1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 128: 81 return Type::getFP128Ty(Ctx); 82 default: 83 return nullptr; 84 } 85 } 86 87 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 88 GISelChangeObserver &Observer, 89 MachineIRBuilder &Builder) 90 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 91 LI(*MF.getSubtarget().getLegalizerInfo()) { 92 MIRBuilder.setChangeObserver(Observer); 93 } 94 95 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 96 GISelChangeObserver &Observer, 97 MachineIRBuilder &B) 98 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 104 105 MIRBuilder.setInstrAndDebugLoc(MI); 106 107 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 108 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 109 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 110 auto Step = LI.getAction(MI, MRI); 111 switch (Step.Action) { 112 case Legal: 113 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 114 return AlreadyLegal; 115 case Libcall: 116 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 117 return libcall(MI); 118 case NarrowScalar: 119 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 120 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 121 case WidenScalar: 122 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 123 return widenScalar(MI, Step.TypeIdx, Step.NewType); 124 case Bitcast: 125 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 126 return bitcast(MI, Step.TypeIdx, Step.NewType); 127 case Lower: 128 LLVM_DEBUG(dbgs() << ".. Lower\n"); 129 return lower(MI, Step.TypeIdx, Step.NewType); 130 case FewerElements: 131 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 132 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 133 case MoreElements: 134 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 135 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 136 case Custom: 137 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 138 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 465 MachineInstr &MI) { 466 MachineBasicBlock &MBB = *MI.getParent(); 467 const Function &F = MBB.getParent()->getFunction(); 468 469 // Conservatively require the attributes of the call to match those of 470 // the return. Ignore NoAlias and NonNull because they don't affect the 471 // call sequence. 472 AttributeList CallerAttrs = F.getAttributes(); 473 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 474 .removeAttribute(Attribute::NoAlias) 475 .removeAttribute(Attribute::NonNull) 476 .hasAttributes()) 477 return false; 478 479 // It's not safe to eliminate the sign / zero extension of the return value. 480 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 481 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 482 return false; 483 484 // Only tail call if the following instruction is a standard return. 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 switch (MI.getOpcode()) { 640 default: 641 return UnableToLegalize; 642 case TargetOpcode::G_SDIV: 643 case TargetOpcode::G_UDIV: 644 case TargetOpcode::G_SREM: 645 case TargetOpcode::G_UREM: 646 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 647 Type *HLTy = IntegerType::get(Ctx, Size); 648 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 649 if (Status != Legalized) 650 return Status; 651 break; 652 } 653 case TargetOpcode::G_FADD: 654 case TargetOpcode::G_FSUB: 655 case TargetOpcode::G_FMUL: 656 case TargetOpcode::G_FDIV: 657 case TargetOpcode::G_FMA: 658 case TargetOpcode::G_FPOW: 659 case TargetOpcode::G_FREM: 660 case TargetOpcode::G_FCOS: 661 case TargetOpcode::G_FSIN: 662 case TargetOpcode::G_FLOG10: 663 case TargetOpcode::G_FLOG: 664 case TargetOpcode::G_FLOG2: 665 case TargetOpcode::G_FEXP: 666 case TargetOpcode::G_FEXP2: 667 case TargetOpcode::G_FCEIL: 668 case TargetOpcode::G_FFLOOR: 669 case TargetOpcode::G_FMINNUM: 670 case TargetOpcode::G_FMAXNUM: 671 case TargetOpcode::G_FSQRT: 672 case TargetOpcode::G_FRINT: 673 case TargetOpcode::G_FNEARBYINT: { 674 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 675 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 676 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 677 return UnableToLegalize; 678 } 679 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 680 if (Status != Legalized) 681 return Status; 682 break; 683 } 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: { 686 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 687 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 688 if (!FromTy || !ToTy) 689 return UnableToLegalize; 690 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 691 if (Status != Legalized) 692 return Status; 693 break; 694 } 695 case TargetOpcode::G_FPTOSI: 696 case TargetOpcode::G_FPTOUI: { 697 // FIXME: Support other types 698 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 700 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 701 return UnableToLegalize; 702 LegalizeResult Status = conversionLibcall( 703 MI, MIRBuilder, 704 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 705 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_SITOFP: 711 case TargetOpcode::G_UITOFP: { 712 // FIXME: Support other types 713 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 714 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 715 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 716 return UnableToLegalize; 717 LegalizeResult Status = conversionLibcall( 718 MI, MIRBuilder, 719 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 720 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 721 if (Status != Legalized) 722 return Status; 723 break; 724 } 725 } 726 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 732 unsigned TypeIdx, 733 LLT NarrowTy) { 734 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 735 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 736 737 switch (MI.getOpcode()) { 738 default: 739 return UnableToLegalize; 740 case TargetOpcode::G_IMPLICIT_DEF: { 741 Register DstReg = MI.getOperand(0).getReg(); 742 LLT DstTy = MRI.getType(DstReg); 743 744 // If SizeOp0 is not an exact multiple of NarrowSize, emit 745 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 746 // FIXME: Although this would also be legal for the general case, it causes 747 // a lot of regressions in the emitted code (superfluous COPYs, artifact 748 // combines not being hit). This seems to be a problem related to the 749 // artifact combiner. 750 if (SizeOp0 % NarrowSize != 0) { 751 LLT ImplicitTy = NarrowTy; 752 if (DstTy.isVector()) 753 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 754 755 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 756 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 757 758 MI.eraseFromParent(); 759 return Legalized; 760 } 761 762 int NumParts = SizeOp0 / NarrowSize; 763 764 SmallVector<Register, 2> DstRegs; 765 for (int i = 0; i < NumParts; ++i) 766 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 767 768 if (DstTy.isVector()) 769 MIRBuilder.buildBuildVector(DstReg, DstRegs); 770 else 771 MIRBuilder.buildMerge(DstReg, DstRegs); 772 MI.eraseFromParent(); 773 return Legalized; 774 } 775 case TargetOpcode::G_CONSTANT: { 776 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 777 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 778 unsigned TotalSize = Ty.getSizeInBits(); 779 unsigned NarrowSize = NarrowTy.getSizeInBits(); 780 int NumParts = TotalSize / NarrowSize; 781 782 SmallVector<Register, 4> PartRegs; 783 for (int I = 0; I != NumParts; ++I) { 784 unsigned Offset = I * NarrowSize; 785 auto K = MIRBuilder.buildConstant(NarrowTy, 786 Val.lshr(Offset).trunc(NarrowSize)); 787 PartRegs.push_back(K.getReg(0)); 788 } 789 790 LLT LeftoverTy; 791 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 792 SmallVector<Register, 1> LeftoverRegs; 793 if (LeftoverBits != 0) { 794 LeftoverTy = LLT::scalar(LeftoverBits); 795 auto K = MIRBuilder.buildConstant( 796 LeftoverTy, 797 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 798 LeftoverRegs.push_back(K.getReg(0)); 799 } 800 801 insertParts(MI.getOperand(0).getReg(), 802 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 803 804 MI.eraseFromParent(); 805 return Legalized; 806 } 807 case TargetOpcode::G_SEXT: 808 case TargetOpcode::G_ZEXT: 809 case TargetOpcode::G_ANYEXT: 810 return narrowScalarExt(MI, TypeIdx, NarrowTy); 811 case TargetOpcode::G_TRUNC: { 812 if (TypeIdx != 1) 813 return UnableToLegalize; 814 815 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 816 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 817 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 818 return UnableToLegalize; 819 } 820 821 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 822 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 827 case TargetOpcode::G_FREEZE: 828 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 829 830 case TargetOpcode::G_ADD: { 831 // FIXME: add support for when SizeOp0 isn't an exact multiple of 832 // NarrowSize. 833 if (SizeOp0 % NarrowSize != 0) 834 return UnableToLegalize; 835 // Expand in terms of carry-setting/consuming G_ADDE instructions. 836 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 837 838 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 839 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 840 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 841 842 Register CarryIn; 843 for (int i = 0; i < NumParts; ++i) { 844 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 845 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 846 847 if (i == 0) 848 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 849 else { 850 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 851 Src2Regs[i], CarryIn); 852 } 853 854 DstRegs.push_back(DstReg); 855 CarryIn = CarryOut; 856 } 857 Register DstReg = MI.getOperand(0).getReg(); 858 if(MRI.getType(DstReg).isVector()) 859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 860 else 861 MIRBuilder.buildMerge(DstReg, DstRegs); 862 MI.eraseFromParent(); 863 return Legalized; 864 } 865 case TargetOpcode::G_SUB: { 866 // FIXME: add support for when SizeOp0 isn't an exact multiple of 867 // NarrowSize. 868 if (SizeOp0 % NarrowSize != 0) 869 return UnableToLegalize; 870 871 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 872 873 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 874 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 875 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 876 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 880 {Src1Regs[0], Src2Regs[0]}); 881 DstRegs.push_back(DstReg); 882 Register BorrowIn = BorrowOut; 883 for (int i = 1; i < NumParts; ++i) { 884 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 885 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 886 887 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 888 {Src1Regs[i], Src2Regs[i], BorrowIn}); 889 890 DstRegs.push_back(DstReg); 891 BorrowIn = BorrowOut; 892 } 893 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 894 MI.eraseFromParent(); 895 return Legalized; 896 } 897 case TargetOpcode::G_MUL: 898 case TargetOpcode::G_UMULH: 899 return narrowScalarMul(MI, NarrowTy); 900 case TargetOpcode::G_EXTRACT: 901 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_INSERT: 903 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 904 case TargetOpcode::G_LOAD: { 905 const auto &MMO = **MI.memoperands_begin(); 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 if (DstTy.isVector()) 909 return UnableToLegalize; 910 911 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 912 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 913 auto &MMO = **MI.memoperands_begin(); 914 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 915 MIRBuilder.buildAnyExt(DstReg, TmpReg); 916 MI.eraseFromParent(); 917 return Legalized; 918 } 919 920 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 921 } 922 case TargetOpcode::G_ZEXTLOAD: 923 case TargetOpcode::G_SEXTLOAD: { 924 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 925 Register DstReg = MI.getOperand(0).getReg(); 926 Register PtrReg = MI.getOperand(1).getReg(); 927 928 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 929 auto &MMO = **MI.memoperands_begin(); 930 if (MMO.getSizeInBits() == NarrowSize) { 931 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 932 } else { 933 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 934 } 935 936 if (ZExt) 937 MIRBuilder.buildZExt(DstReg, TmpReg); 938 else 939 MIRBuilder.buildSExt(DstReg, TmpReg); 940 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 case TargetOpcode::G_STORE: { 945 const auto &MMO = **MI.memoperands_begin(); 946 947 Register SrcReg = MI.getOperand(0).getReg(); 948 LLT SrcTy = MRI.getType(SrcReg); 949 if (SrcTy.isVector()) 950 return UnableToLegalize; 951 952 int NumParts = SizeOp0 / NarrowSize; 953 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 954 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 955 if (SrcTy.isVector() && LeftoverBits != 0) 956 return UnableToLegalize; 957 958 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 959 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 960 auto &MMO = **MI.memoperands_begin(); 961 MIRBuilder.buildTrunc(TmpReg, SrcReg); 962 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 963 MI.eraseFromParent(); 964 return Legalized; 965 } 966 967 return reduceLoadStoreWidth(MI, 0, NarrowTy); 968 } 969 case TargetOpcode::G_SELECT: 970 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 971 case TargetOpcode::G_AND: 972 case TargetOpcode::G_OR: 973 case TargetOpcode::G_XOR: { 974 // Legalize bitwise operation: 975 // A = BinOp<Ty> B, C 976 // into: 977 // B1, ..., BN = G_UNMERGE_VALUES B 978 // C1, ..., CN = G_UNMERGE_VALUES C 979 // A1 = BinOp<Ty/N> B1, C2 980 // ... 981 // AN = BinOp<Ty/N> BN, CN 982 // A = G_MERGE_VALUES A1, ..., AN 983 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 984 } 985 case TargetOpcode::G_SHL: 986 case TargetOpcode::G_LSHR: 987 case TargetOpcode::G_ASHR: 988 return narrowScalarShift(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_CTLZ: 990 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTTZ: 992 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 993 case TargetOpcode::G_CTPOP: 994 if (TypeIdx == 1) 995 switch (MI.getOpcode()) { 996 case TargetOpcode::G_CTLZ: 997 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 998 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1002 case TargetOpcode::G_CTPOP: 1003 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1004 default: 1005 return UnableToLegalize; 1006 } 1007 1008 Observer.changingInstr(MI); 1009 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 case TargetOpcode::G_INTTOPTR: 1013 if (TypeIdx != 1) 1014 return UnableToLegalize; 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarSrc(MI, NarrowTy, 1); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_PTRTOINT: 1021 if (TypeIdx != 0) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PHI: { 1029 unsigned NumParts = SizeOp0 / NarrowSize; 1030 SmallVector<Register, 2> DstRegs(NumParts); 1031 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1032 Observer.changingInstr(MI); 1033 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1034 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1035 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1036 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1037 SrcRegs[i / 2]); 1038 } 1039 MachineBasicBlock &MBB = *MI.getParent(); 1040 MIRBuilder.setInsertPt(MBB, MI); 1041 for (unsigned i = 0; i < NumParts; ++i) { 1042 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1043 MachineInstrBuilder MIB = 1044 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1045 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1046 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1047 } 1048 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1049 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1050 Observer.changedInstr(MI); 1051 MI.eraseFromParent(); 1052 return Legalized; 1053 } 1054 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1055 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1056 if (TypeIdx != 2) 1057 return UnableToLegalize; 1058 1059 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1060 Observer.changingInstr(MI); 1061 narrowScalarSrc(MI, NarrowTy, OpIdx); 1062 Observer.changedInstr(MI); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ICMP: { 1066 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1067 if (NarrowSize * 2 != SrcSize) 1068 return UnableToLegalize; 1069 1070 Observer.changingInstr(MI); 1071 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1072 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1073 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1074 1075 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1078 1079 CmpInst::Predicate Pred = 1080 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1081 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1082 1083 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1084 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1085 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1086 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1087 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1088 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1089 } else { 1090 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpHEQ = 1092 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1094 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1095 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1096 } 1097 Observer.changedInstr(MI); 1098 MI.eraseFromParent(); 1099 return Legalized; 1100 } 1101 case TargetOpcode::G_SEXT_INREG: { 1102 if (TypeIdx != 0) 1103 return UnableToLegalize; 1104 1105 int64_t SizeInBits = MI.getOperand(2).getImm(); 1106 1107 // So long as the new type has more bits than the bits we're extending we 1108 // don't need to break it apart. 1109 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1110 Observer.changingInstr(MI); 1111 // We don't lose any non-extension bits by truncating the src and 1112 // sign-extending the dst. 1113 MachineOperand &MO1 = MI.getOperand(1); 1114 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1115 MO1.setReg(TruncMIB.getReg(0)); 1116 1117 MachineOperand &MO2 = MI.getOperand(0); 1118 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1119 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1120 MIRBuilder.buildSExt(MO2, DstExt); 1121 MO2.setReg(DstExt); 1122 Observer.changedInstr(MI); 1123 return Legalized; 1124 } 1125 1126 // Break it apart. Components below the extension point are unmodified. The 1127 // component containing the extension point becomes a narrower SEXT_INREG. 1128 // Components above it are ashr'd from the component containing the 1129 // extension point. 1130 if (SizeOp0 % NarrowSize != 0) 1131 return UnableToLegalize; 1132 int NumParts = SizeOp0 / NarrowSize; 1133 1134 // List the registers where the destination will be scattered. 1135 SmallVector<Register, 2> DstRegs; 1136 // List the registers where the source will be split. 1137 SmallVector<Register, 2> SrcRegs; 1138 1139 // Create all the temporary registers. 1140 for (int i = 0; i < NumParts; ++i) { 1141 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1142 1143 SrcRegs.push_back(SrcReg); 1144 } 1145 1146 // Explode the big arguments into smaller chunks. 1147 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1148 1149 Register AshrCstReg = 1150 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1151 .getReg(0); 1152 Register FullExtensionReg = 0; 1153 Register PartialExtensionReg = 0; 1154 1155 // Do the operation on each small part. 1156 for (int i = 0; i < NumParts; ++i) { 1157 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1158 DstRegs.push_back(SrcRegs[i]); 1159 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1160 assert(PartialExtensionReg && 1161 "Expected to visit partial extension before full"); 1162 if (FullExtensionReg) { 1163 DstRegs.push_back(FullExtensionReg); 1164 continue; 1165 } 1166 DstRegs.push_back( 1167 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1168 .getReg(0)); 1169 FullExtensionReg = DstRegs.back(); 1170 } else { 1171 DstRegs.push_back( 1172 MIRBuilder 1173 .buildInstr( 1174 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1175 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1176 .getReg(0)); 1177 PartialExtensionReg = DstRegs.back(); 1178 } 1179 } 1180 1181 // Gather the destination registers into the final destination. 