         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2827                               {MI.getOperand(1), MI.getOperand(2)});
2828 
2829     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2830     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2831     MI.eraseFromParent();
2832     return Legalized;
2833   }
2834   case TargetOpcode::G_SADDO:
2835   case TargetOpcode::G_SSUBO:
2836     return lowerSADDO_SSUBO(MI);
2837   case TargetOpcode::G_SMULO:
2838   case TargetOpcode::G_UMULO: {
2839     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2840     // result.
2841     Register Res = MI.getOperand(0).getReg();
2842     Register Overflow = MI.getOperand(1).getReg();
2843     Register LHS = MI.getOperand(2).getReg();
2844     Register RHS = MI.getOperand(3).getReg();
2845     LLT Ty = MRI.getType(Res);
2846 
2847     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2848                           ? TargetOpcode::G_SMULH
2849                           : TargetOpcode::G_UMULH;
2850 
2851     Observer.changingInstr(MI);
2852     const auto &TII = MIRBuilder.getTII();
2853     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2854     MI.RemoveOperand(1);
2855     Observer.changedInstr(MI);
2856 
2857     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2858 
2859     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2860     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2861 
2862     // For *signed* multiply, overflow is detected by checking:
2863     // (hi != (lo >> bitwidth-1))
2864     if (Opcode == TargetOpcode::G_SMULH) {
2865       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2866       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2867       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2868     } else {
2869       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2870     }
2871     return Legalized;
2872   }
2873   case TargetOpcode::G_FNEG: {
2874     Register Res = MI.getOperand(0).getReg();
2875     LLT Ty = MRI.getType(Res);
2876 
2877     // TODO: Handle vector types once we are able to
2878     // represent them.
2879     if (Ty.isVector())
2880       return UnableToLegalize;
2881     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2882     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2883     if (!ZeroTy)
2884       return UnableToLegalize;
2885     ConstantFP &ZeroForNegation =
2886         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2887     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2888     Register SubByReg = MI.getOperand(1).getReg();
2889     Register ZeroReg = Zero.getReg(0);
2890     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2891     MI.eraseFromParent();
2892     return Legalized;
2893   }
2894   case TargetOpcode::G_FSUB: {
2895     Register Res = MI.getOperand(0).getReg();
2896     LLT Ty = MRI.getType(Res);
2897 
2898     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2899     // First, check if G_FNEG is marked as Lower. If so, we may
2900     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2901     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2902       return UnableToLegalize;
2903     Register LHS = MI.getOperand(1).getReg();
2904     Register RHS = MI.getOperand(2).getReg();
2905     Register Neg = MRI.createGenericVirtualRegister(Ty);
2906     MIRBuilder.buildFNeg(Neg, RHS);
2907     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2908     MI.eraseFromParent();
2909     return Legalized;
2910   }
2911   case TargetOpcode::G_FMAD:
2912     return lowerFMad(MI);
2913   case TargetOpcode::G_FFLOOR:
2914     return lowerFFloor(MI);
2915   case TargetOpcode::G_INTRINSIC_ROUND:
2916     return lowerIntrinsicRound(MI);
2917   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2918     // Since round even is the assumed rounding mode for unconstrained FP
2919     // operations, rint and roundeven are the same operation.
2920     changeOpcode(MI, TargetOpcode::G_FRINT);
2921     return Legalized;
2922   }
2923   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2924     Register OldValRes = MI.getOperand(0).getReg();
2925     Register SuccessRes = MI.getOperand(1).getReg();
2926     Register Addr = MI.getOperand(2).getReg();
2927     Register CmpVal = MI.getOperand(3).getReg();
2928     Register NewVal = MI.getOperand(4).getReg();
2929     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2930                                   **MI.memoperands_begin());
2931     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2932     MI.eraseFromParent();
2933     return Legalized;
2934   }
2935   case TargetOpcode::G_LOAD:
2936   case TargetOpcode::G_SEXTLOAD:
2937   case TargetOpcode::G_ZEXTLOAD:
2938     return lowerLoad(MI);
2939   case TargetOpcode::G_STORE:
2940     return lowerStore(MI);
2941   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2942   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2943   case TargetOpcode::G_CTLZ:
2944   case TargetOpcode::G_CTTZ:
2945   case TargetOpcode::G_CTPOP:
2946     return lowerBitCount(MI);
2947   case G_UADDO: {
2948     Register Res = MI.getOperand(0).getReg();
2949     Register CarryOut = MI.getOperand(1).getReg();
2950     Register LHS = MI.getOperand(2).getReg();
2951     Register RHS = MI.getOperand(3).getReg();
2952 
2953     MIRBuilder.buildAdd(Res, LHS, RHS);
2954     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2955 
2956     MI.eraseFromParent();
2957     return Legalized;
2958   }
2959   case G_UADDE: {
2960     Register Res = MI.getOperand(0).getReg();
2961     Register CarryOut = MI.getOperand(1).getReg();
2962     Register LHS = MI.getOperand(2).getReg();
2963     Register RHS = MI.getOperand(3).getReg();
2964     Register CarryIn = MI.getOperand(4).getReg();
2965     LLT Ty = MRI.getType(Res);
2966 
2967     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2968     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2969     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2970     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2971 
2972     MI.eraseFromParent();
2973     return Legalized;
2974   }
2975   case G_USUBO: {
2976     Register Res = MI.getOperand(0).getReg();
2977     Register BorrowOut = MI.getOperand(1).getReg();
2978     Register LHS = MI.getOperand(2).getReg();
2979     Register RHS = MI.getOperand(3).getReg();
2980 
2981     MIRBuilder.buildSub(Res, LHS, RHS);
2982     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2983 
2984     MI.eraseFromParent();
2985     return Legalized;
2986   }
2987   case G_USUBE: {
2988     Register Res = MI.getOperand(0).getReg();
2989     Register BorrowOut = MI.getOperand(1).getReg();
2990     Register LHS = MI.getOperand(2).getReg();
2991     Register RHS = MI.getOperand(3).getReg();
2992     Register BorrowIn = MI.getOperand(4).getReg();
2993     const LLT CondTy = MRI.getType(BorrowOut);
2994     const LLT Ty = MRI.getType(Res);
2995 
2996     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2997     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2998     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2999 
3000     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3001     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3002     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3003 
3004     MI.eraseFromParent();
3005     return Legalized;
3006   }
3007   case G_UITOFP:
3008     return lowerUITOFP(MI);
3009   case G_SITOFP:
3010     return lowerSITOFP(MI);
3011   case G_FPTOUI:
3012     return lowerFPTOUI(MI);
3013   case G_FPTOSI:
3014     return lowerFPTOSI(MI);
3015   case G_FPTRUNC:
3016     return lowerFPTRUNC(MI);
3017   case G_FPOWI:
3018     return lowerFPOWI(MI);
3019   case G_SMIN:
3020   case G_SMAX:
3021   case G_UMIN:
3022   case G_UMAX:
3023     return lowerMinMax(MI);
3024   case G_FCOPYSIGN:
3025     return lowerFCopySign(MI);
3026   case G_FMINNUM:
3027   case G_FMAXNUM:
3028     return lowerFMinNumMaxNum(MI);
3029   case G_MERGE_VALUES:
3030     return lowerMergeValues(MI);
3031   case G_UNMERGE_VALUES:
3032     return lowerUnmergeValues(MI);
3033   case TargetOpcode::G_SEXT_INREG: {
3034     assert(MI.getOperand(2).isImm() && "Expected immediate");
3035     int64_t SizeInBits = MI.getOperand(2).getImm();
3036 
3037     Register DstReg = MI.getOperand(0).getReg();
3038     Register SrcReg = MI.getOperand(1).getReg();
3039     LLT DstTy = MRI.getType(DstReg);
3040     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3041 
3042     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3043     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3044     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3045     MI.eraseFromParent();
3046     return Legalized;
3047   }
3048   case G_EXTRACT_VECTOR_ELT:
3049   case G_INSERT_VECTOR_ELT:
3050     return lowerExtractInsertVectorElt(MI);
3051   case G_SHUFFLE_VECTOR:
3052     return lowerShuffleVector(MI);
3053   case G_DYN_STACKALLOC:
3054     return lowerDynStackAlloc(MI);
3055   case G_EXTRACT:
3056     return lowerExtract(MI);
3057   case G_INSERT:
3058     return lowerInsert(MI);
3059   case G_BSWAP:
3060     return lowerBswap(MI);
3061   case G_BITREVERSE:
3062     return lowerBitreverse(MI);
3063   case G_READ_REGISTER:
3064   case G_WRITE_REGISTER:
3065     return lowerReadWriteRegister(MI);
3066   case G_UADDSAT:
3067   case G_USUBSAT: {
3068     // Try to make a reasonable guess about which lowering strategy to use. The
3069     // target can override this with custom lowering and calling the
3070     // implementation functions.
3071     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3072     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3073       return lowerAddSubSatToMinMax(MI);
3074     return lowerAddSubSatToAddoSubo(MI);
3075   }
3076   case G_SADDSAT:
3077   case G_SSUBSAT: {
3078     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3079 
3080     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3081     // since it's a shorter expansion. However, we would need to figure out the
3082     // preferred boolean type for the carry out for the query.
3083     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3084       return lowerAddSubSatToMinMax(MI);
3085     return lowerAddSubSatToAddoSubo(MI);
3086   }
3087   case G_SSHLSAT:
3088   case G_USHLSAT:
3089     return lowerShlSat(MI);
3090   }
3091 }
3092 
3093 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3094                                                   Align MinAlign) const {
3095   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3096   // datalayout for the preferred alignment. Also there should be a target hook
3097   // for this to allow targets to reduce the alignment and ignore the
3098   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3099   // the type.
3100   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3101 }
3102 
3103 MachineInstrBuilder
3104 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3105                                       MachinePointerInfo &PtrInfo) {
3106   MachineFunction &MF = MIRBuilder.getMF();
3107   const DataLayout &DL = MIRBuilder.getDataLayout();
3108   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3109 
3110   unsigned AddrSpace = DL.getAllocaAddrSpace();
3111   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3112 
3113   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3114   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3115 }
3116 
3117 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3118                                         LLT VecTy) {
3119   int64_t IdxVal;
3120   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3121     return IdxReg;
3122 
3123   LLT IdxTy = B.getMRI()->getType(IdxReg);
3124   unsigned NElts = VecTy.getNumElements();
3125   if (isPowerOf2_32(NElts)) {
3126     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3127     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3128   }
3129 
3130   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3131       .getReg(0);
3132 }
3133 
3134 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3135                                                   Register Index) {
3136   LLT EltTy = VecTy.getElementType();
3137 
3138   // Calculate the element offset and add it to the pointer.
3139   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3140   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3141          "Converting bits to bytes lost precision");
3142 
3143   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3144 
3145   LLT IdxTy = MRI.getType(Index);
3146   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3147                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3148 
3149   LLT PtrTy = MRI.getType(VecPtr);
3150   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3151 }
3152 
3153 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3154     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3155   Register DstReg = MI.getOperand(0).getReg();
3156   LLT DstTy = MRI.getType(DstReg);
3157   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3158 
3159   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3160 
3161   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3162   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3163 
3164   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3165   MI.eraseFromParent();
3166   return Legalized;
3167 }
3168 
3169 // Handle splitting vector operations which need to have the same number of
3170 // elements in each type index, but each type index may have a different element
3171 // type.
3172 //
3173 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3174 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3175 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3176 //
3177 // Also handles some irregular breakdown cases, e.g.
3178 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3179 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3180 //             s64 = G_SHL s64, s32
3181 LegalizerHelper::LegalizeResult
3182 LegalizerHelper::fewerElementsVectorMultiEltType(
3183   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3184   if (TypeIdx != 0)
3185     return UnableToLegalize;
3186 
3187   const LLT NarrowTy0 = NarrowTyArg;
3188   const unsigned NewNumElts =
3189       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3190 
3191   const Register DstReg = MI.getOperand(0).getReg();
3192   LLT DstTy = MRI.getType(DstReg);
3193   LLT LeftoverTy0;
3194 
3195   // All of the operands need to have the same number of elements, so if we can
3196   // determine a type breakdown for the result type, we can for all of the
3197   // source types.
3198   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3199   if (NumParts < 0)
3200     return UnableToLegalize;
3201 
3202   SmallVector<MachineInstrBuilder, 4> NewInsts;
3203 
3204   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3205   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3206 
3207   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3208     Register SrcReg = MI.getOperand(I).getReg();
3209     LLT SrcTyI = MRI.getType(SrcReg);
3210     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3211     LLT LeftoverTyI;
3212 
3213     // Split this operand into the requested typed registers, and any leftover
3214     // required to reproduce the original type.
