1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 64 } else { 65 LeftoverTy = LLT::scalar(LeftoverSize); 66 } 67 68 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 69 return std::make_pair(NumParts, NumLeftover); 70 } 71 72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 73 74 if (!Ty.isScalar()) 75 return nullptr; 76 77 switch (Ty.getSizeInBits()) { 78 case 16: 79 return Type::getHalfTy(Ctx); 80 case 32: 81 return Type::getFloatTy(Ctx); 82 case 64: 83 return Type::getDoubleTy(Ctx); 84 case 80: 85 return Type::getX86_FP80Ty(Ctx); 86 case 128: 87 return Type::getFP128Ty(Ctx); 88 default: 89 return nullptr; 90 } 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &Builder) 96 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 97 LI(*MF.getSubtarget().getLegalizerInfo()), 98 TLI(*MF.getSubtarget().getTargetLowering()) { } 99 100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 101 GISelChangeObserver &Observer, 102 MachineIRBuilder &B) 103 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 104 TLI(*MF.getSubtarget().getTargetLowering()) { } 105 106 LegalizerHelper::LegalizeResult 107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 108 LostDebugLocObserver &LocObserver) { 109 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 110 111 MIRBuilder.setInstrAndDebugLoc(MI); 112 113 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 114 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 115 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 116 auto Step = LI.getAction(MI, MRI); 117 switch (Step.Action) { 118 case Legal: 119 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 120 return AlreadyLegal; 121 case Libcall: 122 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 123 return libcall(MI, LocObserver); 124 case NarrowScalar: 125 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 126 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 127 case WidenScalar: 128 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 129 return widenScalar(MI, Step.TypeIdx, Step.NewType); 130 case Bitcast: 131 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 132 return bitcast(MI, Step.TypeIdx, Step.NewType); 133 case Lower: 134 LLVM_DEBUG(dbgs() << ".. Lower\n"); 135 return lower(MI, Step.TypeIdx, Step.NewType); 136 case FewerElements: 137 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 138 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 139 case MoreElements: 140 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 141 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 142 case Custom: 143 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 144 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 145 default: 146 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 147 return UnableToLegalize; 148 } 149 } 150 151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 152 SmallVectorImpl<Register> &VRegs) { 153 for (int i = 0; i < NumParts; ++i) 154 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 155 MIRBuilder.buildUnmerge(VRegs, Reg); 156 } 157 158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 159 LLT MainTy, LLT &LeftoverTy, 160 SmallVectorImpl<Register> &VRegs, 161 SmallVectorImpl<Register> &LeftoverRegs) { 162 assert(!LeftoverTy.isValid() && "this is an out argument"); 163 164 unsigned RegSize = RegTy.getSizeInBits(); 165 unsigned MainSize = MainTy.getSizeInBits(); 166 unsigned NumParts = RegSize / MainSize; 167 unsigned LeftoverSize = RegSize - NumParts * MainSize; 168 169 // Use an unmerge when possible. 170 if (LeftoverSize == 0) { 171 for (unsigned I = 0; I < NumParts; ++I) 172 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 173 MIRBuilder.buildUnmerge(VRegs, Reg); 174 return true; 175 } 176 177 if (MainTy.isVector()) { 178 unsigned EltSize = MainTy.getScalarSizeInBits(); 179 if (LeftoverSize % EltSize != 0) 180 return false; 181 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 182 } else { 183 LeftoverTy = LLT::scalar(LeftoverSize); 184 } 185 186 // For irregular sizes, extract the individual parts. 