1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 const Function &F = MI.getParent()->getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 484 MachineInstr *Next = MI.getNextNode(); 485 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 486 return false; 487 488 return true; 489 } 490 491 LegalizerHelper::LegalizeResult 492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 493 const CallLowering::ArgInfo &Result, 494 ArrayRef<CallLowering::ArgInfo> Args, 495 const CallingConv::ID CC) { 496 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 497 498 CallLowering::CallLoweringInfo Info; 499 Info.CallConv = CC; 500 Info.Callee = MachineOperand::CreateES(Name); 501 Info.OrigRet = Result; 502 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 503 if (!CLI.lowerCall(MIRBuilder, Info)) 504 return LegalizerHelper::UnableToLegalize; 505 506 return LegalizerHelper::Legalized; 507 } 508 509 LegalizerHelper::LegalizeResult 510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 511 const CallLowering::ArgInfo &Result, 512 ArrayRef<CallLowering::ArgInfo> Args) { 513 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 514 const char *Name = TLI.getLibcallName(Libcall); 515 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 516 return createLibcall(MIRBuilder, Name, Result, Args, CC); 517 } 518 519 // Useful for libcalls where all operands have the same type. 520 static LegalizerHelper::LegalizeResult 521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 522 Type *OpType) { 523 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 524 525 SmallVector<CallLowering::ArgInfo, 3> Args; 526 for (unsigned i = 1; i < MI.getNumOperands(); i++) 527 Args.push_back({MI.getOperand(i).getReg(), OpType}); 528 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 529 Args); 530 } 531 532 LegalizerHelper::LegalizeResult 533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 534 MachineInstr &MI) { 535 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 536 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 537 538 SmallVector<CallLowering::ArgInfo, 3> Args; 539 // Add all the args, except for the last which is an imm denoting 'tail'. 540 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 541 Register Reg = MI.getOperand(i).getReg(); 542 543 // Need derive an IR type for call lowering. 544 LLT OpLLT = MRI.getType(Reg); 545 Type *OpTy = nullptr; 546 if (OpLLT.isPointer()) 547 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 548 else 549 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 550 Args.push_back({Reg, OpTy}); 551 } 552 553 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 554 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 555 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 556 RTLIB::Libcall RTLibcall; 557 switch (ID) { 558 case Intrinsic::memcpy: 559 RTLibcall = RTLIB::MEMCPY; 560 break; 561 case Intrinsic::memset: 562 RTLibcall = RTLIB::MEMSET; 563 break; 564 case Intrinsic::memmove: 565 RTLibcall = RTLIB::MEMMOVE; 566 break; 567 default: 568 return LegalizerHelper::UnableToLegalize; 569 } 570 const char *Name = TLI.getLibcallName(RTLibcall); 571 572 MIRBuilder.setInstr(MI); 573 574 CallLowering::CallLoweringInfo Info; 575 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 576 Info.Callee = MachineOperand::CreateES(Name); 577 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 578 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 579 isLibCallInTailPosition(MI); 580 581 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 582 if (!CLI.lowerCall(MIRBuilder, Info)) 583 return LegalizerHelper::UnableToLegalize; 584 585 if (Info.LoweredTailCall) { 586 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 587 // We must have a return following the call to get past 588 // isLibCallInTailPosition. 589 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 590 "Expected instr following MI to be a return?"); 591 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 MI.getNextNode()->eraseFromParent(); 595 } 596 597 return LegalizerHelper::Legalized; 598 } 599 600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 601 Type *FromType) { 602 auto ToMVT = MVT::getVT(ToType); 603 auto FromMVT = MVT::getVT(FromType); 604 605 switch (Opcode) { 606 case TargetOpcode::G_FPEXT: 607 return RTLIB::getFPEXT(FromMVT, ToMVT); 608 case TargetOpcode::G_FPTRUNC: 609 return RTLIB::getFPROUND(FromMVT, ToMVT); 610 case TargetOpcode::G_FPTOSI: 611 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 612 case TargetOpcode::G_FPTOUI: 613 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 614 case TargetOpcode::G_SITOFP: 615 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 616 case TargetOpcode::G_UITOFP: 617 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 618 } 619 llvm_unreachable("Unsupported libcall function"); 620 } 621 622 static LegalizerHelper::LegalizeResult 623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 624 Type *FromType) { 625 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 626 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 627 {{MI.getOperand(1).getReg(), FromType}}); 628 } 629 630 LegalizerHelper::LegalizeResult 631 LegalizerHelper::libcall(MachineInstr &MI) { 632 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 633 unsigned Size = LLTy.getSizeInBits(); 634 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 635 636 MIRBuilder.setInstrAndDebugLoc(MI); 637 638 switch (MI.getOpcode()) { 639 default: 640 return UnableToLegalize; 641 case TargetOpcode::G_SDIV: 642 case TargetOpcode::G_UDIV: 643 case TargetOpcode::G_SREM: 644 case TargetOpcode::G_UREM: 645 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 646 Type *HLTy = IntegerType::get(Ctx, Size); 647 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 648 if (Status != Legalized) 649 return Status; 650 break; 651 } 652 case TargetOpcode::G_FADD: 653 case TargetOpcode::G_FSUB: 654 case TargetOpcode::G_FMUL: 655 case TargetOpcode::G_FDIV: 656 case TargetOpcode::G_FMA: 657 case TargetOpcode::G_FPOW: 658 case TargetOpcode::G_FREM: 659 case TargetOpcode::G_FCOS: 660 case TargetOpcode::G_FSIN: 661 case TargetOpcode::G_FLOG10: 662 case TargetOpcode::G_FLOG: 663 case TargetOpcode::G_FLOG2: 664 case TargetOpcode::G_FEXP: 665 case TargetOpcode::G_FEXP2: 666 case TargetOpcode::G_FCEIL: 667 case TargetOpcode::G_FFLOOR: 668 case TargetOpcode::G_FMINNUM: 669 case TargetOpcode::G_FMAXNUM: 670 case TargetOpcode::G_FSQRT: 671 case TargetOpcode::G_FRINT: 672 case TargetOpcode::G_FNEARBYINT: { 673 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 674 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 675 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 676 return UnableToLegalize; 677 } 678 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 679 if (Status != Legalized) 680 return Status; 681 break; 682 } 683 case TargetOpcode::G_FPEXT: 684 case TargetOpcode::G_FPTRUNC: { 685 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 686 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 687 if (!FromTy || !ToTy) 688 return UnableToLegalize; 689 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 690 if (Status != Legalized) 691 return Status; 692 break; 693 } 694 case TargetOpcode::G_FPTOSI: 695 case TargetOpcode::G_FPTOUI: { 696 // FIXME: Support other types 697 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 698 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 699 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 700 return UnableToLegalize; 701 LegalizeResult Status = conversionLibcall( 702 MI, MIRBuilder, 703 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 704 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 705 if (Status != Legalized) 706 return Status; 707 break; 708 } 709 case TargetOpcode::G_SITOFP: 710 case TargetOpcode::G_UITOFP: { 711 // FIXME: Support other types 712 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 713 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 714 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall( 717 MI, MIRBuilder, 718 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 719 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 720 if (Status != Legalized) 721 return Status; 722 break; 723 } 724 } 725 726 MI.eraseFromParent(); 727 return Legalized; 728 } 729 730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 731 unsigned TypeIdx, 732 LLT NarrowTy) { 733 MIRBuilder.setInstrAndDebugLoc(MI); 734 735 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 736 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 737 738 switch (MI.getOpcode()) { 739 default: 740 return UnableToLegalize; 741 case TargetOpcode::G_IMPLICIT_DEF: { 742 Register DstReg = MI.getOperand(0).getReg(); 743 LLT DstTy = MRI.getType(DstReg); 744 745 // If SizeOp0 is not an exact multiple of NarrowSize, emit 746 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 747 // FIXME: Although this would also be legal for the general case, it causes 748 // a lot of regressions in the emitted code (superfluous COPYs, artifact 749 // combines not being hit). This seems to be a problem related to the 750 // artifact combiner. 751 if (SizeOp0 % NarrowSize != 0) { 752 LLT ImplicitTy = NarrowTy; 753 if (DstTy.isVector()) 754 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 755 756 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 757 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 758 759 MI.eraseFromParent(); 760 return Legalized; 761 } 762 763 int NumParts = SizeOp0 / NarrowSize; 764 765 SmallVector<Register, 2> DstRegs; 766 for (int i = 0; i < NumParts; ++i) 767 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 768 769 if (DstTy.isVector()) 770 MIRBuilder.buildBuildVector(DstReg, DstRegs); 771 else 772 MIRBuilder.buildMerge(DstReg, DstRegs); 773 MI.eraseFromParent(); 774 return Legalized; 775 } 776 case TargetOpcode::G_CONSTANT: { 777 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 778 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 779 unsigned TotalSize = Ty.getSizeInBits(); 780 unsigned NarrowSize = NarrowTy.getSizeInBits(); 781 int NumParts = TotalSize / NarrowSize; 782 783 SmallVector<Register, 4> PartRegs; 784 for (int I = 0; I != NumParts; ++I) { 785 unsigned Offset = I * NarrowSize; 786 auto K = MIRBuilder.buildConstant(NarrowTy, 787 Val.lshr(Offset).trunc(NarrowSize)); 788 PartRegs.push_back(K.getReg(0)); 789 } 790 791 LLT LeftoverTy; 792 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 793 SmallVector<Register, 1> LeftoverRegs; 794 if (LeftoverBits != 0) { 795 LeftoverTy = LLT::scalar(LeftoverBits); 796 auto K = MIRBuilder.buildConstant( 797 LeftoverTy, 798 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 799 LeftoverRegs.push_back(K.getReg(0)); 800 } 801 802 insertParts(MI.getOperand(0).getReg(), 803 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 804 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_SEXT: 809 case TargetOpcode::G_ZEXT: 810 case TargetOpcode::G_ANYEXT: 811 return narrowScalarExt(MI, TypeIdx, NarrowTy); 812 case TargetOpcode::G_TRUNC: { 813 if (TypeIdx != 1) 814 return UnableToLegalize; 815 816 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 817 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 818 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 819 return UnableToLegalize; 820 } 821 822 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 823 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 824 MI.eraseFromParent(); 825 return Legalized; 826 } 827 828 case TargetOpcode::G_FREEZE: 829 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 830 831 case TargetOpcode::G_ADD: { 832 // FIXME: add support for when SizeOp0 isn't an exact multiple of 833 // NarrowSize. 834 if (SizeOp0 % NarrowSize != 0) 835 return UnableToLegalize; 836 // Expand in terms of carry-setting/consuming G_ADDE instructions. 837 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 838 839 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 840 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 841 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 842 843 Register CarryIn; 844 for (int i = 0; i < NumParts; ++i) { 845 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 846 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 847 848 if (i == 0) 849 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 850 else { 851 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 852 Src2Regs[i], CarryIn); 853 } 854 855 DstRegs.push_back(DstReg); 856 CarryIn = CarryOut; 857 } 858 Register DstReg = MI.getOperand(0).getReg(); 859 if(MRI.getType(DstReg).isVector()) 860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 861 else 862 MIRBuilder.buildMerge(DstReg, DstRegs); 863 MI.eraseFromParent(); 864 return Legalized; 865 } 866 case TargetOpcode::G_SUB: { 867 // FIXME: add support for when SizeOp0 isn't an exact multiple of 868 // NarrowSize. 869 if (SizeOp0 % NarrowSize != 0) 870 return UnableToLegalize; 871 872 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 873 874 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 875 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 876 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 877 878 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 879 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 880 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 881 {Src1Regs[0], Src2Regs[0]}); 882 DstRegs.push_back(DstReg); 883 Register BorrowIn = BorrowOut; 884 for (int i = 1; i < NumParts; ++i) { 885 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 886 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 887 888 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 889 {Src1Regs[i], Src2Regs[i], BorrowIn}); 890 891 DstRegs.push_back(DstReg); 892 BorrowIn = BorrowOut; 893 } 894 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_MUL: 899 case TargetOpcode::G_UMULH: 900 return narrowScalarMul(MI, NarrowTy); 901 case TargetOpcode::G_EXTRACT: 902 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 903 case TargetOpcode::G_INSERT: 904 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 905 case TargetOpcode::G_LOAD: { 906 const auto &MMO = **MI.memoperands_begin(); 907 Register DstReg = MI.getOperand(0).getReg(); 908 LLT DstTy = MRI.getType(DstReg); 909 if (DstTy.isVector()) 910 return UnableToLegalize; 911 912 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 913 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 914 auto &MMO = **MI.memoperands_begin(); 915 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 916 MIRBuilder.buildAnyExt(DstReg, TmpReg); 917 MI.eraseFromParent(); 918 return Legalized; 919 } 920 921 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 922 } 923 case TargetOpcode::G_ZEXTLOAD: 924 case TargetOpcode::G_SEXTLOAD: { 925 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 926 Register DstReg = MI.getOperand(0).getReg(); 927 Register PtrReg = MI.getOperand(1).getReg(); 928 929 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 930 auto &MMO = **MI.memoperands_begin(); 931 if (MMO.getSizeInBits() == NarrowSize) { 932 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 933 } else { 934 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 935 } 936 937 if (ZExt) 938 MIRBuilder.buildZExt(DstReg, TmpReg); 939 else 940 MIRBuilder.buildSExt(DstReg, TmpReg); 941 942 MI.eraseFromParent(); 943 return Legalized; 944 } 945 case TargetOpcode::G_STORE: { 946 const auto &MMO = **MI.memoperands_begin(); 947 948 Register SrcReg = MI.getOperand(0).getReg(); 949 LLT SrcTy = MRI.getType(SrcReg); 950 if (SrcTy.isVector()) 951 return UnableToLegalize; 952 953 int NumParts = SizeOp0 / NarrowSize; 954 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 955 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 956 if (SrcTy.isVector() && LeftoverBits != 0) 957 return UnableToLegalize; 958 959 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 960 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 961 auto &MMO = **MI.memoperands_begin(); 962 MIRBuilder.buildTrunc(TmpReg, SrcReg); 963 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 964 MI.eraseFromParent(); 965 return Legalized; 966 } 967 968 return reduceLoadStoreWidth(MI, 0, NarrowTy); 969 } 970 case TargetOpcode::G_SELECT: 971 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 972 case TargetOpcode::G_AND: 973 case TargetOpcode::G_OR: 974 case TargetOpcode::G_XOR: { 975 // Legalize bitwise operation: 976 // A = BinOp<Ty> B, C 977 // into: 978 // B1, ..., BN = G_UNMERGE_VALUES B 979 // C1, ..., CN = G_UNMERGE_VALUES C 980 // A1 = BinOp<Ty/N> B1, C2 981 // ... 982 // AN = BinOp<Ty/N> BN, CN 983 // A = G_MERGE_VALUES A1, ..., AN 984 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 985 } 986 case TargetOpcode::G_SHL: 987 case TargetOpcode::G_LSHR: 988 case TargetOpcode::G_ASHR: 989 return narrowScalarShift(MI, TypeIdx, NarrowTy); 990 case TargetOpcode::G_CTLZ: 991 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 992 case TargetOpcode::G_CTTZ: 993 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 994 case TargetOpcode::G_CTPOP: 995 if (TypeIdx == 1) 996 switch (MI.getOpcode()) { 997 case TargetOpcode::G_CTLZ: 998 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 999 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTTZ: 1001 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1002 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1003 case TargetOpcode::G_CTPOP: 1004 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1005 default: 1006 return UnableToLegalize; 1007 } 1008 1009 Observer.changingInstr(MI); 1010 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1011 Observer.changedInstr(MI); 1012 return Legalized; 1013 case TargetOpcode::G_INTTOPTR: 1014 if (TypeIdx != 1) 1015 return UnableToLegalize; 1016 1017 Observer.changingInstr(MI); 1018 narrowScalarSrc(MI, NarrowTy, 1); 1019 Observer.changedInstr(MI); 1020 return Legalized; 1021 case TargetOpcode::G_PTRTOINT: 1022 if (TypeIdx != 0) 1023 return UnableToLegalize; 1024 1025 Observer.changingInstr(MI); 1026 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1027 Observer.changedInstr(MI); 1028 return Legalized; 1029 case TargetOpcode::G_PHI: { 1030 unsigned NumParts = SizeOp0 / NarrowSize; 1031 SmallVector<Register, 2> DstRegs(NumParts); 1032 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1033 Observer.changingInstr(MI); 1034 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1035 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1036 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1037 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1038 SrcRegs[i / 2]); 1039 } 1040 MachineBasicBlock &MBB = *MI.getParent(); 1041 MIRBuilder.setInsertPt(MBB, MI); 1042 for (unsigned i = 0; i < NumParts; ++i) { 1043 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1044 MachineInstrBuilder MIB = 1045 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1046 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1047 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1048 } 1049 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1050 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1051 Observer.changedInstr(MI); 1052 MI.eraseFromParent(); 1053 return Legalized; 1054 } 1055 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1056 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1057 if (TypeIdx != 2) 1058 return UnableToLegalize; 1059 1060 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1061 Observer.changingInstr(MI); 1062 narrowScalarSrc(MI, NarrowTy, OpIdx); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 } 1066 case TargetOpcode::G_ICMP: { 1067 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1068 if (NarrowSize * 2 != SrcSize) 1069 return UnableToLegalize; 1070 1071 Observer.changingInstr(MI); 1072 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1073 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1074 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1075 1076 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1077 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1078 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1079 1080 CmpInst::Predicate Pred = 1081 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1082 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1083 1084 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1085 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1086 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1087 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1088 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1089 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1090 } else { 1091 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1092 MachineInstrBuilder CmpHEQ = 1093 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1094 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1095 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1096 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1097 } 1098 Observer.changedInstr(MI); 1099 MI.eraseFromParent(); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_SEXT_INREG: { 1103 if (TypeIdx != 0) 1104 return UnableToLegalize; 1105 1106 int64_t SizeInBits = MI.getOperand(2).getImm(); 1107 1108 // So long as the new type has more bits than the bits we're extending we 1109 // don't need to break it apart. 