3215     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3216                       LeftoverRegs))
3217       return UnableToLegalize;
3218 
3219     if (I == 1) {
3220       // For the first operand, create an instruction for each part and setup
3221       // the result.
3222       for (Register PartReg : PartRegs) {
3223         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3224         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3225                                .addDef(PartDstReg)
3226                                .addUse(PartReg));
3227         DstRegs.push_back(PartDstReg);
3228       }
3229 
3230       for (Register LeftoverReg : LeftoverRegs) {
3231         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3232         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3233                                .addDef(PartDstReg)
3234                                .addUse(LeftoverReg));
3235         LeftoverDstRegs.push_back(PartDstReg);
3236       }
3237     } else {
3238       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3239 
3240       // Add the newly created operand splits to the existing instructions. The
3241       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3242       // pieces.
3243       unsigned InstCount = 0;
3244       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3245         NewInsts[InstCount++].addUse(PartRegs[J]);
3246       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3247         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3248     }
3249 
3250     PartRegs.clear();
3251     LeftoverRegs.clear();
3252   }
3253 
3254   // Insert the newly built operations and rebuild the result register.
3255   for (auto &MIB : NewInsts)
3256     MIRBuilder.insertInstr(MIB);
3257 
3258   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3259 
3260   MI.eraseFromParent();
3261   return Legalized;
3262 }
3263 
3264 LegalizerHelper::LegalizeResult
3265 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3266                                           LLT NarrowTy) {
3267   if (TypeIdx != 0)
3268     return UnableToLegalize;
3269 
3270   Register DstReg = MI.getOperand(0).getReg();
3271   Register SrcReg = MI.getOperand(1).getReg();
3272   LLT DstTy = MRI.getType(DstReg);
3273   LLT SrcTy = MRI.getType(SrcReg);
3274 
3275   LLT NarrowTy0 = NarrowTy;
3276   LLT NarrowTy1;
3277   unsigned NumParts;
3278 
3279   if (NarrowTy.isVector()) {
3280     // Uneven breakdown not handled.
3281     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3282     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3283       return UnableToLegalize;
3284 
3285     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3286   } else {
3287     NumParts = DstTy.getNumElements();
3288     NarrowTy1 = SrcTy.getElementType();
3289   }
3290 
3291   SmallVector<Register, 4> SrcRegs, DstRegs;
3292   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3293 
3294   for (unsigned I = 0; I < NumParts; ++I) {
3295     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3296     MachineInstr *NewInst =
3297         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3298 
3299     NewInst->setFlags(MI.getFlags());
3300     DstRegs.push_back(DstReg);
3301   }
3302 
3303   if (NarrowTy.isVector())
3304     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3305   else
3306     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3307 
3308   MI.eraseFromParent();
3309   return Legalized;
3310 }
3311 
3312 LegalizerHelper::LegalizeResult
3313 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3314                                         LLT NarrowTy) {
3315   Register DstReg = MI.getOperand(0).getReg();
3316   Register Src0Reg = MI.getOperand(2).getReg();
3317   LLT DstTy = MRI.getType(DstReg);
3318   LLT SrcTy = MRI.getType(Src0Reg);
3319 
3320   unsigned NumParts;
3321   LLT NarrowTy0, NarrowTy1;
3322 
3323   if (TypeIdx == 0) {
3324     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3325     unsigned OldElts = DstTy.getNumElements();
3326 
3327     NarrowTy0 = NarrowTy;
3328     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3329     NarrowTy1 = NarrowTy.isVector() ?
3330       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3331       SrcTy.getElementType();
3332 
3333   } else {
3334     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3335     unsigned OldElts = SrcTy.getNumElements();
3336 
3337     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3338       NarrowTy.getNumElements();
3339     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3340                             DstTy.getScalarSizeInBits());
3341     NarrowTy1 = NarrowTy;
3342   }
3343 
3344   // FIXME: Don't know how to handle the situation where the small vectors
3345   // aren't all the same size yet.
3346   if (NarrowTy1.isVector() &&
3347       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3348     return UnableToLegalize;
3349 
3350   CmpInst::Predicate Pred
3351     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3352 
3353   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3354   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3355   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3356 
3357   for (unsigned I = 0; I < NumParts; ++I) {
3358     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3359     DstRegs.push_back(DstReg);
3360 
3361     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3362       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3363     else {
3364       MachineInstr *NewCmp
3365         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3366       NewCmp->setFlags(MI.getFlags());
3367     }
3368   }
3369 
3370   if (NarrowTy1.isVector())
3371     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3372   else
3373     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3374 
3375   MI.eraseFromParent();
3376   return Legalized;
3377 }
3378 
3379 LegalizerHelper::LegalizeResult
3380 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3381                                            LLT NarrowTy) {
3382   Register DstReg = MI.getOperand(0).getReg();
3383   Register CondReg = MI.getOperand(1).getReg();
3384 
3385   unsigned NumParts = 0;
3386   LLT NarrowTy0, NarrowTy1;
3387 
3388   LLT DstTy = MRI.getType(DstReg);
3389   LLT CondTy = MRI.getType(CondReg);
3390   unsigned Size = DstTy.getSizeInBits();
3391 
3392   assert(TypeIdx == 0 || CondTy.isVector());
3393 
3394   if (TypeIdx == 0) {
3395     NarrowTy0 = NarrowTy;
3396     NarrowTy1 = CondTy;
3397 
3398     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3399     // FIXME: Don't know how to handle the situation where the small vectors
3400     // aren't all the same size yet.
3401     if (Size % NarrowSize != 0)
3402       return UnableToLegalize;
3403 
3404     NumParts = Size / NarrowSize;
3405 
3406     // Need to break down the condition type
3407     if (CondTy.isVector()) {
3408       if (CondTy.getNumElements() == NumParts)
3409         NarrowTy1 = CondTy.getElementType();
3410       else
3411         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3412                                 CondTy.getScalarSizeInBits());
3413     }
3414   } else {
3415     NumParts = CondTy.getNumElements();
3416     if (NarrowTy.isVector()) {
3417       // TODO: Handle uneven breakdown.
3418       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3419         return UnableToLegalize;
3420 
3421       return UnableToLegalize;
3422     } else {
3423       NarrowTy0 = DstTy.getElementType();
3424       NarrowTy1 = NarrowTy;
3425     }
3426   }
3427 
3428   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3429   if (CondTy.isVector())
3430     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3431 
3432   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3433   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3434 
3435   for (unsigned i = 0; i < NumParts; ++i) {
3436     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3437     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3438                            Src1Regs[i], Src2Regs[i]);
3439     DstRegs.push_back(DstReg);
3440   }
3441 
3442   if (NarrowTy0.isVector())
3443     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3444   else
3445     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3446 
3447   MI.eraseFromParent();
3448   return Legalized;
3449 }
3450 
3451 LegalizerHelper::LegalizeResult
3452 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3453                                         LLT NarrowTy) {
3454   const Register DstReg = MI.getOperand(0).getReg();
3455   LLT PhiTy = MRI.getType(DstReg);
3456   LLT LeftoverTy;
3457 
3458   // All of the operands need to have the same number of elements, so if we can
3459   // determine a type breakdown for the result type, we can for all of the
3460   // source types.
3461   int NumParts, NumLeftover;
3462   std::tie(NumParts, NumLeftover)
3463     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3464   if (NumParts < 0)
3465     return UnableToLegalize;
3466 
3467   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3468   SmallVector<MachineInstrBuilder, 4> NewInsts;
3469 
3470   const int TotalNumParts = NumParts + NumLeftover;
3471 
3472   // Insert the new phis in the result block first.
3473   for (int I = 0; I != TotalNumParts; ++I) {
3474     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3475     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3476     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3477                        .addDef(PartDstReg));
3478     if (I < NumParts)
3479       DstRegs.push_back(PartDstReg);
3480     else
3481       LeftoverDstRegs.push_back(PartDstReg);
3482   }
3483 
3484   MachineBasicBlock *MBB = MI.getParent();
3485   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3486   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3487 
3488   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3489 
3490   // Insert code to extract the incoming values in each predecessor block.
3491   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3492     PartRegs.clear();
3493     LeftoverRegs.clear();
3494 
3495     Register SrcReg = MI.getOperand(I).getReg();
3496     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3497     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3498 
3499     LLT Unused;
3500     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3501                       LeftoverRegs))
3502       return UnableToLegalize;
3503 
3504     // Add the newly created operand splits to the existing instructions. The
3505     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3506     // pieces.
3507     for (int J = 0; J != TotalNumParts; ++J) {
3508       MachineInstrBuilder MIB = NewInsts[J];
3509       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3510       MIB.addMBB(&OpMBB);
3511     }
3512   }
3513 
3514   MI.eraseFromParent();
3515   return Legalized;
3516 }
3517 
3518 LegalizerHelper::LegalizeResult
3519 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3520                                                   unsigned TypeIdx,
3521                                                   LLT NarrowTy) {
3522   if (TypeIdx != 1)
3523     return UnableToLegalize;
3524 
3525   const int NumDst = MI.getNumOperands() - 1;
3526   const Register SrcReg = MI.getOperand(NumDst).getReg();
3527   LLT SrcTy = MRI.getType(SrcReg);
3528 
3529   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3530 
3531   // TODO: Create sequence of extracts.
3532   if (DstTy == NarrowTy)
3533     return UnableToLegalize;
3534 
3535   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3536   if (DstTy == GCDTy) {
3537     // This would just be a copy of the same unmerge.
3538     // TODO: Create extracts, pad with undef and create intermediate merges.
3539     return UnableToLegalize;
3540   }
3541 
3542   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3543   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3544   const int PartsPerUnmerge = NumDst / NumUnmerge;
3545 
3546   for (int I = 0; I != NumUnmerge; ++I) {
3547     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3548 
3549     for (int J = 0; J != PartsPerUnmerge; ++J)
3550       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3551     MIB.addUse(Unmerge.getReg(I));
3552   }
3553 
3554   MI.eraseFromParent();
3555   return Legalized;
3556 }
3557 
3558 LegalizerHelper::LegalizeResult
3559 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3560                                                 unsigned TypeIdx,
3561                                                 LLT NarrowTy) {
3562   assert(TypeIdx == 0 && "not a vector type index");
3563   Register DstReg = MI.getOperand(0).getReg();
3564   LLT DstTy = MRI.getType(DstReg);
3565   LLT SrcTy = DstTy.getElementType();
3566 
3567   int DstNumElts = DstTy.getNumElements();
3568   int NarrowNumElts = NarrowTy.getNumElements();
3569   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3570   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3571 
3572   SmallVector<Register, 8> ConcatOps;
3573   SmallVector<Register, 8> SubBuildVector;
3574 
3575   Register UndefReg;
3576   if (WidenedDstTy != DstTy)
3577     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3578 
3579   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3580   // necessary.
3581   //
3582   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3583   //   -> <2 x s16>
3584   //
3585   // %4:_(s16) = G_IMPLICIT_DEF
3586   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3587   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3588   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3589   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3590   for (int I = 0; I != NumConcat; ++I) {
3591     for (int J = 0; J != NarrowNumElts; ++J) {
3592       int SrcIdx = NarrowNumElts * I + J;
3593 
3594       if (SrcIdx < DstNumElts) {
3595         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3596         SubBuildVector.push_back(SrcReg);
3597       } else
3598         SubBuildVector.push_back(UndefReg);
3599     }
3600 
3601     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3602     ConcatOps.push_back(BuildVec.getReg(0));
3603     SubBuildVector.clear();
3604   }
3605 
3606   if (DstTy == WidenedDstTy)
3607     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3608   else {
3609     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3610     MIRBuilder.buildExtract(DstReg, Concat, 0);
3611   }
3612 
3613   MI.eraseFromParent();
3614   return Legalized;
3615 }
3616 
3617 LegalizerHelper::LegalizeResult
3618 LegalizerHelper::fewerElementsVectorConcatVectors(MachineInstr &MI,
3619                                                   unsigned TypeIdx,
3620                                                   LLT NarrowTy) {
3621   if (TypeIdx != 1)
3622     return UnableToLegalize;
3623 
3624   Register DstReg = MI.getOperand(0).getReg();
3625   LLT DstTy = MRI.getType(DstReg);
3626   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3627   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3628 
3629   // Break into a common type
3630   SmallVector<Register, 16> Parts;
3631   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3632     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3633 
3634   // Build the requested new merge, padding with undef.
