1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args,
495                     const CallingConv::ID CC) {
496   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
497 
498   CallLowering::CallLoweringInfo Info;
499   Info.CallConv = CC;
500   Info.Callee = MachineOperand::CreateES(Name);
501   Info.OrigRet = Result;
502   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
503   if (!CLI.lowerCall(MIRBuilder, Info))
504     return LegalizerHelper::UnableToLegalize;
505 
506   return LegalizerHelper::Legalized;
507 }
508 
509 LegalizerHelper::LegalizeResult
510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
511                     const CallLowering::ArgInfo &Result,
512                     ArrayRef<CallLowering::ArgInfo> Args) {
513   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
514   const char *Name = TLI.getLibcallName(Libcall);
515   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
516   return createLibcall(MIRBuilder, Name, Result, Args, CC);
517 }
518 
519 // Useful for libcalls where all operands have the same type.
520 static LegalizerHelper::LegalizeResult
521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
522               Type *OpType) {
523   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
524 
525   SmallVector<CallLowering::ArgInfo, 3> Args;
526   for (unsigned i = 1; i < MI.getNumOperands(); i++)
527     Args.push_back({MI.getOperand(i).getReg(), OpType});
528   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
529                        Args);
530 }
531 
532 LegalizerHelper::LegalizeResult
533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
534                        MachineInstr &MI) {
535   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
536   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
537 
538   SmallVector<CallLowering::ArgInfo, 3> Args;
539   // Add all the args, except for the last which is an imm denoting 'tail'.
540   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
541     Register Reg = MI.getOperand(i).getReg();
542 
543     // Need derive an IR type for call lowering.
544     LLT OpLLT = MRI.getType(Reg);
545     Type *OpTy = nullptr;
546     if (OpLLT.isPointer())
547       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
548     else
549       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
550     Args.push_back({Reg, OpTy});
551   }
552 
553   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
554   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
555   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
556   RTLIB::Libcall RTLibcall;
557   switch (ID) {
558   case Intrinsic::memcpy:
559     RTLibcall = RTLIB::MEMCPY;
560     break;
561   case Intrinsic::memset:
562     RTLibcall = RTLIB::MEMSET;
563     break;
564   case Intrinsic::memmove:
565     RTLibcall = RTLIB::MEMMOVE;
566     break;
567   default:
568     return LegalizerHelper::UnableToLegalize;
569   }
570   const char *Name = TLI.getLibcallName(RTLibcall);
571 
572   MIRBuilder.setInstr(MI);
573 
574   CallLowering::CallLoweringInfo Info;
575   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
576   Info.Callee = MachineOperand::CreateES(Name);
577   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
578   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
579                     isLibCallInTailPosition(MI);
580 
581   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
582   if (!CLI.lowerCall(MIRBuilder, Info))
583     return LegalizerHelper::UnableToLegalize;
584 
585   if (Info.LoweredTailCall) {
586     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
587     // We must have a return following the call to get past
588     // isLibCallInTailPosition.
589     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
590            "Expected instr following MI to be a return?");
591 
592     // We lowered a tail call, so the call is now the return from the block.
593     // Delete the old return.
594     MI.getNextNode()->eraseFromParent();
595   }
596 
597   return LegalizerHelper::Legalized;
598 }
599 
600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
601                                        Type *FromType) {
602   auto ToMVT = MVT::getVT(ToType);
603   auto FromMVT = MVT::getVT(FromType);
604 
605   switch (Opcode) {
606   case TargetOpcode::G_FPEXT:
607     return RTLIB::getFPEXT(FromMVT, ToMVT);
608   case TargetOpcode::G_FPTRUNC:
609     return RTLIB::getFPROUND(FromMVT, ToMVT);
610   case TargetOpcode::G_FPTOSI:
611     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTOUI:
613     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
614   case TargetOpcode::G_SITOFP:
615     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
616   case TargetOpcode::G_UITOFP:
617     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
618   }
619   llvm_unreachable("Unsupported libcall function");
620 }
621 
622 static LegalizerHelper::LegalizeResult
623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
624                   Type *FromType) {
625   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
626   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
627                        {{MI.getOperand(1).getReg(), FromType}});
628 }
629 
630 LegalizerHelper::LegalizeResult
631 LegalizerHelper::libcall(MachineInstr &MI) {
632   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
633   unsigned Size = LLTy.getSizeInBits();
634   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
635 
636   MIRBuilder.setInstrAndDebugLoc(MI);
637 
638   switch (MI.getOpcode()) {
639   default:
640     return UnableToLegalize;
641   case TargetOpcode::G_SDIV:
642   case TargetOpcode::G_UDIV:
643   case TargetOpcode::G_SREM:
644   case TargetOpcode::G_UREM:
645   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
646     Type *HLTy = IntegerType::get(Ctx, Size);
647     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
648     if (Status != Legalized)
649       return Status;
650     break;
651   }
652   case TargetOpcode::G_FADD:
653   case TargetOpcode::G_FSUB:
654   case TargetOpcode::G_FMUL:
655   case TargetOpcode::G_FDIV:
656   case TargetOpcode::G_FMA:
657   case TargetOpcode::G_FPOW:
658   case TargetOpcode::G_FREM:
659   case TargetOpcode::G_FCOS:
660   case TargetOpcode::G_FSIN:
661   case TargetOpcode::G_FLOG10:
662   case TargetOpcode::G_FLOG:
663   case TargetOpcode::G_FLOG2:
664   case TargetOpcode::G_FEXP:
665   case TargetOpcode::G_FEXP2:
666   case TargetOpcode::G_FCEIL:
667   case TargetOpcode::G_FFLOOR:
668   case TargetOpcode::G_FMINNUM:
669   case TargetOpcode::G_FMAXNUM:
670   case TargetOpcode::G_FSQRT:
671   case TargetOpcode::G_FRINT:
672   case TargetOpcode::G_FNEARBYINT: {
673     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
674     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
675       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
676       return UnableToLegalize;
677     }
678     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
679     if (Status != Legalized)
680       return Status;
681     break;
682   }
683   case TargetOpcode::G_FPEXT:
684   case TargetOpcode::G_FPTRUNC: {
685     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
686     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
687     if (!FromTy || !ToTy)
688       return UnableToLegalize;
689     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
690     if (Status != Legalized)
691       return Status;
692     break;
693   }
694   case TargetOpcode::G_FPTOSI:
695   case TargetOpcode::G_FPTOUI: {
696     // FIXME: Support other types
697     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
698     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
699     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
700       return UnableToLegalize;
701     LegalizeResult Status = conversionLibcall(
702         MI, MIRBuilder,
703         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
704         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
705     if (Status != Legalized)
706       return Status;
707     break;
708   }
709   case TargetOpcode::G_SITOFP:
710   case TargetOpcode::G_UITOFP: {
711     // FIXME: Support other types
712     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
713     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
714     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(
717         MI, MIRBuilder,
718         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
719         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   }
725 
726   MI.eraseFromParent();
727   return Legalized;
728 }
729 
730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
731                                                               unsigned TypeIdx,
732                                                               LLT NarrowTy) {
733   MIRBuilder.setInstrAndDebugLoc(MI);
734 
735   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
736   uint64_t NarrowSize = NarrowTy.getSizeInBits();
737 
738   switch (MI.getOpcode()) {
739   default:
740     return UnableToLegalize;
741   case TargetOpcode::G_IMPLICIT_DEF: {
742     Register DstReg = MI.getOperand(0).getReg();
743     LLT DstTy = MRI.getType(DstReg);
744 
745     // If SizeOp0 is not an exact multiple of NarrowSize, emit
746     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
747     // FIXME: Although this would also be legal for the general case, it causes
748     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
749     //  combines not being hit). This seems to be a problem related to the
750     //  artifact combiner.
751     if (SizeOp0 % NarrowSize != 0) {
752       LLT ImplicitTy = NarrowTy;
753       if (DstTy.isVector())
754         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
755 
756       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
757       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
758 
759       MI.eraseFromParent();
760       return Legalized;
761     }
762 
763     int NumParts = SizeOp0 / NarrowSize;
764 
765     SmallVector<Register, 2> DstRegs;
766     for (int i = 0; i < NumParts; ++i)
767       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
768 
769     if (DstTy.isVector())
770       MIRBuilder.buildBuildVector(DstReg, DstRegs);
771     else
772       MIRBuilder.buildMerge(DstReg, DstRegs);
773     MI.eraseFromParent();
774     return Legalized;
775   }
776   case TargetOpcode::G_CONSTANT: {
777     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
778     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
779     unsigned TotalSize = Ty.getSizeInBits();
780     unsigned NarrowSize = NarrowTy.getSizeInBits();
781     int NumParts = TotalSize / NarrowSize;
782 
783     SmallVector<Register, 4> PartRegs;
784     for (int I = 0; I != NumParts; ++I) {
785       unsigned Offset = I * NarrowSize;
786       auto K = MIRBuilder.buildConstant(NarrowTy,
787                                         Val.lshr(Offset).trunc(NarrowSize));
788       PartRegs.push_back(K.getReg(0));
789     }
790 
791     LLT LeftoverTy;
792     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
793     SmallVector<Register, 1> LeftoverRegs;
794     if (LeftoverBits != 0) {
795       LeftoverTy = LLT::scalar(LeftoverBits);
796       auto K = MIRBuilder.buildConstant(
797         LeftoverTy,
798         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
799       LeftoverRegs.push_back(K.getReg(0));
800     }
801 
802     insertParts(MI.getOperand(0).getReg(),
803                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
804 
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_SEXT:
809   case TargetOpcode::G_ZEXT:
810   case TargetOpcode::G_ANYEXT:
811     return narrowScalarExt(MI, TypeIdx, NarrowTy);
812   case TargetOpcode::G_TRUNC: {
813     if (TypeIdx != 1)
814       return UnableToLegalize;
815 
816     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
817     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
818       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
819       return UnableToLegalize;
820     }
821 
822     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
823     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
824     MI.eraseFromParent();
825     return Legalized;
826   }
827 
828   case TargetOpcode::G_FREEZE:
829     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
830 
831   case TargetOpcode::G_ADD: {
832     // FIXME: add support for when SizeOp0 isn't an exact multiple of
833     // NarrowSize.
834     if (SizeOp0 % NarrowSize != 0)
835       return UnableToLegalize;
836     // Expand in terms of carry-setting/consuming G_ADDE instructions.
837     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
838 
839     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
840     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
841     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
842 
843     Register CarryIn;
844     for (int i = 0; i < NumParts; ++i) {
845       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
846       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
847 
848       if (i == 0)
849         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
850       else {
851         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
852                               Src2Regs[i], CarryIn);
853       }
854 
855       DstRegs.push_back(DstReg);
856       CarryIn = CarryOut;
857     }
858     Register DstReg = MI.getOperand(0).getReg();
859     if(MRI.getType(DstReg).isVector())
860       MIRBuilder.buildBuildVector(DstReg, DstRegs);
861     else
862       MIRBuilder.buildMerge(DstReg, DstRegs);
863     MI.eraseFromParent();
864     return Legalized;
865   }
866   case TargetOpcode::G_SUB: {
867     // FIXME: add support for when SizeOp0 isn't an exact multiple of
868     // NarrowSize.
869     if (SizeOp0 % NarrowSize != 0)
870       return UnableToLegalize;
871 
872     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
873 
874     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
875     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
876     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
877 
878     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
879     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
880     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
881                           {Src1Regs[0], Src2Regs[0]});
882     DstRegs.push_back(DstReg);
883     Register BorrowIn = BorrowOut;
884     for (int i = 1; i < NumParts; ++i) {
885       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
886       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
887 
888       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
889                             {Src1Regs[i], Src2Regs[i], BorrowIn});
890 
891       DstRegs.push_back(DstReg);
892       BorrowIn = BorrowOut;
893     }
894     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_MUL:
899   case TargetOpcode::G_UMULH:
900     return narrowScalarMul(MI, NarrowTy);
901   case TargetOpcode::G_EXTRACT:
902     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
903   case TargetOpcode::G_INSERT:
904     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
905   case TargetOpcode::G_LOAD: {
906     const auto &MMO = **MI.memoperands_begin();
907     Register DstReg = MI.getOperand(0).getReg();
908     LLT DstTy = MRI.getType(DstReg);
909     if (DstTy.isVector())
910       return UnableToLegalize;
911 
912     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
913       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
914       auto &MMO = **MI.memoperands_begin();
915       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
916       MIRBuilder.buildAnyExt(DstReg, TmpReg);
917       MI.eraseFromParent();
918       return Legalized;
919     }
920 
921     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
922   }
923   case TargetOpcode::G_ZEXTLOAD:
924   case TargetOpcode::G_SEXTLOAD: {
925     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
926     Register DstReg = MI.getOperand(0).getReg();
927     Register PtrReg = MI.getOperand(1).getReg();
928 
929     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
930     auto &MMO = **MI.memoperands_begin();
931     if (MMO.getSizeInBits() == NarrowSize) {
932       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
933     } else {
934       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
935     }
936 
937     if (ZExt)
938       MIRBuilder.buildZExt(DstReg, TmpReg);
939     else
940       MIRBuilder.buildSExt(DstReg, TmpReg);
941 
942     MI.eraseFromParent();
943     return Legalized;
944   }
945   case TargetOpcode::G_STORE: {
946     const auto &MMO = **MI.memoperands_begin();
947 
948     Register SrcReg = MI.getOperand(0).getReg();
949     LLT SrcTy = MRI.getType(SrcReg);
950     if (SrcTy.isVector())
951       return UnableToLegalize;
952 
953     int NumParts = SizeOp0 / NarrowSize;
954     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
955     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
956     if (SrcTy.isVector() && LeftoverBits != 0)
957       return UnableToLegalize;
958 
959     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
960       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961       auto &MMO = **MI.memoperands_begin();
962       MIRBuilder.buildTrunc(TmpReg, SrcReg);
963       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
964       MI.eraseFromParent();
965       return Legalized;
966     }
967 
968     return reduceLoadStoreWidth(MI, 0, NarrowTy);
969   }
970   case TargetOpcode::G_SELECT:
971     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
972   case TargetOpcode::G_AND:
973   case TargetOpcode::G_OR:
974   case TargetOpcode::G_XOR: {
975     // Legalize bitwise operation:
976     // A = BinOp<Ty> B, C
977     // into:
978     // B1, ..., BN = G_UNMERGE_VALUES B
979     // C1, ..., CN = G_UNMERGE_VALUES C
980     // A1 = BinOp<Ty/N> B1, C2
981     // ...
982     // AN = BinOp<Ty/N> BN, CN
983     // A = G_MERGE_VALUES A1, ..., AN
984     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
985   }
986   case TargetOpcode::G_SHL:
987   case TargetOpcode::G_LSHR:
988   case TargetOpcode::G_ASHR:
989     return narrowScalarShift(MI, TypeIdx, NarrowTy);
990   case TargetOpcode::G_CTLZ:
991   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
992   case TargetOpcode::G_CTTZ:
993   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
994   case TargetOpcode::G_CTPOP:
995     if (TypeIdx == 1)
996       switch (MI.getOpcode()) {
997       case TargetOpcode::G_CTLZ:
998       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
999         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1000       case TargetOpcode::G_CTTZ:
1001       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1002         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1003       case TargetOpcode::G_CTPOP:
1004         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1005       default:
1006         return UnableToLegalize;
1007       }
1008 
1009     Observer.changingInstr(MI);
1010     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1011     Observer.changedInstr(MI);
1012     return Legalized;
1013   case TargetOpcode::G_INTTOPTR:
1014     if (TypeIdx != 1)
1015       return UnableToLegalize;
1016 
1017     Observer.changingInstr(MI);
1018     narrowScalarSrc(MI, NarrowTy, 1);
1019     Observer.changedInstr(MI);
1020     return Legalized;
1021   case TargetOpcode::G_PTRTOINT:
1022     if (TypeIdx != 0)
1023       return UnableToLegalize;
1024 
1025     Observer.changingInstr(MI);
1026     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1027     Observer.changedInstr(MI);
1028     return Legalized;
1029   case TargetOpcode::G_PHI: {
1030     unsigned NumParts = SizeOp0 / NarrowSize;
1031     SmallVector<Register, 2> DstRegs(NumParts);
1032     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1033     Observer.changingInstr(MI);
1034     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1035       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1036       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1037       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1038                    SrcRegs[i / 2]);
1039     }
1040     MachineBasicBlock &MBB = *MI.getParent();
1041     MIRBuilder.setInsertPt(MBB, MI);
1042     for (unsigned i = 0; i < NumParts; ++i) {
1043       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1044       MachineInstrBuilder MIB =
1045           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1046       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1047         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1048     }
1049     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1050     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1051     Observer.changedInstr(MI);
1052     MI.eraseFromParent();
1053     return Legalized;
1054   }
1055   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1056   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1057     if (TypeIdx != 2)
1058       return UnableToLegalize;
1059 
1060     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1061     Observer.changingInstr(MI);
1062     narrowScalarSrc(MI, NarrowTy, OpIdx);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   }
1066   case TargetOpcode::G_ICMP: {
1067     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1068     if (NarrowSize * 2 != SrcSize)
1069       return UnableToLegalize;
1070 
1071     Observer.changingInstr(MI);
1072     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1073     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1074     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1075 
1076     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1077     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1078     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1079 
1080     CmpInst::Predicate Pred =
1081         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1082     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1083 
1084     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1085       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1086       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1087       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1088       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1089       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1090     } else {
1091       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1092       MachineInstrBuilder CmpHEQ =
1093           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1094       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1095           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1096       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1097     }
1098     Observer.changedInstr(MI);
1099     MI.eraseFromParent();
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_SEXT_INREG: {
1103     if (TypeIdx != 0)
1104       return UnableToLegalize;
1105 
1106     int64_t SizeInBits = MI.getOperand(2).getImm();
1107 
1108     // So long as the new type has more bits than the bits we're extending we
1109     // don't need to break it apart.