187 for (unsigned I = 0; I != NumParts; ++I) { 188 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 189 VRegs.push_back(NewReg); 190 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 191 } 192 193 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 194 Offset += LeftoverSize) { 195 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 196 LeftoverRegs.push_back(NewReg); 197 MIRBuilder.buildExtract(NewReg, Reg, Offset); 198 } 199 200 return true; 201 } 202 203 void LegalizerHelper::insertParts(Register DstReg, 204 LLT ResultTy, LLT PartTy, 205 ArrayRef<Register> PartRegs, 206 LLT LeftoverTy, 207 ArrayRef<Register> LeftoverRegs) { 208 if (!LeftoverTy.isValid()) { 209 assert(LeftoverRegs.empty()); 210 211 if (!ResultTy.isVector()) { 212 MIRBuilder.buildMerge(DstReg, PartRegs); 213 return; 214 } 215 216 if (PartTy.isVector()) 217 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 218 else 219 MIRBuilder.buildBuildVector(DstReg, PartRegs); 220 return; 221 } 222 223 unsigned PartSize = PartTy.getSizeInBits(); 224 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 225 226 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildUndef(CurResultReg); 228 229 unsigned Offset = 0; 230 for (Register PartReg : PartRegs) { 231 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 232 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 233 CurResultReg = NewResultReg; 234 Offset += PartSize; 235 } 236 237 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 238 // Use the original output register for the final insert to avoid a copy. 239 Register NewResultReg = (I + 1 == E) ? 240 DstReg : MRI.createGenericVirtualRegister(ResultTy); 241 242 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 243 CurResultReg = NewResultReg; 244 Offset += LeftoverPartSize; 245 } 246 } 247 248 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 249 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 250 const MachineInstr &MI) { 251 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 252 253 const int StartIdx = Regs.size(); 254 const int NumResults = MI.getNumOperands() - 1; 255 Regs.resize(Regs.size() + NumResults); 256 for (int I = 0; I != NumResults; ++I) 257 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 258 } 259 260 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 261 LLT GCDTy, Register SrcReg) { 262 LLT SrcTy = MRI.getType(SrcReg); 263 if (SrcTy == GCDTy) { 264 // If the source already evenly divides the result type, we don't need to do 265 // anything. 266 Parts.push_back(SrcReg); 267 } else { 268 // Need to split into common type sized pieces. 269 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 270 getUnmergeResults(Parts, *Unmerge); 271 } 272 } 273 274 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 275 LLT NarrowTy, Register SrcReg) { 276 LLT SrcTy = MRI.getType(SrcReg); 277 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 278 extractGCDType(Parts, GCDTy, SrcReg); 279 return GCDTy; 280 } 281 282 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 283 SmallVectorImpl<Register> &VRegs, 284 unsigned PadStrategy) { 285 LLT LCMTy = getLCMType(DstTy, NarrowTy); 286 287 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 288 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 289 int NumOrigSrc = VRegs.size(); 290 291 Register PadReg; 292 293 // Get a value we can use to pad the source value if the sources won't evenly 294 // cover the result type. 295 if (NumOrigSrc < NumParts * NumSubParts) { 296 if (PadStrategy == TargetOpcode::G_ZEXT) 297 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 298 else if (PadStrategy == TargetOpcode::G_ANYEXT) 299 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 300 else { 301 assert(PadStrategy == TargetOpcode::G_SEXT); 302 303 // Shift the sign bit of the low register through the high register. 