1182 Register DstReg = MI.getOperand(0).getReg(); 1183 MIRBuilder.buildMerge(DstReg, DstRegs); 1184 MI.eraseFromParent(); 1185 return Legalized; 1186 } 1187 case TargetOpcode::G_BSWAP: 1188 case TargetOpcode::G_BITREVERSE: { 1189 if (SizeOp0 % NarrowSize != 0) 1190 return UnableToLegalize; 1191 1192 Observer.changingInstr(MI); 1193 SmallVector<Register, 2> SrcRegs, DstRegs; 1194 unsigned NumParts = SizeOp0 / NarrowSize; 1195 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1196 1197 for (unsigned i = 0; i < NumParts; ++i) { 1198 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1199 {SrcRegs[NumParts - 1 - i]}); 1200 DstRegs.push_back(DstPart.getReg(0)); 1201 } 1202 1203 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1204 1205 Observer.changedInstr(MI); 1206 MI.eraseFromParent(); 1207 return Legalized; 1208 } 1209 case TargetOpcode::G_PTR_ADD: 1210 case TargetOpcode::G_PTRMASK: { 1211 if (TypeIdx != 1) 1212 return UnableToLegalize; 1213 Observer.changingInstr(MI); 1214 narrowScalarSrc(MI, NarrowTy, 2); 1215 Observer.changedInstr(MI); 1216 return Legalized; 1217 } 1218 case TargetOpcode::G_FPTOUI: { 1219 if (TypeIdx != 0) 1220 return UnableToLegalize; 1221 Observer.changingInstr(MI); 1222 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1223 Observer.changedInstr(MI); 1224 return Legalized; 1225 } 1226 case TargetOpcode::G_FPTOSI: { 1227 if (TypeIdx != 0) 1228 return UnableToLegalize; 1229 Observer.changingInstr(MI); 1230 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1231 Observer.changedInstr(MI); 1232 return Legalized; 1233 } 1234 case TargetOpcode::G_FPEXT: 1235 if (TypeIdx != 0) 1236 return UnableToLegalize; 1237 Observer.changingInstr(MI); 1238 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 } 1242 } 1243 1244 Register LegalizerHelper::coerceToScalar(Register Val) { 1245 LLT Ty = MRI.getType(Val); 1246 if (Ty.isScalar()) 1247 return Val; 1248 1249 const DataLayout &DL = MIRBuilder.getDataLayout(); 1250 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1251 if (Ty.isPointer()) { 1252 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1253 return Register(); 1254 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1255 } 1256 1257 Register NewVal = Val; 1258 1259 assert(Ty.isVector()); 1260 LLT EltTy = Ty.getElementType(); 1261 if (EltTy.isPointer()) 1262 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1263 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1264 } 1265 1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1267 unsigned OpIdx, unsigned ExtOpcode) { 1268 MachineOperand &MO = MI.getOperand(OpIdx); 1269 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1270 MO.setReg(ExtB.getReg(0)); 1271 } 1272 1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1274 unsigned OpIdx) { 1275 MachineOperand &MO = MI.getOperand(OpIdx); 1276 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1277 MO.setReg(ExtB.getReg(0)); 1278 } 1279 1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1281 unsigned OpIdx, unsigned TruncOpcode) { 1282 MachineOperand &MO = MI.getOperand(OpIdx); 1283 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1284 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1285 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1286 MO.setReg(DstExt); 1287 } 1288 1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1290 unsigned OpIdx, unsigned ExtOpcode) { 1291 MachineOperand &MO = MI.getOperand(OpIdx); 1292 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1293 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1294 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1295 MO.setReg(DstTrunc); 1296 } 1297 1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1299 unsigned OpIdx) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1302 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1303 MIRBuilder.buildExtract(MO, DstExt, 0); 1304 MO.setReg(DstExt); 1305 } 1306 1307 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1308 unsigned OpIdx) { 1309 MachineOperand &MO = MI.getOperand(OpIdx); 1310 1311 LLT OldTy = MRI.getType(MO.getReg()); 1312 unsigned OldElts = OldTy.getNumElements(); 1313 unsigned NewElts = MoreTy.getNumElements(); 1314 1315 unsigned NumParts = NewElts / OldElts; 1316 1317 // Use concat_vectors if the result is a multiple of the number of elements. 1318 if (NumParts * OldElts == NewElts) { 1319 SmallVector<Register, 8> Parts; 1320 Parts.push_back(MO.getReg()); 1321 1322 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1323 for (unsigned I = 1; I != NumParts; ++I) 1324 Parts.push_back(ImpDef); 1325 1326 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1327 MO.setReg(Concat.getReg(0)); 1328 return; 1329 } 1330 1331 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1332 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1333 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1334 MO.setReg(MoreReg); 1335 } 1336 1337 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1338 MachineOperand &Op = MI.getOperand(OpIdx); 1339 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1340 } 1341 1342 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1343 MachineOperand &MO = MI.getOperand(OpIdx); 1344 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1345 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1346 MIRBuilder.buildBitcast(MO, CastDst); 1347 MO.setReg(CastDst); 1348 } 1349 1350 LegalizerHelper::LegalizeResult 1351 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1352 LLT WideTy) { 1353 if (TypeIdx != 1) 1354 return UnableToLegalize; 1355 1356 Register DstReg = MI.getOperand(0).getReg(); 1357 LLT DstTy = MRI.getType(DstReg); 1358 if (DstTy.isVector()) 1359 return UnableToLegalize; 1360 1361 Register Src1 = MI.getOperand(1).getReg(); 1362 LLT SrcTy = MRI.getType(Src1); 1363 const int DstSize = DstTy.getSizeInBits(); 1364 const int SrcSize = SrcTy.getSizeInBits(); 1365 const int WideSize = WideTy.getSizeInBits(); 1366 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1367 1368 unsigned NumOps = MI.getNumOperands(); 1369 unsigned NumSrc = MI.getNumOperands() - 1; 1370 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1371 1372 if (WideSize >= DstSize) { 1373 // Directly pack the bits in the target type. 1374 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1375 1376 for (unsigned I = 2; I != NumOps; ++I) { 1377 const unsigned Offset = (I - 1) * PartSize; 1378 1379 Register SrcReg = MI.getOperand(I).getReg(); 1380 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1381 1382 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1383 1384 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1385 MRI.createGenericVirtualRegister(WideTy); 1386 1387 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1388 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1389 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1390 ResultReg = NextResult; 1391 } 1392 1393 if (WideSize > DstSize) 1394 MIRBuilder.buildTrunc(DstReg, ResultReg); 1395 else if (DstTy.isPointer()) 1396 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1397 1398 MI.eraseFromParent(); 1399 return Legalized; 1400 } 1401 1402 // Unmerge the original values to the GCD type, and recombine to the next 1403 // multiple greater than the original type. 1404 // 1405 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1406 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1407 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1408 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1409 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1410 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1411 // %12:_(s12) = G_MERGE_VALUES %10, %11 1412 // 1413 // Padding with undef if necessary: 1414 // 1415 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1416 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1417 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1418 // %7:_(s2) = G_IMPLICIT_DEF 1419 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1420 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1421 // %10:_(s12) = G_MERGE_VALUES %8, %9 1422 1423 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1424 LLT GCDTy = LLT::scalar(GCD); 1425 1426 SmallVector<Register, 8> Parts; 1427 SmallVector<Register, 8> NewMergeRegs; 1428 SmallVector<Register, 8> Unmerges; 1429 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1430 1431 // Decompose the original operands if they don't evenly divide. 1432 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1433 Register SrcReg = MI.getOperand(I).getReg(); 1434 if (GCD == SrcSize) { 1435 Unmerges.push_back(SrcReg); 1436 } else { 1437 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1438 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1439 Unmerges.push_back(Unmerge.getReg(J)); 1440 } 1441 } 1442 1443 // Pad with undef to the next size that is a multiple of the requested size. 1444 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1445 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1446 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1447 Unmerges.push_back(UndefReg); 1448 } 1449 1450 const int PartsPerGCD = WideSize / GCD; 1451 1452 // Build merges of each piece. 1453 ArrayRef<Register> Slicer(Unmerges); 1454 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1455 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1456 NewMergeRegs.push_back(Merge.getReg(0)); 1457 } 1458 1459 // A truncate may be necessary if the requested type doesn't evenly divide the 1460 // original result type. 1461 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1462 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1463 } else { 1464 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1465 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1466 } 1467 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 1472 LegalizerHelper::LegalizeResult 1473 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1474 LLT WideTy) { 1475 if (TypeIdx != 0) 1476 return UnableToLegalize; 1477 1478 int NumDst = MI.getNumOperands() - 1; 1479 Register SrcReg = MI.getOperand(NumDst).getReg(); 1480 LLT SrcTy = MRI.getType(SrcReg); 1481 if (SrcTy.isVector()) 1482 return UnableToLegalize; 1483 1484 Register Dst0Reg = MI.getOperand(0).getReg(); 1485 LLT DstTy = MRI.getType(Dst0Reg); 1486 if (!DstTy.isScalar()) 1487 return UnableToLegalize; 1488 1489 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1490 if (SrcTy.isPointer()) { 1491 const DataLayout &DL = MIRBuilder.getDataLayout(); 1492 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1493 LLVM_DEBUG( 1494 dbgs() << "Not casting non-integral address space integer\n"); 1495 return UnableToLegalize; 1496 } 1497 1498 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1499 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1500 } 1501 1502 // Widen SrcTy to WideTy. This does not affect the result, but since the 1503 // user requested this size, it is probably better handled than SrcTy and 1504 // should reduce the total number of legalization artifacts 1505 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1506 SrcTy = WideTy; 1507 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1508 } 1509 1510 // Theres no unmerge type to target. Directly extract the bits from the 1511 // source type 1512 unsigned DstSize = DstTy.getSizeInBits(); 1513 1514 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1515 for (int I = 1; I != NumDst; ++I) { 1516 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1517 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1518 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1519 } 1520 1521 MI.eraseFromParent(); 1522 return Legalized; 1523 } 1524 1525 // Extend the source to a wider type. 1526 LLT LCMTy = getLCMType(SrcTy, WideTy); 1527 1528 Register WideSrc = SrcReg; 1529 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1530 // TODO: If this is an integral address space, cast to integer and anyext. 1531 if (SrcTy.isPointer()) { 1532 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1533 return UnableToLegalize; 1534 } 1535 1536 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1537 } 1538 1539 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1540 1541 // Create a sequence of unmerges to the original results. since we may have 1542 // widened the source, we will need to pad the results with dead defs to cover 1543 // the source register. 1544 // e.g. widen s16 to s32: 1545 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1546 // 1547 // => 1548 // %4:_(s64) = G_ANYEXT %0:_(s48) 1549 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1550 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1551 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1552 1553 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1554 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1555 1556 for (int I = 0; I != NumUnmerge; ++I) { 1557 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1558 1559 for (int J = 0; J != PartsPerUnmerge; ++J) { 1560 int Idx = I * PartsPerUnmerge + J; 1561 if (Idx < NumDst) 1562 MIB.addDef(MI.getOperand(Idx).getReg()); 1563 else { 1564 // Create dead def for excess components. 1565 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1566 } 1567 } 1568 1569 MIB.addUse(Unmerge.getReg(I)); 1570 } 1571 1572 MI.eraseFromParent(); 1573 return Legalized; 1574 } 1575 1576 LegalizerHelper::LegalizeResult 1577 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1578 LLT WideTy) { 1579 Register DstReg = MI.getOperand(0).getReg(); 1580 Register SrcReg = MI.getOperand(1).getReg(); 1581 LLT SrcTy = MRI.getType(SrcReg); 1582 1583 LLT DstTy = MRI.getType(DstReg); 1584 unsigned Offset = MI.getOperand(2).getImm(); 1585 1586 if (TypeIdx == 0) { 1587 if (SrcTy.isVector() || DstTy.isVector()) 1588 return UnableToLegalize; 1589 1590 SrcOp Src(SrcReg); 1591 if (SrcTy.isPointer()) { 1592 // Extracts from pointers can be handled only if they are really just 1593 // simple integers. 1594 const DataLayout &DL = MIRBuilder.getDataLayout(); 1595 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1596 return UnableToLegalize; 1597 1598 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1599 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1600 SrcTy = SrcAsIntTy; 1601 } 1602 1603 if (DstTy.isPointer()) 1604 return UnableToLegalize; 1605 1606 if (Offset == 0) { 1607 // Avoid a shift in the degenerate case. 1608 MIRBuilder.buildTrunc(DstReg, 1609 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1610 MI.eraseFromParent(); 1611 return Legalized; 1612 } 1613 1614 // Do a shift in the source type. 1615 LLT ShiftTy = SrcTy; 1616 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1617 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1618 ShiftTy = WideTy; 1619 } 1620 1621 auto LShr = MIRBuilder.buildLShr( 1622 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1623 MIRBuilder.buildTrunc(DstReg, LShr); 1624 MI.eraseFromParent(); 1625 return Legalized; 1626 } 1627 1628 if (SrcTy.isScalar()) { 1629 Observer.changingInstr(MI); 1630 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1631 Observer.changedInstr(MI); 1632 return Legalized; 1633 } 1634 1635 if (!SrcTy.isVector()) 1636 return UnableToLegalize; 1637 1638 if (DstTy != SrcTy.getElementType()) 1639 return UnableToLegalize; 1640 1641 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1642 return UnableToLegalize; 1643 1644 Observer.changingInstr(MI); 1645 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1646 1647 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1648 Offset); 1649 widenScalarDst(MI, WideTy.getScalarType(), 0); 1650 Observer.changedInstr(MI); 1651 return Legalized; 1652 } 1653 1654 LegalizerHelper::LegalizeResult 1655 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1656 LLT WideTy) { 1657 if (TypeIdx != 0 || WideTy.isVector()) 1658 return UnableToLegalize; 1659 Observer.changingInstr(MI); 1660 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1661 widenScalarDst(MI, WideTy); 1662 Observer.changedInstr(MI); 1663 return Legalized; 1664 } 1665 1666 LegalizerHelper::LegalizeResult 1667 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1668 LLT WideTy) { 1669 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1670 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1671 // We can convert this to: 1672 // 1. Any extend iN to iM 1673 // 2. SHL by M-N 1674 // 3. [US][ADD|SUB]SAT 1675 // 4. L/ASHR by M-N 1676 // 1677 // It may be more efficient to lower this to a min and a max operation in 1678 // the higher precision arithmetic if the promoted operation isn't legal, 1679 // but this decision is up to the target's lowering request. 1680 Register DstReg = MI.getOperand(0).getReg(); 1681 1682 unsigned NewBits = WideTy.getScalarSizeInBits(); 1683 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1684 1685 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1686 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1687 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1688 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1689 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1690 1691 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1692 {ShiftL, ShiftR}, MI.getFlags()); 1693 1694 // Use a shift that will preserve the number of sign bits when the trunc is 1695 // folded away. 1696 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1697 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1698 1699 MIRBuilder.buildTrunc(DstReg, Result); 1700 MI.eraseFromParent(); 1701 return Legalized; 1702 } 1703 1704 LegalizerHelper::LegalizeResult 1705 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1706 switch (MI.getOpcode()) { 1707 default: 1708 return UnableToLegalize; 1709 case TargetOpcode::G_EXTRACT: 1710 return widenScalarExtract(MI, TypeIdx, WideTy); 1711 case TargetOpcode::G_INSERT: 1712 return widenScalarInsert(MI, TypeIdx, WideTy); 1713 case TargetOpcode::G_MERGE_VALUES: 1714 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1715 case TargetOpcode::G_UNMERGE_VALUES: 1716 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1717 case TargetOpcode::G_UADDO: 1718 case TargetOpcode::G_USUBO: { 1719 if (TypeIdx == 1) 1720 return UnableToLegalize; // TODO 1721 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1722 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1723 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1724 ? TargetOpcode::G_ADD 1725 : TargetOpcode::G_SUB; 1726 // Do the arithmetic in the larger type. 1727 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1728 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1729 APInt Mask = 1730 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1731 auto AndOp = MIRBuilder.buildAnd( 1732 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1733 // There is no overflow if the AndOp is the same as NewOp. 1734 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1735 // Now trunc the NewOp to the original result. 1736 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1737 MI.eraseFromParent(); 1738 return Legalized; 1739 } 1740 case TargetOpcode::G_SADDSAT: 1741 case TargetOpcode::G_SSUBSAT: 1742 case TargetOpcode::G_UADDSAT: 1743 case TargetOpcode::G_USUBSAT: 1744 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1745 case TargetOpcode::G_CTTZ: 1746 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1747 case TargetOpcode::G_CTLZ: 1748 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1749 case TargetOpcode::G_CTPOP: { 1750 if (TypeIdx == 0) { 1751 Observer.changingInstr(MI); 1752 widenScalarDst(MI, WideTy, 0); 1753 Observer.changedInstr(MI); 1754 return Legalized; 1755 } 1756 1757 Register SrcReg = MI.getOperand(1).getReg(); 1758 1759 // First ZEXT the input. 1760 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1761 LLT CurTy = MRI.getType(SrcReg); 1762 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1763 // The count is the same in the larger type except if the original 1764 // value was zero. This can be handled by setting the bit just off 1765 // the top of the original type. 1766 auto TopBit = 1767 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1768 MIBSrc = MIRBuilder.buildOr( 1769 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1770 } 1771 1772 // Perform the operation at the larger size. 1773 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1774 // This is already the correct result for CTPOP and CTTZs 1775 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1776 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1777 // The correct result is NewOp - (Difference in widety and current ty). 1778 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1779 MIBNewOp = MIRBuilder.buildSub( 1780 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1781 } 1782 1783 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1784 MI.eraseFromParent(); 1785 return Legalized; 1786 } 1787 case TargetOpcode::G_BSWAP: { 1788 Observer.changingInstr(MI); 1789 Register DstReg = MI.getOperand(0).getReg(); 1790 1791 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1792 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1793 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1794 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1795 1796 MI.getOperand(0).setReg(DstExt); 1797 1798 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1799 1800 LLT Ty = MRI.getType(DstReg); 1801 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1802 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1803 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1804 1805 MIRBuilder.buildTrunc(DstReg, ShrReg); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 } 1809 case TargetOpcode::G_BITREVERSE: { 1810 Observer.changingInstr(MI); 1811 1812 Register DstReg = MI.getOperand(0).getReg(); 1813 LLT Ty = MRI.getType(DstReg); 1814 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1815 1816 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1817 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1818 MI.getOperand(0).setReg(DstExt); 1819 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1820 1821 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1822 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1823 MIRBuilder.buildTrunc(DstReg, Shift); 1824 Observer.changedInstr(MI); 1825 return Legalized; 1826 } 1827 case TargetOpcode::G_FREEZE: 1828 Observer.changingInstr(MI); 1829 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1830 widenScalarDst(MI, WideTy); 1831 Observer.changedInstr(MI); 1832 return Legalized; 1833 1834 case TargetOpcode::G_ADD: 1835 case TargetOpcode::G_AND: 1836 case TargetOpcode::G_MUL: 1837 case TargetOpcode::G_OR: 1838 case TargetOpcode::G_XOR: 1839 case TargetOpcode::G_SUB: 1840 // Perform operation at larger width (any extension is fines here, high bits 1841 // don't affect the result) and then truncate the result back to the 1842 // original type. 1843 Observer.changingInstr(MI); 1844 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1845 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1846 widenScalarDst(MI, WideTy); 1847 Observer.changedInstr(MI); 1848 return Legalized; 1849 1850 case TargetOpcode::G_SHL: 1851 Observer.changingInstr(MI); 1852 1853 if (TypeIdx == 0) { 1854 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1855 widenScalarDst(MI, WideTy); 1856 } else { 1857 assert(TypeIdx == 1); 1858 // The "number of bits to shift" operand must preserve its value as an 1859 // unsigned integer: 1860 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1861 } 1862 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 1866 case TargetOpcode::G_SDIV: 1867 case TargetOpcode::G_SREM: 1868 case TargetOpcode::G_SMIN: 1869 case TargetOpcode::G_SMAX: 1870 Observer.changingInstr(MI); 1871 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1872 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1873 widenScalarDst(MI, WideTy); 1874 Observer.changedInstr(MI); 1875 return Legalized; 1876 1877 case TargetOpcode::G_ASHR: 1878 case TargetOpcode::G_LSHR: 1879 Observer.changingInstr(MI); 1880 1881 if (TypeIdx == 0) { 1882 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1883 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1884 1885 widenScalarSrc(MI, WideTy, 1, CvtOp); 1886 widenScalarDst(MI, WideTy); 1887 } else { 1888 assert(TypeIdx == 1); 1889 // The "number of bits to shift" operand must preserve its value as an 1890 // unsigned integer: 1891 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1892 } 1893 1894 Observer.changedInstr(MI); 1895 return Legalized; 1896 case TargetOpcode::G_UDIV: 1897 case TargetOpcode::G_UREM: 1898 case TargetOpcode::G_UMIN: 1899 case TargetOpcode::G_UMAX: 1900 Observer.changingInstr(MI); 1901 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1902 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1903 widenScalarDst(MI, WideTy); 1904 Observer.changedInstr(MI); 1905 return Legalized; 1906 1907 case TargetOpcode::G_SELECT: 1908 Observer.changingInstr(MI); 1909 if (TypeIdx == 0) { 1910 // Perform operation at larger width (any extension is fine here, high 1911 // bits don't affect the result) and then truncate the result back to the 1912 // original type. 1913 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1914 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1915 widenScalarDst(MI, WideTy); 1916 } else { 1917 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1918 // Explicit extension is required here since high bits affect the result. 