1110 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1111 Observer.changingInstr(MI); 1112 // We don't lose any non-extension bits by truncating the src and 1113 // sign-extending the dst. 1114 MachineOperand &MO1 = MI.getOperand(1); 1115 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1116 MO1.setReg(TruncMIB.getReg(0)); 1117 1118 MachineOperand &MO2 = MI.getOperand(0); 1119 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1120 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1121 MIRBuilder.buildSExt(MO2, DstExt); 1122 MO2.setReg(DstExt); 1123 Observer.changedInstr(MI); 1124 return Legalized; 1125 } 1126 1127 // Break it apart. Components below the extension point are unmodified. The 1128 // component containing the extension point becomes a narrower SEXT_INREG. 1129 // Components above it are ashr'd from the component containing the 1130 // extension point. 1131 if (SizeOp0 % NarrowSize != 0) 1132 return UnableToLegalize; 1133 int NumParts = SizeOp0 / NarrowSize; 1134 1135 // List the registers where the destination will be scattered. 1136 SmallVector<Register, 2> DstRegs; 1137 // List the registers where the source will be split. 1138 SmallVector<Register, 2> SrcRegs; 1139 1140 // Create all the temporary registers. 1141 for (int i = 0; i < NumParts; ++i) { 1142 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1143 1144 SrcRegs.push_back(SrcReg); 1145 } 1146 1147 // Explode the big arguments into smaller chunks. 1148 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1149 1150 Register AshrCstReg = 1151 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1152 .getReg(0); 1153 Register FullExtensionReg = 0; 1154 Register PartialExtensionReg = 0; 1155 1156 // Do the operation on each small part. 1157 for (int i = 0; i < NumParts; ++i) { 1158 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1159 DstRegs.push_back(SrcRegs[i]); 1160 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1161 assert(PartialExtensionReg && 1162 "Expected to visit partial extension before full"); 1163 if (FullExtensionReg) { 1164 DstRegs.push_back(FullExtensionReg); 1165 continue; 1166 } 1167 DstRegs.push_back( 1168 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1169 .getReg(0)); 1170 FullExtensionReg = DstRegs.back(); 1171 } else { 1172 DstRegs.push_back( 1173 MIRBuilder 1174 .buildInstr( 1175 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1176 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1177 .getReg(0)); 1178 PartialExtensionReg = DstRegs.back(); 1179 } 1180 } 1181 1182 // Gather the destination registers into the final destination. 1183 Register DstReg = MI.getOperand(0).getReg(); 1184 MIRBuilder.buildMerge(DstReg, DstRegs); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_BSWAP: 1189 case TargetOpcode::G_BITREVERSE: { 1190 if (SizeOp0 % NarrowSize != 0) 1191 return UnableToLegalize; 1192 1193 Observer.changingInstr(MI); 1194 SmallVector<Register, 2> SrcRegs, DstRegs; 1195 unsigned NumParts = SizeOp0 / NarrowSize; 1196 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1197 1198 for (unsigned i = 0; i < NumParts; ++i) { 1199 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1200 {SrcRegs[NumParts - 1 - i]}); 1201 DstRegs.push_back(DstPart.getReg(0)); 1202 } 1203 1204 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1205 1206 Observer.changedInstr(MI); 1207 MI.eraseFromParent(); 1208 return Legalized; 1209 } 1210 } 1211 } 1212 1213 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1214 unsigned OpIdx, unsigned ExtOpcode) { 1215 MachineOperand &MO = MI.getOperand(OpIdx); 1216 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1217 MO.setReg(ExtB.getReg(0)); 1218 } 1219 1220 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1221 unsigned OpIdx) { 1222 MachineOperand &MO = MI.getOperand(OpIdx); 1223 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1224 MO.setReg(ExtB.getReg(0)); 1225 } 1226 1227 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1228 unsigned OpIdx, unsigned TruncOpcode) { 1229 MachineOperand &MO = MI.getOperand(OpIdx); 1230 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1231 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1232 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1233 MO.setReg(DstExt); 1234 } 1235 1236 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1237 unsigned OpIdx, unsigned ExtOpcode) { 1238 MachineOperand &MO = MI.getOperand(OpIdx); 1239 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1240 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1241 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1242 MO.setReg(DstTrunc); 1243 } 1244 1245 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1246 unsigned OpIdx) { 1247 MachineOperand &MO = MI.getOperand(OpIdx); 1248 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1249 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1250 MIRBuilder.buildExtract(MO, DstExt, 0); 1251 MO.setReg(DstExt); 1252 } 1253 1254 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1255 unsigned OpIdx) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 1258 LLT OldTy = MRI.getType(MO.getReg()); 1259 unsigned OldElts = OldTy.getNumElements(); 1260 unsigned NewElts = MoreTy.getNumElements(); 1261 1262 unsigned NumParts = NewElts / OldElts; 1263 1264 // Use concat_vectors if the result is a multiple of the number of elements. 1265 if (NumParts * OldElts == NewElts) { 1266 SmallVector<Register, 8> Parts; 1267 Parts.push_back(MO.getReg()); 1268 1269 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1270 for (unsigned I = 1; I != NumParts; ++I) 1271 Parts.push_back(ImpDef); 1272 1273 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1274 MO.setReg(Concat.getReg(0)); 1275 return; 1276 } 1277 1278 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1279 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1280 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1281 MO.setReg(MoreReg); 1282 } 1283 1284 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1285 MachineOperand &Op = MI.getOperand(OpIdx); 1286 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1287 } 1288 1289 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1290 MachineOperand &MO = MI.getOperand(OpIdx); 1291 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1292 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1293 MIRBuilder.buildBitcast(MO, CastDst); 1294 MO.setReg(CastDst); 1295 } 1296 1297 LegalizerHelper::LegalizeResult 1298 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1299 LLT WideTy) { 1300 if (TypeIdx != 1) 1301 return UnableToLegalize; 1302 1303 Register DstReg = MI.getOperand(0).getReg(); 1304 LLT DstTy = MRI.getType(DstReg); 1305 if (DstTy.isVector()) 1306 return UnableToLegalize; 1307 1308 Register Src1 = MI.getOperand(1).getReg(); 1309 LLT SrcTy = MRI.getType(Src1); 1310 const int DstSize = DstTy.getSizeInBits(); 1311 const int SrcSize = SrcTy.getSizeInBits(); 1312 const int WideSize = WideTy.getSizeInBits(); 1313 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1314 1315 unsigned NumOps = MI.getNumOperands(); 1316 unsigned NumSrc = MI.getNumOperands() - 1; 1317 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1318 1319 if (WideSize >= DstSize) { 1320 // Directly pack the bits in the target type. 1321 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1322 1323 for (unsigned I = 2; I != NumOps; ++I) { 1324 const unsigned Offset = (I - 1) * PartSize; 1325 1326 Register SrcReg = MI.getOperand(I).getReg(); 1327 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1328 1329 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1330 1331 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1332 MRI.createGenericVirtualRegister(WideTy); 1333 1334 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1335 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1336 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1337 ResultReg = NextResult; 1338 } 1339 1340 if (WideSize > DstSize) 1341 MIRBuilder.buildTrunc(DstReg, ResultReg); 1342 else if (DstTy.isPointer()) 1343 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1344 1345 MI.eraseFromParent(); 1346 return Legalized; 1347 } 1348 1349 // Unmerge the original values to the GCD type, and recombine to the next 1350 // multiple greater than the original type. 1351 // 1352 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1353 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1354 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1355 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1356 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1357 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1358 // %12:_(s12) = G_MERGE_VALUES %10, %11 1359 // 1360 // Padding with undef if necessary: 1361 // 1362 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1363 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1364 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1365 // %7:_(s2) = G_IMPLICIT_DEF 1366 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1367 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1368 // %10:_(s12) = G_MERGE_VALUES %8, %9 1369 1370 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1371 LLT GCDTy = LLT::scalar(GCD); 1372 1373 SmallVector<Register, 8> Parts; 1374 SmallVector<Register, 8> NewMergeRegs; 1375 SmallVector<Register, 8> Unmerges; 1376 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1377 1378 // Decompose the original operands if they don't evenly divide. 1379 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1380 Register SrcReg = MI.getOperand(I).getReg(); 1381 if (GCD == SrcSize) { 1382 Unmerges.push_back(SrcReg); 1383 } else { 1384 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1385 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1386 Unmerges.push_back(Unmerge.getReg(J)); 1387 } 1388 } 1389 1390 // Pad with undef to the next size that is a multiple of the requested size. 1391 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1392 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1393 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1394 Unmerges.push_back(UndefReg); 1395 } 1396 1397 const int PartsPerGCD = WideSize / GCD; 1398 1399 // Build merges of each piece. 1400 ArrayRef<Register> Slicer(Unmerges); 1401 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1402 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1403 NewMergeRegs.push_back(Merge.getReg(0)); 1404 } 1405 1406 // A truncate may be necessary if the requested type doesn't evenly divide the 1407 // original result type. 1408 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1409 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1410 } else { 1411 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1412 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1413 } 1414 1415 MI.eraseFromParent(); 1416 return Legalized; 1417 } 1418 1419 LegalizerHelper::LegalizeResult 1420 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1421 LLT WideTy) { 1422 if (TypeIdx != 0) 1423 return UnableToLegalize; 1424 1425 int NumDst = MI.getNumOperands() - 1; 1426 Register SrcReg = MI.getOperand(NumDst).getReg(); 1427 LLT SrcTy = MRI.getType(SrcReg); 1428 if (SrcTy.isVector()) 1429 return UnableToLegalize; 1430 1431 Register Dst0Reg = MI.getOperand(0).getReg(); 1432 LLT DstTy = MRI.getType(Dst0Reg); 1433 if (!DstTy.isScalar()) 1434 return UnableToLegalize; 1435 1436 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1437 if (SrcTy.isPointer()) { 1438 const DataLayout &DL = MIRBuilder.getDataLayout(); 1439 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1440 LLVM_DEBUG( 1441 dbgs() << "Not casting non-integral address space integer\n"); 1442 return UnableToLegalize; 1443 } 1444 1445 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1446 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1447 } 1448 1449 // Widen SrcTy to WideTy. This does not affect the result, but since the 1450 // user requested this size, it is probably better handled than SrcTy and 1451 // should reduce the total number of legalization artifacts 1452 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1453 SrcTy = WideTy; 1454 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1455 } 1456 1457 // Theres no unmerge type to target. Directly extract the bits from the 1458 // source type 1459 unsigned DstSize = DstTy.getSizeInBits(); 1460 1461 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1462 for (int I = 1; I != NumDst; ++I) { 1463 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1464 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1465 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1466 } 1467 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 1472 // Extend the source to a wider type. 1473 LLT LCMTy = getLCMType(SrcTy, WideTy); 1474 1475 Register WideSrc = SrcReg; 1476 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1477 // TODO: If this is an integral address space, cast to integer and anyext. 1478 if (SrcTy.isPointer()) { 1479 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1480 return UnableToLegalize; 1481 } 1482 1483 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1484 } 1485 1486 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1487 1488 // Create a sequence of unmerges to the original results. since we may have 1489 // widened the source, we will need to pad the results with dead defs to cover 1490 // the source register. 1491 // e.g. widen s16 to s32: 1492 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1493 // 1494 // => 1495 // %4:_(s64) = G_ANYEXT %0:_(s48) 1496 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1497 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1498 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1499 1500 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1501 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1502 1503 for (int I = 0; I != NumUnmerge; ++I) { 1504 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1505 1506 for (int J = 0; J != PartsPerUnmerge; ++J) { 1507 int Idx = I * PartsPerUnmerge + J; 1508 if (Idx < NumDst) 1509 MIB.addDef(MI.getOperand(Idx).getReg()); 1510 else { 1511 // Create dead def for excess components. 1512 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1513 } 1514 } 1515 1516 MIB.addUse(Unmerge.getReg(I)); 1517 } 1518 1519 MI.eraseFromParent(); 1520 return Legalized; 1521 } 1522 1523 LegalizerHelper::LegalizeResult 1524 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1525 LLT WideTy) { 1526 Register DstReg = MI.getOperand(0).getReg(); 1527 Register SrcReg = MI.getOperand(1).getReg(); 1528 LLT SrcTy = MRI.getType(SrcReg); 1529 1530 LLT DstTy = MRI.getType(DstReg); 1531 unsigned Offset = MI.getOperand(2).getImm(); 1532 1533 if (TypeIdx == 0) { 1534 if (SrcTy.isVector() || DstTy.isVector()) 1535 return UnableToLegalize; 1536 1537 SrcOp Src(SrcReg); 1538 if (SrcTy.isPointer()) { 1539 // Extracts from pointers can be handled only if they are really just 1540 // simple integers. 1541 const DataLayout &DL = MIRBuilder.getDataLayout(); 1542 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1543 return UnableToLegalize; 1544 1545 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1546 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1547 SrcTy = SrcAsIntTy; 1548 } 1549 1550 if (DstTy.isPointer()) 1551 return UnableToLegalize; 1552 1553 if (Offset == 0) { 1554 // Avoid a shift in the degenerate case. 1555 MIRBuilder.buildTrunc(DstReg, 1556 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1557 MI.eraseFromParent(); 1558 return Legalized; 1559 } 1560 1561 // Do a shift in the source type. 1562 LLT ShiftTy = SrcTy; 1563 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1564 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1565 ShiftTy = WideTy; 1566 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1567 return UnableToLegalize; 1568 1569 auto LShr = MIRBuilder.buildLShr( 1570 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1571 MIRBuilder.buildTrunc(DstReg, LShr); 1572 MI.eraseFromParent(); 1573 return Legalized; 1574 } 1575 1576 if (SrcTy.isScalar()) { 1577 Observer.changingInstr(MI); 1578 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1579 Observer.changedInstr(MI); 1580 return Legalized; 1581 } 1582 1583 if (!SrcTy.isVector()) 1584 return UnableToLegalize; 1585 1586 if (DstTy != SrcTy.getElementType()) 1587 return UnableToLegalize; 1588 1589 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1590 return UnableToLegalize; 1591 1592 Observer.changingInstr(MI); 1593 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1594 1595 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1596 Offset); 1597 widenScalarDst(MI, WideTy.getScalarType(), 0); 1598 Observer.changedInstr(MI); 1599 return Legalized; 1600 } 1601 1602 LegalizerHelper::LegalizeResult 1603 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1604 LLT WideTy) { 1605 if (TypeIdx != 0) 1606 return UnableToLegalize; 1607 Observer.changingInstr(MI); 1608 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1609 widenScalarDst(MI, WideTy); 1610 Observer.changedInstr(MI); 1611 return Legalized; 1612 } 1613 1614 LegalizerHelper::LegalizeResult 1615 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1616 MIRBuilder.setInstrAndDebugLoc(MI); 1617 1618 switch (MI.getOpcode()) { 1619 default: 1620 return UnableToLegalize; 1621 case TargetOpcode::G_EXTRACT: 1622 return widenScalarExtract(MI, TypeIdx, WideTy); 1623 case TargetOpcode::G_INSERT: 1624 return widenScalarInsert(MI, TypeIdx, WideTy); 1625 case TargetOpcode::G_MERGE_VALUES: 1626 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1627 case TargetOpcode::G_UNMERGE_VALUES: 1628 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1629 case TargetOpcode::G_UADDO: 1630 case TargetOpcode::G_USUBO: { 1631 if (TypeIdx == 1) 1632 return UnableToLegalize; // TODO 1633 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1634 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1635 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1636 ? TargetOpcode::G_ADD 1637 : TargetOpcode::G_SUB; 1638 // Do the arithmetic in the larger type. 1639 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1640 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1641 APInt Mask = 1642 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1643 auto AndOp = MIRBuilder.buildAnd( 1644 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1645 // There is no overflow if the AndOp is the same as NewOp. 1646 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1647 // Now trunc the NewOp to the original result. 1648 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1649 MI.eraseFromParent(); 1650 return Legalized; 1651 } 1652 case TargetOpcode::G_CTTZ: 1653 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1654 case TargetOpcode::G_CTLZ: 1655 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1656 case TargetOpcode::G_CTPOP: { 1657 if (TypeIdx == 0) { 1658 Observer.changingInstr(MI); 1659 widenScalarDst(MI, WideTy, 0); 1660 Observer.changedInstr(MI); 1661 return Legalized; 1662 } 1663 1664 Register SrcReg = MI.getOperand(1).getReg(); 1665 1666 // First ZEXT the input. 