1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 case TargetOpcode::G_ADD: 863 case TargetOpcode::G_SUB: 864 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 865 case TargetOpcode::G_MUL: 866 case TargetOpcode::G_UMULH: 867 return narrowScalarMul(MI, NarrowTy); 868 case TargetOpcode::G_EXTRACT: 869 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 870 case TargetOpcode::G_INSERT: 871 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 872 case TargetOpcode::G_LOAD: { 873 auto &MMO = **MI.memoperands_begin(); 874 Register DstReg = MI.getOperand(0).getReg(); 875 LLT DstTy = MRI.getType(DstReg); 876 if (DstTy.isVector()) 877 return UnableToLegalize; 878 879 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 880 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 881 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 882 MIRBuilder.buildAnyExt(DstReg, TmpReg); 883 MI.eraseFromParent(); 884 return Legalized; 885 } 886 887 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 888 } 889 case TargetOpcode::G_ZEXTLOAD: 890 case TargetOpcode::G_SEXTLOAD: { 891 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 892 Register DstReg = MI.getOperand(0).getReg(); 893 Register PtrReg = MI.getOperand(1).getReg(); 894 895 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 896 auto &MMO = **MI.memoperands_begin(); 897 unsigned MemSize = MMO.getSizeInBits(); 898 899 if (MemSize == NarrowSize) { 900 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 901 } else if (MemSize < NarrowSize) { 902 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 903 } else if (MemSize > NarrowSize) { 904 // FIXME: Need to split the load. 905 return UnableToLegalize; 906 } 907 908 if (ZExt) 909 MIRBuilder.buildZExt(DstReg, TmpReg); 910 else 911 MIRBuilder.buildSExt(DstReg, TmpReg); 912 913 MI.eraseFromParent(); 914 return Legalized; 915 } 916 case TargetOpcode::G_STORE: { 917 const auto &MMO = **MI.memoperands_begin(); 918 919 Register SrcReg = MI.getOperand(0).getReg(); 920 LLT SrcTy = MRI.getType(SrcReg); 921 if (SrcTy.isVector()) 922 return UnableToLegalize; 923 924 int NumParts = SizeOp0 / NarrowSize; 925 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 926 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 927 if (SrcTy.isVector() && LeftoverBits != 0) 928 return UnableToLegalize; 929 930 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 auto &MMO = **MI.memoperands_begin(); 933 MIRBuilder.buildTrunc(TmpReg, SrcReg); 934 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 935 MI.eraseFromParent(); 936 return Legalized; 937 } 938 939 return reduceLoadStoreWidth(MI, 0, NarrowTy); 940 } 941 case TargetOpcode::G_SELECT: 942 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 943 case TargetOpcode::G_AND: 944 case TargetOpcode::G_OR: 945 case TargetOpcode::G_XOR: { 946 // Legalize bitwise operation: 947 // A = BinOp<Ty> B, C 948 // into: 949 // B1, ..., BN = G_UNMERGE_VALUES B 950 // C1, ..., CN = G_UNMERGE_VALUES C 951 // A1 = BinOp<Ty/N> B1, C2 952 // ... 953 // AN = BinOp<Ty/N> BN, CN 954 // A = G_MERGE_VALUES A1, ..., AN 955 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 956 } 957 case TargetOpcode::G_SHL: 958 case TargetOpcode::G_LSHR: 959 case TargetOpcode::G_ASHR: 960 return narrowScalarShift(MI, TypeIdx, NarrowTy); 961 case TargetOpcode::G_CTLZ: 962 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 963 case TargetOpcode::G_CTTZ: 964 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 965 case TargetOpcode::G_CTPOP: 966 if (TypeIdx == 1) 967 switch (MI.getOpcode()) { 968 case TargetOpcode::G_CTLZ: 969 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 970 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 971 case TargetOpcode::G_CTTZ: 972 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 973 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 974 case TargetOpcode::G_CTPOP: 975 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 976 default: 977 return UnableToLegalize; 978 } 979 980 Observer.changingInstr(MI); 981 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 982 Observer.changedInstr(MI); 983 return Legalized; 984 case TargetOpcode::G_INTTOPTR: 985 if (TypeIdx != 1) 986 return UnableToLegalize; 987 988 Observer.changingInstr(MI); 989 narrowScalarSrc(MI, NarrowTy, 1); 990 Observer.changedInstr(MI); 991 return Legalized; 992 case TargetOpcode::G_PTRTOINT: 993 if (TypeIdx != 0) 994 return UnableToLegalize; 995 996 Observer.changingInstr(MI); 997 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 998 Observer.changedInstr(MI); 999 return Legalized; 1000 case TargetOpcode::G_PHI: { 1001 unsigned NumParts = SizeOp0 / NarrowSize; 1002 SmallVector<Register, 2> DstRegs(NumParts); 1003 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1004 Observer.changingInstr(MI); 1005 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1006 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1007 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1008 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1009 SrcRegs[i / 2]); 1010 } 1011 MachineBasicBlock &MBB = *MI.getParent(); 1012 MIRBuilder.setInsertPt(MBB, MI); 1013 for (unsigned i = 0; i < NumParts; ++i) { 1014 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1015 MachineInstrBuilder MIB = 1016 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1017 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1018 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1019 } 1020 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1021 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1022 Observer.changedInstr(MI); 1023 MI.eraseFromParent(); 1024 return Legalized; 1025 } 1026 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1027 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1028 if (TypeIdx != 2) 1029 return UnableToLegalize; 1030 1031 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1032 Observer.changingInstr(MI); 1033 narrowScalarSrc(MI, NarrowTy, OpIdx); 1034 Observer.changedInstr(MI); 1035 return Legalized; 1036 } 1037 case TargetOpcode::G_ICMP: { 1038 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1039 if (NarrowSize * 2 != SrcSize) 1040 return UnableToLegalize; 1041 1042 Observer.changingInstr(MI); 1043 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1044 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1045 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1046 1047 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1048 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1049 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1050 1051 CmpInst::Predicate Pred = 1052 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1053 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1054 1055 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1056 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1057 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1058 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1059 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1060 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1061 } else { 1062 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1063 MachineInstrBuilder CmpHEQ = 1064 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1065 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1066 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1067 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1068 } 1069 Observer.changedInstr(MI); 1070 MI.eraseFromParent(); 1071 return Legalized; 1072 } 1073 case TargetOpcode::G_SEXT_INREG: { 1074 if (TypeIdx != 0) 1075 return UnableToLegalize; 1076 1077 int64_t SizeInBits = MI.getOperand(2).getImm(); 1078 1079 // So long as the new type has more bits than the bits we're extending we 1080 // don't need to break it apart. 1081 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1082 Observer.changingInstr(MI); 1083 // We don't lose any non-extension bits by truncating the src and 1084 // sign-extending the dst. 1085 MachineOperand &MO1 = MI.getOperand(1); 1086 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1087 MO1.setReg(TruncMIB.getReg(0)); 1088 1089 MachineOperand &MO2 = MI.getOperand(0); 1090 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1091 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1092 MIRBuilder.buildSExt(MO2, DstExt); 1093 MO2.setReg(DstExt); 1094 Observer.changedInstr(MI); 1095 return Legalized; 1096 } 1097 1098 // Break it apart. Components below the extension point are unmodified. The 1099 // component containing the extension point becomes a narrower SEXT_INREG. 1100 // Components above it are ashr'd from the component containing the 1101 // extension point. 1102 if (SizeOp0 % NarrowSize != 0) 1103 return UnableToLegalize; 1104 int NumParts = SizeOp0 / NarrowSize; 1105 1106 // List the registers where the destination will be scattered. 1107 SmallVector<Register, 2> DstRegs; 1108 // List the registers where the source will be split. 1109 SmallVector<Register, 2> SrcRegs; 1110 1111 // Create all the temporary registers. 1112 for (int i = 0; i < NumParts; ++i) { 1113 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1114 1115 SrcRegs.push_back(SrcReg); 1116 } 1117 1118 // Explode the big arguments into smaller chunks. 1119 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1120 1121 Register AshrCstReg = 1122 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1123 .getReg(0); 1124 Register FullExtensionReg = 0; 1125 Register PartialExtensionReg = 0; 1126 1127 // Do the operation on each small part. 1128 for (int i = 0; i < NumParts; ++i) { 1129 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1130 DstRegs.push_back(SrcRegs[i]); 1131 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1132 assert(PartialExtensionReg && 1133 "Expected to visit partial extension before full"); 1134 if (FullExtensionReg) { 1135 DstRegs.push_back(FullExtensionReg); 1136 continue; 1137 } 1138 DstRegs.push_back( 1139 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1140 .getReg(0)); 1141 FullExtensionReg = DstRegs.back(); 1142 } else { 1143 DstRegs.push_back( 1144 MIRBuilder 1145 .buildInstr( 1146 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1147 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1148 .getReg(0)); 1149 PartialExtensionReg = DstRegs.back(); 1150 } 1151 } 1152 1153 // Gather the destination registers into the final destination. 1154 Register DstReg = MI.getOperand(0).getReg(); 1155 MIRBuilder.buildMerge(DstReg, DstRegs); 1156 MI.eraseFromParent(); 1157 return Legalized; 1158 } 1159 case TargetOpcode::G_BSWAP: 1160 case TargetOpcode::G_BITREVERSE: { 1161 if (SizeOp0 % NarrowSize != 0) 1162 return UnableToLegalize; 1163 1164 Observer.changingInstr(MI); 1165 SmallVector<Register, 2> SrcRegs, DstRegs; 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1168 1169 for (unsigned i = 0; i < NumParts; ++i) { 1170 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1171 {SrcRegs[NumParts - 1 - i]}); 1172 DstRegs.push_back(DstPart.getReg(0)); 1173 } 1174 1175 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1176 1177 Observer.changedInstr(MI); 1178 MI.eraseFromParent(); 1179 return Legalized; 1180 } 1181 case TargetOpcode::G_PTR_ADD: 1182 case TargetOpcode::G_PTRMASK: { 1183 if (TypeIdx != 1) 1184 return UnableToLegalize; 1185 Observer.changingInstr(MI); 1186 narrowScalarSrc(MI, NarrowTy, 2); 1187 Observer.changedInstr(MI); 1188 return Legalized; 1189 } 1190 case TargetOpcode::G_FPTOUI: { 1191 if (TypeIdx != 0) 1192 return UnableToLegalize; 1193 Observer.changingInstr(MI); 1194 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1195 Observer.changedInstr(MI); 1196 return Legalized; 1197 } 1198 case TargetOpcode::G_FPTOSI: { 1199 if (TypeIdx != 0) 1200 return UnableToLegalize; 1201 Observer.changingInstr(MI); 1202 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1203 Observer.changedInstr(MI); 1204 return Legalized; 1205 } 1206 case TargetOpcode::G_FPEXT: 1207 if (TypeIdx != 0) 1208 return UnableToLegalize; 1209 Observer.changingInstr(MI); 1210 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1211 Observer.changedInstr(MI); 1212 return Legalized; 1213 } 1214 } 1215 1216 Register LegalizerHelper::coerceToScalar(Register Val) { 1217 LLT Ty = MRI.getType(Val); 1218 if (Ty.isScalar()) 1219 return Val; 1220 1221 const DataLayout &DL = MIRBuilder.getDataLayout(); 1222 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1223 if (Ty.isPointer()) { 1224 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1225 return Register(); 1226 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1227 } 1228 1229 Register NewVal = Val; 1230 1231 assert(Ty.isVector()); 1232 LLT EltTy = Ty.getElementType(); 1233 if (EltTy.isPointer()) 1234 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1235 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1236 } 1237 1238 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1239 unsigned OpIdx, unsigned ExtOpcode) { 1240 MachineOperand &MO = MI.getOperand(OpIdx); 1241 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1242 MO.setReg(ExtB.getReg(0)); 1243 } 1244 1245 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1246 unsigned OpIdx) { 1247 MachineOperand &MO = MI.getOperand(OpIdx); 1248 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1249 MO.setReg(ExtB.getReg(0)); 1250 } 1251 1252 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1253 unsigned OpIdx, unsigned TruncOpcode) { 1254 MachineOperand &MO = MI.getOperand(OpIdx); 1255 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1256 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1257 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1258 MO.setReg(DstExt); 1259 } 1260 1261 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1262 unsigned OpIdx, unsigned ExtOpcode) { 1263 MachineOperand &MO = MI.getOperand(OpIdx); 1264 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1265 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1266 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1267 MO.setReg(DstTrunc); 1268 } 1269 1270 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1271 unsigned OpIdx) { 1272 MachineOperand &MO = MI.getOperand(OpIdx); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1275 } 1276 1277 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1278 unsigned OpIdx) { 1279 MachineOperand &MO = MI.getOperand(OpIdx); 1280 1281 LLT OldTy = MRI.getType(MO.getReg()); 1282 unsigned OldElts = OldTy.getNumElements(); 1283 unsigned NewElts = MoreTy.getNumElements(); 1284 1285 unsigned NumParts = NewElts / OldElts; 1286 1287 // Use concat_vectors if the result is a multiple of the number of elements. 1288 if (NumParts * OldElts == NewElts) { 1289 SmallVector<Register, 8> Parts; 1290 Parts.push_back(MO.getReg()); 1291 1292 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1293 for (unsigned I = 1; I != NumParts; ++I) 1294 Parts.push_back(ImpDef); 1295 1296 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1297 MO.setReg(Concat.getReg(0)); 1298 return; 1299 } 1300 1301 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1302 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1303 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1304 MO.setReg(MoreReg); 1305 } 1306 1307 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1308 MachineOperand &Op = MI.getOperand(OpIdx); 1309 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1310 } 1311 1312 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1313 MachineOperand &MO = MI.getOperand(OpIdx); 1314 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1315 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1316 MIRBuilder.buildBitcast(MO, CastDst); 1317 MO.setReg(CastDst); 1318 } 1319 1320 LegalizerHelper::LegalizeResult 1321 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1322 LLT WideTy) { 1323 if (TypeIdx != 1) 1324 return UnableToLegalize; 1325 1326 Register DstReg = MI.getOperand(0).getReg(); 1327 LLT DstTy = MRI.getType(DstReg); 1328 if (DstTy.isVector()) 1329 return UnableToLegalize; 1330 1331 Register Src1 = MI.getOperand(1).getReg(); 1332 LLT SrcTy = MRI.getType(Src1); 1333 const int DstSize = DstTy.getSizeInBits(); 1334 const int SrcSize = SrcTy.getSizeInBits(); 1335 const int WideSize = WideTy.getSizeInBits(); 1336 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1337 1338 unsigned NumOps = MI.getNumOperands(); 1339 unsigned NumSrc = MI.getNumOperands() - 1; 1340 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1341 1342 if (WideSize >= DstSize) { 1343 // Directly pack the bits in the target type. 1344 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1345 1346 for (unsigned I = 2; I != NumOps; ++I) { 1347 const unsigned Offset = (I - 1) * PartSize; 1348 1349 Register SrcReg = MI.getOperand(I).getReg(); 1350 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1351 1352 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1353 1354 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1355 MRI.createGenericVirtualRegister(WideTy); 1356 1357 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1358 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1359 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1360 ResultReg = NextResult; 1361 } 1362 1363 if (WideSize > DstSize) 1364 MIRBuilder.buildTrunc(DstReg, ResultReg); 1365 else if (DstTy.isPointer()) 1366 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1367 1368 MI.eraseFromParent(); 1369 return Legalized; 1370 } 1371 1372 // Unmerge the original values to the GCD type, and recombine to the next 1373 // multiple greater than the original type. 1374 // 1375 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1376 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1377 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1378 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1379 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1380 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1381 // %12:_(s12) = G_MERGE_VALUES %10, %11 1382 // 1383 // Padding with undef if necessary: 1384 // 1385 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1386 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1387 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1388 // %7:_(s2) = G_IMPLICIT_DEF 1389 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1390 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1391 // %10:_(s12) = G_MERGE_VALUES %8, %9 1392 1393 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1394 LLT GCDTy = LLT::scalar(GCD); 1395 1396 SmallVector<Register, 8> Parts; 1397 SmallVector<Register, 8> NewMergeRegs; 1398 SmallVector<Register, 8> Unmerges; 1399 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1400 1401 // Decompose the original operands if they don't evenly divide. 1402 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1403 Register SrcReg = MI.getOperand(I).getReg(); 1404 if (GCD == SrcSize) { 1405 Unmerges.push_back(SrcReg); 1406 } else { 1407 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1408 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1409 Unmerges.push_back(Unmerge.getReg(J)); 1410 } 1411 } 1412 1413 // Pad with undef to the next size that is a multiple of the requested size. 1414 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1415 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1416 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1417 Unmerges.push_back(UndefReg); 1418 } 1419 1420 const int PartsPerGCD = WideSize / GCD; 1421 1422 // Build merges of each piece. 1423 ArrayRef<Register> Slicer(Unmerges); 1424 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1425 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1426 NewMergeRegs.push_back(Merge.getReg(0)); 1427 } 1428 1429 // A truncate may be necessary if the requested type doesn't evenly divide the 1430 // original result type. 1431 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1432 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1433 } else { 1434 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1435 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1436 } 1437 1438 MI.eraseFromParent(); 1439 return Legalized; 1440 } 1441 1442 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1443 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1444 LLT OrigTy = MRI.getType(OrigReg); 1445 LLT LCMTy = getLCMType(WideTy, OrigTy); 1446 1447 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1448 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1449 1450 Register UnmergeSrc = WideReg; 1451 1452 // Create a merge to the LCM type, padding with undef 1453 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1454 // => 1455 // %1:_(<4 x s32>) = G_FOO 1456 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1457 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1458 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1459 if (NumMergeParts > 1) { 1460 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1461 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1462 MergeParts[0] = WideReg; 1463 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1464 } 1465 1466 // Unmerge to the original register and pad with dead defs. 1467 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1468 UnmergeResults[0] = OrigReg; 1469 for (int I = 1; I != NumUnmergeParts; ++I) 1470 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1471 1472 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1473 return WideReg; 1474 } 1475 1476 LegalizerHelper::LegalizeResult 1477 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1478 LLT WideTy) { 1479 if (TypeIdx != 0) 1480 return UnableToLegalize; 1481 1482 int NumDst = MI.getNumOperands() - 1; 1483 Register SrcReg = MI.getOperand(NumDst).getReg(); 1484 LLT SrcTy = MRI.getType(SrcReg); 1485 if (SrcTy.isVector()) 1486 return UnableToLegalize; 1487 1488 Register Dst0Reg = MI.getOperand(0).getReg(); 1489 LLT DstTy = MRI.getType(Dst0Reg); 1490 if (!DstTy.isScalar()) 1491 return UnableToLegalize; 1492 1493 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1494 if (SrcTy.isPointer()) { 1495 const DataLayout &DL = MIRBuilder.getDataLayout(); 1496 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1497 LLVM_DEBUG( 1498 dbgs() << "Not casting non-integral address space integer\n"); 1499 return UnableToLegalize; 1500 } 1501 1502 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1503 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1504 } 1505 1506 // Widen SrcTy to WideTy. This does not affect the result, but since the 1507 // user requested this size, it is probably better handled than SrcTy and 1508 // should reduce the total number of legalization artifacts 1509 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1510 SrcTy = WideTy; 1511 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1512 } 1513 1514 // Theres no unmerge type to target. Directly extract the bits from the 1515 // source type 1516 unsigned DstSize = DstTy.getSizeInBits(); 1517 1518 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1519 for (int I = 1; I != NumDst; ++I) { 1520 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1521 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1522 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1523 } 1524 1525 MI.eraseFromParent(); 1526 return Legalized; 1527 } 1528 1529 // Extend the source to a wider type. 1530 LLT LCMTy = getLCMType(SrcTy, WideTy); 1531 1532 Register WideSrc = SrcReg; 1533 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1534 // TODO: If this is an integral address space, cast to integer and anyext. 