1919 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1920 } 1921 Observer.changedInstr(MI); 1922 return Legalized; 1923 1924 case TargetOpcode::G_FPTOSI: 1925 case TargetOpcode::G_FPTOUI: 1926 Observer.changingInstr(MI); 1927 1928 if (TypeIdx == 0) 1929 widenScalarDst(MI, WideTy); 1930 else 1931 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1932 1933 Observer.changedInstr(MI); 1934 return Legalized; 1935 case TargetOpcode::G_SITOFP: 1936 Observer.changingInstr(MI); 1937 1938 if (TypeIdx == 0) 1939 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1940 else 1941 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1942 1943 Observer.changedInstr(MI); 1944 return Legalized; 1945 case TargetOpcode::G_UITOFP: 1946 Observer.changingInstr(MI); 1947 1948 if (TypeIdx == 0) 1949 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1950 else 1951 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1952 1953 Observer.changedInstr(MI); 1954 return Legalized; 1955 case TargetOpcode::G_LOAD: 1956 case TargetOpcode::G_SEXTLOAD: 1957 case TargetOpcode::G_ZEXTLOAD: 1958 Observer.changingInstr(MI); 1959 widenScalarDst(MI, WideTy); 1960 Observer.changedInstr(MI); 1961 return Legalized; 1962 1963 case TargetOpcode::G_STORE: { 1964 if (TypeIdx != 0) 1965 return UnableToLegalize; 1966 1967 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1968 if (!isPowerOf2_32(Ty.getSizeInBits())) 1969 return UnableToLegalize; 1970 1971 Observer.changingInstr(MI); 1972 1973 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1974 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1975 widenScalarSrc(MI, WideTy, 0, ExtType); 1976 1977 Observer.changedInstr(MI); 1978 return Legalized; 1979 } 1980 case TargetOpcode::G_CONSTANT: { 1981 MachineOperand &SrcMO = MI.getOperand(1); 1982 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1983 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1984 MRI.getType(MI.getOperand(0).getReg())); 1985 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1986 ExtOpc == TargetOpcode::G_ANYEXT) && 1987 "Illegal Extend"); 1988 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1989 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1990 ? SrcVal.sext(WideTy.getSizeInBits()) 1991 : SrcVal.zext(WideTy.getSizeInBits()); 1992 Observer.changingInstr(MI); 1993 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1994 1995 widenScalarDst(MI, WideTy); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 } 1999 case TargetOpcode::G_FCONSTANT: { 2000 MachineOperand &SrcMO = MI.getOperand(1); 2001 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2002 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2003 bool LosesInfo; 2004 switch (WideTy.getSizeInBits()) { 2005 case 32: 2006 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2007 &LosesInfo); 2008 break; 2009 case 64: 2010 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2011 &LosesInfo); 2012 break; 2013 default: 2014 return UnableToLegalize; 2015 } 2016 2017 assert(!LosesInfo && "extend should always be lossless"); 2018 2019 Observer.changingInstr(MI); 2020 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2021 2022 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2023 Observer.changedInstr(MI); 2024 return Legalized; 2025 } 2026 case TargetOpcode::G_IMPLICIT_DEF: { 2027 Observer.changingInstr(MI); 2028 widenScalarDst(MI, WideTy); 2029 Observer.changedInstr(MI); 2030 return Legalized; 2031 } 2032 case TargetOpcode::G_BRCOND: 2033 Observer.changingInstr(MI); 2034 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 2038 case TargetOpcode::G_FCMP: 2039 Observer.changingInstr(MI); 2040 if (TypeIdx == 0) 2041 widenScalarDst(MI, WideTy); 2042 else { 2043 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2044 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2045 } 2046 Observer.changedInstr(MI); 2047 return Legalized; 2048 2049 case TargetOpcode::G_ICMP: 2050 Observer.changingInstr(MI); 2051 if (TypeIdx == 0) 2052 widenScalarDst(MI, WideTy); 2053 else { 2054 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2055 MI.getOperand(1).getPredicate())) 2056 ? TargetOpcode::G_SEXT 2057 : TargetOpcode::G_ZEXT; 2058 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2059 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2060 } 2061 Observer.changedInstr(MI); 2062 return Legalized; 2063 2064 case TargetOpcode::G_PTR_ADD: 2065 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2066 Observer.changingInstr(MI); 2067 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2068 Observer.changedInstr(MI); 2069 return Legalized; 2070 2071 case TargetOpcode::G_PHI: { 2072 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2073 2074 Observer.changingInstr(MI); 2075 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2076 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2077 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2078 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2079 } 2080 2081 MachineBasicBlock &MBB = *MI.getParent(); 2082 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2083 widenScalarDst(MI, WideTy); 2084 Observer.changedInstr(MI); 2085 return Legalized; 2086 } 2087 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2088 if (TypeIdx == 0) { 2089 Register VecReg = MI.getOperand(1).getReg(); 2090 LLT VecTy = MRI.getType(VecReg); 2091 Observer.changingInstr(MI); 2092 2093 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2094 WideTy.getSizeInBits()), 2095 1, TargetOpcode::G_SEXT); 2096 2097 widenScalarDst(MI, WideTy, 0); 2098 Observer.changedInstr(MI); 2099 return Legalized; 2100 } 2101 2102 if (TypeIdx != 2) 2103 return UnableToLegalize; 2104 Observer.changingInstr(MI); 2105 // TODO: Probably should be zext 2106 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2107 Observer.changedInstr(MI); 2108 return Legalized; 2109 } 2110 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2111 if (TypeIdx == 1) { 2112 Observer.changingInstr(MI); 2113 2114 Register VecReg = MI.getOperand(1).getReg(); 2115 LLT VecTy = MRI.getType(VecReg); 2116 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2117 2118 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2119 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2120 widenScalarDst(MI, WideVecTy, 0); 2121 Observer.changedInstr(MI); 2122 return Legalized; 2123 } 2124 2125 if (TypeIdx == 2) { 2126 Observer.changingInstr(MI); 2127 // TODO: Probably should be zext 2128 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2129 Observer.changedInstr(MI); 2130 return Legalized; 2131 } 2132 2133 return UnableToLegalize; 2134 } 2135 case TargetOpcode::G_FADD: 2136 case TargetOpcode::G_FMUL: 2137 case TargetOpcode::G_FSUB: 2138 case TargetOpcode::G_FMA: 2139 case TargetOpcode::G_FMAD: 2140 case TargetOpcode::G_FNEG: 2141 case TargetOpcode::G_FABS: 2142 case TargetOpcode::G_FCANONICALIZE: 2143 case TargetOpcode::G_FMINNUM: 2144 case TargetOpcode::G_FMAXNUM: 2145 case TargetOpcode::G_FMINNUM_IEEE: 2146 case TargetOpcode::G_FMAXNUM_IEEE: 2147 case TargetOpcode::G_FMINIMUM: 2148 case TargetOpcode::G_FMAXIMUM: 2149 case TargetOpcode::G_FDIV: 2150 case TargetOpcode::G_FREM: 2151 case TargetOpcode::G_FCEIL: 2152 case TargetOpcode::G_FFLOOR: 2153 case TargetOpcode::G_FCOS: 2154 case TargetOpcode::G_FSIN: 2155 case TargetOpcode::G_FLOG10: 2156 case TargetOpcode::G_FLOG: 2157 case TargetOpcode::G_FLOG2: 2158 case TargetOpcode::G_FRINT: 2159 case TargetOpcode::G_FNEARBYINT: 2160 case TargetOpcode::G_FSQRT: 2161 case TargetOpcode::G_FEXP: 2162 case TargetOpcode::G_FEXP2: 2163 case TargetOpcode::G_FPOW: 2164 case TargetOpcode::G_INTRINSIC_TRUNC: 2165 case TargetOpcode::G_INTRINSIC_ROUND: 2166 assert(TypeIdx == 0); 2167 Observer.changingInstr(MI); 2168 2169 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2170 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2171 2172 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2173 Observer.changedInstr(MI); 2174 return Legalized; 2175 case TargetOpcode::G_FPOWI: { 2176 if (TypeIdx != 0) 2177 return UnableToLegalize; 2178 Observer.changingInstr(MI); 2179 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2180 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2181 Observer.changedInstr(MI); 2182 return Legalized; 2183 } 2184 case TargetOpcode::G_INTTOPTR: 2185 if (TypeIdx != 1) 2186 return UnableToLegalize; 2187 2188 Observer.changingInstr(MI); 2189 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2190 Observer.changedInstr(MI); 2191 return Legalized; 2192 case TargetOpcode::G_PTRTOINT: 2193 if (TypeIdx != 0) 2194 return UnableToLegalize; 2195 2196 Observer.changingInstr(MI); 2197 widenScalarDst(MI, WideTy, 0); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 case TargetOpcode::G_BUILD_VECTOR: { 2201 Observer.changingInstr(MI); 2202 2203 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2204 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2205 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2206 2207 // Avoid changing the result vector type if the source element type was 2208 // requested. 2209 if (TypeIdx == 1) { 2210 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2211 } else { 2212 widenScalarDst(MI, WideTy, 0); 2213 } 2214 2215 Observer.changedInstr(MI); 2216 return Legalized; 2217 } 2218 case TargetOpcode::G_SEXT_INREG: 2219 if (TypeIdx != 0) 2220 return UnableToLegalize; 2221 2222 Observer.changingInstr(MI); 2223 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2224 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 case TargetOpcode::G_PTRMASK: { 2228 if (TypeIdx != 1) 2229 return UnableToLegalize; 2230 Observer.changingInstr(MI); 2231 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2232 Observer.changedInstr(MI); 2233 return Legalized; 2234 } 2235 } 2236 } 2237 2238 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2239 MachineIRBuilder &B, Register Src, LLT Ty) { 2240 auto Unmerge = B.buildUnmerge(Ty, Src); 2241 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2242 Pieces.push_back(Unmerge.getReg(I)); 2243 } 2244 2245 LegalizerHelper::LegalizeResult 2246 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2247 Register Dst = MI.getOperand(0).getReg(); 2248 Register Src = MI.getOperand(1).getReg(); 2249 LLT DstTy = MRI.getType(Dst); 2250 LLT SrcTy = MRI.getType(Src); 2251 2252 if (SrcTy.isVector()) { 2253 LLT SrcEltTy = SrcTy.getElementType(); 2254 SmallVector<Register, 8> SrcRegs; 2255 2256 if (DstTy.isVector()) { 2257 int NumDstElt = DstTy.getNumElements(); 2258 int NumSrcElt = SrcTy.getNumElements(); 2259 2260 LLT DstEltTy = DstTy.getElementType(); 2261 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2262 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2263 2264 // If there's an element size mismatch, insert intermediate casts to match 2265 // the result element type. 2266 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2267 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2268 // 2269 // => 2270 // 2271 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2272 // %3:_(<2 x s8>) = G_BITCAST %2 2273 // %4:_(<2 x s8>) = G_BITCAST %3 2274 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2275 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2276 SrcPartTy = SrcEltTy; 2277 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2278 // 2279 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2280 // 2281 // => 2282 // 2283 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2284 // %3:_(s16) = G_BITCAST %2 2285 // %4:_(s16) = G_BITCAST %3 2286 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2287 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2288 DstCastTy = DstEltTy; 2289 } 2290 2291 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2292 for (Register &SrcReg : SrcRegs) 2293 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2294 } else 2295 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2296 2297 MIRBuilder.buildMerge(Dst, SrcRegs); 2298 MI.eraseFromParent(); 2299 return Legalized; 2300 } 2301 2302 if (DstTy.isVector()) { 2303 SmallVector<Register, 8> SrcRegs; 2304 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2305 MIRBuilder.buildMerge(Dst, SrcRegs); 2306 MI.eraseFromParent(); 2307 return Legalized; 2308 } 2309 2310 return UnableToLegalize; 2311 } 2312 2313 LegalizerHelper::LegalizeResult 2314 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2315 switch (MI.getOpcode()) { 2316 case TargetOpcode::G_LOAD: { 2317 if (TypeIdx != 0) 2318 return UnableToLegalize; 2319 2320 Observer.changingInstr(MI); 2321 bitcastDst(MI, CastTy, 0); 2322 Observer.changedInstr(MI); 2323 return Legalized; 2324 } 2325 case TargetOpcode::G_STORE: { 2326 if (TypeIdx != 0) 2327 return UnableToLegalize; 2328 2329 Observer.changingInstr(MI); 2330 bitcastSrc(MI, CastTy, 0); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 } 2334 case TargetOpcode::G_SELECT: { 2335 if (TypeIdx != 0) 2336 return UnableToLegalize; 2337 2338 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2339 LLVM_DEBUG( 2340 dbgs() << "bitcast action not implemented for vector select\n"); 2341 return UnableToLegalize; 2342 } 2343 2344 Observer.changingInstr(MI); 2345 bitcastSrc(MI, CastTy, 2); 2346 bitcastSrc(MI, CastTy, 3); 2347 bitcastDst(MI, CastTy, 0); 2348 Observer.changedInstr(MI); 2349 return Legalized; 2350 } 2351 case TargetOpcode::G_AND: 2352 case TargetOpcode::G_OR: 2353 case TargetOpcode::G_XOR: { 2354 Observer.changingInstr(MI); 2355 bitcastSrc(MI, CastTy, 1); 2356 bitcastSrc(MI, CastTy, 2); 2357 bitcastDst(MI, CastTy, 0); 2358 Observer.changedInstr(MI); 2359 return Legalized; 2360 } 2361 default: 2362 return UnableToLegalize; 2363 } 2364 } 2365 2366 LegalizerHelper::LegalizeResult 2367 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2368 using namespace TargetOpcode; 2369 2370 switch(MI.getOpcode()) { 2371 default: 2372 return UnableToLegalize; 2373 case TargetOpcode::G_BITCAST: 2374 return lowerBitcast(MI); 2375 case TargetOpcode::G_SREM: 2376 case TargetOpcode::G_UREM: { 2377 auto Quot = 2378 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2379 {MI.getOperand(1), MI.getOperand(2)}); 2380 2381 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2382 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2383 MI.eraseFromParent(); 2384 return Legalized; 2385 } 2386 case TargetOpcode::G_SADDO: 2387 case TargetOpcode::G_SSUBO: 2388 return lowerSADDO_SSUBO(MI); 2389 case TargetOpcode::G_SMULO: 2390 case TargetOpcode::G_UMULO: { 2391 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2392 // result. 2393 Register Res = MI.getOperand(0).getReg(); 2394 Register Overflow = MI.getOperand(1).getReg(); 2395 Register LHS = MI.getOperand(2).getReg(); 2396 Register RHS = MI.getOperand(3).getReg(); 2397 2398 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2399 ? TargetOpcode::G_SMULH 2400 : TargetOpcode::G_UMULH; 2401 2402 Observer.changingInstr(MI); 2403 const auto &TII = MIRBuilder.getTII(); 2404 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2405 MI.RemoveOperand(1); 2406 Observer.changedInstr(MI); 2407 2408 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2409 2410 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2411 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2412 2413 // For *signed* multiply, overflow is detected by checking: 2414 // (hi != (lo >> bitwidth-1)) 2415 if (Opcode == TargetOpcode::G_SMULH) { 2416 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2417 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2418 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2419 } else { 2420 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2421 } 2422 return Legalized; 2423 } 2424 case TargetOpcode::G_FNEG: { 2425 // TODO: Handle vector types once we are able to 2426 // represent them. 2427 if (Ty.isVector()) 2428 return UnableToLegalize; 2429 Register Res = MI.getOperand(0).getReg(); 2430 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2431 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2432 if (!ZeroTy) 2433 return UnableToLegalize; 2434 ConstantFP &ZeroForNegation = 2435 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2436 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2437 Register SubByReg = MI.getOperand(1).getReg(); 2438 Register ZeroReg = Zero.getReg(0); 2439 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2440 MI.eraseFromParent(); 2441 return Legalized; 2442 } 2443 case TargetOpcode::G_FSUB: { 2444 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2445 // First, check if G_FNEG is marked as Lower. If so, we may 2446 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2447 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2448 return UnableToLegalize; 2449 Register Res = MI.getOperand(0).getReg(); 2450 Register LHS = MI.getOperand(1).getReg(); 2451 Register RHS = MI.getOperand(2).getReg(); 2452 Register Neg = MRI.createGenericVirtualRegister(Ty); 2453 MIRBuilder.buildFNeg(Neg, RHS); 2454 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2455 MI.eraseFromParent(); 2456 return Legalized; 2457 } 2458 case TargetOpcode::G_FMAD: 2459 return lowerFMad(MI); 2460 case TargetOpcode::G_FFLOOR: 2461 return lowerFFloor(MI); 2462 case TargetOpcode::G_INTRINSIC_ROUND: 2463 return lowerIntrinsicRound(MI); 2464 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2465 Register OldValRes = MI.getOperand(0).getReg(); 2466 Register SuccessRes = MI.getOperand(1).getReg(); 2467 Register Addr = MI.getOperand(2).getReg(); 2468 Register CmpVal = MI.getOperand(3).getReg(); 2469 Register NewVal = MI.getOperand(4).getReg(); 2470 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2471 **MI.memoperands_begin()); 2472 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2473 MI.eraseFromParent(); 2474 return Legalized; 2475 } 2476 case TargetOpcode::G_LOAD: 2477 case TargetOpcode::G_SEXTLOAD: 2478 case TargetOpcode::G_ZEXTLOAD: { 2479 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2480 Register DstReg = MI.getOperand(0).getReg(); 2481 Register PtrReg = MI.getOperand(1).getReg(); 2482 LLT DstTy = MRI.getType(DstReg); 2483 auto &MMO = **MI.memoperands_begin(); 2484 2485 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2486 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2487 // This load needs splitting into power of 2 sized loads. 2488 if (DstTy.isVector()) 2489 return UnableToLegalize; 2490 if (isPowerOf2_32(DstTy.getSizeInBits())) 2491 return UnableToLegalize; // Don't know what we're being asked to do. 2492 2493 // Our strategy here is to generate anyextending loads for the smaller 2494 // types up to next power-2 result type, and then combine the two larger 2495 // result values together, before truncating back down to the non-pow-2 2496 // type. 2497 // E.g. v1 = i24 load => 2498 // v2 = i32 zextload (2 byte) 2499 // v3 = i32 load (1 byte) 2500 // v4 = i32 shl v3, 16 2501 // v5 = i32 or v4, v2 2502 // v1 = i24 trunc v5 2503 // By doing this we generate the correct truncate which should get 2504 // combined away as an artifact with a matching extend. 2505 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2506 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2507 2508 MachineFunction &MF = MIRBuilder.getMF(); 2509 MachineMemOperand *LargeMMO = 2510 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2511 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2512 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2513 2514 LLT PtrTy = MRI.getType(PtrReg); 2515 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2516 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2517 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2518 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2519 auto LargeLoad = MIRBuilder.buildLoadInstr( 2520 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2521 2522 auto OffsetCst = MIRBuilder.buildConstant( 2523 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2524 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2525 auto SmallPtr = 2526 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2527 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2528 *SmallMMO); 2529 2530 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2531 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2532 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2533 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2534 MI.eraseFromParent(); 2535 return Legalized; 2536 } 2537 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2538 MI.eraseFromParent(); 2539 return Legalized; 2540 } 2541 2542 if (DstTy.isScalar()) { 2543 Register TmpReg = 2544 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2545 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2546 switch (MI.getOpcode()) { 2547 default: 2548 llvm_unreachable("Unexpected opcode"); 2549 case TargetOpcode::G_LOAD: 2550 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2551 break; 2552 case TargetOpcode::G_SEXTLOAD: 2553 MIRBuilder.buildSExt(DstReg, TmpReg); 2554 break; 2555 case TargetOpcode::G_ZEXTLOAD: 2556 MIRBuilder.buildZExt(DstReg, TmpReg); 2557 break; 2558 } 2559 MI.eraseFromParent(); 2560 return Legalized; 2561 } 2562 2563 return UnableToLegalize; 2564 } 2565 case TargetOpcode::G_STORE: { 2566 // Lower a non-power of 2 store into multiple pow-2 stores. 