1667 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1668 LLT CurTy = MRI.getType(SrcReg); 1669 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1670 // The count is the same in the larger type except if the original 1671 // value was zero. This can be handled by setting the bit just off 1672 // the top of the original type. 1673 auto TopBit = 1674 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1675 MIBSrc = MIRBuilder.buildOr( 1676 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1677 } 1678 1679 // Perform the operation at the larger size. 1680 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1681 // This is already the correct result for CTPOP and CTTZs 1682 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1683 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1684 // The correct result is NewOp - (Difference in widety and current ty). 1685 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1686 MIBNewOp = MIRBuilder.buildSub( 1687 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1688 } 1689 1690 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1691 MI.eraseFromParent(); 1692 return Legalized; 1693 } 1694 case TargetOpcode::G_BSWAP: { 1695 Observer.changingInstr(MI); 1696 Register DstReg = MI.getOperand(0).getReg(); 1697 1698 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1699 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1700 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1701 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1702 1703 MI.getOperand(0).setReg(DstExt); 1704 1705 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1706 1707 LLT Ty = MRI.getType(DstReg); 1708 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1709 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1710 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1711 1712 MIRBuilder.buildTrunc(DstReg, ShrReg); 1713 Observer.changedInstr(MI); 1714 return Legalized; 1715 } 1716 case TargetOpcode::G_BITREVERSE: { 1717 Observer.changingInstr(MI); 1718 1719 Register DstReg = MI.getOperand(0).getReg(); 1720 LLT Ty = MRI.getType(DstReg); 1721 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1722 1723 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 MI.getOperand(0).setReg(DstExt); 1726 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1727 1728 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1729 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1730 MIRBuilder.buildTrunc(DstReg, Shift); 1731 Observer.changedInstr(MI); 1732 return Legalized; 1733 } 1734 case TargetOpcode::G_FREEZE: 1735 Observer.changingInstr(MI); 1736 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1737 widenScalarDst(MI, WideTy); 1738 Observer.changedInstr(MI); 1739 return Legalized; 1740 1741 case TargetOpcode::G_ADD: 1742 case TargetOpcode::G_AND: 1743 case TargetOpcode::G_MUL: 1744 case TargetOpcode::G_OR: 1745 case TargetOpcode::G_XOR: 1746 case TargetOpcode::G_SUB: 1747 // Perform operation at larger width (any extension is fines here, high bits 1748 // don't affect the result) and then truncate the result back to the 1749 // original type. 1750 Observer.changingInstr(MI); 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1752 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1753 widenScalarDst(MI, WideTy); 1754 Observer.changedInstr(MI); 1755 return Legalized; 1756 1757 case TargetOpcode::G_SHL: 1758 Observer.changingInstr(MI); 1759 1760 if (TypeIdx == 0) { 1761 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1762 widenScalarDst(MI, WideTy); 1763 } else { 1764 assert(TypeIdx == 1); 1765 // The "number of bits to shift" operand must preserve its value as an 1766 // unsigned integer: 1767 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1768 } 1769 1770 Observer.changedInstr(MI); 1771 return Legalized; 1772 1773 case TargetOpcode::G_SDIV: 1774 case TargetOpcode::G_SREM: 1775 case TargetOpcode::G_SMIN: 1776 case TargetOpcode::G_SMAX: 1777 Observer.changingInstr(MI); 1778 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1779 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1780 widenScalarDst(MI, WideTy); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 1784 case TargetOpcode::G_ASHR: 1785 case TargetOpcode::G_LSHR: 1786 Observer.changingInstr(MI); 1787 1788 if (TypeIdx == 0) { 1789 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1790 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1791 1792 widenScalarSrc(MI, WideTy, 1, CvtOp); 1793 widenScalarDst(MI, WideTy); 1794 } else { 1795 assert(TypeIdx == 1); 1796 // The "number of bits to shift" operand must preserve its value as an 1797 // unsigned integer: 1798 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1799 } 1800 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 case TargetOpcode::G_UDIV: 1804 case TargetOpcode::G_UREM: 1805 case TargetOpcode::G_UMIN: 1806 case TargetOpcode::G_UMAX: 1807 Observer.changingInstr(MI); 1808 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1809 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1810 widenScalarDst(MI, WideTy); 1811 Observer.changedInstr(MI); 1812 return Legalized; 1813 1814 case TargetOpcode::G_SELECT: 1815 Observer.changingInstr(MI); 1816 if (TypeIdx == 0) { 1817 // Perform operation at larger width (any extension is fine here, high 1818 // bits don't affect the result) and then truncate the result back to the 1819 // original type. 1820 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1821 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1822 widenScalarDst(MI, WideTy); 1823 } else { 1824 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1825 // Explicit extension is required here since high bits affect the result. 1826 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1827 } 1828 Observer.changedInstr(MI); 1829 return Legalized; 1830 1831 case TargetOpcode::G_FPTOSI: 1832 case TargetOpcode::G_FPTOUI: 1833 Observer.changingInstr(MI); 1834 1835 if (TypeIdx == 0) 1836 widenScalarDst(MI, WideTy); 1837 else 1838 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1839 1840 Observer.changedInstr(MI); 1841 return Legalized; 1842 case TargetOpcode::G_SITOFP: 1843 if (TypeIdx != 1) 1844 return UnableToLegalize; 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1847 Observer.changedInstr(MI); 1848 return Legalized; 1849 1850 case TargetOpcode::G_UITOFP: 1851 if (TypeIdx != 1) 1852 return UnableToLegalize; 1853 Observer.changingInstr(MI); 1854 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_LOAD: 1859 case TargetOpcode::G_SEXTLOAD: 1860 case TargetOpcode::G_ZEXTLOAD: 1861 Observer.changingInstr(MI); 1862 widenScalarDst(MI, WideTy); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 1866 case TargetOpcode::G_STORE: { 1867 if (TypeIdx != 0) 1868 return UnableToLegalize; 1869 1870 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1871 if (!isPowerOf2_32(Ty.getSizeInBits())) 1872 return UnableToLegalize; 1873 1874 Observer.changingInstr(MI); 1875 1876 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1877 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1878 widenScalarSrc(MI, WideTy, 0, ExtType); 1879 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 } 1883 case TargetOpcode::G_CONSTANT: { 1884 MachineOperand &SrcMO = MI.getOperand(1); 1885 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1886 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1887 MRI.getType(MI.getOperand(0).getReg())); 1888 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1889 ExtOpc == TargetOpcode::G_ANYEXT) && 1890 "Illegal Extend"); 1891 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1892 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1893 ? SrcVal.sext(WideTy.getSizeInBits()) 1894 : SrcVal.zext(WideTy.getSizeInBits()); 1895 Observer.changingInstr(MI); 1896 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1897 1898 widenScalarDst(MI, WideTy); 1899 Observer.changedInstr(MI); 1900 return Legalized; 1901 } 1902 case TargetOpcode::G_FCONSTANT: { 1903 MachineOperand &SrcMO = MI.getOperand(1); 1904 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1905 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1906 bool LosesInfo; 1907 switch (WideTy.getSizeInBits()) { 1908 case 32: 1909 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1910 &LosesInfo); 1911 break; 1912 case 64: 1913 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1914 &LosesInfo); 1915 break; 1916 default: 1917 return UnableToLegalize; 1918 } 1919 1920 assert(!LosesInfo && "extend should always be lossless"); 1921 1922 Observer.changingInstr(MI); 1923 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1924 1925 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 case TargetOpcode::G_IMPLICIT_DEF: { 1930 Observer.changingInstr(MI); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_BRCOND: 1936 Observer.changingInstr(MI); 1937 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1938 Observer.changedInstr(MI); 1939 return Legalized; 1940 1941 case TargetOpcode::G_FCMP: 1942 Observer.changingInstr(MI); 1943 if (TypeIdx == 0) 1944 widenScalarDst(MI, WideTy); 1945 else { 1946 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1947 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1948 } 1949 Observer.changedInstr(MI); 1950 return Legalized; 1951 1952 case TargetOpcode::G_ICMP: 1953 Observer.changingInstr(MI); 1954 if (TypeIdx == 0) 1955 widenScalarDst(MI, WideTy); 1956 else { 1957 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1958 MI.getOperand(1).getPredicate())) 1959 ? TargetOpcode::G_SEXT 1960 : TargetOpcode::G_ZEXT; 1961 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1962 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1963 } 1964 Observer.changedInstr(MI); 1965 return Legalized; 1966 1967 case TargetOpcode::G_PTR_ADD: 1968 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1969 Observer.changingInstr(MI); 1970 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1971 Observer.changedInstr(MI); 1972 return Legalized; 1973 1974 case TargetOpcode::G_PHI: { 1975 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1976 1977 Observer.changingInstr(MI); 1978 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1979 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1980 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1981 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1982 } 1983 1984 MachineBasicBlock &MBB = *MI.getParent(); 1985 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1986 widenScalarDst(MI, WideTy); 1987 Observer.changedInstr(MI); 1988 return Legalized; 1989 } 1990 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1991 if (TypeIdx == 0) { 1992 Register VecReg = MI.getOperand(1).getReg(); 1993 LLT VecTy = MRI.getType(VecReg); 1994 Observer.changingInstr(MI); 1995 1996 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1997 WideTy.getSizeInBits()), 1998 1, TargetOpcode::G_SEXT); 1999 2000 widenScalarDst(MI, WideTy, 0); 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 } 2004 2005 if (TypeIdx != 2) 2006 return UnableToLegalize; 2007 Observer.changingInstr(MI); 2008 // TODO: Probably should be zext 2009 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2010 Observer.changedInstr(MI); 2011 return Legalized; 2012 } 2013 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2014 if (TypeIdx == 1) { 2015 Observer.changingInstr(MI); 2016 2017 Register VecReg = MI.getOperand(1).getReg(); 2018 LLT VecTy = MRI.getType(VecReg); 2019 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2020 2021 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2022 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2023 widenScalarDst(MI, WideVecTy, 0); 2024 Observer.changedInstr(MI); 2025 return Legalized; 2026 } 2027 2028 if (TypeIdx == 2) { 2029 Observer.changingInstr(MI); 2030 // TODO: Probably should be zext 2031 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2032 Observer.changedInstr(MI); 2033 } 2034 2035 return Legalized; 2036 } 2037 case TargetOpcode::G_FADD: 2038 case TargetOpcode::G_FMUL: 2039 case TargetOpcode::G_FSUB: 2040 case TargetOpcode::G_FMA: 2041 case TargetOpcode::G_FMAD: 2042 case TargetOpcode::G_FNEG: 2043 case TargetOpcode::G_FABS: 2044 case TargetOpcode::G_FCANONICALIZE: 2045 case TargetOpcode::G_FMINNUM: 2046 case TargetOpcode::G_FMAXNUM: 2047 case TargetOpcode::G_FMINNUM_IEEE: 2048 case TargetOpcode::G_FMAXNUM_IEEE: 2049 case TargetOpcode::G_FMINIMUM: 2050 case TargetOpcode::G_FMAXIMUM: 2051 case TargetOpcode::G_FDIV: 2052 case TargetOpcode::G_FREM: 2053 case TargetOpcode::G_FCEIL: 2054 case TargetOpcode::G_FFLOOR: 2055 case TargetOpcode::G_FCOS: 2056 case TargetOpcode::G_FSIN: 2057 case TargetOpcode::G_FLOG10: 2058 case TargetOpcode::G_FLOG: 2059 case TargetOpcode::G_FLOG2: 2060 case TargetOpcode::G_FRINT: 2061 case TargetOpcode::G_FNEARBYINT: 2062 case TargetOpcode::G_FSQRT: 2063 case TargetOpcode::G_FEXP: 2064 case TargetOpcode::G_FEXP2: 2065 case TargetOpcode::G_FPOW: 2066 case TargetOpcode::G_INTRINSIC_TRUNC: 2067 case TargetOpcode::G_INTRINSIC_ROUND: 2068 assert(TypeIdx == 0); 2069 Observer.changingInstr(MI); 2070 2071 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2072 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2073 2074 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_INTTOPTR: 2078 if (TypeIdx != 1) 2079 return UnableToLegalize; 2080 2081 Observer.changingInstr(MI); 2082 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_PTRTOINT: 2086 if (TypeIdx != 0) 2087 return UnableToLegalize; 2088 2089 Observer.changingInstr(MI); 2090 widenScalarDst(MI, WideTy, 0); 2091 Observer.changedInstr(MI); 2092 return Legalized; 2093 case TargetOpcode::G_BUILD_VECTOR: { 2094 Observer.changingInstr(MI); 2095 2096 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2097 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2098 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2099 2100 // Avoid changing the result vector type if the source element type was 2101 // requested. 2102 if (TypeIdx == 1) { 2103 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2104 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2105 } else { 2106 widenScalarDst(MI, WideTy, 0); 2107 } 2108 2109 Observer.changedInstr(MI); 2110 return Legalized; 2111 } 2112 case TargetOpcode::G_SEXT_INREG: 2113 if (TypeIdx != 0) 2114 return UnableToLegalize; 2115 2116 Observer.changingInstr(MI); 2117 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2118 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 } 2122 } 2123 2124 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2125 MachineIRBuilder &B, Register Src, LLT Ty) { 2126 auto Unmerge = B.buildUnmerge(Ty, Src); 2127 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2128 Pieces.push_back(Unmerge.getReg(I)); 2129 } 2130 2131 LegalizerHelper::LegalizeResult 2132 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2133 Register Dst = MI.getOperand(0).getReg(); 2134 Register Src = MI.getOperand(1).getReg(); 2135 LLT DstTy = MRI.getType(Dst); 2136 LLT SrcTy = MRI.getType(Src); 2137 2138 if (SrcTy.isVector() && !DstTy.isVector()) { 2139 SmallVector<Register, 8> SrcRegs; 2140 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2141 MIRBuilder.buildMerge(Dst, SrcRegs); 2142 MI.eraseFromParent(); 2143 return Legalized; 2144 } 2145 2146 if (DstTy.isVector() && !SrcTy.isVector()) { 2147 SmallVector<Register, 8> SrcRegs; 2148 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2149 MIRBuilder.buildMerge(Dst, SrcRegs); 2150 MI.eraseFromParent(); 2151 return Legalized; 2152 } 2153 2154 return UnableToLegalize; 2155 } 2156 2157 LegalizerHelper::LegalizeResult 2158 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2159 MIRBuilder.setInstr(MI); 2160 2161 switch (MI.getOpcode()) { 2162 case TargetOpcode::G_LOAD: { 2163 if (TypeIdx != 0) 2164 return UnableToLegalize; 2165 2166 Observer.changingInstr(MI); 2167 bitcastDst(MI, CastTy, 0); 2168 Observer.changedInstr(MI); 2169 return Legalized; 2170 } 2171 case TargetOpcode::G_STORE: { 2172 if (TypeIdx != 0) 2173 return UnableToLegalize; 2174 2175 Observer.changingInstr(MI); 2176 bitcastSrc(MI, CastTy, 0); 2177 Observer.changedInstr(MI); 2178 return Legalized; 2179 } 2180 case TargetOpcode::G_SELECT: { 2181 if (TypeIdx != 0) 2182 return UnableToLegalize; 2183 2184 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2185 LLVM_DEBUG( 2186 dbgs() << "bitcast action not implemented for vector select\n"); 2187 return UnableToLegalize; 2188 } 2189 2190 Observer.changingInstr(MI); 2191 bitcastSrc(MI, CastTy, 2); 2192 bitcastSrc(MI, CastTy, 3); 2193 bitcastDst(MI, CastTy, 0); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 } 2197 case TargetOpcode::G_AND: 2198 case TargetOpcode::G_OR: 2199 case TargetOpcode::G_XOR: { 2200 Observer.changingInstr(MI); 2201 bitcastSrc(MI, CastTy, 1); 2202 bitcastSrc(MI, CastTy, 2); 2203 bitcastDst(MI, CastTy, 0); 2204 Observer.changedInstr(MI); 2205 return Legalized; 2206 } 2207 default: 2208 return UnableToLegalize; 2209 } 2210 } 2211 2212 LegalizerHelper::LegalizeResult 2213 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2214 using namespace TargetOpcode; 2215 MIRBuilder.setInstrAndDebugLoc(MI); 2216 2217 switch(MI.getOpcode()) { 2218 default: 2219 return UnableToLegalize; 2220 case TargetOpcode::G_BITCAST: 2221 return lowerBitcast(MI); 2222 case TargetOpcode::G_SREM: 2223 case TargetOpcode::G_UREM: { 2224 auto Quot = 2225 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2226 {MI.getOperand(1), MI.getOperand(2)}); 2227 2228 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2229 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2230 MI.eraseFromParent(); 2231 return Legalized; 2232 } 2233 case TargetOpcode::G_SADDO: 2234 case TargetOpcode::G_SSUBO: 2235 return lowerSADDO_SSUBO(MI); 2236 case TargetOpcode::G_SMULO: 2237 case TargetOpcode::G_UMULO: { 2238 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2239 // result. 2240 Register Res = MI.getOperand(0).getReg(); 2241 Register Overflow = MI.getOperand(1).getReg(); 2242 Register LHS = MI.getOperand(2).getReg(); 2243 Register RHS = MI.getOperand(3).getReg(); 2244 2245 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2246 ? TargetOpcode::G_SMULH 2247 : TargetOpcode::G_UMULH; 2248 2249 Observer.changingInstr(MI); 2250 const auto &TII = MIRBuilder.getTII(); 2251 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2252 MI.RemoveOperand(1); 2253 Observer.changedInstr(MI); 2254 2255 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2256 2257 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2258 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2259 2260 // For *signed* multiply, overflow is detected by checking: 2261 // (hi != (lo >> bitwidth-1)) 2262 if (Opcode == TargetOpcode::G_SMULH) { 2263 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2264 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2265 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2266 } else { 2267 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2268 } 2269 return Legalized; 2270 } 2271 case TargetOpcode::G_FNEG: { 2272 // TODO: Handle vector types once we are able to 2273 // represent them. 2274 if (Ty.isVector()) 2275 return UnableToLegalize; 2276 Register Res = MI.getOperand(0).getReg(); 2277 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2278 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2279 if (!ZeroTy) 2280 return UnableToLegalize; 2281 ConstantFP &ZeroForNegation = 2282 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2283 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2284 Register SubByReg = MI.getOperand(1).getReg(); 2285 Register ZeroReg = Zero.getReg(0); 2286 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2287 MI.eraseFromParent(); 2288 return Legalized; 2289 } 2290 case TargetOpcode::G_FSUB: { 2291 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2292 // First, check if G_FNEG is marked as Lower. If so, we may 2293 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2294 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2295 return UnableToLegalize; 2296 Register Res = MI.getOperand(0).getReg(); 2297 Register LHS = MI.getOperand(1).getReg(); 2298 Register RHS = MI.getOperand(2).getReg(); 2299 Register Neg = MRI.createGenericVirtualRegister(Ty); 2300 MIRBuilder.buildFNeg(Neg, RHS); 2301 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2302 MI.eraseFromParent(); 2303 return Legalized; 2304 } 2305 case TargetOpcode::G_FMAD: 2306 return lowerFMad(MI); 2307 case TargetOpcode::G_FFLOOR: 2308 return lowerFFloor(MI); 2309 case TargetOpcode::G_INTRINSIC_ROUND: 2310 return lowerIntrinsicRound(MI); 2311 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2312 Register OldValRes = MI.getOperand(0).getReg(); 2313 Register SuccessRes = MI.getOperand(1).getReg(); 2314 Register Addr = MI.getOperand(2).getReg(); 2315 Register CmpVal = MI.getOperand(3).getReg(); 2316 Register NewVal = MI.getOperand(4).getReg(); 2317 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2318 **MI.memoperands_begin()); 2319 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2320 MI.eraseFromParent(); 2321 return Legalized; 2322 } 2323 case TargetOpcode::G_LOAD: 2324 case TargetOpcode::G_SEXTLOAD: 2325 case TargetOpcode::G_ZEXTLOAD: { 2326 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2327 Register DstReg = MI.getOperand(0).getReg(); 2328 Register PtrReg = MI.getOperand(1).getReg(); 2329 LLT DstTy = MRI.getType(DstReg); 2330 auto &MMO = **MI.memoperands_begin(); 2331 2332 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2333 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2334 // This load needs splitting into power of 2 sized loads. 