3635   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3636                                   TargetOpcode::G_ANYEXT);
3637 
3638   // Pack into the original result register.
3639   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3640 
3641   MI.eraseFromParent();
3642   return Legalized;
3643 }
3644 
3645 LegalizerHelper::LegalizeResult
3646 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3647                                                            unsigned TypeIdx,
3648                                                            LLT NarrowVecTy) {
3649   Register DstReg = MI.getOperand(0).getReg();
3650   Register SrcVec = MI.getOperand(1).getReg();
3651   Register InsertVal;
3652   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3653 
3654   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3655   if (IsInsert)
3656     InsertVal = MI.getOperand(2).getReg();
3657 
3658   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3659 
3660   // TODO: Handle total scalarization case.
3661   if (!NarrowVecTy.isVector())
3662     return UnableToLegalize;
3663 
3664   LLT VecTy = MRI.getType(SrcVec);
3665 
3666   // If the index is a constant, we can really break this down as you would
3667   // expect, and index into the target size pieces.
3668   int64_t IdxVal;
3669   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3670     // Avoid out of bounds indexing the pieces.
3671     if (IdxVal >= VecTy.getNumElements()) {
3672       MIRBuilder.buildUndef(DstReg);
3673       MI.eraseFromParent();
3674       return Legalized;
3675     }
3676 
3677     SmallVector<Register, 8> VecParts;
3678     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3679 
3680     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3681     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3682                                     TargetOpcode::G_ANYEXT);
3683 
3684     unsigned NewNumElts = NarrowVecTy.getNumElements();
3685 
3686     LLT IdxTy = MRI.getType(Idx);
3687     int64_t PartIdx = IdxVal / NewNumElts;
3688     auto NewIdx =
3689         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3690 
3691     if (IsInsert) {
3692       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3693 
3694       // Use the adjusted index to insert into one of the subvectors.
3695       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3696           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3697       VecParts[PartIdx] = InsertPart.getReg(0);
3698 
3699       // Recombine the inserted subvector with the others to reform the result
3700       // vector.
3701       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3702     } else {
3703       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3704     }
3705 
3706     MI.eraseFromParent();
3707     return Legalized;
3708   }
3709 
3710   // With a variable index, we can't perform the operation in a smaller type, so
3711   // we're forced to expand this.
3712   //
3713   // TODO: We could emit a chain of compare/select to figure out which piece to
3714   // index.
3715   return lowerExtractInsertVectorElt(MI);
3716 }
3717 
3718 LegalizerHelper::LegalizeResult
3719 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3720                                       LLT NarrowTy) {
3721   // FIXME: Don't know how to handle secondary types yet.
3722   if (TypeIdx != 0)
3723     return UnableToLegalize;
3724 
3725   MachineMemOperand *MMO = *MI.memoperands_begin();
3726 
3727   // This implementation doesn't work for atomics. Give up instead of doing
3728   // something invalid.
3729   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3730       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3731     return UnableToLegalize;
3732 
3733   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3734   Register ValReg = MI.getOperand(0).getReg();
3735   Register AddrReg = MI.getOperand(1).getReg();
3736   LLT ValTy = MRI.getType(ValReg);
3737 
3738   // FIXME: Do we need a distinct NarrowMemory legalize action?
3739   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3740     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3741     return UnableToLegalize;
3742   }
3743 
3744   int NumParts = -1;
3745   int NumLeftover = -1;
3746   LLT LeftoverTy;
3747   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3748   if (IsLoad) {
3749     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3750   } else {
3751     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3752                      NarrowLeftoverRegs)) {
3753       NumParts = NarrowRegs.size();
3754       NumLeftover = NarrowLeftoverRegs.size();
3755     }
3756   }
3757 
3758   if (NumParts == -1)
3759     return UnableToLegalize;
3760 
3761   LLT PtrTy = MRI.getType(AddrReg);
3762   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3763 
3764   unsigned TotalSize = ValTy.getSizeInBits();
3765 
3766   // Split the load/store into PartTy sized pieces starting at Offset. If this
3767   // is a load, return the new registers in ValRegs. For a store, each elements
3768   // of ValRegs should be PartTy. Returns the next offset that needs to be
3769   // handled.
3770   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3771                              unsigned Offset) -> unsigned {
3772     MachineFunction &MF = MIRBuilder.getMF();
3773     unsigned PartSize = PartTy.getSizeInBits();
3774     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3775          Offset += PartSize, ++Idx) {
3776       unsigned ByteSize = PartSize / 8;
3777       unsigned ByteOffset = Offset / 8;
3778       Register NewAddrReg;
3779 
3780       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3781 
3782       MachineMemOperand *NewMMO =
3783         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3784 
3785       if (IsLoad) {
3786         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3787         ValRegs.push_back(Dst);
3788         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3789       } else {
3790         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3791       }
3792     }
3793 
3794     return Offset;
3795   };
3796 
3797   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3798 
3799   // Handle the rest of the register if this isn't an even type breakdown.
3800   if (LeftoverTy.isValid())
3801     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3802 
3803   if (IsLoad) {
3804     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3805                 LeftoverTy, NarrowLeftoverRegs);
3806   }
3807 
3808   MI.eraseFromParent();
3809   return Legalized;
3810 }
3811 
3812 LegalizerHelper::LegalizeResult
3813 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3814                                       LLT NarrowTy) {
3815   assert(TypeIdx == 0 && "only one type index expected");
3816 
3817   const unsigned Opc = MI.getOpcode();
3818   const int NumOps = MI.getNumOperands() - 1;
3819   const Register DstReg = MI.getOperand(0).getReg();
3820   const unsigned Flags = MI.getFlags();
3821   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3822   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3823 
3824   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3825 
3826   // First of all check whether we are narrowing (changing the element type)
3827   // or reducing the vector elements
3828   const LLT DstTy = MRI.getType(DstReg);
3829   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3830 
3831   SmallVector<Register, 8> ExtractedRegs[3];
3832   SmallVector<Register, 8> Parts;
3833 
3834   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3835 
3836   // Break down all the sources into NarrowTy pieces we can operate on. This may
3837   // involve creating merges to a wider type, padded with undef.
3838   for (int I = 0; I != NumOps; ++I) {
3839     Register SrcReg = MI.getOperand(I + 1).getReg();
3840     LLT SrcTy = MRI.getType(SrcReg);
3841 
3842     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3843     // For fewerElements, this is a smaller vector with the same element type.
3844     LLT OpNarrowTy;
3845     if (IsNarrow) {
3846       OpNarrowTy = NarrowScalarTy;
3847 
3848       // In case of narrowing, we need to cast vectors to scalars for this to
3849       // work properly
3850       // FIXME: Can we do without the bitcast here if we're narrowing?
3851       if (SrcTy.isVector()) {
3852         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3853         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3854       }
3855     } else {
3856       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3857     }
3858 
3859     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3860 
3861     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3862     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3863                         TargetOpcode::G_ANYEXT);
3864   }
3865 
3866   SmallVector<Register, 8> ResultRegs;
3867 
3868   // Input operands for each sub-instruction.
3869   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3870 
3871   int NumParts = ExtractedRegs[0].size();
3872   const unsigned DstSize = DstTy.getSizeInBits();
3873   const LLT DstScalarTy = LLT::scalar(DstSize);
3874 
3875   // Narrowing needs to use scalar types
3876   LLT DstLCMTy, NarrowDstTy;
3877   if (IsNarrow) {
3878     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3879     NarrowDstTy = NarrowScalarTy;
3880   } else {
3881     DstLCMTy = getLCMType(DstTy, NarrowTy);
3882     NarrowDstTy = NarrowTy;
3883   }
3884 
3885   // We widened the source registers to satisfy merge/unmerge size
3886   // constraints. We'll have some extra fully undef parts.
3887   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3888 
3889   for (int I = 0; I != NumRealParts; ++I) {
3890     // Emit this instruction on each of the split pieces.
3891     for (int J = 0; J != NumOps; ++J)
3892       InputRegs[J] = ExtractedRegs[J][I];
3893 
3894     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3895     ResultRegs.push_back(Inst.getReg(0));
3896   }
3897 
3898   // Fill out the widened result with undef instead of creating instructions
3899   // with undef inputs.
3900   int NumUndefParts = NumParts - NumRealParts;
3901   if (NumUndefParts != 0)
3902     ResultRegs.append(NumUndefParts,
3903                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3904 
3905   // Extract the possibly padded result. Use a scratch register if we need to do
3906   // a final bitcast, otherwise use the original result register.
3907   Register MergeDstReg;
3908   if (IsNarrow && DstTy.isVector())
3909     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3910   else
3911     MergeDstReg = DstReg;
3912 
3913   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3914 
3915   // Recast to vector if we narrowed a vector
3916   if (IsNarrow && DstTy.isVector())
3917     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3918 
3919   MI.eraseFromParent();
3920   return Legalized;
3921 }
3922 
3923 LegalizerHelper::LegalizeResult
3924 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3925                                               LLT NarrowTy) {
3926   Register DstReg = MI.getOperand(0).getReg();
3927   Register SrcReg = MI.getOperand(1).getReg();
3928   int64_t Imm = MI.getOperand(2).getImm();
3929 
3930   LLT DstTy = MRI.getType(DstReg);
3931 
3932   SmallVector<Register, 8> Parts;
3933   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3934   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3935 
3936   for (Register &R : Parts)
3937     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3938 
3939   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3940 
3941   MI.eraseFromParent();
3942   return Legalized;
3943 }
3944 
3945 LegalizerHelper::LegalizeResult
3946 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3947                                      LLT NarrowTy) {
3948   using namespace TargetOpcode;
3949 
3950   switch (MI.getOpcode()) {
3951   case G_IMPLICIT_DEF:
3952     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3953   case G_TRUNC:
3954   case G_AND:
3955   case G_OR:
3956   case G_XOR:
3957   case G_ADD:
3958   case G_SUB:
3959   case G_MUL:
3960   case G_PTR_ADD:
3961   case G_SMULH:
3962   case G_UMULH:
3963   case G_FADD:
3964   case G_FMUL:
3965   case G_FSUB:
3966   case G_FNEG:
3967   case G_FABS:
3968   case G_FCANONICALIZE:
3969   case G_FDIV:
3970   case G_FREM:
3971   case G_FMA:
3972   case G_FMAD:
3973   case G_FPOW:
3974   case G_FEXP:
3975   case G_FEXP2:
3976   case G_FLOG:
3977   case G_FLOG2:
3978   case G_FLOG10:
3979   case G_FNEARBYINT:
3980   case G_FCEIL:
3981   case G_FFLOOR:
3982   case G_FRINT:
3983   case G_INTRINSIC_ROUND:
3984   case G_INTRINSIC_ROUNDEVEN:
3985   case G_INTRINSIC_TRUNC:
3986   case G_FCOS:
3987   case G_FSIN:
3988   case G_FSQRT:
3989   case G_BSWAP:
3990   case G_BITREVERSE:
3991   case G_SDIV:
3992   case G_UDIV:
3993   case G_SREM:
3994   case G_UREM:
3995   case G_SMIN:
3996   case G_SMAX:
3997   case G_UMIN:
3998   case G_UMAX:
3999   case G_FMINNUM:
4000   case G_FMAXNUM:
4001   case G_FMINNUM_IEEE:
4002   case G_FMAXNUM_IEEE:
4003   case G_FMINIMUM:
4004   case G_FMAXIMUM:
4005   case G_FSHL:
4006   case G_FSHR:
4007   case G_FREEZE:
4008   case G_SADDSAT:
4009   case G_SSUBSAT:
4010   case G_UADDSAT:
4011   case G_USUBSAT:
4012     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4013   case G_SHL:
4014   case G_LSHR:
4015   case G_ASHR:
4016   case G_SSHLSAT:
4017   case G_USHLSAT:
4018   case G_CTLZ:
4019   case G_CTLZ_ZERO_UNDEF:
4020   case G_CTTZ:
4021   case G_CTTZ_ZERO_UNDEF:
4022   case G_CTPOP:
4023   case G_FCOPYSIGN:
4024     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4025   case G_ZEXT:
4026   case G_SEXT:
4027   case G_ANYEXT:
4028   case G_FPEXT:
4029   case G_FPTRUNC:
4030   case G_SITOFP:
4031   case G_UITOFP:
4032   case G_FPTOSI:
4033   case G_FPTOUI:
4034   case G_INTTOPTR:
4035   case G_PTRTOINT:
4036   case G_ADDRSPACE_CAST:
4037     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4038   case G_ICMP:
4039   case G_FCMP:
4040     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4041   case G_SELECT:
4042     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4043   case G_PHI:
4044     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4045   case G_UNMERGE_VALUES:
4046     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4047   case G_BUILD_VECTOR:
4048     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
4049   case G_CONCAT_VECTORS:
4050     return fewerElementsVectorConcatVectors(MI, TypeIdx, NarrowTy);
4051   case G_EXTRACT_VECTOR_ELT:
4052   case G_INSERT_VECTOR_ELT:
4053     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4054   case G_LOAD:
4055   case G_STORE:
4056     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4057   case G_SEXT_INREG:
4058     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4059   default:
4060     return UnableToLegalize;
4061   }
4062 }
4063 
4064 LegalizerHelper::LegalizeResult
4065 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4066                                              const LLT HalfTy, const LLT AmtTy) {
4067 
4068   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4069   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4070   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4071 
4072   if (Amt.isNullValue()) {
4073     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4074     MI.eraseFromParent();
4075     return Legalized;
4076   }
4077 
4078   LLT NVT = HalfTy;
4079   unsigned NVTBits = HalfTy.getSizeInBits();
4080   unsigned VTBits = 2 * NVTBits;
4081 
4082   SrcOp Lo(Register(0)), Hi(Register(0));
4083   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4084     if (Amt.ugt(VTBits)) {
4085       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4086     } else if (Amt.ugt(NVTBits)) {
4087       Lo = MIRBuilder.buildConstant(NVT, 0);
4088       Hi = MIRBuilder.buildShl(NVT, InL,
4089                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4090     } else if (Amt == NVTBits) {
4091       Lo = MIRBuilder.buildConstant(NVT, 0);
4092       Hi = InL;
4093     } else {
4094       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4095       auto OrLHS =
4096           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4097       auto OrRHS = MIRBuilder.buildLShr(
4098           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4099       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4100     }
4101   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4102     if (Amt.ugt(VTBits)) {
4103       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4104     } else if (Amt.ugt(NVTBits)) {
4105       Lo = MIRBuilder.buildLShr(NVT, InH,
4106                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4107       Hi = MIRBuilder.buildConstant(NVT, 0);
4108     } else if (Amt == NVTBits) {
4109       Lo = InH;
4110       Hi = MIRBuilder.buildConstant(NVT, 0);
4111     } else {
4112       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4113 
4114       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4115       auto OrRHS = MIRBuilder.buildShl(
4116           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4117 
4118       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4119       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4120     }
4121   } else {
4122     if (Amt.ugt(VTBits)) {
4123       Hi = Lo = MIRBuilder.buildAShr(
4124           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4125     } else if (Amt.ugt(NVTBits)) {
4126       Lo = MIRBuilder.buildAShr(NVT, InH,
4127                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4128       Hi = MIRBuilder.buildAShr(NVT, InH,
4129                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4130     } else if (Amt == NVTBits) {
4131       Lo = InH;
4132       Hi = MIRBuilder.buildAShr(NVT, InH,
4133                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4134     } else {
4135       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4136 
4137       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4138       auto OrRHS = MIRBuilder.buildShl(
4139           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4140 
4141       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4142       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4143     }
4144   }
4145 
4146   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4147   MI.eraseFromParent();
4148 
4149   return Legalized;
4150 }
4151 
4152 // TODO: Optimize if constant shift amount.