2567 // E.g. split an i24 store into an i16 store + i8 store. 2568 // We do this by first extending the stored value to the next largest power 2569 // of 2 type, and then using truncating stores to store the components. 2570 // By doing this, likewise with G_LOAD, generate an extend that can be 2571 // artifact-combined away instead of leaving behind extracts. 2572 Register SrcReg = MI.getOperand(0).getReg(); 2573 Register PtrReg = MI.getOperand(1).getReg(); 2574 LLT SrcTy = MRI.getType(SrcReg); 2575 MachineMemOperand &MMO = **MI.memoperands_begin(); 2576 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2577 return UnableToLegalize; 2578 if (SrcTy.isVector()) 2579 return UnableToLegalize; 2580 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2581 return UnableToLegalize; // Don't know what we're being asked to do. 2582 2583 // Extend to the next pow-2. 2584 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2585 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2586 2587 // Obtain the smaller value by shifting away the larger value. 2588 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2589 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2590 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2591 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2592 2593 // Generate the PtrAdd and truncating stores. 2594 LLT PtrTy = MRI.getType(PtrReg); 2595 auto OffsetCst = MIRBuilder.buildConstant( 2596 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2597 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2598 auto SmallPtr = 2599 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2600 2601 MachineFunction &MF = MIRBuilder.getMF(); 2602 MachineMemOperand *LargeMMO = 2603 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2604 MachineMemOperand *SmallMMO = 2605 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2606 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2607 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2608 MI.eraseFromParent(); 2609 return Legalized; 2610 } 2611 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2612 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2613 case TargetOpcode::G_CTLZ: 2614 case TargetOpcode::G_CTTZ: 2615 case TargetOpcode::G_CTPOP: 2616 return lowerBitCount(MI, TypeIdx, Ty); 2617 case G_UADDO: { 2618 Register Res = MI.getOperand(0).getReg(); 2619 Register CarryOut = MI.getOperand(1).getReg(); 2620 Register LHS = MI.getOperand(2).getReg(); 2621 Register RHS = MI.getOperand(3).getReg(); 2622 2623 MIRBuilder.buildAdd(Res, LHS, RHS); 2624 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2625 2626 MI.eraseFromParent(); 2627 return Legalized; 2628 } 2629 case G_UADDE: { 2630 Register Res = MI.getOperand(0).getReg(); 2631 Register CarryOut = MI.getOperand(1).getReg(); 2632 Register LHS = MI.getOperand(2).getReg(); 2633 Register RHS = MI.getOperand(3).getReg(); 2634 Register CarryIn = MI.getOperand(4).getReg(); 2635 LLT Ty = MRI.getType(Res); 2636 2637 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2638 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2639 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2640 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2641 2642 MI.eraseFromParent(); 2643 return Legalized; 2644 } 2645 case G_USUBO: { 2646 Register Res = MI.getOperand(0).getReg(); 2647 Register BorrowOut = MI.getOperand(1).getReg(); 2648 Register LHS = MI.getOperand(2).getReg(); 2649 Register RHS = MI.getOperand(3).getReg(); 2650 2651 MIRBuilder.buildSub(Res, LHS, RHS); 2652 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2653 2654 MI.eraseFromParent(); 2655 return Legalized; 2656 } 2657 case G_USUBE: { 2658 Register Res = MI.getOperand(0).getReg(); 2659 Register BorrowOut = MI.getOperand(1).getReg(); 2660 Register LHS = MI.getOperand(2).getReg(); 2661 Register RHS = MI.getOperand(3).getReg(); 2662 Register BorrowIn = MI.getOperand(4).getReg(); 2663 const LLT CondTy = MRI.getType(BorrowOut); 2664 const LLT Ty = MRI.getType(Res); 2665 2666 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2667 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2668 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2669 2670 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2671 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2672 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2673 2674 MI.eraseFromParent(); 2675 return Legalized; 2676 } 2677 case G_UITOFP: 2678 return lowerUITOFP(MI, TypeIdx, Ty); 2679 case G_SITOFP: 2680 return lowerSITOFP(MI, TypeIdx, Ty); 2681 case G_FPTOUI: 2682 return lowerFPTOUI(MI, TypeIdx, Ty); 2683 case G_FPTOSI: 2684 return lowerFPTOSI(MI); 2685 case G_FPTRUNC: 2686 return lowerFPTRUNC(MI, TypeIdx, Ty); 2687 case G_FPOWI: 2688 return lowerFPOWI(MI); 2689 case G_SMIN: 2690 case G_SMAX: 2691 case G_UMIN: 2692 case G_UMAX: 2693 return lowerMinMax(MI, TypeIdx, Ty); 2694 case G_FCOPYSIGN: 2695 return lowerFCopySign(MI, TypeIdx, Ty); 2696 case G_FMINNUM: 2697 case G_FMAXNUM: 2698 return lowerFMinNumMaxNum(MI); 2699 case G_MERGE_VALUES: 2700 return lowerMergeValues(MI); 2701 case G_UNMERGE_VALUES: 2702 return lowerUnmergeValues(MI); 2703 case TargetOpcode::G_SEXT_INREG: { 2704 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2705 int64_t SizeInBits = MI.getOperand(2).getImm(); 2706 2707 Register DstReg = MI.getOperand(0).getReg(); 2708 Register SrcReg = MI.getOperand(1).getReg(); 2709 LLT DstTy = MRI.getType(DstReg); 2710 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2711 2712 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2713 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2714 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2715 MI.eraseFromParent(); 2716 return Legalized; 2717 } 2718 case G_EXTRACT_VECTOR_ELT: 2719 return lowerExtractVectorElt(MI); 2720 case G_SHUFFLE_VECTOR: 2721 return lowerShuffleVector(MI); 2722 case G_DYN_STACKALLOC: 2723 return lowerDynStackAlloc(MI); 2724 case G_EXTRACT: 2725 return lowerExtract(MI); 2726 case G_INSERT: 2727 return lowerInsert(MI); 2728 case G_BSWAP: 2729 return lowerBswap(MI); 2730 case G_BITREVERSE: 2731 return lowerBitreverse(MI); 2732 case G_READ_REGISTER: 2733 case G_WRITE_REGISTER: 2734 return lowerReadWriteRegister(MI); 2735 case G_UADDSAT: 2736 case G_USUBSAT: { 2737 // Try to make a reasonable guess about which lowering strategy to use. The 2738 // target can override this with custom lowering and calling the 2739 // implementation functions. 2740 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2741 if (LI.isLegalOrCustom({G_UMIN, Ty})) 2742 return lowerAddSubSatToMinMax(MI); 2743 return lowerAddSubSatToAddoSubo(MI); 2744 } 2745 case G_SADDSAT: 2746 case G_SSUBSAT: { 2747 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2748 2749 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 2750 // since it's a shorter expansion. However, we would need to figure out the 2751 // preferred boolean type for the carry out for the query. 2752 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 2753 return lowerAddSubSatToMinMax(MI); 2754 return lowerAddSubSatToAddoSubo(MI); 2755 } 2756 } 2757 } 2758 2759 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 2760 Align MinAlign) const { 2761 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 2762 // datalayout for the preferred alignment. Also there should be a target hook 2763 // for this to allow targets to reduce the alignment and ignore the 2764 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 2765 // the type. 2766 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 2767 } 2768 2769 MachineInstrBuilder 2770 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 2771 MachinePointerInfo &PtrInfo) { 2772 MachineFunction &MF = MIRBuilder.getMF(); 2773 const DataLayout &DL = MIRBuilder.getDataLayout(); 2774 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 2775 2776 unsigned AddrSpace = DL.getAllocaAddrSpace(); 2777 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 2778 2779 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 2780 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 2781 } 2782 2783 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 2784 LLT VecTy) { 2785 int64_t IdxVal; 2786 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 2787 return IdxReg; 2788 2789 LLT IdxTy = B.getMRI()->getType(IdxReg); 2790 unsigned NElts = VecTy.getNumElements(); 2791 if (isPowerOf2_32(NElts)) { 2792 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 2793 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 2794 } 2795 2796 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 2797 .getReg(0); 2798 } 2799 2800 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 2801 Register Index) { 2802 LLT EltTy = VecTy.getElementType(); 2803 2804 // Calculate the element offset and add it to the pointer. 2805 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 2806 assert(EltSize * 8 == EltTy.getSizeInBits() && 2807 "Converting bits to bytes lost precision"); 2808 2809 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 2810 2811 LLT IdxTy = MRI.getType(Index); 2812 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 2813 MIRBuilder.buildConstant(IdxTy, EltSize)); 2814 2815 LLT PtrTy = MRI.getType(VecPtr); 2816 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 2817 } 2818 2819 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2820 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2821 SmallVector<Register, 2> DstRegs; 2822 2823 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2824 Register DstReg = MI.getOperand(0).getReg(); 2825 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2826 int NumParts = Size / NarrowSize; 2827 // FIXME: Don't know how to handle the situation where the small vectors 2828 // aren't all the same size yet. 2829 if (Size % NarrowSize != 0) 2830 return UnableToLegalize; 2831 2832 for (int i = 0; i < NumParts; ++i) { 2833 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2834 MIRBuilder.buildUndef(TmpReg); 2835 DstRegs.push_back(TmpReg); 2836 } 2837 2838 if (NarrowTy.isVector()) 2839 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2840 else 2841 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2842 2843 MI.eraseFromParent(); 2844 return Legalized; 2845 } 2846 2847 // Handle splitting vector operations which need to have the same number of 2848 // elements in each type index, but each type index may have a different element 2849 // type. 2850 // 2851 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2852 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2853 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2854 // 2855 // Also handles some irregular breakdown cases, e.g. 2856 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2857 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2858 // s64 = G_SHL s64, s32 2859 LegalizerHelper::LegalizeResult 2860 LegalizerHelper::fewerElementsVectorMultiEltType( 2861 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2862 if (TypeIdx != 0) 2863 return UnableToLegalize; 2864 2865 const LLT NarrowTy0 = NarrowTyArg; 2866 const unsigned NewNumElts = 2867 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2868 2869 const Register DstReg = MI.getOperand(0).getReg(); 2870 LLT DstTy = MRI.getType(DstReg); 2871 LLT LeftoverTy0; 2872 2873 // All of the operands need to have the same number of elements, so if we can 2874 // determine a type breakdown for the result type, we can for all of the 2875 // source types. 2876 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2877 if (NumParts < 0) 2878 return UnableToLegalize; 2879 2880 SmallVector<MachineInstrBuilder, 4> NewInsts; 2881 2882 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2883 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2884 2885 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2886 Register SrcReg = MI.getOperand(I).getReg(); 2887 LLT SrcTyI = MRI.getType(SrcReg); 2888 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2889 LLT LeftoverTyI; 2890 2891 // Split this operand into the requested typed registers, and any leftover 2892 // required to reproduce the original type. 2893 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2894 LeftoverRegs)) 2895 return UnableToLegalize; 2896 2897 if (I == 1) { 2898 // For the first operand, create an instruction for each part and setup 2899 // the result. 2900 for (Register PartReg : PartRegs) { 2901 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2902 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2903 .addDef(PartDstReg) 2904 .addUse(PartReg)); 2905 DstRegs.push_back(PartDstReg); 2906 } 2907 2908 for (Register LeftoverReg : LeftoverRegs) { 2909 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2910 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2911 .addDef(PartDstReg) 2912 .addUse(LeftoverReg)); 2913 LeftoverDstRegs.push_back(PartDstReg); 2914 } 2915 } else { 2916 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2917 2918 // Add the newly created operand splits to the existing instructions. The 2919 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2920 // pieces. 2921 unsigned InstCount = 0; 2922 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2923 NewInsts[InstCount++].addUse(PartRegs[J]); 2924 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2925 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2926 } 2927 2928 PartRegs.clear(); 2929 LeftoverRegs.clear(); 2930 } 2931 2932 // Insert the newly built operations and rebuild the result register. 2933 for (auto &MIB : NewInsts) 2934 MIRBuilder.insertInstr(MIB); 2935 2936 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2937 2938 MI.eraseFromParent(); 2939 return Legalized; 2940 } 2941 2942 LegalizerHelper::LegalizeResult 2943 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2944 LLT NarrowTy) { 2945 if (TypeIdx != 0) 2946 return UnableToLegalize; 2947 2948 Register DstReg = MI.getOperand(0).getReg(); 2949 Register SrcReg = MI.getOperand(1).getReg(); 2950 LLT DstTy = MRI.getType(DstReg); 2951 LLT SrcTy = MRI.getType(SrcReg); 2952 2953 LLT NarrowTy0 = NarrowTy; 2954 LLT NarrowTy1; 2955 unsigned NumParts; 2956 2957 if (NarrowTy.isVector()) { 2958 // Uneven breakdown not handled. 2959 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2960 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2961 return UnableToLegalize; 2962 2963 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2964 } else { 2965 NumParts = DstTy.getNumElements(); 2966 NarrowTy1 = SrcTy.getElementType(); 2967 } 2968 2969 SmallVector<Register, 4> SrcRegs, DstRegs; 2970 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2971 2972 for (unsigned I = 0; I < NumParts; ++I) { 2973 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2974 MachineInstr *NewInst = 2975 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2976 2977 NewInst->setFlags(MI.getFlags()); 2978 DstRegs.push_back(DstReg); 2979 } 2980 2981 if (NarrowTy.isVector()) 2982 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2983 else 2984 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2985 2986 MI.eraseFromParent(); 2987 return Legalized; 2988 } 2989 2990 LegalizerHelper::LegalizeResult 2991 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2992 LLT NarrowTy) { 2993 Register DstReg = MI.getOperand(0).getReg(); 2994 Register Src0Reg = MI.getOperand(2).getReg(); 2995 LLT DstTy = MRI.getType(DstReg); 2996 LLT SrcTy = MRI.getType(Src0Reg); 2997 2998 unsigned NumParts; 2999 LLT NarrowTy0, NarrowTy1; 3000 3001 if (TypeIdx == 0) { 3002 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3003 unsigned OldElts = DstTy.getNumElements(); 3004 3005 NarrowTy0 = NarrowTy; 3006 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3007 NarrowTy1 = NarrowTy.isVector() ? 3008 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3009 SrcTy.getElementType(); 3010 3011 } else { 3012 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3013 unsigned OldElts = SrcTy.getNumElements(); 3014 3015 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3016 NarrowTy.getNumElements(); 3017 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3018 DstTy.getScalarSizeInBits()); 3019 NarrowTy1 = NarrowTy; 3020 } 3021 3022 // FIXME: Don't know how to handle the situation where the small vectors 3023 // aren't all the same size yet. 3024 if (NarrowTy1.isVector() && 3025 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3026 return UnableToLegalize; 3027 3028 CmpInst::Predicate Pred 3029 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3030 3031 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3032 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3033 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3034 3035 for (unsigned I = 0; I < NumParts; ++I) { 3036 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3037 DstRegs.push_back(DstReg); 3038 3039 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3040 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3041 else { 3042 MachineInstr *NewCmp 3043 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3044 NewCmp->setFlags(MI.getFlags()); 3045 } 3046 } 3047 3048 if (NarrowTy1.isVector()) 3049 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3050 else 3051 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3052 3053 MI.eraseFromParent(); 3054 return Legalized; 3055 } 3056 3057 LegalizerHelper::LegalizeResult 3058 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3059 LLT NarrowTy) { 3060 Register DstReg = MI.getOperand(0).getReg(); 3061 Register CondReg = MI.getOperand(1).getReg(); 3062 3063 unsigned NumParts = 0; 3064 LLT NarrowTy0, NarrowTy1; 3065 3066 LLT DstTy = MRI.getType(DstReg); 3067 LLT CondTy = MRI.getType(CondReg); 3068 unsigned Size = DstTy.getSizeInBits(); 3069 3070 assert(TypeIdx == 0 || CondTy.isVector()); 3071 3072 if (TypeIdx == 0) { 3073 NarrowTy0 = NarrowTy; 3074 NarrowTy1 = CondTy; 3075 3076 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3077 // FIXME: Don't know how to handle the situation where the small vectors 3078 // aren't all the same size yet. 3079 if (Size % NarrowSize != 0) 3080 return UnableToLegalize; 3081 3082 NumParts = Size / NarrowSize; 3083 3084 // Need to break down the condition type 3085 if (CondTy.isVector()) { 3086 if (CondTy.getNumElements() == NumParts) 3087 NarrowTy1 = CondTy.getElementType(); 3088 else 3089 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3090 CondTy.getScalarSizeInBits()); 3091 } 3092 } else { 3093 NumParts = CondTy.getNumElements(); 3094 if (NarrowTy.isVector()) { 3095 // TODO: Handle uneven breakdown. 3096 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3097 return UnableToLegalize; 3098 3099 return UnableToLegalize; 3100 } else { 3101 NarrowTy0 = DstTy.getElementType(); 3102 NarrowTy1 = NarrowTy; 3103 } 3104 } 3105 3106 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3107 if (CondTy.isVector()) 3108 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3109 3110 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3111 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3112 3113 for (unsigned i = 0; i < NumParts; ++i) { 3114 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3115 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3116 Src1Regs[i], Src2Regs[i]); 3117 DstRegs.push_back(DstReg); 3118 } 3119 3120 if (NarrowTy0.isVector()) 3121 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3122 else 3123 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3124 3125 MI.eraseFromParent(); 3126 return Legalized; 3127 } 3128 3129 LegalizerHelper::LegalizeResult 3130 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3131 LLT NarrowTy) { 3132 const Register DstReg = MI.getOperand(0).getReg(); 3133 LLT PhiTy = MRI.getType(DstReg); 3134 LLT LeftoverTy; 3135 3136 // All of the operands need to have the same number of elements, so if we can 3137 // determine a type breakdown for the result type, we can for all of the 3138 // source types. 3139 int NumParts, NumLeftover; 3140 std::tie(NumParts, NumLeftover) 3141 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3142 if (NumParts < 0) 3143 return UnableToLegalize; 3144 3145 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3146 SmallVector<MachineInstrBuilder, 4> NewInsts; 3147 3148 const int TotalNumParts = NumParts + NumLeftover; 3149 3150 // Insert the new phis in the result block first. 3151 for (int I = 0; I != TotalNumParts; ++I) { 3152 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3153 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3154 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3155 .addDef(PartDstReg)); 3156 if (I < NumParts) 3157 DstRegs.push_back(PartDstReg); 3158 else 3159 LeftoverDstRegs.push_back(PartDstReg); 3160 } 3161 3162 MachineBasicBlock *MBB = MI.getParent(); 3163 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3164 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3165 3166 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3167 3168 // Insert code to extract the incoming values in each predecessor block. 