304 auto ShiftAmt = 305 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 306 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 307 } 308 } 309 310 // Registers for the final merge to be produced. 311 SmallVector<Register, 4> Remerge(NumParts); 312 313 // Registers needed for intermediate merges, which will be merged into a 314 // source for Remerge. 315 SmallVector<Register, 4> SubMerge(NumSubParts); 316 317 // Once we've fully read off the end of the original source bits, we can reuse 318 // the same high bits for remaining padding elements. 319 Register AllPadReg; 320 321 // Build merges to the LCM type to cover the original result type. 322 for (int I = 0; I != NumParts; ++I) { 323 bool AllMergePartsArePadding = true; 324 325 // Build the requested merges to the requested type. 326 for (int J = 0; J != NumSubParts; ++J) { 327 int Idx = I * NumSubParts + J; 328 if (Idx >= NumOrigSrc) { 329 SubMerge[J] = PadReg; 330 continue; 331 } 332 333 SubMerge[J] = VRegs[Idx]; 334 335 // There are meaningful bits here we can't reuse later. 336 AllMergePartsArePadding = false; 337 } 338 339 // If we've filled up a complete piece with padding bits, we can directly 340 // emit the natural sized constant if applicable, rather than a merge of 341 // smaller constants. 342 if (AllMergePartsArePadding && !AllPadReg) { 343 if (PadStrategy == TargetOpcode::G_ANYEXT) 344 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 345 else if (PadStrategy == TargetOpcode::G_ZEXT) 346 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 347 348 // If this is a sign extension, we can't materialize a trivial constant 349 // with the right type and have to produce a merge. 350 } 351 352 if (AllPadReg) { 353 // Avoid creating additional instructions if we're just adding additional 354 // copies of padding bits. 355 Remerge[I] = AllPadReg; 356 continue; 357 } 358 359 if (NumSubParts == 1) 360 Remerge[I] = SubMerge[0]; 361 else 362 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 363 364 // In the sign extend padding case, re-use the first all-signbit merge. 365 if (AllMergePartsArePadding && !AllPadReg) 366 AllPadReg = Remerge[I]; 367 } 368 369 VRegs = std::move(Remerge); 370 return LCMTy; 371 } 372 373 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 374 ArrayRef<Register> RemergeRegs) { 375 LLT DstTy = MRI.getType(DstReg); 376 377 // Create the merge to the widened source, and extract the relevant bits into 378 // the result. 379 380 if (DstTy == LCMTy) { 381 MIRBuilder.buildMerge(DstReg, RemergeRegs); 382 return; 383 } 384 385 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 386 if (DstTy.isScalar() && LCMTy.isScalar()) { 387 MIRBuilder.buildTrunc(DstReg, Remerge); 388 return; 389 } 390 391 if (LCMTy.isVector()) { 392 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 393 SmallVector<Register, 8> UnmergeDefs(NumDefs); 394 UnmergeDefs[0] = DstReg; 395 for (unsigned I = 1; I != NumDefs; ++I) 396 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 397 398 MIRBuilder.buildUnmerge(UnmergeDefs, 399 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 400 return; 401 } 402 403 llvm_unreachable("unhandled case"); 404 } 405 406 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 407 #define RTLIBCASE_INT(LibcallPrefix) \ 408 do { \ 409 switch (Size) { \ 410 case 32: \ 411 return RTLIB::LibcallPrefix##32; \ 412 case 64: \ 413 return RTLIB::LibcallPrefix##64; \ 414 case 128: \ 415 return RTLIB::LibcallPrefix##128; \ 416 default: \ 417 llvm_unreachable("unexpected size"); \ 418 } \ 419 } while (0) 420 421 #define RTLIBCASE(LibcallPrefix) \ 422 do { \ 423 switch (Size) { \ 424 case 32: \ 425 return RTLIB::LibcallPrefix##32; \ 426 case 64: \ 427 return RTLIB::LibcallPrefix##64; \ 428 case 80: \ 429 return RTLIB::LibcallPrefix##80; \ 430 case 128: \ 431 return RTLIB::LibcallPrefix##128; \ 432 default: \ 433 llvm_unreachable("unexpected size"); \ 434 } \ 435 } while (0) 436 437 switch (Opcode) { 438 case TargetOpcode::G_SDIV: 439 RTLIBCASE_INT(SDIV_I); 440 case