2335 if (DstTy.isVector()) 2336 return UnableToLegalize; 2337 if (isPowerOf2_32(DstTy.getSizeInBits())) 2338 return UnableToLegalize; // Don't know what we're being asked to do. 2339 2340 // Our strategy here is to generate anyextending loads for the smaller 2341 // types up to next power-2 result type, and then combine the two larger 2342 // result values together, before truncating back down to the non-pow-2 2343 // type. 2344 // E.g. v1 = i24 load => 2345 // v2 = i32 zextload (2 byte) 2346 // v3 = i32 load (1 byte) 2347 // v4 = i32 shl v3, 16 2348 // v5 = i32 or v4, v2 2349 // v1 = i24 trunc v5 2350 // By doing this we generate the correct truncate which should get 2351 // combined away as an artifact with a matching extend. 2352 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2353 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2354 2355 MachineFunction &MF = MIRBuilder.getMF(); 2356 MachineMemOperand *LargeMMO = 2357 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2358 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2359 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2360 2361 LLT PtrTy = MRI.getType(PtrReg); 2362 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2363 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2364 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2365 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2366 auto LargeLoad = MIRBuilder.buildLoadInstr( 2367 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2368 2369 auto OffsetCst = MIRBuilder.buildConstant( 2370 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2371 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2372 auto SmallPtr = 2373 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2374 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2375 *SmallMMO); 2376 2377 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2378 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2379 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2380 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2381 MI.eraseFromParent(); 2382 return Legalized; 2383 } 2384 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2385 MI.eraseFromParent(); 2386 return Legalized; 2387 } 2388 2389 if (DstTy.isScalar()) { 2390 Register TmpReg = 2391 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2392 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2393 switch (MI.getOpcode()) { 2394 default: 2395 llvm_unreachable("Unexpected opcode"); 2396 case TargetOpcode::G_LOAD: 2397 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2398 break; 2399 case TargetOpcode::G_SEXTLOAD: 2400 MIRBuilder.buildSExt(DstReg, TmpReg); 2401 break; 2402 case TargetOpcode::G_ZEXTLOAD: 2403 MIRBuilder.buildZExt(DstReg, TmpReg); 2404 break; 2405 } 2406 MI.eraseFromParent(); 2407 return Legalized; 2408 } 2409 2410 return UnableToLegalize; 2411 } 2412 case TargetOpcode::G_STORE: { 2413 // Lower a non-power of 2 store into multiple pow-2 stores. 2414 // E.g. split an i24 store into an i16 store + i8 store. 2415 // We do this by first extending the stored value to the next largest power 2416 // of 2 type, and then using truncating stores to store the components. 2417 // By doing this, likewise with G_LOAD, generate an extend that can be 2418 // artifact-combined away instead of leaving behind extracts. 2419 Register SrcReg = MI.getOperand(0).getReg(); 2420 Register PtrReg = MI.getOperand(1).getReg(); 2421 LLT SrcTy = MRI.getType(SrcReg); 2422 MachineMemOperand &MMO = **MI.memoperands_begin(); 2423 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2424 return UnableToLegalize; 2425 if (SrcTy.isVector()) 2426 return UnableToLegalize; 2427 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2428 return UnableToLegalize; // Don't know what we're being asked to do. 2429 2430 // Extend to the next pow-2. 2431 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2432 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2433 2434 // Obtain the smaller value by shifting away the larger value. 2435 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2436 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2437 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2438 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2439 2440 // Generate the PtrAdd and truncating stores. 2441 LLT PtrTy = MRI.getType(PtrReg); 2442 auto OffsetCst = MIRBuilder.buildConstant( 2443 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2444 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2445 auto SmallPtr = 2446 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2447 2448 MachineFunction &MF = MIRBuilder.getMF(); 2449 MachineMemOperand *LargeMMO = 2450 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2451 MachineMemOperand *SmallMMO = 2452 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2453 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2454 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2455 MI.eraseFromParent(); 2456 return Legalized; 2457 } 2458 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2459 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2460 case TargetOpcode::G_CTLZ: 2461 case TargetOpcode::G_CTTZ: 2462 case TargetOpcode::G_CTPOP: 2463 return lowerBitCount(MI, TypeIdx, Ty); 2464 case G_UADDO: { 2465 Register Res = MI.getOperand(0).getReg(); 2466 Register CarryOut = MI.getOperand(1).getReg(); 2467 Register LHS = MI.getOperand(2).getReg(); 2468 Register RHS = MI.getOperand(3).getReg(); 2469 2470 MIRBuilder.buildAdd(Res, LHS, RHS); 2471 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2472 2473 MI.eraseFromParent(); 2474 return Legalized; 2475 } 2476 case G_UADDE: { 2477 Register Res = MI.getOperand(0).getReg(); 2478 Register CarryOut = MI.getOperand(1).getReg(); 2479 Register LHS = MI.getOperand(2).getReg(); 2480 Register RHS = MI.getOperand(3).getReg(); 2481 Register CarryIn = MI.getOperand(4).getReg(); 2482 LLT Ty = MRI.getType(Res); 2483 2484 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2485 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2486 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2487 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2488 2489 MI.eraseFromParent(); 2490 return Legalized; 2491 } 2492 case G_USUBO: { 2493 Register Res = MI.getOperand(0).getReg(); 2494 Register BorrowOut = MI.getOperand(1).getReg(); 2495 Register LHS = MI.getOperand(2).getReg(); 2496 Register RHS = MI.getOperand(3).getReg(); 2497 2498 MIRBuilder.buildSub(Res, LHS, RHS); 2499 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2500 2501 MI.eraseFromParent(); 2502 return Legalized; 2503 } 2504 case G_USUBE: { 2505 Register Res = MI.getOperand(0).getReg(); 2506 Register BorrowOut = MI.getOperand(1).getReg(); 2507 Register LHS = MI.getOperand(2).getReg(); 2508 Register RHS = MI.getOperand(3).getReg(); 2509 Register BorrowIn = MI.getOperand(4).getReg(); 2510 const LLT CondTy = MRI.getType(BorrowOut); 2511 const LLT Ty = MRI.getType(Res); 2512 2513 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2514 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2515 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2516 2517 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2518 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2519 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2520 2521 MI.eraseFromParent(); 2522 return Legalized; 2523 } 2524 case G_UITOFP: 2525 return lowerUITOFP(MI, TypeIdx, Ty); 2526 case G_SITOFP: 2527 return lowerSITOFP(MI, TypeIdx, Ty); 2528 case G_FPTOUI: 2529 return lowerFPTOUI(MI, TypeIdx, Ty); 2530 case G_FPTOSI: 2531 return lowerFPTOSI(MI); 2532 case G_FPTRUNC: 2533 return lowerFPTRUNC(MI, TypeIdx, Ty); 2534 case G_SMIN: 2535 case G_SMAX: 2536 case G_UMIN: 2537 case G_UMAX: 2538 return lowerMinMax(MI, TypeIdx, Ty); 2539 case G_FCOPYSIGN: 2540 return lowerFCopySign(MI, TypeIdx, Ty); 2541 case G_FMINNUM: 2542 case G_FMAXNUM: 2543 return lowerFMinNumMaxNum(MI); 2544 case G_UNMERGE_VALUES: 2545 return lowerUnmergeValues(MI); 2546 case TargetOpcode::G_SEXT_INREG: { 2547 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2548 int64_t SizeInBits = MI.getOperand(2).getImm(); 2549 2550 Register DstReg = MI.getOperand(0).getReg(); 2551 Register SrcReg = MI.getOperand(1).getReg(); 2552 LLT DstTy = MRI.getType(DstReg); 2553 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2554 2555 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2556 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2557 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2558 MI.eraseFromParent(); 2559 return Legalized; 2560 } 2561 case G_SHUFFLE_VECTOR: 2562 return lowerShuffleVector(MI); 2563 case G_DYN_STACKALLOC: 2564 return lowerDynStackAlloc(MI); 2565 case G_EXTRACT: 2566 return lowerExtract(MI); 2567 case G_INSERT: 2568 return lowerInsert(MI); 2569 case G_BSWAP: 2570 return lowerBswap(MI); 2571 case G_BITREVERSE: 2572 return lowerBitreverse(MI); 2573 case G_READ_REGISTER: 2574 case G_WRITE_REGISTER: 2575 return lowerReadWriteRegister(MI); 2576 } 2577 } 2578 2579 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2580 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2581 SmallVector<Register, 2> DstRegs; 2582 2583 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2584 Register DstReg = MI.getOperand(0).getReg(); 2585 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2586 int NumParts = Size / NarrowSize; 2587 // FIXME: Don't know how to handle the situation where the small vectors 2588 // aren't all the same size yet. 2589 if (Size % NarrowSize != 0) 2590 return UnableToLegalize; 2591 2592 for (int i = 0; i < NumParts; ++i) { 2593 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2594 MIRBuilder.buildUndef(TmpReg); 2595 DstRegs.push_back(TmpReg); 2596 } 2597 2598 if (NarrowTy.isVector()) 2599 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2600 else 2601 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2602 2603 MI.eraseFromParent(); 2604 return Legalized; 2605 } 2606 2607 // Handle splitting vector operations which need to have the same number of 2608 // elements in each type index, but each type index may have a different element 2609 // type. 2610 // 2611 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2612 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2613 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2614 // 2615 // Also handles some irregular breakdown cases, e.g. 2616 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2617 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2618 // s64 = G_SHL s64, s32 2619 LegalizerHelper::LegalizeResult 2620 LegalizerHelper::fewerElementsVectorMultiEltType( 2621 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2622 if (TypeIdx != 0) 2623 return UnableToLegalize; 2624 2625 const LLT NarrowTy0 = NarrowTyArg; 2626 const unsigned NewNumElts = 2627 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2628 2629 const Register DstReg = MI.getOperand(0).getReg(); 2630 LLT DstTy = MRI.getType(DstReg); 2631 LLT LeftoverTy0; 2632 2633 // All of the operands need to have the same number of elements, so if we can 2634 // determine a type breakdown for the result type, we can for all of the 2635 // source types. 2636 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2637 if (NumParts < 0) 2638 return UnableToLegalize; 2639 2640 SmallVector<MachineInstrBuilder, 4> NewInsts; 2641 2642 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2643 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2644 2645 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2646 LLT LeftoverTy; 2647 Register SrcReg = MI.getOperand(I).getReg(); 2648 LLT SrcTyI = MRI.getType(SrcReg); 2649 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2650 LLT LeftoverTyI; 2651 2652 // Split this operand into the requested typed registers, and any leftover 2653 // required to reproduce the original type. 2654 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2655 LeftoverRegs)) 2656 return UnableToLegalize; 2657 2658 if (I == 1) { 2659 // For the first operand, create an instruction for each part and setup 2660 // the result. 2661 for (Register PartReg : PartRegs) { 2662 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2663 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2664 .addDef(PartDstReg) 2665 .addUse(PartReg)); 2666 DstRegs.push_back(PartDstReg); 2667 } 2668 2669 for (Register LeftoverReg : LeftoverRegs) { 2670 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2671 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2672 .addDef(PartDstReg) 2673 .addUse(LeftoverReg)); 2674 LeftoverDstRegs.push_back(PartDstReg); 2675 } 2676 } else { 2677 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2678 2679 // Add the newly created operand splits to the existing instructions. The 2680 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2681 // pieces. 2682 unsigned InstCount = 0; 2683 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2684 NewInsts[InstCount++].addUse(PartRegs[J]); 2685 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2686 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2687 } 2688 2689 PartRegs.clear(); 2690 LeftoverRegs.clear(); 2691 } 2692 2693 // Insert the newly built operations and rebuild the result register. 2694 for (auto &MIB : NewInsts) 2695 MIRBuilder.insertInstr(MIB); 2696 2697 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2698 2699 MI.eraseFromParent(); 2700 return Legalized; 2701 } 2702 2703 LegalizerHelper::LegalizeResult 2704 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2705 LLT NarrowTy) { 2706 if (TypeIdx != 0) 2707 return UnableToLegalize; 2708 2709 Register DstReg = MI.getOperand(0).getReg(); 2710 Register SrcReg = MI.getOperand(1).getReg(); 2711 LLT DstTy = MRI.getType(DstReg); 2712 LLT SrcTy = MRI.getType(SrcReg); 2713 2714 LLT NarrowTy0 = NarrowTy; 2715 LLT NarrowTy1; 2716 unsigned NumParts; 2717 2718 if (NarrowTy.isVector()) { 2719 // Uneven breakdown not handled. 2720 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2721 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2722 return UnableToLegalize; 2723 2724 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2725 } else { 2726 NumParts = DstTy.getNumElements(); 2727 NarrowTy1 = SrcTy.getElementType(); 2728 } 2729 2730 SmallVector<Register, 4> SrcRegs, DstRegs; 2731 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2732 2733 for (unsigned I = 0; I < NumParts; ++I) { 2734 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2735 MachineInstr *NewInst = 2736 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2737 2738 NewInst->setFlags(MI.getFlags()); 2739 DstRegs.push_back(DstReg); 2740 } 2741 2742 if (NarrowTy.isVector()) 2743 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2744 else 2745 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2746 2747 MI.eraseFromParent(); 2748 return Legalized; 2749 } 2750 2751 LegalizerHelper::LegalizeResult 2752 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2753 LLT NarrowTy) { 2754 Register DstReg = MI.getOperand(0).getReg(); 2755 Register Src0Reg = MI.getOperand(2).getReg(); 2756 LLT DstTy = MRI.getType(DstReg); 2757 LLT SrcTy = MRI.getType(Src0Reg); 2758 2759 unsigned NumParts; 2760 LLT NarrowTy0, NarrowTy1; 2761 2762 if (TypeIdx == 0) { 2763 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2764 unsigned OldElts = DstTy.getNumElements(); 2765 2766 NarrowTy0 = NarrowTy; 2767 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2768 NarrowTy1 = NarrowTy.isVector() ? 2769 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2770 SrcTy.getElementType(); 2771 2772 } else { 2773 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2774 unsigned OldElts = SrcTy.getNumElements(); 2775 2776 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2777 NarrowTy.getNumElements(); 2778 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2779 DstTy.getScalarSizeInBits()); 2780 NarrowTy1 = NarrowTy; 2781 } 2782 2783 // FIXME: Don't know how to handle the situation where the small vectors 2784 // aren't all the same size yet. 2785 if (NarrowTy1.isVector() && 2786 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2787 return UnableToLegalize; 2788 2789 CmpInst::Predicate Pred 2790 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2791 2792 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2793 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2794 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2795 2796 for (unsigned I = 0; I < NumParts; ++I) { 2797 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2798 DstRegs.push_back(DstReg); 2799 2800 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2801 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2802 else { 2803 MachineInstr *NewCmp 2804 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2805 NewCmp->setFlags(MI.getFlags()); 2806 } 2807 } 2808 2809 if (NarrowTy1.isVector()) 2810 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2811 else 2812 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2813 2814 MI.eraseFromParent(); 2815 return Legalized; 2816 } 2817 2818 LegalizerHelper::LegalizeResult 2819 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2820 LLT NarrowTy) { 2821 Register DstReg = MI.getOperand(0).getReg(); 2822 Register CondReg = MI.getOperand(1).getReg(); 2823 2824 unsigned NumParts = 0; 2825 LLT NarrowTy0, NarrowTy1; 2826 2827 LLT DstTy = MRI.getType(DstReg); 2828 LLT CondTy = MRI.getType(CondReg); 2829 unsigned Size = DstTy.getSizeInBits(); 2830 2831 assert(TypeIdx == 0 || CondTy.isVector()); 2832 2833 if (TypeIdx == 0) { 2834 NarrowTy0 = NarrowTy; 2835 NarrowTy1 = CondTy; 2836 2837 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2838 // FIXME: Don't know how to handle the situation where the small vectors 2839 // aren't all the same size yet. 2840 if (Size % NarrowSize != 0) 2841 return UnableToLegalize; 2842 2843 NumParts = Size / NarrowSize; 2844 2845 // Need to break down the condition type 2846 if (CondTy.isVector()) { 2847 if (CondTy.getNumElements() == NumParts) 2848 NarrowTy1 = CondTy.getElementType(); 2849 else 2850 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2851 CondTy.getScalarSizeInBits()); 2852 } 2853 } else { 2854 NumParts = CondTy.getNumElements(); 2855 if (NarrowTy.isVector()) { 2856 // TODO: Handle uneven breakdown. 2857 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2858 return UnableToLegalize; 2859 2860 return UnableToLegalize; 2861 } else { 2862 NarrowTy0 = DstTy.getElementType(); 2863 NarrowTy1 = NarrowTy; 2864 } 2865 } 2866 2867 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2868 if (CondTy.isVector()) 2869 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2870 2871 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2872 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2873 2874 for (unsigned i = 0; i < NumParts; ++i) { 2875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2876 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2877 Src1Regs[i], Src2Regs[i]); 2878 DstRegs.push_back(DstReg); 2879 } 2880 2881 if (NarrowTy0.isVector()) 2882 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2883 else 2884 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2885 2886 MI.eraseFromParent(); 2887 return Legalized; 2888 } 2889 2890 LegalizerHelper::LegalizeResult 2891 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2892 LLT NarrowTy) { 2893 const Register DstReg = MI.getOperand(0).getReg(); 2894 LLT PhiTy = MRI.getType(DstReg); 2895 LLT LeftoverTy; 2896 2897 // All of the operands need to have the same number of elements, so if we can 2898 // determine a type breakdown for the result type, we can for all of the 2899 // source types. 