1110     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1111       Observer.changingInstr(MI);
1112       // We don't lose any non-extension bits by truncating the src and
1113       // sign-extending the dst.
1114       MachineOperand &MO1 = MI.getOperand(1);
1115       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1116       MO1.setReg(TruncMIB.getReg(0));
1117 
1118       MachineOperand &MO2 = MI.getOperand(0);
1119       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1120       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1121       MIRBuilder.buildSExt(MO2, DstExt);
1122       MO2.setReg(DstExt);
1123       Observer.changedInstr(MI);
1124       return Legalized;
1125     }
1126 
1127     // Break it apart. Components below the extension point are unmodified. The
1128     // component containing the extension point becomes a narrower SEXT_INREG.
1129     // Components above it are ashr'd from the component containing the
1130     // extension point.
1131     if (SizeOp0 % NarrowSize != 0)
1132       return UnableToLegalize;
1133     int NumParts = SizeOp0 / NarrowSize;
1134 
1135     // List the registers where the destination will be scattered.
1136     SmallVector<Register, 2> DstRegs;
1137     // List the registers where the source will be split.
1138     SmallVector<Register, 2> SrcRegs;
1139 
1140     // Create all the temporary registers.
1141     for (int i = 0; i < NumParts; ++i) {
1142       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1143 
1144       SrcRegs.push_back(SrcReg);
1145     }
1146 
1147     // Explode the big arguments into smaller chunks.
1148     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1149 
1150     Register AshrCstReg =
1151         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1152             .getReg(0);
1153     Register FullExtensionReg = 0;
1154     Register PartialExtensionReg = 0;
1155 
1156     // Do the operation on each small part.
1157     for (int i = 0; i < NumParts; ++i) {
1158       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1159         DstRegs.push_back(SrcRegs[i]);
1160       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1161         assert(PartialExtensionReg &&
1162                "Expected to visit partial extension before full");
1163         if (FullExtensionReg) {
1164           DstRegs.push_back(FullExtensionReg);
1165           continue;
1166         }
1167         DstRegs.push_back(
1168             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1169                 .getReg(0));
1170         FullExtensionReg = DstRegs.back();
1171       } else {
1172         DstRegs.push_back(
1173             MIRBuilder
1174                 .buildInstr(
1175                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1176                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1177                 .getReg(0));
1178         PartialExtensionReg = DstRegs.back();
1179       }
1180     }
1181 
1182     // Gather the destination registers into the final destination.
1183     Register DstReg = MI.getOperand(0).getReg();
1184     MIRBuilder.buildMerge(DstReg, DstRegs);
1185     MI.eraseFromParent();
1186     return Legalized;
1187   }
1188   case TargetOpcode::G_BSWAP:
1189   case TargetOpcode::G_BITREVERSE: {
1190     if (SizeOp0 % NarrowSize != 0)
1191       return UnableToLegalize;
1192 
1193     Observer.changingInstr(MI);
1194     SmallVector<Register, 2> SrcRegs, DstRegs;
1195     unsigned NumParts = SizeOp0 / NarrowSize;
1196     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1197 
1198     for (unsigned i = 0; i < NumParts; ++i) {
1199       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1200                                            {SrcRegs[NumParts - 1 - i]});
1201       DstRegs.push_back(DstPart.getReg(0));
1202     }
1203 
1204     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1205 
1206     Observer.changedInstr(MI);
1207     MI.eraseFromParent();
1208     return Legalized;
1209   }
1210   }
1211 }
1212 
1213 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1214                                      unsigned OpIdx, unsigned ExtOpcode) {
1215   MachineOperand &MO = MI.getOperand(OpIdx);
1216   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1217   MO.setReg(ExtB.getReg(0));
1218 }
1219 
1220 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1221                                       unsigned OpIdx) {
1222   MachineOperand &MO = MI.getOperand(OpIdx);
1223   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1224   MO.setReg(ExtB.getReg(0));
1225 }
1226 
1227 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1228                                      unsigned OpIdx, unsigned TruncOpcode) {
1229   MachineOperand &MO = MI.getOperand(OpIdx);
1230   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1231   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1232   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1233   MO.setReg(DstExt);
1234 }
1235 
1236 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1237                                       unsigned OpIdx, unsigned ExtOpcode) {
1238   MachineOperand &MO = MI.getOperand(OpIdx);
1239   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1240   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1241   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1242   MO.setReg(DstTrunc);
1243 }
1244 
1245 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1246                                             unsigned OpIdx) {
1247   MachineOperand &MO = MI.getOperand(OpIdx);
1248   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1249   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1250   MIRBuilder.buildExtract(MO, DstExt, 0);
1251   MO.setReg(DstExt);
1252 }
1253 
1254 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1255                                             unsigned OpIdx) {
1256   MachineOperand &MO = MI.getOperand(OpIdx);
1257 
1258   LLT OldTy = MRI.getType(MO.getReg());
1259   unsigned OldElts = OldTy.getNumElements();
1260   unsigned NewElts = MoreTy.getNumElements();
1261 
1262   unsigned NumParts = NewElts / OldElts;
1263 
1264   // Use concat_vectors if the result is a multiple of the number of elements.
1265   if (NumParts * OldElts == NewElts) {
1266     SmallVector<Register, 8> Parts;
1267     Parts.push_back(MO.getReg());
1268 
1269     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1270     for (unsigned I = 1; I != NumParts; ++I)
1271       Parts.push_back(ImpDef);
1272 
1273     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1274     MO.setReg(Concat.getReg(0));
1275     return;
1276   }
1277 
1278   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1279   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1280   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1281   MO.setReg(MoreReg);
1282 }
1283 
1284 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1285   MachineOperand &Op = MI.getOperand(OpIdx);
1286   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1287 }
1288 
1289 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1290   MachineOperand &MO = MI.getOperand(OpIdx);
1291   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1292   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1293   MIRBuilder.buildBitcast(MO, CastDst);
1294   MO.setReg(CastDst);
1295 }
1296 
1297 LegalizerHelper::LegalizeResult
1298 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1299                                         LLT WideTy) {
1300   if (TypeIdx != 1)
1301     return UnableToLegalize;
1302 
1303   Register DstReg = MI.getOperand(0).getReg();
1304   LLT DstTy = MRI.getType(DstReg);
1305   if (DstTy.isVector())
1306     return UnableToLegalize;
1307 
1308   Register Src1 = MI.getOperand(1).getReg();
1309   LLT SrcTy = MRI.getType(Src1);
1310   const int DstSize = DstTy.getSizeInBits();
1311   const int SrcSize = SrcTy.getSizeInBits();
1312   const int WideSize = WideTy.getSizeInBits();
1313   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1314 
1315   unsigned NumOps = MI.getNumOperands();
1316   unsigned NumSrc = MI.getNumOperands() - 1;
1317   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1318 
1319   if (WideSize >= DstSize) {
1320     // Directly pack the bits in the target type.
1321     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1322 
1323     for (unsigned I = 2; I != NumOps; ++I) {
1324       const unsigned Offset = (I - 1) * PartSize;
1325 
1326       Register SrcReg = MI.getOperand(I).getReg();
1327       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1328 
1329       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1330 
1331       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1332         MRI.createGenericVirtualRegister(WideTy);
1333 
1334       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1335       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1336       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1337       ResultReg = NextResult;
1338     }
1339 
1340     if (WideSize > DstSize)
1341       MIRBuilder.buildTrunc(DstReg, ResultReg);
1342     else if (DstTy.isPointer())
1343       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1344 
1345     MI.eraseFromParent();
1346     return Legalized;
1347   }
1348 
1349   // Unmerge the original values to the GCD type, and recombine to the next
1350   // multiple greater than the original type.
1351   //
1352   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1353   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1354   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1355   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1356   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1357   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1358   // %12:_(s12) = G_MERGE_VALUES %10, %11
1359   //
1360   // Padding with undef if necessary:
1361   //
1362   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1363   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1364   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1365   // %7:_(s2) = G_IMPLICIT_DEF
1366   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1367   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1368   // %10:_(s12) = G_MERGE_VALUES %8, %9
1369 
1370   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1371   LLT GCDTy = LLT::scalar(GCD);
1372 
1373   SmallVector<Register, 8> Parts;
1374   SmallVector<Register, 8> NewMergeRegs;
1375   SmallVector<Register, 8> Unmerges;
1376   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1377 
1378   // Decompose the original operands if they don't evenly divide.
1379   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1380     Register SrcReg = MI.getOperand(I).getReg();
1381     if (GCD == SrcSize) {
1382       Unmerges.push_back(SrcReg);
1383     } else {
1384       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1385       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1386         Unmerges.push_back(Unmerge.getReg(J));
1387     }
1388   }
1389 
1390   // Pad with undef to the next size that is a multiple of the requested size.
1391   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1392     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1393     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1394       Unmerges.push_back(UndefReg);
1395   }
1396 
1397   const int PartsPerGCD = WideSize / GCD;
1398 
1399   // Build merges of each piece.
1400   ArrayRef<Register> Slicer(Unmerges);
1401   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1402     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1403     NewMergeRegs.push_back(Merge.getReg(0));
1404   }
1405 
1406   // A truncate may be necessary if the requested type doesn't evenly divide the
1407   // original result type.
1408   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1409     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1410   } else {
1411     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1412     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1413   }
1414 
1415   MI.eraseFromParent();
1416   return Legalized;
1417 }
1418 
1419 LegalizerHelper::LegalizeResult
1420 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1421                                           LLT WideTy) {
1422   if (TypeIdx != 0)
1423     return UnableToLegalize;
1424 
1425   int NumDst = MI.getNumOperands() - 1;
1426   Register SrcReg = MI.getOperand(NumDst).getReg();
1427   LLT SrcTy = MRI.getType(SrcReg);
1428   if (SrcTy.isVector())
1429     return UnableToLegalize;
1430 
1431   Register Dst0Reg = MI.getOperand(0).getReg();
1432   LLT DstTy = MRI.getType(Dst0Reg);
1433   if (!DstTy.isScalar())
1434     return UnableToLegalize;
1435 
1436   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1437     if (SrcTy.isPointer()) {
1438       const DataLayout &DL = MIRBuilder.getDataLayout();
1439       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1440         LLVM_DEBUG(
1441             dbgs() << "Not casting non-integral address space integer\n");
1442         return UnableToLegalize;
1443       }
1444 
1445       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1446       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1447     }
1448 
1449     // Widen SrcTy to WideTy. This does not affect the result, but since the
1450     // user requested this size, it is probably better handled than SrcTy and
1451     // should reduce the total number of legalization artifacts
1452     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1453       SrcTy = WideTy;
1454       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1455     }
1456 
1457     // Theres no unmerge type to target. Directly extract the bits from the
1458     // source type
1459     unsigned DstSize = DstTy.getSizeInBits();
1460 
1461     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1462     for (int I = 1; I != NumDst; ++I) {
1463       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1464       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1465       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1466     }
1467 
1468     MI.eraseFromParent();
1469     return Legalized;
1470   }
1471 
1472   // Extend the source to a wider type.
1473   LLT LCMTy = getLCMType(SrcTy, WideTy);
1474 
1475   Register WideSrc = SrcReg;
1476   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1477     // TODO: If this is an integral address space, cast to integer and anyext.
1478     if (SrcTy.isPointer()) {
1479       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1480       return UnableToLegalize;
1481     }
1482 
1483     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1484   }
1485 
1486   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1487 
1488   // Create a sequence of unmerges to the original results. since we may have
1489   // widened the source, we will need to pad the results with dead defs to cover
1490   // the source register.
1491   // e.g. widen s16 to s32:
1492   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1493   //
1494   // =>
1495   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1496   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1497   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1498   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1499 
1500   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1501   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1502 
1503   for (int I = 0; I != NumUnmerge; ++I) {
1504     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1505 
1506     for (int J = 0; J != PartsPerUnmerge; ++J) {
1507       int Idx = I * PartsPerUnmerge + J;
1508       if (Idx < NumDst)
1509         MIB.addDef(MI.getOperand(Idx).getReg());
1510       else {
1511         // Create dead def for excess components.
1512         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1513       }
1514     }
1515 
1516     MIB.addUse(Unmerge.getReg(I));
1517   }
1518 
1519   MI.eraseFromParent();
1520   return Legalized;
1521 }
1522 
1523 LegalizerHelper::LegalizeResult
1524 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1525                                     LLT WideTy) {
1526   Register DstReg = MI.getOperand(0).getReg();
1527   Register SrcReg = MI.getOperand(1).getReg();
1528   LLT SrcTy = MRI.getType(SrcReg);
1529 
1530   LLT DstTy = MRI.getType(DstReg);
1531   unsigned Offset = MI.getOperand(2).getImm();
1532 
1533   if (TypeIdx == 0) {
1534     if (SrcTy.isVector() || DstTy.isVector())
1535       return UnableToLegalize;
1536 
1537     SrcOp Src(SrcReg);
1538     if (SrcTy.isPointer()) {
1539       // Extracts from pointers can be handled only if they are really just
1540       // simple integers.
1541       const DataLayout &DL = MIRBuilder.getDataLayout();
1542       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1543         return UnableToLegalize;
1544 
1545       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1546       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1547       SrcTy = SrcAsIntTy;
1548     }
1549 
1550     if (DstTy.isPointer())
1551       return UnableToLegalize;
1552 
1553     if (Offset == 0) {
1554       // Avoid a shift in the degenerate case.
1555       MIRBuilder.buildTrunc(DstReg,
1556                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1557       MI.eraseFromParent();
1558       return Legalized;
1559     }
1560 
1561     // Do a shift in the source type.
1562     LLT ShiftTy = SrcTy;
1563     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1564       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1565       ShiftTy = WideTy;
1566     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1567       return UnableToLegalize;
1568 
1569     auto LShr = MIRBuilder.buildLShr(
1570       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1571     MIRBuilder.buildTrunc(DstReg, LShr);
1572     MI.eraseFromParent();
1573     return Legalized;
1574   }
1575 
1576   if (SrcTy.isScalar()) {
1577     Observer.changingInstr(MI);
1578     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1579     Observer.changedInstr(MI);
1580     return Legalized;
1581   }
1582 
1583   if (!SrcTy.isVector())
1584     return UnableToLegalize;
1585 
1586   if (DstTy != SrcTy.getElementType())
1587     return UnableToLegalize;
1588 
1589   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1590     return UnableToLegalize;
1591 
1592   Observer.changingInstr(MI);
1593   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1594 
1595   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1596                           Offset);
1597   widenScalarDst(MI, WideTy.getScalarType(), 0);
1598   Observer.changedInstr(MI);
1599   return Legalized;
1600 }
1601 
1602 LegalizerHelper::LegalizeResult
1603 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1604                                    LLT WideTy) {
1605   if (TypeIdx != 0)
1606     return UnableToLegalize;
1607   Observer.changingInstr(MI);
1608   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1609   widenScalarDst(MI, WideTy);
1610   Observer.changedInstr(MI);
1611   return Legalized;
1612 }
1613 
1614 LegalizerHelper::LegalizeResult
1615 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1616   MIRBuilder.setInstrAndDebugLoc(MI);
1617 
1618   switch (MI.getOpcode()) {
1619   default:
1620     return UnableToLegalize;
1621   case TargetOpcode::G_EXTRACT:
1622     return widenScalarExtract(MI, TypeIdx, WideTy);
1623   case TargetOpcode::G_INSERT:
1624     return widenScalarInsert(MI, TypeIdx, WideTy);
1625   case TargetOpcode::G_MERGE_VALUES:
1626     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1627   case TargetOpcode::G_UNMERGE_VALUES:
1628     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1629   case TargetOpcode::G_UADDO:
1630   case TargetOpcode::G_USUBO: {
1631     if (TypeIdx == 1)
1632       return UnableToLegalize; // TODO
1633     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1634     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1635     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1636                           ? TargetOpcode::G_ADD
1637                           : TargetOpcode::G_SUB;
1638     // Do the arithmetic in the larger type.
1639     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1640     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1641     APInt Mask =
1642         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1643     auto AndOp = MIRBuilder.buildAnd(
1644         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1645     // There is no overflow if the AndOp is the same as NewOp.
1646     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1647     // Now trunc the NewOp to the original result.
1648     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1649     MI.eraseFromParent();
1650     return Legalized;
1651   }
1652   case TargetOpcode::G_CTTZ:
1653   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1654   case TargetOpcode::G_CTLZ:
1655   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1656   case TargetOpcode::G_CTPOP: {
1657     if (TypeIdx == 0) {
1658       Observer.changingInstr(MI);
1659       widenScalarDst(MI, WideTy, 0);
1660       Observer.changedInstr(MI);
1661       return Legalized;
1662     }
1663 
1664     Register SrcReg = MI.getOperand(1).getReg();
1665 
1666     // First ZEXT the input.
1667     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1668     LLT CurTy = MRI.getType(SrcReg);
1669     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1670       // The count is the same in the larger type except if the original
1671       // value was zero.  This can be handled by setting the bit just off
1672       // the top of the original type.
1673       auto TopBit =
1674           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1675       MIBSrc = MIRBuilder.buildOr(
1676         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1677     }
1678 
1679     // Perform the operation at the larger size.
1680     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1681     // This is already the correct result for CTPOP and CTTZs
1682     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1683         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1684       // The correct result is NewOp - (Difference in widety and current ty).