TargetOpcode::G_UDIV: 441 RTLIBCASE_INT(UDIV_I); 442 case TargetOpcode::G_SREM: 443 RTLIBCASE_INT(SREM_I); 444 case TargetOpcode::G_UREM: 445 RTLIBCASE_INT(UREM_I); 446 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 447 RTLIBCASE_INT(CTLZ_I); 448 case TargetOpcode::G_FADD: 449 RTLIBCASE(ADD_F); 450 case TargetOpcode::G_FSUB: 451 RTLIBCASE(SUB_F); 452 case TargetOpcode::G_FMUL: 453 RTLIBCASE(MUL_F); 454 case TargetOpcode::G_FDIV: 455 RTLIBCASE(DIV_F); 456 case TargetOpcode::G_FEXP: 457 RTLIBCASE(EXP_F); 458 case TargetOpcode::G_FEXP2: 459 RTLIBCASE(EXP2_F); 460 case TargetOpcode::G_FREM: 461 RTLIBCASE(REM_F); 462 case TargetOpcode::G_FPOW: 463 RTLIBCASE(POW_F); 464 case TargetOpcode::G_FMA: 465 RTLIBCASE(FMA_F); 466 case TargetOpcode::G_FSIN: 467 RTLIBCASE(SIN_F); 468 case TargetOpcode::G_FCOS: 469 RTLIBCASE(COS_F); 470 case TargetOpcode::G_FLOG10: 471 RTLIBCASE(LOG10_F); 472 case TargetOpcode::G_FLOG: 473 RTLIBCASE(LOG_F); 474 case TargetOpcode::G_FLOG2: 475 RTLIBCASE(LOG2_F); 476 case TargetOpcode::G_FCEIL: 477 RTLIBCASE(CEIL_F); 478 case TargetOpcode::G_FFLOOR: 479 RTLIBCASE(FLOOR_F); 480 case TargetOpcode::G_FMINNUM: 481 RTLIBCASE(FMIN_F); 482 case TargetOpcode::G_FMAXNUM: 483 RTLIBCASE(FMAX_F); 484 case TargetOpcode::G_FSQRT: 485 RTLIBCASE(SQRT_F); 486 case TargetOpcode::G_FRINT: 487 RTLIBCASE(RINT_F); 488 case TargetOpcode::G_FNEARBYINT: 489 RTLIBCASE(NEARBYINT_F); 490 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 491 RTLIBCASE(ROUNDEVEN_F); 492 } 493 llvm_unreachable("Unknown libcall function"); 494 } 495 496 /// True if an instruction is in tail position in its caller. Intended for 497 /// legalizing libcalls as tail calls when possible. 498 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 499 MachineInstr &MI) { 500 MachineBasicBlock &MBB = *MI.getParent(); 501 const Function &F = MBB.getParent()->getFunction(); 502 503 // Conservatively require the attributes of the call to match those of 504 // the return. Ignore NoAlias and NonNull because they don't affect the 505 // call sequence. 506 AttributeList CallerAttrs = F.getAttributes(); 507 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 508 .removeAttribute(Attribute::NoAlias) 509 .removeAttribute(Attribute::NonNull) 510 .hasAttributes()) 511 return false; 512 513 // It's not safe to eliminate the sign / zero extension of the return value. 514 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 515 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 516 return false; 517 518 // Only tail call if the following instruction is a standard return. 519 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 520 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 521 return false; 522 523 return true; 524 } 525 526 LegalizerHelper::LegalizeResult 527 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 528 const CallLowering::ArgInfo &Result, 529 ArrayRef<CallLowering::ArgInfo> Args, 530 const CallingConv::ID CC) { 531 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 532 533 CallLowering::CallLoweringInfo Info; 534 Info.CallConv = CC; 535 Info.Callee = MachineOperand::CreateES(Name); 536 Info.OrigRet = Result; 537 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 538 if (!CLI.lowerCall(MIRBuilder, Info)) 539 return LegalizerHelper::UnableToLegalize; 540 541 return LegalizerHelper::Legalized; 542 } 543 544 LegalizerHelper::LegalizeResult 545 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 546 const CallLowering::ArgInfo &Result, 547 ArrayRef<CallLowering::ArgInfo> Args) { 548 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 549 const char *Name = TLI.getLibcallName(Libcall); 550 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 551 return createLibcall(MIRBuilder, Name, Result, Args, CC); 552 } 553 554 // Useful for libcalls where all operands have the same type. 555 static LegalizerHelper::LegalizeResult 556 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 557 Type *OpType) { 558 