4153 LegalizerHelper::LegalizeResult
4154 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4155                                    LLT RequestedTy) {
4156   if (TypeIdx == 1) {
4157     Observer.changingInstr(MI);
4158     narrowScalarSrc(MI, RequestedTy, 2);
4159     Observer.changedInstr(MI);
4160     return Legalized;
4161   }
4162 
4163   Register DstReg = MI.getOperand(0).getReg();
4164   LLT DstTy = MRI.getType(DstReg);
4165   if (DstTy.isVector())
4166     return UnableToLegalize;
4167 
4168   Register Amt = MI.getOperand(2).getReg();
4169   LLT ShiftAmtTy = MRI.getType(Amt);
4170   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4171   if (DstEltSize % 2 != 0)
4172     return UnableToLegalize;
4173 
4174   // Ignore the input type. We can only go to exactly half the size of the
4175   // input. If that isn't small enough, the resulting pieces will be further
4176   // legalized.
4177   const unsigned NewBitSize = DstEltSize / 2;
4178   const LLT HalfTy = LLT::scalar(NewBitSize);
4179   const LLT CondTy = LLT::scalar(1);
4180 
4181   if (const MachineInstr *KShiftAmt =
4182           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4183     return narrowScalarShiftByConstant(
4184         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4185   }
4186 
4187   // TODO: Expand with known bits.
4188 
4189   // Handle the fully general expansion by an unknown amount.
4190   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4191 
4192   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4193   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4194   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4195 
4196   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4197   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4198 
4199   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4200   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4201   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4202 
4203   Register ResultRegs[2];
4204   switch (MI.getOpcode()) {
4205   case TargetOpcode::G_SHL: {
4206     // Short: ShAmt < NewBitSize
4207     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4208 
4209     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4210     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4211     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4212 
4213     // Long: ShAmt >= NewBitSize
4214     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4215     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4216 
4217     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4218     auto Hi = MIRBuilder.buildSelect(
4219         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4220 
4221     ResultRegs[0] = Lo.getReg(0);
4222     ResultRegs[1] = Hi.getReg(0);
4223     break;
4224   }
4225   case TargetOpcode::G_LSHR:
4226   case TargetOpcode::G_ASHR: {
4227     // Short: ShAmt < NewBitSize
4228     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4229 
4230     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4231     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4232     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4233 
4234     // Long: ShAmt >= NewBitSize
4235     MachineInstrBuilder HiL;
4236     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4237       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4238     } else {
4239       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4240       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4241     }
4242     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4243                                      {InH, AmtExcess});     // Lo from Hi part.
4244 
4245     auto Lo = MIRBuilder.buildSelect(
4246         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4247 
4248     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4249 
4250     ResultRegs[0] = Lo.getReg(0);
4251     ResultRegs[1] = Hi.getReg(0);
4252     break;
4253   }
4254   default:
4255     llvm_unreachable("not a shift");
4256   }
4257 
4258   MIRBuilder.buildMerge(DstReg, ResultRegs);
4259   MI.eraseFromParent();
4260   return Legalized;
4261 }
4262 
4263 LegalizerHelper::LegalizeResult
4264 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4265                                        LLT MoreTy) {
4266   assert(TypeIdx == 0 && "Expecting only Idx 0");
4267 
4268   Observer.changingInstr(MI);
4269   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4270     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4271     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4272     moreElementsVectorSrc(MI, MoreTy, I);
4273   }
4274 
4275   MachineBasicBlock &MBB = *MI.getParent();
4276   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4277   moreElementsVectorDst(MI, MoreTy, 0);
4278   Observer.changedInstr(MI);
4279   return Legalized;
4280 }
4281 
4282 LegalizerHelper::LegalizeResult
4283 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4284                                     LLT MoreTy) {
4285   unsigned Opc = MI.getOpcode();
4286   switch (Opc) {
4287   case TargetOpcode::G_IMPLICIT_DEF:
4288   case TargetOpcode::G_LOAD: {
4289     if (TypeIdx != 0)
4290       return UnableToLegalize;
4291     Observer.changingInstr(MI);
4292     moreElementsVectorDst(MI, MoreTy, 0);
4293     Observer.changedInstr(MI);
4294     return Legalized;
4295   }
4296   case TargetOpcode::G_STORE:
4297     if (TypeIdx != 0)
4298       return UnableToLegalize;
4299     Observer.changingInstr(MI);
4300     moreElementsVectorSrc(MI, MoreTy, 0);
4301     Observer.changedInstr(MI);
4302     return Legalized;
4303   case TargetOpcode::G_AND:
4304   case TargetOpcode::G_OR:
4305   case TargetOpcode::G_XOR:
4306   case TargetOpcode::G_SMIN:
4307   case TargetOpcode::G_SMAX:
4308   case TargetOpcode::G_UMIN:
4309   case TargetOpcode::G_UMAX:
4310   case TargetOpcode::G_FMINNUM:
4311   case TargetOpcode::G_FMAXNUM:
4312   case TargetOpcode::G_FMINNUM_IEEE:
4313   case TargetOpcode::G_FMAXNUM_IEEE:
4314   case TargetOpcode::G_FMINIMUM:
4315   case TargetOpcode::G_FMAXIMUM: {
4316     Observer.changingInstr(MI);
4317     moreElementsVectorSrc(MI, MoreTy, 1);
4318     moreElementsVectorSrc(MI, MoreTy, 2);
4319     moreElementsVectorDst(MI, MoreTy, 0);
4320     Observer.changedInstr(MI);
4321     return Legalized;
4322   }
4323   case TargetOpcode::G_EXTRACT:
4324     if (TypeIdx != 1)
4325       return UnableToLegalize;
4326     Observer.changingInstr(MI);
4327     moreElementsVectorSrc(MI, MoreTy, 1);
4328     Observer.changedInstr(MI);
4329     return Legalized;
4330   case TargetOpcode::G_INSERT:
4331   case TargetOpcode::G_FREEZE:
4332     if (TypeIdx != 0)
4333       return UnableToLegalize;
4334     Observer.changingInstr(MI);
4335     moreElementsVectorSrc(MI, MoreTy, 1);
4336     moreElementsVectorDst(MI, MoreTy, 0);
4337     Observer.changedInstr(MI);
4338     return Legalized;
4339   case TargetOpcode::G_SELECT:
4340     if (TypeIdx != 0)
4341       return UnableToLegalize;
4342     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4343       return UnableToLegalize;
4344 
4345     Observer.changingInstr(MI);
4346     moreElementsVectorSrc(MI, MoreTy, 2);
4347     moreElementsVectorSrc(MI, MoreTy, 3);
4348     moreElementsVectorDst(MI, MoreTy, 0);
4349     Observer.changedInstr(MI);
4350     return Legalized;
4351   case TargetOpcode::G_UNMERGE_VALUES: {
4352     if (TypeIdx != 1)
4353       return UnableToLegalize;
4354 
4355     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4356     int NumDst = MI.getNumOperands() - 1;
4357     moreElementsVectorSrc(MI, MoreTy, NumDst);
4358 
4359     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4360     for (int I = 0; I != NumDst; ++I)
4361       MIB.addDef(MI.getOperand(I).getReg());
4362 
4363     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4364     for (int I = NumDst; I != NewNumDst; ++I)
4365       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4366 
4367     MIB.addUse(MI.getOperand(NumDst).getReg());
4368     MI.eraseFromParent();
4369     return Legalized;
4370   }
4371   case TargetOpcode::G_PHI:
4372     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4373   default:
4374     return UnableToLegalize;
4375   }
4376 }
4377 
4378 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4379                                         ArrayRef<Register> Src1Regs,
4380                                         ArrayRef<Register> Src2Regs,
4381                                         LLT NarrowTy) {
4382   MachineIRBuilder &B = MIRBuilder;
4383   unsigned SrcParts = Src1Regs.size();
4384   unsigned DstParts = DstRegs.size();
4385 
4386   unsigned DstIdx = 0; // Low bits of the result.
4387   Register FactorSum =
4388       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4389   DstRegs[DstIdx] = FactorSum;
4390 
4391   unsigned CarrySumPrevDstIdx;
4392   SmallVector<Register, 4> Factors;
4393 
4394   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4395     // Collect low parts of muls for DstIdx.
4396     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4397          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4398       MachineInstrBuilder Mul =
4399           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4400       Factors.push_back(Mul.getReg(0));
4401     }
4402     // Collect high parts of muls from previous DstIdx.
4403     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4404          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4405       MachineInstrBuilder Umulh =
4406           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4407       Factors.push_back(Umulh.getReg(0));
4408     }
4409     // Add CarrySum from additions calculated for previous DstIdx.
4410     if (DstIdx != 1) {
4411       Factors.push_back(CarrySumPrevDstIdx);
4412     }
4413 
4414     Register CarrySum;
4415     // Add all factors and accumulate all carries into CarrySum.
4416     if (DstIdx != DstParts - 1) {
4417       MachineInstrBuilder Uaddo =
4418           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4419       FactorSum = Uaddo.getReg(0);
4420       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4421       for (unsigned i = 2; i < Factors.size(); ++i) {
4422         MachineInstrBuilder Uaddo =
4423             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4424         FactorSum = Uaddo.getReg(0);
4425         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4426         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4427       }
4428     } else {
4429       // Since value for the next index is not calculated, neither is CarrySum.