2900 int NumParts, NumLeftover; 2901 std::tie(NumParts, NumLeftover) 2902 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2903 if (NumParts < 0) 2904 return UnableToLegalize; 2905 2906 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2907 SmallVector<MachineInstrBuilder, 4> NewInsts; 2908 2909 const int TotalNumParts = NumParts + NumLeftover; 2910 2911 // Insert the new phis in the result block first. 2912 for (int I = 0; I != TotalNumParts; ++I) { 2913 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2914 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2915 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2916 .addDef(PartDstReg)); 2917 if (I < NumParts) 2918 DstRegs.push_back(PartDstReg); 2919 else 2920 LeftoverDstRegs.push_back(PartDstReg); 2921 } 2922 2923 MachineBasicBlock *MBB = MI.getParent(); 2924 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2925 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2926 2927 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2928 2929 // Insert code to extract the incoming values in each predecessor block. 2930 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2931 PartRegs.clear(); 2932 LeftoverRegs.clear(); 2933 2934 Register SrcReg = MI.getOperand(I).getReg(); 2935 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2936 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2937 2938 LLT Unused; 2939 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2940 LeftoverRegs)) 2941 return UnableToLegalize; 2942 2943 // Add the newly created operand splits to the existing instructions. The 2944 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2945 // pieces. 2946 for (int J = 0; J != TotalNumParts; ++J) { 2947 MachineInstrBuilder MIB = NewInsts[J]; 2948 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2949 MIB.addMBB(&OpMBB); 2950 } 2951 } 2952 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 2957 LegalizerHelper::LegalizeResult 2958 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2959 unsigned TypeIdx, 2960 LLT NarrowTy) { 2961 if (TypeIdx != 1) 2962 return UnableToLegalize; 2963 2964 const int NumDst = MI.getNumOperands() - 1; 2965 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2966 LLT SrcTy = MRI.getType(SrcReg); 2967 2968 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2969 2970 // TODO: Create sequence of extracts. 2971 if (DstTy == NarrowTy) 2972 return UnableToLegalize; 2973 2974 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2975 if (DstTy == GCDTy) { 2976 // This would just be a copy of the same unmerge. 2977 // TODO: Create extracts, pad with undef and create intermediate merges. 2978 return UnableToLegalize; 2979 } 2980 2981 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2982 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2983 const int PartsPerUnmerge = NumDst / NumUnmerge; 2984 2985 for (int I = 0; I != NumUnmerge; ++I) { 2986 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2987 2988 for (int J = 0; J != PartsPerUnmerge; ++J) 2989 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2990 MIB.addUse(Unmerge.getReg(I)); 2991 } 2992 2993 MI.eraseFromParent(); 2994 return Legalized; 2995 } 2996 2997 LegalizerHelper::LegalizeResult 2998 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2999 unsigned TypeIdx, 3000 LLT NarrowTy) { 3001 assert(TypeIdx == 0 && "not a vector type index"); 3002 Register DstReg = MI.getOperand(0).getReg(); 3003 LLT DstTy = MRI.getType(DstReg); 3004 LLT SrcTy = DstTy.getElementType(); 3005 3006 int DstNumElts = DstTy.getNumElements(); 3007 int NarrowNumElts = NarrowTy.getNumElements(); 3008 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3009 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3010 3011 SmallVector<Register, 8> ConcatOps; 3012 SmallVector<Register, 8> SubBuildVector; 3013 3014 Register UndefReg; 3015 if (WidenedDstTy != DstTy) 3016 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3017 3018 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3019 // necessary. 3020 // 3021 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3022 // -> <2 x s16> 3023 // 3024 // %4:_(s16) = G_IMPLICIT_DEF 3025 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3026 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3027 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3028 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3029 for (int I = 0; I != NumConcat; ++I) { 3030 for (int J = 0; J != NarrowNumElts; ++J) { 3031 int SrcIdx = NarrowNumElts * I + J; 3032 3033 if (SrcIdx < DstNumElts) { 3034 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3035 SubBuildVector.push_back(SrcReg); 3036 } else 3037 SubBuildVector.push_back(UndefReg); 3038 } 3039 3040 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3041 ConcatOps.push_back(BuildVec.getReg(0)); 3042 SubBuildVector.clear(); 3043 } 3044 3045 if (DstTy == WidenedDstTy) 3046 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3047 else { 3048 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3049 MIRBuilder.buildExtract(DstReg, Concat, 0); 3050 } 3051 3052 MI.eraseFromParent(); 3053 return Legalized; 3054 } 3055 3056 LegalizerHelper::LegalizeResult 3057 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3058 LLT NarrowTy) { 3059 // FIXME: Don't know how to handle secondary types yet. 3060 if (TypeIdx != 0) 3061 return UnableToLegalize; 3062 3063 MachineMemOperand *MMO = *MI.memoperands_begin(); 3064 3065 // This implementation doesn't work for atomics. Give up instead of doing 3066 // something invalid. 3067 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3068 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3069 return UnableToLegalize; 3070 3071 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3072 Register ValReg = MI.getOperand(0).getReg(); 3073 Register AddrReg = MI.getOperand(1).getReg(); 3074 LLT ValTy = MRI.getType(ValReg); 3075 3076 // FIXME: Do we need a distinct NarrowMemory legalize action? 3077 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3078 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3079 return UnableToLegalize; 3080 } 3081 3082 int NumParts = -1; 3083 int NumLeftover = -1; 3084 LLT LeftoverTy; 3085 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3086 if (IsLoad) { 3087 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3088 } else { 3089 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3090 NarrowLeftoverRegs)) { 3091 NumParts = NarrowRegs.size(); 3092 NumLeftover = NarrowLeftoverRegs.size(); 3093 } 3094 } 3095 3096 if (NumParts == -1) 3097 return UnableToLegalize; 3098 3099 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3100 3101 unsigned TotalSize = ValTy.getSizeInBits(); 3102 3103 // Split the load/store into PartTy sized pieces starting at Offset. If this 3104 // is a load, return the new registers in ValRegs. For a store, each elements 3105 // of ValRegs should be PartTy. Returns the next offset that needs to be 3106 // handled. 3107 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3108 unsigned Offset) -> unsigned { 3109 MachineFunction &MF = MIRBuilder.getMF(); 3110 unsigned PartSize = PartTy.getSizeInBits(); 3111 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3112 Offset += PartSize, ++Idx) { 3113 unsigned ByteSize = PartSize / 8; 3114 unsigned ByteOffset = Offset / 8; 3115 Register NewAddrReg; 3116 3117 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3118 3119 MachineMemOperand *NewMMO = 3120 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3121 3122 if (IsLoad) { 3123 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3124 ValRegs.push_back(Dst); 3125 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3126 } else { 3127 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3128 } 3129 } 3130 3131 return Offset; 3132 }; 3133 3134 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3135 3136 // Handle the rest of the register if this isn't an even type breakdown. 3137 if (LeftoverTy.isValid()) 3138 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3139 3140 if (IsLoad) { 3141 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3142 LeftoverTy, NarrowLeftoverRegs); 3143 } 3144 3145 MI.eraseFromParent(); 3146 return Legalized; 3147 } 3148 3149 LegalizerHelper::LegalizeResult 3150 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3151 LLT NarrowTy) { 3152 assert(TypeIdx == 0 && "only one type index expected"); 3153 3154 const unsigned Opc = MI.getOpcode(); 3155 const int NumOps = MI.getNumOperands() - 1; 3156 const Register DstReg = MI.getOperand(0).getReg(); 3157 const unsigned Flags = MI.getFlags(); 3158 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3159 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3160 3161 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3162 3163 // First of all check whether we are narrowing (changing the element type) 3164 // or reducing the vector elements 3165 const LLT DstTy = MRI.getType(DstReg); 3166 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3167 3168 SmallVector<Register, 8> ExtractedRegs[3]; 3169 SmallVector<Register, 8> Parts; 3170 3171 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3172 3173 // Break down all the sources into NarrowTy pieces we can operate on. This may 3174 // involve creating merges to a wider type, padded with undef. 3175 for (int I = 0; I != NumOps; ++I) { 3176 Register SrcReg = MI.getOperand(I + 1).getReg(); 3177 LLT SrcTy = MRI.getType(SrcReg); 3178 3179 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3180 // For fewerElements, this is a smaller vector with the same element type. 3181 LLT OpNarrowTy; 3182 if (IsNarrow) { 3183 OpNarrowTy = NarrowScalarTy; 3184 3185 // In case of narrowing, we need to cast vectors to scalars for this to 3186 // work properly 3187 // FIXME: Can we do without the bitcast here if we're narrowing? 3188 if (SrcTy.isVector()) { 3189 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3190 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3191 } 3192 } else { 3193 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3194 } 3195 3196 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3197 3198 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3199 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3200 TargetOpcode::G_ANYEXT); 3201 } 3202 3203 SmallVector<Register, 8> ResultRegs; 3204 3205 // Input operands for each sub-instruction. 3206 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3207 3208 int NumParts = ExtractedRegs[0].size(); 3209 const unsigned DstSize = DstTy.getSizeInBits(); 3210 const LLT DstScalarTy = LLT::scalar(DstSize); 3211 3212 // Narrowing needs to use scalar types 3213 LLT DstLCMTy, NarrowDstTy; 3214 if (IsNarrow) { 3215 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3216 NarrowDstTy = NarrowScalarTy; 3217 } else { 3218 DstLCMTy = getLCMType(DstTy, NarrowTy); 3219 NarrowDstTy = NarrowTy; 3220 } 3221 3222 // We widened the source registers to satisfy merge/unmerge size 3223 // constraints. We'll have some extra fully undef parts. 3224 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3225 3226 for (int I = 0; I != NumRealParts; ++I) { 3227 // Emit this instruction on each of the split pieces. 3228 for (int J = 0; J != NumOps; ++J) 3229 InputRegs[J] = ExtractedRegs[J][I]; 3230 3231 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3232 ResultRegs.push_back(Inst.getReg(0)); 3233 } 3234 3235 // Fill out the widened result with undef instead of creating instructions 3236 // with undef inputs. 3237 int NumUndefParts = NumParts - NumRealParts; 3238 if (NumUndefParts != 0) 3239 ResultRegs.append(NumUndefParts, 3240 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3241 3242 // Extract the possibly padded result. Use a scratch register if we need to do 3243 // a final bitcast, otherwise use the original result register. 3244 Register MergeDstReg; 3245 if (IsNarrow && DstTy.isVector()) 3246 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3247 else 3248 MergeDstReg = DstReg; 3249 3250 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3251 3252 // Recast to vector if we narrowed a vector 3253 if (IsNarrow && DstTy.isVector()) 3254 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3255 3256 MI.eraseFromParent(); 3257 return Legalized; 3258 } 3259 3260 LegalizerHelper::LegalizeResult 3261 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3262 LLT NarrowTy) { 3263 Register DstReg = MI.getOperand(0).getReg(); 3264 Register SrcReg = MI.getOperand(1).getReg(); 3265 int64_t Imm = MI.getOperand(2).getImm(); 3266 3267 LLT DstTy = MRI.getType(DstReg); 3268 3269 SmallVector<Register, 8> Parts; 3270 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3271 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3272 3273 for (Register &R : Parts) 3274 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3275 3276 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3277 3278 MI.eraseFromParent(); 3279 return Legalized; 3280 } 3281 3282 LegalizerHelper::LegalizeResult 3283 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3284 LLT NarrowTy) { 3285 using namespace TargetOpcode; 3286 3287 MIRBuilder.setInstrAndDebugLoc(MI); 3288 switch (MI.getOpcode()) { 3289 case G_IMPLICIT_DEF: 3290 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3291 case G_TRUNC: 3292 case G_AND: 3293 case G_OR: 3294 case G_XOR: 3295 case G_ADD: 3296 case G_SUB: 3297 case G_MUL: 3298 case G_SMULH: 3299 case G_UMULH: 3300 case G_FADD: 3301 case G_FMUL: 3302 case G_FSUB: 3303 case G_FNEG: 3304 case G_FABS: 3305 case G_FCANONICALIZE: 3306 case G_FDIV: 3307 case G_FREM: 3308 case G_FMA: 3309 case G_FMAD: 3310 case G_FPOW: 3311 case G_FEXP: 3312 case G_FEXP2: 3313 case G_FLOG: 3314 case G_FLOG2: 3315 case G_FLOG10: 3316 case G_FNEARBYINT: 3317 case G_FCEIL: 3318 case G_FFLOOR: 3319 case G_FRINT: 3320 case G_INTRINSIC_ROUND: 3321 case G_INTRINSIC_TRUNC: 3322 case G_FCOS: 3323 case G_FSIN: 3324 case G_FSQRT: 3325 case G_BSWAP: 3326 case G_BITREVERSE: 3327 case G_SDIV: 3328 case G_UDIV: 3329 case G_SREM: 3330 case G_UREM: 3331 case G_SMIN: 3332 case G_SMAX: 3333 case G_UMIN: 3334 case G_UMAX: 3335 case G_FMINNUM: 3336 case G_FMAXNUM: 3337 case G_FMINNUM_IEEE: 3338 case G_FMAXNUM_IEEE: 3339 case G_FMINIMUM: 3340 case G_FMAXIMUM: 3341 case G_FSHL: 3342 case G_FSHR: 3343 case G_FREEZE: 3344 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3345 case G_SHL: 3346 case G_LSHR: 3347 case G_ASHR: 3348 case G_CTLZ: 3349 case G_CTLZ_ZERO_UNDEF: 3350 case G_CTTZ: 3351 case G_CTTZ_ZERO_UNDEF: 3352 case G_CTPOP: 3353 case G_FCOPYSIGN: 3354 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3355 case G_ZEXT: 3356 case G_SEXT: 3357 case G_ANYEXT: 3358 case G_FPEXT: 3359 case G_FPTRUNC: 3360 case G_SITOFP: 3361 case G_UITOFP: 3362 case G_FPTOSI: 3363 case G_FPTOUI: 3364 case G_INTTOPTR: 3365 case G_PTRTOINT: 3366 case G_ADDRSPACE_CAST: 3367 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3368 case G_ICMP: 3369 case G_FCMP: 3370 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3371 case G_SELECT: 3372 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3373 case G_PHI: 3374 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3375 case G_UNMERGE_VALUES: 3376 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3377 case G_BUILD_VECTOR: 3378 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3379 case G_LOAD: 3380 case G_STORE: 3381 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3382 case G_SEXT_INREG: 3383 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3384 default: 3385 return UnableToLegalize; 3386 } 3387 } 3388 3389 LegalizerHelper::LegalizeResult 3390 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3391 const LLT HalfTy, const LLT AmtTy) { 3392 3393 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3394 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3395 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3396 3397 if (Amt.isNullValue()) { 3398 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3399 MI.eraseFromParent(); 3400 return Legalized; 3401 } 3402 3403 LLT NVT = HalfTy; 3404 unsigned NVTBits = HalfTy.getSizeInBits(); 3405 unsigned VTBits = 2 * NVTBits; 3406 3407 SrcOp Lo(Register(0)), Hi(Register(0)); 3408 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3409 if (Amt.ugt(VTBits)) { 3410 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3411 } else if (Amt.ugt(NVTBits)) { 3412 Lo = MIRBuilder.buildConstant(NVT, 0); 3413 Hi = MIRBuilder.buildShl(NVT, InL, 3414 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3415 } else if (Amt == NVTBits) { 3416 Lo = MIRBuilder.buildConstant(NVT, 0); 3417 Hi = InL; 3418 } else { 3419 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3420 auto OrLHS = 3421 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3422 auto OrRHS = MIRBuilder.buildLShr( 3423 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3424 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3425 } 3426 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3427 if (Amt.ugt(VTBits)) { 3428 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3429 } else if (Amt.ugt(NVTBits)) { 3430 Lo = MIRBuilder.buildLShr(NVT, InH, 3431 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3432 Hi = MIRBuilder.buildConstant(NVT, 0); 3433 } else if (Amt == NVTBits) { 3434 Lo = InH; 3435 Hi = MIRBuilder.buildConstant(NVT, 0); 3436 } else { 3437 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3438 3439 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3440 auto OrRHS = MIRBuilder.buildShl( 3441 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3442 3443 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3444 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3445 } 3446 } else { 3447 if (Amt.ugt(VTBits)) { 3448 Hi = Lo = MIRBuilder.buildAShr( 3449 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3450 } else if (Amt.ugt(NVTBits)) { 3451 Lo = MIRBuilder.buildAShr(NVT, InH, 3452 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3453 Hi = MIRBuilder.buildAShr(NVT, InH, 3454 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3455 } else if (Amt == NVTBits) { 3456 Lo = InH; 3457 Hi = MIRBuilder.buildAShr(NVT, InH, 3458 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3459 } else { 3460 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3461 3462 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3463 auto OrRHS = MIRBuilder.buildShl( 3464 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3465 3466 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3467 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3468 } 3469 } 3470 3471 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3472 MI.eraseFromParent(); 3473 3474 return Legalized; 3475 } 3476 3477 // TODO: Optimize if constant shift amount. 3478 LegalizerHelper::LegalizeResult 3479 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3480 LLT RequestedTy) { 3481 if (TypeIdx == 1) { 3482 Observer.changingInstr(MI); 3483 narrowScalarSrc(MI, RequestedTy, 2); 3484 Observer.changedInstr(MI); 3485 return Legalized; 3486 } 3487 3488 Register DstReg = MI.getOperand(0).getReg(); 3489 LLT DstTy = MRI.getType(DstReg); 3490 if (DstTy.isVector()) 3491 return UnableToLegalize; 3492 3493 Register Amt = MI.getOperand(2).getReg(); 3494 LLT ShiftAmtTy = MRI.getType(Amt); 3495 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3496 if (DstEltSize % 2 != 0) 3497 return UnableToLegalize; 3498 3499 // Ignore the input type. We can only go to exactly half the size of the 3500 // input. If that isn't small enough, the resulting pieces will be further 3501 // legalized. 