1685       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1686       MIBNewOp = MIRBuilder.buildSub(
1687           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1688     }
1689 
1690     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1691     MI.eraseFromParent();
1692     return Legalized;
1693   }
1694   case TargetOpcode::G_BSWAP: {
1695     Observer.changingInstr(MI);
1696     Register DstReg = MI.getOperand(0).getReg();
1697 
1698     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1699     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1700     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1701     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1702 
1703     MI.getOperand(0).setReg(DstExt);
1704 
1705     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1706 
1707     LLT Ty = MRI.getType(DstReg);
1708     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1709     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1710     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1711 
1712     MIRBuilder.buildTrunc(DstReg, ShrReg);
1713     Observer.changedInstr(MI);
1714     return Legalized;
1715   }
1716   case TargetOpcode::G_BITREVERSE: {
1717     Observer.changingInstr(MI);
1718 
1719     Register DstReg = MI.getOperand(0).getReg();
1720     LLT Ty = MRI.getType(DstReg);
1721     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1722 
1723     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     MI.getOperand(0).setReg(DstExt);
1726     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1727 
1728     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1729     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1730     MIRBuilder.buildTrunc(DstReg, Shift);
1731     Observer.changedInstr(MI);
1732     return Legalized;
1733   }
1734   case TargetOpcode::G_FREEZE:
1735     Observer.changingInstr(MI);
1736     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1737     widenScalarDst(MI, WideTy);
1738     Observer.changedInstr(MI);
1739     return Legalized;
1740 
1741   case TargetOpcode::G_ADD:
1742   case TargetOpcode::G_AND:
1743   case TargetOpcode::G_MUL:
1744   case TargetOpcode::G_OR:
1745   case TargetOpcode::G_XOR:
1746   case TargetOpcode::G_SUB:
1747     // Perform operation at larger width (any extension is fines here, high bits
1748     // don't affect the result) and then truncate the result back to the
1749     // original type.
1750     Observer.changingInstr(MI);
1751     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1752     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1753     widenScalarDst(MI, WideTy);
1754     Observer.changedInstr(MI);
1755     return Legalized;
1756 
1757   case TargetOpcode::G_SHL:
1758     Observer.changingInstr(MI);
1759 
1760     if (TypeIdx == 0) {
1761       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1762       widenScalarDst(MI, WideTy);
1763     } else {
1764       assert(TypeIdx == 1);
1765       // The "number of bits to shift" operand must preserve its value as an
1766       // unsigned integer:
1767       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1768     }
1769 
1770     Observer.changedInstr(MI);
1771     return Legalized;
1772 
1773   case TargetOpcode::G_SDIV:
1774   case TargetOpcode::G_SREM:
1775   case TargetOpcode::G_SMIN:
1776   case TargetOpcode::G_SMAX:
1777     Observer.changingInstr(MI);
1778     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1779     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1780     widenScalarDst(MI, WideTy);
1781     Observer.changedInstr(MI);
1782     return Legalized;
1783 
1784   case TargetOpcode::G_ASHR:
1785   case TargetOpcode::G_LSHR:
1786     Observer.changingInstr(MI);
1787 
1788     if (TypeIdx == 0) {
1789       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1790         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1791 
1792       widenScalarSrc(MI, WideTy, 1, CvtOp);
1793       widenScalarDst(MI, WideTy);
1794     } else {
1795       assert(TypeIdx == 1);
1796       // The "number of bits to shift" operand must preserve its value as an
1797       // unsigned integer:
1798       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1799     }
1800 
1801     Observer.changedInstr(MI);
1802     return Legalized;
1803   case TargetOpcode::G_UDIV:
1804   case TargetOpcode::G_UREM:
1805   case TargetOpcode::G_UMIN:
1806   case TargetOpcode::G_UMAX:
1807     Observer.changingInstr(MI);
1808     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1809     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1810     widenScalarDst(MI, WideTy);
1811     Observer.changedInstr(MI);
1812     return Legalized;
1813 
1814   case TargetOpcode::G_SELECT:
1815     Observer.changingInstr(MI);
1816     if (TypeIdx == 0) {
1817       // Perform operation at larger width (any extension is fine here, high
1818       // bits don't affect the result) and then truncate the result back to the
1819       // original type.
1820       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1821       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1822       widenScalarDst(MI, WideTy);
1823     } else {
1824       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1825       // Explicit extension is required here since high bits affect the result.
1826       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1827     }
1828     Observer.changedInstr(MI);
1829     return Legalized;
1830 
1831   case TargetOpcode::G_FPTOSI:
1832   case TargetOpcode::G_FPTOUI:
1833     Observer.changingInstr(MI);
1834 
1835     if (TypeIdx == 0)
1836       widenScalarDst(MI, WideTy);
1837     else
1838       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1839 
1840     Observer.changedInstr(MI);
1841     return Legalized;
1842   case TargetOpcode::G_SITOFP:
1843     if (TypeIdx != 1)
1844       return UnableToLegalize;
1845     Observer.changingInstr(MI);
1846     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1847     Observer.changedInstr(MI);
1848     return Legalized;
1849 
1850   case TargetOpcode::G_UITOFP:
1851     if (TypeIdx != 1)
1852       return UnableToLegalize;
1853     Observer.changingInstr(MI);
1854     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1855     Observer.changedInstr(MI);
1856     return Legalized;
1857 
1858   case TargetOpcode::G_LOAD:
1859   case TargetOpcode::G_SEXTLOAD:
1860   case TargetOpcode::G_ZEXTLOAD:
1861     Observer.changingInstr(MI);
1862     widenScalarDst(MI, WideTy);
1863     Observer.changedInstr(MI);
1864     return Legalized;
1865 
1866   case TargetOpcode::G_STORE: {
1867     if (TypeIdx != 0)
1868       return UnableToLegalize;
1869 
1870     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1871     if (!isPowerOf2_32(Ty.getSizeInBits()))
1872       return UnableToLegalize;
1873 
1874     Observer.changingInstr(MI);
1875 
1876     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1877       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1878     widenScalarSrc(MI, WideTy, 0, ExtType);
1879 
1880     Observer.changedInstr(MI);
1881     return Legalized;
1882   }
1883   case TargetOpcode::G_CONSTANT: {
1884     MachineOperand &SrcMO = MI.getOperand(1);
1885     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1886     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1887         MRI.getType(MI.getOperand(0).getReg()));
1888     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1889             ExtOpc == TargetOpcode::G_ANYEXT) &&
1890            "Illegal Extend");
1891     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1892     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1893                            ? SrcVal.sext(WideTy.getSizeInBits())
1894                            : SrcVal.zext(WideTy.getSizeInBits());
1895     Observer.changingInstr(MI);
1896     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1897 
1898     widenScalarDst(MI, WideTy);
1899     Observer.changedInstr(MI);
1900     return Legalized;
1901   }
1902   case TargetOpcode::G_FCONSTANT: {
1903     MachineOperand &SrcMO = MI.getOperand(1);
1904     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1905     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1906     bool LosesInfo;
1907     switch (WideTy.getSizeInBits()) {
1908     case 32:
1909       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1910                   &LosesInfo);
1911       break;
1912     case 64:
1913       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1914                   &LosesInfo);
1915       break;
1916     default:
1917       return UnableToLegalize;
1918     }
1919 
1920     assert(!LosesInfo && "extend should always be lossless");
1921 
1922     Observer.changingInstr(MI);
1923     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1924 
1925     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1926     Observer.changedInstr(MI);
1927     return Legalized;
1928   }
1929   case TargetOpcode::G_IMPLICIT_DEF: {
1930     Observer.changingInstr(MI);
1931     widenScalarDst(MI, WideTy);
1932     Observer.changedInstr(MI);
1933     return Legalized;
1934   }
1935   case TargetOpcode::G_BRCOND:
1936     Observer.changingInstr(MI);
1937     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1938     Observer.changedInstr(MI);
1939     return Legalized;
1940 
1941   case TargetOpcode::G_FCMP:
1942     Observer.changingInstr(MI);
1943     if (TypeIdx == 0)
1944       widenScalarDst(MI, WideTy);
1945     else {
1946       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1947       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1948     }
1949     Observer.changedInstr(MI);
1950     return Legalized;
1951 
1952   case TargetOpcode::G_ICMP:
1953     Observer.changingInstr(MI);
1954     if (TypeIdx == 0)
1955       widenScalarDst(MI, WideTy);
1956     else {
1957       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1958                                MI.getOperand(1).getPredicate()))
1959                                ? TargetOpcode::G_SEXT
1960                                : TargetOpcode::G_ZEXT;
1961       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1962       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1963     }
1964     Observer.changedInstr(MI);
1965     return Legalized;
1966 
1967   case TargetOpcode::G_PTR_ADD:
1968     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1969     Observer.changingInstr(MI);
1970     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1971     Observer.changedInstr(MI);
1972     return Legalized;
1973 
1974   case TargetOpcode::G_PHI: {
1975     assert(TypeIdx == 0 && "Expecting only Idx 0");
1976 
1977     Observer.changingInstr(MI);
1978     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1979       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1980       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1981       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1982     }
1983 
1984     MachineBasicBlock &MBB = *MI.getParent();
1985     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1986     widenScalarDst(MI, WideTy);
1987     Observer.changedInstr(MI);
1988     return Legalized;
1989   }
1990   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1991     if (TypeIdx == 0) {
1992       Register VecReg = MI.getOperand(1).getReg();
1993       LLT VecTy = MRI.getType(VecReg);
1994       Observer.changingInstr(MI);
1995 
1996       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1997                                      WideTy.getSizeInBits()),
1998                      1, TargetOpcode::G_SEXT);
1999 
2000       widenScalarDst(MI, WideTy, 0);
2001       Observer.changedInstr(MI);
2002       return Legalized;
2003     }
2004 
2005     if (TypeIdx != 2)
2006       return UnableToLegalize;
2007     Observer.changingInstr(MI);
2008     // TODO: Probably should be zext
2009     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2010     Observer.changedInstr(MI);
2011     return Legalized;
2012   }
2013   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2014     if (TypeIdx == 1) {
2015       Observer.changingInstr(MI);
2016 
2017       Register VecReg = MI.getOperand(1).getReg();
2018       LLT VecTy = MRI.getType(VecReg);
2019       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2020 
2021       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2022       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2023       widenScalarDst(MI, WideVecTy, 0);
2024       Observer.changedInstr(MI);
2025       return Legalized;
2026     }
2027 
2028     if (TypeIdx == 2) {
2029       Observer.changingInstr(MI);
2030       // TODO: Probably should be zext
2031       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2032       Observer.changedInstr(MI);
2033     }
2034 
2035     return Legalized;
2036   }
2037   case TargetOpcode::G_FADD:
2038   case TargetOpcode::G_FMUL:
2039   case TargetOpcode::G_FSUB:
2040   case TargetOpcode::G_FMA:
2041   case TargetOpcode::G_FMAD:
2042   case TargetOpcode::G_FNEG:
2043   case TargetOpcode::G_FABS:
2044   case TargetOpcode::G_FCANONICALIZE:
2045   case TargetOpcode::G_FMINNUM:
2046   case TargetOpcode::G_FMAXNUM:
2047   case TargetOpcode::G_FMINNUM_IEEE:
2048   case TargetOpcode::G_FMAXNUM_IEEE:
2049   case TargetOpcode::G_FMINIMUM:
2050   case TargetOpcode::G_FMAXIMUM:
2051   case TargetOpcode::G_FDIV:
2052   case TargetOpcode::G_FREM:
2053   case TargetOpcode::G_FCEIL:
2054   case TargetOpcode::G_FFLOOR:
2055   case TargetOpcode::G_FCOS:
2056   case TargetOpcode::G_FSIN:
2057   case TargetOpcode::G_FLOG10:
2058   case TargetOpcode::G_FLOG:
2059   case TargetOpcode::G_FLOG2:
2060   case TargetOpcode::G_FRINT:
2061   case TargetOpcode::G_FNEARBYINT:
2062   case TargetOpcode::G_FSQRT:
2063   case TargetOpcode::G_FEXP:
2064   case TargetOpcode::G_FEXP2:
2065   case TargetOpcode::G_FPOW:
2066   case TargetOpcode::G_INTRINSIC_TRUNC:
2067   case TargetOpcode::G_INTRINSIC_ROUND:
2068     assert(TypeIdx == 0);
2069     Observer.changingInstr(MI);
2070 
2071     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2072       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2073 
2074     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   case TargetOpcode::G_INTTOPTR:
2078     if (TypeIdx != 1)
2079       return UnableToLegalize;
2080 
2081     Observer.changingInstr(MI);
2082     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2083     Observer.changedInstr(MI);
2084     return Legalized;
2085   case TargetOpcode::G_PTRTOINT:
2086     if (TypeIdx != 0)
2087       return UnableToLegalize;
2088 
2089     Observer.changingInstr(MI);
2090     widenScalarDst(MI, WideTy, 0);
2091     Observer.changedInstr(MI);
2092     return Legalized;
2093   case TargetOpcode::G_BUILD_VECTOR: {
2094     Observer.changingInstr(MI);
2095 
2096     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2097     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2098       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2099 
2100     // Avoid changing the result vector type if the source element type was
2101     // requested.
2102     if (TypeIdx == 1) {
2103       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2104       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2105     } else {
2106       widenScalarDst(MI, WideTy, 0);
2107     }
2108 
2109     Observer.changedInstr(MI);
2110     return Legalized;
2111   }
2112   case TargetOpcode::G_SEXT_INREG:
2113     if (TypeIdx != 0)
2114       return UnableToLegalize;
2115 
2116     Observer.changingInstr(MI);
2117     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2118     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121   }
2122 }
2123 
2124 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2125                              MachineIRBuilder &B, Register Src, LLT Ty) {
2126   auto Unmerge = B.buildUnmerge(Ty, Src);
2127   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2128     Pieces.push_back(Unmerge.getReg(I));
2129 }
2130 
2131 LegalizerHelper::LegalizeResult
2132 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2133   Register Dst = MI.getOperand(0).getReg();
2134   Register Src = MI.getOperand(1).getReg();
2135   LLT DstTy = MRI.getType(Dst);
2136   LLT SrcTy = MRI.getType(Src);
2137 
2138   if (SrcTy.isVector() && !DstTy.isVector()) {
2139     SmallVector<Register, 8> SrcRegs;
2140     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2141     MIRBuilder.buildMerge(Dst, SrcRegs);
2142     MI.eraseFromParent();
2143     return Legalized;
2144   }
2145 
2146   if (DstTy.isVector() && !SrcTy.isVector()) {
2147     SmallVector<Register, 8> SrcRegs;
2148     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2149     MIRBuilder.buildMerge(Dst, SrcRegs);
2150     MI.eraseFromParent();
2151     return Legalized;
2152   }
2153 
2154   return UnableToLegalize;
2155 }
2156 
2157 LegalizerHelper::LegalizeResult
2158 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2159   MIRBuilder.setInstr(MI);
2160 
2161   switch (MI.getOpcode()) {
2162   case TargetOpcode::G_LOAD: {
2163     if (TypeIdx != 0)
2164       return UnableToLegalize;
2165 
2166     Observer.changingInstr(MI);
2167     bitcastDst(MI, CastTy, 0);
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170   }
2171   case TargetOpcode::G_STORE: {
2172     if (TypeIdx != 0)
2173       return UnableToLegalize;
2174 
2175     Observer.changingInstr(MI);
2176     bitcastSrc(MI, CastTy, 0);
2177     Observer.changedInstr(MI);
2178     return Legalized;
2179   }
2180   case TargetOpcode::G_SELECT: {
2181     if (TypeIdx != 0)
2182       return UnableToLegalize;
2183 
2184     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2185       LLVM_DEBUG(
2186           dbgs() << "bitcast action not implemented for vector select\n");
2187       return UnableToLegalize;
2188     }
2189 
2190     Observer.changingInstr(MI);
2191     bitcastSrc(MI, CastTy, 2);
2192     bitcastSrc(MI, CastTy, 3);
2193     bitcastDst(MI, CastTy, 0);
2194     Observer.changedInstr(MI);
2195     return Legalized;
2196   }
2197   case TargetOpcode::G_AND:
2198   case TargetOpcode::G_OR:
2199   case TargetOpcode::G_XOR: {
2200     Observer.changingInstr(MI);
2201     bitcastSrc(MI, CastTy, 1);
2202     bitcastSrc(MI, CastTy, 2);
2203     bitcastDst(MI, CastTy, 0);
2204     Observer.changedInstr(MI);
2205     return Legalized;
2206   }
2207   default:
2208     return UnableToLegalize;
2209   }
2210 }
2211 
2212 LegalizerHelper::LegalizeResult
2213 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2214   using namespace TargetOpcode;
2215   MIRBuilder.setInstrAndDebugLoc(MI);
2216 
2217   switch(MI.getOpcode()) {
2218   default:
2219     return UnableToLegalize;
2220   case TargetOpcode::G_BITCAST:
2221     return lowerBitcast(MI);
2222   case TargetOpcode::G_SREM:
2223   case TargetOpcode::G_UREM: {
2224     auto Quot =
2225         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2226                               {MI.getOperand(1), MI.getOperand(2)});
2227 
2228     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2229     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2230     MI.eraseFromParent();
2231     return Legalized;
2232   }
2233   case TargetOpcode::G_SADDO:
2234   case TargetOpcode::G_SSUBO:
2235     return lowerSADDO_SSUBO(MI);
2236   case TargetOpcode::G_SMULO:
2237   case TargetOpcode::G_UMULO: {
2238     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2239     // result.