4430       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4431       for (unsigned i = 2; i < Factors.size(); ++i)
4432         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4433     }
4434 
4435     CarrySumPrevDstIdx = CarrySum;
4436     DstRegs[DstIdx] = FactorSum;
4437     Factors.clear();
4438   }
4439 }
4440 
4441 LegalizerHelper::LegalizeResult
4442 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4443   Register DstReg = MI.getOperand(0).getReg();
4444   Register Src1 = MI.getOperand(1).getReg();
4445   Register Src2 = MI.getOperand(2).getReg();
4446 
4447   LLT Ty = MRI.getType(DstReg);
4448   if (Ty.isVector())
4449     return UnableToLegalize;
4450 
4451   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4452   unsigned DstSize = Ty.getSizeInBits();
4453   unsigned NarrowSize = NarrowTy.getSizeInBits();
4454   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4455     return UnableToLegalize;
4456 
4457   unsigned NumDstParts = DstSize / NarrowSize;
4458   unsigned NumSrcParts = SrcSize / NarrowSize;
4459   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4460   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4461 
4462   SmallVector<Register, 2> Src1Parts, Src2Parts;
4463   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4464   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4465   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4466   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4467 
4468   // Take only high half of registers if this is high mul.
4469   ArrayRef<Register> DstRegs(
4470       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4471   MIRBuilder.buildMerge(DstReg, DstRegs);
4472   MI.eraseFromParent();
4473   return Legalized;
4474 }
4475 
4476 LegalizerHelper::LegalizeResult
4477 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4478                                      LLT NarrowTy) {
4479   if (TypeIdx != 1)
4480     return UnableToLegalize;
4481 
4482   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4483 
4484   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4485   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4486   // NarrowSize.
4487   if (SizeOp1 % NarrowSize != 0)
4488     return UnableToLegalize;
4489   int NumParts = SizeOp1 / NarrowSize;
4490 
4491   SmallVector<Register, 2> SrcRegs, DstRegs;
4492   SmallVector<uint64_t, 2> Indexes;
4493   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4494 
4495   Register OpReg = MI.getOperand(0).getReg();
4496   uint64_t OpStart = MI.getOperand(2).getImm();
4497   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4498   for (int i = 0; i < NumParts; ++i) {
4499     unsigned SrcStart = i * NarrowSize;
4500 
4501     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4502       // No part of the extract uses this subregister, ignore it.
4503       continue;
4504     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4505       // The entire subregister is extracted, forward the value.
4506       DstRegs.push_back(SrcRegs[i]);
4507       continue;
4508     }
4509 
4510     // OpSegStart is where this destination segment would start in OpReg if it
4511     // extended infinitely in both directions.
4512     int64_t ExtractOffset;
4513     uint64_t SegSize;
4514     if (OpStart < SrcStart) {
4515       ExtractOffset = 0;
4516       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4517     } else {
4518       ExtractOffset = OpStart - SrcStart;
4519       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4520     }
4521 
4522     Register SegReg = SrcRegs[i];
4523     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4524       // A genuine extract is needed.
4525       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4526       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4527     }
4528 
4529     DstRegs.push_back(SegReg);
4530   }
4531 
4532   Register DstReg = MI.getOperand(0).getReg();
4533   if (MRI.getType(DstReg).isVector())
4534     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4535   else if (DstRegs.size() > 1)
4536     MIRBuilder.buildMerge(DstReg, DstRegs);
4537   else
4538     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4539   MI.eraseFromParent();
4540   return Legalized;
4541 }
4542 
4543 LegalizerHelper::LegalizeResult
4544 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4545                                     LLT NarrowTy) {
4546   // FIXME: Don't know how to handle secondary types yet.
4547   if (TypeIdx != 0)
4548     return UnableToLegalize;
4549 
4550   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4551   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4552 
4553   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4554   // NarrowSize.
4555   if (SizeOp0 % NarrowSize != 0)
4556     return UnableToLegalize;
4557 
4558   int NumParts = SizeOp0 / NarrowSize;
4559 
4560   SmallVector<Register, 2> SrcRegs, DstRegs;
4561   SmallVector<uint64_t, 2> Indexes;
4562   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4563 
4564   Register OpReg = MI.getOperand(2).getReg();
4565   uint64_t OpStart = MI.getOperand(3).getImm();
4566   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4567   for (int i = 0; i < NumParts; ++i) {
4568     unsigned DstStart = i * NarrowSize;
4569 
4570     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4571       // No part of the insert affects this subregister, forward the original.
4572       DstRegs.push_back(SrcRegs[i]);
4573       continue;
4574     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4575       // The entire subregister is defined by this insert, forward the new
4576       // value.
4577       DstRegs.push_back(OpReg);
4578       continue;
4579     }
4580 
4581     // OpSegStart is where this destination segment would start in OpReg if it
4582     // extended infinitely in both directions.
4583     int64_t ExtractOffset, InsertOffset;
4584     uint64_t SegSize;
4585     if (OpStart < DstStart) {
4586       InsertOffset = 0;
4587       ExtractOffset = DstStart - OpStart;
4588       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4589     } else {
4590       InsertOffset = OpStart - DstStart;
4591       ExtractOffset = 0;
4592       SegSize =
4593         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4594     }
4595 
4596     Register SegReg = OpReg;
4597     if (ExtractOffset != 0 || SegSize != OpSize) {
4598       // A genuine extract is needed.
4599       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4600       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4601     }
4602 
4603     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4604     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4605     DstRegs.push_back(DstReg);
4606   }
4607 
4608   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4609   Register DstReg = MI.getOperand(0).getReg();
4610   if(MRI.getType(DstReg).isVector())
4611     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4612   else
4613     MIRBuilder.buildMerge(DstReg, DstRegs);
4614   MI.eraseFromParent();
4615   return Legalized;
4616 }
4617 
4618 LegalizerHelper::LegalizeResult
4619 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4620                                    LLT NarrowTy) {
4621   Register DstReg = MI.getOperand(0).getReg();
4622   LLT DstTy = MRI.getType(DstReg);
4623 
4624   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4625 
4626   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4627   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4628   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4629   LLT LeftoverTy;
4630   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4631                     Src0Regs, Src0LeftoverRegs))
4632     return UnableToLegalize;
4633 
4634   LLT Unused;
4635   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4636                     Src1Regs, Src1LeftoverRegs))
4637     llvm_unreachable("inconsistent extractParts result");
4638 
4639   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4640     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4641                                         {Src0Regs[I], Src1Regs[I]});
4642     DstRegs.push_back(Inst.getReg(0));
4643   }
4644 
4645   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4646     auto Inst = MIRBuilder.buildInstr(
4647       MI.getOpcode(),
4648       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4649     DstLeftoverRegs.push_back(Inst.getReg(0));
4650   }
4651 
4652   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4653               LeftoverTy, DstLeftoverRegs);
4654 
4655   MI.eraseFromParent();
4656   return Legalized;
4657 }
4658 
4659 LegalizerHelper::LegalizeResult
4660 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4661                                  LLT NarrowTy) {
4662   if (TypeIdx != 0)
4663     return UnableToLegalize;
4664 
4665   Register DstReg = MI.getOperand(0).getReg();
4666   Register SrcReg = MI.getOperand(1).getReg();
4667 
4668   LLT DstTy = MRI.getType(DstReg);
4669   if (DstTy.isVector())
4670     return UnableToLegalize;
4671 
4672   SmallVector<Register, 8> Parts;
4673   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4674   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4675   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4676 
4677   MI.eraseFromParent();
4678   return Legalized;
4679 }
4680 
4681 LegalizerHelper::LegalizeResult
4682 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4683                                     LLT NarrowTy) {
4684   if (TypeIdx != 0)
4685     return UnableToLegalize;
4686 
4687   Register CondReg = MI.getOperand(1).getReg();
4688   LLT CondTy = MRI.getType(CondReg);
4689   if (CondTy.isVector()) // TODO: Handle vselect
4690     return UnableToLegalize;
4691 
4692   Register DstReg = MI.getOperand(0).getReg();
4693   LLT DstTy = MRI.getType(DstReg);
4694 
4695   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4696   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4697   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4698   LLT LeftoverTy;
4699   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4700                     Src1Regs, Src1LeftoverRegs))
4701     return UnableToLegalize;
4702 
4703   LLT Unused;
4704   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4705                     Src2Regs, Src2LeftoverRegs))
4706     llvm_unreachable("inconsistent extractParts result");
4707 
4708   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4709     auto Select = MIRBuilder.buildSelect(NarrowTy,
4710                                          CondReg, Src1Regs[I], Src2Regs[I]);
4711     DstRegs.push_back(Select.getReg(0));
4712   }
4713 
4714   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4715     auto Select = MIRBuilder.buildSelect(
4716       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4717     DstLeftoverRegs.push_back(Select.getReg(0));
4718   }
4719 
4720   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4721               LeftoverTy, DstLeftoverRegs);
4722 
4723   MI.eraseFromParent();
4724   return Legalized;
4725 }
4726 
4727 LegalizerHelper::LegalizeResult
4728 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4729                                   LLT NarrowTy) {
4730   if (TypeIdx != 1)
4731     return UnableToLegalize;
4732 
4733   Register DstReg = MI.getOperand(0).getReg();
4734   Register SrcReg = MI.getOperand(1).getReg();
4735   LLT DstTy = MRI.getType(DstReg);
4736   LLT SrcTy = MRI.getType(SrcReg);
4737   unsigned NarrowSize = NarrowTy.getSizeInBits();
4738 
4739   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4740     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4741 
4742     MachineIRBuilder &B = MIRBuilder;
4743     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4744     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4745     auto C_0 = B.buildConstant(NarrowTy, 0);
4746     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4747                                 UnmergeSrc.getReg(1), C_0);
4748     auto LoCTLZ = IsUndef ?
4749       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4750       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4751     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4752     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4753     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4754     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4755 
4756     MI.eraseFromParent();
4757     return Legalized;
4758   }
4759 
4760   return UnableToLegalize;
4761 }
4762 
4763 LegalizerHelper::LegalizeResult
4764 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4765                                   LLT NarrowTy) {
4766   if (TypeIdx != 1)
4767     return UnableToLegalize;
4768 
4769   Register DstReg = MI.getOperand(0).getReg();
4770   Register SrcReg = MI.getOperand(1).getReg();
4771   LLT DstTy = MRI.getType(DstReg);
4772   LLT SrcTy = MRI.getType(SrcReg);
4773   unsigned NarrowSize = NarrowTy.getSizeInBits();
4774 
4775   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4776     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4777 
4778     MachineIRBuilder &B = MIRBuilder;
4779     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4780     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4781     auto C_0 = B.buildConstant(NarrowTy, 0);
4782     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4783                                 UnmergeSrc.getReg(0), C_0);
4784     auto HiCTTZ = IsUndef ?
4785       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4786       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4787     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4788     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4789     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4790     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4791 
4792     MI.eraseFromParent();
4793     return Legalized;
4794   }
4795 
4796   return UnableToLegalize;
4797 }
4798 
4799 LegalizerHelper::LegalizeResult
4800 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4801                                    LLT NarrowTy) {
4802   if (TypeIdx != 1)
4803     return UnableToLegalize;
4804 
4805   Register DstReg = MI.getOperand(0).getReg();
4806   LLT DstTy = MRI.getType(DstReg);
4807   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4808   unsigned NarrowSize = NarrowTy.getSizeInBits();
4809 
4810   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4811     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4812 
4813     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4814     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4815     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4816 
4817     MI.eraseFromParent();
4818     return Legalized;
4819   }
4820 
4821   return UnableToLegalize;
4822 }
4823 
4824 LegalizerHelper::LegalizeResult
4825 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4826   unsigned Opc = MI.getOpcode();
4827   const auto &TII = MIRBuilder.getTII();
4828   auto isSupported = [this](const LegalityQuery &Q) {
4829     auto QAction = LI.getAction(Q).Action;
4830     return QAction == Legal || QAction == Libcall || QAction == Custom;
4831   };
4832   switch (Opc) {
4833   default:
4834     return UnableToLegalize;
4835   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4836     // This trivially expands to CTLZ.