3169 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3170 PartRegs.clear(); 3171 LeftoverRegs.clear(); 3172 3173 Register SrcReg = MI.getOperand(I).getReg(); 3174 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3175 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3176 3177 LLT Unused; 3178 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3179 LeftoverRegs)) 3180 return UnableToLegalize; 3181 3182 // Add the newly created operand splits to the existing instructions. The 3183 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3184 // pieces. 3185 for (int J = 0; J != TotalNumParts; ++J) { 3186 MachineInstrBuilder MIB = NewInsts[J]; 3187 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3188 MIB.addMBB(&OpMBB); 3189 } 3190 } 3191 3192 MI.eraseFromParent(); 3193 return Legalized; 3194 } 3195 3196 LegalizerHelper::LegalizeResult 3197 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3198 unsigned TypeIdx, 3199 LLT NarrowTy) { 3200 if (TypeIdx != 1) 3201 return UnableToLegalize; 3202 3203 const int NumDst = MI.getNumOperands() - 1; 3204 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3205 LLT SrcTy = MRI.getType(SrcReg); 3206 3207 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3208 3209 // TODO: Create sequence of extracts. 3210 if (DstTy == NarrowTy) 3211 return UnableToLegalize; 3212 3213 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3214 if (DstTy == GCDTy) { 3215 // This would just be a copy of the same unmerge. 3216 // TODO: Create extracts, pad with undef and create intermediate merges. 3217 return UnableToLegalize; 3218 } 3219 3220 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3221 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3222 const int PartsPerUnmerge = NumDst / NumUnmerge; 3223 3224 for (int I = 0; I != NumUnmerge; ++I) { 3225 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3226 3227 for (int J = 0; J != PartsPerUnmerge; ++J) 3228 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3229 MIB.addUse(Unmerge.getReg(I)); 3230 } 3231 3232 MI.eraseFromParent(); 3233 return Legalized; 3234 } 3235 3236 LegalizerHelper::LegalizeResult 3237 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3238 unsigned TypeIdx, 3239 LLT NarrowTy) { 3240 assert(TypeIdx == 0 && "not a vector type index"); 3241 Register DstReg = MI.getOperand(0).getReg(); 3242 LLT DstTy = MRI.getType(DstReg); 3243 LLT SrcTy = DstTy.getElementType(); 3244 3245 int DstNumElts = DstTy.getNumElements(); 3246 int NarrowNumElts = NarrowTy.getNumElements(); 3247 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3248 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3249 3250 SmallVector<Register, 8> ConcatOps; 3251 SmallVector<Register, 8> SubBuildVector; 3252 3253 Register UndefReg; 3254 if (WidenedDstTy != DstTy) 3255 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3256 3257 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3258 // necessary. 3259 // 3260 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3261 // -> <2 x s16> 3262 // 3263 // %4:_(s16) = G_IMPLICIT_DEF 3264 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3265 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3266 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3267 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3268 for (int I = 0; I != NumConcat; ++I) { 3269 for (int J = 0; J != NarrowNumElts; ++J) { 3270 int SrcIdx = NarrowNumElts * I + J; 3271 3272 if (SrcIdx < DstNumElts) { 3273 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3274 SubBuildVector.push_back(SrcReg); 3275 } else 3276 SubBuildVector.push_back(UndefReg); 3277 } 3278 3279 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3280 ConcatOps.push_back(BuildVec.getReg(0)); 3281 SubBuildVector.clear(); 3282 } 3283 3284 if (DstTy == WidenedDstTy) 3285 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3286 else { 3287 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3288 MIRBuilder.buildExtract(DstReg, Concat, 0); 3289 } 3290 3291 MI.eraseFromParent(); 3292 return Legalized; 3293 } 3294 3295 LegalizerHelper::LegalizeResult 3296 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3297 LLT NarrowTy) { 3298 // FIXME: Don't know how to handle secondary types yet. 3299 if (TypeIdx != 0) 3300 return UnableToLegalize; 3301 3302 MachineMemOperand *MMO = *MI.memoperands_begin(); 3303 3304 // This implementation doesn't work for atomics. Give up instead of doing 3305 // something invalid. 3306 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3307 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3308 return UnableToLegalize; 3309 3310 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3311 Register ValReg = MI.getOperand(0).getReg(); 3312 Register AddrReg = MI.getOperand(1).getReg(); 3313 LLT ValTy = MRI.getType(ValReg); 3314 3315 // FIXME: Do we need a distinct NarrowMemory legalize action? 3316 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3317 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3318 return UnableToLegalize; 3319 } 3320 3321 int NumParts = -1; 3322 int NumLeftover = -1; 3323 LLT LeftoverTy; 3324 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3325 if (IsLoad) { 3326 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3327 } else { 3328 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3329 NarrowLeftoverRegs)) { 3330 NumParts = NarrowRegs.size(); 3331 NumLeftover = NarrowLeftoverRegs.size(); 3332 } 3333 } 3334 3335 if (NumParts == -1) 3336 return UnableToLegalize; 3337 3338 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3339 3340 unsigned TotalSize = ValTy.getSizeInBits(); 3341 3342 // Split the load/store into PartTy sized pieces starting at Offset. If this 3343 // is a load, return the new registers in ValRegs. For a store, each elements 3344 // of ValRegs should be PartTy. Returns the next offset that needs to be 3345 // handled. 3346 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3347 unsigned Offset) -> unsigned { 3348 MachineFunction &MF = MIRBuilder.getMF(); 3349 unsigned PartSize = PartTy.getSizeInBits(); 3350 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3351 Offset += PartSize, ++Idx) { 3352 unsigned ByteSize = PartSize / 8; 3353 unsigned ByteOffset = Offset / 8; 3354 Register NewAddrReg; 3355 3356 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3357 3358 MachineMemOperand *NewMMO = 3359 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3360 3361 if (IsLoad) { 3362 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3363 ValRegs.push_back(Dst); 3364 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3365 } else { 3366 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3367 } 3368 } 3369 3370 return Offset; 3371 }; 3372 3373 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3374 3375 // Handle the rest of the register if this isn't an even type breakdown. 3376 if (LeftoverTy.isValid()) 3377 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3378 3379 if (IsLoad) { 3380 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3381 LeftoverTy, NarrowLeftoverRegs); 3382 } 3383 3384 MI.eraseFromParent(); 3385 return Legalized; 3386 } 3387 3388 LegalizerHelper::LegalizeResult 3389 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3390 LLT NarrowTy) { 3391 assert(TypeIdx == 0 && "only one type index expected"); 3392 3393 const unsigned Opc = MI.getOpcode(); 3394 const int NumOps = MI.getNumOperands() - 1; 3395 const Register DstReg = MI.getOperand(0).getReg(); 3396 const unsigned Flags = MI.getFlags(); 3397 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3398 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3399 3400 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3401 3402 // First of all check whether we are narrowing (changing the element type) 3403 // or reducing the vector elements 3404 const LLT DstTy = MRI.getType(DstReg); 3405 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3406 3407 SmallVector<Register, 8> ExtractedRegs[3]; 3408 SmallVector<Register, 8> Parts; 3409 3410 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3411 3412 // Break down all the sources into NarrowTy pieces we can operate on. This may 3413 // involve creating merges to a wider type, padded with undef. 3414 for (int I = 0; I != NumOps; ++I) { 3415 Register SrcReg = MI.getOperand(I + 1).getReg(); 3416 LLT SrcTy = MRI.getType(SrcReg); 3417 3418 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3419 // For fewerElements, this is a smaller vector with the same element type. 3420 LLT OpNarrowTy; 3421 if (IsNarrow) { 3422 OpNarrowTy = NarrowScalarTy; 3423 3424 // In case of narrowing, we need to cast vectors to scalars for this to 3425 // work properly 3426 // FIXME: Can we do without the bitcast here if we're narrowing? 3427 if (SrcTy.isVector()) { 3428 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3429 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3430 } 3431 } else { 3432 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3433 } 3434 3435 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3436 3437 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3438 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3439 TargetOpcode::G_ANYEXT); 3440 } 3441 3442 SmallVector<Register, 8> ResultRegs; 3443 3444 // Input operands for each sub-instruction. 3445 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3446 3447 int NumParts = ExtractedRegs[0].size(); 3448 const unsigned DstSize = DstTy.getSizeInBits(); 3449 const LLT DstScalarTy = LLT::scalar(DstSize); 3450 3451 // Narrowing needs to use scalar types 3452 LLT DstLCMTy, NarrowDstTy; 3453 if (IsNarrow) { 3454 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3455 NarrowDstTy = NarrowScalarTy; 3456 } else { 3457 DstLCMTy = getLCMType(DstTy, NarrowTy); 3458 NarrowDstTy = NarrowTy; 3459 } 3460 3461 // We widened the source registers to satisfy merge/unmerge size 3462 // constraints. We'll have some extra fully undef parts. 3463 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3464 3465 for (int I = 0; I != NumRealParts; ++I) { 3466 // Emit this instruction on each of the split pieces. 3467 for (int J = 0; J != NumOps; ++J) 3468 InputRegs[J] = ExtractedRegs[J][I]; 3469 3470 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3471 ResultRegs.push_back(Inst.getReg(0)); 3472 } 3473 3474 // Fill out the widened result with undef instead of creating instructions 3475 // with undef inputs. 3476 int NumUndefParts = NumParts - NumRealParts; 3477 if (NumUndefParts != 0) 3478 ResultRegs.append(NumUndefParts, 3479 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3480 3481 // Extract the possibly padded result. Use a scratch register if we need to do 3482 // a final bitcast, otherwise use the original result register. 3483 Register MergeDstReg; 3484 if (IsNarrow && DstTy.isVector()) 3485 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3486 else 3487 MergeDstReg = DstReg; 3488 3489 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3490 3491 // Recast to vector if we narrowed a vector 3492 if (IsNarrow && DstTy.isVector()) 3493 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3494 3495 MI.eraseFromParent(); 3496 return Legalized; 3497 } 3498 3499 LegalizerHelper::LegalizeResult 3500 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3501 LLT NarrowTy) { 3502 Register DstReg = MI.getOperand(0).getReg(); 3503 Register SrcReg = MI.getOperand(1).getReg(); 3504 int64_t Imm = MI.getOperand(2).getImm(); 3505 3506 LLT DstTy = MRI.getType(DstReg); 3507 3508 SmallVector<Register, 8> Parts; 3509 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3510 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3511 3512 for (Register &R : Parts) 3513 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3514 3515 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3516 3517 MI.eraseFromParent(); 3518 return Legalized; 3519 } 3520 3521 LegalizerHelper::LegalizeResult 3522 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3523 LLT NarrowTy) { 3524 using namespace TargetOpcode; 3525 3526 switch (MI.getOpcode()) { 3527 case G_IMPLICIT_DEF: 3528 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3529 case G_TRUNC: 3530 case G_AND: 3531 case G_OR: 3532 case G_XOR: 3533 case G_ADD: 3534 case G_SUB: 3535 case G_MUL: 3536 case G_PTR_ADD: 3537 case G_SMULH: 3538 case G_UMULH: 3539 case G_FADD: 3540 case G_FMUL: 3541 case G_FSUB: 3542 case G_FNEG: 3543 case G_FABS: 3544 case G_FCANONICALIZE: 3545 case G_FDIV: 3546 case G_FREM: 3547 case G_FMA: 3548 case G_FMAD: 3549 case G_FPOW: 3550 case G_FEXP: 3551 case G_FEXP2: 3552 case G_FLOG: 3553 case G_FLOG2: 3554 case G_FLOG10: 3555 case G_FNEARBYINT: 3556 case G_FCEIL: 3557 case G_FFLOOR: 3558 case G_FRINT: 3559 case G_INTRINSIC_ROUND: 3560 case G_INTRINSIC_TRUNC: 3561 case G_FCOS: 3562 case G_FSIN: 3563 case G_FSQRT: 3564 case G_BSWAP: 3565 case G_BITREVERSE: 3566 case G_SDIV: 3567 case G_UDIV: 3568 case G_SREM: 3569 case G_UREM: 3570 case G_SMIN: 3571 case G_SMAX: 3572 case G_UMIN: 3573 case G_UMAX: 3574 case G_FMINNUM: 3575 case G_FMAXNUM: 3576 case G_FMINNUM_IEEE: 3577 case G_FMAXNUM_IEEE: 3578 case G_FMINIMUM: 3579 case G_FMAXIMUM: 3580 case G_FSHL: 3581 case G_FSHR: 3582 case G_FREEZE: 3583 case G_SADDSAT: 3584 case G_SSUBSAT: 3585 case G_UADDSAT: 3586 case G_USUBSAT: 3587 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3588 case G_SHL: 3589 case G_LSHR: 3590 case G_ASHR: 3591 case G_CTLZ: 3592 case G_CTLZ_ZERO_UNDEF: 3593 case G_CTTZ: 3594 case G_CTTZ_ZERO_UNDEF: 3595 case G_CTPOP: 3596 case G_FCOPYSIGN: 3597 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3598 case G_ZEXT: 3599 case G_SEXT: 3600 case G_ANYEXT: 3601 case G_FPEXT: 3602 case G_FPTRUNC: 3603 case G_SITOFP: 3604 case G_UITOFP: 3605 case G_FPTOSI: 3606 case G_FPTOUI: 3607 case G_INTTOPTR: 3608 case G_PTRTOINT: 3609 case G_ADDRSPACE_CAST: 3610 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3611 case G_ICMP: 3612 case G_FCMP: 3613 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3614 case G_SELECT: 3615 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3616 case G_PHI: 3617 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3618 case G_UNMERGE_VALUES: 3619 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3620 case G_BUILD_VECTOR: 3621 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3622 case G_LOAD: 3623 case G_STORE: 3624 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3625 case G_SEXT_INREG: 3626 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3627 default: 3628 return UnableToLegalize; 3629 } 3630 } 3631 3632 LegalizerHelper::LegalizeResult 3633 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3634 const LLT HalfTy, const LLT AmtTy) { 3635 3636 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3637 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3638 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3639 3640 if (Amt.isNullValue()) { 3641 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3642 MI.eraseFromParent(); 3643 return Legalized; 3644 } 3645 3646 LLT NVT = HalfTy; 3647 unsigned NVTBits = HalfTy.getSizeInBits(); 3648 unsigned VTBits = 2 * NVTBits; 3649 3650 SrcOp Lo(Register(0)), Hi(Register(0)); 3651 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3652 if (Amt.ugt(VTBits)) { 3653 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3654 } else if (Amt.ugt(NVTBits)) { 3655 Lo = MIRBuilder.buildConstant(NVT, 0); 3656 Hi = MIRBuilder.buildShl(NVT, InL, 3657 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3658 } else if (Amt == NVTBits) { 3659 Lo = MIRBuilder.buildConstant(NVT, 0); 3660 Hi = InL; 3661 } else { 3662 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3663 auto OrLHS = 3664 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3665 auto OrRHS = MIRBuilder.buildLShr( 3666 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3667 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3668 } 3669 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3670 if (Amt.ugt(VTBits)) { 3671 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3672 } else if (Amt.ugt(NVTBits)) { 3673 Lo = MIRBuilder.buildLShr(NVT, InH, 3674 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3675 Hi = MIRBuilder.buildConstant(NVT, 0); 3676 } else if (Amt == NVTBits) { 3677 Lo = InH; 3678 Hi = MIRBuilder.buildConstant(NVT, 0); 3679 } else { 3680 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3681 3682 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3683 auto OrRHS = MIRBuilder.buildShl( 3684 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3685 3686 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3687 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3688 } 3689 } else { 3690 if (Amt.ugt(VTBits)) { 3691 Hi = Lo = MIRBuilder.buildAShr( 3692 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3693 } else if (Amt.ugt(NVTBits)) { 3694 Lo = MIRBuilder.buildAShr(NVT, InH, 3695 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3696 Hi = MIRBuilder.buildAShr(NVT, InH, 3697 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3698 } else if (Amt == NVTBits) { 3699 Lo = InH; 3700 Hi = MIRBuilder.buildAShr(NVT, InH, 3701 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3702 } else { 3703 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3704 3705 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3706 auto OrRHS = MIRBuilder.buildShl( 3707 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3708 3709 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3710 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3711 } 3712 } 3713 3714 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3715 MI.eraseFromParent(); 3716 3717 return Legalized; 3718 } 3719 3720 // TODO: Optimize if constant shift amount. 3721 LegalizerHelper::LegalizeResult 3722 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3723 LLT RequestedTy) { 3724 if (TypeIdx == 1) { 3725 Observer.changingInstr(MI); 3726 narrowScalarSrc(MI, RequestedTy, 2); 3727 Observer.changedInstr(MI); 3728 return Legalized; 3729 } 3730 3731 Register DstReg = MI.getOperand(0).getReg(); 3732 LLT DstTy = MRI.getType(DstReg); 3733 if (DstTy.isVector()) 3734 return UnableToLegalize; 3735 3736 Register Amt = MI.getOperand(2).getReg(); 3737 LLT ShiftAmtTy = MRI.getType(Amt); 3738 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3739 if (DstEltSize % 2 != 0) 3740 return UnableToLegalize; 3741 3742 // Ignore the input type. We can only go to exactly half the size of the 3743 // input. If that isn't small enough, the resulting pieces will be further 3744 // legalized. 3745 const unsigned NewBitSize = DstEltSize / 2; 3746 const LLT HalfTy = LLT::scalar(NewBitSize); 3747 const LLT CondTy = LLT::scalar(1); 3748 3749 if (const MachineInstr *KShiftAmt = 3750 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3751 return narrowScalarShiftByConstant( 3752 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3753 } 3754 3755 // TODO: Expand with known bits. 3756 3757 // Handle the fully general expansion by an unknown amount. 