1535 if (SrcTy.isPointer()) { 1536 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1537 return UnableToLegalize; 1538 } 1539 1540 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1541 } 1542 1543 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1544 1545 // Create a sequence of unmerges and merges to the original results. Since we 1546 // may have widened the source, we will need to pad the results with dead defs 1547 // to cover the source register. 1548 // e.g. widen s48 to s64: 1549 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1550 // 1551 // => 1552 // %4:_(s192) = G_ANYEXT %0:_(s96) 1553 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1554 // ; unpack to GCD type, with extra dead defs 1555 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1556 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1557 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1558 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1559 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1560 const LLT GCDTy = getGCDType(WideTy, DstTy); 1561 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1562 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1563 1564 // Directly unmerge to the destination without going through a GCD type 1565 // if possible 1566 if (PartsPerRemerge == 1) { 1567 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1568 1569 for (int I = 0; I != NumUnmerge; ++I) { 1570 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1571 1572 for (int J = 0; J != PartsPerUnmerge; ++J) { 1573 int Idx = I * PartsPerUnmerge + J; 1574 if (Idx < NumDst) 1575 MIB.addDef(MI.getOperand(Idx).getReg()); 1576 else { 1577 // Create dead def for excess components. 1578 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1579 } 1580 } 1581 1582 MIB.addUse(Unmerge.getReg(I)); 1583 } 1584 } else { 1585 SmallVector<Register, 16> Parts; 1586 for (int J = 0; J != NumUnmerge; ++J) 1587 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1588 1589 SmallVector<Register, 8> RemergeParts; 1590 for (int I = 0; I != NumDst; ++I) { 1591 for (int J = 0; J < PartsPerRemerge; ++J) { 1592 const int Idx = I * PartsPerRemerge + J; 1593 RemergeParts.emplace_back(Parts[Idx]); 1594 } 1595 1596 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1597 RemergeParts.clear(); 1598 } 1599 } 1600 1601 MI.eraseFromParent(); 1602 return Legalized; 1603 } 1604 1605 LegalizerHelper::LegalizeResult 1606 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1607 LLT WideTy) { 1608 Register DstReg = MI.getOperand(0).getReg(); 1609 Register SrcReg = MI.getOperand(1).getReg(); 1610 LLT SrcTy = MRI.getType(SrcReg); 1611 1612 LLT DstTy = MRI.getType(DstReg); 1613 unsigned Offset = MI.getOperand(2).getImm(); 1614 1615 if (TypeIdx == 0) { 1616 if (SrcTy.isVector() || DstTy.isVector()) 1617 return UnableToLegalize; 1618 1619 SrcOp Src(SrcReg); 1620 if (SrcTy.isPointer()) { 1621 // Extracts from pointers can be handled only if they are really just 1622 // simple integers. 1623 const DataLayout &DL = MIRBuilder.getDataLayout(); 1624 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1625 return UnableToLegalize; 1626 1627 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1628 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1629 SrcTy = SrcAsIntTy; 1630 } 1631 1632 if (DstTy.isPointer()) 1633 return UnableToLegalize; 1634 1635 if (Offset == 0) { 1636 // Avoid a shift in the degenerate case. 1637 MIRBuilder.buildTrunc(DstReg, 1638 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1639 MI.eraseFromParent(); 1640 return Legalized; 1641 } 1642 1643 // Do a shift in the source type. 1644 LLT ShiftTy = SrcTy; 1645 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1646 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1647 ShiftTy = WideTy; 1648 } 1649 1650 auto LShr = MIRBuilder.buildLShr( 1651 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1652 MIRBuilder.buildTrunc(DstReg, LShr); 1653 MI.eraseFromParent(); 1654 return Legalized; 1655 } 1656 1657 if (SrcTy.isScalar()) { 1658 Observer.changingInstr(MI); 1659 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1660 Observer.changedInstr(MI); 1661 return Legalized; 1662 } 1663 1664 if (!SrcTy.isVector()) 1665 return UnableToLegalize; 1666 1667 if (DstTy != SrcTy.getElementType()) 1668 return UnableToLegalize; 1669 1670 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1671 return UnableToLegalize; 1672 1673 Observer.changingInstr(MI); 1674 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1675 1676 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1677 Offset); 1678 widenScalarDst(MI, WideTy.getScalarType(), 0); 1679 Observer.changedInstr(MI); 1680 return Legalized; 1681 } 1682 1683 LegalizerHelper::LegalizeResult 1684 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1685 LLT WideTy) { 1686 if (TypeIdx != 0 || WideTy.isVector()) 1687 return UnableToLegalize; 1688 Observer.changingInstr(MI); 1689 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1690 widenScalarDst(MI, WideTy); 1691 Observer.changedInstr(MI); 1692 return Legalized; 1693 } 1694 1695 LegalizerHelper::LegalizeResult 1696 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1697 LLT WideTy) { 1698 if (TypeIdx == 1) 1699 return UnableToLegalize; // TODO 1700 1701 unsigned Opcode; 1702 unsigned ExtOpcode; 1703 Optional<Register> CarryIn = None; 1704 switch (MI.getOpcode()) { 1705 default: 1706 llvm_unreachable("Unexpected opcode!"); 1707 case TargetOpcode::G_SADDO: 1708 Opcode = TargetOpcode::G_ADD; 1709 ExtOpcode = TargetOpcode::G_SEXT; 1710 break; 1711 case TargetOpcode::G_SSUBO: 1712 Opcode = TargetOpcode::G_SUB; 1713 ExtOpcode = TargetOpcode::G_SEXT; 1714 break; 1715 case TargetOpcode::G_UADDO: 1716 Opcode = TargetOpcode::G_ADD; 1717 ExtOpcode = TargetOpcode::G_ZEXT; 1718 break; 1719 case TargetOpcode::G_USUBO: 1720 Opcode = TargetOpcode::G_SUB; 1721 ExtOpcode = TargetOpcode::G_ZEXT; 1722 break; 1723 case TargetOpcode::G_SADDE: 1724 Opcode = TargetOpcode::G_UADDE; 1725 ExtOpcode = TargetOpcode::G_SEXT; 1726 CarryIn = MI.getOperand(4).getReg(); 1727 break; 1728 case TargetOpcode::G_SSUBE: 1729 Opcode = TargetOpcode::G_USUBE; 1730 ExtOpcode = TargetOpcode::G_SEXT; 1731 CarryIn = MI.getOperand(4).getReg(); 1732 break; 1733 case TargetOpcode::G_UADDE: 1734 Opcode = TargetOpcode::G_UADDE; 1735 ExtOpcode = TargetOpcode::G_ZEXT; 1736 CarryIn = MI.getOperand(4).getReg(); 1737 break; 1738 case TargetOpcode::G_USUBE: 1739 Opcode = TargetOpcode::G_USUBE; 1740 ExtOpcode = TargetOpcode::G_ZEXT; 1741 CarryIn = MI.getOperand(4).getReg(); 1742 break; 1743 } 1744 1745 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1746 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1747 // Do the arithmetic in the larger type. 1748 Register NewOp; 1749 if (CarryIn) { 1750 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1751 NewOp = MIRBuilder 1752 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1753 {LHSExt, RHSExt, *CarryIn}) 1754 .getReg(0); 1755 } else { 1756 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1757 } 1758 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1759 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1760 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1761 // There is no overflow if the ExtOp is the same as NewOp. 1762 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1763 // Now trunc the NewOp to the original result. 1764 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1765 MI.eraseFromParent(); 1766 return Legalized; 1767 } 1768 1769 LegalizerHelper::LegalizeResult 1770 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1771 LLT WideTy) { 1772 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1773 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1774 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1775 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1776 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1777 // We can convert this to: 1778 // 1. Any extend iN to iM 1779 // 2. SHL by M-N 1780 // 3. [US][ADD|SUB|SHL]SAT 1781 // 4. L/ASHR by M-N 1782 // 1783 // It may be more efficient to lower this to a min and a max operation in 1784 // the higher precision arithmetic if the promoted operation isn't legal, 1785 // but this decision is up to the target's lowering request. 1786 Register DstReg = MI.getOperand(0).getReg(); 1787 1788 unsigned NewBits = WideTy.getScalarSizeInBits(); 1789 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1790 1791 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1792 // must not left shift the RHS to preserve the shift amount. 1793 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1794 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1795 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1796 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1797 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1798 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1799 1800 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1801 {ShiftL, ShiftR}, MI.getFlags()); 1802 1803 // Use a shift that will preserve the number of sign bits when the trunc is 1804 // folded away. 1805 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1806 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1807 1808 MIRBuilder.buildTrunc(DstReg, Result); 1809 MI.eraseFromParent(); 1810 return Legalized; 1811 } 1812 1813 LegalizerHelper::LegalizeResult 1814 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1815 switch (MI.getOpcode()) { 1816 default: 1817 return UnableToLegalize; 1818 case TargetOpcode::G_EXTRACT: 1819 return widenScalarExtract(MI, TypeIdx, WideTy); 1820 case TargetOpcode::G_INSERT: 1821 return widenScalarInsert(MI, TypeIdx, WideTy); 1822 case TargetOpcode::G_MERGE_VALUES: 1823 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1824 case TargetOpcode::G_UNMERGE_VALUES: 1825 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1826 case TargetOpcode::G_SADDO: 1827 case TargetOpcode::G_SSUBO: 1828 case TargetOpcode::G_UADDO: 1829 case TargetOpcode::G_USUBO: 1830 case TargetOpcode::G_SADDE: 1831 case TargetOpcode::G_SSUBE: 1832 case TargetOpcode::G_UADDE: 1833 case TargetOpcode::G_USUBE: 1834 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1835 case TargetOpcode::G_SADDSAT: 1836 case TargetOpcode::G_SSUBSAT: 1837 case TargetOpcode::G_SSHLSAT: 1838 case TargetOpcode::G_UADDSAT: 1839 case TargetOpcode::G_USUBSAT: 1840 case TargetOpcode::G_USHLSAT: 1841 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1842 case TargetOpcode::G_CTTZ: 1843 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1844 case TargetOpcode::G_CTLZ: 1845 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1846 case TargetOpcode::G_CTPOP: { 1847 if (TypeIdx == 0) { 1848 Observer.changingInstr(MI); 1849 widenScalarDst(MI, WideTy, 0); 1850 Observer.changedInstr(MI); 1851 return Legalized; 1852 } 1853 1854 Register SrcReg = MI.getOperand(1).getReg(); 1855 1856 // First ZEXT the input. 1857 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1858 LLT CurTy = MRI.getType(SrcReg); 1859 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1860 // The count is the same in the larger type except if the original 1861 // value was zero. This can be handled by setting the bit just off 1862 // the top of the original type. 1863 auto TopBit = 1864 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1865 MIBSrc = MIRBuilder.buildOr( 1866 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1867 } 1868 1869 // Perform the operation at the larger size. 1870 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1871 // This is already the correct result for CTPOP and CTTZs 1872 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1873 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1874 // The correct result is NewOp - (Difference in widety and current ty). 1875 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1876 MIBNewOp = MIRBuilder.buildSub( 1877 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1878 } 1879 1880 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1881 MI.eraseFromParent(); 1882 return Legalized; 1883 } 1884 case TargetOpcode::G_BSWAP: { 1885 Observer.changingInstr(MI); 1886 Register DstReg = MI.getOperand(0).getReg(); 1887 1888 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1889 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1890 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1891 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1892 1893 MI.getOperand(0).setReg(DstExt); 1894 1895 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1896 1897 LLT Ty = MRI.getType(DstReg); 1898 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1899 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1900 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1901 1902 MIRBuilder.buildTrunc(DstReg, ShrReg); 1903 Observer.changedInstr(MI); 1904 return Legalized; 1905 } 1906 case TargetOpcode::G_BITREVERSE: { 1907 Observer.changingInstr(MI); 1908 1909 Register DstReg = MI.getOperand(0).getReg(); 1910 LLT Ty = MRI.getType(DstReg); 1911 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1912 1913 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1914 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1915 MI.getOperand(0).setReg(DstExt); 1916 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1917 1918 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1919 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1920 MIRBuilder.buildTrunc(DstReg, Shift); 1921 Observer.changedInstr(MI); 1922 return Legalized; 1923 } 1924 case TargetOpcode::G_FREEZE: 1925 Observer.changingInstr(MI); 1926 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1927 widenScalarDst(MI, WideTy); 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 1931 case TargetOpcode::G_ADD: 1932 case TargetOpcode::G_AND: 1933 case TargetOpcode::G_MUL: 1934 case TargetOpcode::G_OR: 1935 case TargetOpcode::G_XOR: 1936 case TargetOpcode::G_SUB: 1937 // Perform operation at larger width (any extension is fines here, high bits 1938 // don't affect the result) and then truncate the result back to the 1939 // original type. 1940 Observer.changingInstr(MI); 1941 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1942 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1943 widenScalarDst(MI, WideTy); 1944 Observer.changedInstr(MI); 1945 return Legalized; 1946 1947 case TargetOpcode::G_SHL: 1948 Observer.changingInstr(MI); 1949 1950 if (TypeIdx == 0) { 1951 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1952 widenScalarDst(MI, WideTy); 1953 } else { 1954 assert(TypeIdx == 1); 1955 // The "number of bits to shift" operand must preserve its value as an 1956 // unsigned integer: 1957 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1958 } 1959 1960 Observer.changedInstr(MI); 1961 return Legalized; 1962 1963 case TargetOpcode::G_SDIV: 1964 case TargetOpcode::G_SREM: 1965 case TargetOpcode::G_SMIN: 1966 case TargetOpcode::G_SMAX: 1967 Observer.changingInstr(MI); 1968 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1969 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1970 widenScalarDst(MI, WideTy); 1971 Observer.changedInstr(MI); 1972 return Legalized; 1973 1974 case TargetOpcode::G_ASHR: 1975 case TargetOpcode::G_LSHR: 1976 Observer.changingInstr(MI); 1977 1978 if (TypeIdx == 0) { 1979 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1980 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1981 1982 widenScalarSrc(MI, WideTy, 1, CvtOp); 1983 widenScalarDst(MI, WideTy); 1984 } else { 1985 assert(TypeIdx == 1); 1986 // The "number of bits to shift" operand must preserve its value as an 1987 // unsigned integer: 1988 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1989 } 1990 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 case TargetOpcode::G_UDIV: 1994 case TargetOpcode::G_UREM: 1995 case TargetOpcode::G_UMIN: 1996 case TargetOpcode::G_UMAX: 1997 Observer.changingInstr(MI); 1998 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1999 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2000 widenScalarDst(MI, WideTy); 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 2004 case TargetOpcode::G_SELECT: 2005 Observer.changingInstr(MI); 2006 if (TypeIdx == 0) { 2007 // Perform operation at larger width (any extension is fine here, high 2008 // bits don't affect the result) and then truncate the result back to the 2009 // original type. 2010 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2011 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2012 widenScalarDst(MI, WideTy); 2013 } else { 2014 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2015 // Explicit extension is required here since high bits affect the result. 2016 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2017 } 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 2021 case TargetOpcode::G_FPTOSI: 2022 case TargetOpcode::G_FPTOUI: 2023 Observer.changingInstr(MI); 2024 2025 if (TypeIdx == 0) 2026 widenScalarDst(MI, WideTy); 2027 else 2028 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2029 2030 Observer.changedInstr(MI); 2031 return Legalized; 2032 case TargetOpcode::G_SITOFP: 2033 Observer.changingInstr(MI); 2034 2035 if (TypeIdx == 0) 2036 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2037 else 2038 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2039 2040 Observer.changedInstr(MI); 2041 return Legalized; 2042 case TargetOpcode::G_UITOFP: 2043 Observer.changingInstr(MI); 2044 2045 if (TypeIdx == 0) 2046 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2047 else 2048 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2049 2050 Observer.changedInstr(MI); 2051 return Legalized; 2052 case TargetOpcode::G_LOAD: 2053 case TargetOpcode::G_SEXTLOAD: 2054 case TargetOpcode::G_ZEXTLOAD: 2055 Observer.changingInstr(MI); 2056 widenScalarDst(MI, WideTy); 2057 Observer.changedInstr(MI); 2058 return Legalized; 2059 2060 case TargetOpcode::G_STORE: { 2061 if (TypeIdx != 0) 2062 return UnableToLegalize; 2063 2064 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2065 if (!Ty.isScalar()) 2066 return UnableToLegalize; 2067 2068 Observer.changingInstr(MI); 2069 2070 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2071 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2072 widenScalarSrc(MI, WideTy, 0, ExtType); 2073 2074 Observer.changedInstr(MI); 2075 return Legalized; 2076 } 2077 case TargetOpcode::G_CONSTANT: { 2078 MachineOperand &SrcMO = MI.getOperand(1); 2079 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2080 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2081 MRI.getType(MI.getOperand(0).getReg())); 2082 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2083 ExtOpc == TargetOpcode::G_ANYEXT) && 2084 "Illegal Extend"); 2085 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2086 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2087 ? SrcVal.sext(WideTy.getSizeInBits()) 2088 : SrcVal.zext(WideTy.getSizeInBits()); 2089 Observer.changingInstr(MI); 2090 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2091 2092 widenScalarDst(MI, WideTy); 2093 Observer.changedInstr(MI); 2094 return Legalized; 2095 } 2096 case TargetOpcode::G_FCONSTANT: { 2097 MachineOperand &SrcMO = MI.getOperand(1); 2098 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2099 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2100 bool LosesInfo; 2101 switch (WideTy.getSizeInBits()) { 2102 case 32: 2103 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2104 &LosesInfo); 2105 break; 2106 case 64: 2107 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2108 &LosesInfo); 2109 break; 2110 default: 2111 return UnableToLegalize; 2112 } 2113 2114 assert(!LosesInfo && "extend should always be lossless"); 2115 2116 Observer.changingInstr(MI); 2117 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2118 2119 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2120 Observer.changedInstr(MI); 2121 return Legalized; 2122 } 2123 case TargetOpcode::G_IMPLICIT_DEF: { 2124 Observer.changingInstr(MI); 2125 widenScalarDst(MI, WideTy); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 } 2129 case TargetOpcode::G_BRCOND: 2130 Observer.changingInstr(MI); 2131 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2132 Observer.changedInstr(MI); 2133 return Legalized; 2134 2135 case TargetOpcode::G_FCMP: 2136 Observer.changingInstr(MI); 2137 if (TypeIdx == 0) 2138 widenScalarDst(MI, WideTy); 2139 else { 2140 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2141 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2142 } 2143 Observer.changedInstr(MI); 2144 return Legalized; 2145 2146 case TargetOpcode::G_ICMP: 2147 Observer.changingInstr(MI); 2148 if (TypeIdx == 0) 2149 widenScalarDst(MI, WideTy); 2150 else { 2151 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2152 MI.getOperand(1).getPredicate())) 2153 ? TargetOpcode::G_SEXT 2154 : TargetOpcode::G_ZEXT; 2155 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2156 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2157 } 2158 Observer.changedInstr(MI); 2159 return Legalized; 2160 2161 case TargetOpcode::G_PTR_ADD: 2162 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2163 Observer.changingInstr(MI); 2164 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2165 Observer.changedInstr(MI); 2166 return Legalized; 2167 2168 case TargetOpcode::G_PHI: { 2169 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2170 2171 Observer.changingInstr(MI); 2172 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2173 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2174 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2175 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2176 } 2177 2178 MachineBasicBlock &MBB = *MI.getParent(); 2179 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2180 widenScalarDst(MI, WideTy); 2181 Observer.changedInstr(MI); 2182 return Legalized; 2183 } 2184 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2185 if (TypeIdx == 0) { 2186 Register VecReg = MI.getOperand(1).getReg(); 2187 LLT VecTy = MRI.getType(VecReg); 2188 Observer.changingInstr(MI); 2189 2190 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2191 WideTy.getSizeInBits()), 2192 1, TargetOpcode::G_SEXT); 2193 2194 widenScalarDst(MI, WideTy, 0); 2195 Observer.changedInstr(MI); 2196 return Legalized; 2197 } 2198 2199 if (TypeIdx != 2) 2200 return UnableToLegalize; 2201 Observer.changingInstr(MI); 2202 // TODO: Probably should be zext 2203 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2204 Observer.changedInstr(MI); 2205 return Legalized; 2206 } 2207 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2208 if (TypeIdx == 1) { 2209 Observer.changingInstr(MI); 2210 2211 Register VecReg = MI.getOperand(1).getReg(); 2212 LLT VecTy = MRI.getType(VecReg); 2213 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2214 2215 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2216 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2217 widenScalarDst(MI, WideVecTy, 0); 2218 Observer.changedInstr(MI); 2219 return Legalized; 2220 } 2221 2222 if (TypeIdx == 2) { 2223 Observer.changingInstr(MI); 2224 // TODO: Probably should be zext 2225 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2226 Observer.changedInstr(MI); 2227 return Legalized; 2228 } 2229 2230 return UnableToLegalize; 2231 } 2232 case TargetOpcode::G_FADD: 2233 case TargetOpcode::G_FMUL: 2234 case TargetOpcode::G_FSUB: 2235 case TargetOpcode::G_FMA: 2236 case TargetOpcode::G_FMAD: 2237 case TargetOpcode::G_FNEG: 2238 case TargetOpcode::G_FABS: 2239 case TargetOpcode::G_FCANONICALIZE: 2240 case TargetOpcode::G_FMINNUM: 2241 case TargetOpcode::G_FMAXNUM: 2242 case TargetOpcode::G_FMINNUM_IEEE: 2243 case TargetOpcode::G_FMAXNUM_IEEE: 2244 case TargetOpcode::G_FMINIMUM: 2245 case TargetOpcode::G_FMAXIMUM: 2246 case TargetOpcode::G_FDIV: 2247 case TargetOpcode::G_FREM: 2248 case TargetOpcode::G_FCEIL: 2249 case TargetOpcode::G_FFLOOR: 2250 case TargetOpcode::G_FCOS: 2251 case TargetOpcode::G_FSIN: 2252 case TargetOpcode::G_FLOG10: 2253 case TargetOpcode::G_FLOG: 2254 case TargetOpcode::G_FLOG2: 2255 case TargetOpcode::G_FRINT: 2256 case TargetOpcode::G_FNEARBYINT: 2257 case TargetOpcode::G_FSQRT: 2258 case TargetOpcode::G_FEXP: 2259 case TargetOpcode::G_FEXP2: 2260 case TargetOpcode::G_FPOW: 2261 case TargetOpcode::G_INTRINSIC_TRUNC: 2262 case TargetOpcode::G_INTRINSIC_ROUND: 2263 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2264 assert(TypeIdx == 0); 2265 Observer.changingInstr(MI); 2266 2267 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2268 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2269 2270 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2271 Observer.changedInstr(MI); 2272 return Legalized; 2273 case TargetOpcode::G_FPOWI: { 2274 if (TypeIdx != 0) 2275 return UnableToLegalize; 2276 Observer.changingInstr(MI); 2277 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2278 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2279 Observer.changedInstr(MI); 2280 return Legalized; 2281 } 2282 case TargetOpcode::G_INTTOPTR: 2283 if (TypeIdx != 1) 2284 return UnableToLegalize; 2285 2286 Observer.changingInstr(MI); 2287 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2288 Observer.changedInstr(MI); 2289 return Legalized; 2290 case TargetOpcode::G_PTRTOINT: 2291 if (TypeIdx != 0) 2292 return UnableToLegalize; 2293 2294 Observer.changingInstr(MI); 2295 widenScalarDst(MI, WideTy, 0); 2296 Observer.changedInstr(MI); 2297 return Legalized; 2298 case TargetOpcode::G_BUILD_VECTOR: { 2299 Observer.changingInstr(MI); 2300 2301 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2302 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2303 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2304 2305 // Avoid changing the result vector type if the source element type was 2306 // requested. 