2240     Register Res = MI.getOperand(0).getReg();
2241     Register Overflow = MI.getOperand(1).getReg();
2242     Register LHS = MI.getOperand(2).getReg();
2243     Register RHS = MI.getOperand(3).getReg();
2244 
2245     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2246                           ? TargetOpcode::G_SMULH
2247                           : TargetOpcode::G_UMULH;
2248 
2249     Observer.changingInstr(MI);
2250     const auto &TII = MIRBuilder.getTII();
2251     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2252     MI.RemoveOperand(1);
2253     Observer.changedInstr(MI);
2254 
2255     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2256 
2257     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2258     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2259 
2260     // For *signed* multiply, overflow is detected by checking:
2261     // (hi != (lo >> bitwidth-1))
2262     if (Opcode == TargetOpcode::G_SMULH) {
2263       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2264       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2265       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2266     } else {
2267       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2268     }
2269     return Legalized;
2270   }
2271   case TargetOpcode::G_FNEG: {
2272     // TODO: Handle vector types once we are able to
2273     // represent them.
2274     if (Ty.isVector())
2275       return UnableToLegalize;
2276     Register Res = MI.getOperand(0).getReg();
2277     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2278     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2279     if (!ZeroTy)
2280       return UnableToLegalize;
2281     ConstantFP &ZeroForNegation =
2282         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2283     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2284     Register SubByReg = MI.getOperand(1).getReg();
2285     Register ZeroReg = Zero.getReg(0);
2286     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2287     MI.eraseFromParent();
2288     return Legalized;
2289   }
2290   case TargetOpcode::G_FSUB: {
2291     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2292     // First, check if G_FNEG is marked as Lower. If so, we may
2293     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2294     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2295       return UnableToLegalize;
2296     Register Res = MI.getOperand(0).getReg();
2297     Register LHS = MI.getOperand(1).getReg();
2298     Register RHS = MI.getOperand(2).getReg();
2299     Register Neg = MRI.createGenericVirtualRegister(Ty);
2300     MIRBuilder.buildFNeg(Neg, RHS);
2301     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2302     MI.eraseFromParent();
2303     return Legalized;
2304   }
2305   case TargetOpcode::G_FMAD:
2306     return lowerFMad(MI);
2307   case TargetOpcode::G_FFLOOR:
2308     return lowerFFloor(MI);
2309   case TargetOpcode::G_INTRINSIC_ROUND:
2310     return lowerIntrinsicRound(MI);
2311   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2312     Register OldValRes = MI.getOperand(0).getReg();
2313     Register SuccessRes = MI.getOperand(1).getReg();
2314     Register Addr = MI.getOperand(2).getReg();
2315     Register CmpVal = MI.getOperand(3).getReg();
2316     Register NewVal = MI.getOperand(4).getReg();
2317     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2318                                   **MI.memoperands_begin());
2319     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2320     MI.eraseFromParent();
2321     return Legalized;
2322   }
2323   case TargetOpcode::G_LOAD:
2324   case TargetOpcode::G_SEXTLOAD:
2325   case TargetOpcode::G_ZEXTLOAD: {
2326     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2327     Register DstReg = MI.getOperand(0).getReg();
2328     Register PtrReg = MI.getOperand(1).getReg();
2329     LLT DstTy = MRI.getType(DstReg);
2330     auto &MMO = **MI.memoperands_begin();
2331 
2332     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2333       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2334         // This load needs splitting into power of 2 sized loads.
2335         if (DstTy.isVector())
2336           return UnableToLegalize;
2337         if (isPowerOf2_32(DstTy.getSizeInBits()))
2338           return UnableToLegalize; // Don't know what we're being asked to do.
2339 
2340         // Our strategy here is to generate anyextending loads for the smaller
2341         // types up to next power-2 result type, and then combine the two larger
2342         // result values together, before truncating back down to the non-pow-2
2343         // type.
2344         // E.g. v1 = i24 load =>
2345         // v2 = i32 zextload (2 byte)
2346         // v3 = i32 load (1 byte)
2347         // v4 = i32 shl v3, 16
2348         // v5 = i32 or v4, v2
2349         // v1 = i24 trunc v5
2350         // By doing this we generate the correct truncate which should get
2351         // combined away as an artifact with a matching extend.
2352         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2353         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2354 
2355         MachineFunction &MF = MIRBuilder.getMF();
2356         MachineMemOperand *LargeMMO =
2357             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2358         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2359             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2360 
2361         LLT PtrTy = MRI.getType(PtrReg);
2362         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2363         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2364         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2365         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2366         auto LargeLoad = MIRBuilder.buildLoadInstr(
2367             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2368 
2369         auto OffsetCst = MIRBuilder.buildConstant(
2370             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2371         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2372         auto SmallPtr =
2373             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2374         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2375                                               *SmallMMO);
2376 
2377         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2378         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2379         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2380         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2381         MI.eraseFromParent();
2382         return Legalized;
2383       }
2384       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2385       MI.eraseFromParent();
2386       return Legalized;
2387     }
2388 
2389     if (DstTy.isScalar()) {
2390       Register TmpReg =
2391           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2392       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2393       switch (MI.getOpcode()) {
2394       default:
2395         llvm_unreachable("Unexpected opcode");
2396       case TargetOpcode::G_LOAD:
2397         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2398         break;
2399       case TargetOpcode::G_SEXTLOAD:
2400         MIRBuilder.buildSExt(DstReg, TmpReg);
2401         break;
2402       case TargetOpcode::G_ZEXTLOAD:
2403         MIRBuilder.buildZExt(DstReg, TmpReg);
2404         break;
2405       }
2406       MI.eraseFromParent();
2407       return Legalized;
2408     }
2409 
2410     return UnableToLegalize;
2411   }
2412   case TargetOpcode::G_STORE: {
2413     // Lower a non-power of 2 store into multiple pow-2 stores.
2414     // E.g. split an i24 store into an i16 store + i8 store.
2415     // We do this by first extending the stored value to the next largest power
2416     // of 2 type, and then using truncating stores to store the components.
2417     // By doing this, likewise with G_LOAD, generate an extend that can be
2418     // artifact-combined away instead of leaving behind extracts.
2419     Register SrcReg = MI.getOperand(0).getReg();
2420     Register PtrReg = MI.getOperand(1).getReg();
2421     LLT SrcTy = MRI.getType(SrcReg);
2422     MachineMemOperand &MMO = **MI.memoperands_begin();
2423     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2424       return UnableToLegalize;
2425     if (SrcTy.isVector())
2426       return UnableToLegalize;
2427     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2428       return UnableToLegalize; // Don't know what we're being asked to do.
2429 
2430     // Extend to the next pow-2.
2431     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2432     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2433 
2434     // Obtain the smaller value by shifting away the larger value.
2435     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2436     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2437     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2438     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2439 
2440     // Generate the PtrAdd and truncating stores.
2441     LLT PtrTy = MRI.getType(PtrReg);
2442     auto OffsetCst = MIRBuilder.buildConstant(
2443             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2444     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2445     auto SmallPtr =
2446         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2447 
2448     MachineFunction &MF = MIRBuilder.getMF();
2449     MachineMemOperand *LargeMMO =
2450         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2451     MachineMemOperand *SmallMMO =
2452         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2453     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2454     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2455     MI.eraseFromParent();
2456     return Legalized;
2457   }
2458   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2459   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2460   case TargetOpcode::G_CTLZ:
2461   case TargetOpcode::G_CTTZ:
2462   case TargetOpcode::G_CTPOP:
2463     return lowerBitCount(MI, TypeIdx, Ty);
2464   case G_UADDO: {
2465     Register Res = MI.getOperand(0).getReg();
2466     Register CarryOut = MI.getOperand(1).getReg();
2467     Register LHS = MI.getOperand(2).getReg();
2468     Register RHS = MI.getOperand(3).getReg();
2469 
2470     MIRBuilder.buildAdd(Res, LHS, RHS);
2471     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2472 
2473     MI.eraseFromParent();
2474     return Legalized;
2475   }
2476   case G_UADDE: {
2477     Register Res = MI.getOperand(0).getReg();
2478     Register CarryOut = MI.getOperand(1).getReg();
2479     Register LHS = MI.getOperand(2).getReg();
2480     Register RHS = MI.getOperand(3).getReg();
2481     Register CarryIn = MI.getOperand(4).getReg();
2482     LLT Ty = MRI.getType(Res);
2483 
2484     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2485     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2486     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2487     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2488 
2489     MI.eraseFromParent();
2490     return Legalized;
2491   }
2492   case G_USUBO: {
2493     Register Res = MI.getOperand(0).getReg();
2494     Register BorrowOut = MI.getOperand(1).getReg();
2495     Register LHS = MI.getOperand(2).getReg();
2496     Register RHS = MI.getOperand(3).getReg();
2497 
2498     MIRBuilder.buildSub(Res, LHS, RHS);
2499     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2500 
2501     MI.eraseFromParent();
2502     return Legalized;
2503   }
2504   case G_USUBE: {
2505     Register Res = MI.getOperand(0).getReg();
2506     Register BorrowOut = MI.getOperand(1).getReg();
2507     Register LHS = MI.getOperand(2).getReg();
2508     Register RHS = MI.getOperand(3).getReg();
2509     Register BorrowIn = MI.getOperand(4).getReg();
2510     const LLT CondTy = MRI.getType(BorrowOut);
2511     const LLT Ty = MRI.getType(Res);
2512 
2513     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2514     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2515     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2516 
2517     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2518     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2519     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2520 
2521     MI.eraseFromParent();
2522     return Legalized;
2523   }
2524   case G_UITOFP:
2525     return lowerUITOFP(MI, TypeIdx, Ty);
2526   case G_SITOFP:
2527     return lowerSITOFP(MI, TypeIdx, Ty);
2528   case G_FPTOUI:
2529     return lowerFPTOUI(MI, TypeIdx, Ty);
2530   case G_FPTOSI:
2531     return lowerFPTOSI(MI);
2532   case G_FPTRUNC:
2533     return lowerFPTRUNC(MI, TypeIdx, Ty);
2534   case G_SMIN:
2535   case G_SMAX:
2536   case G_UMIN:
2537   case G_UMAX:
2538     return lowerMinMax(MI, TypeIdx, Ty);
2539   case G_FCOPYSIGN:
2540     return lowerFCopySign(MI, TypeIdx, Ty);
2541   case G_FMINNUM:
2542   case G_FMAXNUM:
2543     return lowerFMinNumMaxNum(MI);
2544   case G_UNMERGE_VALUES:
2545     return lowerUnmergeValues(MI);
2546   case TargetOpcode::G_SEXT_INREG: {
2547     assert(MI.getOperand(2).isImm() && "Expected immediate");
2548     int64_t SizeInBits = MI.getOperand(2).getImm();
2549 
2550     Register DstReg = MI.getOperand(0).getReg();
2551     Register SrcReg = MI.getOperand(1).getReg();
2552     LLT DstTy = MRI.getType(DstReg);
2553     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2554 
2555     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2556     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2557     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2558     MI.eraseFromParent();
2559     return Legalized;
2560   }
2561   case G_SHUFFLE_VECTOR:
2562     return lowerShuffleVector(MI);
2563   case G_DYN_STACKALLOC:
2564     return lowerDynStackAlloc(MI);
2565   case G_EXTRACT:
2566     return lowerExtract(MI);
2567   case G_INSERT:
2568     return lowerInsert(MI);
2569   case G_BSWAP:
2570     return lowerBswap(MI);
2571   case G_BITREVERSE:
2572     return lowerBitreverse(MI);
2573   case G_READ_REGISTER:
2574   case G_WRITE_REGISTER:
2575     return lowerReadWriteRegister(MI);
2576   }
2577 }
2578 
2579 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2580     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2581   SmallVector<Register, 2> DstRegs;
2582 
2583   unsigned NarrowSize = NarrowTy.getSizeInBits();
2584   Register DstReg = MI.getOperand(0).getReg();
2585   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2586   int NumParts = Size / NarrowSize;
2587   // FIXME: Don't know how to handle the situation where the small vectors
2588   // aren't all the same size yet.
2589   if (Size % NarrowSize != 0)
2590     return UnableToLegalize;
2591 
2592   for (int i = 0; i < NumParts; ++i) {
2593     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2594     MIRBuilder.buildUndef(TmpReg);
2595     DstRegs.push_back(TmpReg);
2596   }
2597 
2598   if (NarrowTy.isVector())
2599     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2600   else
2601     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2602 
2603   MI.eraseFromParent();
2604   return Legalized;
2605 }
2606 
2607 // Handle splitting vector operations which need to have the same number of
2608 // elements in each type index, but each type index may have a different element
2609 // type.
2610 //
2611 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2612 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2613 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2614 //
2615 // Also handles some irregular breakdown cases, e.g.
2616 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2617 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2618 //             s64 = G_SHL s64, s32
2619 LegalizerHelper::LegalizeResult
2620 LegalizerHelper::fewerElementsVectorMultiEltType(
2621   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2622   if (TypeIdx != 0)
2623     return UnableToLegalize;
2624 
2625   const LLT NarrowTy0 = NarrowTyArg;
2626   const unsigned NewNumElts =
2627       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2628 
2629   const Register DstReg = MI.getOperand(0).getReg();
2630   LLT DstTy = MRI.getType(DstReg);
2631   LLT LeftoverTy0;
2632 
2633   // All of the operands need to have the same number of elements, so if we can
2634   // determine a type breakdown for the result type, we can for all of the
2635   // source types.
2636   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2637   if (NumParts < 0)
2638     return UnableToLegalize;
2639 
2640   SmallVector<MachineInstrBuilder, 4> NewInsts;
2641 
2642   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2643   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2644 
2645   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2646     LLT LeftoverTy;
2647     Register SrcReg = MI.getOperand(I).getReg();
2648     LLT SrcTyI = MRI.getType(SrcReg);
2649     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2650     LLT LeftoverTyI;
2651 
2652     // Split this operand into the requested typed registers, and any leftover
2653     // required to reproduce the original type.
2654     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2655                       LeftoverRegs))
2656       return UnableToLegalize;
2657 
2658     if (I == 1) {
2659       // For the first operand, create an instruction for each part and setup
2660       // the result.
2661       for (Register PartReg : PartRegs) {
2662         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2663         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2664                                .addDef(PartDstReg)
2665                                .addUse(PartReg));
2666         DstRegs.push_back(PartDstReg);
2667       }
2668 
2669       for (Register LeftoverReg : LeftoverRegs) {
2670         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2671         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2672                                .addDef(PartDstReg)
2673                                .addUse(LeftoverReg));
2674         LeftoverDstRegs.push_back(PartDstReg);
2675       }
2676     } else {
2677       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2678 
2679       // Add the newly created operand splits to the existing instructions. The
2680       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2681       // pieces.
2682       unsigned InstCount = 0;
2683       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2684         NewInsts[InstCount++].addUse(PartRegs[J]);
2685       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2686         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2687     }
2688 
2689     PartRegs.clear();
2690     LeftoverRegs.clear();
2691   }
2692 
2693   // Insert the newly built operations and rebuild the result register.
2694   for (auto &MIB : NewInsts)
2695     MIRBuilder.insertInstr(MIB);
2696 
2697   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2698 
2699   MI.eraseFromParent();
2700   return Legalized;
2701 }
2702 
2703 LegalizerHelper::LegalizeResult
2704 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2705                                           LLT NarrowTy) {
2706   if (TypeIdx != 0)
2707     return UnableToLegalize;
2708 
2709   Register DstReg = MI.getOperand(0).getReg();
2710   Register SrcReg = MI.getOperand(1).getReg();
2711   LLT DstTy = MRI.getType(DstReg);
2712   LLT SrcTy = MRI.getType(SrcReg);
2713 
2714   LLT NarrowTy0 = NarrowTy;
2715   LLT NarrowTy1;
2716   unsigned NumParts;
2717 
2718   if (NarrowTy.isVector()) {
2719     // Uneven breakdown not handled.
2720     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2721     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2722       return UnableToLegalize;
2723 
2724     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2725   } else {
2726     NumParts = DstTy.getNumElements();
2727     NarrowTy1 = SrcTy.getElementType();
2728   }
2729 
2730   SmallVector<Register, 4> SrcRegs, DstRegs;
2731   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2732 
2733   for (unsigned I = 0; I < NumParts; ++I) {
2734     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2735     MachineInstr *NewInst =
2736         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2737 
2738     NewInst->setFlags(MI.getFlags());
2739     DstRegs.push_back(DstReg);
2740   }
2741 
2742   if (NarrowTy.isVector())
2743     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2744   else
2745     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2746 
2747   MI.eraseFromParent();
2748   return Legalized;
2749 }
2750 
2751 LegalizerHelper::LegalizeResult
2752 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2753                                         LLT NarrowTy) {
2754   Register DstReg = MI.getOperand(0).getReg();
2755   Register Src0Reg = MI.getOperand(2).getReg();
2756   LLT DstTy = MRI.getType(DstReg);
2757   LLT SrcTy = MRI.getType(Src0Reg);
2758 
2759   unsigned NumParts;
2760   LLT NarrowTy0, NarrowTy1;
2761 
2762   if (TypeIdx == 0) {
2763     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2764     unsigned OldElts = DstTy.getNumElements();
2765 
2766     NarrowTy0 = NarrowTy;
2767     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2768     NarrowTy1 = NarrowTy.isVector() ?