3758 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3759 3760 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3761 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3762 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3763 3764 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3765 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3766 3767 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3768 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3769 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3770 3771 Register ResultRegs[2]; 3772 switch (MI.getOpcode()) { 3773 case TargetOpcode::G_SHL: { 3774 // Short: ShAmt < NewBitSize 3775 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3776 3777 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3778 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3779 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3780 3781 // Long: ShAmt >= NewBitSize 3782 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3783 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3784 3785 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3786 auto Hi = MIRBuilder.buildSelect( 3787 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3788 3789 ResultRegs[0] = Lo.getReg(0); 3790 ResultRegs[1] = Hi.getReg(0); 3791 break; 3792 } 3793 case TargetOpcode::G_LSHR: 3794 case TargetOpcode::G_ASHR: { 3795 // Short: ShAmt < NewBitSize 3796 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3797 3798 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3799 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3800 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3801 3802 // Long: ShAmt >= NewBitSize 3803 MachineInstrBuilder HiL; 3804 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3805 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3806 } else { 3807 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3808 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3809 } 3810 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3811 {InH, AmtExcess}); // Lo from Hi part. 3812 3813 auto Lo = MIRBuilder.buildSelect( 3814 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3815 3816 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3817 3818 ResultRegs[0] = Lo.getReg(0); 3819 ResultRegs[1] = Hi.getReg(0); 3820 break; 3821 } 3822 default: 3823 llvm_unreachable("not a shift"); 3824 } 3825 3826 MIRBuilder.buildMerge(DstReg, ResultRegs); 3827 MI.eraseFromParent(); 3828 return Legalized; 3829 } 3830 3831 LegalizerHelper::LegalizeResult 3832 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3833 LLT MoreTy) { 3834 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3835 3836 Observer.changingInstr(MI); 3837 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3838 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3839 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3840 moreElementsVectorSrc(MI, MoreTy, I); 3841 } 3842 3843 MachineBasicBlock &MBB = *MI.getParent(); 3844 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3845 moreElementsVectorDst(MI, MoreTy, 0); 3846 Observer.changedInstr(MI); 3847 return Legalized; 3848 } 3849 3850 LegalizerHelper::LegalizeResult 3851 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3852 LLT MoreTy) { 3853 unsigned Opc = MI.getOpcode(); 3854 switch (Opc) { 3855 case TargetOpcode::G_IMPLICIT_DEF: 3856 case TargetOpcode::G_LOAD: { 3857 if (TypeIdx != 0) 3858 return UnableToLegalize; 3859 Observer.changingInstr(MI); 3860 moreElementsVectorDst(MI, MoreTy, 0); 3861 Observer.changedInstr(MI); 3862 return Legalized; 3863 } 3864 case TargetOpcode::G_STORE: 3865 if (TypeIdx != 0) 3866 return UnableToLegalize; 3867 Observer.changingInstr(MI); 3868 moreElementsVectorSrc(MI, MoreTy, 0); 3869 Observer.changedInstr(MI); 3870 return Legalized; 3871 case TargetOpcode::G_AND: 3872 case TargetOpcode::G_OR: 3873 case TargetOpcode::G_XOR: 3874 case TargetOpcode::G_SMIN: 3875 case TargetOpcode::G_SMAX: 3876 case TargetOpcode::G_UMIN: 3877 case TargetOpcode::G_UMAX: 3878 case TargetOpcode::G_FMINNUM: 3879 case TargetOpcode::G_FMAXNUM: 3880 case TargetOpcode::G_FMINNUM_IEEE: 3881 case TargetOpcode::G_FMAXNUM_IEEE: 3882 case TargetOpcode::G_FMINIMUM: 3883 case TargetOpcode::G_FMAXIMUM: { 3884 Observer.changingInstr(MI); 3885 moreElementsVectorSrc(MI, MoreTy, 1); 3886 moreElementsVectorSrc(MI, MoreTy, 2); 3887 moreElementsVectorDst(MI, MoreTy, 0); 3888 Observer.changedInstr(MI); 3889 return Legalized; 3890 } 3891 case TargetOpcode::G_EXTRACT: 3892 if (TypeIdx != 1) 3893 return UnableToLegalize; 3894 Observer.changingInstr(MI); 3895 moreElementsVectorSrc(MI, MoreTy, 1); 3896 Observer.changedInstr(MI); 3897 return Legalized; 3898 case TargetOpcode::G_INSERT: 3899 case TargetOpcode::G_FREEZE: 3900 if (TypeIdx != 0) 3901 return UnableToLegalize; 3902 Observer.changingInstr(MI); 3903 moreElementsVectorSrc(MI, MoreTy, 1); 3904 moreElementsVectorDst(MI, MoreTy, 0); 3905 Observer.changedInstr(MI); 3906 return Legalized; 3907 case TargetOpcode::G_SELECT: 3908 if (TypeIdx != 0) 3909 return UnableToLegalize; 3910 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3911 return UnableToLegalize; 3912 3913 Observer.changingInstr(MI); 3914 moreElementsVectorSrc(MI, MoreTy, 2); 3915 moreElementsVectorSrc(MI, MoreTy, 3); 3916 moreElementsVectorDst(MI, MoreTy, 0); 3917 Observer.changedInstr(MI); 3918 return Legalized; 3919 case TargetOpcode::G_UNMERGE_VALUES: { 3920 if (TypeIdx != 1) 3921 return UnableToLegalize; 3922 3923 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3924 int NumDst = MI.getNumOperands() - 1; 3925 moreElementsVectorSrc(MI, MoreTy, NumDst); 3926 3927 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3928 for (int I = 0; I != NumDst; ++I) 3929 MIB.addDef(MI.getOperand(I).getReg()); 3930 3931 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3932 for (int I = NumDst; I != NewNumDst; ++I) 3933 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3934 3935 MIB.addUse(MI.getOperand(NumDst).getReg()); 3936 MI.eraseFromParent(); 3937 return Legalized; 3938 } 3939 case TargetOpcode::G_PHI: 3940 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3941 default: 3942 return UnableToLegalize; 3943 } 3944 } 3945 3946 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3947 ArrayRef<Register> Src1Regs, 3948 ArrayRef<Register> Src2Regs, 3949 LLT NarrowTy) { 3950 MachineIRBuilder &B = MIRBuilder; 3951 unsigned SrcParts = Src1Regs.size(); 3952 unsigned DstParts = DstRegs.size(); 3953 3954 unsigned DstIdx = 0; // Low bits of the result. 3955 Register FactorSum = 3956 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3957 DstRegs[DstIdx] = FactorSum; 3958 3959 unsigned CarrySumPrevDstIdx; 3960 SmallVector<Register, 4> Factors; 3961 3962 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3963 // Collect low parts of muls for DstIdx. 3964 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3965 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3966 MachineInstrBuilder Mul = 3967 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3968 Factors.push_back(Mul.getReg(0)); 3969 } 3970 // Collect high parts of muls from previous DstIdx. 3971 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3972 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3973 MachineInstrBuilder Umulh = 3974 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3975 Factors.push_back(Umulh.getReg(0)); 3976 } 3977 // Add CarrySum from additions calculated for previous DstIdx. 3978 if (DstIdx != 1) { 3979 Factors.push_back(CarrySumPrevDstIdx); 3980 } 3981 3982 Register CarrySum; 3983 // Add all factors and accumulate all carries into CarrySum. 3984 if (DstIdx != DstParts - 1) { 3985 MachineInstrBuilder Uaddo = 3986 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3987 FactorSum = Uaddo.getReg(0); 3988 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3989 for (unsigned i = 2; i < Factors.size(); ++i) { 3990 MachineInstrBuilder Uaddo = 3991 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3992 FactorSum = Uaddo.getReg(0); 3993 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3994 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3995 } 3996 } else { 3997 // Since value for the next index is not calculated, neither is CarrySum. 3998 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3999 for (unsigned i = 2; i < Factors.size(); ++i) 4000 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4001 } 4002 4003 CarrySumPrevDstIdx = CarrySum; 4004 DstRegs[DstIdx] = FactorSum; 4005 Factors.clear(); 4006 } 4007 } 4008 4009 LegalizerHelper::LegalizeResult 4010 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4011 Register DstReg = MI.getOperand(0).getReg(); 4012 Register Src1 = MI.getOperand(1).getReg(); 4013 Register Src2 = MI.getOperand(2).getReg(); 4014 4015 LLT Ty = MRI.getType(DstReg); 4016 if (Ty.isVector()) 4017 return UnableToLegalize; 4018 4019 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4020 unsigned DstSize = Ty.getSizeInBits(); 4021 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4022 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4023 return UnableToLegalize; 4024 4025 unsigned NumDstParts = DstSize / NarrowSize; 4026 unsigned NumSrcParts = SrcSize / NarrowSize; 4027 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4028 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4029 4030 SmallVector<Register, 2> Src1Parts, Src2Parts; 4031 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4032 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4033 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4034 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4035 4036 // Take only high half of registers if this is high mul. 4037 ArrayRef<Register> DstRegs( 4038 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4039 MIRBuilder.buildMerge(DstReg, DstRegs); 4040 MI.eraseFromParent(); 4041 return Legalized; 4042 } 4043 4044 LegalizerHelper::LegalizeResult 4045 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4046 LLT NarrowTy) { 4047 if (TypeIdx != 1) 4048 return UnableToLegalize; 4049 4050 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4051 4052 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4053 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4054 // NarrowSize. 4055 if (SizeOp1 % NarrowSize != 0) 4056 return UnableToLegalize; 4057 int NumParts = SizeOp1 / NarrowSize; 4058 4059 SmallVector<Register, 2> SrcRegs, DstRegs; 4060 SmallVector<uint64_t, 2> Indexes; 4061 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4062 4063 Register OpReg = MI.getOperand(0).getReg(); 4064 uint64_t OpStart = MI.getOperand(2).getImm(); 4065 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4066 for (int i = 0; i < NumParts; ++i) { 4067 unsigned SrcStart = i * NarrowSize; 4068 4069 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4070 // No part of the extract uses this subregister, ignore it. 4071 continue; 4072 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4073 // The entire subregister is extracted, forward the value. 4074 DstRegs.push_back(SrcRegs[i]); 4075 continue; 4076 } 4077 4078 // OpSegStart is where this destination segment would start in OpReg if it 4079 // extended infinitely in both directions. 4080 int64_t ExtractOffset; 4081 uint64_t SegSize; 4082 if (OpStart < SrcStart) { 4083 ExtractOffset = 0; 4084 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4085 } else { 4086 ExtractOffset = OpStart - SrcStart; 4087 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4088 } 4089 4090 Register SegReg = SrcRegs[i]; 4091 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4092 // A genuine extract is needed. 4093 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4094 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4095 } 4096 4097 DstRegs.push_back(SegReg); 4098 } 4099 4100 Register DstReg = MI.getOperand(0).getReg(); 4101 if (MRI.getType(DstReg).isVector()) 4102 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4103 else if (DstRegs.size() > 1) 4104 MIRBuilder.buildMerge(DstReg, DstRegs); 4105 else 4106 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4107 MI.eraseFromParent(); 4108 return Legalized; 4109 } 4110 4111 LegalizerHelper::LegalizeResult 4112 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4113 LLT NarrowTy) { 4114 // FIXME: Don't know how to handle secondary types yet. 4115 if (TypeIdx != 0) 4116 return UnableToLegalize; 4117 4118 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4119 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4120 4121 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4122 // NarrowSize. 4123 if (SizeOp0 % NarrowSize != 0) 4124 return UnableToLegalize; 4125 4126 int NumParts = SizeOp0 / NarrowSize; 4127 4128 SmallVector<Register, 2> SrcRegs, DstRegs; 4129 SmallVector<uint64_t, 2> Indexes; 4130 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4131 4132 Register OpReg = MI.getOperand(2).getReg(); 4133 uint64_t OpStart = MI.getOperand(3).getImm(); 4134 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4135 for (int i = 0; i < NumParts; ++i) { 4136 unsigned DstStart = i * NarrowSize; 4137 4138 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4139 // No part of the insert affects this subregister, forward the original. 4140 DstRegs.push_back(SrcRegs[i]); 4141 continue; 4142 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4143 // The entire subregister is defined by this insert, forward the new 4144 // value. 4145 DstRegs.push_back(OpReg); 4146 continue; 4147 } 4148 4149 // OpSegStart is where this destination segment would start in OpReg if it 4150 // extended infinitely in both directions. 4151 int64_t ExtractOffset, InsertOffset; 4152 uint64_t SegSize; 4153 if (OpStart < DstStart) { 4154 InsertOffset = 0; 4155 ExtractOffset = DstStart - OpStart; 4156 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4157 } else { 4158 InsertOffset = OpStart - DstStart; 4159 ExtractOffset = 0; 4160 SegSize = 4161 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4162 } 4163 4164 Register SegReg = OpReg; 4165 if (ExtractOffset != 0 || SegSize != OpSize) { 4166 // A genuine extract is needed. 4167 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4168 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4169 } 4170 4171 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4172 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4173 DstRegs.push_back(DstReg); 4174 } 4175 4176 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4177 Register DstReg = MI.getOperand(0).getReg(); 4178 if(MRI.getType(DstReg).isVector()) 4179 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4180 else 4181 MIRBuilder.buildMerge(DstReg, DstRegs); 4182 MI.eraseFromParent(); 4183 return Legalized; 4184 } 4185 4186 LegalizerHelper::LegalizeResult 4187 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4188 LLT NarrowTy) { 4189 Register DstReg = MI.getOperand(0).getReg(); 4190 LLT DstTy = MRI.getType(DstReg); 4191 4192 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4193 4194 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4195 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4196 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4197 LLT LeftoverTy; 4198 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4199 Src0Regs, Src0LeftoverRegs)) 4200 return UnableToLegalize; 4201 4202 LLT Unused; 4203 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4204 Src1Regs, Src1LeftoverRegs)) 4205 llvm_unreachable("inconsistent extractParts result"); 4206 4207 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4208 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4209 {Src0Regs[I], Src1Regs[I]}); 4210 DstRegs.push_back(Inst.getReg(0)); 4211 } 4212 4213 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4214 auto Inst = MIRBuilder.buildInstr( 4215 MI.getOpcode(), 4216 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4217 DstLeftoverRegs.push_back(Inst.getReg(0)); 4218 } 4219 4220 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4221 LeftoverTy, DstLeftoverRegs); 4222 4223 MI.eraseFromParent(); 4224 return Legalized; 4225 } 4226 4227 LegalizerHelper::LegalizeResult 4228 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4229 LLT NarrowTy) { 4230 if (TypeIdx != 0) 4231 return UnableToLegalize; 4232 4233 Register DstReg = MI.getOperand(0).getReg(); 4234 Register SrcReg = MI.getOperand(1).getReg(); 4235 4236 LLT DstTy = MRI.getType(DstReg); 4237 if (DstTy.isVector()) 4238 return UnableToLegalize; 4239 4240 SmallVector<Register, 8> Parts; 4241 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4242 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4243 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4244 4245 MI.eraseFromParent(); 4246 return Legalized; 4247 } 4248 4249 LegalizerHelper::LegalizeResult 4250 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4251 LLT NarrowTy) { 4252 if (TypeIdx != 0) 4253 return UnableToLegalize; 4254 4255 Register CondReg = MI.getOperand(1).getReg(); 4256 LLT CondTy = MRI.getType(CondReg); 4257 if (CondTy.isVector()) // TODO: Handle vselect 4258 return UnableToLegalize; 4259 4260 Register DstReg = MI.getOperand(0).getReg(); 4261 LLT DstTy = MRI.getType(DstReg); 4262 4263 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4264 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4265 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4266 LLT LeftoverTy; 4267 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4268 Src1Regs, Src1LeftoverRegs)) 4269 return UnableToLegalize; 4270 4271 LLT Unused; 4272 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4273 Src2Regs, Src2LeftoverRegs)) 4274 llvm_unreachable("inconsistent extractParts result"); 4275 4276 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4277 auto Select = MIRBuilder.buildSelect(NarrowTy, 4278 CondReg, Src1Regs[I], Src2Regs[I]); 4279 DstRegs.push_back(Select.getReg(0)); 4280 } 4281 4282 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4283 auto Select = MIRBuilder.buildSelect( 4284 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4285 DstLeftoverRegs.push_back(Select.getReg(0)); 4286 } 4287 4288 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4289 LeftoverTy, DstLeftoverRegs); 4290 4291 MI.eraseFromParent(); 4292 return Legalized; 4293 } 4294 4295 LegalizerHelper::LegalizeResult 4296 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4297 LLT NarrowTy) { 4298 if (TypeIdx != 1) 4299 return UnableToLegalize; 4300 4301 Register DstReg = MI.getOperand(0).getReg(); 4302 Register SrcReg = MI.getOperand(1).getReg(); 4303 LLT DstTy = MRI.getType(DstReg); 4304 LLT SrcTy = MRI.getType(SrcReg); 4305 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4306 4307 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4308 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4309 4310 MachineIRBuilder &B = MIRBuilder; 4311 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4312 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4313 auto C_0 = B.buildConstant(NarrowTy, 0); 4314 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4315 UnmergeSrc.getReg(1), C_0); 4316 auto LoCTLZ = IsUndef ? 4317 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4318 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4319 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4320 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4321 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4322 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4323 4324 MI.eraseFromParent(); 4325 return Legalized; 4326 } 4327 4328 return UnableToLegalize; 4329 } 4330 4331 LegalizerHelper::LegalizeResult 4332 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4333 LLT NarrowTy) { 4334 if (TypeIdx != 1) 4335 return UnableToLegalize; 4336 4337 Register DstReg = MI.getOperand(0).getReg(); 4338 Register SrcReg = MI.getOperand(1).getReg(); 4339 LLT DstTy = MRI.getType(DstReg); 4340 LLT SrcTy = MRI.getType(SrcReg); 4341 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4342 4343 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4344 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4345 4346 MachineIRBuilder &B = MIRBuilder; 4347 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4348 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4349 auto C_0 = B.buildConstant(NarrowTy, 0); 4350 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4351 UnmergeSrc.getReg(0), C_0); 4352 auto HiCTTZ = IsUndef ? 4353 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4354 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4355 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4356 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4357 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4358 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4359 4360 MI.eraseFromParent(); 4361 return Legalized; 4362 } 4363 4364 return UnableToLegalize; 4365 } 4366 4367 LegalizerHelper::LegalizeResult 4368 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4369 LLT NarrowTy) { 4370 if (TypeIdx != 1) 4371 return UnableToLegalize; 4372 4373 Register DstReg = MI.getOperand(0).getReg(); 4374 LLT DstTy = MRI.getType(DstReg); 4375 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4376 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4377 4378 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4379 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4380 4381 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4382 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4383 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4384 4385 MI.eraseFromParent(); 4386 return Legalized; 4387 } 4388 4389 return UnableToLegalize; 4390 } 4391 4392 LegalizerHelper::LegalizeResult 4393 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4394 unsigned Opc = MI.getOpcode(); 4395 const auto &TII = MIRBuilder.getTII(); 4396 auto isSupported = [this](const LegalityQuery &Q) { 4397 auto QAction = LI.getAction(Q).Action; 4398 return QAction == Legal || QAction == Libcall || QAction == Custom; 4399 }; 4400 switch (Opc) { 4401 default: 4402 return UnableToLegalize; 4403 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4404 // This trivially expands to CTLZ. 4405 Observer.changingInstr(MI); 4406 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4407 Observer.changedInstr(MI); 4408 return Legalized; 4409 } 4410 case TargetOpcode::G_CTLZ: { 4411 Register DstReg = MI.getOperand(0).getReg(); 4412 Register SrcReg = MI.getOperand(1).getReg(); 4413 LLT DstTy = MRI.getType(DstReg); 4414 LLT SrcTy = MRI.getType(SrcReg); 4415 unsigned Len = SrcTy.getSizeInBits(); 4416 4417 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4418 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4419 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4420 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4421 auto ICmp = MIRBuilder.buildICmp( 4422 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4423 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4424 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4425 MI.eraseFromParent(); 4426 return Legalized; 4427 } 4428 // for now, we do this: 4429 // NewLen = NextPowerOf2(Len); 4430 // x = x | (x >> 1); 4431 // x = x | (x >> 2); 4432 // ... 4433 // x = x | (x >>16); 4434 // x = x | (x >>32); // for 64-bit input 4435 // Upto NewLen/2 4436 // return Len - popcount(x); 4437 // 4438 // Ref: "Hacker's Delight" by Henry Warren 4439 Register Op = SrcReg; 4440 unsigned NewLen = PowerOf2Ceil(Len); 4441 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4442 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4443 auto MIBOp = MIRBuilder.buildOr( 4444 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4445 Op = MIBOp.getReg(0); 4446 } 4447 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4448 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4449 MIBPop); 4450 MI.eraseFromParent(); 4451 return Legalized; 4452 } 4453 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4454 // This trivially expands to CTTZ. 4455 Observer.changingInstr(MI); 4456 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4457 Observer.changedInstr(MI); 4458 return Legalized; 4459 } 4460 case TargetOpcode::G_CTTZ: { 4461 Register DstReg = MI.getOperand(0).getReg(); 4462 Register SrcReg = MI.getOperand(1).getReg(); 4463 LLT DstTy = MRI.getType(DstReg); 4464 LLT SrcTy = MRI.getType(SrcReg); 4465 4466 unsigned Len = SrcTy.getSizeInBits(); 4467 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4468 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4469 // zero. 4470 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4471 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4472 auto ICmp = MIRBuilder.buildICmp( 4473 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4474 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4475 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4476 MI.eraseFromParent(); 4477 return Legalized; 4478 } 4479 // for now, we use: { return popcount(~x & (x - 1)); } 4480 // unless the target has ctlz but not ctpop, in which case we use: 4481 // { return 32 - nlz(~x & (x-1)); } 4482 // Ref: "Hacker's Delight" by Henry Warren 4483 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4484 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4485 auto MIBTmp = MIRBuilder.buildAnd( 4486 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4487 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4488 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4489 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4490 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4491 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4492 MI.eraseFromParent(); 4493 return Legalized; 4494 } 4495 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4496 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4497 return Legalized; 4498 } 4499 case TargetOpcode::G_CTPOP: { 4500 unsigned Size = Ty.getSizeInBits(); 4501 MachineIRBuilder &B = MIRBuilder; 4502 4503 // Count set bits in blocks of 2 bits. Default approach would be 4504 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4505 // We use following formula instead: 4506 // B2Count = val - { (val >> 1) & 0x55555555 } 4507 // since it gives same result in blocks of 2 with one instruction less. 4508 auto C_1 = B.buildConstant(Ty, 1); 4509 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4510 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4511 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4512 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4513 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4514 4515 // In order to get count in blocks of 4 add values from adjacent block of 2. 