2307 if (TypeIdx == 1) { 2308 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2309 } else { 2310 widenScalarDst(MI, WideTy, 0); 2311 } 2312 2313 Observer.changedInstr(MI); 2314 return Legalized; 2315 } 2316 case TargetOpcode::G_SEXT_INREG: 2317 if (TypeIdx != 0) 2318 return UnableToLegalize; 2319 2320 Observer.changingInstr(MI); 2321 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2322 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2323 Observer.changedInstr(MI); 2324 return Legalized; 2325 case TargetOpcode::G_PTRMASK: { 2326 if (TypeIdx != 1) 2327 return UnableToLegalize; 2328 Observer.changingInstr(MI); 2329 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2330 Observer.changedInstr(MI); 2331 return Legalized; 2332 } 2333 } 2334 } 2335 2336 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2337 MachineIRBuilder &B, Register Src, LLT Ty) { 2338 auto Unmerge = B.buildUnmerge(Ty, Src); 2339 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2340 Pieces.push_back(Unmerge.getReg(I)); 2341 } 2342 2343 LegalizerHelper::LegalizeResult 2344 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2345 Register Dst = MI.getOperand(0).getReg(); 2346 Register Src = MI.getOperand(1).getReg(); 2347 LLT DstTy = MRI.getType(Dst); 2348 LLT SrcTy = MRI.getType(Src); 2349 2350 if (SrcTy.isVector()) { 2351 LLT SrcEltTy = SrcTy.getElementType(); 2352 SmallVector<Register, 8> SrcRegs; 2353 2354 if (DstTy.isVector()) { 2355 int NumDstElt = DstTy.getNumElements(); 2356 int NumSrcElt = SrcTy.getNumElements(); 2357 2358 LLT DstEltTy = DstTy.getElementType(); 2359 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2360 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2361 2362 // If there's an element size mismatch, insert intermediate casts to match 2363 // the result element type. 2364 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2365 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2366 // 2367 // => 2368 // 2369 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2370 // %3:_(<2 x s8>) = G_BITCAST %2 2371 // %4:_(<2 x s8>) = G_BITCAST %3 2372 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2373 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2374 SrcPartTy = SrcEltTy; 2375 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2376 // 2377 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2378 // 2379 // => 2380 // 2381 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2382 // %3:_(s16) = G_BITCAST %2 2383 // %4:_(s16) = G_BITCAST %3 2384 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2385 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2386 DstCastTy = DstEltTy; 2387 } 2388 2389 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2390 for (Register &SrcReg : SrcRegs) 2391 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2392 } else 2393 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2394 2395 MIRBuilder.buildMerge(Dst, SrcRegs); 2396 MI.eraseFromParent(); 2397 return Legalized; 2398 } 2399 2400 if (DstTy.isVector()) { 2401 SmallVector<Register, 8> SrcRegs; 2402 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2403 MIRBuilder.buildMerge(Dst, SrcRegs); 2404 MI.eraseFromParent(); 2405 return Legalized; 2406 } 2407 2408 return UnableToLegalize; 2409 } 2410 2411 /// Figure out the bit offset into a register when coercing a vector index for 2412 /// the wide element type. This is only for the case when promoting vector to 2413 /// one with larger elements. 2414 // 2415 /// 2416 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2417 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2418 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2419 Register Idx, 2420 unsigned NewEltSize, 2421 unsigned OldEltSize) { 2422 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2423 LLT IdxTy = B.getMRI()->getType(Idx); 2424 2425 // Now figure out the amount we need to shift to get the target bits. 2426 auto OffsetMask = B.buildConstant( 2427 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2428 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2429 return B.buildShl(IdxTy, OffsetIdx, 2430 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2431 } 2432 2433 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2434 /// is casting to a vector with a smaller element size, perform multiple element 2435 /// extracts and merge the results. If this is coercing to a vector with larger 2436 /// elements, index the bitcasted vector and extract the target element with bit 2437 /// operations. This is intended to force the indexing in the native register 2438 /// size for architectures that can dynamically index the register file. 2439 LegalizerHelper::LegalizeResult 2440 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2441 LLT CastTy) { 2442 if (TypeIdx != 1) 2443 return UnableToLegalize; 2444 2445 Register Dst = MI.getOperand(0).getReg(); 2446 Register SrcVec = MI.getOperand(1).getReg(); 2447 Register Idx = MI.getOperand(2).getReg(); 2448 LLT SrcVecTy = MRI.getType(SrcVec); 2449 LLT IdxTy = MRI.getType(Idx); 2450 2451 LLT SrcEltTy = SrcVecTy.getElementType(); 2452 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2453 unsigned OldNumElts = SrcVecTy.getNumElements(); 2454 2455 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2456 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2457 2458 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2459 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2460 if (NewNumElts > OldNumElts) { 2461 // Decreasing the vector element size 2462 // 2463 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2464 // => 2465 // v4i32:castx = bitcast x:v2i64 2466 // 2467 // i64 = bitcast 2468 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2469 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2470 // 2471 if (NewNumElts % OldNumElts != 0) 2472 return UnableToLegalize; 2473 2474 // Type of the intermediate result vector. 2475 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2476 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2477 2478 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2479 2480 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2481 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2482 2483 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2484 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2485 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2486 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2487 NewOps[I] = Elt.getReg(0); 2488 } 2489 2490 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2491 MIRBuilder.buildBitcast(Dst, NewVec); 2492 MI.eraseFromParent(); 2493 return Legalized; 2494 } 2495 2496 if (NewNumElts < OldNumElts) { 2497 if (NewEltSize % OldEltSize != 0) 2498 return UnableToLegalize; 2499 2500 // This only depends on powers of 2 because we use bit tricks to figure out 2501 // the bit offset we need to shift to get the target element. A general 2502 // expansion could emit division/multiply. 2503 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2504 return UnableToLegalize; 2505 2506 // Increasing the vector element size. 2507 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2508 // 2509 // => 2510 // 2511 // %cast = G_BITCAST %vec 2512 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2513 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2514 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2515 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2516 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2517 // %elt = G_TRUNC %elt_bits 2518 2519 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2520 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2521 2522 // Divide to get the index in the wider element type. 2523 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2524 2525 Register WideElt = CastVec; 2526 if (CastTy.isVector()) { 2527 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2528 ScaledIdx).getReg(0); 2529 } 2530 2531 // Compute the bit offset into the register of the target element. 2532 Register OffsetBits = getBitcastWiderVectorElementOffset( 2533 MIRBuilder, Idx, NewEltSize, OldEltSize); 2534 2535 // Shift the wide element to get the target element. 2536 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2537 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2538 MI.eraseFromParent(); 2539 return Legalized; 2540 } 2541 2542 return UnableToLegalize; 2543 } 2544 2545 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2546 /// TargetReg, while preserving other bits in \p TargetReg. 2547 /// 2548 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2549 static Register buildBitFieldInsert(MachineIRBuilder &B, 2550 Register TargetReg, Register InsertReg, 2551 Register OffsetBits) { 2552 LLT TargetTy = B.getMRI()->getType(TargetReg); 2553 LLT InsertTy = B.getMRI()->getType(InsertReg); 2554 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2555 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2556 2557 // Produce a bitmask of the value to insert 2558 auto EltMask = B.buildConstant( 2559 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2560 InsertTy.getSizeInBits())); 2561 // Shift it into position 2562 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2563 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2564 2565 // Clear out the bits in the wide element 2566 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2567 2568 // The value to insert has all zeros already, so stick it into the masked 2569 // wide element. 2570 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2571 } 2572 2573 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2574 /// is increasing the element size, perform the indexing in the target element 2575 /// type, and use bit operations to insert at the element position. This is 2576 /// intended for architectures that can dynamically index the register file and 2577 /// want to force indexing in the native register size. 2578 LegalizerHelper::LegalizeResult 2579 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2580 LLT CastTy) { 2581 if (TypeIdx != 0) 2582 return UnableToLegalize; 2583 2584 Register Dst = MI.getOperand(0).getReg(); 2585 Register SrcVec = MI.getOperand(1).getReg(); 2586 Register Val = MI.getOperand(2).getReg(); 2587 Register Idx = MI.getOperand(3).getReg(); 2588 2589 LLT VecTy = MRI.getType(Dst); 2590 LLT IdxTy = MRI.getType(Idx); 2591 2592 LLT VecEltTy = VecTy.getElementType(); 2593 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2594 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2595 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2596 2597 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2598 unsigned OldNumElts = VecTy.getNumElements(); 2599 2600 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2601 if (NewNumElts < OldNumElts) { 2602 if (NewEltSize % OldEltSize != 0) 2603 return UnableToLegalize; 2604 2605 // This only depends on powers of 2 because we use bit tricks to figure out 2606 // the bit offset we need to shift to get the target element. A general 2607 // expansion could emit division/multiply. 2608 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2609 return UnableToLegalize; 2610 2611 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2612 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2613 2614 // Divide to get the index in the wider element type. 2615 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2616 2617 Register ExtractedElt = CastVec; 2618 if (CastTy.isVector()) { 2619 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2620 ScaledIdx).getReg(0); 2621 } 2622 2623 // Compute the bit offset into the register of the target element. 2624 Register OffsetBits = getBitcastWiderVectorElementOffset( 2625 MIRBuilder, Idx, NewEltSize, OldEltSize); 2626 2627 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2628 Val, OffsetBits); 2629 if (CastTy.isVector()) { 2630 InsertedElt = MIRBuilder.buildInsertVectorElement( 2631 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2632 } 2633 2634 MIRBuilder.buildBitcast(Dst, InsertedElt); 2635 MI.eraseFromParent(); 2636 return Legalized; 2637 } 2638 2639 return UnableToLegalize; 2640 } 2641 2642 LegalizerHelper::LegalizeResult 2643 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2644 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2645 Register DstReg = MI.getOperand(0).getReg(); 2646 Register PtrReg = MI.getOperand(1).getReg(); 2647 LLT DstTy = MRI.getType(DstReg); 2648 auto &MMO = **MI.memoperands_begin(); 2649 2650 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2651 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2652 // This load needs splitting into power of 2 sized loads. 2653 if (DstTy.isVector()) 2654 return UnableToLegalize; 2655 if (isPowerOf2_32(DstTy.getSizeInBits())) 2656 return UnableToLegalize; // Don't know what we're being asked to do. 2657 2658 // Our strategy here is to generate anyextending loads for the smaller 2659 // types up to next power-2 result type, and then combine the two larger 2660 // result values together, before truncating back down to the non-pow-2 2661 // type. 2662 // E.g. v1 = i24 load => 2663 // v2 = i32 zextload (2 byte) 2664 // v3 = i32 load (1 byte) 2665 // v4 = i32 shl v3, 16 2666 // v5 = i32 or v4, v2 2667 // v1 = i24 trunc v5 2668 // By doing this we generate the correct truncate which should get 2669 // combined away as an artifact with a matching extend. 2670 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2671 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2672 2673 MachineFunction &MF = MIRBuilder.getMF(); 2674 MachineMemOperand *LargeMMO = 2675 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2676 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2677 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2678 2679 LLT PtrTy = MRI.getType(PtrReg); 2680 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2681 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2682 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2683 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2684 auto LargeLoad = MIRBuilder.buildLoadInstr( 2685 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2686 2687 auto OffsetCst = MIRBuilder.buildConstant( 2688 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2689 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2690 auto SmallPtr = 2691 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2692 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2693 *SmallMMO); 2694 2695 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2696 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2697 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2698 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2699 MI.eraseFromParent(); 2700 return Legalized; 2701 } 2702 2703 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2704 MI.eraseFromParent(); 2705 return Legalized; 2706 } 2707 2708 if (DstTy.isScalar()) { 2709 Register TmpReg = 2710 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2711 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2712 switch (MI.getOpcode()) { 2713 default: 2714 llvm_unreachable("Unexpected opcode"); 2715 case TargetOpcode::G_LOAD: 2716 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2717 break; 2718 case TargetOpcode::G_SEXTLOAD: 2719 MIRBuilder.buildSExt(DstReg, TmpReg); 2720 break; 2721 case TargetOpcode::G_ZEXTLOAD: 2722 MIRBuilder.buildZExt(DstReg, TmpReg); 2723 break; 2724 } 2725 2726 MI.eraseFromParent(); 2727 return Legalized; 2728 } 2729 2730 return UnableToLegalize; 2731 } 2732 2733 LegalizerHelper::LegalizeResult 2734 LegalizerHelper::lowerStore(MachineInstr &MI) { 2735 // Lower a non-power of 2 store into multiple pow-2 stores. 2736 // E.g. split an i24 store into an i16 store + i8 store. 2737 // We do this by first extending the stored value to the next largest power 2738 // of 2 type, and then using truncating stores to store the components. 2739 // By doing this, likewise with G_LOAD, generate an extend that can be 2740 // artifact-combined away instead of leaving behind extracts. 2741 Register SrcReg = MI.getOperand(0).getReg(); 2742 Register PtrReg = MI.getOperand(1).getReg(); 2743 LLT SrcTy = MRI.getType(SrcReg); 2744 MachineMemOperand &MMO = **MI.memoperands_begin(); 2745 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2746 return UnableToLegalize; 2747 if (SrcTy.isVector()) 2748 return UnableToLegalize; 2749 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2750 return UnableToLegalize; // Don't know what we're being asked to do. 2751 2752 // Extend to the next pow-2. 2753 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2754 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2755 2756 // Obtain the smaller value by shifting away the larger value. 2757 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2758 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2759 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2760 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2761 2762 // Generate the PtrAdd and truncating stores. 2763 LLT PtrTy = MRI.getType(PtrReg); 2764 auto OffsetCst = MIRBuilder.buildConstant( 2765 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2766 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2767 auto SmallPtr = 2768 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2769 2770 MachineFunction &MF = MIRBuilder.getMF(); 2771 MachineMemOperand *LargeMMO = 2772 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2773 MachineMemOperand *SmallMMO = 2774 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2775 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2776 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2777 MI.eraseFromParent(); 2778 return Legalized; 2779 } 2780 2781 LegalizerHelper::LegalizeResult 2782 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2783 switch (MI.getOpcode()) { 2784 case TargetOpcode::G_LOAD: { 2785 if (TypeIdx != 0) 2786 return UnableToLegalize; 2787 2788 Observer.changingInstr(MI); 2789 bitcastDst(MI, CastTy, 0); 2790 Observer.changedInstr(MI); 2791 return Legalized; 2792 } 2793 case TargetOpcode::G_STORE: { 2794 if (TypeIdx != 0) 2795 return UnableToLegalize; 2796 2797 Observer.changingInstr(MI); 2798 bitcastSrc(MI, CastTy, 0); 2799 Observer.changedInstr(MI); 2800 return Legalized; 2801 } 2802 case TargetOpcode::G_SELECT: { 2803 if (TypeIdx != 0) 2804 return UnableToLegalize; 2805 2806 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2807 LLVM_DEBUG( 2808 dbgs() << "bitcast action not implemented for vector select\n"); 2809 return UnableToLegalize; 2810 } 2811 2812 Observer.changingInstr(MI); 2813 bitcastSrc(MI, CastTy, 2); 2814 bitcastSrc(MI, CastTy, 3); 2815 bitcastDst(MI, CastTy, 0); 2816 Observer.changedInstr(MI); 2817 return Legalized; 2818 } 2819 case TargetOpcode::G_AND: 2820 case TargetOpcode::G_OR: 2821 case TargetOpcode::G_XOR: { 2822 Observer.changingInstr(MI); 2823 bitcastSrc(MI, CastTy, 1); 2824 bitcastSrc(MI, CastTy, 2); 2825 bitcastDst(MI, CastTy, 0); 2826 Observer.changedInstr(MI); 2827 return Legalized; 2828 } 2829 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2830 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2831 case TargetOpcode::G_INSERT_VECTOR_ELT: 2832 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2833 default: 2834 return UnableToLegalize; 2835 } 2836 } 2837 2838 // Legalize an instruction by changing the opcode in place. 2839 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2840 Observer.changingInstr(MI); 2841 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2842 Observer.changedInstr(MI); 2843 } 2844 2845 LegalizerHelper::LegalizeResult 2846 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2847 using namespace TargetOpcode; 2848 2849 switch(MI.getOpcode()) { 2850 default: 2851 return UnableToLegalize; 2852 case TargetOpcode::G_BITCAST: 2853 return lowerBitcast(MI); 2854 case TargetOpcode::G_SREM: 2855 case TargetOpcode::G_UREM: { 2856 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2857 auto Quot = 2858 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2859 {MI.getOperand(1), MI.getOperand(2)}); 2860 2861 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2862 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2863 MI.eraseFromParent(); 2864 return Legalized; 2865 } 2866 case TargetOpcode::G_SADDO: 2867 case TargetOpcode::G_SSUBO: 2868 return lowerSADDO_SSUBO(MI); 2869 case TargetOpcode::G_UMULH: 2870 case TargetOpcode::G_SMULH: 2871 return lowerSMULH_UMULH(MI); 2872 case TargetOpcode::G_SMULO: 2873 case TargetOpcode::G_UMULO: { 2874 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2875 // result. 2876 Register Res = MI.getOperand(0).getReg(); 2877 Register Overflow = MI.getOperand(1).getReg(); 2878 Register LHS = MI.getOperand(2).getReg(); 2879 Register RHS = MI.getOperand(3).getReg(); 2880 LLT Ty = MRI.getType(Res); 2881 2882 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2883 ? TargetOpcode::G_SMULH 2884 : TargetOpcode::G_UMULH; 2885 2886 Observer.changingInstr(MI); 2887 const auto &TII = MIRBuilder.getTII(); 2888 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2889 MI.RemoveOperand(1); 2890 Observer.changedInstr(MI); 2891 2892 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2893 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2894 2895 // Move insert point forward so we can use the Res register if needed. 