3502 const unsigned NewBitSize = DstEltSize / 2; 3503 const LLT HalfTy = LLT::scalar(NewBitSize); 3504 const LLT CondTy = LLT::scalar(1); 3505 3506 if (const MachineInstr *KShiftAmt = 3507 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3508 return narrowScalarShiftByConstant( 3509 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3510 } 3511 3512 // TODO: Expand with known bits. 3513 3514 // Handle the fully general expansion by an unknown amount. 3515 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3516 3517 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3518 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3519 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3520 3521 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3522 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3523 3524 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3525 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3526 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3527 3528 Register ResultRegs[2]; 3529 switch (MI.getOpcode()) { 3530 case TargetOpcode::G_SHL: { 3531 // Short: ShAmt < NewBitSize 3532 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3533 3534 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3535 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3536 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3537 3538 // Long: ShAmt >= NewBitSize 3539 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3540 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3541 3542 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3543 auto Hi = MIRBuilder.buildSelect( 3544 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3545 3546 ResultRegs[0] = Lo.getReg(0); 3547 ResultRegs[1] = Hi.getReg(0); 3548 break; 3549 } 3550 case TargetOpcode::G_LSHR: 3551 case TargetOpcode::G_ASHR: { 3552 // Short: ShAmt < NewBitSize 3553 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3554 3555 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3556 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3557 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3558 3559 // Long: ShAmt >= NewBitSize 3560 MachineInstrBuilder HiL; 3561 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3562 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3563 } else { 3564 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3565 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3566 } 3567 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3568 {InH, AmtExcess}); // Lo from Hi part. 3569 3570 auto Lo = MIRBuilder.buildSelect( 3571 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3572 3573 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3574 3575 ResultRegs[0] = Lo.getReg(0); 3576 ResultRegs[1] = Hi.getReg(0); 3577 break; 3578 } 3579 default: 3580 llvm_unreachable("not a shift"); 3581 } 3582 3583 MIRBuilder.buildMerge(DstReg, ResultRegs); 3584 MI.eraseFromParent(); 3585 return Legalized; 3586 } 3587 3588 LegalizerHelper::LegalizeResult 3589 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3590 LLT MoreTy) { 3591 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3592 3593 Observer.changingInstr(MI); 3594 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3595 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3596 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3597 moreElementsVectorSrc(MI, MoreTy, I); 3598 } 3599 3600 MachineBasicBlock &MBB = *MI.getParent(); 3601 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3602 moreElementsVectorDst(MI, MoreTy, 0); 3603 Observer.changedInstr(MI); 3604 return Legalized; 3605 } 3606 3607 LegalizerHelper::LegalizeResult 3608 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3609 LLT MoreTy) { 3610 MIRBuilder.setInstr(MI); 3611 unsigned Opc = MI.getOpcode(); 3612 switch (Opc) { 3613 case TargetOpcode::G_IMPLICIT_DEF: 3614 case TargetOpcode::G_LOAD: { 3615 if (TypeIdx != 0) 3616 return UnableToLegalize; 3617 Observer.changingInstr(MI); 3618 moreElementsVectorDst(MI, MoreTy, 0); 3619 Observer.changedInstr(MI); 3620 return Legalized; 3621 } 3622 case TargetOpcode::G_STORE: 3623 if (TypeIdx != 0) 3624 return UnableToLegalize; 3625 Observer.changingInstr(MI); 3626 moreElementsVectorSrc(MI, MoreTy, 0); 3627 Observer.changedInstr(MI); 3628 return Legalized; 3629 case TargetOpcode::G_AND: 3630 case TargetOpcode::G_OR: 3631 case TargetOpcode::G_XOR: 3632 case TargetOpcode::G_SMIN: 3633 case TargetOpcode::G_SMAX: 3634 case TargetOpcode::G_UMIN: 3635 case TargetOpcode::G_UMAX: 3636 case TargetOpcode::G_FMINNUM: 3637 case TargetOpcode::G_FMAXNUM: 3638 case TargetOpcode::G_FMINNUM_IEEE: 3639 case TargetOpcode::G_FMAXNUM_IEEE: 3640 case TargetOpcode::G_FMINIMUM: 3641 case TargetOpcode::G_FMAXIMUM: { 3642 Observer.changingInstr(MI); 3643 moreElementsVectorSrc(MI, MoreTy, 1); 3644 moreElementsVectorSrc(MI, MoreTy, 2); 3645 moreElementsVectorDst(MI, MoreTy, 0); 3646 Observer.changedInstr(MI); 3647 return Legalized; 3648 } 3649 case TargetOpcode::G_EXTRACT: 3650 if (TypeIdx != 1) 3651 return UnableToLegalize; 3652 Observer.changingInstr(MI); 3653 moreElementsVectorSrc(MI, MoreTy, 1); 3654 Observer.changedInstr(MI); 3655 return Legalized; 3656 case TargetOpcode::G_INSERT: 3657 case TargetOpcode::G_FREEZE: 3658 if (TypeIdx != 0) 3659 return UnableToLegalize; 3660 Observer.changingInstr(MI); 3661 moreElementsVectorSrc(MI, MoreTy, 1); 3662 moreElementsVectorDst(MI, MoreTy, 0); 3663 Observer.changedInstr(MI); 3664 return Legalized; 3665 case TargetOpcode::G_SELECT: 3666 if (TypeIdx != 0) 3667 return UnableToLegalize; 3668 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3669 return UnableToLegalize; 3670 3671 Observer.changingInstr(MI); 3672 moreElementsVectorSrc(MI, MoreTy, 2); 3673 moreElementsVectorSrc(MI, MoreTy, 3); 3674 moreElementsVectorDst(MI, MoreTy, 0); 3675 Observer.changedInstr(MI); 3676 return Legalized; 3677 case TargetOpcode::G_UNMERGE_VALUES: { 3678 if (TypeIdx != 1) 3679 return UnableToLegalize; 3680 3681 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3682 int NumDst = MI.getNumOperands() - 1; 3683 moreElementsVectorSrc(MI, MoreTy, NumDst); 3684 3685 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3686 for (int I = 0; I != NumDst; ++I) 3687 MIB.addDef(MI.getOperand(I).getReg()); 3688 3689 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3690 for (int I = NumDst; I != NewNumDst; ++I) 3691 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3692 3693 MIB.addUse(MI.getOperand(NumDst).getReg()); 3694 MI.eraseFromParent(); 3695 return Legalized; 3696 } 3697 case TargetOpcode::G_PHI: 3698 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3699 default: 3700 return UnableToLegalize; 3701 } 3702 } 3703 3704 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3705 ArrayRef<Register> Src1Regs, 3706 ArrayRef<Register> Src2Regs, 3707 LLT NarrowTy) { 3708 MachineIRBuilder &B = MIRBuilder; 3709 unsigned SrcParts = Src1Regs.size(); 3710 unsigned DstParts = DstRegs.size(); 3711 3712 unsigned DstIdx = 0; // Low bits of the result. 3713 Register FactorSum = 3714 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3715 DstRegs[DstIdx] = FactorSum; 3716 3717 unsigned CarrySumPrevDstIdx; 3718 SmallVector<Register, 4> Factors; 3719 3720 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3721 // Collect low parts of muls for DstIdx. 3722 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3723 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3724 MachineInstrBuilder Mul = 3725 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3726 Factors.push_back(Mul.getReg(0)); 3727 } 3728 // Collect high parts of muls from previous DstIdx. 3729 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3730 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3731 MachineInstrBuilder Umulh = 3732 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3733 Factors.push_back(Umulh.getReg(0)); 3734 } 3735 // Add CarrySum from additions calculated for previous DstIdx. 3736 if (DstIdx != 1) { 3737 Factors.push_back(CarrySumPrevDstIdx); 3738 } 3739 3740 Register CarrySum; 3741 // Add all factors and accumulate all carries into CarrySum. 3742 if (DstIdx != DstParts - 1) { 3743 MachineInstrBuilder Uaddo = 3744 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3745 FactorSum = Uaddo.getReg(0); 3746 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3747 for (unsigned i = 2; i < Factors.size(); ++i) { 3748 MachineInstrBuilder Uaddo = 3749 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3750 FactorSum = Uaddo.getReg(0); 3751 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3752 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3753 } 3754 } else { 3755 // Since value for the next index is not calculated, neither is CarrySum. 3756 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3757 for (unsigned i = 2; i < Factors.size(); ++i) 3758 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3759 } 3760 3761 CarrySumPrevDstIdx = CarrySum; 3762 DstRegs[DstIdx] = FactorSum; 3763 Factors.clear(); 3764 } 3765 } 3766 3767 LegalizerHelper::LegalizeResult 3768 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3769 Register DstReg = MI.getOperand(0).getReg(); 3770 Register Src1 = MI.getOperand(1).getReg(); 3771 Register Src2 = MI.getOperand(2).getReg(); 3772 3773 LLT Ty = MRI.getType(DstReg); 3774 if (Ty.isVector()) 3775 return UnableToLegalize; 3776 3777 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3778 unsigned DstSize = Ty.getSizeInBits(); 3779 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3780 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3781 return UnableToLegalize; 3782 3783 unsigned NumDstParts = DstSize / NarrowSize; 3784 unsigned NumSrcParts = SrcSize / NarrowSize; 3785 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3786 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3787 3788 SmallVector<Register, 2> Src1Parts, Src2Parts; 3789 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3790 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3791 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3792 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3793 3794 // Take only high half of registers if this is high mul. 3795 ArrayRef<Register> DstRegs( 3796 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3797 MIRBuilder.buildMerge(DstReg, DstRegs); 3798 MI.eraseFromParent(); 3799 return Legalized; 3800 } 3801 3802 LegalizerHelper::LegalizeResult 3803 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3804 LLT NarrowTy) { 3805 if (TypeIdx != 1) 3806 return UnableToLegalize; 3807 3808 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3809 3810 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3811 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3812 // NarrowSize. 3813 if (SizeOp1 % NarrowSize != 0) 3814 return UnableToLegalize; 3815 int NumParts = SizeOp1 / NarrowSize; 3816 3817 SmallVector<Register, 2> SrcRegs, DstRegs; 3818 SmallVector<uint64_t, 2> Indexes; 3819 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3820 3821 Register OpReg = MI.getOperand(0).getReg(); 3822 uint64_t OpStart = MI.getOperand(2).getImm(); 3823 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3824 for (int i = 0; i < NumParts; ++i) { 3825 unsigned SrcStart = i * NarrowSize; 3826 3827 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3828 // No part of the extract uses this subregister, ignore it. 3829 continue; 3830 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3831 // The entire subregister is extracted, forward the value. 3832 DstRegs.push_back(SrcRegs[i]); 3833 continue; 3834 } 3835 3836 // OpSegStart is where this destination segment would start in OpReg if it 3837 // extended infinitely in both directions. 3838 int64_t ExtractOffset; 3839 uint64_t SegSize; 3840 if (OpStart < SrcStart) { 3841 ExtractOffset = 0; 3842 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3843 } else { 3844 ExtractOffset = OpStart - SrcStart; 3845 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3846 } 3847 3848 Register SegReg = SrcRegs[i]; 3849 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3850 // A genuine extract is needed. 3851 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3852 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3853 } 3854 3855 DstRegs.push_back(SegReg); 3856 } 3857 3858 Register DstReg = MI.getOperand(0).getReg(); 3859 if (MRI.getType(DstReg).isVector()) 3860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3861 else if (DstRegs.size() > 1) 3862 MIRBuilder.buildMerge(DstReg, DstRegs); 3863 else 3864 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3865 MI.eraseFromParent(); 3866 return Legalized; 3867 } 3868 3869 LegalizerHelper::LegalizeResult 3870 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3871 LLT NarrowTy) { 3872 // FIXME: Don't know how to handle secondary types yet. 3873 if (TypeIdx != 0) 3874 return UnableToLegalize; 3875 3876 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3877 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3878 3879 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3880 // NarrowSize. 3881 if (SizeOp0 % NarrowSize != 0) 3882 return UnableToLegalize; 3883 3884 int NumParts = SizeOp0 / NarrowSize; 3885 3886 SmallVector<Register, 2> SrcRegs, DstRegs; 3887 SmallVector<uint64_t, 2> Indexes; 3888 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3889 3890 Register OpReg = MI.getOperand(2).getReg(); 3891 uint64_t OpStart = MI.getOperand(3).getImm(); 3892 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3893 for (int i = 0; i < NumParts; ++i) { 3894 unsigned DstStart = i * NarrowSize; 3895 3896 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3897 // No part of the insert affects this subregister, forward the original. 3898 DstRegs.push_back(SrcRegs[i]); 3899 continue; 3900 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3901 // The entire subregister is defined by this insert, forward the new 3902 // value. 3903 DstRegs.push_back(OpReg); 3904 continue; 3905 } 3906 3907 // OpSegStart is where this destination segment would start in OpReg if it 3908 // extended infinitely in both directions. 3909 int64_t ExtractOffset, InsertOffset; 3910 uint64_t SegSize; 3911 if (OpStart < DstStart) { 3912 InsertOffset = 0; 3913 ExtractOffset = DstStart - OpStart; 3914 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3915 } else { 3916 InsertOffset = OpStart - DstStart; 3917 ExtractOffset = 0; 3918 SegSize = 3919 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3920 } 3921 3922 Register SegReg = OpReg; 3923 if (ExtractOffset != 0 || SegSize != OpSize) { 3924 // A genuine extract is needed. 3925 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3926 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3927 } 3928 3929 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3930 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3931 DstRegs.push_back(DstReg); 3932 } 3933 3934 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3935 Register DstReg = MI.getOperand(0).getReg(); 3936 if(MRI.getType(DstReg).isVector()) 3937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3938 else 3939 MIRBuilder.buildMerge(DstReg, DstRegs); 3940 MI.eraseFromParent(); 3941 return Legalized; 3942 } 3943 3944 LegalizerHelper::LegalizeResult 3945 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3946 LLT NarrowTy) { 3947 Register DstReg = MI.getOperand(0).getReg(); 3948 LLT DstTy = MRI.getType(DstReg); 3949 3950 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3951 3952 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3953 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3954 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3955 LLT LeftoverTy; 3956 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3957 Src0Regs, Src0LeftoverRegs)) 3958 return UnableToLegalize; 3959 3960 LLT Unused; 3961 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3962 Src1Regs, Src1LeftoverRegs)) 3963 llvm_unreachable("inconsistent extractParts result"); 3964 3965 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3966 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3967 {Src0Regs[I], Src1Regs[I]}); 3968 DstRegs.push_back(Inst.getReg(0)); 3969 } 3970 3971 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3972 auto Inst = MIRBuilder.buildInstr( 3973 MI.getOpcode(), 3974 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3975 DstLeftoverRegs.push_back(Inst.getReg(0)); 3976 } 3977 3978 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3979 LeftoverTy, DstLeftoverRegs); 3980 3981 MI.eraseFromParent(); 3982 return Legalized; 3983 } 3984 3985 LegalizerHelper::LegalizeResult 3986 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3987 LLT NarrowTy) { 3988 if (TypeIdx != 0) 3989 return UnableToLegalize; 3990 3991 Register DstReg = MI.getOperand(0).getReg(); 3992 Register SrcReg = MI.getOperand(1).getReg(); 3993 3994 LLT DstTy = MRI.getType(DstReg); 3995 if (DstTy.isVector()) 3996 return UnableToLegalize; 3997 3998 SmallVector<Register, 8> Parts; 3999 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4000 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4001 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4002 4003 MI.eraseFromParent(); 4004 return Legalized; 4005 } 4006 4007 LegalizerHelper::LegalizeResult 4008 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4009 LLT NarrowTy) { 4010 if (TypeIdx != 0) 4011 return UnableToLegalize; 4012 4013 Register CondReg = MI.getOperand(1).getReg(); 4014 LLT CondTy = MRI.getType(CondReg); 4015 if (CondTy.isVector()) // TODO: Handle vselect 4016 return UnableToLegalize; 4017 4018 Register DstReg = MI.getOperand(0).getReg(); 4019 LLT DstTy = MRI.getType(DstReg); 4020 4021 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4022 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4023 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4024 LLT LeftoverTy; 4025 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4026 Src1Regs, Src1LeftoverRegs)) 4027 return UnableToLegalize; 4028 4029 LLT Unused; 4030 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4031 Src2Regs, Src2LeftoverRegs)) 4032 llvm_unreachable("inconsistent extractParts result"); 4033 4034 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4035 auto Select = MIRBuilder.buildSelect(NarrowTy, 4036 CondReg, Src1Regs[I], Src2Regs[I]); 4037 DstRegs.push_back(Select.getReg(0)); 4038 } 4039 4040 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4041 auto Select = MIRBuilder.buildSelect( 4042 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4043 DstLeftoverRegs.push_back(Select.getReg(0)); 4044 } 4045 4046 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4047 LeftoverTy, DstLeftoverRegs); 4048 4049 MI.eraseFromParent(); 4050 return Legalized; 4051 } 4052 4053 LegalizerHelper::LegalizeResult 4054 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4055 LLT NarrowTy) { 4056 if (TypeIdx != 1) 4057 return UnableToLegalize; 4058 4059 Register DstReg = MI.getOperand(0).getReg(); 4060 Register SrcReg = MI.getOperand(1).getReg(); 4061 LLT DstTy = MRI.getType(DstReg); 4062 LLT SrcTy = MRI.getType(SrcReg); 4063 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4064 4065 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4066 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4067 4068 MachineIRBuilder &B = MIRBuilder; 4069 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4070 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4071 auto C_0 = B.buildConstant(NarrowTy, 0); 4072 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4073 UnmergeSrc.getReg(1), C_0); 4074 auto LoCTLZ = IsUndef ? 4075 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4076 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4077 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4078 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4079 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4080 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4081 4082 MI.eraseFromParent(); 4083 return Legalized; 4084 } 4085 4086 return UnableToLegalize; 4087 } 4088 4089 LegalizerHelper::LegalizeResult 4090 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4091 LLT NarrowTy) { 4092 if (TypeIdx != 1) 4093 return UnableToLegalize; 4094 4095 Register DstReg = MI.getOperand(0).getReg(); 4096 Register SrcReg = MI.getOperand(1).getReg(); 4097 LLT DstTy = MRI.getType(DstReg); 4098 LLT SrcTy = MRI.getType(SrcReg); 4099 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4100 4101 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4102 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4103 4104 MachineIRBuilder &B = MIRBuilder; 4105 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4106 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4107 auto C_0 = B.buildConstant(NarrowTy, 0); 4108 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4109 UnmergeSrc.getReg(0), C_0); 4110 auto HiCTTZ = IsUndef ? 