4837     Observer.changingInstr(MI);
4838     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4839     Observer.changedInstr(MI);
4840     return Legalized;
4841   }
4842   case TargetOpcode::G_CTLZ: {
4843     Register DstReg = MI.getOperand(0).getReg();
4844     Register SrcReg = MI.getOperand(1).getReg();
4845     LLT DstTy = MRI.getType(DstReg);
4846     LLT SrcTy = MRI.getType(SrcReg);
4847     unsigned Len = SrcTy.getSizeInBits();
4848 
4849     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4850       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4851       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4852       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4853       auto ICmp = MIRBuilder.buildICmp(
4854           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4855       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4856       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4857       MI.eraseFromParent();
4858       return Legalized;
4859     }
4860     // for now, we do this:
4861     // NewLen = NextPowerOf2(Len);
4862     // x = x | (x >> 1);
4863     // x = x | (x >> 2);
4864     // ...
4865     // x = x | (x >>16);
4866     // x = x | (x >>32); // for 64-bit input
4867     // Upto NewLen/2
4868     // return Len - popcount(x);
4869     //
4870     // Ref: "Hacker's Delight" by Henry Warren
4871     Register Op = SrcReg;
4872     unsigned NewLen = PowerOf2Ceil(Len);
4873     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4874       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4875       auto MIBOp = MIRBuilder.buildOr(
4876           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4877       Op = MIBOp.getReg(0);
4878     }
4879     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4880     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4881                         MIBPop);
4882     MI.eraseFromParent();
4883     return Legalized;
4884   }
4885   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4886     // This trivially expands to CTTZ.
4887     Observer.changingInstr(MI);
4888     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4889     Observer.changedInstr(MI);
4890     return Legalized;
4891   }
4892   case TargetOpcode::G_CTTZ: {
4893     Register DstReg = MI.getOperand(0).getReg();
4894     Register SrcReg = MI.getOperand(1).getReg();
4895     LLT DstTy = MRI.getType(DstReg);
4896     LLT SrcTy = MRI.getType(SrcReg);
4897 
4898     unsigned Len = SrcTy.getSizeInBits();
4899     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4900       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4901       // zero.
4902       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4903       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4904       auto ICmp = MIRBuilder.buildICmp(
4905           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4906       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4907       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4908       MI.eraseFromParent();
4909       return Legalized;
4910     }
4911     // for now, we use: { return popcount(~x & (x - 1)); }
4912     // unless the target has ctlz but not ctpop, in which case we use:
4913     // { return 32 - nlz(~x & (x-1)); }
4914     // Ref: "Hacker's Delight" by Henry Warren
4915     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4916     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4917     auto MIBTmp = MIRBuilder.buildAnd(
4918         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4919     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4920         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4921       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4922       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4923                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4924       MI.eraseFromParent();
4925       return Legalized;
4926     }
4927     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4928     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4929     return Legalized;
4930   }
4931   case TargetOpcode::G_CTPOP: {
4932     Register SrcReg = MI.getOperand(1).getReg();
4933     LLT Ty = MRI.getType(SrcReg);
4934     unsigned Size = Ty.getSizeInBits();
4935     MachineIRBuilder &B = MIRBuilder;
4936 
4937     // Count set bits in blocks of 2 bits. Default approach would be
4938     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4939     // We use following formula instead:
4940     // B2Count = val - { (val >> 1) & 0x55555555 }
4941     // since it gives same result in blocks of 2 with one instruction less.
4942     auto C_1 = B.buildConstant(Ty, 1);
4943     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4944     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4945     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4946     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4947     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4948 
4949     // In order to get count in blocks of 4 add values from adjacent block of 2.
4950     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4951     auto C_2 = B.buildConstant(Ty, 2);
4952     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4953     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4954     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4955     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4956     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4957     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4958 
4959     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4960     // addition since count value sits in range {0,...,8} and 4 bits are enough
4961     // to hold such binary values. After addition high 4 bits still hold count
4962     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4963     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4964     auto C_4 = B.buildConstant(Ty, 4);
4965     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4966     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4967     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4968     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4969     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4970 
4971     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4972     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4973     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4974     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4975     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4976 
4977     // Shift count result from 8 high bits to low bits.
4978     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4979     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4980 
4981     MI.eraseFromParent();
4982     return Legalized;
4983   }
4984   }
4985 }
4986 
4987 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4988 // representation.
4989 LegalizerHelper::LegalizeResult
4990 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4991   Register Dst = MI.getOperand(0).getReg();
4992   Register Src = MI.getOperand(1).getReg();
4993   const LLT S64 = LLT::scalar(64);
4994   const LLT S32 = LLT::scalar(32);
4995   const LLT S1 = LLT::scalar(1);
4996 
4997   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4998 
4999   // unsigned cul2f(ulong u) {
5000   //   uint lz = clz(u);
5001   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5002   //   u = (u << lz) & 0x7fffffffffffffffUL;
5003   //   ulong t = u & 0xffffffffffUL;
5004   //   uint v = (e << 23) | (uint)(u >> 40);
5005   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5006   //   return as_float(v + r);
5007   // }
5008 
5009   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5010   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5011 
5012   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5013 
5014   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5015   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5016 
5017   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5018   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5019 
5020   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5021   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5022 
5023   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5024 
5025   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5026   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5027 
5028   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5029   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5030   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5031 
5032   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5033   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5034   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5035   auto One = MIRBuilder.buildConstant(S32, 1);
5036 
5037   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5038   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5039   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5040   MIRBuilder.buildAdd(Dst, V, R);
5041 
5042   MI.eraseFromParent();
5043   return Legalized;
5044 }
5045 
5046 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5047   Register Dst = MI.getOperand(0).getReg();
5048   Register Src = MI.getOperand(1).getReg();
5049   LLT DstTy = MRI.getType(Dst);
5050   LLT SrcTy = MRI.getType(Src);
5051 
5052   if (SrcTy == LLT::scalar(1)) {
5053     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5054     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5055     MIRBuilder.buildSelect(Dst, Src, True, False);
5056     MI.eraseFromParent();
5057     return Legalized;
5058   }
5059 
5060   if (SrcTy != LLT::scalar(64))
5061     return UnableToLegalize;
5062 
5063   if (DstTy == LLT::scalar(32)) {
5064     // TODO: SelectionDAG has several alternative expansions to port which may
5065     // be more reasonble depending on the available instructions. If a target
5066     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5067     // intermediate type, this is probably worse.
5068     return lowerU64ToF32BitOps(MI);
5069   }
5070 
5071   return UnableToLegalize;
5072 }
5073 
5074 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5075   Register Dst = MI.getOperand(0).getReg();
5076   Register Src = MI.getOperand(1).getReg();
5077   LLT DstTy = MRI.getType(Dst);
5078   LLT SrcTy = MRI.getType(Src);
5079 
5080   const LLT S64 = LLT::scalar(64);
5081   const LLT S32 = LLT::scalar(32);
5082   const LLT S1 = LLT::scalar(1);
5083 
5084   if (SrcTy == S1) {
5085     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5086     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5087     MIRBuilder.buildSelect(Dst, Src, True, False);
5088     MI.eraseFromParent();
5089     return Legalized;
5090   }
5091 
5092   if (SrcTy != S64)
5093     return UnableToLegalize;
5094 
5095   if (DstTy == S32) {
5096     // signed cl2f(long l) {
5097     //   long s = l >> 63;
5098     //   float r = cul2f((l + s) ^ s);
5099     //   return s ? -r : r;
5100     // }
5101     Register L = Src;
5102     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5103     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5104 
5105     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5106     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5107     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5108 
5109     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5110     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5111                                             MIRBuilder.buildConstant(S64, 0));
5112     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5113     MI.eraseFromParent();
5114     return Legalized;
5115   }
5116 
5117   return UnableToLegalize;
5118 }
5119 
5120 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5121   Register Dst = MI.getOperand(0).getReg();
5122   Register Src = MI.getOperand(1).getReg();
5123   LLT DstTy = MRI.getType(Dst);
5124   LLT SrcTy = MRI.getType(Src);
5125   const LLT S64 = LLT::scalar(64);
5126   const LLT S32 = LLT::scalar(32);
5127 
5128   if (SrcTy != S64 && SrcTy != S32)
5129     return UnableToLegalize;
5130   if (DstTy != S32 && DstTy != S64)
5131     return UnableToLegalize;
5132 
5133   // FPTOSI gives same result as FPTOUI for positive signed integers.
5134   // FPTOUI needs to deal with fp values that convert to unsigned integers
5135   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5136 
5137   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5138   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5139                                                 : APFloat::IEEEdouble(),
5140                     APInt::getNullValue(SrcTy.getSizeInBits()));
5141   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5142 
5143   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5144 
5145   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5146   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5147   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5148   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5149   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5150   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5151   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5152 
5153   const LLT S1 = LLT::scalar(1);
5154 
5155   MachineInstrBuilder FCMP =
5156       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5157   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5158 
5159   MI.eraseFromParent();
5160   return Legalized;
5161 }
5162 
5163 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5164   Register Dst = MI.getOperand(0).getReg();
5165   Register Src = MI.getOperand(1).getReg();
5166   LLT DstTy = MRI.getType(Dst);
5167   LLT SrcTy = MRI.getType(Src);
5168   const LLT S64 = LLT::scalar(64);
5169   const LLT S32 = LLT::scalar(32);
5170 
5171   // FIXME: Only f32 to i64 conversions are supported.
5172   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5173     return UnableToLegalize;
5174 
5175   // Expand f32 -> i64 conversion
5176   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5177   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5178 
5179   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5180 
5181   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5182   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5183 
5184   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5185   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5186 
5187   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5188                                            APInt::getSignMask(SrcEltBits));
5189   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5190   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5191   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5192   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5193 
5194   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5195   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5196   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5197 
5198   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5199   R = MIRBuilder.buildZExt(DstTy, R);
5200 
5201   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5202   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5203   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5204   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5205 
5206   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5207   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5208 
5209   const LLT S1 = LLT::scalar(1);
5210   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5211                                     S1, Exponent, ExponentLoBit);
5212 
5213   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5214 
5215   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5216   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5217 
5218   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5219 
5220   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5221                                           S1, Exponent, ZeroSrcTy);
5222 
5223   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5224   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5225 
5226   MI.eraseFromParent();
5227   return Legalized;
5228 }
5229 
5230 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5231 LegalizerHelper::LegalizeResult
5232 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5233   Register Dst = MI.getOperand(0).getReg();
5234   Register Src = MI.getOperand(1).getReg();
5235 
5236   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5237     return UnableToLegalize;
5238 
5239   const unsigned ExpMask = 0x7ff;
5240   const unsigned ExpBiasf64 = 1023;
5241   const unsigned ExpBiasf16 = 15;
5242   const LLT S32 = LLT::scalar(32);
5243   const LLT S1 = LLT::scalar(1);
5244 
5245   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5246   Register U = Unmerge.getReg(0);
5247   Register UH = Unmerge.getReg(1);
5248 
5249   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5250   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5251 
5252   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5253   // add the f16 bias (15) to get the biased exponent for the f16 format.
5254   E = MIRBuilder.buildAdd(
5255     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5256 
5257   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5258   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5259 
5260   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5261                                        MIRBuilder.buildConstant(S32, 0x1ff));
5262   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5263 
5264   auto Zero = MIRBuilder.buildConstant(S32, 0);
5265   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5266   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5267   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5268 
5269   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5270   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5271   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5272   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5273 
5274   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5275   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5276 
5277   // N = M | (E << 12);
5278   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5279   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5280 
5281   // B = clamp(1-E, 0, 13);
5282   auto One = MIRBuilder.buildConstant(S32, 1);
5283   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5284   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5285   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5286 
5287   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5288                                        MIRBuilder.buildConstant(S32, 0x1000));
5289 
5290   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5291   auto D0 = MIRBuilder.buildShl(S32, D, B);
5292 
5293   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5294                                              D0, SigSetHigh);
5295   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5296   D = MIRBuilder.buildOr(S32, D, D1);
5297 
5298   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5299   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5300 
5301   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5302   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5303 
5304   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5305                                        MIRBuilder.buildConstant(S32, 3));
5306   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5307 
5308   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5309                                        MIRBuilder.buildConstant(S32, 5));
5310   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5311 
5312   V1 = MIRBuilder.buildOr(S32, V0, V1);
5313   V = MIRBuilder.buildAdd(S32, V, V1);
5314 
5315   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5316                                        E, MIRBuilder.buildConstant(S32, 30));
5317   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5318                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5319 
5320   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5321                                          E, MIRBuilder.buildConstant(S32, 1039));
5322   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5323 
5324   // Extract the sign bit.