2896 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2897 2898 // For *signed* multiply, overflow is detected by checking: 2899 // (hi != (lo >> bitwidth-1)) 2900 if (Opcode == TargetOpcode::G_SMULH) { 2901 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2902 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2903 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2904 } else { 2905 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2906 } 2907 return Legalized; 2908 } 2909 case TargetOpcode::G_FNEG: { 2910 Register Res = MI.getOperand(0).getReg(); 2911 LLT Ty = MRI.getType(Res); 2912 2913 // TODO: Handle vector types once we are able to 2914 // represent them. 2915 if (Ty.isVector()) 2916 return UnableToLegalize; 2917 auto SignMask = 2918 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2919 Register SubByReg = MI.getOperand(1).getReg(); 2920 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2921 MI.eraseFromParent(); 2922 return Legalized; 2923 } 2924 case TargetOpcode::G_FSUB: { 2925 Register Res = MI.getOperand(0).getReg(); 2926 LLT Ty = MRI.getType(Res); 2927 2928 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2929 // First, check if G_FNEG is marked as Lower. If so, we may 2930 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2931 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2932 return UnableToLegalize; 2933 Register LHS = MI.getOperand(1).getReg(); 2934 Register RHS = MI.getOperand(2).getReg(); 2935 Register Neg = MRI.createGenericVirtualRegister(Ty); 2936 MIRBuilder.buildFNeg(Neg, RHS); 2937 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2938 MI.eraseFromParent(); 2939 return Legalized; 2940 } 2941 case TargetOpcode::G_FMAD: 2942 return lowerFMad(MI); 2943 case TargetOpcode::G_FFLOOR: 2944 return lowerFFloor(MI); 2945 case TargetOpcode::G_INTRINSIC_ROUND: 2946 return lowerIntrinsicRound(MI); 2947 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2948 // Since round even is the assumed rounding mode for unconstrained FP 2949 // operations, rint and roundeven are the same operation. 2950 changeOpcode(MI, TargetOpcode::G_FRINT); 2951 return Legalized; 2952 } 2953 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2954 Register OldValRes = MI.getOperand(0).getReg(); 2955 Register SuccessRes = MI.getOperand(1).getReg(); 2956 Register Addr = MI.getOperand(2).getReg(); 2957 Register CmpVal = MI.getOperand(3).getReg(); 2958 Register NewVal = MI.getOperand(4).getReg(); 2959 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2960 **MI.memoperands_begin()); 2961 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2962 MI.eraseFromParent(); 2963 return Legalized; 2964 } 2965 case TargetOpcode::G_LOAD: 2966 case TargetOpcode::G_SEXTLOAD: 2967 case TargetOpcode::G_ZEXTLOAD: 2968 return lowerLoad(MI); 2969 case TargetOpcode::G_STORE: 2970 return lowerStore(MI); 2971 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2972 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2973 case TargetOpcode::G_CTLZ: 2974 case TargetOpcode::G_CTTZ: 2975 case TargetOpcode::G_CTPOP: 2976 return lowerBitCount(MI); 2977 case G_UADDO: { 2978 Register Res = MI.getOperand(0).getReg(); 2979 Register CarryOut = MI.getOperand(1).getReg(); 2980 Register LHS = MI.getOperand(2).getReg(); 2981 Register RHS = MI.getOperand(3).getReg(); 2982 2983 MIRBuilder.buildAdd(Res, LHS, RHS); 2984 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2985 2986 MI.eraseFromParent(); 2987 return Legalized; 2988 } 2989 case G_UADDE: { 2990 Register Res = MI.getOperand(0).getReg(); 2991 Register CarryOut = MI.getOperand(1).getReg(); 2992 Register LHS = MI.getOperand(2).getReg(); 2993 Register RHS = MI.getOperand(3).getReg(); 2994 Register CarryIn = MI.getOperand(4).getReg(); 2995 LLT Ty = MRI.getType(Res); 2996 2997 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2998 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2999 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3000 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3001 3002 MI.eraseFromParent(); 3003 return Legalized; 3004 } 3005 case G_USUBO: { 3006 Register Res = MI.getOperand(0).getReg(); 3007 Register BorrowOut = MI.getOperand(1).getReg(); 3008 Register LHS = MI.getOperand(2).getReg(); 3009 Register RHS = MI.getOperand(3).getReg(); 3010 3011 MIRBuilder.buildSub(Res, LHS, RHS); 3012 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3013 3014 MI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 case G_USUBE: { 3018 Register Res = MI.getOperand(0).getReg(); 3019 Register BorrowOut = MI.getOperand(1).getReg(); 3020 Register LHS = MI.getOperand(2).getReg(); 3021 Register RHS = MI.getOperand(3).getReg(); 3022 Register BorrowIn = MI.getOperand(4).getReg(); 3023 const LLT CondTy = MRI.getType(BorrowOut); 3024 const LLT Ty = MRI.getType(Res); 3025 3026 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3027 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3028 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3029 3030 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3031 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3032 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3033 3034 MI.eraseFromParent(); 3035 return Legalized; 3036 } 3037 case G_UITOFP: 3038 return lowerUITOFP(MI); 3039 case G_SITOFP: 3040 return lowerSITOFP(MI); 3041 case G_FPTOUI: 3042 return lowerFPTOUI(MI); 3043 case G_FPTOSI: 3044 return lowerFPTOSI(MI); 3045 case G_FPTRUNC: 3046 return lowerFPTRUNC(MI); 3047 case G_FPOWI: 3048 return lowerFPOWI(MI); 3049 case G_SMIN: 3050 case G_SMAX: 3051 case G_UMIN: 3052 case G_UMAX: 3053 return lowerMinMax(MI); 3054 case G_FCOPYSIGN: 3055 return lowerFCopySign(MI); 3056 case G_FMINNUM: 3057 case G_FMAXNUM: 3058 return lowerFMinNumMaxNum(MI); 3059 case G_MERGE_VALUES: 3060 return lowerMergeValues(MI); 3061 case G_UNMERGE_VALUES: 3062 return lowerUnmergeValues(MI); 3063 case TargetOpcode::G_SEXT_INREG: { 3064 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3065 int64_t SizeInBits = MI.getOperand(2).getImm(); 3066 3067 Register DstReg = MI.getOperand(0).getReg(); 3068 Register SrcReg = MI.getOperand(1).getReg(); 3069 LLT DstTy = MRI.getType(DstReg); 3070 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3071 3072 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3073 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3074 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3075 MI.eraseFromParent(); 3076 return Legalized; 3077 } 3078 case G_EXTRACT_VECTOR_ELT: 3079 case G_INSERT_VECTOR_ELT: 3080 return lowerExtractInsertVectorElt(MI); 3081 case G_SHUFFLE_VECTOR: 3082 return lowerShuffleVector(MI); 3083 case G_DYN_STACKALLOC: 3084 return lowerDynStackAlloc(MI); 3085 case G_EXTRACT: 3086 return lowerExtract(MI); 3087 case G_INSERT: 3088 return lowerInsert(MI); 3089 case G_BSWAP: 3090 return lowerBswap(MI); 3091 case G_BITREVERSE: 3092 return lowerBitreverse(MI); 3093 case G_READ_REGISTER: 3094 case G_WRITE_REGISTER: 3095 return lowerReadWriteRegister(MI); 3096 case G_UADDSAT: 3097 case G_USUBSAT: { 3098 // Try to make a reasonable guess about which lowering strategy to use. The 3099 // target can override this with custom lowering and calling the 3100 // implementation functions. 3101 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3102 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3103 return lowerAddSubSatToMinMax(MI); 3104 return lowerAddSubSatToAddoSubo(MI); 3105 } 3106 case G_SADDSAT: 3107 case G_SSUBSAT: { 3108 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3109 3110 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3111 // since it's a shorter expansion. However, we would need to figure out the 3112 // preferred boolean type for the carry out for the query. 3113 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3114 return lowerAddSubSatToMinMax(MI); 3115 return lowerAddSubSatToAddoSubo(MI); 3116 } 3117 case G_SSHLSAT: 3118 case G_USHLSAT: 3119 return lowerShlSat(MI); 3120 case G_ABS: { 3121 // Expand %res = G_ABS %a into: 3122 // %v1 = G_ASHR %a, scalar_size-1 3123 // %v2 = G_ADD %a, %v1 3124 // %res = G_XOR %v2, %v1 3125 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3126 Register OpReg = MI.getOperand(1).getReg(); 3127 auto ShiftAmt = 3128 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3129 auto Shift = 3130 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3131 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3132 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3133 MI.eraseFromParent(); 3134 return Legalized; 3135 } 3136 case G_SELECT: 3137 return lowerSelect(MI); 3138 } 3139 } 3140 3141 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3142 Align MinAlign) const { 3143 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3144 // datalayout for the preferred alignment. Also there should be a target hook 3145 // for this to allow targets to reduce the alignment and ignore the 3146 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3147 // the type. 3148 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3149 } 3150 3151 MachineInstrBuilder 3152 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3153 MachinePointerInfo &PtrInfo) { 3154 MachineFunction &MF = MIRBuilder.getMF(); 3155 const DataLayout &DL = MIRBuilder.getDataLayout(); 3156 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3157 3158 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3159 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3160 3161 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3162 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3163 } 3164 3165 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3166 LLT VecTy) { 3167 int64_t IdxVal; 3168 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3169 return IdxReg; 3170 3171 LLT IdxTy = B.getMRI()->getType(IdxReg); 3172 unsigned NElts = VecTy.getNumElements(); 3173 if (isPowerOf2_32(NElts)) { 3174 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3175 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3176 } 3177 3178 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3179 .getReg(0); 3180 } 3181 3182 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3183 Register Index) { 3184 LLT EltTy = VecTy.getElementType(); 3185 3186 // Calculate the element offset and add it to the pointer. 3187 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3188 assert(EltSize * 8 == EltTy.getSizeInBits() && 3189 "Converting bits to bytes lost precision"); 3190 3191 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3192 3193 LLT IdxTy = MRI.getType(Index); 3194 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3195 MIRBuilder.buildConstant(IdxTy, EltSize)); 3196 3197 LLT PtrTy = MRI.getType(VecPtr); 3198 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3199 } 3200 3201 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3202 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3203 Register DstReg = MI.getOperand(0).getReg(); 3204 LLT DstTy = MRI.getType(DstReg); 3205 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3206 3207 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3208 3209 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3210 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3211 3212 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3213 MI.eraseFromParent(); 3214 return Legalized; 3215 } 3216 3217 // Handle splitting vector operations which need to have the same number of 3218 // elements in each type index, but each type index may have a different element 3219 // type. 3220 // 3221 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3222 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3223 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3224 // 3225 // Also handles some irregular breakdown cases, e.g. 3226 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3227 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3228 // s64 = G_SHL s64, s32 3229 LegalizerHelper::LegalizeResult 3230 LegalizerHelper::fewerElementsVectorMultiEltType( 3231 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3232 if (TypeIdx != 0) 3233 return UnableToLegalize; 3234 3235 const LLT NarrowTy0 = NarrowTyArg; 3236 const unsigned NewNumElts = 3237 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3238 3239 const Register DstReg = MI.getOperand(0).getReg(); 3240 LLT DstTy = MRI.getType(DstReg); 3241 LLT LeftoverTy0; 3242 3243 // All of the operands need to have the same number of elements, so if we can 3244 // determine a type breakdown for the result type, we can for all of the 3245 // source types. 3246 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3247 if (NumParts < 0) 3248 return UnableToLegalize; 3249 3250 SmallVector<MachineInstrBuilder, 4> NewInsts; 3251 3252 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3253 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3254 3255 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3256 Register SrcReg = MI.getOperand(I).getReg(); 3257 LLT SrcTyI = MRI.getType(SrcReg); 3258 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3259 LLT LeftoverTyI; 3260 3261 // Split this operand into the requested typed registers, and any leftover 3262 // required to reproduce the original type. 3263 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3264 LeftoverRegs)) 3265 return UnableToLegalize; 3266 3267 if (I == 1) { 3268 // For the first operand, create an instruction for each part and setup 3269 // the result. 3270 for (Register PartReg : PartRegs) { 3271 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3272 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3273 .addDef(PartDstReg) 3274 .addUse(PartReg)); 3275 DstRegs.push_back(PartDstReg); 3276 } 3277 3278 for (Register LeftoverReg : LeftoverRegs) { 3279 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3280 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3281 .addDef(PartDstReg) 3282 .addUse(LeftoverReg)); 3283 LeftoverDstRegs.push_back(PartDstReg); 3284 } 3285 } else { 3286 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3287 3288 // Add the newly created operand splits to the existing instructions. The 3289 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3290 // pieces. 3291 unsigned InstCount = 0; 3292 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3293 NewInsts[InstCount++].addUse(PartRegs[J]); 3294 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3295 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3296 } 3297 3298 PartRegs.clear(); 3299 LeftoverRegs.clear(); 3300 } 3301 3302 // Insert the newly built operations and rebuild the result register. 3303 for (auto &MIB : NewInsts) 3304 MIRBuilder.insertInstr(MIB); 3305 3306 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3307 3308 MI.eraseFromParent(); 3309 return Legalized; 3310 } 3311 3312 LegalizerHelper::LegalizeResult 3313 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3314 LLT NarrowTy) { 3315 if (TypeIdx != 0) 3316 return UnableToLegalize; 3317 3318 Register DstReg = MI.getOperand(0).getReg(); 3319 Register SrcReg = MI.getOperand(1).getReg(); 3320 LLT DstTy = MRI.getType(DstReg); 3321 LLT SrcTy = MRI.getType(SrcReg); 3322 3323 LLT NarrowTy0 = NarrowTy; 3324 LLT NarrowTy1; 3325 unsigned NumParts; 3326 3327 if (NarrowTy.isVector()) { 3328 // Uneven breakdown not handled. 3329 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3330 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3331 return UnableToLegalize; 3332 3333 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3334 } else { 3335 NumParts = DstTy.getNumElements(); 3336 NarrowTy1 = SrcTy.getElementType(); 3337 } 3338 3339 SmallVector<Register, 4> SrcRegs, DstRegs; 3340 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3341 3342 for (unsigned I = 0; I < NumParts; ++I) { 3343 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3344 MachineInstr *NewInst = 3345 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3346 3347 NewInst->setFlags(MI.getFlags()); 3348 DstRegs.push_back(DstReg); 3349 } 3350 3351 if (NarrowTy.isVector()) 3352 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3353 else 3354 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3355 3356 MI.eraseFromParent(); 3357 return Legalized; 3358 } 3359 3360 LegalizerHelper::LegalizeResult 3361 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3362 LLT NarrowTy) { 3363 Register DstReg = MI.getOperand(0).getReg(); 3364 Register Src0Reg = MI.getOperand(2).getReg(); 3365 LLT DstTy = MRI.getType(DstReg); 3366 LLT SrcTy = MRI.getType(Src0Reg); 3367 3368 unsigned NumParts; 3369 LLT NarrowTy0, NarrowTy1; 3370 3371 if (TypeIdx == 0) { 3372 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3373 unsigned OldElts = DstTy.getNumElements(); 3374 3375 NarrowTy0 = NarrowTy; 3376 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3377 NarrowTy1 = NarrowTy.isVector() ? 3378 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3379 SrcTy.getElementType(); 3380 3381 } else { 3382 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3383 unsigned OldElts = SrcTy.getNumElements(); 3384 3385 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3386 NarrowTy.getNumElements(); 3387 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3388 DstTy.getScalarSizeInBits()); 3389 NarrowTy1 = NarrowTy; 3390 } 3391 3392 // FIXME: Don't know how to handle the situation where the small vectors 3393 // aren't all the same size yet. 3394 if (NarrowTy1.isVector() && 3395 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3396 return UnableToLegalize; 3397 3398 CmpInst::Predicate Pred 3399 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3400 3401 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3402 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3403 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3404 3405 for (unsigned I = 0; I < NumParts; ++I) { 3406 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3407 DstRegs.push_back(DstReg); 3408 3409 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3410 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3411 else { 3412 MachineInstr *NewCmp 3413 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3414 NewCmp->setFlags(MI.getFlags()); 3415 } 3416 } 3417 3418 if (NarrowTy1.isVector()) 3419 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3420 else 3421 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3422 3423 MI.eraseFromParent(); 3424 return Legalized; 3425 } 3426 3427 LegalizerHelper::LegalizeResult 3428 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3429 LLT NarrowTy) { 3430 Register DstReg = MI.getOperand(0).getReg(); 3431 Register CondReg = MI.getOperand(1).getReg(); 3432 3433 unsigned NumParts = 0; 3434 LLT NarrowTy0, NarrowTy1; 3435 3436 LLT DstTy = MRI.getType(DstReg); 3437 LLT CondTy = MRI.getType(CondReg); 3438 unsigned Size = DstTy.getSizeInBits(); 3439 3440 assert(TypeIdx == 0 || CondTy.isVector()); 3441 3442 if (TypeIdx == 0) { 3443 NarrowTy0 = NarrowTy; 3444 NarrowTy1 = CondTy; 3445 3446 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3447 // FIXME: Don't know how to handle the situation where the small vectors 3448 // aren't all the same size yet. 3449 if (Size % NarrowSize != 0) 3450 return UnableToLegalize; 3451 3452 NumParts = Size / NarrowSize; 3453 3454 // Need to break down the condition type 3455 if (CondTy.isVector()) { 3456 if (CondTy.getNumElements() == NumParts) 3457 NarrowTy1 = CondTy.getElementType(); 3458 else 3459 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3460 CondTy.getScalarSizeInBits()); 3461 } 3462 } else { 3463 NumParts = CondTy.getNumElements(); 3464 if (NarrowTy.isVector()) { 3465 // TODO: Handle uneven breakdown. 3466 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3467 return UnableToLegalize; 3468 3469 return UnableToLegalize; 3470 } else { 3471 NarrowTy0 = DstTy.getElementType(); 3472 NarrowTy1 = NarrowTy; 3473 } 3474 } 3475 3476 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3477 if (CondTy.isVector()) 3478 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3479 3480 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3481 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3482 3483 for (unsigned i = 0; i < NumParts; ++i) { 3484 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3485 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3486 Src1Regs[i], Src2Regs[i]); 3487 DstRegs.push_back(DstReg); 3488 } 3489 3490 if (NarrowTy0.isVector()) 3491 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3492 else 3493 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3494 3495 MI.eraseFromParent(); 3496 return Legalized; 3497 } 3498 3499 LegalizerHelper::LegalizeResult 3500 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3501 LLT NarrowTy) { 3502 const Register DstReg = MI.getOperand(0).getReg(); 3503 LLT PhiTy = MRI.getType(DstReg); 3504 LLT LeftoverTy; 3505 3506 // All of the operands need to have the same number of elements, so if we can 3507 // determine a type breakdown for the result type, we can for all of the 3508 // source types. 3509 int NumParts, NumLeftover; 3510 std::tie(NumParts, NumLeftover) 3511 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3512 if (NumParts < 0) 3513 return UnableToLegalize; 3514 3515 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3516 SmallVector<MachineInstrBuilder, 4> NewInsts; 3517 3518 const int TotalNumParts = NumParts + NumLeftover; 3519 3520 // Insert the new phis in the result block first. 3521 for (int I = 0; I != TotalNumParts; ++I) { 3522 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3523 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3524 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3525 .addDef(PartDstReg)); 3526 if (I < NumParts) 3527 DstRegs.push_back(PartDstReg); 3528 else 3529 LeftoverDstRegs.push_back(PartDstReg); 3530 } 3531 3532 MachineBasicBlock *MBB = MI.getParent(); 3533 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3534 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3535 3536 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3537 3538 // Insert code to extract the incoming values in each predecessor block. 3539 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3540 PartRegs.clear(); 3541 LeftoverRegs.clear(); 3542 3543 Register SrcReg = MI.getOperand(I).getReg(); 3544 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3545 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3546 3547 LLT Unused; 3548 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3549 LeftoverRegs)) 3550 return UnableToLegalize; 3551 3552 // Add the newly created operand splits to the existing instructions. The 3553 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3554 // pieces. 3555 for (int J = 0; J != TotalNumParts; ++J) { 3556 MachineInstrBuilder MIB = NewInsts[J]; 3557 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3558 MIB.addMBB(&OpMBB); 3559 } 3560 } 3561 3562 MI.eraseFromParent(); 3563 return Legalized; 3564 } 3565 3566 LegalizerHelper::LegalizeResult 3567 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3568 unsigned TypeIdx, 3569 LLT NarrowTy) { 3570 if (TypeIdx != 1) 3571 return UnableToLegalize; 3572 3573 const int NumDst = MI.getNumOperands() - 1; 3574 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3575 LLT SrcTy = MRI.getType(SrcReg); 3576 3577 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3578 3579 // TODO: Create sequence of extracts. 3580 if (DstTy == NarrowTy) 3581 return UnableToLegalize; 3582 3583 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3584 if (DstTy == GCDTy) { 3585 // This would just be a copy of the same unmerge. 3586 // TODO: Create extracts, pad with undef and create intermediate merges. 