4111 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4112 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4113 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4114 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4115 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4116 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4117 4118 MI.eraseFromParent(); 4119 return Legalized; 4120 } 4121 4122 return UnableToLegalize; 4123 } 4124 4125 LegalizerHelper::LegalizeResult 4126 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4127 LLT NarrowTy) { 4128 if (TypeIdx != 1) 4129 return UnableToLegalize; 4130 4131 Register DstReg = MI.getOperand(0).getReg(); 4132 LLT DstTy = MRI.getType(DstReg); 4133 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4134 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4135 4136 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4137 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4138 4139 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4140 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4141 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4142 4143 MI.eraseFromParent(); 4144 return Legalized; 4145 } 4146 4147 return UnableToLegalize; 4148 } 4149 4150 LegalizerHelper::LegalizeResult 4151 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4152 unsigned Opc = MI.getOpcode(); 4153 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4154 auto isSupported = [this](const LegalityQuery &Q) { 4155 auto QAction = LI.getAction(Q).Action; 4156 return QAction == Legal || QAction == Libcall || QAction == Custom; 4157 }; 4158 switch (Opc) { 4159 default: 4160 return UnableToLegalize; 4161 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4162 // This trivially expands to CTLZ. 4163 Observer.changingInstr(MI); 4164 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4165 Observer.changedInstr(MI); 4166 return Legalized; 4167 } 4168 case TargetOpcode::G_CTLZ: { 4169 Register DstReg = MI.getOperand(0).getReg(); 4170 Register SrcReg = MI.getOperand(1).getReg(); 4171 LLT DstTy = MRI.getType(DstReg); 4172 LLT SrcTy = MRI.getType(SrcReg); 4173 unsigned Len = SrcTy.getSizeInBits(); 4174 4175 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4176 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4177 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4178 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4179 auto ICmp = MIRBuilder.buildICmp( 4180 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4181 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4182 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4183 MI.eraseFromParent(); 4184 return Legalized; 4185 } 4186 // for now, we do this: 4187 // NewLen = NextPowerOf2(Len); 4188 // x = x | (x >> 1); 4189 // x = x | (x >> 2); 4190 // ... 4191 // x = x | (x >>16); 4192 // x = x | (x >>32); // for 64-bit input 4193 // Upto NewLen/2 4194 // return Len - popcount(x); 4195 // 4196 // Ref: "Hacker's Delight" by Henry Warren 4197 Register Op = SrcReg; 4198 unsigned NewLen = PowerOf2Ceil(Len); 4199 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4200 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4201 auto MIBOp = MIRBuilder.buildOr( 4202 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4203 Op = MIBOp.getReg(0); 4204 } 4205 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4206 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4207 MIBPop); 4208 MI.eraseFromParent(); 4209 return Legalized; 4210 } 4211 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4212 // This trivially expands to CTTZ. 4213 Observer.changingInstr(MI); 4214 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4215 Observer.changedInstr(MI); 4216 return Legalized; 4217 } 4218 case TargetOpcode::G_CTTZ: { 4219 Register DstReg = MI.getOperand(0).getReg(); 4220 Register SrcReg = MI.getOperand(1).getReg(); 4221 LLT DstTy = MRI.getType(DstReg); 4222 LLT SrcTy = MRI.getType(SrcReg); 4223 4224 unsigned Len = SrcTy.getSizeInBits(); 4225 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4226 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4227 // zero. 4228 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4229 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4230 auto ICmp = MIRBuilder.buildICmp( 4231 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4232 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4233 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4234 MI.eraseFromParent(); 4235 return Legalized; 4236 } 4237 // for now, we use: { return popcount(~x & (x - 1)); } 4238 // unless the target has ctlz but not ctpop, in which case we use: 4239 // { return 32 - nlz(~x & (x-1)); } 4240 // Ref: "Hacker's Delight" by Henry Warren 4241 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4242 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4243 auto MIBTmp = MIRBuilder.buildAnd( 4244 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4245 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4246 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4247 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4248 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4249 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4250 MI.eraseFromParent(); 4251 return Legalized; 4252 } 4253 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4254 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4255 return Legalized; 4256 } 4257 case TargetOpcode::G_CTPOP: { 4258 unsigned Size = Ty.getSizeInBits(); 4259 MachineIRBuilder &B = MIRBuilder; 4260 4261 // Count set bits in blocks of 2 bits. Default approach would be 4262 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4263 // We use following formula instead: 4264 // B2Count = val - { (val >> 1) & 0x55555555 } 4265 // since it gives same result in blocks of 2 with one instruction less. 4266 auto C_1 = B.buildConstant(Ty, 1); 4267 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4268 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4269 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4270 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4271 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4272 4273 // In order to get count in blocks of 4 add values from adjacent block of 2. 4274 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4275 auto C_2 = B.buildConstant(Ty, 2); 4276 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4277 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4278 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4279 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4280 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4281 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4282 4283 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4284 // addition since count value sits in range {0,...,8} and 4 bits are enough 4285 // to hold such binary values. After addition high 4 bits still hold count 4286 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4287 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4288 auto C_4 = B.buildConstant(Ty, 4); 4289 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4290 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4291 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4292 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4293 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4294 4295 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4296 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4297 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4298 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4299 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4300 4301 // Shift count result from 8 high bits to low bits. 4302 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4303 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4304 4305 MI.eraseFromParent(); 4306 return Legalized; 4307 } 4308 } 4309 } 4310 4311 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4312 // representation. 4313 LegalizerHelper::LegalizeResult 4314 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4315 Register Dst = MI.getOperand(0).getReg(); 4316 Register Src = MI.getOperand(1).getReg(); 4317 const LLT S64 = LLT::scalar(64); 4318 const LLT S32 = LLT::scalar(32); 4319 const LLT S1 = LLT::scalar(1); 4320 4321 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4322 4323 // unsigned cul2f(ulong u) { 4324 // uint lz = clz(u); 4325 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4326 // u = (u << lz) & 0x7fffffffffffffffUL; 4327 // ulong t = u & 0xffffffffffUL; 4328 // uint v = (e << 23) | (uint)(u >> 40); 4329 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4330 // return as_float(v + r); 4331 // } 4332 4333 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4334 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4335 4336 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4337 4338 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4339 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4340 4341 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4342 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4343 4344 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4345 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4346 4347 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4348 4349 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4350 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4351 4352 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4353 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4354 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4355 4356 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4357 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4358 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4359 auto One = MIRBuilder.buildConstant(S32, 1); 4360 4361 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4362 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4363 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4364 MIRBuilder.buildAdd(Dst, V, R); 4365 4366 return Legalized; 4367 } 4368 4369 LegalizerHelper::LegalizeResult 4370 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4371 Register Dst = MI.getOperand(0).getReg(); 4372 Register Src = MI.getOperand(1).getReg(); 4373 LLT DstTy = MRI.getType(Dst); 4374 LLT SrcTy = MRI.getType(Src); 4375 4376 if (SrcTy == LLT::scalar(1)) { 4377 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4378 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4379 MIRBuilder.buildSelect(Dst, Src, True, False); 4380 MI.eraseFromParent(); 4381 return Legalized; 4382 } 4383 4384 if (SrcTy != LLT::scalar(64)) 4385 return UnableToLegalize; 4386 4387 if (DstTy == LLT::scalar(32)) { 4388 // TODO: SelectionDAG has several alternative expansions to port which may 4389 // be more reasonble depending on the available instructions. If a target 4390 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4391 // intermediate type, this is probably worse. 4392 return lowerU64ToF32BitOps(MI); 4393 } 4394 4395 return UnableToLegalize; 4396 } 4397 4398 LegalizerHelper::LegalizeResult 4399 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4400 Register Dst = MI.getOperand(0).getReg(); 4401 Register Src = MI.getOperand(1).getReg(); 4402 LLT DstTy = MRI.getType(Dst); 4403 LLT SrcTy = MRI.getType(Src); 4404 4405 const LLT S64 = LLT::scalar(64); 4406 const LLT S32 = LLT::scalar(32); 4407 const LLT S1 = LLT::scalar(1); 4408 4409 if (SrcTy == S1) { 4410 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4411 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4412 MIRBuilder.buildSelect(Dst, Src, True, False); 4413 MI.eraseFromParent(); 4414 return Legalized; 4415 } 4416 4417 if (SrcTy != S64) 4418 return UnableToLegalize; 4419 4420 if (DstTy == S32) { 4421 // signed cl2f(long l) { 4422 // long s = l >> 63; 4423 // float r = cul2f((l + s) ^ s); 4424 // return s ? -r : r; 4425 // } 4426 Register L = Src; 4427 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4428 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4429 4430 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4431 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4432 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4433 4434 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4435 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4436 MIRBuilder.buildConstant(S64, 0)); 4437 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4438 return Legalized; 4439 } 4440 4441 return UnableToLegalize; 4442 } 4443 4444 LegalizerHelper::LegalizeResult 4445 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4446 Register Dst = MI.getOperand(0).getReg(); 4447 Register Src = MI.getOperand(1).getReg(); 4448 LLT DstTy = MRI.getType(Dst); 4449 LLT SrcTy = MRI.getType(Src); 4450 const LLT S64 = LLT::scalar(64); 4451 const LLT S32 = LLT::scalar(32); 4452 4453 if (SrcTy != S64 && SrcTy != S32) 4454 return UnableToLegalize; 4455 if (DstTy != S32 && DstTy != S64) 4456 return UnableToLegalize; 4457 4458 // FPTOSI gives same result as FPTOUI for positive signed integers. 4459 // FPTOUI needs to deal with fp values that convert to unsigned integers 4460 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4461 4462 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4463 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4464 : APFloat::IEEEdouble(), 4465 APInt::getNullValue(SrcTy.getSizeInBits())); 4466 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4467 4468 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4469 4470 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4471 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4472 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4473 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4474 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4475 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4476 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4477 4478 const LLT S1 = LLT::scalar(1); 4479 4480 MachineInstrBuilder FCMP = 4481 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4482 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4483 4484 MI.eraseFromParent(); 4485 return Legalized; 4486 } 4487 4488 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4489 Register Dst = MI.getOperand(0).getReg(); 4490 Register Src = MI.getOperand(1).getReg(); 4491 LLT DstTy = MRI.getType(Dst); 4492 LLT SrcTy = MRI.getType(Src); 4493 const LLT S64 = LLT::scalar(64); 4494 const LLT S32 = LLT::scalar(32); 4495 4496 // FIXME: Only f32 to i64 conversions are supported. 4497 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4498 return UnableToLegalize; 4499 4500 // Expand f32 -> i64 conversion 4501 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4502 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4503 4504 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4505 4506 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4507 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4508 4509 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4510 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4511 4512 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4513 APInt::getSignMask(SrcEltBits)); 4514 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4515 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4516 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4517 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4518 4519 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4520 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4521 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4522 4523 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4524 R = MIRBuilder.buildZExt(DstTy, R); 4525 4526 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4527 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4528 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4529 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4530 4531 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4532 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4533 4534 const LLT S1 = LLT::scalar(1); 4535 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4536 S1, Exponent, ExponentLoBit); 4537 4538 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4539 4540 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4541 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4542 4543 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4544 4545 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4546 S1, Exponent, ZeroSrcTy); 4547 4548 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4549 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4550 4551 MI.eraseFromParent(); 4552 return Legalized; 4553 } 4554 4555 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4556 LegalizerHelper::LegalizeResult 4557 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4558 Register Dst = MI.getOperand(0).getReg(); 4559 Register Src = MI.getOperand(1).getReg(); 4560 4561 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4562 return UnableToLegalize; 4563 4564 const unsigned ExpMask = 0x7ff; 4565 const unsigned ExpBiasf64 = 1023; 4566 const unsigned ExpBiasf16 = 15; 4567 const LLT S32 = LLT::scalar(32); 4568 const LLT S1 = LLT::scalar(1); 4569 4570 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4571 Register U = Unmerge.getReg(0); 4572 Register UH = Unmerge.getReg(1); 4573 4574 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4575 4576 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4577 // add the f16 bias (15) to get the biased exponent for the f16 format. 