2769       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2770       SrcTy.getElementType();
2771 
2772   } else {
2773     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2774     unsigned OldElts = SrcTy.getNumElements();
2775 
2776     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2777       NarrowTy.getNumElements();
2778     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2779                             DstTy.getScalarSizeInBits());
2780     NarrowTy1 = NarrowTy;
2781   }
2782 
2783   // FIXME: Don't know how to handle the situation where the small vectors
2784   // aren't all the same size yet.
2785   if (NarrowTy1.isVector() &&
2786       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2787     return UnableToLegalize;
2788 
2789   CmpInst::Predicate Pred
2790     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2791 
2792   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2793   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2794   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2795 
2796   for (unsigned I = 0; I < NumParts; ++I) {
2797     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2798     DstRegs.push_back(DstReg);
2799 
2800     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2801       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2802     else {
2803       MachineInstr *NewCmp
2804         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2805       NewCmp->setFlags(MI.getFlags());
2806     }
2807   }
2808 
2809   if (NarrowTy1.isVector())
2810     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2811   else
2812     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2813 
2814   MI.eraseFromParent();
2815   return Legalized;
2816 }
2817 
2818 LegalizerHelper::LegalizeResult
2819 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2820                                            LLT NarrowTy) {
2821   Register DstReg = MI.getOperand(0).getReg();
2822   Register CondReg = MI.getOperand(1).getReg();
2823 
2824   unsigned NumParts = 0;
2825   LLT NarrowTy0, NarrowTy1;
2826 
2827   LLT DstTy = MRI.getType(DstReg);
2828   LLT CondTy = MRI.getType(CondReg);
2829   unsigned Size = DstTy.getSizeInBits();
2830 
2831   assert(TypeIdx == 0 || CondTy.isVector());
2832 
2833   if (TypeIdx == 0) {
2834     NarrowTy0 = NarrowTy;
2835     NarrowTy1 = CondTy;
2836 
2837     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2838     // FIXME: Don't know how to handle the situation where the small vectors
2839     // aren't all the same size yet.
2840     if (Size % NarrowSize != 0)
2841       return UnableToLegalize;
2842 
2843     NumParts = Size / NarrowSize;
2844 
2845     // Need to break down the condition type
2846     if (CondTy.isVector()) {
2847       if (CondTy.getNumElements() == NumParts)
2848         NarrowTy1 = CondTy.getElementType();
2849       else
2850         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2851                                 CondTy.getScalarSizeInBits());
2852     }
2853   } else {
2854     NumParts = CondTy.getNumElements();
2855     if (NarrowTy.isVector()) {
2856       // TODO: Handle uneven breakdown.
2857       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2858         return UnableToLegalize;
2859 
2860       return UnableToLegalize;
2861     } else {
2862       NarrowTy0 = DstTy.getElementType();
2863       NarrowTy1 = NarrowTy;
2864     }
2865   }
2866 
2867   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2868   if (CondTy.isVector())
2869     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2870 
2871   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2872   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2873 
2874   for (unsigned i = 0; i < NumParts; ++i) {
2875     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2876     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2877                            Src1Regs[i], Src2Regs[i]);
2878     DstRegs.push_back(DstReg);
2879   }
2880 
2881   if (NarrowTy0.isVector())
2882     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2883   else
2884     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2885 
2886   MI.eraseFromParent();
2887   return Legalized;
2888 }
2889 
2890 LegalizerHelper::LegalizeResult
2891 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2892                                         LLT NarrowTy) {
2893   const Register DstReg = MI.getOperand(0).getReg();
2894   LLT PhiTy = MRI.getType(DstReg);
2895   LLT LeftoverTy;
2896 
2897   // All of the operands need to have the same number of elements, so if we can
2898   // determine a type breakdown for the result type, we can for all of the
2899   // source types.
2900   int NumParts, NumLeftover;
2901   std::tie(NumParts, NumLeftover)
2902     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2903   if (NumParts < 0)
2904     return UnableToLegalize;
2905 
2906   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2907   SmallVector<MachineInstrBuilder, 4> NewInsts;
2908 
2909   const int TotalNumParts = NumParts + NumLeftover;
2910 
2911   // Insert the new phis in the result block first.
2912   for (int I = 0; I != TotalNumParts; ++I) {
2913     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2914     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2915     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2916                        .addDef(PartDstReg));
2917     if (I < NumParts)
2918       DstRegs.push_back(PartDstReg);
2919     else
2920       LeftoverDstRegs.push_back(PartDstReg);
2921   }
2922 
2923   MachineBasicBlock *MBB = MI.getParent();
2924   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2925   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2926 
2927   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2928 
2929   // Insert code to extract the incoming values in each predecessor block.
2930   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2931     PartRegs.clear();
2932     LeftoverRegs.clear();
2933 
2934     Register SrcReg = MI.getOperand(I).getReg();
2935     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2936     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2937 
2938     LLT Unused;
2939     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2940                       LeftoverRegs))
2941       return UnableToLegalize;
2942 
2943     // Add the newly created operand splits to the existing instructions. The
2944     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2945     // pieces.
2946     for (int J = 0; J != TotalNumParts; ++J) {
2947       MachineInstrBuilder MIB = NewInsts[J];
2948       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2949       MIB.addMBB(&OpMBB);
2950     }
2951   }
2952 
2953   MI.eraseFromParent();
2954   return Legalized;
2955 }
2956 
2957 LegalizerHelper::LegalizeResult
2958 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2959                                                   unsigned TypeIdx,
2960                                                   LLT NarrowTy) {
2961   if (TypeIdx != 1)
2962     return UnableToLegalize;
2963 
2964   const int NumDst = MI.getNumOperands() - 1;
2965   const Register SrcReg = MI.getOperand(NumDst).getReg();
2966   LLT SrcTy = MRI.getType(SrcReg);
2967 
2968   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2969 
2970   // TODO: Create sequence of extracts.
2971   if (DstTy == NarrowTy)
2972     return UnableToLegalize;
2973 
2974   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2975   if (DstTy == GCDTy) {
2976     // This would just be a copy of the same unmerge.
2977     // TODO: Create extracts, pad with undef and create intermediate merges.
2978     return UnableToLegalize;
2979   }
2980 
2981   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2982   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2983   const int PartsPerUnmerge = NumDst / NumUnmerge;
2984 
2985   for (int I = 0; I != NumUnmerge; ++I) {
2986     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2987 
2988     for (int J = 0; J != PartsPerUnmerge; ++J)
2989       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2990     MIB.addUse(Unmerge.getReg(I));
2991   }
2992 
2993   MI.eraseFromParent();
2994   return Legalized;
2995 }
2996 
2997 LegalizerHelper::LegalizeResult
2998 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
2999                                                 unsigned TypeIdx,
3000                                                 LLT NarrowTy) {
3001   assert(TypeIdx == 0 && "not a vector type index");
3002   Register DstReg = MI.getOperand(0).getReg();
3003   LLT DstTy = MRI.getType(DstReg);
3004   LLT SrcTy = DstTy.getElementType();
3005 
3006   int DstNumElts = DstTy.getNumElements();
3007   int NarrowNumElts = NarrowTy.getNumElements();
3008   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3009   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3010 
3011   SmallVector<Register, 8> ConcatOps;
3012   SmallVector<Register, 8> SubBuildVector;
3013 
3014   Register UndefReg;
3015   if (WidenedDstTy != DstTy)
3016     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3017 
3018   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3019   // necessary.
3020   //
3021   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3022   //   -> <2 x s16>
3023   //
3024   // %4:_(s16) = G_IMPLICIT_DEF
3025   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3026   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3027   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3028   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3029   for (int I = 0; I != NumConcat; ++I) {
3030     for (int J = 0; J != NarrowNumElts; ++J) {
3031       int SrcIdx = NarrowNumElts * I + J;
3032 
3033       if (SrcIdx < DstNumElts) {
3034         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3035         SubBuildVector.push_back(SrcReg);
3036       } else
3037         SubBuildVector.push_back(UndefReg);
3038     }
3039 
3040     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3041     ConcatOps.push_back(BuildVec.getReg(0));
3042     SubBuildVector.clear();
3043   }
3044 
3045   if (DstTy == WidenedDstTy)
3046     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3047   else {
3048     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3049     MIRBuilder.buildExtract(DstReg, Concat, 0);
3050   }
3051 
3052   MI.eraseFromParent();
3053   return Legalized;
3054 }
3055 
3056 LegalizerHelper::LegalizeResult
3057 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3058                                       LLT NarrowTy) {
3059   // FIXME: Don't know how to handle secondary types yet.
3060   if (TypeIdx != 0)
3061     return UnableToLegalize;
3062 
3063   MachineMemOperand *MMO = *MI.memoperands_begin();
3064 
3065   // This implementation doesn't work for atomics. Give up instead of doing
3066   // something invalid.
3067   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3068       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3069     return UnableToLegalize;
3070 
3071   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3072   Register ValReg = MI.getOperand(0).getReg();
3073   Register AddrReg = MI.getOperand(1).getReg();
3074   LLT ValTy = MRI.getType(ValReg);
3075 
3076   // FIXME: Do we need a distinct NarrowMemory legalize action?
3077   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3078     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3079     return UnableToLegalize;
3080   }
3081 
3082   int NumParts = -1;
3083   int NumLeftover = -1;
3084   LLT LeftoverTy;
3085   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3086   if (IsLoad) {
3087     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3088   } else {
3089     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3090                      NarrowLeftoverRegs)) {
3091       NumParts = NarrowRegs.size();
3092       NumLeftover = NarrowLeftoverRegs.size();
3093     }
3094   }
3095 
3096   if (NumParts == -1)
3097     return UnableToLegalize;
3098 
3099   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3100 
3101   unsigned TotalSize = ValTy.getSizeInBits();
3102 
3103   // Split the load/store into PartTy sized pieces starting at Offset. If this
3104   // is a load, return the new registers in ValRegs. For a store, each elements
3105   // of ValRegs should be PartTy. Returns the next offset that needs to be
3106   // handled.
3107   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3108                              unsigned Offset) -> unsigned {
3109     MachineFunction &MF = MIRBuilder.getMF();
3110     unsigned PartSize = PartTy.getSizeInBits();
3111     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3112          Offset += PartSize, ++Idx) {
3113       unsigned ByteSize = PartSize / 8;
3114       unsigned ByteOffset = Offset / 8;
3115       Register NewAddrReg;
3116 
3117       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3118 
3119       MachineMemOperand *NewMMO =
3120         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3121 
3122       if (IsLoad) {
3123         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3124         ValRegs.push_back(Dst);
3125         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3126       } else {
3127         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3128       }
3129     }
3130 
3131     return Offset;
3132   };
3133 
3134   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3135 
3136   // Handle the rest of the register if this isn't an even type breakdown.
3137   if (LeftoverTy.isValid())
3138     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3139 
3140   if (IsLoad) {
3141     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3142                 LeftoverTy, NarrowLeftoverRegs);
3143   }
3144 
3145   MI.eraseFromParent();
3146   return Legalized;
3147 }
3148 
3149 LegalizerHelper::LegalizeResult
3150 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3151                                       LLT NarrowTy) {
3152   assert(TypeIdx == 0 && "only one type index expected");
3153 
3154   const unsigned Opc = MI.getOpcode();
3155   const int NumOps = MI.getNumOperands() - 1;
3156   const Register DstReg = MI.getOperand(0).getReg();
3157   const unsigned Flags = MI.getFlags();
3158   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3159   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3160 
3161   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3162 
3163   // First of all check whether we are narrowing (changing the element type)
3164   // or reducing the vector elements
3165   const LLT DstTy = MRI.getType(DstReg);
3166   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3167 
3168   SmallVector<Register, 8> ExtractedRegs[3];
3169   SmallVector<Register, 8> Parts;
3170 
3171   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3172 
3173   // Break down all the sources into NarrowTy pieces we can operate on. This may
3174   // involve creating merges to a wider type, padded with undef.
3175   for (int I = 0; I != NumOps; ++I) {
3176     Register SrcReg = MI.getOperand(I + 1).getReg();
3177     LLT SrcTy = MRI.getType(SrcReg);
3178 
3179     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3180     // For fewerElements, this is a smaller vector with the same element type.
3181     LLT OpNarrowTy;
3182     if (IsNarrow) {
3183       OpNarrowTy = NarrowScalarTy;
3184 
3185       // In case of narrowing, we need to cast vectors to scalars for this to
3186       // work properly
3187       // FIXME: Can we do without the bitcast here if we're narrowing?
3188       if (SrcTy.isVector()) {
3189         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3190         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3191       }
3192     } else {
3193       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3194     }
3195 
3196     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3197 
3198     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3199     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3200                         TargetOpcode::G_ANYEXT);
3201   }
3202 
3203   SmallVector<Register, 8> ResultRegs;
3204 
3205   // Input operands for each sub-instruction.
3206   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3207 
3208   int NumParts = ExtractedRegs[0].size();
3209   const unsigned DstSize = DstTy.getSizeInBits();
3210   const LLT DstScalarTy = LLT::scalar(DstSize);
3211 
3212   // Narrowing needs to use scalar types
3213   LLT DstLCMTy, NarrowDstTy;
3214   if (IsNarrow) {
3215     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3216     NarrowDstTy = NarrowScalarTy;
3217   } else {
3218     DstLCMTy = getLCMType(DstTy, NarrowTy);
3219     NarrowDstTy = NarrowTy;
3220   }
3221 
3222   // We widened the source registers to satisfy merge/unmerge size
3223   // constraints. We'll have some extra fully undef parts.
3224   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3225 
3226   for (int I = 0; I != NumRealParts; ++I) {
3227     // Emit this instruction on each of the split pieces.
3228     for (int J = 0; J != NumOps; ++J)
3229       InputRegs[J] = ExtractedRegs[J][I];
3230 
3231     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3232     ResultRegs.push_back(Inst.getReg(0));
3233   }
3234 
3235   // Fill out the widened result with undef instead of creating instructions
3236   // with undef inputs.
3237   int NumUndefParts = NumParts - NumRealParts;
3238   if (NumUndefParts != 0)
3239     ResultRegs.append(NumUndefParts,
3240                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3241 
3242   // Extract the possibly padded result. Use a scratch register if we need to do
3243   // a final bitcast, otherwise use the original result register.
3244   Register MergeDstReg;
3245   if (IsNarrow && DstTy.isVector())
3246     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3247   else
3248     MergeDstReg = DstReg;
3249 
3250   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3251 
3252   // Recast to vector if we narrowed a vector
3253   if (IsNarrow && DstTy.isVector())
3254     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3255 
3256   MI.eraseFromParent();
3257   return Legalized;
3258 }
3259 
3260 LegalizerHelper::LegalizeResult
3261 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3262                                               LLT NarrowTy) {
3263   Register DstReg = MI.getOperand(0).getReg();
3264   Register SrcReg = MI.getOperand(1).getReg();
3265   int64_t Imm = MI.getOperand(2).getImm();
3266 
3267   LLT DstTy = MRI.getType(DstReg);
3268 
3269   SmallVector<Register, 8> Parts;
3270   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3271   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3272 
3273   for (Register &R : Parts)
3274     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3275 
3276   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3277 
3278   MI.eraseFromParent();
3279   return Legalized;
3280 }
3281 
3282 LegalizerHelper::LegalizeResult
3283 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3284                                      LLT NarrowTy) {
3285   using namespace TargetOpcode;
3286 
3287   MIRBuilder.setInstrAndDebugLoc(MI);
3288   switch (MI.getOpcode()) {
3289   case G_IMPLICIT_DEF:
3290     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3291   case G_TRUNC:
3292   case G_AND:
3293   case G_OR:
3294   case G_XOR:
3295   case G_ADD:
3296   case G_SUB:
3297   case G_MUL:
3298   case G_SMULH:
3299   case G_UMULH:
3300   case G_FADD:
3301   case G_FMUL:
3302   case G_FSUB:
3303   case G_FNEG:
3304   case G_FABS:
3305   case G_FCANONICALIZE:
3306   case G_FDIV:
3307   case G_FREM:
3308   case G_FMA:
3309   case G_FMAD:
3310   case G_FPOW:
3311   case G_FEXP:
3312   case G_FEXP2:
3313   case G_FLOG:
3314   case G_FLOG2:
3315   case G_FLOG10:
3316   case G_FNEARBYINT:
3317   case G_FCEIL:
3318   case G_FFLOOR:
3319   case G_FRINT:
3320   case G_INTRINSIC_ROUND:
3321   case G_INTRINSIC_TRUNC:
3322   case G_FCOS:
3323   case G_FSIN:
3324   case G_FSQRT:
3325   case G_BSWAP:
3326   case G_BITREVERSE:
3327   case G_SDIV:
3328   case G_UDIV:
3329   case G_SREM:
3330   case G_UREM:
3331   case G_SMIN:
3332   case G_SMAX:
3333   case G_UMIN:
3334   case G_UMAX:
3335   case G_FMINNUM:
3336   case G_FMAXNUM:
3337   case G_FMINNUM_IEEE:
3338   case G_FMAXNUM_IEEE:
3339   case G_FMINIMUM:
3340   case G_FMAXIMUM:
3341   case G_FSHL:
3342   case G_FSHR:
3343   case G_FREEZE:
3344     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3345   case G_SHL:
3346   case G_LSHR:
3347   case G_ASHR:
3348   case G_CTLZ:
3349   case G_CTLZ_ZERO_UNDEF:
3350   case G_CTTZ:
3351   case G_CTTZ_ZERO_UNDEF:
3352   case G_CTPOP:
3353   case G_FCOPYSIGN:
3354     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3355   case G_ZEXT:
3356   case G_SEXT:
3357   case G_ANYEXT:
3358   case G_FPEXT:
3359   case G_FPTRUNC:
3360   case G_SITOFP:
3361   case G_UITOFP:
3362   case G_FPTOSI:
3363   case G_FPTOUI:
3364   case G_INTTOPTR:
3365   case G_PTRTOINT:
3366   case G_ADDRSPACE_CAST:
3367     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3368   case G_ICMP:
3369   case G_FCMP:
3370     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3371   case G_SELECT:
3372     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3373   case G_PHI:
3374     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3375   case G_UNMERGE_VALUES:
3376     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3377   case G_BUILD_VECTOR:
3378     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3379   case G_LOAD:
3380   case G_STORE:
3381     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3382   case G_SEXT_INREG:
3383     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3384   default:
3385     return UnableToLegalize;
3386   }
3387 }
3388 
3389 LegalizerHelper::LegalizeResult
3390 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3391                                              const LLT HalfTy, const LLT AmtTy) {
3392 
3393   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3394   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3395   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3396 
3397   if (Amt.isNullValue()) {
3398     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3399     MI.eraseFromParent();
3400     return Legalized;
3401   }
3402 
3403   LLT NVT = HalfTy;
3404   unsigned NVTBits = HalfTy.getSizeInBits();
3405   unsigned VTBits = 2 * NVTBits;
3406 
3407   SrcOp Lo(Register(0)), Hi(Register(0));
3408   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3409     if (Amt.ugt(VTBits)) {
3410       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3411     } else if (Amt.ugt(NVTBits)) {
3412       Lo = MIRBuilder.buildConstant(NVT, 0);
3413       Hi = MIRBuilder.buildShl(NVT, InL,
3414                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3415     } else if (Amt == NVTBits) {
3416       Lo = MIRBuilder.buildConstant(NVT, 0);
3417       Hi = InL;
3418     } else {
3419       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3420       auto OrLHS =
3421           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3422       auto OrRHS = MIRBuilder.buildLShr(
3423           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3424       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3425     }
3426   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3427     if (Amt.ugt(VTBits)) {
3428       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3429     } else if (Amt.ugt(NVTBits)) {
3430       Lo = MIRBuilder.buildLShr(NVT, InH,
3431                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3432       Hi = MIRBuilder.buildConstant(NVT, 0);
3433     } else if (Amt == NVTBits) {
3434       Lo = InH;
3435       Hi = MIRBuilder.buildConstant(NVT, 0);
3436     } else {
3437       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3438 
3439       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3440       auto OrRHS = MIRBuilder.buildShl(
3441           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3442 
3443       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3444       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3445     }
3446   } else {
3447     if (Amt.ugt(VTBits)) {
3448       Hi = Lo = MIRBuilder.buildAShr(
3449           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3450     } else if (Amt.ugt(NVTBits)) {
3451       Lo = MIRBuilder.buildAShr(NVT, InH,
3452                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3453       Hi = MIRBuilder.buildAShr(NVT, InH,
3454                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3455     } else if (Amt == NVTBits) {
3456       Lo = InH;
3457       Hi = MIRBuilder.buildAShr(NVT, InH,
3458                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3459     } else {
3460       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3461 
3462       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3463       auto OrRHS = MIRBuilder.buildShl(
3464           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3465 
3466       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3467       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3468     }
3469   }
3470 
3471   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3472   MI.eraseFromParent();
3473 
3474   return Legalized;
3475 }
3476 
3477 // TODO: Optimize if constant shift amount.