3587 return UnableToLegalize; 3588 } 3589 3590 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3591 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3592 const int PartsPerUnmerge = NumDst / NumUnmerge; 3593 3594 for (int I = 0; I != NumUnmerge; ++I) { 3595 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3596 3597 for (int J = 0; J != PartsPerUnmerge; ++J) 3598 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3599 MIB.addUse(Unmerge.getReg(I)); 3600 } 3601 3602 MI.eraseFromParent(); 3603 return Legalized; 3604 } 3605 3606 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3607 // a vector 3608 // 3609 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3610 // undef as necessary. 3611 // 3612 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3613 // -> <2 x s16> 3614 // 3615 // %4:_(s16) = G_IMPLICIT_DEF 3616 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3617 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3618 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3619 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3620 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3621 LegalizerHelper::LegalizeResult 3622 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3623 LLT NarrowTy) { 3624 Register DstReg = MI.getOperand(0).getReg(); 3625 LLT DstTy = MRI.getType(DstReg); 3626 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3627 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3628 3629 // Break into a common type 3630 SmallVector<Register, 16> Parts; 3631 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3632 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3633 3634 // Build the requested new merge, padding with undef. 3635 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3636 TargetOpcode::G_ANYEXT); 3637 3638 // Pack into the original result register. 3639 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3640 3641 MI.eraseFromParent(); 3642 return Legalized; 3643 } 3644 3645 LegalizerHelper::LegalizeResult 3646 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3647 unsigned TypeIdx, 3648 LLT NarrowVecTy) { 3649 Register DstReg = MI.getOperand(0).getReg(); 3650 Register SrcVec = MI.getOperand(1).getReg(); 3651 Register InsertVal; 3652 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3653 3654 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3655 if (IsInsert) 3656 InsertVal = MI.getOperand(2).getReg(); 3657 3658 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3659 3660 // TODO: Handle total scalarization case. 3661 if (!NarrowVecTy.isVector()) 3662 return UnableToLegalize; 3663 3664 LLT VecTy = MRI.getType(SrcVec); 3665 3666 // If the index is a constant, we can really break this down as you would 3667 // expect, and index into the target size pieces. 3668 int64_t IdxVal; 3669 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3670 // Avoid out of bounds indexing the pieces. 3671 if (IdxVal >= VecTy.getNumElements()) { 3672 MIRBuilder.buildUndef(DstReg); 3673 MI.eraseFromParent(); 3674 return Legalized; 3675 } 3676 3677 SmallVector<Register, 8> VecParts; 3678 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3679 3680 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3681 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3682 TargetOpcode::G_ANYEXT); 3683 3684 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3685 3686 LLT IdxTy = MRI.getType(Idx); 3687 int64_t PartIdx = IdxVal / NewNumElts; 3688 auto NewIdx = 3689 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3690 3691 if (IsInsert) { 3692 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3693 3694 // Use the adjusted index to insert into one of the subvectors. 3695 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3696 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3697 VecParts[PartIdx] = InsertPart.getReg(0); 3698 3699 // Recombine the inserted subvector with the others to reform the result 3700 // vector. 3701 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3702 } else { 3703 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3704 } 3705 3706 MI.eraseFromParent(); 3707 return Legalized; 3708 } 3709 3710 // With a variable index, we can't perform the operation in a smaller type, so 3711 // we're forced to expand this. 3712 // 3713 // TODO: We could emit a chain of compare/select to figure out which piece to 3714 // index. 3715 return lowerExtractInsertVectorElt(MI); 3716 } 3717 3718 LegalizerHelper::LegalizeResult 3719 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3720 LLT NarrowTy) { 3721 // FIXME: Don't know how to handle secondary types yet. 3722 if (TypeIdx != 0) 3723 return UnableToLegalize; 3724 3725 MachineMemOperand *MMO = *MI.memoperands_begin(); 3726 3727 // This implementation doesn't work for atomics. Give up instead of doing 3728 // something invalid. 3729 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3730 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3731 return UnableToLegalize; 3732 3733 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3734 Register ValReg = MI.getOperand(0).getReg(); 3735 Register AddrReg = MI.getOperand(1).getReg(); 3736 LLT ValTy = MRI.getType(ValReg); 3737 3738 // FIXME: Do we need a distinct NarrowMemory legalize action? 3739 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3740 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3741 return UnableToLegalize; 3742 } 3743 3744 int NumParts = -1; 3745 int NumLeftover = -1; 3746 LLT LeftoverTy; 3747 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3748 if (IsLoad) { 3749 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3750 } else { 3751 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3752 NarrowLeftoverRegs)) { 3753 NumParts = NarrowRegs.size(); 3754 NumLeftover = NarrowLeftoverRegs.size(); 3755 } 3756 } 3757 3758 if (NumParts == -1) 3759 return UnableToLegalize; 3760 3761 LLT PtrTy = MRI.getType(AddrReg); 3762 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3763 3764 unsigned TotalSize = ValTy.getSizeInBits(); 3765 3766 // Split the load/store into PartTy sized pieces starting at Offset. If this 3767 // is a load, return the new registers in ValRegs. For a store, each elements 3768 // of ValRegs should be PartTy. Returns the next offset that needs to be 3769 // handled. 3770 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3771 unsigned Offset) -> unsigned { 3772 MachineFunction &MF = MIRBuilder.getMF(); 3773 unsigned PartSize = PartTy.getSizeInBits(); 3774 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3775 Offset += PartSize, ++Idx) { 3776 unsigned ByteSize = PartSize / 8; 3777 unsigned ByteOffset = Offset / 8; 3778 Register NewAddrReg; 3779 3780 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3781 3782 MachineMemOperand *NewMMO = 3783 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3784 3785 if (IsLoad) { 3786 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3787 ValRegs.push_back(Dst); 3788 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3789 } else { 3790 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3791 } 3792 } 3793 3794 return Offset; 3795 }; 3796 3797 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3798 3799 // Handle the rest of the register if this isn't an even type breakdown. 3800 if (LeftoverTy.isValid()) 3801 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3802 3803 if (IsLoad) { 3804 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3805 LeftoverTy, NarrowLeftoverRegs); 3806 } 3807 3808 MI.eraseFromParent(); 3809 return Legalized; 3810 } 3811 3812 LegalizerHelper::LegalizeResult 3813 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3814 LLT NarrowTy) { 3815 assert(TypeIdx == 0 && "only one type index expected"); 3816 3817 const unsigned Opc = MI.getOpcode(); 3818 const int NumOps = MI.getNumOperands() - 1; 3819 const Register DstReg = MI.getOperand(0).getReg(); 3820 const unsigned Flags = MI.getFlags(); 3821 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3822 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3823 3824 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3825 3826 // First of all check whether we are narrowing (changing the element type) 3827 // or reducing the vector elements 3828 const LLT DstTy = MRI.getType(DstReg); 3829 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3830 3831 SmallVector<Register, 8> ExtractedRegs[3]; 3832 SmallVector<Register, 8> Parts; 3833 3834 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3835 3836 // Break down all the sources into NarrowTy pieces we can operate on. This may 3837 // involve creating merges to a wider type, padded with undef. 3838 for (int I = 0; I != NumOps; ++I) { 3839 Register SrcReg = MI.getOperand(I + 1).getReg(); 3840 LLT SrcTy = MRI.getType(SrcReg); 3841 3842 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3843 // For fewerElements, this is a smaller vector with the same element type. 3844 LLT OpNarrowTy; 3845 if (IsNarrow) { 3846 OpNarrowTy = NarrowScalarTy; 3847 3848 // In case of narrowing, we need to cast vectors to scalars for this to 3849 // work properly 3850 // FIXME: Can we do without the bitcast here if we're narrowing? 3851 if (SrcTy.isVector()) { 3852 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3853 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3854 } 3855 } else { 3856 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3857 } 3858 3859 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3860 3861 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3862 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3863 TargetOpcode::G_ANYEXT); 3864 } 3865 3866 SmallVector<Register, 8> ResultRegs; 3867 3868 // Input operands for each sub-instruction. 3869 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3870 3871 int NumParts = ExtractedRegs[0].size(); 3872 const unsigned DstSize = DstTy.getSizeInBits(); 3873 const LLT DstScalarTy = LLT::scalar(DstSize); 3874 3875 // Narrowing needs to use scalar types 3876 LLT DstLCMTy, NarrowDstTy; 3877 if (IsNarrow) { 3878 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3879 NarrowDstTy = NarrowScalarTy; 3880 } else { 3881 DstLCMTy = getLCMType(DstTy, NarrowTy); 3882 NarrowDstTy = NarrowTy; 3883 } 3884 3885 // We widened the source registers to satisfy merge/unmerge size 3886 // constraints. We'll have some extra fully undef parts. 3887 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3888 3889 for (int I = 0; I != NumRealParts; ++I) { 3890 // Emit this instruction on each of the split pieces. 3891 for (int J = 0; J != NumOps; ++J) 3892 InputRegs[J] = ExtractedRegs[J][I]; 3893 3894 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3895 ResultRegs.push_back(Inst.getReg(0)); 3896 } 3897 3898 // Fill out the widened result with undef instead of creating instructions 3899 // with undef inputs. 3900 int NumUndefParts = NumParts - NumRealParts; 3901 if (NumUndefParts != 0) 3902 ResultRegs.append(NumUndefParts, 3903 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3904 3905 // Extract the possibly padded result. Use a scratch register if we need to do 3906 // a final bitcast, otherwise use the original result register. 3907 Register MergeDstReg; 3908 if (IsNarrow && DstTy.isVector()) 3909 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3910 else 3911 MergeDstReg = DstReg; 3912 3913 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3914 3915 // Recast to vector if we narrowed a vector 3916 if (IsNarrow && DstTy.isVector()) 3917 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3918 3919 MI.eraseFromParent(); 3920 return Legalized; 3921 } 3922 3923 LegalizerHelper::LegalizeResult 3924 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3925 LLT NarrowTy) { 3926 Register DstReg = MI.getOperand(0).getReg(); 3927 Register SrcReg = MI.getOperand(1).getReg(); 3928 int64_t Imm = MI.getOperand(2).getImm(); 3929 3930 LLT DstTy = MRI.getType(DstReg); 3931 3932 SmallVector<Register, 8> Parts; 3933 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3934 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3935 3936 for (Register &R : Parts) 3937 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3938 3939 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3940 3941 MI.eraseFromParent(); 3942 return Legalized; 3943 } 3944 3945 LegalizerHelper::LegalizeResult 3946 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3947 LLT NarrowTy) { 3948 using namespace TargetOpcode; 3949 3950 switch (MI.getOpcode()) { 3951 case G_IMPLICIT_DEF: 3952 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3953 case G_TRUNC: 3954 case G_AND: 3955 case G_OR: 3956 case G_XOR: 3957 case G_ADD: 3958 case G_SUB: 3959 case G_MUL: 3960 case G_PTR_ADD: 3961 case G_SMULH: 3962 case G_UMULH: 3963 case G_FADD: 3964 case G_FMUL: 3965 case G_FSUB: 3966 case G_FNEG: 3967 case G_FABS: 3968 case G_FCANONICALIZE: 3969 case G_FDIV: 3970 case G_FREM: 3971 case G_FMA: 3972 case G_FMAD: 3973 case G_FPOW: 3974 case G_FEXP: 3975 case G_FEXP2: 3976 case G_FLOG: 3977 case G_FLOG2: 3978 case G_FLOG10: 3979 case G_FNEARBYINT: 3980 case G_FCEIL: 3981 case G_FFLOOR: 3982 case G_FRINT: 3983 case G_INTRINSIC_ROUND: 3984 case G_INTRINSIC_ROUNDEVEN: 3985 case G_INTRINSIC_TRUNC: 3986 case G_FCOS: 3987 case G_FSIN: 3988 case G_FSQRT: 3989 case G_BSWAP: 3990 case G_BITREVERSE: 3991 case G_SDIV: 3992 case G_UDIV: 3993 case G_SREM: 3994 case G_UREM: 3995 case G_SMIN: 3996 case G_SMAX: 3997 case G_UMIN: 3998 case G_UMAX: 3999 case G_FMINNUM: 4000 case G_FMAXNUM: 4001 case G_FMINNUM_IEEE: 4002 case G_FMAXNUM_IEEE: 4003 case G_FMINIMUM: 4004 case G_FMAXIMUM: 4005 case G_FSHL: 4006 case G_FSHR: 4007 case G_FREEZE: 4008 case G_SADDSAT: 4009 case G_SSUBSAT: 4010 case G_UADDSAT: 4011 case G_USUBSAT: 4012 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4013 case G_SHL: 4014 case G_LSHR: 4015 case G_ASHR: 4016 case G_SSHLSAT: 4017 case G_USHLSAT: 4018 case G_CTLZ: 4019 case G_CTLZ_ZERO_UNDEF: 4020 case G_CTTZ: 4021 case G_CTTZ_ZERO_UNDEF: 4022 case G_CTPOP: 4023 case G_FCOPYSIGN: 4024 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4025 case G_ZEXT: 4026 case G_SEXT: 4027 case G_ANYEXT: 4028 case G_FPEXT: 4029 case G_FPTRUNC: 4030 case G_SITOFP: 4031 case G_UITOFP: 4032 case G_FPTOSI: 4033 case G_FPTOUI: 4034 case G_INTTOPTR: 4035 case G_PTRTOINT: 4036 case G_ADDRSPACE_CAST: 4037 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4038 case G_ICMP: 4039 case G_FCMP: 4040 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4041 case G_SELECT: 4042 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4043 case G_PHI: 4044 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4045 case G_UNMERGE_VALUES: 4046 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4047 case G_BUILD_VECTOR: 4048 assert(TypeIdx == 0 && "not a vector type index"); 4049 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4050 case G_CONCAT_VECTORS: 4051 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4052 return UnableToLegalize; 4053 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4054 case G_EXTRACT_VECTOR_ELT: 4055 case G_INSERT_VECTOR_ELT: 4056 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4057 case G_LOAD: 4058 case G_STORE: 4059 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4060 case G_SEXT_INREG: 4061 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4062 default: 4063 return UnableToLegalize; 4064 } 4065 } 4066 4067 LegalizerHelper::LegalizeResult 4068 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4069 const LLT HalfTy, const LLT AmtTy) { 4070 4071 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4072 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4073 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4074 4075 if (Amt.isNullValue()) { 4076 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4077 MI.eraseFromParent(); 4078 return Legalized; 4079 } 4080 4081 LLT NVT = HalfTy; 4082 unsigned NVTBits = HalfTy.getSizeInBits(); 4083 unsigned VTBits = 2 * NVTBits; 4084 4085 SrcOp Lo(Register(0)), Hi(Register(0)); 4086 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4087 if (Amt.ugt(VTBits)) { 4088 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4089 } else if (Amt.ugt(NVTBits)) { 4090 Lo = MIRBuilder.buildConstant(NVT, 0); 4091 Hi = MIRBuilder.buildShl(NVT, InL, 4092 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4093 } else if (Amt == NVTBits) { 4094 Lo = MIRBuilder.buildConstant(NVT, 0); 4095 Hi = InL; 4096 } else { 4097 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4098 auto OrLHS = 4099 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4100 auto OrRHS = MIRBuilder.buildLShr( 4101 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4102 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4103 } 4104 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4105 if (Amt.ugt(VTBits)) { 4106 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4107 } else if (Amt.ugt(NVTBits)) { 4108 Lo = MIRBuilder.buildLShr(NVT, InH, 4109 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4110 Hi = MIRBuilder.buildConstant(NVT, 0); 4111 } else if (Amt == NVTBits) { 4112 Lo = InH; 4113 Hi = MIRBuilder.buildConstant(NVT, 0); 4114 } else { 4115 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4116 4117 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4118 auto OrRHS = MIRBuilder.buildShl( 4119 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4120 4121 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4122 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4123 } 4124 } else { 4125 if (Amt.ugt(VTBits)) { 4126 Hi = Lo = MIRBuilder.buildAShr( 4127 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4128 } else if (Amt.ugt(NVTBits)) { 4129 Lo = MIRBuilder.buildAShr(NVT, InH, 4130 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4131 Hi = MIRBuilder.buildAShr(NVT, InH, 4132 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4133 } else if (Amt == NVTBits) { 4134 Lo = InH; 4135 Hi = MIRBuilder.buildAShr(NVT, InH, 4136 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4137 } else { 4138 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4139 4140 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4141 auto OrRHS = MIRBuilder.buildShl( 4142 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4143 4144 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4145 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4146 } 4147 } 4148 4149 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4150 MI.eraseFromParent(); 4151 4152 return Legalized; 4153 } 4154 4155 // TODO: Optimize if constant shift amount. 4156 LegalizerHelper::LegalizeResult 4157 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4158 LLT RequestedTy) { 4159 if (TypeIdx == 1) { 4160 Observer.changingInstr(MI); 4161 narrowScalarSrc(MI, RequestedTy, 2); 4162 Observer.changedInstr(MI); 4163 return Legalized; 4164 } 4165 4166 Register DstReg = MI.getOperand(0).getReg(); 4167 LLT DstTy = MRI.getType(DstReg); 4168 if (DstTy.isVector()) 4169 return UnableToLegalize; 4170 4171 Register Amt = MI.getOperand(2).getReg(); 4172 LLT ShiftAmtTy = MRI.getType(Amt); 4173 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4174 if (DstEltSize % 2 != 0) 4175 return UnableToLegalize; 4176 4177 // Ignore the input type. We can only go to exactly half the size of the 4178 // input. If that isn't small enough, the resulting pieces will be further 4179 // legalized. 4180 const unsigned NewBitSize = DstEltSize / 2; 4181 const LLT HalfTy = LLT::scalar(NewBitSize); 4182 const LLT CondTy = LLT::scalar(1); 4183 4184 if (const MachineInstr *KShiftAmt = 4185 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4186 return narrowScalarShiftByConstant( 4187 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4188 } 4189 4190 // TODO: Expand with known bits. 4191 4192 // Handle the fully general expansion by an unknown amount. 4193 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4194 4195 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4196 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4197 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4198 4199 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4200 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4201 4202 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4203 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4204 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4205 4206 Register ResultRegs[2]; 4207 switch (MI.getOpcode()) { 4208 case TargetOpcode::G_SHL: { 4209 // Short: ShAmt < NewBitSize 4210 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4211 4212 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4213 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4214 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4215 4216 // Long: ShAmt >= NewBitSize 4217 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4218 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4219 4220 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4221 auto Hi = MIRBuilder.buildSelect( 4222 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4223 4224 ResultRegs[0] = Lo.getReg(0); 4225 ResultRegs[1] = Hi.getReg(0); 4226 break; 4227 } 4228 case TargetOpcode::G_LSHR: 4229 case TargetOpcode::G_ASHR: { 4230 // Short: ShAmt < NewBitSize 4231 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4232 4233 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4234 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4235 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4236 4237 // Long: ShAmt >= NewBitSize 4238 MachineInstrBuilder HiL; 4239 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4240 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4241 } else { 4242 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4243 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4244 } 4245 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4246 {InH, AmtExcess}); // Lo from Hi part. 4247 4248 auto Lo = MIRBuilder.buildSelect( 4249 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4250 4251 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4252 4253 ResultRegs[0] = Lo.getReg(0); 4254 ResultRegs[1] = Hi.getReg(0); 4255 break; 4256 } 4257 default: 4258 llvm_unreachable("not a shift"); 4259 } 4260 4261 MIRBuilder.buildMerge(DstReg, ResultRegs); 4262 MI.eraseFromParent(); 4263 return Legalized; 4264 } 4265 4266 LegalizerHelper::LegalizeResult 4267 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4268 LLT MoreTy) { 4269 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4270 4271 Observer.changingInstr(MI); 4272 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4273 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4274 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4275 moreElementsVectorSrc(MI, MoreTy, I); 4276 } 4277 4278 MachineBasicBlock &MBB = *MI.getParent(); 4279 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4280 moreElementsVectorDst(MI, MoreTy, 0); 4281 Observer.changedInstr(MI); 4282 return Legalized; 4283 } 4284 4285 LegalizerHelper::LegalizeResult 4286 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4287 LLT MoreTy) { 4288 unsigned Opc = MI.getOpcode(); 4289 switch (Opc) { 4290 case TargetOpcode::G_IMPLICIT_DEF: 4291 case TargetOpcode::G_LOAD: { 4292 if (TypeIdx != 0) 4293 return UnableToLegalize; 4294 Observer.changingInstr(MI); 4295 moreElementsVectorDst(MI, MoreTy, 0); 4296 Observer.changedInstr(MI); 4297 return Legalized; 4298 } 4299 case TargetOpcode::G_STORE: 4300 if (TypeIdx != 0) 4301 return UnableToLegalize; 4302 Observer.changingInstr(MI); 4303 moreElementsVectorSrc(MI, MoreTy, 0); 4304 Observer.changedInstr(MI); 4305 return Legalized; 4306 case TargetOpcode::G_AND: 4307 case TargetOpcode::G_OR: 4308 case TargetOpcode::G_XOR: 4309 case TargetOpcode::G_SMIN: 4310 case TargetOpcode::G_SMAX: 4311 case TargetOpcode::G_UMIN: 4312 case TargetOpcode::G_UMAX: 4313 case TargetOpcode::G_FMINNUM: 4314 case TargetOpcode::G_FMAXNUM: 4315 case TargetOpcode::G_FMINNUM_IEEE: 4316 case TargetOpcode::G_FMAXNUM_IEEE: 4317 case TargetOpcode::G_FMINIMUM: 4318 case TargetOpcode::G_FMAXIMUM: { 4319 Observer.changingInstr(MI); 4320 moreElementsVectorSrc(MI, MoreTy, 1); 4321 moreElementsVectorSrc(MI, MoreTy, 2); 4322 moreElementsVectorDst(MI, MoreTy, 0); 4323 Observer.changedInstr(MI); 4324 return Legalized; 4325 } 4326 case TargetOpcode::G_EXTRACT: 4327 if (TypeIdx != 1) 4328 return UnableToLegalize; 4329 Observer.changingInstr(MI); 4330 moreElementsVectorSrc(MI, MoreTy, 1); 4331 Observer.changedInstr(MI); 4332 return Legalized; 4333 case TargetOpcode::G_INSERT: 4334 case TargetOpcode::G_FREEZE: 4335 if (TypeIdx != 0) 4336 return UnableToLegalize; 4337 Observer.changingInstr(MI); 4338 moreElementsVectorSrc(MI, MoreTy, 1); 4339 moreElementsVectorDst(MI, MoreTy, 0); 4340 Observer.changedInstr(MI); 4341 return Legalized; 4342 case TargetOpcode::G_SELECT: 4343 if (TypeIdx != 0) 4344 return UnableToLegalize; 4345 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4346 return UnableToLegalize; 4347 4348 Observer.changingInstr(MI); 4349 moreElementsVectorSrc(MI, MoreTy, 2); 4350 moreElementsVectorSrc(MI, MoreTy, 3); 4351 moreElementsVectorDst(MI, MoreTy, 0); 4352 Observer.changedInstr(MI); 4353 return Legalized; 4354 case TargetOpcode::G_UNMERGE_VALUES: { 4355 if (TypeIdx != 1) 4356 return UnableToLegalize; 4357 4358 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4359 int NumDst = MI.getNumOperands() - 1; 4360 moreElementsVectorSrc(MI, MoreTy, NumDst); 4361 4362 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4363 for (int I = 0; I != NumDst; ++I) 4364 MIB.addDef(MI.getOperand(I).getReg()); 4365 4366 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4367 for (int I = NumDst; I != NewNumDst; ++I) 4368 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4369 4370 MIB.addUse(MI.getOperand(NumDst).getReg()); 4371 MI.eraseFromParent(); 4372 return Legalized; 4373 } 4374 case TargetOpcode::G_PHI: 4375 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4376 default: 4377 return UnableToLegalize; 4378 } 4379 } 4380 4381 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4382 ArrayRef<Register> Src1Regs, 4383 ArrayRef<Register> Src2Regs, 4384 LLT NarrowTy) { 4385 MachineIRBuilder &B = MIRBuilder; 4386 unsigned SrcParts = Src1Regs.size(); 4387 unsigned DstParts = DstRegs.size(); 4388 4389 unsigned DstIdx = 0; // Low bits of the result. 