4516 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4517 auto C_2 = B.buildConstant(Ty, 2); 4518 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4519 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4520 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4521 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4522 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4523 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4524 4525 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4526 // addition since count value sits in range {0,...,8} and 4 bits are enough 4527 // to hold such binary values. After addition high 4 bits still hold count 4528 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4529 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4530 auto C_4 = B.buildConstant(Ty, 4); 4531 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4532 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4533 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4534 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4535 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4536 4537 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4538 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4539 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4540 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4541 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4542 4543 // Shift count result from 8 high bits to low bits. 4544 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4545 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4546 4547 MI.eraseFromParent(); 4548 return Legalized; 4549 } 4550 } 4551 } 4552 4553 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4554 // representation. 4555 LegalizerHelper::LegalizeResult 4556 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4557 Register Dst = MI.getOperand(0).getReg(); 4558 Register Src = MI.getOperand(1).getReg(); 4559 const LLT S64 = LLT::scalar(64); 4560 const LLT S32 = LLT::scalar(32); 4561 const LLT S1 = LLT::scalar(1); 4562 4563 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4564 4565 // unsigned cul2f(ulong u) { 4566 // uint lz = clz(u); 4567 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4568 // u = (u << lz) & 0x7fffffffffffffffUL; 4569 // ulong t = u & 0xffffffffffUL; 4570 // uint v = (e << 23) | (uint)(u >> 40); 4571 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4572 // return as_float(v + r); 4573 // } 4574 4575 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4576 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4577 4578 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4579 4580 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4581 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4582 4583 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4584 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4585 4586 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4587 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4588 4589 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4590 4591 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4592 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4593 4594 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4595 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4596 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4597 4598 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4599 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4600 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4601 auto One = MIRBuilder.buildConstant(S32, 1); 4602 4603 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4604 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4605 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4606 MIRBuilder.buildAdd(Dst, V, R); 4607 4608 MI.eraseFromParent(); 4609 return Legalized; 4610 } 4611 4612 LegalizerHelper::LegalizeResult 4613 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4614 Register Dst = MI.getOperand(0).getReg(); 4615 Register Src = MI.getOperand(1).getReg(); 4616 LLT DstTy = MRI.getType(Dst); 4617 LLT SrcTy = MRI.getType(Src); 4618 4619 if (SrcTy == LLT::scalar(1)) { 4620 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4621 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4622 MIRBuilder.buildSelect(Dst, Src, True, False); 4623 MI.eraseFromParent(); 4624 return Legalized; 4625 } 4626 4627 if (SrcTy != LLT::scalar(64)) 4628 return UnableToLegalize; 4629 4630 if (DstTy == LLT::scalar(32)) { 4631 // TODO: SelectionDAG has several alternative expansions to port which may 4632 // be more reasonble depending on the available instructions. If a target 4633 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4634 // intermediate type, this is probably worse. 4635 return lowerU64ToF32BitOps(MI); 4636 } 4637 4638 return UnableToLegalize; 4639 } 4640 4641 LegalizerHelper::LegalizeResult 4642 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4643 Register Dst = MI.getOperand(0).getReg(); 4644 Register Src = MI.getOperand(1).getReg(); 4645 LLT DstTy = MRI.getType(Dst); 4646 LLT SrcTy = MRI.getType(Src); 4647 4648 const LLT S64 = LLT::scalar(64); 4649 const LLT S32 = LLT::scalar(32); 4650 const LLT S1 = LLT::scalar(1); 4651 4652 if (SrcTy == S1) { 4653 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4654 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4655 MIRBuilder.buildSelect(Dst, Src, True, False); 4656 MI.eraseFromParent(); 4657 return Legalized; 4658 } 4659 4660 if (SrcTy != S64) 4661 return UnableToLegalize; 4662 4663 if (DstTy == S32) { 4664 // signed cl2f(long l) { 4665 // long s = l >> 63; 4666 // float r = cul2f((l + s) ^ s); 4667 // return s ? -r : r; 4668 // } 4669 Register L = Src; 4670 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4671 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4672 4673 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4674 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4675 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4676 4677 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4678 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4679 MIRBuilder.buildConstant(S64, 0)); 4680 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4681 MI.eraseFromParent(); 4682 return Legalized; 4683 } 4684 4685 return UnableToLegalize; 4686 } 4687 4688 LegalizerHelper::LegalizeResult 4689 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4690 Register Dst = MI.getOperand(0).getReg(); 4691 Register Src = MI.getOperand(1).getReg(); 4692 LLT DstTy = MRI.getType(Dst); 4693 LLT SrcTy = MRI.getType(Src); 4694 const LLT S64 = LLT::scalar(64); 4695 const LLT S32 = LLT::scalar(32); 4696 4697 if (SrcTy != S64 && SrcTy != S32) 4698 return UnableToLegalize; 4699 if (DstTy != S32 && DstTy != S64) 4700 return UnableToLegalize; 4701 4702 // FPTOSI gives same result as FPTOUI for positive signed integers. 4703 // FPTOUI needs to deal with fp values that convert to unsigned integers 4704 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4705 4706 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4707 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4708 : APFloat::IEEEdouble(), 4709 APInt::getNullValue(SrcTy.getSizeInBits())); 4710 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4711 4712 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4713 4714 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4715 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4716 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4717 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4718 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4719 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4720 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4721 4722 const LLT S1 = LLT::scalar(1); 4723 4724 MachineInstrBuilder FCMP = 4725 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4726 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4727 4728 MI.eraseFromParent(); 4729 return Legalized; 4730 } 4731 4732 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4733 Register Dst = MI.getOperand(0).getReg(); 4734 Register Src = MI.getOperand(1).getReg(); 4735 LLT DstTy = MRI.getType(Dst); 4736 LLT SrcTy = MRI.getType(Src); 4737 const LLT S64 = LLT::scalar(64); 4738 const LLT S32 = LLT::scalar(32); 4739 4740 // FIXME: Only f32 to i64 conversions are supported. 4741 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4742 return UnableToLegalize; 4743 4744 // Expand f32 -> i64 conversion 4745 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4746 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4747 4748 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4749 4750 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4751 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4752 4753 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4754 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4755 4756 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4757 APInt::getSignMask(SrcEltBits)); 4758 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4759 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4760 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4761 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4762 4763 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4764 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4765 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4766 4767 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4768 R = MIRBuilder.buildZExt(DstTy, R); 4769 4770 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4771 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4772 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4773 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4774 4775 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4776 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4777 4778 const LLT S1 = LLT::scalar(1); 4779 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4780 S1, Exponent, ExponentLoBit); 4781 4782 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4783 4784 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4785 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4786 4787 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4788 4789 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4790 S1, Exponent, ZeroSrcTy); 4791 4792 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4793 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4794 4795 MI.eraseFromParent(); 4796 return Legalized; 4797 } 4798 4799 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4800 LegalizerHelper::LegalizeResult 4801 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4802 Register Dst = MI.getOperand(0).getReg(); 4803 Register Src = MI.getOperand(1).getReg(); 4804 4805 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4806 return UnableToLegalize; 4807 4808 const unsigned ExpMask = 0x7ff; 4809 const unsigned ExpBiasf64 = 1023; 4810 const unsigned ExpBiasf16 = 15; 4811 const LLT S32 = LLT::scalar(32); 4812 const LLT S1 = LLT::scalar(1); 4813 4814 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4815 Register U = Unmerge.getReg(0); 4816 Register UH = Unmerge.getReg(1); 4817 4818 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4819 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4820 4821 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4822 // add the f16 bias (15) to get the biased exponent for the f16 format. 4823 E = MIRBuilder.buildAdd( 4824 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4825 4826 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4827 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4828 4829 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4830 MIRBuilder.buildConstant(S32, 0x1ff)); 4831 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4832 4833 auto Zero = MIRBuilder.buildConstant(S32, 0); 4834 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4835 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4836 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4837 4838 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4839 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4840 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4841 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4842 4843 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4844 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4845 4846 // N = M | (E << 12); 4847 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4848 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4849 4850 // B = clamp(1-E, 0, 13); 4851 auto One = MIRBuilder.buildConstant(S32, 1); 4852 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4853 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4854 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4855 4856 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4857 MIRBuilder.buildConstant(S32, 0x1000)); 4858 4859 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4860 auto D0 = MIRBuilder.buildShl(S32, D, B); 4861 4862 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4863 D0, SigSetHigh); 4864 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4865 D = MIRBuilder.buildOr(S32, D, D1); 4866 4867 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4868 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4869 4870 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4871 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4872 4873 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4874 MIRBuilder.buildConstant(S32, 3)); 4875 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4876 4877 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4878 MIRBuilder.buildConstant(S32, 5)); 4879 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4880 4881 V1 = MIRBuilder.buildOr(S32, V0, V1); 4882 V = MIRBuilder.buildAdd(S32, V, V1); 4883 4884 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4885 E, MIRBuilder.buildConstant(S32, 30)); 4886 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4887 MIRBuilder.buildConstant(S32, 0x7c00), V); 4888 4889 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4890 E, MIRBuilder.buildConstant(S32, 1039)); 4891 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4892 4893 // Extract the sign bit. 4894 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4895 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4896 4897 // Insert the sign bit 4898 V = MIRBuilder.buildOr(S32, Sign, V); 4899 4900 MIRBuilder.buildTrunc(Dst, V); 4901 MI.eraseFromParent(); 4902 return Legalized; 4903 } 4904 4905 LegalizerHelper::LegalizeResult 4906 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4907 Register Dst = MI.getOperand(0).getReg(); 4908 Register Src = MI.getOperand(1).getReg(); 4909 4910 LLT DstTy = MRI.getType(Dst); 4911 LLT SrcTy = MRI.getType(Src); 4912 const LLT S64 = LLT::scalar(64); 4913 const LLT S16 = LLT::scalar(16); 4914 4915 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4916 return lowerFPTRUNC_F64_TO_F16(MI); 4917 4918 return UnableToLegalize; 4919 } 4920 4921 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 4922 // multiplication tree. 4923 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 4924 Register Dst = MI.getOperand(0).getReg(); 4925 Register Src0 = MI.getOperand(1).getReg(); 4926 Register Src1 = MI.getOperand(2).getReg(); 4927 LLT Ty = MRI.getType(Dst); 4928 4929 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 4930 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 4931 MI.eraseFromParent(); 4932 return Legalized; 4933 } 4934 4935 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4936 switch (Opc) { 4937 case TargetOpcode::G_SMIN: 4938 return CmpInst::ICMP_SLT; 4939 case TargetOpcode::G_SMAX: 4940 return CmpInst::ICMP_SGT; 4941 case TargetOpcode::G_UMIN: 4942 return CmpInst::ICMP_ULT; 4943 case TargetOpcode::G_UMAX: 4944 return CmpInst::ICMP_UGT; 4945 default: 4946 llvm_unreachable("not in integer min/max"); 4947 } 4948 } 4949 4950 LegalizerHelper::LegalizeResult 4951 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4952 Register Dst = MI.getOperand(0).getReg(); 4953 Register Src0 = MI.getOperand(1).getReg(); 4954 Register Src1 = MI.getOperand(2).getReg(); 4955 4956 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4957 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4958 4959 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4960 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4961 4962 MI.eraseFromParent(); 4963 return Legalized; 4964 } 4965 4966 LegalizerHelper::LegalizeResult 4967 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4968 Register Dst = MI.getOperand(0).getReg(); 4969 Register Src0 = MI.getOperand(1).getReg(); 4970 Register Src1 = MI.getOperand(2).getReg(); 4971 4972 const LLT Src0Ty = MRI.getType(Src0); 4973 const LLT Src1Ty = MRI.getType(Src1); 4974 4975 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4976 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4977 4978 auto SignBitMask = MIRBuilder.buildConstant( 4979 Src0Ty, APInt::getSignMask(Src0Size)); 4980 4981 auto NotSignBitMask = MIRBuilder.buildConstant( 4982 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4983 4984 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4985 MachineInstr *Or; 4986 4987 if (Src0Ty == Src1Ty) { 4988 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4989 Or = MIRBuilder.buildOr(Dst, And0, And1); 4990 } else if (Src0Size > Src1Size) { 4991 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4992 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4993 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4994 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4995 Or = MIRBuilder.buildOr(Dst, And0, And1); 4996 } else { 4997 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4998 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4999 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5000 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5001 Or = MIRBuilder.buildOr(Dst, And0, And1); 5002 } 5003 5004 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5005 // constants are a nan and -0.0, but the final result should preserve 5006 // everything. 5007 if (unsigned Flags = MI.getFlags()) 5008 Or->setFlags(Flags); 5009 5010 MI.eraseFromParent(); 5011 return Legalized; 5012 } 5013 5014 LegalizerHelper::LegalizeResult 5015 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5016 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5017 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5018 5019 Register Dst = MI.getOperand(0).getReg(); 5020 Register Src0 = MI.getOperand(1).getReg(); 5021 Register Src1 = MI.getOperand(2).getReg(); 5022 LLT Ty = MRI.getType(Dst); 5023 5024 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5025 // Insert canonicalizes if it's possible we need to quiet to get correct 5026 // sNaN behavior. 5027 5028 // Note this must be done here, and not as an optimization combine in the 5029 // absence of a dedicate quiet-snan instruction as we're using an 5030 // omni-purpose G_FCANONICALIZE. 5031 if (!isKnownNeverSNaN(Src0, MRI)) 5032 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5033 5034 if (!isKnownNeverSNaN(Src1, MRI)) 5035 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5036 } 5037 5038 // If there are no nans, it's safe to simply replace this with the non-IEEE 5039 // version. 