5325   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5326   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5327 
5328   // Insert the sign bit
5329   V = MIRBuilder.buildOr(S32, Sign, V);
5330 
5331   MIRBuilder.buildTrunc(Dst, V);
5332   MI.eraseFromParent();
5333   return Legalized;
5334 }
5335 
5336 LegalizerHelper::LegalizeResult
5337 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5338   Register Dst = MI.getOperand(0).getReg();
5339   Register Src = MI.getOperand(1).getReg();
5340 
5341   LLT DstTy = MRI.getType(Dst);
5342   LLT SrcTy = MRI.getType(Src);
5343   const LLT S64 = LLT::scalar(64);
5344   const LLT S16 = LLT::scalar(16);
5345 
5346   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5347     return lowerFPTRUNC_F64_TO_F16(MI);
5348 
5349   return UnableToLegalize;
5350 }
5351 
5352 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5353 // multiplication tree.
5354 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5355   Register Dst = MI.getOperand(0).getReg();
5356   Register Src0 = MI.getOperand(1).getReg();
5357   Register Src1 = MI.getOperand(2).getReg();
5358   LLT Ty = MRI.getType(Dst);
5359 
5360   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5361   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5362   MI.eraseFromParent();
5363   return Legalized;
5364 }
5365 
5366 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5367   switch (Opc) {
5368   case TargetOpcode::G_SMIN:
5369     return CmpInst::ICMP_SLT;
5370   case TargetOpcode::G_SMAX:
5371     return CmpInst::ICMP_SGT;
5372   case TargetOpcode::G_UMIN:
5373     return CmpInst::ICMP_ULT;
5374   case TargetOpcode::G_UMAX:
5375     return CmpInst::ICMP_UGT;
5376   default:
5377     llvm_unreachable("not in integer min/max");
5378   }
5379 }
5380 
5381 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5382   Register Dst = MI.getOperand(0).getReg();
5383   Register Src0 = MI.getOperand(1).getReg();
5384   Register Src1 = MI.getOperand(2).getReg();
5385 
5386   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5387   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5388 
5389   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5390   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5391 
5392   MI.eraseFromParent();
5393   return Legalized;
5394 }
5395 
5396 LegalizerHelper::LegalizeResult
5397 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5398   Register Dst = MI.getOperand(0).getReg();
5399   Register Src0 = MI.getOperand(1).getReg();
5400   Register Src1 = MI.getOperand(2).getReg();
5401 
5402   const LLT Src0Ty = MRI.getType(Src0);
5403   const LLT Src1Ty = MRI.getType(Src1);
5404 
5405   const int Src0Size = Src0Ty.getScalarSizeInBits();
5406   const int Src1Size = Src1Ty.getScalarSizeInBits();
5407 
5408   auto SignBitMask = MIRBuilder.buildConstant(
5409     Src0Ty, APInt::getSignMask(Src0Size));
5410 
5411   auto NotSignBitMask = MIRBuilder.buildConstant(
5412     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5413 
5414   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5415   MachineInstr *Or;
5416 
5417   if (Src0Ty == Src1Ty) {
5418     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5419     Or = MIRBuilder.buildOr(Dst, And0, And1);
5420   } else if (Src0Size > Src1Size) {
5421     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5422     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5423     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5424     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5425     Or = MIRBuilder.buildOr(Dst, And0, And1);
5426   } else {
5427     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5428     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5429     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5430     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5431     Or = MIRBuilder.buildOr(Dst, And0, And1);
5432   }
5433 
5434   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5435   // constants are a nan and -0.0, but the final result should preserve
5436   // everything.
5437   if (unsigned Flags = MI.getFlags())
5438     Or->setFlags(Flags);
5439 
5440   MI.eraseFromParent();
5441   return Legalized;
5442 }
5443 
5444 LegalizerHelper::LegalizeResult
5445 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5446   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5447     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5448 
5449   Register Dst = MI.getOperand(0).getReg();
5450   Register Src0 = MI.getOperand(1).getReg();
5451   Register Src1 = MI.getOperand(2).getReg();
5452   LLT Ty = MRI.getType(Dst);
5453 
5454   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5455     // Insert canonicalizes if it's possible we need to quiet to get correct
5456     // sNaN behavior.
5457 
5458     // Note this must be done here, and not as an optimization combine in the
5459     // absence of a dedicate quiet-snan instruction as we're using an
5460     // omni-purpose G_FCANONICALIZE.
5461     if (!isKnownNeverSNaN(Src0, MRI))
5462       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5463 
5464     if (!isKnownNeverSNaN(Src1, MRI))
5465       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5466   }
5467 
5468   // If there are no nans, it's safe to simply replace this with the non-IEEE
5469   // version.
5470   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5471   MI.eraseFromParent();
5472   return Legalized;
5473 }
5474 
5475 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5476   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5477   Register DstReg = MI.getOperand(0).getReg();
5478   LLT Ty = MRI.getType(DstReg);
5479   unsigned Flags = MI.getFlags();
5480 
5481   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5482                                   Flags);
5483   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5484   MI.eraseFromParent();
5485   return Legalized;
5486 }
5487 
5488 LegalizerHelper::LegalizeResult
5489 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5490   Register DstReg = MI.getOperand(0).getReg();
5491   Register X = MI.getOperand(1).getReg();
5492   const unsigned Flags = MI.getFlags();
5493   const LLT Ty = MRI.getType(DstReg);
5494   const LLT CondTy = Ty.changeElementSize(1);
5495 
5496   // round(x) =>
5497   //  t = trunc(x);
5498   //  d = fabs(x - t);
5499   //  o = copysign(1.0f, x);
5500   //  return t + (d >= 0.5 ? o : 0.0);
5501 
5502   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5503 
5504   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5505   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5506   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5507   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5508   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5509   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5510 
5511   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5512                                   Flags);
5513   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5514 
5515   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5516 
5517   MI.eraseFromParent();
5518   return Legalized;
5519 }
5520 
5521 LegalizerHelper::LegalizeResult
5522 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5523   Register DstReg = MI.getOperand(0).getReg();
5524   Register SrcReg = MI.getOperand(1).getReg();
5525   unsigned Flags = MI.getFlags();
5526   LLT Ty = MRI.getType(DstReg);
5527   const LLT CondTy = Ty.changeElementSize(1);
5528 
5529   // result = trunc(src);
5530   // if (src < 0.0 && src != result)
5531   //   result += -1.0.
5532 
5533   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5534   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5535 
5536   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5537                                   SrcReg, Zero, Flags);
5538   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5539                                       SrcReg, Trunc, Flags);
5540   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5541   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5542 
5543   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5544   MI.eraseFromParent();
5545   return Legalized;
5546 }
5547 
5548 LegalizerHelper::LegalizeResult
5549 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5550   const unsigned NumOps = MI.getNumOperands();
5551   Register DstReg = MI.getOperand(0).getReg();
5552   Register Src0Reg = MI.getOperand(1).getReg();
5553   LLT DstTy = MRI.getType(DstReg);
5554   LLT SrcTy = MRI.getType(Src0Reg);
5555   unsigned PartSize = SrcTy.getSizeInBits();
5556 
5557   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5558   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5559 
5560   for (unsigned I = 2; I != NumOps; ++I) {
5561     const unsigned Offset = (I - 1) * PartSize;
5562 
5563     Register SrcReg = MI.getOperand(I).getReg();
5564     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5565 
5566     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5567       MRI.createGenericVirtualRegister(WideTy);
5568 
5569     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5570     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5571     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5572     ResultReg = NextResult;
5573   }
5574 
5575   if (DstTy.isPointer()) {
5576     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5577           DstTy.getAddressSpace())) {
5578       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5579       return UnableToLegalize;
5580     }
5581 
5582     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5583   }
5584 
5585   MI.eraseFromParent();
5586   return Legalized;
5587 }
5588 
5589 LegalizerHelper::LegalizeResult
5590 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5591   const unsigned NumDst = MI.getNumOperands() - 1;
5592   Register SrcReg = MI.getOperand(NumDst).getReg();
5593   Register Dst0Reg = MI.getOperand(0).getReg();
5594   LLT DstTy = MRI.getType(Dst0Reg);
5595   if (DstTy.isPointer())
5596     return UnableToLegalize; // TODO
5597 
5598   SrcReg = coerceToScalar(SrcReg);
5599   if (!SrcReg)
5600     return UnableToLegalize;
5601 
5602   // Expand scalarizing unmerge as bitcast to integer and shift.
5603   LLT IntTy = MRI.getType(SrcReg);
5604 
5605   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5606 
5607   const unsigned DstSize = DstTy.getSizeInBits();
5608   unsigned Offset = DstSize;
5609   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5610     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5611     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5612     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5613   }
5614 
5615   MI.eraseFromParent();
5616   return Legalized;
5617 }
5618 
5619 /// Lower a vector extract or insert by writing the vector to a stack temporary
5620 /// and reloading the element or vector.
5621 ///
5622 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5623 ///  =>
5624 ///  %stack_temp = G_FRAME_INDEX
5625 ///  G_STORE %vec, %stack_temp
5626 ///  %idx = clamp(%idx, %vec.getNumElements())
5627 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5628 ///  %dst = G_LOAD %element_ptr
5629 LegalizerHelper::LegalizeResult
5630 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5631   Register DstReg = MI.getOperand(0).getReg();
5632   Register SrcVec = MI.getOperand(1).getReg();
5633   Register InsertVal;
5634   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5635     InsertVal = MI.getOperand(2).getReg();
5636 
5637   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5638 
5639   LLT VecTy = MRI.getType(SrcVec);
5640   LLT EltTy = VecTy.getElementType();
5641   if (!EltTy.isByteSized()) { // Not implemented.
5642     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5643     return UnableToLegalize;
5644   }
5645 
5646   unsigned EltBytes = EltTy.getSizeInBytes();
5647   Align VecAlign = getStackTemporaryAlignment(VecTy);
5648   Align EltAlign;
5649 
5650   MachinePointerInfo PtrInfo;
5651   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5652                                         VecAlign, PtrInfo);
5653   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5654 
5655   // Get the pointer to the element, and be sure not to hit undefined behavior
5656   // if the index is out of bounds.
5657   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5658 
5659   int64_t IdxVal;
5660   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5661     int64_t Offset = IdxVal * EltBytes;
5662     PtrInfo = PtrInfo.getWithOffset(Offset);
5663     EltAlign = commonAlignment(VecAlign, Offset);
5664   } else {
5665     // We lose information with a variable offset.
5666     EltAlign = getStackTemporaryAlignment(EltTy);
5667     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5668   }
5669 
5670   if (InsertVal) {
5671     // Write the inserted element
5672     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5673 
5674     // Reload the whole vector.
5675     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5676   } else {
5677     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5678   }
5679 
5680   MI.eraseFromParent();
5681   return Legalized;
5682 }
5683 
5684 LegalizerHelper::LegalizeResult
5685 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5686   Register DstReg = MI.getOperand(0).getReg();
5687   Register Src0Reg = MI.getOperand(1).getReg();
5688   Register Src1Reg = MI.getOperand(2).getReg();
5689   LLT Src0Ty = MRI.getType(Src0Reg);
5690   LLT DstTy = MRI.getType(DstReg);
5691   LLT IdxTy = LLT::scalar(32);
5692 
5693   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5694 
5695   if (DstTy.isScalar()) {
5696     if (Src0Ty.isVector())
5697       return UnableToLegalize;
5698 
5699     // This is just a SELECT.
5700     assert(Mask.size() == 1 && "Expected a single mask element");
5701     Register Val;
5702     if (Mask[0] < 0 || Mask[0] > 1)
5703       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5704     else
5705       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5706     MIRBuilder.buildCopy(DstReg, Val);
5707     MI.eraseFromParent();
5708     return Legalized;
5709   }
5710 
5711   Register Undef;
5712   SmallVector<Register, 32> BuildVec;
5713   LLT EltTy = DstTy.getElementType();
5714 
5715   for (int Idx : Mask) {
5716     if (Idx < 0) {
5717       if (!Undef.isValid())
5718         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5719       BuildVec.push_back(Undef);
5720       continue;
5721     }
5722 
5723     if (Src0Ty.isScalar()) {
5724       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5725     } else {
5726       int NumElts = Src0Ty.getNumElements();
5727       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5728       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5729       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5730       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5731       BuildVec.push_back(Extract.getReg(0));
5732     }
5733   }
5734 
5735   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5736   MI.eraseFromParent();
5737   return Legalized;
5738 }
5739 
5740 LegalizerHelper::LegalizeResult
5741 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5742   const auto &MF = *MI.getMF();
5743   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5744   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5745     return UnableToLegalize;
5746 
5747   Register Dst = MI.getOperand(0).getReg();
5748   Register AllocSize = MI.getOperand(1).getReg();
5749   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5750 
5751   LLT PtrTy = MRI.getType(Dst);
5752   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5753 
5754   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5755   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5756   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5757 
5758   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5759   // have to generate an extra instruction to negate the alloc and then use
5760   // G_PTR_ADD to add the negative offset.