4390 Register FactorSum = 4391 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4392 DstRegs[DstIdx] = FactorSum; 4393 4394 unsigned CarrySumPrevDstIdx; 4395 SmallVector<Register, 4> Factors; 4396 4397 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4398 // Collect low parts of muls for DstIdx. 4399 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4400 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4401 MachineInstrBuilder Mul = 4402 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4403 Factors.push_back(Mul.getReg(0)); 4404 } 4405 // Collect high parts of muls from previous DstIdx. 4406 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4407 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4408 MachineInstrBuilder Umulh = 4409 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4410 Factors.push_back(Umulh.getReg(0)); 4411 } 4412 // Add CarrySum from additions calculated for previous DstIdx. 4413 if (DstIdx != 1) { 4414 Factors.push_back(CarrySumPrevDstIdx); 4415 } 4416 4417 Register CarrySum; 4418 // Add all factors and accumulate all carries into CarrySum. 4419 if (DstIdx != DstParts - 1) { 4420 MachineInstrBuilder Uaddo = 4421 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4422 FactorSum = Uaddo.getReg(0); 4423 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4424 for (unsigned i = 2; i < Factors.size(); ++i) { 4425 MachineInstrBuilder Uaddo = 4426 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4427 FactorSum = Uaddo.getReg(0); 4428 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4429 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4430 } 4431 } else { 4432 // Since value for the next index is not calculated, neither is CarrySum. 4433 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4434 for (unsigned i = 2; i < Factors.size(); ++i) 4435 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4436 } 4437 4438 CarrySumPrevDstIdx = CarrySum; 4439 DstRegs[DstIdx] = FactorSum; 4440 Factors.clear(); 4441 } 4442 } 4443 4444 LegalizerHelper::LegalizeResult 4445 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4446 LLT NarrowTy) { 4447 if (TypeIdx != 0) 4448 return UnableToLegalize; 4449 4450 Register DstReg = MI.getOperand(0).getReg(); 4451 LLT DstType = MRI.getType(DstReg); 4452 // FIXME: add support for vector types 4453 if (DstType.isVector()) 4454 return UnableToLegalize; 4455 4456 uint64_t SizeOp0 = DstType.getSizeInBits(); 4457 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4458 4459 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4460 // NarrowSize. 4461 if (SizeOp0 % NarrowSize != 0) 4462 return UnableToLegalize; 4463 4464 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4465 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4466 4467 unsigned OpO, OpE; 4468 switch (MI.getOpcode()) { 4469 case TargetOpcode::G_ADD: 4470 OpO = TargetOpcode::G_UADDO; 4471 OpE = TargetOpcode::G_UADDE; 4472 break; 4473 case TargetOpcode::G_SUB: 4474 OpO = TargetOpcode::G_USUBO; 4475 OpE = TargetOpcode::G_USUBE; 4476 break; 4477 default: 4478 llvm_unreachable("Unexpected add/sub opcode!"); 4479 } 4480 4481 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4482 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 4483 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 4484 4485 Register CarryIn; 4486 for (int i = 0; i < NumParts; ++i) { 4487 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4488 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4489 4490 if (i == 0) 4491 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4492 {Src1Regs[i], Src2Regs[i]}); 4493 else { 4494 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4495 {Src1Regs[i], Src2Regs[i], CarryIn}); 4496 } 4497 4498 DstRegs.push_back(DstReg); 4499 CarryIn = CarryOut; 4500 } 4501 MIRBuilder.buildMerge(DstReg, DstRegs); 4502 MI.eraseFromParent(); 4503 return Legalized; 4504 } 4505 4506 LegalizerHelper::LegalizeResult 4507 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4508 Register DstReg = MI.getOperand(0).getReg(); 4509 Register Src1 = MI.getOperand(1).getReg(); 4510 Register Src2 = MI.getOperand(2).getReg(); 4511 4512 LLT Ty = MRI.getType(DstReg); 4513 if (Ty.isVector()) 4514 return UnableToLegalize; 4515 4516 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4517 unsigned DstSize = Ty.getSizeInBits(); 4518 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4519 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4520 return UnableToLegalize; 4521 4522 unsigned NumDstParts = DstSize / NarrowSize; 4523 unsigned NumSrcParts = SrcSize / NarrowSize; 4524 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4525 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4526 4527 SmallVector<Register, 2> Src1Parts, Src2Parts; 4528 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4529 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4530 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4531 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4532 4533 // Take only high half of registers if this is high mul. 4534 ArrayRef<Register> DstRegs( 4535 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4536 MIRBuilder.buildMerge(DstReg, DstRegs); 4537 MI.eraseFromParent(); 4538 return Legalized; 4539 } 4540 4541 LegalizerHelper::LegalizeResult 4542 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4543 LLT NarrowTy) { 4544 if (TypeIdx != 1) 4545 return UnableToLegalize; 4546 4547 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4548 4549 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4550 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4551 // NarrowSize. 4552 if (SizeOp1 % NarrowSize != 0) 4553 return UnableToLegalize; 4554 int NumParts = SizeOp1 / NarrowSize; 4555 4556 SmallVector<Register, 2> SrcRegs, DstRegs; 4557 SmallVector<uint64_t, 2> Indexes; 4558 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4559 4560 Register OpReg = MI.getOperand(0).getReg(); 4561 uint64_t OpStart = MI.getOperand(2).getImm(); 4562 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4563 for (int i = 0; i < NumParts; ++i) { 4564 unsigned SrcStart = i * NarrowSize; 4565 4566 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4567 // No part of the extract uses this subregister, ignore it. 4568 continue; 4569 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4570 // The entire subregister is extracted, forward the value. 4571 DstRegs.push_back(SrcRegs[i]); 4572 continue; 4573 } 4574 4575 // OpSegStart is where this destination segment would start in OpReg if it 4576 // extended infinitely in both directions. 4577 int64_t ExtractOffset; 4578 uint64_t SegSize; 4579 if (OpStart < SrcStart) { 4580 ExtractOffset = 0; 4581 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4582 } else { 4583 ExtractOffset = OpStart - SrcStart; 4584 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4585 } 4586 4587 Register SegReg = SrcRegs[i]; 4588 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4589 // A genuine extract is needed. 4590 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4591 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4592 } 4593 4594 DstRegs.push_back(SegReg); 4595 } 4596 4597 Register DstReg = MI.getOperand(0).getReg(); 4598 if (MRI.getType(DstReg).isVector()) 4599 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4600 else if (DstRegs.size() > 1) 4601 MIRBuilder.buildMerge(DstReg, DstRegs); 4602 else 4603 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4604 MI.eraseFromParent(); 4605 return Legalized; 4606 } 4607 4608 LegalizerHelper::LegalizeResult 4609 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4610 LLT NarrowTy) { 4611 // FIXME: Don't know how to handle secondary types yet. 4612 if (TypeIdx != 0) 4613 return UnableToLegalize; 4614 4615 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4616 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4617 4618 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4619 // NarrowSize. 4620 if (SizeOp0 % NarrowSize != 0) 4621 return UnableToLegalize; 4622 4623 int NumParts = SizeOp0 / NarrowSize; 4624 4625 SmallVector<Register, 2> SrcRegs, DstRegs; 4626 SmallVector<uint64_t, 2> Indexes; 4627 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4628 4629 Register OpReg = MI.getOperand(2).getReg(); 4630 uint64_t OpStart = MI.getOperand(3).getImm(); 4631 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4632 for (int i = 0; i < NumParts; ++i) { 4633 unsigned DstStart = i * NarrowSize; 4634 4635 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4636 // No part of the insert affects this subregister, forward the original. 4637 DstRegs.push_back(SrcRegs[i]); 4638 continue; 4639 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4640 // The entire subregister is defined by this insert, forward the new 4641 // value. 4642 DstRegs.push_back(OpReg); 4643 continue; 4644 } 4645 4646 // OpSegStart is where this destination segment would start in OpReg if it 4647 // extended infinitely in both directions. 4648 int64_t ExtractOffset, InsertOffset; 4649 uint64_t SegSize; 4650 if (OpStart < DstStart) { 4651 InsertOffset = 0; 4652 ExtractOffset = DstStart - OpStart; 4653 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4654 } else { 4655 InsertOffset = OpStart - DstStart; 4656 ExtractOffset = 0; 4657 SegSize = 4658 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4659 } 4660 4661 Register SegReg = OpReg; 4662 if (ExtractOffset != 0 || SegSize != OpSize) { 4663 // A genuine extract is needed. 4664 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4665 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4666 } 4667 4668 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4669 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4670 DstRegs.push_back(DstReg); 4671 } 4672 4673 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4674 Register DstReg = MI.getOperand(0).getReg(); 4675 if(MRI.getType(DstReg).isVector()) 4676 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4677 else 4678 MIRBuilder.buildMerge(DstReg, DstRegs); 4679 MI.eraseFromParent(); 4680 return Legalized; 4681 } 4682 4683 LegalizerHelper::LegalizeResult 4684 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4685 LLT NarrowTy) { 4686 Register DstReg = MI.getOperand(0).getReg(); 4687 LLT DstTy = MRI.getType(DstReg); 4688 4689 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4690 4691 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4692 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4693 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4694 LLT LeftoverTy; 4695 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4696 Src0Regs, Src0LeftoverRegs)) 4697 return UnableToLegalize; 4698 4699 LLT Unused; 4700 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4701 Src1Regs, Src1LeftoverRegs)) 4702 llvm_unreachable("inconsistent extractParts result"); 4703 4704 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4705 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4706 {Src0Regs[I], Src1Regs[I]}); 4707 DstRegs.push_back(Inst.getReg(0)); 4708 } 4709 4710 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4711 auto Inst = MIRBuilder.buildInstr( 4712 MI.getOpcode(), 4713 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4714 DstLeftoverRegs.push_back(Inst.getReg(0)); 4715 } 4716 4717 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4718 LeftoverTy, DstLeftoverRegs); 4719 4720 MI.eraseFromParent(); 4721 return Legalized; 4722 } 4723 4724 LegalizerHelper::LegalizeResult 4725 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4726 LLT NarrowTy) { 4727 if (TypeIdx != 0) 4728 return UnableToLegalize; 4729 4730 Register DstReg = MI.getOperand(0).getReg(); 4731 Register SrcReg = MI.getOperand(1).getReg(); 4732 4733 LLT DstTy = MRI.getType(DstReg); 4734 if (DstTy.isVector()) 4735 return UnableToLegalize; 4736 4737 SmallVector<Register, 8> Parts; 4738 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4739 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4740 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4741 4742 MI.eraseFromParent(); 4743 return Legalized; 4744 } 4745 4746 LegalizerHelper::LegalizeResult 4747 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4748 LLT NarrowTy) { 4749 if (TypeIdx != 0) 4750 return UnableToLegalize; 4751 4752 Register CondReg = MI.getOperand(1).getReg(); 4753 LLT CondTy = MRI.getType(CondReg); 4754 if (CondTy.isVector()) // TODO: Handle vselect 4755 return UnableToLegalize; 4756 4757 Register DstReg = MI.getOperand(0).getReg(); 4758 LLT DstTy = MRI.getType(DstReg); 4759 4760 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4761 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4762 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4763 LLT LeftoverTy; 4764 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4765 Src1Regs, Src1LeftoverRegs)) 4766 return UnableToLegalize; 4767 4768 LLT Unused; 4769 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4770 Src2Regs, Src2LeftoverRegs)) 4771 llvm_unreachable("inconsistent extractParts result"); 4772 4773 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4774 auto Select = MIRBuilder.buildSelect(NarrowTy, 4775 CondReg, Src1Regs[I], Src2Regs[I]); 4776 DstRegs.push_back(Select.getReg(0)); 4777 } 4778 4779 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4780 auto Select = MIRBuilder.buildSelect( 4781 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4782 DstLeftoverRegs.push_back(Select.getReg(0)); 4783 } 4784 4785 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4786 LeftoverTy, DstLeftoverRegs); 4787 4788 MI.eraseFromParent(); 4789 return Legalized; 4790 } 4791 4792 LegalizerHelper::LegalizeResult 4793 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4794 LLT NarrowTy) { 4795 if (TypeIdx != 1) 4796 return UnableToLegalize; 4797 4798 Register DstReg = MI.getOperand(0).getReg(); 4799 Register SrcReg = MI.getOperand(1).getReg(); 4800 LLT DstTy = MRI.getType(DstReg); 4801 LLT SrcTy = MRI.getType(SrcReg); 4802 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4803 4804 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4805 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4806 4807 MachineIRBuilder &B = MIRBuilder; 4808 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4809 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4810 auto C_0 = B.buildConstant(NarrowTy, 0); 4811 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4812 UnmergeSrc.getReg(1), C_0); 4813 auto LoCTLZ = IsUndef ? 4814 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4815 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4816 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4817 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4818 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4819 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4820 4821 MI.eraseFromParent(); 4822 return Legalized; 4823 } 4824 4825 return UnableToLegalize; 4826 } 4827 4828 LegalizerHelper::LegalizeResult 4829 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4830 LLT NarrowTy) { 4831 if (TypeIdx != 1) 4832 return UnableToLegalize; 4833 4834 Register DstReg = MI.getOperand(0).getReg(); 4835 Register SrcReg = MI.getOperand(1).getReg(); 4836 LLT DstTy = MRI.getType(DstReg); 4837 LLT SrcTy = MRI.getType(SrcReg); 4838 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4839 4840 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4841 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4842 4843 MachineIRBuilder &B = MIRBuilder; 4844 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4845 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4846 auto C_0 = B.buildConstant(NarrowTy, 0); 4847 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4848 UnmergeSrc.getReg(0), C_0); 4849 auto HiCTTZ = IsUndef ? 4850 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4851 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4852 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4853 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4854 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4855 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4856 4857 MI.eraseFromParent(); 4858 return Legalized; 4859 } 4860 4861 return UnableToLegalize; 4862 } 4863 4864 LegalizerHelper::LegalizeResult 4865 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4866 LLT NarrowTy) { 4867 if (TypeIdx != 1) 4868 return UnableToLegalize; 4869 4870 Register DstReg = MI.getOperand(0).getReg(); 4871 LLT DstTy = MRI.getType(DstReg); 4872 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4873 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4874 4875 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4876 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4877 4878 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4879 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4880 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4881 4882 MI.eraseFromParent(); 4883 return Legalized; 4884 } 4885 4886 return UnableToLegalize; 4887 } 4888 4889 LegalizerHelper::LegalizeResult 4890 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4891 unsigned Opc = MI.getOpcode(); 4892 const auto &TII = MIRBuilder.getTII(); 4893 auto isSupported = [this](const LegalityQuery &Q) { 4894 auto QAction = LI.getAction(Q).Action; 4895 return QAction == Legal || QAction == Libcall || QAction == Custom; 4896 }; 4897 switch (Opc) { 4898 default: 4899 return UnableToLegalize; 4900 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4901 // This trivially expands to CTLZ. 4902 Observer.changingInstr(MI); 4903 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4904 Observer.changedInstr(MI); 4905 return Legalized; 4906 } 4907 case TargetOpcode::G_CTLZ: { 4908 Register DstReg = MI.getOperand(0).getReg(); 4909 Register SrcReg = MI.getOperand(1).getReg(); 4910 LLT DstTy = MRI.getType(DstReg); 4911 LLT SrcTy = MRI.getType(SrcReg); 4912 unsigned Len = SrcTy.getSizeInBits(); 4913 4914 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4915 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4916 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4917 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4918 auto ICmp = MIRBuilder.buildICmp( 4919 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4920 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4921 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4922 MI.eraseFromParent(); 4923 return Legalized; 4924 } 4925 // for now, we do this: 4926 // NewLen = NextPowerOf2(Len); 4927 // x = x | (x >> 1); 4928 // x = x | (x >> 2); 4929 // ... 4930 // x = x | (x >>16); 4931 // x = x | (x >>32); // for 64-bit input 4932 // Upto NewLen/2 4933 // return Len - popcount(x); 4934 // 4935 // Ref: "Hacker's Delight" by Henry Warren 4936 Register Op = SrcReg; 4937 unsigned NewLen = PowerOf2Ceil(Len); 4938 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4939 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4940 auto MIBOp = MIRBuilder.buildOr( 4941 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4942 Op = MIBOp.getReg(0); 4943 } 4944 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4945 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4946 MIBPop); 4947 MI.eraseFromParent(); 4948 return Legalized; 4949 } 4950 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4951 // This trivially expands to CTTZ. 4952 Observer.changingInstr(MI); 4953 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4954 Observer.changedInstr(MI); 4955 return Legalized; 4956 } 4957 case TargetOpcode::G_CTTZ: { 4958 Register DstReg = MI.getOperand(0).getReg(); 4959 Register SrcReg = MI.getOperand(1).getReg(); 4960 LLT DstTy = MRI.getType(DstReg); 4961 LLT SrcTy = MRI.getType(SrcReg); 4962 4963 unsigned Len = SrcTy.getSizeInBits(); 4964 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4965 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4966 // zero. 4967 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4968 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4969 auto ICmp = MIRBuilder.buildICmp( 4970 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4971 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4972 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4973 MI.eraseFromParent(); 4974 return Legalized; 4975 } 4976 // for now, we use: { return popcount(~x & (x - 1)); } 4977 // unless the target has ctlz but not ctpop, in which case we use: 4978 // { return 32 - nlz(~x & (x-1)); } 4979 // Ref: "Hacker's Delight" by Henry Warren 4980 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4981 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4982 auto MIBTmp = MIRBuilder.buildAnd( 4983 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4984 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4985 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4986 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4987 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4988 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4989 MI.eraseFromParent(); 4990 return Legalized; 4991 } 4992 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4993 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4994 return Legalized; 4995 } 4996 case TargetOpcode::G_CTPOP: { 4997 Register SrcReg = MI.getOperand(1).getReg(); 4998 LLT Ty = MRI.getType(SrcReg); 4999 unsigned Size = Ty.getSizeInBits(); 5000 MachineIRBuilder &B = MIRBuilder; 5001 5002 // Count set bits in blocks of 2 bits. Default approach would be 5003 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5004 // We use following formula instead: 5005 // B2Count = val - { (val >> 1) & 0x55555555 } 5006 // since it gives same result in blocks of 2 with one instruction less. 5007 auto C_1 = B.buildConstant(Ty, 1); 5008 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5009 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5010 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5011 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5012 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5013 5014 // In order to get count in blocks of 4 add values from adjacent block of 2. 