5040 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5041 MI.eraseFromParent(); 5042 return Legalized; 5043 } 5044 5045 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5046 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5047 Register DstReg = MI.getOperand(0).getReg(); 5048 LLT Ty = MRI.getType(DstReg); 5049 unsigned Flags = MI.getFlags(); 5050 5051 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5052 Flags); 5053 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5054 MI.eraseFromParent(); 5055 return Legalized; 5056 } 5057 5058 LegalizerHelper::LegalizeResult 5059 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5060 Register DstReg = MI.getOperand(0).getReg(); 5061 Register X = MI.getOperand(1).getReg(); 5062 const unsigned Flags = MI.getFlags(); 5063 const LLT Ty = MRI.getType(DstReg); 5064 const LLT CondTy = Ty.changeElementSize(1); 5065 5066 // round(x) => 5067 // t = trunc(x); 5068 // d = fabs(x - t); 5069 // o = copysign(1.0f, x); 5070 // return t + (d >= 0.5 ? o : 0.0); 5071 5072 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5073 5074 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5075 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5076 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5077 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5078 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5079 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5080 5081 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5082 Flags); 5083 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5084 5085 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5086 5087 MI.eraseFromParent(); 5088 return Legalized; 5089 } 5090 5091 LegalizerHelper::LegalizeResult 5092 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5093 Register DstReg = MI.getOperand(0).getReg(); 5094 Register SrcReg = MI.getOperand(1).getReg(); 5095 unsigned Flags = MI.getFlags(); 5096 LLT Ty = MRI.getType(DstReg); 5097 const LLT CondTy = Ty.changeElementSize(1); 5098 5099 // result = trunc(src); 5100 // if (src < 0.0 && src != result) 5101 // result += -1.0. 5102 5103 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5104 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5105 5106 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5107 SrcReg, Zero, Flags); 5108 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5109 SrcReg, Trunc, Flags); 5110 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5111 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5112 5113 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5114 MI.eraseFromParent(); 5115 return Legalized; 5116 } 5117 5118 LegalizerHelper::LegalizeResult 5119 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5120 const unsigned NumOps = MI.getNumOperands(); 5121 Register DstReg = MI.getOperand(0).getReg(); 5122 Register Src0Reg = MI.getOperand(1).getReg(); 5123 LLT DstTy = MRI.getType(DstReg); 5124 LLT SrcTy = MRI.getType(Src0Reg); 5125 unsigned PartSize = SrcTy.getSizeInBits(); 5126 5127 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5128 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5129 5130 for (unsigned I = 2; I != NumOps; ++I) { 5131 const unsigned Offset = (I - 1) * PartSize; 5132 5133 Register SrcReg = MI.getOperand(I).getReg(); 5134 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5135 5136 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5137 MRI.createGenericVirtualRegister(WideTy); 5138 5139 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5140 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5141 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5142 ResultReg = NextResult; 5143 } 5144 5145 if (DstTy.isPointer()) { 5146 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5147 DstTy.getAddressSpace())) { 5148 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5149 return UnableToLegalize; 5150 } 5151 5152 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5153 } 5154 5155 MI.eraseFromParent(); 5156 return Legalized; 5157 } 5158 5159 LegalizerHelper::LegalizeResult 5160 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5161 const unsigned NumDst = MI.getNumOperands() - 1; 5162 Register SrcReg = MI.getOperand(NumDst).getReg(); 5163 Register Dst0Reg = MI.getOperand(0).getReg(); 5164 LLT DstTy = MRI.getType(Dst0Reg); 5165 if (DstTy.isPointer()) 5166 return UnableToLegalize; // TODO 5167 5168 SrcReg = coerceToScalar(SrcReg); 5169 if (!SrcReg) 5170 return UnableToLegalize; 5171 5172 // Expand scalarizing unmerge as bitcast to integer and shift. 5173 LLT IntTy = MRI.getType(SrcReg); 5174 5175 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5176 5177 const unsigned DstSize = DstTy.getSizeInBits(); 5178 unsigned Offset = DstSize; 5179 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5180 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5181 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5182 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5183 } 5184 5185 MI.eraseFromParent(); 5186 return Legalized; 5187 } 5188 5189 /// Lower a vector extract by writing the vector to a stack temporary and 5190 /// reloading the element. 5191 /// 5192 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5193 /// => 5194 /// %stack_temp = G_FRAME_INDEX 5195 /// G_STORE %vec, %stack_temp 5196 /// %idx = clamp(%idx, %vec.getNumElements()) 5197 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5198 /// %dst = G_LOAD %element_ptr 5199 LegalizerHelper::LegalizeResult 5200 LegalizerHelper::lowerExtractVectorElt(MachineInstr &MI) { 5201 Register DstReg = MI.getOperand(0).getReg(); 5202 Register SrcVec = MI.getOperand(1).getReg(); 5203 Register Idx = MI.getOperand(2).getReg(); 5204 LLT VecTy = MRI.getType(SrcVec); 5205 LLT EltTy = VecTy.getElementType(); 5206 if (!EltTy.isByteSized()) { // Not implemented. 5207 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5208 return UnableToLegalize; 5209 } 5210 5211 unsigned EltBytes = EltTy.getSizeInBytes(); 5212 Align StoreAlign = getStackTemporaryAlignment(VecTy); 5213 Align LoadAlign; 5214 5215 MachinePointerInfo PtrInfo; 5216 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5217 StoreAlign, PtrInfo); 5218 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, StoreAlign); 5219 5220 // Get the pointer to the element, and be sure not to hit undefined behavior 5221 // if the index is out of bounds. 5222 Register LoadPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5223 5224 int64_t IdxVal; 5225 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5226 int64_t Offset = IdxVal * EltBytes; 5227 PtrInfo = PtrInfo.getWithOffset(Offset); 5228 LoadAlign = commonAlignment(StoreAlign, Offset); 5229 } else { 5230 // We lose information with a variable offset. 5231 LoadAlign = getStackTemporaryAlignment(EltTy); 5232 PtrInfo = MachinePointerInfo(MRI.getType(LoadPtr).getAddressSpace()); 5233 } 5234 5235 MIRBuilder.buildLoad(DstReg, LoadPtr, PtrInfo, LoadAlign); 5236 MI.eraseFromParent(); 5237 return Legalized; 5238 } 5239 5240 LegalizerHelper::LegalizeResult 5241 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5242 Register DstReg = MI.getOperand(0).getReg(); 5243 Register Src0Reg = MI.getOperand(1).getReg(); 5244 Register Src1Reg = MI.getOperand(2).getReg(); 5245 LLT Src0Ty = MRI.getType(Src0Reg); 5246 LLT DstTy = MRI.getType(DstReg); 5247 LLT IdxTy = LLT::scalar(32); 5248 5249 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5250 5251 if (DstTy.isScalar()) { 5252 if (Src0Ty.isVector()) 5253 return UnableToLegalize; 5254 5255 // This is just a SELECT. 5256 assert(Mask.size() == 1 && "Expected a single mask element"); 5257 Register Val; 5258 if (Mask[0] < 0 || Mask[0] > 1) 5259 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5260 else 5261 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5262 MIRBuilder.buildCopy(DstReg, Val); 5263 MI.eraseFromParent(); 5264 return Legalized; 5265 } 5266 5267 Register Undef; 5268 SmallVector<Register, 32> BuildVec; 5269 LLT EltTy = DstTy.getElementType(); 5270 5271 for (int Idx : Mask) { 5272 if (Idx < 0) { 5273 if (!Undef.isValid()) 5274 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5275 BuildVec.push_back(Undef); 5276 continue; 5277 } 5278 5279 if (Src0Ty.isScalar()) { 5280 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5281 } else { 5282 int NumElts = Src0Ty.getNumElements(); 5283 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5284 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5285 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5286 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5287 BuildVec.push_back(Extract.getReg(0)); 5288 } 5289 } 5290 5291 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5292 MI.eraseFromParent(); 5293 return Legalized; 5294 } 5295 5296 LegalizerHelper::LegalizeResult 5297 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5298 const auto &MF = *MI.getMF(); 5299 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5300 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5301 return UnableToLegalize; 5302 5303 Register Dst = MI.getOperand(0).getReg(); 5304 Register AllocSize = MI.getOperand(1).getReg(); 5305 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5306 5307 LLT PtrTy = MRI.getType(Dst); 5308 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5309 5310 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5311 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5312 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5313 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5314 5315 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5316 // have to generate an extra instruction to negate the alloc and then use 5317 // G_PTR_ADD to add the negative offset. 5318 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5319 if (Alignment > Align(1)) { 5320 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5321 AlignMask.negate(); 5322 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5323 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5324 } 5325 5326 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5327 MIRBuilder.buildCopy(SPReg, SPTmp); 5328 MIRBuilder.buildCopy(Dst, SPTmp); 5329 5330 MI.eraseFromParent(); 5331 return Legalized; 5332 } 5333 5334 LegalizerHelper::LegalizeResult 5335 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5336 Register Dst = MI.getOperand(0).getReg(); 5337 Register Src = MI.getOperand(1).getReg(); 5338 unsigned Offset = MI.getOperand(2).getImm(); 5339 5340 LLT DstTy = MRI.getType(Dst); 5341 LLT SrcTy = MRI.getType(Src); 5342 5343 if (DstTy.isScalar() && 5344 (SrcTy.isScalar() || 5345 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5346 LLT SrcIntTy = SrcTy; 5347 if (!SrcTy.isScalar()) { 5348 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5349 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5350 } 5351 5352 if (Offset == 0) 5353 MIRBuilder.buildTrunc(Dst, Src); 5354 else { 5355 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5356 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5357 MIRBuilder.buildTrunc(Dst, Shr); 5358 } 5359 5360 MI.eraseFromParent(); 5361 return Legalized; 5362 } 5363 5364 return UnableToLegalize; 5365 } 5366 5367 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5368 Register Dst = MI.getOperand(0).getReg(); 5369 Register Src = MI.getOperand(1).getReg(); 5370 Register InsertSrc = MI.getOperand(2).getReg(); 5371 uint64_t Offset = MI.getOperand(3).getImm(); 5372 5373 LLT DstTy = MRI.getType(Src); 5374 LLT InsertTy = MRI.getType(InsertSrc); 5375 5376 if (InsertTy.isVector() || 5377 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5378 return UnableToLegalize; 5379 5380 const DataLayout &DL = MIRBuilder.getDataLayout(); 5381 if ((DstTy.isPointer() && 5382 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5383 (InsertTy.isPointer() && 5384 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5385 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5386 return UnableToLegalize; 5387 } 5388 5389 LLT IntDstTy = DstTy; 5390 5391 if (!DstTy.isScalar()) { 5392 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5393 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5394 } 5395 5396 if (!InsertTy.isScalar()) { 5397 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5398 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5399 } 5400 5401 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5402 if (Offset != 0) { 5403 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5404 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5405 } 5406 5407 APInt MaskVal = APInt::getBitsSetWithWrap( 5408 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5409 5410 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5411 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5412 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5413 5414 MIRBuilder.buildCast(Dst, Or); 5415 MI.eraseFromParent(); 5416 return Legalized; 5417 } 5418 5419 LegalizerHelper::LegalizeResult 5420 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5421 Register Dst0 = MI.getOperand(0).getReg(); 5422 Register Dst1 = MI.getOperand(1).getReg(); 5423 Register LHS = MI.getOperand(2).getReg(); 5424 Register RHS = MI.getOperand(3).getReg(); 5425 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5426 5427 LLT Ty = MRI.getType(Dst0); 5428 LLT BoolTy = MRI.getType(Dst1); 5429 5430 if (IsAdd) 5431 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5432 else 5433 MIRBuilder.buildSub(Dst0, LHS, RHS); 5434 5435 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5436 5437 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5438 5439 // For an addition, the result should be less than one of the operands (LHS) 5440 // if and only if the other operand (RHS) is negative, otherwise there will 5441 // be overflow. 5442 // For a subtraction, the result should be less than one of the operands 5443 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5444 // otherwise there will be overflow. 5445 auto ResultLowerThanLHS = 5446 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5447 auto ConditionRHS = MIRBuilder.buildICmp( 5448 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5449 5450 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5451 MI.eraseFromParent(); 5452 return Legalized; 5453 } 5454 5455 LegalizerHelper::LegalizeResult 5456 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5457 Register Res = MI.getOperand(0).getReg(); 5458 Register LHS = MI.getOperand(1).getReg(); 5459 Register RHS = MI.getOperand(2).getReg(); 5460 LLT Ty = MRI.getType(Res); 5461 bool IsSigned; 5462 bool IsAdd; 5463 unsigned BaseOp; 5464 switch (MI.getOpcode()) { 5465 default: 5466 llvm_unreachable("unexpected addsat/subsat opcode"); 5467 case TargetOpcode::G_UADDSAT: 5468 IsSigned = false; 5469 IsAdd = true; 5470 BaseOp = TargetOpcode::G_ADD; 5471 break; 5472 case TargetOpcode::G_SADDSAT: 5473 IsSigned = true; 5474 IsAdd = true; 5475 BaseOp = TargetOpcode::G_ADD; 5476 break; 5477 case TargetOpcode::G_USUBSAT: 5478 IsSigned = false; 5479 IsAdd = false; 5480 BaseOp = TargetOpcode::G_SUB; 5481 break; 5482 case TargetOpcode::G_SSUBSAT: 5483 IsSigned = true; 5484 IsAdd = false; 5485 BaseOp = TargetOpcode::G_SUB; 5486 break; 5487 } 5488 5489 if (IsSigned) { 5490 // sadd.sat(a, b) -> 5491 // hi = 0x7fffffff - smax(a, 0) 5492 // lo = 0x80000000 - smin(a, 0) 5493 // a + smin(smax(lo, b), hi) 5494 // ssub.sat(a, b) -> 5495 // lo = smax(a, -1) - 0x7fffffff 5496 // hi = smin(a, -1) - 0x80000000 5497 // a - smin(smax(lo, b), hi) 5498 // TODO: AMDGPU can use a "median of 3" instruction here: 5499 // a +/- med3(lo, b, hi) 5500 uint64_t NumBits = Ty.getScalarSizeInBits(); 5501 auto MaxVal = 5502 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5503 auto MinVal = 5504 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5505 MachineInstrBuilder Hi, Lo; 5506 if (IsAdd) { 5507 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5508 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5509 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5510 } else { 5511 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5512 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5513 MaxVal); 5514 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5515 MinVal); 5516 } 5517 auto RHSClamped = 5518 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5519 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5520 } else { 5521 // uadd.sat(a, b) -> a + umin(~a, b) 5522 // usub.sat(a, b) -> a - umin(a, b) 5523 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5524 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5525 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5526 } 5527 5528 MI.eraseFromParent(); 5529 return Legalized; 5530 } 5531 5532 LegalizerHelper::LegalizeResult 5533 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5534 Register Res = MI.getOperand(0).getReg(); 5535 Register LHS = MI.getOperand(1).getReg(); 5536 Register RHS = MI.getOperand(2).getReg(); 5537 LLT Ty = MRI.getType(Res); 5538 LLT BoolTy = Ty.changeElementSize(1); 5539 bool IsSigned; 5540 bool IsAdd; 5541 unsigned OverflowOp; 5542 switch (MI.getOpcode()) { 5543 default: 5544 llvm_unreachable("unexpected addsat/subsat opcode"); 5545 case TargetOpcode::G_UADDSAT: 5546 IsSigned = false; 5547 IsAdd = true; 5548 OverflowOp = TargetOpcode::G_UADDO; 5549 break; 5550 case TargetOpcode::G_SADDSAT: 5551 IsSigned = true; 5552 IsAdd = true; 5553 OverflowOp = TargetOpcode::G_SADDO; 5554 break; 5555 case TargetOpcode::G_USUBSAT: 5556 IsSigned = false; 5557 IsAdd = false; 5558 OverflowOp = TargetOpcode::G_USUBO; 5559 break; 5560 case TargetOpcode::G_SSUBSAT: 5561 IsSigned = true; 5562 IsAdd = false; 5563 OverflowOp = TargetOpcode::G_SSUBO; 5564 break; 5565 } 5566 5567 auto OverflowRes = 5568 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5569 Register Tmp = OverflowRes.getReg(0); 5570 Register Ov = OverflowRes.getReg(1); 5571 MachineInstrBuilder Clamp; 5572 if (IsSigned) { 5573 // sadd.sat(a, b) -> 5574 // {tmp, ov} = saddo(a, b) 5575 // ov ? (tmp >>s 31) + 0x80000000 : r 5576 // ssub.sat(a, b) -> 5577 // {tmp, ov} = ssubo(a, b) 5578 // ov ? (tmp >>s 31) + 0x80000000 : r 5579 uint64_t NumBits = Ty.getScalarSizeInBits(); 5580 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5581 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5582 auto MinVal = 5583 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5584 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5585 } else { 5586 // uadd.sat(a, b) -> 5587 // {tmp, ov} = uaddo(a, b) 5588 // ov ? 0xffffffff : tmp 5589 // usub.sat(a, b) -> 5590 // {tmp, ov} = usubo(a, b) 5591 // ov ? 0 : tmp 5592 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5593 } 5594 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5595 5596 MI.eraseFromParent(); 5597 return Legalized; 5598 } 5599 5600 LegalizerHelper::LegalizeResult 5601 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5602 Register Dst = MI.getOperand(0).getReg(); 5603 Register Src = MI.getOperand(1).getReg(); 5604 const LLT Ty = MRI.getType(Src); 5605 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5606 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5607 5608 // Swap most and least significant byte, set remaining bytes in Res to zero. 5609 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5610 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5611 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5612 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5613 5614 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5615 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5616 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5617 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5618 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5619 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5620 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5621 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5622 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5623 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5624 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5625 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5626 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5627 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5628 } 5629 Res.getInstr()->getOperand(0).setReg(Dst); 5630 5631 MI.eraseFromParent(); 5632 return Legalized; 5633 } 5634 5635 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5636 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5637 MachineInstrBuilder Src, APInt Mask) { 5638 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5639 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5640 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5641 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5642 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5643 return B.buildOr(Dst, LHS, RHS); 5644 } 5645 5646 LegalizerHelper::LegalizeResult 5647 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5648 Register Dst = MI.getOperand(0).getReg(); 5649 Register Src = MI.getOperand(1).getReg(); 5650 const LLT Ty = MRI.getType(Src); 5651 unsigned Size = Ty.getSizeInBits(); 5652 5653 MachineInstrBuilder BSWAP = 5654 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5655 5656 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5657 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5658 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5659 MachineInstrBuilder Swap4 = 5660 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5661 5662 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5663 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5664 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5665 MachineInstrBuilder Swap2 = 5666 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5667 5668 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5669 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5670 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5671 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5672 5673 MI.eraseFromParent(); 5674 return Legalized; 5675 } 5676 5677 LegalizerHelper::LegalizeResult 5678 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5679 MachineFunction &MF = MIRBuilder.getMF(); 5680 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5681 const TargetLowering *TLI = STI.getTargetLowering(); 5682 5683 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5684 int NameOpIdx = IsRead ? 1 : 0; 5685 int ValRegIndex = IsRead ? 0 : 1; 5686 5687 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5688 const LLT Ty = MRI.getType(ValReg); 5689 const MDString *RegStr = cast<MDString>( 5690 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5691 5692 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5693 if (!PhysReg.isValid()) 5694 return UnableToLegalize; 5695 5696 if (IsRead) 5697 MIRBuilder.buildCopy(ValReg, PhysReg); 5698 else 5699 MIRBuilder.buildCopy(PhysReg, ValReg); 5700 5701 MI.eraseFromParent(); 5702 return Legalized; 5703 } 5704