3478 LegalizerHelper::LegalizeResult
3479 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3480                                    LLT RequestedTy) {
3481   if (TypeIdx == 1) {
3482     Observer.changingInstr(MI);
3483     narrowScalarSrc(MI, RequestedTy, 2);
3484     Observer.changedInstr(MI);
3485     return Legalized;
3486   }
3487 
3488   Register DstReg = MI.getOperand(0).getReg();
3489   LLT DstTy = MRI.getType(DstReg);
3490   if (DstTy.isVector())
3491     return UnableToLegalize;
3492 
3493   Register Amt = MI.getOperand(2).getReg();
3494   LLT ShiftAmtTy = MRI.getType(Amt);
3495   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3496   if (DstEltSize % 2 != 0)
3497     return UnableToLegalize;
3498 
3499   // Ignore the input type. We can only go to exactly half the size of the
3500   // input. If that isn't small enough, the resulting pieces will be further
3501   // legalized.
3502   const unsigned NewBitSize = DstEltSize / 2;
3503   const LLT HalfTy = LLT::scalar(NewBitSize);
3504   const LLT CondTy = LLT::scalar(1);
3505 
3506   if (const MachineInstr *KShiftAmt =
3507           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3508     return narrowScalarShiftByConstant(
3509         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3510   }
3511 
3512   // TODO: Expand with known bits.
3513 
3514   // Handle the fully general expansion by an unknown amount.
3515   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3516 
3517   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3518   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3519   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3520 
3521   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3522   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3523 
3524   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3525   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3526   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3527 
3528   Register ResultRegs[2];
3529   switch (MI.getOpcode()) {
3530   case TargetOpcode::G_SHL: {
3531     // Short: ShAmt < NewBitSize
3532     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3533 
3534     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3535     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3536     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3537 
3538     // Long: ShAmt >= NewBitSize
3539     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3540     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3541 
3542     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3543     auto Hi = MIRBuilder.buildSelect(
3544         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3545 
3546     ResultRegs[0] = Lo.getReg(0);
3547     ResultRegs[1] = Hi.getReg(0);
3548     break;
3549   }
3550   case TargetOpcode::G_LSHR:
3551   case TargetOpcode::G_ASHR: {
3552     // Short: ShAmt < NewBitSize
3553     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3554 
3555     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3556     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3557     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3558 
3559     // Long: ShAmt >= NewBitSize
3560     MachineInstrBuilder HiL;
3561     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3562       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3563     } else {
3564       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3565       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3566     }
3567     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3568                                      {InH, AmtExcess});     // Lo from Hi part.
3569 
3570     auto Lo = MIRBuilder.buildSelect(
3571         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3572 
3573     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3574 
3575     ResultRegs[0] = Lo.getReg(0);
3576     ResultRegs[1] = Hi.getReg(0);
3577     break;
3578   }
3579   default:
3580     llvm_unreachable("not a shift");
3581   }
3582 
3583   MIRBuilder.buildMerge(DstReg, ResultRegs);
3584   MI.eraseFromParent();
3585   return Legalized;
3586 }
3587 
3588 LegalizerHelper::LegalizeResult
3589 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3590                                        LLT MoreTy) {
3591   assert(TypeIdx == 0 && "Expecting only Idx 0");
3592 
3593   Observer.changingInstr(MI);
3594   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3595     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3596     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3597     moreElementsVectorSrc(MI, MoreTy, I);
3598   }
3599 
3600   MachineBasicBlock &MBB = *MI.getParent();
3601   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3602   moreElementsVectorDst(MI, MoreTy, 0);
3603   Observer.changedInstr(MI);
3604   return Legalized;
3605 }
3606 
3607 LegalizerHelper::LegalizeResult
3608 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3609                                     LLT MoreTy) {
3610   MIRBuilder.setInstr(MI);
3611   unsigned Opc = MI.getOpcode();
3612   switch (Opc) {
3613   case TargetOpcode::G_IMPLICIT_DEF:
3614   case TargetOpcode::G_LOAD: {
3615     if (TypeIdx != 0)
3616       return UnableToLegalize;
3617     Observer.changingInstr(MI);
3618     moreElementsVectorDst(MI, MoreTy, 0);
3619     Observer.changedInstr(MI);
3620     return Legalized;
3621   }
3622   case TargetOpcode::G_STORE:
3623     if (TypeIdx != 0)
3624       return UnableToLegalize;
3625     Observer.changingInstr(MI);
3626     moreElementsVectorSrc(MI, MoreTy, 0);
3627     Observer.changedInstr(MI);
3628     return Legalized;
3629   case TargetOpcode::G_AND:
3630   case TargetOpcode::G_OR:
3631   case TargetOpcode::G_XOR:
3632   case TargetOpcode::G_SMIN:
3633   case TargetOpcode::G_SMAX:
3634   case TargetOpcode::G_UMIN:
3635   case TargetOpcode::G_UMAX:
3636   case TargetOpcode::G_FMINNUM:
3637   case TargetOpcode::G_FMAXNUM:
3638   case TargetOpcode::G_FMINNUM_IEEE:
3639   case TargetOpcode::G_FMAXNUM_IEEE:
3640   case TargetOpcode::G_FMINIMUM:
3641   case TargetOpcode::G_FMAXIMUM: {
3642     Observer.changingInstr(MI);
3643     moreElementsVectorSrc(MI, MoreTy, 1);
3644     moreElementsVectorSrc(MI, MoreTy, 2);
3645     moreElementsVectorDst(MI, MoreTy, 0);
3646     Observer.changedInstr(MI);
3647     return Legalized;
3648   }
3649   case TargetOpcode::G_EXTRACT:
3650     if (TypeIdx != 1)
3651       return UnableToLegalize;
3652     Observer.changingInstr(MI);
3653     moreElementsVectorSrc(MI, MoreTy, 1);
3654     Observer.changedInstr(MI);
3655     return Legalized;
3656   case TargetOpcode::G_INSERT:
3657   case TargetOpcode::G_FREEZE:
3658     if (TypeIdx != 0)
3659       return UnableToLegalize;
3660     Observer.changingInstr(MI);
3661     moreElementsVectorSrc(MI, MoreTy, 1);
3662     moreElementsVectorDst(MI, MoreTy, 0);
3663     Observer.changedInstr(MI);
3664     return Legalized;
3665   case TargetOpcode::G_SELECT:
3666     if (TypeIdx != 0)
3667       return UnableToLegalize;
3668     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3669       return UnableToLegalize;
3670 
3671     Observer.changingInstr(MI);
3672     moreElementsVectorSrc(MI, MoreTy, 2);
3673     moreElementsVectorSrc(MI, MoreTy, 3);
3674     moreElementsVectorDst(MI, MoreTy, 0);
3675     Observer.changedInstr(MI);
3676     return Legalized;
3677   case TargetOpcode::G_UNMERGE_VALUES: {
3678     if (TypeIdx != 1)
3679       return UnableToLegalize;
3680 
3681     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3682     int NumDst = MI.getNumOperands() - 1;
3683     moreElementsVectorSrc(MI, MoreTy, NumDst);
3684 
3685     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3686     for (int I = 0; I != NumDst; ++I)
3687       MIB.addDef(MI.getOperand(I).getReg());
3688 
3689     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3690     for (int I = NumDst; I != NewNumDst; ++I)
3691       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3692 
3693     MIB.addUse(MI.getOperand(NumDst).getReg());
3694     MI.eraseFromParent();
3695     return Legalized;
3696   }
3697   case TargetOpcode::G_PHI:
3698     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3699   default:
3700     return UnableToLegalize;
3701   }
3702 }
3703 
3704 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3705                                         ArrayRef<Register> Src1Regs,
3706                                         ArrayRef<Register> Src2Regs,
3707                                         LLT NarrowTy) {
3708   MachineIRBuilder &B = MIRBuilder;
3709   unsigned SrcParts = Src1Regs.size();
3710   unsigned DstParts = DstRegs.size();
3711 
3712   unsigned DstIdx = 0; // Low bits of the result.
3713   Register FactorSum =
3714       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3715   DstRegs[DstIdx] = FactorSum;
3716 
3717   unsigned CarrySumPrevDstIdx;
3718   SmallVector<Register, 4> Factors;
3719 
3720   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3721     // Collect low parts of muls for DstIdx.
3722     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3723          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3724       MachineInstrBuilder Mul =
3725           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3726       Factors.push_back(Mul.getReg(0));
3727     }
3728     // Collect high parts of muls from previous DstIdx.
3729     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3730          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3731       MachineInstrBuilder Umulh =
3732           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3733       Factors.push_back(Umulh.getReg(0));
3734     }
3735     // Add CarrySum from additions calculated for previous DstIdx.
3736     if (DstIdx != 1) {
3737       Factors.push_back(CarrySumPrevDstIdx);
3738     }
3739 
3740     Register CarrySum;
3741     // Add all factors and accumulate all carries into CarrySum.
3742     if (DstIdx != DstParts - 1) {
3743       MachineInstrBuilder Uaddo =
3744           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3745       FactorSum = Uaddo.getReg(0);
3746       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3747       for (unsigned i = 2; i < Factors.size(); ++i) {
3748         MachineInstrBuilder Uaddo =
3749             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3750         FactorSum = Uaddo.getReg(0);
3751         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3752         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3753       }
3754     } else {
3755       // Since value for the next index is not calculated, neither is CarrySum.
3756       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3757       for (unsigned i = 2; i < Factors.size(); ++i)
3758         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3759     }
3760 
3761     CarrySumPrevDstIdx = CarrySum;
3762     DstRegs[DstIdx] = FactorSum;
3763     Factors.clear();
3764   }
3765 }
3766 
3767 LegalizerHelper::LegalizeResult
3768 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3769   Register DstReg = MI.getOperand(0).getReg();
3770   Register Src1 = MI.getOperand(1).getReg();
3771   Register Src2 = MI.getOperand(2).getReg();
3772 
3773   LLT Ty = MRI.getType(DstReg);
3774   if (Ty.isVector())
3775     return UnableToLegalize;
3776 
3777   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3778   unsigned DstSize = Ty.getSizeInBits();
3779   unsigned NarrowSize = NarrowTy.getSizeInBits();
3780   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3781     return UnableToLegalize;
3782 
3783   unsigned NumDstParts = DstSize / NarrowSize;
3784   unsigned NumSrcParts = SrcSize / NarrowSize;
3785   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3786   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3787 
3788   SmallVector<Register, 2> Src1Parts, Src2Parts;
3789   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3790   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3791   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3792   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3793 
3794   // Take only high half of registers if this is high mul.
3795   ArrayRef<Register> DstRegs(
3796       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3797   MIRBuilder.buildMerge(DstReg, DstRegs);
3798   MI.eraseFromParent();
3799   return Legalized;
3800 }
3801 
3802 LegalizerHelper::LegalizeResult
3803 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3804                                      LLT NarrowTy) {
3805   if (TypeIdx != 1)
3806     return UnableToLegalize;
3807 
3808   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3809 
3810   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3811   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3812   // NarrowSize.
3813   if (SizeOp1 % NarrowSize != 0)
3814     return UnableToLegalize;
3815   int NumParts = SizeOp1 / NarrowSize;
3816 
3817   SmallVector<Register, 2> SrcRegs, DstRegs;
3818   SmallVector<uint64_t, 2> Indexes;
3819   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3820 
3821   Register OpReg = MI.getOperand(0).getReg();
3822   uint64_t OpStart = MI.getOperand(2).getImm();
3823   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3824   for (int i = 0; i < NumParts; ++i) {
3825     unsigned SrcStart = i * NarrowSize;
3826 
3827     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3828       // No part of the extract uses this subregister, ignore it.
3829       continue;
3830     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3831       // The entire subregister is extracted, forward the value.
3832       DstRegs.push_back(SrcRegs[i]);
3833       continue;
3834     }
3835 
3836     // OpSegStart is where this destination segment would start in OpReg if it
3837     // extended infinitely in both directions.
3838     int64_t ExtractOffset;
3839     uint64_t SegSize;
3840     if (OpStart < SrcStart) {
3841       ExtractOffset = 0;
3842       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3843     } else {
3844       ExtractOffset = OpStart - SrcStart;
3845       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3846     }
3847 
3848     Register SegReg = SrcRegs[i];
3849     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3850       // A genuine extract is needed.
3851       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3852       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3853     }
3854 
3855     DstRegs.push_back(SegReg);
3856   }
3857 
3858   Register DstReg = MI.getOperand(0).getReg();
3859   if (MRI.getType(DstReg).isVector())
3860     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3861   else if (DstRegs.size() > 1)
3862     MIRBuilder.buildMerge(DstReg, DstRegs);
3863   else
3864     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3865   MI.eraseFromParent();
3866   return Legalized;
3867 }
3868 
3869 LegalizerHelper::LegalizeResult
3870 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3871                                     LLT NarrowTy) {
3872   // FIXME: Don't know how to handle secondary types yet.
3873   if (TypeIdx != 0)
3874     return UnableToLegalize;
3875 
3876   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3877   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3878 
3879   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3880   // NarrowSize.
3881   if (SizeOp0 % NarrowSize != 0)
3882     return UnableToLegalize;
3883 
3884   int NumParts = SizeOp0 / NarrowSize;
3885 
3886   SmallVector<Register, 2> SrcRegs, DstRegs;
3887   SmallVector<uint64_t, 2> Indexes;
3888   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3889 
3890   Register OpReg = MI.getOperand(2).getReg();
3891   uint64_t OpStart = MI.getOperand(3).getImm();
3892   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3893   for (int i = 0; i < NumParts; ++i) {
3894     unsigned DstStart = i * NarrowSize;
3895 
3896     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3897       // No part of the insert affects this subregister, forward the original.
3898       DstRegs.push_back(SrcRegs[i]);
3899       continue;
3900     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3901       // The entire subregister is defined by this insert, forward the new
3902       // value.
3903       DstRegs.push_back(OpReg);
3904       continue;
3905     }
3906 
3907     // OpSegStart is where this destination segment would start in OpReg if it
3908     // extended infinitely in both directions.
3909     int64_t ExtractOffset, InsertOffset;
3910     uint64_t SegSize;
3911     if (OpStart < DstStart) {
3912       InsertOffset = 0;
3913       ExtractOffset = DstStart - OpStart;
3914       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3915     } else {
3916       InsertOffset = OpStart - DstStart;
3917       ExtractOffset = 0;
3918       SegSize =
3919         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3920     }
3921 
3922     Register SegReg = OpReg;
3923     if (ExtractOffset != 0 || SegSize != OpSize) {
3924       // A genuine extract is needed.