5015 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5016 auto C_2 = B.buildConstant(Ty, 2); 5017 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5018 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5019 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5020 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5021 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5022 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5023 5024 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5025 // addition since count value sits in range {0,...,8} and 4 bits are enough 5026 // to hold such binary values. After addition high 4 bits still hold count 5027 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5028 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5029 auto C_4 = B.buildConstant(Ty, 4); 5030 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5031 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5032 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5033 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5034 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5035 5036 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5037 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5038 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5039 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5040 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5041 5042 // Shift count result from 8 high bits to low bits. 5043 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5044 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5045 5046 MI.eraseFromParent(); 5047 return Legalized; 5048 } 5049 } 5050 } 5051 5052 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5053 // representation. 5054 LegalizerHelper::LegalizeResult 5055 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5056 Register Dst = MI.getOperand(0).getReg(); 5057 Register Src = MI.getOperand(1).getReg(); 5058 const LLT S64 = LLT::scalar(64); 5059 const LLT S32 = LLT::scalar(32); 5060 const LLT S1 = LLT::scalar(1); 5061 5062 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5063 5064 // unsigned cul2f(ulong u) { 5065 // uint lz = clz(u); 5066 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5067 // u = (u << lz) & 0x7fffffffffffffffUL; 5068 // ulong t = u & 0xffffffffffUL; 5069 // uint v = (e << 23) | (uint)(u >> 40); 5070 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5071 // return as_float(v + r); 5072 // } 5073 5074 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5075 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5076 5077 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5078 5079 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5080 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5081 5082 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5083 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5084 5085 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5086 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5087 5088 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5089 5090 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5091 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5092 5093 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5094 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5095 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5096 5097 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5098 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5099 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5100 auto One = MIRBuilder.buildConstant(S32, 1); 5101 5102 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5103 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5104 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5105 MIRBuilder.buildAdd(Dst, V, R); 5106 5107 MI.eraseFromParent(); 5108 return Legalized; 5109 } 5110 5111 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5112 Register Dst = MI.getOperand(0).getReg(); 5113 Register Src = MI.getOperand(1).getReg(); 5114 LLT DstTy = MRI.getType(Dst); 5115 LLT SrcTy = MRI.getType(Src); 5116 5117 if (SrcTy == LLT::scalar(1)) { 5118 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5119 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5120 MIRBuilder.buildSelect(Dst, Src, True, False); 5121 MI.eraseFromParent(); 5122 return Legalized; 5123 } 5124 5125 if (SrcTy != LLT::scalar(64)) 5126 return UnableToLegalize; 5127 5128 if (DstTy == LLT::scalar(32)) { 5129 // TODO: SelectionDAG has several alternative expansions to port which may 5130 // be more reasonble depending on the available instructions. If a target 5131 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5132 // intermediate type, this is probably worse. 5133 return lowerU64ToF32BitOps(MI); 5134 } 5135 5136 return UnableToLegalize; 5137 } 5138 5139 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5140 Register Dst = MI.getOperand(0).getReg(); 5141 Register Src = MI.getOperand(1).getReg(); 5142 LLT DstTy = MRI.getType(Dst); 5143 LLT SrcTy = MRI.getType(Src); 5144 5145 const LLT S64 = LLT::scalar(64); 5146 const LLT S32 = LLT::scalar(32); 5147 const LLT S1 = LLT::scalar(1); 5148 5149 if (SrcTy == S1) { 5150 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5151 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5152 MIRBuilder.buildSelect(Dst, Src, True, False); 5153 MI.eraseFromParent(); 5154 return Legalized; 5155 } 5156 5157 if (SrcTy != S64) 5158 return UnableToLegalize; 5159 5160 if (DstTy == S32) { 5161 // signed cl2f(long l) { 5162 // long s = l >> 63; 5163 // float r = cul2f((l + s) ^ s); 5164 // return s ? -r : r; 5165 // } 5166 Register L = Src; 5167 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5168 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5169 5170 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5171 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5172 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5173 5174 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5175 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5176 MIRBuilder.buildConstant(S64, 0)); 5177 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5178 MI.eraseFromParent(); 5179 return Legalized; 5180 } 5181 5182 return UnableToLegalize; 5183 } 5184 5185 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5186 Register Dst = MI.getOperand(0).getReg(); 5187 Register Src = MI.getOperand(1).getReg(); 5188 LLT DstTy = MRI.getType(Dst); 5189 LLT SrcTy = MRI.getType(Src); 5190 const LLT S64 = LLT::scalar(64); 5191 const LLT S32 = LLT::scalar(32); 5192 5193 if (SrcTy != S64 && SrcTy != S32) 5194 return UnableToLegalize; 5195 if (DstTy != S32 && DstTy != S64) 5196 return UnableToLegalize; 5197 5198 // FPTOSI gives same result as FPTOUI for positive signed integers. 5199 // FPTOUI needs to deal with fp values that convert to unsigned integers 5200 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5201 5202 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5203 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5204 : APFloat::IEEEdouble(), 5205 APInt::getNullValue(SrcTy.getSizeInBits())); 5206 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5207 5208 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5209 5210 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5211 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5212 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5213 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5214 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5215 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5216 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5217 5218 const LLT S1 = LLT::scalar(1); 5219 5220 MachineInstrBuilder FCMP = 5221 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5222 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5223 5224 MI.eraseFromParent(); 5225 return Legalized; 5226 } 5227 5228 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5229 Register Dst = MI.getOperand(0).getReg(); 5230 Register Src = MI.getOperand(1).getReg(); 5231 LLT DstTy = MRI.getType(Dst); 5232 LLT SrcTy = MRI.getType(Src); 5233 const LLT S64 = LLT::scalar(64); 5234 const LLT S32 = LLT::scalar(32); 5235 5236 // FIXME: Only f32 to i64 conversions are supported. 5237 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5238 return UnableToLegalize; 5239 5240 // Expand f32 -> i64 conversion 5241 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5242 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5243 5244 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5245 5246 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5247 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5248 5249 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5250 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5251 5252 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5253 APInt::getSignMask(SrcEltBits)); 5254 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5255 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5256 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5257 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5258 5259 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5260 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5261 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5262 5263 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5264 R = MIRBuilder.buildZExt(DstTy, R); 5265 5266 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5267 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5268 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5269 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5270 5271 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5272 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5273 5274 const LLT S1 = LLT::scalar(1); 5275 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5276 S1, Exponent, ExponentLoBit); 5277 5278 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5279 5280 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5281 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5282 5283 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5284 5285 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5286 S1, Exponent, ZeroSrcTy); 5287 5288 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5289 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5290 5291 MI.eraseFromParent(); 5292 return Legalized; 5293 } 5294 5295 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5296 LegalizerHelper::LegalizeResult 5297 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5298 Register Dst = MI.getOperand(0).getReg(); 5299 Register Src = MI.getOperand(1).getReg(); 5300 5301 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5302 return UnableToLegalize; 5303 5304 const unsigned ExpMask = 0x7ff; 5305 const unsigned ExpBiasf64 = 1023; 5306 const unsigned ExpBiasf16 = 15; 5307 const LLT S32 = LLT::scalar(32); 5308 const LLT S1 = LLT::scalar(1); 5309 5310 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5311 Register U = Unmerge.getReg(0); 5312 Register UH = Unmerge.getReg(1); 5313 5314 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5315 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5316 5317 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5318 // add the f16 bias (15) to get the biased exponent for the f16 format. 5319 E = MIRBuilder.buildAdd( 5320 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5321 5322 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5323 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5324 5325 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5326 MIRBuilder.buildConstant(S32, 0x1ff)); 5327 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5328 5329 auto Zero = MIRBuilder.buildConstant(S32, 0); 5330 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5331 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5332 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5333 5334 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5335 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5336 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5337 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5338 5339 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5340 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5341 5342 // N = M | (E << 12); 5343 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5344 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5345 5346 // B = clamp(1-E, 0, 13); 5347 auto One = MIRBuilder.buildConstant(S32, 1); 5348 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5349 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5350 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5351 5352 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5353 MIRBuilder.buildConstant(S32, 0x1000)); 5354 5355 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5356 auto D0 = MIRBuilder.buildShl(S32, D, B); 5357 5358 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5359 D0, SigSetHigh); 5360 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5361 D = MIRBuilder.buildOr(S32, D, D1); 5362 5363 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5364 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5365 5366 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5367 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5368 5369 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5370 MIRBuilder.buildConstant(S32, 3)); 5371 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5372 5373 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5374 MIRBuilder.buildConstant(S32, 5)); 5375 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5376 5377 V1 = MIRBuilder.buildOr(S32, V0, V1); 5378 V = MIRBuilder.buildAdd(S32, V, V1); 5379 5380 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5381 E, MIRBuilder.buildConstant(S32, 30)); 5382 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5383 MIRBuilder.buildConstant(S32, 0x7c00), V); 5384 5385 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5386 E, MIRBuilder.buildConstant(S32, 1039)); 5387 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5388 5389 // Extract the sign bit. 5390 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5391 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5392 5393 // Insert the sign bit 5394 V = MIRBuilder.buildOr(S32, Sign, V); 5395 5396 MIRBuilder.buildTrunc(Dst, V); 5397 MI.eraseFromParent(); 5398 return Legalized; 5399 } 5400 5401 LegalizerHelper::LegalizeResult 5402 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5403 Register Dst = MI.getOperand(0).getReg(); 5404 Register Src = MI.getOperand(1).getReg(); 5405 5406 LLT DstTy = MRI.getType(Dst); 5407 LLT SrcTy = MRI.getType(Src); 5408 const LLT S64 = LLT::scalar(64); 5409 const LLT S16 = LLT::scalar(16); 5410 5411 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5412 return lowerFPTRUNC_F64_TO_F16(MI); 5413 5414 return UnableToLegalize; 5415 } 5416 5417 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5418 // multiplication tree. 5419 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5420 Register Dst = MI.getOperand(0).getReg(); 5421 Register Src0 = MI.getOperand(1).getReg(); 5422 Register Src1 = MI.getOperand(2).getReg(); 5423 LLT Ty = MRI.getType(Dst); 5424 5425 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5426 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5427 MI.eraseFromParent(); 5428 return Legalized; 5429 } 5430 5431 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5432 switch (Opc) { 5433 case TargetOpcode::G_SMIN: 5434 return CmpInst::ICMP_SLT; 5435 case TargetOpcode::G_SMAX: 5436 return CmpInst::ICMP_SGT; 5437 case TargetOpcode::G_UMIN: 5438 return CmpInst::ICMP_ULT; 5439 case TargetOpcode::G_UMAX: 5440 return CmpInst::ICMP_UGT; 5441 default: 5442 llvm_unreachable("not in integer min/max"); 5443 } 5444 } 5445 5446 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5447 Register Dst = MI.getOperand(0).getReg(); 5448 Register Src0 = MI.getOperand(1).getReg(); 5449 Register Src1 = MI.getOperand(2).getReg(); 5450 5451 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5452 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5453 5454 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5455 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5456 5457 MI.eraseFromParent(); 5458 return Legalized; 5459 } 5460 5461 LegalizerHelper::LegalizeResult 5462 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5463 Register Dst = MI.getOperand(0).getReg(); 5464 Register Src0 = MI.getOperand(1).getReg(); 5465 Register Src1 = MI.getOperand(2).getReg(); 5466 5467 const LLT Src0Ty = MRI.getType(Src0); 5468 const LLT Src1Ty = MRI.getType(Src1); 5469 5470 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5471 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5472 5473 auto SignBitMask = MIRBuilder.buildConstant( 5474 Src0Ty, APInt::getSignMask(Src0Size)); 5475 5476 auto NotSignBitMask = MIRBuilder.buildConstant( 5477 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5478 5479 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 5480 Register And1; 5481 if (Src0Ty == Src1Ty) { 5482 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 5483 } else if (Src0Size > Src1Size) { 5484 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5485 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5486 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5487 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 5488 } else { 5489 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5490 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5491 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5492 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 5493 } 5494 5495 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5496 // constants are a nan and -0.0, but the final result should preserve 5497 // everything. 5498 unsigned Flags = MI.getFlags(); 5499 MIRBuilder.buildOr(Dst, And0, And1, Flags); 5500 5501 MI.eraseFromParent(); 5502 return Legalized; 5503 } 5504 5505 LegalizerHelper::LegalizeResult 5506 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5507 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5508 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5509 5510 Register Dst = MI.getOperand(0).getReg(); 5511 Register Src0 = MI.getOperand(1).getReg(); 5512 Register Src1 = MI.getOperand(2).getReg(); 5513 LLT Ty = MRI.getType(Dst); 5514 5515 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5516 // Insert canonicalizes if it's possible we need to quiet to get correct 5517 // sNaN behavior. 5518 5519 // Note this must be done here, and not as an optimization combine in the 5520 // absence of a dedicate quiet-snan instruction as we're using an 5521 // omni-purpose G_FCANONICALIZE. 5522 if (!isKnownNeverSNaN(Src0, MRI)) 5523 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5524 5525 if (!isKnownNeverSNaN(Src1, MRI)) 5526 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5527 } 5528 5529 // If there are no nans, it's safe to simply replace this with the non-IEEE 5530 // version. 5531 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5532 MI.eraseFromParent(); 5533 return Legalized; 5534 } 5535 5536 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5537 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5538 Register DstReg = MI.getOperand(0).getReg(); 5539 LLT Ty = MRI.getType(DstReg); 5540 unsigned Flags = MI.getFlags(); 5541 5542 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5543 Flags); 5544 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5545 MI.eraseFromParent(); 5546 return Legalized; 5547 } 5548 5549 LegalizerHelper::LegalizeResult 5550 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5551 Register DstReg = MI.getOperand(0).getReg(); 5552 Register X = MI.getOperand(1).getReg(); 5553 const unsigned Flags = MI.getFlags(); 5554 const LLT Ty = MRI.getType(DstReg); 5555 const LLT CondTy = Ty.changeElementSize(1); 5556 5557 // round(x) => 5558 // t = trunc(x); 5559 // d = fabs(x - t); 5560 // o = copysign(1.0f, x); 5561 // return t + (d >= 0.5 ? o : 0.0); 5562 5563 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5564 5565 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5566 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5567 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5568 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5569 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5570 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5571 5572 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5573 Flags); 5574 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5575 5576 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5577 5578 MI.eraseFromParent(); 5579 return Legalized; 5580 } 5581 5582 LegalizerHelper::LegalizeResult 5583 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5584 Register DstReg = MI.getOperand(0).getReg(); 5585 Register SrcReg = MI.getOperand(1).getReg(); 5586 unsigned Flags = MI.getFlags(); 5587 LLT Ty = MRI.getType(DstReg); 5588 const LLT CondTy = Ty.changeElementSize(1); 5589 5590 // result = trunc(src); 5591 // if (src < 0.0 && src != result) 5592 // result += -1.0. 