4578 E = MIRBuilder.buildAdd( 4579 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4580 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4581 4582 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4583 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4584 4585 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4586 MIRBuilder.buildConstant(S32, 0x1ff)); 4587 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4588 4589 auto Zero = MIRBuilder.buildConstant(S32, 0); 4590 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4591 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4592 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4593 4594 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4595 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4596 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4597 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4598 4599 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4600 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4601 4602 // N = M | (E << 12); 4603 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4604 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4605 4606 // B = clamp(1-E, 0, 13); 4607 auto One = MIRBuilder.buildConstant(S32, 1); 4608 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4609 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4610 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4611 4612 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4613 MIRBuilder.buildConstant(S32, 0x1000)); 4614 4615 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4616 auto D0 = MIRBuilder.buildShl(S32, D, B); 4617 4618 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4619 D0, SigSetHigh); 4620 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4621 D = MIRBuilder.buildOr(S32, D, D1); 4622 4623 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4624 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4625 4626 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4627 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4628 4629 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4630 MIRBuilder.buildConstant(S32, 3)); 4631 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4632 4633 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4634 MIRBuilder.buildConstant(S32, 5)); 4635 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4636 4637 V1 = MIRBuilder.buildOr(S32, V0, V1); 4638 V = MIRBuilder.buildAdd(S32, V, V1); 4639 4640 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4641 E, MIRBuilder.buildConstant(S32, 30)); 4642 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4643 MIRBuilder.buildConstant(S32, 0x7c00), V); 4644 4645 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4646 E, MIRBuilder.buildConstant(S32, 1039)); 4647 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4648 4649 // Extract the sign bit. 4650 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4651 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4652 4653 // Insert the sign bit 4654 V = MIRBuilder.buildOr(S32, Sign, V); 4655 4656 MIRBuilder.buildTrunc(Dst, V); 4657 MI.eraseFromParent(); 4658 return Legalized; 4659 } 4660 4661 LegalizerHelper::LegalizeResult 4662 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4663 Register Dst = MI.getOperand(0).getReg(); 4664 Register Src = MI.getOperand(1).getReg(); 4665 4666 LLT DstTy = MRI.getType(Dst); 4667 LLT SrcTy = MRI.getType(Src); 4668 const LLT S64 = LLT::scalar(64); 4669 const LLT S16 = LLT::scalar(16); 4670 4671 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4672 return lowerFPTRUNC_F64_TO_F16(MI); 4673 4674 return UnableToLegalize; 4675 } 4676 4677 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4678 switch (Opc) { 4679 case TargetOpcode::G_SMIN: 4680 return CmpInst::ICMP_SLT; 4681 case TargetOpcode::G_SMAX: 4682 return CmpInst::ICMP_SGT; 4683 case TargetOpcode::G_UMIN: 4684 return CmpInst::ICMP_ULT; 4685 case TargetOpcode::G_UMAX: 4686 return CmpInst::ICMP_UGT; 4687 default: 4688 llvm_unreachable("not in integer min/max"); 4689 } 4690 } 4691 4692 LegalizerHelper::LegalizeResult 4693 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4694 Register Dst = MI.getOperand(0).getReg(); 4695 Register Src0 = MI.getOperand(1).getReg(); 4696 Register Src1 = MI.getOperand(2).getReg(); 4697 4698 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4699 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4700 4701 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4702 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4703 4704 MI.eraseFromParent(); 4705 return Legalized; 4706 } 4707 4708 LegalizerHelper::LegalizeResult 4709 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4710 Register Dst = MI.getOperand(0).getReg(); 4711 Register Src0 = MI.getOperand(1).getReg(); 4712 Register Src1 = MI.getOperand(2).getReg(); 4713 4714 const LLT Src0Ty = MRI.getType(Src0); 4715 const LLT Src1Ty = MRI.getType(Src1); 4716 4717 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4718 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4719 4720 auto SignBitMask = MIRBuilder.buildConstant( 4721 Src0Ty, APInt::getSignMask(Src0Size)); 4722 4723 auto NotSignBitMask = MIRBuilder.buildConstant( 4724 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4725 4726 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4727 MachineInstr *Or; 4728 4729 if (Src0Ty == Src1Ty) { 4730 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4731 Or = MIRBuilder.buildOr(Dst, And0, And1); 4732 } else if (Src0Size > Src1Size) { 4733 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4734 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4735 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4736 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4737 Or = MIRBuilder.buildOr(Dst, And0, And1); 4738 } else { 4739 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4740 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4741 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4742 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4743 Or = MIRBuilder.buildOr(Dst, And0, And1); 4744 } 4745 4746 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4747 // constants are a nan and -0.0, but the final result should preserve 4748 // everything. 4749 if (unsigned Flags = MI.getFlags()) 4750 Or->setFlags(Flags); 4751 4752 MI.eraseFromParent(); 4753 return Legalized; 4754 } 4755 4756 LegalizerHelper::LegalizeResult 4757 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4758 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4759 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4760 4761 Register Dst = MI.getOperand(0).getReg(); 4762 Register Src0 = MI.getOperand(1).getReg(); 4763 Register Src1 = MI.getOperand(2).getReg(); 4764 LLT Ty = MRI.getType(Dst); 4765 4766 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4767 // Insert canonicalizes if it's possible we need to quiet to get correct 4768 // sNaN behavior. 4769 4770 // Note this must be done here, and not as an optimization combine in the 4771 // absence of a dedicate quiet-snan instruction as we're using an 4772 // omni-purpose G_FCANONICALIZE. 4773 if (!isKnownNeverSNaN(Src0, MRI)) 4774 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4775 4776 if (!isKnownNeverSNaN(Src1, MRI)) 4777 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4778 } 4779 4780 // If there are no nans, it's safe to simply replace this with the non-IEEE 4781 // version. 4782 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4783 MI.eraseFromParent(); 4784 return Legalized; 4785 } 4786 4787 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4788 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4789 Register DstReg = MI.getOperand(0).getReg(); 4790 LLT Ty = MRI.getType(DstReg); 4791 unsigned Flags = MI.getFlags(); 4792 4793 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4794 Flags); 4795 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4796 MI.eraseFromParent(); 4797 return Legalized; 4798 } 4799 4800 LegalizerHelper::LegalizeResult 4801 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4802 Register DstReg = MI.getOperand(0).getReg(); 4803 Register X = MI.getOperand(1).getReg(); 4804 const unsigned Flags = MI.getFlags(); 4805 const LLT Ty = MRI.getType(DstReg); 4806 const LLT CondTy = Ty.changeElementSize(1); 4807 4808 // round(x) => 4809 // t = trunc(x); 4810 // d = fabs(x - t); 4811 // o = copysign(1.0f, x); 4812 // return t + (d >= 0.5 ? o : 0.0); 4813 4814 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4815 4816 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4817 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4818 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4819 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4820 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4821 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4822 4823 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4824 Flags); 4825 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4826 4827 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4828 4829 MI.eraseFromParent(); 4830 return Legalized; 4831 } 4832 4833 LegalizerHelper::LegalizeResult 4834 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4835 Register DstReg = MI.getOperand(0).getReg(); 4836 Register SrcReg = MI.getOperand(1).getReg(); 4837 unsigned Flags = MI.getFlags(); 4838 LLT Ty = MRI.getType(DstReg); 4839 const LLT CondTy = Ty.changeElementSize(1); 4840 4841 // result = trunc(src); 4842 // if (src < 0.0 && src != result) 4843 // result += -1.0. 4844 4845 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4846 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4847 4848 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4849 SrcReg, Zero, Flags); 4850 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4851 SrcReg, Trunc, Flags); 4852 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4853 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4854 4855 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4856 MI.eraseFromParent(); 4857 return Legalized; 4858 } 4859 4860 LegalizerHelper::LegalizeResult 4861 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4862 const unsigned NumDst = MI.getNumOperands() - 1; 4863 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4864 LLT SrcTy = MRI.getType(SrcReg); 4865 4866 Register Dst0Reg = MI.getOperand(0).getReg(); 4867 LLT DstTy = MRI.getType(Dst0Reg); 4868 4869 4870 // Expand scalarizing unmerge as bitcast to integer and shift. 4871 if (!DstTy.isVector() && SrcTy.isVector() && 4872 SrcTy.getElementType() == DstTy) { 4873 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4874 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4875 4876 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4877 4878 const unsigned DstSize = DstTy.getSizeInBits(); 4879 unsigned Offset = DstSize; 4880 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4881 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4882 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4883 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4884 } 4885 4886 MI.eraseFromParent(); 4887 return Legalized; 4888 } 4889 4890 return UnableToLegalize; 4891 } 4892 4893 LegalizerHelper::LegalizeResult 4894 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4895 Register DstReg = MI.getOperand(0).getReg(); 4896 Register Src0Reg = MI.getOperand(1).getReg(); 4897 Register Src1Reg = MI.getOperand(2).getReg(); 4898 LLT Src0Ty = MRI.getType(Src0Reg); 4899 LLT DstTy = MRI.getType(DstReg); 4900 LLT IdxTy = LLT::scalar(32); 4901 4902 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4903 4904 if (DstTy.isScalar()) { 4905 if (Src0Ty.isVector()) 4906 return UnableToLegalize; 4907 4908 // This is just a SELECT. 4909 assert(Mask.size() == 1 && "Expected a single mask element"); 4910 Register Val; 4911 if (Mask[0] < 0 || Mask[0] > 1) 4912 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4913 else 4914 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4915 MIRBuilder.buildCopy(DstReg, Val); 4916 MI.eraseFromParent(); 4917 return Legalized; 4918 } 4919 4920 Register Undef; 4921 SmallVector<Register, 32> BuildVec; 4922 LLT EltTy = DstTy.getElementType(); 4923 4924 for (int Idx : Mask) { 4925 if (Idx < 0) { 4926 if (!Undef.isValid()) 4927 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4928 BuildVec.push_back(Undef); 4929 continue; 4930 } 4931 4932 if (Src0Ty.isScalar()) { 4933 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4934 } else { 4935 int NumElts = Src0Ty.getNumElements(); 4936 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4937 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4938 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4939 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4940 BuildVec.push_back(Extract.getReg(0)); 4941 } 4942 } 4943 4944 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4945 MI.eraseFromParent(); 4946 return Legalized; 4947 } 4948 4949 LegalizerHelper::LegalizeResult 4950 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4951 Register Dst = MI.getOperand(0).getReg(); 4952 Register AllocSize = MI.getOperand(1).getReg(); 4953 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 4954 4955 const auto &MF = *MI.getMF(); 4956 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4957 4958 LLT PtrTy = MRI.getType(Dst); 4959 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4960 4961 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4962 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4963 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4964 4965 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4966 // have to generate an extra instruction to negate the alloc and then use 4967 // G_PTR_ADD to add the negative offset. 4968 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4969 if (Alignment > Align(1)) { 4970 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 4971 AlignMask.negate(); 4972 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4973 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4974 } 4975 4976 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4977 MIRBuilder.buildCopy(SPReg, SPTmp); 4978 MIRBuilder.buildCopy(Dst, SPTmp); 4979 4980 MI.eraseFromParent(); 4981 return Legalized; 4982 } 4983 4984 LegalizerHelper::LegalizeResult 4985 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4986 Register Dst = MI.getOperand(0).getReg(); 4987 Register Src = MI.getOperand(1).getReg(); 4988 unsigned Offset = MI.getOperand(2).getImm(); 4989 4990 LLT DstTy = MRI.getType(Dst); 4991 LLT SrcTy = MRI.getType(Src); 4992 4993 if (DstTy.isScalar() && 4994 (SrcTy.isScalar() || 4995 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4996 LLT SrcIntTy = SrcTy; 4997 if (!SrcTy.isScalar()) { 4998 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4999 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5000 } 5001 5002 if (Offset == 0) 5003 MIRBuilder.buildTrunc(Dst, Src); 5004 else { 5005 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5006 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5007 MIRBuilder.buildTrunc(Dst, Shr); 5008 } 5009 5010 MI.eraseFromParent(); 5011 return Legalized; 5012 } 5013 5014 return UnableToLegalize; 5015 } 5016 5017 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5018 Register Dst = MI.getOperand(0).getReg(); 5019 Register Src = MI.getOperand(1).getReg(); 5020 Register InsertSrc = MI.getOperand(2).getReg(); 5021 uint64_t Offset = MI.getOperand(3).getImm(); 5022 5023 LLT DstTy = MRI.getType(Src); 5024 LLT InsertTy = MRI.getType(InsertSrc); 5025 5026 if (InsertTy.isVector() || 5027 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5028 return UnableToLegalize; 5029 5030 const DataLayout &DL = MIRBuilder.getDataLayout(); 5031 if ((DstTy.isPointer() && 5032 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5033 (InsertTy.isPointer() && 5034 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5035 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5036 return UnableToLegalize; 5037 } 5038 5039 LLT IntDstTy = DstTy; 5040 5041 if (!DstTy.isScalar()) { 5042 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5043 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5044 } 5045 5046 if (!InsertTy.isScalar()) { 5047 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5048 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5049 } 5050 5051 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5052 if (Offset != 0) { 5053 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5054 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5055 } 5056 5057 APInt MaskVal = APInt::getBitsSetWithWrap( 5058 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5059 5060 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5061 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5062 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5063 5064 MIRBuilder.buildCast(Dst, Or); 5065 MI.eraseFromParent(); 5066 return Legalized; 5067 } 5068 5069 LegalizerHelper::LegalizeResult 5070 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5071 Register Dst0 = MI.getOperand(0).getReg(); 5072 Register Dst1 = MI.getOperand(1).getReg(); 5073 Register LHS = MI.getOperand(2).getReg(); 5074 Register RHS = MI.getOperand(3).getReg(); 5075 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5076 5077 LLT Ty = MRI.getType(Dst0); 5078 LLT BoolTy = MRI.getType(Dst1); 5079 5080 if (IsAdd) 5081 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5082 else 5083 MIRBuilder.buildSub(Dst0, LHS, RHS); 5084 5085 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5086 5087 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5088 5089 // For an addition, the result should be less than one of the operands (LHS) 5090 // if and only if the other operand (RHS) is negative, otherwise there will 5091 // be overflow. 5092 // For a subtraction, the result should be less than one of the operands 5093 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5094 // otherwise there will be overflow. 5095 auto ResultLowerThanLHS = 5096 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5097 auto ConditionRHS = MIRBuilder.buildICmp( 5098 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5099 5100 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5101 MI.eraseFromParent(); 5102 return Legalized; 5103 } 5104 5105 LegalizerHelper::LegalizeResult 5106 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5107 Register Dst = MI.getOperand(0).getReg(); 5108 Register Src = MI.getOperand(1).getReg(); 5109 const LLT Ty = MRI.getType(Src); 5110 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5111 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5112 5113 // Swap most and least significant byte, set remaining bytes in Res to zero. 5114 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5115 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5116 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5117 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5118 5119 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5120 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5121 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5122 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5123 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5124 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5125 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5126 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5127 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5128 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5129 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5130 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5131 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5132 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5133 } 5134 Res.getInstr()->getOperand(0).setReg(Dst); 5135 5136 MI.eraseFromParent(); 5137 return Legalized; 5138 } 5139 5140 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5141 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5142 MachineInstrBuilder Src, APInt Mask) { 5143 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5144 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5145 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5146 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5147 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5148 return B.buildOr(Dst, LHS, RHS); 5149 } 5150 5151 LegalizerHelper::LegalizeResult 5152 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5153 Register Dst = MI.getOperand(0).getReg(); 5154 Register Src = MI.getOperand(1).getReg(); 5155 const LLT Ty = MRI.getType(Src); 5156 unsigned Size = Ty.getSizeInBits(); 5157 5158 MachineInstrBuilder BSWAP = 5159 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5160 5161 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5162 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5163 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5164 MachineInstrBuilder Swap4 = 5165 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5166 5167 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5168 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5169 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5170 MachineInstrBuilder Swap2 = 5171 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5172 5173 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5174 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5175 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5176 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5177 5178 MI.eraseFromParent(); 5179 return Legalized; 5180 } 5181 5182 LegalizerHelper::LegalizeResult 5183 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5184 MachineFunction &MF = MIRBuilder.getMF(); 5185 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5186 const TargetLowering *TLI = STI.getTargetLowering(); 5187 5188 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5189 int NameOpIdx = IsRead ? 1 : 0; 5190 int ValRegIndex = IsRead ? 0 : 1; 5191 5192 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5193 const LLT Ty = MRI.getType(ValReg); 5194 const MDString *RegStr = cast<MDString>( 5195 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5196 5197 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5198 if (!PhysReg.isValid()) 5199 return UnableToLegalize; 5200 5201 if (IsRead) 5202 MIRBuilder.buildCopy(ValReg, PhysReg); 5203 else 5204 MIRBuilder.buildCopy(PhysReg, ValReg); 5205 5206 MI.eraseFromParent(); 5207 return Legalized; 5208 } 5209