5761   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5762   if (Alignment > Align(1)) {
5763     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5764     AlignMask.negate();
5765     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5766     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5767   }
5768 
5769   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5770   MIRBuilder.buildCopy(SPReg, SPTmp);
5771   MIRBuilder.buildCopy(Dst, SPTmp);
5772 
5773   MI.eraseFromParent();
5774   return Legalized;
5775 }
5776 
5777 LegalizerHelper::LegalizeResult
5778 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5779   Register Dst = MI.getOperand(0).getReg();
5780   Register Src = MI.getOperand(1).getReg();
5781   unsigned Offset = MI.getOperand(2).getImm();
5782 
5783   LLT DstTy = MRI.getType(Dst);
5784   LLT SrcTy = MRI.getType(Src);
5785 
5786   if (DstTy.isScalar() &&
5787       (SrcTy.isScalar() ||
5788        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5789     LLT SrcIntTy = SrcTy;
5790     if (!SrcTy.isScalar()) {
5791       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5792       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5793     }
5794 
5795     if (Offset == 0)
5796       MIRBuilder.buildTrunc(Dst, Src);
5797     else {
5798       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5799       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5800       MIRBuilder.buildTrunc(Dst, Shr);
5801     }
5802 
5803     MI.eraseFromParent();
5804     return Legalized;
5805   }
5806 
5807   return UnableToLegalize;
5808 }
5809 
5810 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5811   Register Dst = MI.getOperand(0).getReg();
5812   Register Src = MI.getOperand(1).getReg();
5813   Register InsertSrc = MI.getOperand(2).getReg();
5814   uint64_t Offset = MI.getOperand(3).getImm();
5815 
5816   LLT DstTy = MRI.getType(Src);
5817   LLT InsertTy = MRI.getType(InsertSrc);
5818 
5819   if (InsertTy.isVector() ||
5820       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5821     return UnableToLegalize;
5822 
5823   const DataLayout &DL = MIRBuilder.getDataLayout();
5824   if ((DstTy.isPointer() &&
5825        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5826       (InsertTy.isPointer() &&
5827        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5828     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5829     return UnableToLegalize;
5830   }
5831 
5832   LLT IntDstTy = DstTy;
5833 
5834   if (!DstTy.isScalar()) {
5835     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5836     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5837   }
5838 
5839   if (!InsertTy.isScalar()) {
5840     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5841     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5842   }
5843 
5844   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5845   if (Offset != 0) {
5846     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5847     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5848   }
5849 
5850   APInt MaskVal = APInt::getBitsSetWithWrap(
5851       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5852 
5853   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5854   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5855   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5856 
5857   MIRBuilder.buildCast(Dst, Or);
5858   MI.eraseFromParent();
5859   return Legalized;
5860 }
5861 
5862 LegalizerHelper::LegalizeResult
5863 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5864   Register Dst0 = MI.getOperand(0).getReg();
5865   Register Dst1 = MI.getOperand(1).getReg();
5866   Register LHS = MI.getOperand(2).getReg();
5867   Register RHS = MI.getOperand(3).getReg();
5868   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5869 
5870   LLT Ty = MRI.getType(Dst0);
5871   LLT BoolTy = MRI.getType(Dst1);
5872 
5873   if (IsAdd)
5874     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5875   else
5876     MIRBuilder.buildSub(Dst0, LHS, RHS);
5877 
5878   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5879 
5880   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5881 
5882   // For an addition, the result should be less than one of the operands (LHS)
5883   // if and only if the other operand (RHS) is negative, otherwise there will
5884   // be overflow.
5885   // For a subtraction, the result should be less than one of the operands
5886   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5887   // otherwise there will be overflow.
5888   auto ResultLowerThanLHS =
5889       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5890   auto ConditionRHS = MIRBuilder.buildICmp(
5891       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5892 
5893   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5894   MI.eraseFromParent();
5895   return Legalized;
5896 }
5897 
5898 LegalizerHelper::LegalizeResult
5899 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5900   Register Res = MI.getOperand(0).getReg();
5901   Register LHS = MI.getOperand(1).getReg();
5902   Register RHS = MI.getOperand(2).getReg();
5903   LLT Ty = MRI.getType(Res);
5904   bool IsSigned;
5905   bool IsAdd;
5906   unsigned BaseOp;
5907   switch (MI.getOpcode()) {
5908   default:
5909     llvm_unreachable("unexpected addsat/subsat opcode");
5910   case TargetOpcode::G_UADDSAT:
5911     IsSigned = false;
5912     IsAdd = true;
5913     BaseOp = TargetOpcode::G_ADD;
5914     break;
5915   case TargetOpcode::G_SADDSAT:
5916     IsSigned = true;
5917     IsAdd = true;
5918     BaseOp = TargetOpcode::G_ADD;
5919     break;
5920   case TargetOpcode::G_USUBSAT:
5921     IsSigned = false;
5922     IsAdd = false;
5923     BaseOp = TargetOpcode::G_SUB;
5924     break;
5925   case TargetOpcode::G_SSUBSAT:
5926     IsSigned = true;
5927     IsAdd = false;
5928     BaseOp = TargetOpcode::G_SUB;
5929     break;
5930   }
5931 
5932   if (IsSigned) {
5933     // sadd.sat(a, b) ->
5934     //   hi = 0x7fffffff - smax(a, 0)
5935     //   lo = 0x80000000 - smin(a, 0)
5936     //   a + smin(smax(lo, b), hi)
5937     // ssub.sat(a, b) ->
5938     //   lo = smax(a, -1) - 0x7fffffff
5939     //   hi = smin(a, -1) - 0x80000000
5940     //   a - smin(smax(lo, b), hi)
5941     // TODO: AMDGPU can use a "median of 3" instruction here:
5942     //   a +/- med3(lo, b, hi)
5943     uint64_t NumBits = Ty.getScalarSizeInBits();
5944     auto MaxVal =
5945         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5946     auto MinVal =
5947         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5948     MachineInstrBuilder Hi, Lo;
5949     if (IsAdd) {
5950       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5951       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5952       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5953     } else {
5954       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5955       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5956                                MaxVal);
5957       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5958                                MinVal);
5959     }
5960     auto RHSClamped =
5961         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5962     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5963   } else {
5964     // uadd.sat(a, b) -> a + umin(~a, b)
5965     // usub.sat(a, b) -> a - umin(a, b)
5966     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5967     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5968     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5969   }
5970 
5971   MI.eraseFromParent();
5972   return Legalized;
5973 }
5974 
5975 LegalizerHelper::LegalizeResult
5976 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5977   Register Res = MI.getOperand(0).getReg();
5978   Register LHS = MI.getOperand(1).getReg();
5979   Register RHS = MI.getOperand(2).getReg();
5980   LLT Ty = MRI.getType(Res);
5981   LLT BoolTy = Ty.changeElementSize(1);
5982   bool IsSigned;
5983   bool IsAdd;
5984   unsigned OverflowOp;
5985   switch (MI.getOpcode()) {
5986   default:
5987     llvm_unreachable("unexpected addsat/subsat opcode");
5988   case TargetOpcode::G_UADDSAT:
5989     IsSigned = false;
5990     IsAdd = true;
5991     OverflowOp = TargetOpcode::G_UADDO;
5992     break;
5993   case TargetOpcode::G_SADDSAT:
5994     IsSigned = true;
5995     IsAdd = true;
5996     OverflowOp = TargetOpcode::G_SADDO;
5997     break;
5998   case TargetOpcode::G_USUBSAT:
5999     IsSigned = false;
6000     IsAdd = false;
6001     OverflowOp = TargetOpcode::G_USUBO;
6002     break;
6003   case TargetOpcode::G_SSUBSAT:
6004     IsSigned = true;
6005     IsAdd = false;
6006     OverflowOp = TargetOpcode::G_SSUBO;
6007     break;
6008   }
6009 
6010   auto OverflowRes =
6011       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6012   Register Tmp = OverflowRes.getReg(0);
6013   Register Ov = OverflowRes.getReg(1);
6014   MachineInstrBuilder Clamp;
6015   if (IsSigned) {
6016     // sadd.sat(a, b) ->
6017     //   {tmp, ov} = saddo(a, b)
6018     //   ov ? (tmp >>s 31) + 0x80000000 : r
6019     // ssub.sat(a, b) ->
6020     //   {tmp, ov} = ssubo(a, b)
6021     //   ov ? (tmp >>s 31) + 0x80000000 : r
6022     uint64_t NumBits = Ty.getScalarSizeInBits();
6023     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6024     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6025     auto MinVal =
6026         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6027     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6028   } else {
6029     // uadd.sat(a, b) ->
6030     //   {tmp, ov} = uaddo(a, b)
6031     //   ov ? 0xffffffff : tmp
6032     // usub.sat(a, b) ->
6033     //   {tmp, ov} = usubo(a, b)
6034     //   ov ? 0 : tmp
6035     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6036   }
6037   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6038 
6039   MI.eraseFromParent();
6040   return Legalized;
6041 }
6042 
6043 LegalizerHelper::LegalizeResult
6044 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6045   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6046           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6047          "Expected shlsat opcode!");
6048   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6049   Register Res = MI.getOperand(0).getReg();
6050   Register LHS = MI.getOperand(1).getReg();
6051   Register RHS = MI.getOperand(2).getReg();
6052   LLT Ty = MRI.getType(Res);
6053   LLT BoolTy = Ty.changeElementSize(1);
6054 
6055   unsigned BW = Ty.getScalarSizeInBits();
6056   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6057   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6058                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6059 
6060   MachineInstrBuilder SatVal;
6061   if (IsSigned) {
6062     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6063     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6064     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6065                                     MIRBuilder.buildConstant(Ty, 0));
6066     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6067   } else {
6068     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6069   }
6070   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6071   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6072 
6073   MI.eraseFromParent();
6074   return Legalized;
6075 }
6076 
6077 LegalizerHelper::LegalizeResult
6078 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6079   Register Dst = MI.getOperand(0).getReg();
6080   Register Src = MI.getOperand(1).getReg();
6081   const LLT Ty = MRI.getType(Src);
6082   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6083   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6084 
6085   // Swap most and least significant byte, set remaining bytes in Res to zero.
6086   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6087   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6088   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6089   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6090 
6091   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6092   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6093     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6094     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6095     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6096     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6097     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6098     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6099     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6100     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6101     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6102     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6103     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6104     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6105   }
6106   Res.getInstr()->getOperand(0).setReg(Dst);
6107 
6108   MI.eraseFromParent();
6109   return Legalized;
6110 }
6111 
6112 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6113 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6114                                  MachineInstrBuilder Src, APInt Mask) {
6115   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6116   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6117   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6118   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6119   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6120   return B.buildOr(Dst, LHS, RHS);
6121 }
6122 
6123 LegalizerHelper::LegalizeResult
6124 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6125   Register Dst = MI.getOperand(0).getReg();
6126   Register Src = MI.getOperand(1).getReg();
6127   const LLT Ty = MRI.getType(Src);
6128   unsigned Size = Ty.getSizeInBits();
6129 
6130   MachineInstrBuilder BSWAP =
6131       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6132 
6133   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6134   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6135   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6136   MachineInstrBuilder Swap4 =
6137       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6138 
6139   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6140   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6141   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6142   MachineInstrBuilder Swap2 =
6143       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6144 
6145   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6146   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6147   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6148   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6149 
6150   MI.eraseFromParent();
6151   return Legalized;
6152 }
6153 
6154 LegalizerHelper::LegalizeResult
6155 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6156   MachineFunction &MF = MIRBuilder.getMF();
6157 
6158   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6159   int NameOpIdx = IsRead ? 1 : 0;
6160   int ValRegIndex = IsRead ? 0 : 1;
6161 
6162   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6163   const LLT Ty = MRI.getType(ValReg);
6164   const MDString *RegStr = cast<MDString>(
6165     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6166 
6167   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6168   if (!PhysReg.isValid())
6169     return UnableToLegalize;
6170 
6171   if (IsRead)
6172     MIRBuilder.buildCopy(ValReg, PhysReg);
6173   else
6174     MIRBuilder.buildCopy(PhysReg, ValReg);
6175 
6176   MI.eraseFromParent();
6177   return Legalized;
6178 }
6179