5593 5594 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5595 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5596 5597 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5598 SrcReg, Zero, Flags); 5599 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5600 SrcReg, Trunc, Flags); 5601 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5602 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5603 5604 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5605 MI.eraseFromParent(); 5606 return Legalized; 5607 } 5608 5609 LegalizerHelper::LegalizeResult 5610 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5611 const unsigned NumOps = MI.getNumOperands(); 5612 Register DstReg = MI.getOperand(0).getReg(); 5613 Register Src0Reg = MI.getOperand(1).getReg(); 5614 LLT DstTy = MRI.getType(DstReg); 5615 LLT SrcTy = MRI.getType(Src0Reg); 5616 unsigned PartSize = SrcTy.getSizeInBits(); 5617 5618 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5619 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5620 5621 for (unsigned I = 2; I != NumOps; ++I) { 5622 const unsigned Offset = (I - 1) * PartSize; 5623 5624 Register SrcReg = MI.getOperand(I).getReg(); 5625 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5626 5627 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5628 MRI.createGenericVirtualRegister(WideTy); 5629 5630 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5631 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5632 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5633 ResultReg = NextResult; 5634 } 5635 5636 if (DstTy.isPointer()) { 5637 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5638 DstTy.getAddressSpace())) { 5639 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5640 return UnableToLegalize; 5641 } 5642 5643 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5644 } 5645 5646 MI.eraseFromParent(); 5647 return Legalized; 5648 } 5649 5650 LegalizerHelper::LegalizeResult 5651 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5652 const unsigned NumDst = MI.getNumOperands() - 1; 5653 Register SrcReg = MI.getOperand(NumDst).getReg(); 5654 Register Dst0Reg = MI.getOperand(0).getReg(); 5655 LLT DstTy = MRI.getType(Dst0Reg); 5656 if (DstTy.isPointer()) 5657 return UnableToLegalize; // TODO 5658 5659 SrcReg = coerceToScalar(SrcReg); 5660 if (!SrcReg) 5661 return UnableToLegalize; 5662 5663 // Expand scalarizing unmerge as bitcast to integer and shift. 5664 LLT IntTy = MRI.getType(SrcReg); 5665 5666 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5667 5668 const unsigned DstSize = DstTy.getSizeInBits(); 5669 unsigned Offset = DstSize; 5670 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5671 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5672 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5673 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5674 } 5675 5676 MI.eraseFromParent(); 5677 return Legalized; 5678 } 5679 5680 /// Lower a vector extract or insert by writing the vector to a stack temporary 5681 /// and reloading the element or vector. 5682 /// 5683 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5684 /// => 5685 /// %stack_temp = G_FRAME_INDEX 5686 /// G_STORE %vec, %stack_temp 5687 /// %idx = clamp(%idx, %vec.getNumElements()) 5688 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5689 /// %dst = G_LOAD %element_ptr 5690 LegalizerHelper::LegalizeResult 5691 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5692 Register DstReg = MI.getOperand(0).getReg(); 5693 Register SrcVec = MI.getOperand(1).getReg(); 5694 Register InsertVal; 5695 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5696 InsertVal = MI.getOperand(2).getReg(); 5697 5698 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5699 5700 LLT VecTy = MRI.getType(SrcVec); 5701 LLT EltTy = VecTy.getElementType(); 5702 if (!EltTy.isByteSized()) { // Not implemented. 5703 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5704 return UnableToLegalize; 5705 } 5706 5707 unsigned EltBytes = EltTy.getSizeInBytes(); 5708 Align VecAlign = getStackTemporaryAlignment(VecTy); 5709 Align EltAlign; 5710 5711 MachinePointerInfo PtrInfo; 5712 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5713 VecAlign, PtrInfo); 5714 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5715 5716 // Get the pointer to the element, and be sure not to hit undefined behavior 5717 // if the index is out of bounds. 5718 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5719 5720 int64_t IdxVal; 5721 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5722 int64_t Offset = IdxVal * EltBytes; 5723 PtrInfo = PtrInfo.getWithOffset(Offset); 5724 EltAlign = commonAlignment(VecAlign, Offset); 5725 } else { 5726 // We lose information with a variable offset. 5727 EltAlign = getStackTemporaryAlignment(EltTy); 5728 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5729 } 5730 5731 if (InsertVal) { 5732 // Write the inserted element 5733 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5734 5735 // Reload the whole vector. 5736 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5737 } else { 5738 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5739 } 5740 5741 MI.eraseFromParent(); 5742 return Legalized; 5743 } 5744 5745 LegalizerHelper::LegalizeResult 5746 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5747 Register DstReg = MI.getOperand(0).getReg(); 5748 Register Src0Reg = MI.getOperand(1).getReg(); 5749 Register Src1Reg = MI.getOperand(2).getReg(); 5750 LLT Src0Ty = MRI.getType(Src0Reg); 5751 LLT DstTy = MRI.getType(DstReg); 5752 LLT IdxTy = LLT::scalar(32); 5753 5754 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5755 5756 if (DstTy.isScalar()) { 5757 if (Src0Ty.isVector()) 5758 return UnableToLegalize; 5759 5760 // This is just a SELECT. 5761 assert(Mask.size() == 1 && "Expected a single mask element"); 5762 Register Val; 5763 if (Mask[0] < 0 || Mask[0] > 1) 5764 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5765 else 5766 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5767 MIRBuilder.buildCopy(DstReg, Val); 5768 MI.eraseFromParent(); 5769 return Legalized; 5770 } 5771 5772 Register Undef; 5773 SmallVector<Register, 32> BuildVec; 5774 LLT EltTy = DstTy.getElementType(); 5775 5776 for (int Idx : Mask) { 5777 if (Idx < 0) { 5778 if (!Undef.isValid()) 5779 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5780 BuildVec.push_back(Undef); 5781 continue; 5782 } 5783 5784 if (Src0Ty.isScalar()) { 5785 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5786 } else { 5787 int NumElts = Src0Ty.getNumElements(); 5788 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5789 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5790 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5791 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5792 BuildVec.push_back(Extract.getReg(0)); 5793 } 5794 } 5795 5796 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5797 MI.eraseFromParent(); 5798 return Legalized; 5799 } 5800 5801 LegalizerHelper::LegalizeResult 5802 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5803 const auto &MF = *MI.getMF(); 5804 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5805 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5806 return UnableToLegalize; 5807 5808 Register Dst = MI.getOperand(0).getReg(); 5809 Register AllocSize = MI.getOperand(1).getReg(); 5810 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5811 5812 LLT PtrTy = MRI.getType(Dst); 5813 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5814 5815 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5816 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5817 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5818 5819 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5820 // have to generate an extra instruction to negate the alloc and then use 5821 // G_PTR_ADD to add the negative offset. 5822 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5823 if (Alignment > Align(1)) { 5824 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5825 AlignMask.negate(); 5826 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5827 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5828 } 5829 5830 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5831 MIRBuilder.buildCopy(SPReg, SPTmp); 5832 MIRBuilder.buildCopy(Dst, SPTmp); 5833 5834 MI.eraseFromParent(); 5835 return Legalized; 5836 } 5837 5838 LegalizerHelper::LegalizeResult 5839 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5840 Register Dst = MI.getOperand(0).getReg(); 5841 Register Src = MI.getOperand(1).getReg(); 5842 unsigned Offset = MI.getOperand(2).getImm(); 5843 5844 LLT DstTy = MRI.getType(Dst); 5845 LLT SrcTy = MRI.getType(Src); 5846 5847 if (DstTy.isScalar() && 5848 (SrcTy.isScalar() || 5849 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5850 LLT SrcIntTy = SrcTy; 5851 if (!SrcTy.isScalar()) { 5852 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5853 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5854 } 5855 5856 if (Offset == 0) 5857 MIRBuilder.buildTrunc(Dst, Src); 5858 else { 5859 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5860 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5861 MIRBuilder.buildTrunc(Dst, Shr); 5862 } 5863 5864 MI.eraseFromParent(); 5865 return Legalized; 5866 } 5867 5868 return UnableToLegalize; 5869 } 5870 5871 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5872 Register Dst = MI.getOperand(0).getReg(); 5873 Register Src = MI.getOperand(1).getReg(); 5874 Register InsertSrc = MI.getOperand(2).getReg(); 5875 uint64_t Offset = MI.getOperand(3).getImm(); 5876 5877 LLT DstTy = MRI.getType(Src); 5878 LLT InsertTy = MRI.getType(InsertSrc); 5879 5880 if (InsertTy.isVector() || 5881 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5882 return UnableToLegalize; 5883 5884 const DataLayout &DL = MIRBuilder.getDataLayout(); 5885 if ((DstTy.isPointer() && 5886 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5887 (InsertTy.isPointer() && 5888 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5889 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5890 return UnableToLegalize; 5891 } 5892 5893 LLT IntDstTy = DstTy; 5894 5895 if (!DstTy.isScalar()) { 5896 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5897 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5898 } 5899 5900 if (!InsertTy.isScalar()) { 5901 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5902 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5903 } 5904 5905 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5906 if (Offset != 0) { 5907 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5908 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5909 } 5910 5911 APInt MaskVal = APInt::getBitsSetWithWrap( 5912 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5913 5914 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5915 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5916 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5917 5918 MIRBuilder.buildCast(Dst, Or); 5919 MI.eraseFromParent(); 5920 return Legalized; 5921 } 5922 5923 LegalizerHelper::LegalizeResult 5924 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5925 Register Dst0 = MI.getOperand(0).getReg(); 5926 Register Dst1 = MI.getOperand(1).getReg(); 5927 Register LHS = MI.getOperand(2).getReg(); 5928 Register RHS = MI.getOperand(3).getReg(); 5929 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5930 5931 LLT Ty = MRI.getType(Dst0); 5932 LLT BoolTy = MRI.getType(Dst1); 5933 5934 if (IsAdd) 5935 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5936 else 5937 MIRBuilder.buildSub(Dst0, LHS, RHS); 5938 5939 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5940 5941 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5942 5943 // For an addition, the result should be less than one of the operands (LHS) 5944 // if and only if the other operand (RHS) is negative, otherwise there will 5945 // be overflow. 5946 // For a subtraction, the result should be less than one of the operands 5947 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5948 // otherwise there will be overflow. 5949 auto ResultLowerThanLHS = 5950 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5951 auto ConditionRHS = MIRBuilder.buildICmp( 5952 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5953 5954 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5955 MI.eraseFromParent(); 5956 return Legalized; 5957 } 5958 5959 LegalizerHelper::LegalizeResult 5960 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5961 Register Res = MI.getOperand(0).getReg(); 5962 Register LHS = MI.getOperand(1).getReg(); 5963 Register RHS = MI.getOperand(2).getReg(); 5964 LLT Ty = MRI.getType(Res); 5965 bool IsSigned; 5966 bool IsAdd; 5967 unsigned BaseOp; 5968 switch (MI.getOpcode()) { 5969 default: 5970 llvm_unreachable("unexpected addsat/subsat opcode"); 5971 case TargetOpcode::G_UADDSAT: 5972 IsSigned = false; 5973 IsAdd = true; 5974 BaseOp = TargetOpcode::G_ADD; 5975 break; 5976 case TargetOpcode::G_SADDSAT: 5977 IsSigned = true; 5978 IsAdd = true; 5979 BaseOp = TargetOpcode::G_ADD; 5980 break; 5981 case TargetOpcode::G_USUBSAT: 5982 IsSigned = false; 5983 IsAdd = false; 5984 BaseOp = TargetOpcode::G_SUB; 5985 break; 5986 case TargetOpcode::G_SSUBSAT: 5987 IsSigned = true; 5988 IsAdd = false; 5989 BaseOp = TargetOpcode::G_SUB; 5990 break; 5991 } 5992 5993 if (IsSigned) { 5994 // sadd.sat(a, b) -> 5995 // hi = 0x7fffffff - smax(a, 0) 5996 // lo = 0x80000000 - smin(a, 0) 5997 // a + smin(smax(lo, b), hi) 5998 // ssub.sat(a, b) -> 5999 // lo = smax(a, -1) - 0x7fffffff 6000 // hi = smin(a, -1) - 0x80000000 6001 // a - smin(smax(lo, b), hi) 6002 // TODO: AMDGPU can use a "median of 3" instruction here: 6003 // a +/- med3(lo, b, hi) 6004 uint64_t NumBits = Ty.getScalarSizeInBits(); 6005 auto MaxVal = 6006 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6007 auto MinVal = 6008 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6009 MachineInstrBuilder Hi, Lo; 6010 if (IsAdd) { 6011 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6012 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6013 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6014 } else { 6015 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6016 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6017 MaxVal); 6018 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6019 MinVal); 6020 } 6021 auto RHSClamped = 6022 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6023 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6024 } else { 6025 // uadd.sat(a, b) -> a + umin(~a, b) 6026 // usub.sat(a, b) -> a - umin(a, b) 6027 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6028 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6029 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6030 } 6031 6032 MI.eraseFromParent(); 6033 return Legalized; 6034 } 6035 6036 LegalizerHelper::LegalizeResult 6037 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6038 Register Res = MI.getOperand(0).getReg(); 6039 Register LHS = MI.getOperand(1).getReg(); 6040 Register RHS = MI.getOperand(2).getReg(); 6041 LLT Ty = MRI.getType(Res); 6042 LLT BoolTy = Ty.changeElementSize(1); 6043 bool IsSigned; 6044 bool IsAdd; 6045 unsigned OverflowOp; 6046 switch (MI.getOpcode()) { 6047 default: 6048 llvm_unreachable("unexpected addsat/subsat opcode"); 6049 case TargetOpcode::G_UADDSAT: 6050 IsSigned = false; 6051 IsAdd = true; 6052 OverflowOp = TargetOpcode::G_UADDO; 6053 break; 6054 case TargetOpcode::G_SADDSAT: 6055 IsSigned = true; 6056 IsAdd = true; 6057 OverflowOp = TargetOpcode::G_SADDO; 6058 break; 6059 case TargetOpcode::G_USUBSAT: 6060 IsSigned = false; 6061 IsAdd = false; 6062 OverflowOp = TargetOpcode::G_USUBO; 6063 break; 6064 case TargetOpcode::G_SSUBSAT: 6065 IsSigned = true; 6066 IsAdd = false; 6067 OverflowOp = TargetOpcode::G_SSUBO; 6068 break; 6069 } 6070 6071 auto OverflowRes = 6072 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6073 Register Tmp = OverflowRes.getReg(0); 6074 Register Ov = OverflowRes.getReg(1); 6075 MachineInstrBuilder Clamp; 6076 if (IsSigned) { 6077 // sadd.sat(a, b) -> 6078 // {tmp, ov} = saddo(a, b) 6079 // ov ? (tmp >>s 31) + 0x80000000 : r 6080 // ssub.sat(a, b) -> 6081 // {tmp, ov} = ssubo(a, b) 6082 // ov ? (tmp >>s 31) + 0x80000000 : r 6083 uint64_t NumBits = Ty.getScalarSizeInBits(); 6084 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6085 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6086 auto MinVal = 6087 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6088 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6089 } else { 6090 // uadd.sat(a, b) -> 6091 // {tmp, ov} = uaddo(a, b) 6092 // ov ? 0xffffffff : tmp 6093 // usub.sat(a, b) -> 6094 // {tmp, ov} = usubo(a, b) 6095 // ov ? 0 : tmp 6096 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6097 } 6098 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6099 6100 MI.eraseFromParent(); 6101 return Legalized; 6102 } 6103 6104 LegalizerHelper::LegalizeResult 6105 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6106 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6107 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6108 "Expected shlsat opcode!"); 6109 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6110 Register Res = MI.getOperand(0).getReg(); 6111 Register LHS = MI.getOperand(1).getReg(); 6112 Register RHS = MI.getOperand(2).getReg(); 6113 LLT Ty = MRI.getType(Res); 6114 LLT BoolTy = Ty.changeElementSize(1); 6115 6116 unsigned BW = Ty.getScalarSizeInBits(); 6117 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6118 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6119 : MIRBuilder.buildLShr(Ty, Result, RHS); 6120 6121 MachineInstrBuilder SatVal; 6122 if (IsSigned) { 6123 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6124 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6125 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6126 MIRBuilder.buildConstant(Ty, 0)); 6127 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6128 } else { 6129 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6130 } 6131 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6132 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6133 6134 MI.eraseFromParent(); 6135 return Legalized; 6136 } 6137 6138 LegalizerHelper::LegalizeResult 6139 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6140 Register Dst = MI.getOperand(0).getReg(); 6141 Register Src = MI.getOperand(1).getReg(); 6142 const LLT Ty = MRI.getType(Src); 6143 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6144 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6145 6146 // Swap most and least significant byte, set remaining bytes in Res to zero. 6147 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6148 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6149 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6150 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6151 6152 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6153 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6154 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6155 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6156 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6157 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6158 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6159 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6160 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6161 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6162 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6163 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6164 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6165 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6166 } 6167 Res.getInstr()->getOperand(0).setReg(Dst); 6168 6169 MI.eraseFromParent(); 6170 return Legalized; 6171 } 6172 6173 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6174 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6175 MachineInstrBuilder Src, APInt Mask) { 6176 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6177 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6178 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6179 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6180 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6181 return B.buildOr(Dst, LHS, RHS); 6182 } 6183 6184 LegalizerHelper::LegalizeResult 6185 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6186 Register Dst = MI.getOperand(0).getReg(); 6187 Register Src = MI.getOperand(1).getReg(); 6188 const LLT Ty = MRI.getType(Src); 6189 unsigned Size = Ty.getSizeInBits(); 6190 6191 MachineInstrBuilder BSWAP = 6192 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6193 6194 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6195 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6196 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6197 MachineInstrBuilder Swap4 = 6198 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6199 6200 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6201 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6202 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6203 MachineInstrBuilder Swap2 = 6204 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6205 6206 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6207 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6208 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6209 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6210 6211 MI.eraseFromParent(); 6212 return Legalized; 6213 } 6214 6215 LegalizerHelper::LegalizeResult 6216 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6217 MachineFunction &MF = MIRBuilder.getMF(); 6218 6219 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6220 int NameOpIdx = IsRead ? 1 : 0; 6221 int ValRegIndex = IsRead ? 0 : 1; 6222 6223 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6224 const LLT Ty = MRI.getType(ValReg); 6225 const MDString *RegStr = cast<MDString>( 6226 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6227 6228 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6229 if (!PhysReg.isValid()) 6230 return UnableToLegalize; 6231 6232 if (IsRead) 6233 MIRBuilder.buildCopy(ValReg, PhysReg); 6234 else 6235 MIRBuilder.buildCopy(PhysReg, ValReg); 6236 6237 MI.eraseFromParent(); 6238 return Legalized; 6239 } 6240 6241 LegalizerHelper::LegalizeResult 6242 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6243 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6244 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6245 Register Result = MI.getOperand(0).getReg(); 6246 LLT OrigTy = MRI.getType(Result); 6247 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6248 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6249 6250 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6251 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6252 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6253 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6254 6255 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6256 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6257 MIRBuilder.buildTrunc(Result, Shifted); 6258 6259 MI.eraseFromParent(); 6260 return Legalized; 6261 } 6262 6263 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6264 // Implement vector G_SELECT in terms of XOR, AND, OR. 6265 Register DstReg = MI.getOperand(0).getReg(); 6266 Register MaskReg = MI.getOperand(1).getReg(); 6267 Register Op1Reg = MI.getOperand(2).getReg(); 6268 Register Op2Reg = MI.getOperand(3).getReg(); 6269 LLT DstTy = MRI.getType(DstReg); 6270 LLT MaskTy = MRI.getType(MaskReg); 6271 LLT Op1Ty = MRI.getType(Op1Reg); 6272 if (!DstTy.isVector()) 6273 return UnableToLegalize; 6274 6275 // Vector selects can have a scalar predicate. If so, splat into a vector and 6276 // finish for later legalization attempts to try again. 6277 if (MaskTy.isScalar()) { 6278 Register MaskElt = MaskReg; 6279 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6280 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6281 // Generate a vector splat idiom to be pattern matched later. 6282 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6283 Observer.changingInstr(MI); 6284 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6285 Observer.changedInstr(MI); 6286 return Legalized; 6287 } 6288 6289 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6290 return UnableToLegalize; 6291 } 6292 6293 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6294 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6295 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6296 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6297 MI.eraseFromParent(); 6298 return Legalized; 6299 } 6300