3925       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3926       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3927     }
3928 
3929     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3930     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3931     DstRegs.push_back(DstReg);
3932   }
3933 
3934   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3935   Register DstReg = MI.getOperand(0).getReg();
3936   if(MRI.getType(DstReg).isVector())
3937     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3938   else
3939     MIRBuilder.buildMerge(DstReg, DstRegs);
3940   MI.eraseFromParent();
3941   return Legalized;
3942 }
3943 
3944 LegalizerHelper::LegalizeResult
3945 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3946                                    LLT NarrowTy) {
3947   Register DstReg = MI.getOperand(0).getReg();
3948   LLT DstTy = MRI.getType(DstReg);
3949 
3950   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3951 
3952   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3953   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3954   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3955   LLT LeftoverTy;
3956   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3957                     Src0Regs, Src0LeftoverRegs))
3958     return UnableToLegalize;
3959 
3960   LLT Unused;
3961   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3962                     Src1Regs, Src1LeftoverRegs))
3963     llvm_unreachable("inconsistent extractParts result");
3964 
3965   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3966     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3967                                         {Src0Regs[I], Src1Regs[I]});
3968     DstRegs.push_back(Inst.getReg(0));
3969   }
3970 
3971   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3972     auto Inst = MIRBuilder.buildInstr(
3973       MI.getOpcode(),
3974       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3975     DstLeftoverRegs.push_back(Inst.getReg(0));
3976   }
3977 
3978   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3979               LeftoverTy, DstLeftoverRegs);
3980 
3981   MI.eraseFromParent();
3982   return Legalized;
3983 }
3984 
3985 LegalizerHelper::LegalizeResult
3986 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3987                                  LLT NarrowTy) {
3988   if (TypeIdx != 0)
3989     return UnableToLegalize;
3990 
3991   Register DstReg = MI.getOperand(0).getReg();
3992   Register SrcReg = MI.getOperand(1).getReg();
3993 
3994   LLT DstTy = MRI.getType(DstReg);
3995   if (DstTy.isVector())
3996     return UnableToLegalize;
3997 
3998   SmallVector<Register, 8> Parts;
3999   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4000   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4001   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4002 
4003   MI.eraseFromParent();
4004   return Legalized;
4005 }
4006 
4007 LegalizerHelper::LegalizeResult
4008 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4009                                     LLT NarrowTy) {
4010   if (TypeIdx != 0)
4011     return UnableToLegalize;
4012 
4013   Register CondReg = MI.getOperand(1).getReg();
4014   LLT CondTy = MRI.getType(CondReg);
4015   if (CondTy.isVector()) // TODO: Handle vselect
4016     return UnableToLegalize;
4017 
4018   Register DstReg = MI.getOperand(0).getReg();
4019   LLT DstTy = MRI.getType(DstReg);
4020 
4021   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4022   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4023   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4024   LLT LeftoverTy;
4025   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4026                     Src1Regs, Src1LeftoverRegs))
4027     return UnableToLegalize;
4028 
4029   LLT Unused;
4030   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4031                     Src2Regs, Src2LeftoverRegs))
4032     llvm_unreachable("inconsistent extractParts result");
4033 
4034   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4035     auto Select = MIRBuilder.buildSelect(NarrowTy,
4036                                          CondReg, Src1Regs[I], Src2Regs[I]);
4037     DstRegs.push_back(Select.getReg(0));
4038   }
4039 
4040   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4041     auto Select = MIRBuilder.buildSelect(
4042       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4043     DstLeftoverRegs.push_back(Select.getReg(0));
4044   }
4045 
4046   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4047               LeftoverTy, DstLeftoverRegs);
4048 
4049   MI.eraseFromParent();
4050   return Legalized;
4051 }
4052 
4053 LegalizerHelper::LegalizeResult
4054 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4055                                   LLT NarrowTy) {
4056   if (TypeIdx != 1)
4057     return UnableToLegalize;
4058 
4059   Register DstReg = MI.getOperand(0).getReg();
4060   Register SrcReg = MI.getOperand(1).getReg();
4061   LLT DstTy = MRI.getType(DstReg);
4062   LLT SrcTy = MRI.getType(SrcReg);
4063   unsigned NarrowSize = NarrowTy.getSizeInBits();
4064 
4065   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4066     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4067 
4068     MachineIRBuilder &B = MIRBuilder;
4069     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4070     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4071     auto C_0 = B.buildConstant(NarrowTy, 0);
4072     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4073                                 UnmergeSrc.getReg(1), C_0);
4074     auto LoCTLZ = IsUndef ?
4075       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4076       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4077     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4078     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4079     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4080     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4081 
4082     MI.eraseFromParent();
4083     return Legalized;
4084   }
4085 
4086   return UnableToLegalize;
4087 }
4088 
4089 LegalizerHelper::LegalizeResult
4090 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4091                                   LLT NarrowTy) {
4092   if (TypeIdx != 1)
4093     return UnableToLegalize;
4094 
4095   Register DstReg = MI.getOperand(0).getReg();
4096   Register SrcReg = MI.getOperand(1).getReg();
4097   LLT DstTy = MRI.getType(DstReg);
4098   LLT SrcTy = MRI.getType(SrcReg);
4099   unsigned NarrowSize = NarrowTy.getSizeInBits();
4100 
4101   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4102     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4103 
4104     MachineIRBuilder &B = MIRBuilder;
4105     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4106     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4107     auto C_0 = B.buildConstant(NarrowTy, 0);
4108     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4109                                 UnmergeSrc.getReg(0), C_0);
4110     auto HiCTTZ = IsUndef ?
4111       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4112       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4113     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4114     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4115     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4116     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4117 
4118     MI.eraseFromParent();
4119     return Legalized;
4120   }
4121 
4122   return UnableToLegalize;
4123 }
4124 
4125 LegalizerHelper::LegalizeResult
4126 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4127                                    LLT NarrowTy) {
4128   if (TypeIdx != 1)
4129     return UnableToLegalize;
4130 
4131   Register DstReg = MI.getOperand(0).getReg();
4132   LLT DstTy = MRI.getType(DstReg);
4133   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4134   unsigned NarrowSize = NarrowTy.getSizeInBits();
4135 
4136   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4137     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4138 
4139     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4140     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4141     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4142 
4143     MI.eraseFromParent();
4144     return Legalized;
4145   }
4146 
4147   return UnableToLegalize;
4148 }
4149 
4150 LegalizerHelper::LegalizeResult
4151 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4152   unsigned Opc = MI.getOpcode();
4153   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4154   auto isSupported = [this](const LegalityQuery &Q) {
4155     auto QAction = LI.getAction(Q).Action;
4156     return QAction == Legal || QAction == Libcall || QAction == Custom;
4157   };
4158   switch (Opc) {
4159   default:
4160     return UnableToLegalize;
4161   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4162     // This trivially expands to CTLZ.
4163     Observer.changingInstr(MI);
4164     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4165     Observer.changedInstr(MI);
4166     return Legalized;
4167   }
4168   case TargetOpcode::G_CTLZ: {
4169     Register DstReg = MI.getOperand(0).getReg();
4170     Register SrcReg = MI.getOperand(1).getReg();
4171     LLT DstTy = MRI.getType(DstReg);
4172     LLT SrcTy = MRI.getType(SrcReg);
4173     unsigned Len = SrcTy.getSizeInBits();
4174 
4175     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4176       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4177       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4178       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4179       auto ICmp = MIRBuilder.buildICmp(
4180           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4181       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4182       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4183       MI.eraseFromParent();
4184       return Legalized;
4185     }
4186     // for now, we do this:
4187     // NewLen = NextPowerOf2(Len);
4188     // x = x | (x >> 1);
4189     // x = x | (x >> 2);
4190     // ...
4191     // x = x | (x >>16);
4192     // x = x | (x >>32); // for 64-bit input
4193     // Upto NewLen/2
4194     // return Len - popcount(x);
4195     //
4196     // Ref: "Hacker's Delight" by Henry Warren
4197     Register Op = SrcReg;
4198     unsigned NewLen = PowerOf2Ceil(Len);
4199     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4200       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4201       auto MIBOp = MIRBuilder.buildOr(
4202           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4203       Op = MIBOp.getReg(0);
4204     }
4205     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4206     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4207                         MIBPop);
4208     MI.eraseFromParent();
4209     return Legalized;
4210   }
4211   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4212     // This trivially expands to CTTZ.
4213     Observer.changingInstr(MI);
4214     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4215     Observer.changedInstr(MI);
4216     return Legalized;
4217   }
4218   case TargetOpcode::G_CTTZ: {
4219     Register DstReg = MI.getOperand(0).getReg();
4220     Register SrcReg = MI.getOperand(1).getReg();
4221     LLT DstTy = MRI.getType(DstReg);
4222     LLT SrcTy = MRI.getType(SrcReg);
4223 
4224     unsigned Len = SrcTy.getSizeInBits();
4225     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4226       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4227       // zero.
4228       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4229       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4230       auto ICmp = MIRBuilder.buildICmp(
4231           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4232       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4233       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4234       MI.eraseFromParent();
4235       return Legalized;
4236     }
4237     // for now, we use: { return popcount(~x & (x - 1)); }
4238     // unless the target has ctlz but not ctpop, in which case we use:
4239     // { return 32 - nlz(~x & (x-1)); }
4240     // Ref: "Hacker's Delight" by Henry Warren
4241     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4242     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4243     auto MIBTmp = MIRBuilder.buildAnd(
4244         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4245     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4246         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4247       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4248       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4249                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4250       MI.eraseFromParent();
4251       return Legalized;
4252     }
4253     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4254     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4255     return Legalized;
4256   }
4257   case TargetOpcode::G_CTPOP: {
4258     unsigned Size = Ty.getSizeInBits();
4259     MachineIRBuilder &B = MIRBuilder;
4260 
4261     // Count set bits in blocks of 2 bits. Default approach would be
4262     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4263     // We use following formula instead:
4264     // B2Count = val - { (val >> 1) & 0x55555555 }
4265     // since it gives same result in blocks of 2 with one instruction less.
4266     auto C_1 = B.buildConstant(Ty, 1);
4267     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4268     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4269     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4270     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4271     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4272 
4273     // In order to get count in blocks of 4 add values from adjacent block of 2.
4274     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4275     auto C_2 = B.buildConstant(Ty, 2);
4276     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4277     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4278     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4279     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4280     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4281     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4282 
4283     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4284     // addition since count value sits in range {0,...,8} and 4 bits are enough
4285     // to hold such binary values. After addition high 4 bits still hold count
4286     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4287     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4288     auto C_4 = B.buildConstant(Ty, 4);
4289     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4290     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4291     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4292     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4293     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4294 
4295     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4296     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4297     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4298     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4299     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4300 
4301     // Shift count result from 8 high bits to low bits.
4302     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4303     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4304 
4305     MI.eraseFromParent();
4306     return Legalized;
4307   }
4308   }
4309 }
4310 
4311 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4312 // representation.
4313 LegalizerHelper::LegalizeResult
4314 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4315   Register Dst = MI.getOperand(0).getReg();
4316   Register Src = MI.getOperand(1).getReg();
4317   const LLT S64 = LLT::scalar(64);
4318   const LLT S32 = LLT::scalar(32);
4319   const LLT S1 = LLT::scalar(1);
4320 
4321   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4322 
4323   // unsigned cul2f(ulong u) {
4324   //   uint lz = clz(u);
4325   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4326   //   u = (u << lz) & 0x7fffffffffffffffUL;
4327   //   ulong t = u & 0xffffffffffUL;
4328   //   uint v = (e << 23) | (uint)(u >> 40);
4329   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4330   //   return as_float(v + r);
4331   // }
4332 
4333   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4334   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4335 
4336   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4337 
4338   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4339   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4340 
4341   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4342   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4343 
4344   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4345   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4346 
4347   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4348 
4349   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4350   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4351 
4352   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4353   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4354   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4355 
4356   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4357   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4358   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4359   auto One = MIRBuilder.buildConstant(S32, 1);
4360 
4361   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4362   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4363   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4364   MIRBuilder.buildAdd(Dst, V, R);
4365 
4366   return Legalized;
4367 }
4368 
4369 LegalizerHelper::LegalizeResult
4370 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4371   Register Dst = MI.getOperand(0).getReg();
4372   Register Src = MI.getOperand(1).getReg();
4373   LLT DstTy = MRI.getType(Dst);
4374   LLT SrcTy = MRI.getType(Src);
4375 
4376   if (SrcTy == LLT::scalar(1)) {
4377     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4378     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4379     MIRBuilder.buildSelect(Dst, Src, True, False);
4380     MI.eraseFromParent();
4381     return Legalized;
4382   }
4383 
4384   if (SrcTy != LLT::scalar(64))
4385     return UnableToLegalize;
4386 
4387   if (DstTy == LLT::scalar(32)) {
4388     // TODO: SelectionDAG has several alternative expansions to port which may
4389     // be more reasonble depending on the available instructions. If a target
4390     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4391     // intermediate type, this is probably worse.
4392     return lowerU64ToF32BitOps(MI);
4393   }
4394 
4395   return UnableToLegalize;
4396 }
4397 
4398 LegalizerHelper::LegalizeResult
4399 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4400   Register Dst = MI.getOperand(0).getReg();
4401   Register Src = MI.getOperand(1).getReg();
4402   LLT DstTy = MRI.getType(Dst);
4403   LLT SrcTy = MRI.getType(Src);
4404 
4405   const LLT S64 = LLT::scalar(64);
4406   const LLT S32 = LLT::scalar(32);
4407   const LLT S1 = LLT::scalar(1);
4408 
4409   if (SrcTy == S1) {
4410     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4411     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4412     MIRBuilder.buildSelect(Dst, Src, True, False);
4413     MI.eraseFromParent();
4414     return Legalized;
4415   }
4416 
4417   if (SrcTy != S64)
4418     return UnableToLegalize;
4419 
4420   if (DstTy == S32) {
4421     // signed cl2f(long l) {
4422     //   long s = l >> 63;
4423     //   float r = cul2f((l + s) ^ s);
4424     //   return s ? -r : r;
4425     // }
4426     Register L = Src;
4427     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4428     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4429 
4430     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4431     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4432     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4433 
4434     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4435     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4436                                             MIRBuilder.buildConstant(S64, 0));
4437     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4438     return Legalized;
4439   }
4440 
4441   return UnableToLegalize;
4442 }
4443 
4444 LegalizerHelper::LegalizeResult
4445 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4446   Register Dst = MI.getOperand(0).getReg();
4447   Register Src = MI.getOperand(1).getReg();
4448   LLT DstTy = MRI.getType(Dst);
4449   LLT SrcTy = MRI.getType(Src);
4450   const LLT S64 = LLT::scalar(64);
4451   const LLT S32 = LLT::scalar(32);
4452 
4453   if (SrcTy != S64 && SrcTy != S32)
4454     return UnableToLegalize;
4455   if (DstTy != S32 && DstTy != S64)
4456     return UnableToLegalize;
4457 
4458   // FPTOSI gives same result as FPTOUI for positive signed integers.
4459   // FPTOUI needs to deal with fp values that convert to unsigned integers
4460   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4461 
4462   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4463   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4464                                                 : APFloat::IEEEdouble(),
4465                     APInt::getNullValue(SrcTy.getSizeInBits()));
4466   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4467 
4468   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4469 
4470   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4471   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4472   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4473   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4474   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4475   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4476   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4477 
4478   const LLT S1 = LLT::scalar(1);
4479 
4480   MachineInstrBuilder FCMP =
4481       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4482   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4483 
4484   MI.eraseFromParent();
4485   return Legalized;
4486 }
4487 
4488 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4489   Register Dst = MI.getOperand(0).getReg();
4490   Register Src = MI.getOperand(1).getReg();
4491   LLT DstTy = MRI.getType(Dst);
4492   LLT SrcTy = MRI.getType(Src);
4493   const LLT S64 = LLT::scalar(64);
4494   const LLT S32 = LLT::scalar(32);
4495 
4496   // FIXME: Only f32 to i64 conversions are supported.
4497   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4498     return UnableToLegalize;
4499 
4500   // Expand f32 -> i64 conversion
4501   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4502   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4503 
4504   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4505 
4506   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4507   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4508 
4509   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4510   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4511 
4512   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4513                                            APInt::getSignMask(SrcEltBits));
4514   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4515   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4516   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4517   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4518 
4519   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4520   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4521   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4522 
4523   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4524   R = MIRBuilder.buildZExt(DstTy, R);
4525 
4526   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4527   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4528   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4529   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4530 
4531   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4532   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4533 
4534   const LLT S1 = LLT::scalar(1);
4535   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4536                                     S1, Exponent, ExponentLoBit);
4537 
4538   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4539 
4540   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4541   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4542 
4543   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4544 
4545   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4546                                           S1, Exponent, ZeroSrcTy);
4547 
4548   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4549   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4550 
4551   MI.eraseFromParent();
4552   return Legalized;
4553 }
4554 
4555 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4556 LegalizerHelper::LegalizeResult
4557 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4558   Register Dst = MI.getOperand(0).getReg();
4559   Register Src = MI.getOperand(1).getReg();
4560 
4561   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4562     return UnableToLegalize;
4563 
4564   const unsigned ExpMask = 0x7ff;
4565   const unsigned ExpBiasf64 = 1023;
4566   const unsigned ExpBiasf16 = 15;
4567   const LLT S32 = LLT::scalar(32);
4568   const LLT S1 = LLT::scalar(1);
4569 
4570   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4571   Register U = Unmerge.getReg(0);
4572   Register UH = Unmerge.getReg(1);
4573 
4574   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4575 
4576   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4577   // add the f16 bias (15) to get the biased exponent for the f16 format.
4578   E = MIRBuilder.buildAdd(
4579     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4580   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4581 
4582   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4583   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4584 
4585   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4586                                        MIRBuilder.buildConstant(S32, 0x1ff));
4587   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4588 
4589   auto Zero = MIRBuilder.buildConstant(S32, 0);
4590   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4591   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4592   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4593 
4594   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4595   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4596   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4597   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4598 
4599   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4600   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4601 
4602   // N = M | (E << 12);
4603   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4604   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4605 
4606   // B = clamp(1-E, 0, 13);
4607   auto One = MIRBuilder.buildConstant(S32, 1);
4608   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4609   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4610   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4611 
4612   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4613                                        MIRBuilder.buildConstant(S32, 0x1000));
4614 
4615   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4616   auto D0 = MIRBuilder.buildShl(S32, D, B);
4617 
4618   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4619                                              D0, SigSetHigh);
4620   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4621   D = MIRBuilder.buildOr(S32, D, D1);
4622 
4623   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4624   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4625 
4626   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4627   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4628 
4629   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4630                                        MIRBuilder.buildConstant(S32, 3));
4631   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4632 
4633   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4634                                        MIRBuilder.buildConstant(S32, 5));
4635   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4636 
4637   V1 = MIRBuilder.buildOr(S32, V0, V1);
4638   V = MIRBuilder.buildAdd(S32, V, V1);
4639 
4640   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4641                                        E, MIRBuilder.buildConstant(S32, 30));
4642   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4643                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4644 
4645   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4646                                          E, MIRBuilder.buildConstant(S32, 1039));
4647   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4648 
4649   // Extract the sign bit.
4650   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4651   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4652 
4653   // Insert the sign bit
4654   V = MIRBuilder.buildOr(S32, Sign, V);
4655 
4656   MIRBuilder.buildTrunc(Dst, V);
4657   MI.eraseFromParent();
4658   return Legalized;
4659 }
4660 
4661 LegalizerHelper::LegalizeResult
4662 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4663   Register Dst = MI.getOperand(0).getReg();
4664   Register Src = MI.getOperand(1).getReg();
4665 
4666   LLT DstTy = MRI.getType(Dst);
4667   LLT SrcTy = MRI.getType(Src);
4668   const LLT S64 = LLT::scalar(64);
4669   const LLT S16 = LLT::scalar(16);
4670 
4671   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4672     return lowerFPTRUNC_F64_TO_F16(MI);
4673 
4674   return UnableToLegalize;
4675 }
4676 
4677 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4678   switch (Opc) {
4679   case TargetOpcode::G_SMIN:
4680     return CmpInst::ICMP_SLT;
4681   case TargetOpcode::G_SMAX:
4682     return CmpInst::ICMP_SGT;
4683   case TargetOpcode::G_UMIN:
4684     return CmpInst::ICMP_ULT;
4685   case TargetOpcode::G_UMAX:
4686     return CmpInst::ICMP_UGT;
4687   default:
4688     llvm_unreachable("not in integer min/max");
4689   }
4690 }
4691 
4692 LegalizerHelper::LegalizeResult
4693 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4694   Register Dst = MI.getOperand(0).getReg();
4695   Register Src0 = MI.getOperand(1).getReg();
4696   Register Src1 = MI.getOperand(2).getReg();
4697 
4698   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4699   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4700 
4701   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4702   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4703 
4704   MI.eraseFromParent();
4705   return Legalized;
4706 }
4707 
4708 LegalizerHelper::LegalizeResult
4709 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4710   Register Dst = MI.getOperand(0).getReg();
4711   Register Src0 = MI.getOperand(1).getReg();
4712   Register Src1 = MI.getOperand(2).getReg();
4713 
4714   const LLT Src0Ty = MRI.getType(Src0);
4715   const LLT Src1Ty = MRI.getType(Src1);
4716 
4717   const int Src0Size = Src0Ty.getScalarSizeInBits();
4718   const int Src1Size = Src1Ty.getScalarSizeInBits();
4719 
4720   auto SignBitMask = MIRBuilder.buildConstant(
4721     Src0Ty, APInt::getSignMask(Src0Size));
4722 
4723   auto NotSignBitMask = MIRBuilder.buildConstant(
4724     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4725 
4726   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4727   MachineInstr *Or;
4728 
4729   if (Src0Ty == Src1Ty) {
4730     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4731     Or = MIRBuilder.buildOr(Dst, And0, And1);
4732   } else if (Src0Size > Src1Size) {
4733     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4734     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4735     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4736     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4737     Or = MIRBuilder.buildOr(Dst, And0, And1);
4738   } else {
4739     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4740     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4741     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4742     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4743     Or = MIRBuilder.buildOr(Dst, And0, And1);
4744   }
4745 
4746   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4747   // constants are a nan and -0.0, but the final result should preserve
4748   // everything.
4749   if (unsigned Flags = MI.getFlags())
4750     Or->setFlags(Flags);
4751 
4752   MI.eraseFromParent();
4753   return Legalized;
4754 }
4755 
4756 LegalizerHelper::LegalizeResult
4757 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4758   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4759     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4760 
4761   Register Dst = MI.getOperand(0).getReg();
4762   Register Src0 = MI.getOperand(1).getReg();
4763   Register Src1 = MI.getOperand(2).getReg();
4764   LLT Ty = MRI.getType(Dst);
4765 
4766   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4767     // Insert canonicalizes if it's possible we need to quiet to get correct
4768     // sNaN behavior.
4769 
4770     // Note this must be done here, and not as an optimization combine in the
4771     // absence of a dedicate quiet-snan instruction as we're using an
4772     // omni-purpose G_FCANONICALIZE.
4773     if (!isKnownNeverSNaN(Src0, MRI))
4774       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4775 
4776     if (!isKnownNeverSNaN(Src1, MRI))
4777       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4778   }
4779 
4780   // If there are no nans, it's safe to simply replace this with the non-IEEE
4781   // version.
4782   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4783   MI.eraseFromParent();
4784   return Legalized;
4785 }
4786 
4787 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4788   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4789   Register DstReg = MI.getOperand(0).getReg();
4790   LLT Ty = MRI.getType(DstReg);
4791   unsigned Flags = MI.getFlags();
4792 
4793   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4794                                   Flags);
4795   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4796   MI.eraseFromParent();
4797   return Legalized;
4798 }
4799 
4800 LegalizerHelper::LegalizeResult
4801 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4802   Register DstReg = MI.getOperand(0).getReg();
4803   Register X = MI.getOperand(1).getReg();
4804   const unsigned Flags = MI.getFlags();
4805   const LLT Ty = MRI.getType(DstReg);
4806   const LLT CondTy = Ty.changeElementSize(1);
4807 
4808   // round(x) =>
4809   //  t = trunc(x);
4810   //  d = fabs(x - t);
4811   //  o = copysign(1.0f, x);
4812   //  return t + (d >= 0.5 ? o : 0.0);
4813 
4814   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4815 
4816   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4817   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4818   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4819   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4820   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4821   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4822 
4823   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4824                                   Flags);
4825   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4826 
4827   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4828 
4829   MI.eraseFromParent();
4830   return Legalized;
4831 }
4832 
4833 LegalizerHelper::LegalizeResult
4834 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4835   Register DstReg = MI.getOperand(0).getReg();
4836   Register SrcReg = MI.getOperand(1).getReg();
4837   unsigned Flags = MI.getFlags();
4838   LLT Ty = MRI.getType(DstReg);
4839   const LLT CondTy = Ty.changeElementSize(1);
4840 
4841   // result = trunc(src);
4842   // if (src < 0.0 && src != result)
4843   //   result += -1.0.
4844 
4845   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4846   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4847 
4848   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4849                                   SrcReg, Zero, Flags);
4850   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4851                                       SrcReg, Trunc, Flags);
4852   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4853   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4854 
4855   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4856   MI.eraseFromParent();
4857   return Legalized;
4858 }
4859 
4860 LegalizerHelper::LegalizeResult
4861 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4862   const unsigned NumDst = MI.getNumOperands() - 1;
4863   const Register SrcReg = MI.getOperand(NumDst).getReg();
4864   LLT SrcTy = MRI.getType(SrcReg);
4865 
4866   Register Dst0Reg = MI.getOperand(0).getReg();
4867   LLT DstTy = MRI.getType(Dst0Reg);
4868 
4869 
4870   // Expand scalarizing unmerge as bitcast to integer and shift.
4871   if (!DstTy.isVector() && SrcTy.isVector() &&
4872       SrcTy.getElementType() == DstTy) {
4873     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4874     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4875 
4876     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4877 
4878     const unsigned DstSize = DstTy.getSizeInBits();
4879     unsigned Offset = DstSize;
4880     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4881       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4882       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4883       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4884     }
4885 
4886     MI.eraseFromParent();
4887     return Legalized;
4888   }
4889 
4890   return UnableToLegalize;
4891 }
4892 
4893 LegalizerHelper::LegalizeResult
4894 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4895   Register DstReg = MI.getOperand(0).getReg();
4896   Register Src0Reg = MI.getOperand(1).getReg();
4897   Register Src1Reg = MI.getOperand(2).getReg();
4898   LLT Src0Ty = MRI.getType(Src0Reg);
4899   LLT DstTy = MRI.getType(DstReg);
4900   LLT IdxTy = LLT::scalar(32);
4901 
4902   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4903 
4904   if (DstTy.isScalar()) {
4905     if (Src0Ty.isVector())
4906       return UnableToLegalize;
4907 
4908     // This is just a SELECT.
4909     assert(Mask.size() == 1 && "Expected a single mask element");
4910     Register Val;
4911     if (Mask[0] < 0 || Mask[0] > 1)
4912       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4913     else
4914       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4915     MIRBuilder.buildCopy(DstReg, Val);
4916     MI.eraseFromParent();
4917     return Legalized;
4918   }
4919 
4920   Register Undef;
4921   SmallVector<Register, 32> BuildVec;
4922   LLT EltTy = DstTy.getElementType();
4923 
4924   for (int Idx : Mask) {
4925     if (Idx < 0) {
4926       if (!Undef.isValid())
4927         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4928       BuildVec.push_back(Undef);
4929       continue;
4930     }
4931 
4932     if (Src0Ty.isScalar()) {
4933       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4934     } else {
4935       int NumElts = Src0Ty.getNumElements();
4936       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4937       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4938       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4939       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4940       BuildVec.push_back(Extract.getReg(0));
4941     }
4942   }
4943 
4944   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4945   MI.eraseFromParent();
4946   return Legalized;
4947 }
4948 
4949 LegalizerHelper::LegalizeResult
4950 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4951   Register Dst = MI.getOperand(0).getReg();
4952   Register AllocSize = MI.getOperand(1).getReg();
4953   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
4954 
4955   const auto &MF = *MI.getMF();
4956   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4957 
4958   LLT PtrTy = MRI.getType(Dst);
4959   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4960 
4961   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4962   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4963   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4964 
4965   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4966   // have to generate an extra instruction to negate the alloc and then use
4967   // G_PTR_ADD to add the negative offset.
4968   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4969   if (Alignment > Align(1)) {
4970     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
4971     AlignMask.negate();
4972     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4973     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4974   }
4975 
4976   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4977   MIRBuilder.buildCopy(SPReg, SPTmp);
4978   MIRBuilder.buildCopy(Dst, SPTmp);
4979 
4980   MI.eraseFromParent();
4981   return Legalized;
4982 }
4983 
4984 LegalizerHelper::LegalizeResult
4985 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4986   Register Dst = MI.getOperand(0).getReg();
4987   Register Src = MI.getOperand(1).getReg();
4988   unsigned Offset = MI.getOperand(2).getImm();
4989 
4990   LLT DstTy = MRI.getType(Dst);
4991   LLT SrcTy = MRI.getType(Src);
4992 
4993   if (DstTy.isScalar() &&
4994       (SrcTy.isScalar() ||
4995        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4996     LLT SrcIntTy = SrcTy;
4997     if (!SrcTy.isScalar()) {
4998       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4999       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5000     }
5001 
5002     if (Offset == 0)
5003       MIRBuilder.buildTrunc(Dst, Src);
5004     else {
5005       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5006       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5007       MIRBuilder.buildTrunc(Dst, Shr);
5008     }
5009 
5010     MI.eraseFromParent();
5011     return Legalized;
5012   }
5013 
5014   return UnableToLegalize;
5015 }
5016 
5017 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5018   Register Dst = MI.getOperand(0).getReg();
5019   Register Src = MI.getOperand(1).getReg();
5020   Register InsertSrc = MI.getOperand(2).getReg();
5021   uint64_t Offset = MI.getOperand(3).getImm();
5022 
5023   LLT DstTy = MRI.getType(Src);
5024   LLT InsertTy = MRI.getType(InsertSrc);
5025 
5026   if (InsertTy.isVector() ||
5027       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5028     return UnableToLegalize;
5029 
5030   const DataLayout &DL = MIRBuilder.getDataLayout();
5031   if ((DstTy.isPointer() &&
5032        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5033       (InsertTy.isPointer() &&
5034        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5035     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5036     return UnableToLegalize;
5037   }
5038 
5039   LLT IntDstTy = DstTy;
5040 
5041   if (!DstTy.isScalar()) {
5042     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5043     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5044   }
5045 
5046   if (!InsertTy.isScalar()) {
5047     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5048     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5049   }
5050 
5051   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5052   if (Offset != 0) {
5053     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5054     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5055   }
5056 
5057   APInt MaskVal = APInt::getBitsSetWithWrap(
5058       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5059 
5060   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5061   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5062   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5063 
5064   MIRBuilder.buildCast(Dst, Or);
5065   MI.eraseFromParent();
5066   return Legalized;
5067 }
5068 
5069 LegalizerHelper::LegalizeResult
5070 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5071   Register Dst0 = MI.getOperand(0).getReg();
5072   Register Dst1 = MI.getOperand(1).getReg();
5073   Register LHS = MI.getOperand(2).getReg();
5074   Register RHS = MI.getOperand(3).getReg();
5075   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5076 
5077   LLT Ty = MRI.getType(Dst0);
5078   LLT BoolTy = MRI.getType(Dst1);
5079 
5080   if (IsAdd)
5081     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5082   else
5083     MIRBuilder.buildSub(Dst0, LHS, RHS);
5084 
5085   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5086 
5087   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5088 
5089   // For an addition, the result should be less than one of the operands (LHS)
5090   // if and only if the other operand (RHS) is negative, otherwise there will
5091   // be overflow.
5092   // For a subtraction, the result should be less than one of the operands
5093   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5094   // otherwise there will be overflow.
5095   auto ResultLowerThanLHS =
5096       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5097   auto ConditionRHS = MIRBuilder.buildICmp(
5098       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5099 
5100   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5101   MI.eraseFromParent();
5102   return Legalized;
5103 }
5104 
5105 LegalizerHelper::LegalizeResult
5106 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5107   Register Dst = MI.getOperand(0).getReg();
5108   Register Src = MI.getOperand(1).getReg();
5109   const LLT Ty = MRI.getType(Src);
5110   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5111   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5112 
5113   // Swap most and least significant byte, set remaining bytes in Res to zero.
5114   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5115   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5116   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5117   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5118 
5119   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5120   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5121     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5122     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5123     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5124     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5125     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5126     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5127     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5128     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5129     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5130     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5131     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5132     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5133   }
5134   Res.getInstr()->getOperand(0).setReg(Dst);
5135 
5136   MI.eraseFromParent();
5137   return Legalized;
5138 }
5139 
5140 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5141 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5142                                  MachineInstrBuilder Src, APInt Mask) {
5143   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5144   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5145   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5146   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5147   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5148   return B.buildOr(Dst, LHS, RHS);
5149 }
5150 
5151 LegalizerHelper::LegalizeResult
5152 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5153   Register Dst = MI.getOperand(0).getReg();
5154   Register Src = MI.getOperand(1).getReg();
5155   const LLT Ty = MRI.getType(Src);
5156   unsigned Size = Ty.getSizeInBits();
5157 
5158   MachineInstrBuilder BSWAP =
5159       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5160 
5161   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5162   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5163   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5164   MachineInstrBuilder Swap4 =
5165       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5166 
5167   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5168   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5169   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5170   MachineInstrBuilder Swap2 =
5171       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5172 
5173   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5174   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5175   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5176   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5177 
5178   MI.eraseFromParent();
5179   return Legalized;
5180 }
5181 
5182 LegalizerHelper::LegalizeResult
5183 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5184   MachineFunction &MF = MIRBuilder.getMF();
5185   const TargetSubtargetInfo &STI = MF.getSubtarget();
5186   const TargetLowering *TLI = STI.getTargetLowering();
5187 
5188   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5189   int NameOpIdx = IsRead ? 1 : 0;
5190   int ValRegIndex = IsRead ? 0 : 1;
5191 
5192   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5193   const LLT Ty = MRI.getType(ValReg);
5194   const MDString *RegStr = cast<MDString>(
5195     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5196 
5197   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5198   if (!PhysReg.isValid())
5199     return UnableToLegalize;
5200 
5201   if (IsRead)
5202     MIRBuilder.buildCopy(ValReg, PhysReg);
5203   else
5204     MIRBuilder.buildCopy(PhysReg, ValReg);
5205 
5206   MI.eraseFromParent();
5207   return Legalized;
5208 }
5209