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 559 560 SmallVector<CallLowering::ArgInfo, 3> Args; 561 for (unsigned i = 1; i < MI.getNumOperands(); i++) 562 Args.push_back({MI.getOperand(i).getReg(), OpType}); 563 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 564 Args); 565 } 566 567 LegalizerHelper::LegalizeResult 568 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 569 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 570 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 571 572 SmallVector<CallLowering::ArgInfo, 3> Args; 573 // Add all the args, except for the last which is an imm denoting 'tail'. 574 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 575 Register Reg = MI.getOperand(i).getReg(); 576 577 // Need derive an IR type for call lowering. 578 LLT OpLLT = MRI.getType(Reg); 579 Type *OpTy = nullptr; 580 if (OpLLT.isPointer()) 581 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 582 else 583 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 584 Args.push_back({Reg, OpTy}); 585 } 586 587 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 588 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 589 RTLIB::Libcall RTLibcall; 590 unsigned Opc = MI.getOpcode(); 591 switch (Opc) { 592 case TargetOpcode::G_BZERO: 593 RTLibcall = RTLIB::BZERO; 594 break; 595 case TargetOpcode::G_MEMCPY: 596 RTLibcall = RTLIB::MEMCPY; 597 break; 598 case TargetOpcode::G_MEMMOVE: 599 RTLibcall = RTLIB::MEMMOVE; 600 break; 601 case TargetOpcode::G_MEMSET: 602 RTLibcall = RTLIB::MEMSET; 603 break; 604 default: 605 return LegalizerHelper::UnableToLegalize; 606 } 607 const char *Name = TLI.getLibcallName(RTLibcall); 608 609 // Unsupported libcall on the target. 610 if (!Name) { 611 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 612 << MIRBuilder.getTII().getName(Opc) << "\n"); 613 return LegalizerHelper::UnableToLegalize; 614 } 615 616 CallLowering::CallLoweringInfo Info; 617 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 618 Info.Callee = MachineOperand::CreateES(Name); 619 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 620 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 621 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 622 623 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 624 if (!CLI.lowerCall(MIRBuilder, Info)) 625 return LegalizerHelper::UnableToLegalize; 626 627 628 if (Info.LoweredTailCall) { 629 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 630 631 // Check debug locations before removing the return. 632 LocObserver.checkpoint(true); 633 634 // We must have a return following the call (or debug insts) to get past 635 // isLibCallInTailPosition. 636 do { 637 MachineInstr *Next = MI.getNextNode(); 638 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 639 "Expected instr following MI to be return or debug inst?"); 640 // We lowered a tail call, so the call is now the return from the block. 641 // Delete the old return. 642 Next->eraseFromParent(); 643 } while (MI.getNextNode()); 644 645 // We expect to lose the debug location from the return. 646 LocObserver.checkpoint(false); 647 } 648 649 return LegalizerHelper::Legalized; 650 } 651 652 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 653 Type *FromType) { 654 auto ToMVT = MVT::getVT(ToType); 655 auto FromMVT = MVT::getVT(FromType); 656 657 switch (Opcode) { 658 case TargetOpcode::G_FPEXT: 659 return RTLIB::getFPEXT(FromMVT, ToMVT); 660 case TargetOpcode::G_FPTRUNC: 661 return RTLIB::getFPROUND(FromMVT, ToMVT); 662 case TargetOpcode::G_FPTOSI: 663 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 664 case TargetOpcode::G_FPTOUI: 665 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 666 case TargetOpcode::G_SITOFP: 667 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 668 case TargetOpcode::G_UITOFP: 669 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 670 } 671 llvm_unreachable("Unsupported libcall function"); 672 } 673 674 static LegalizerHelper::LegalizeResult 675 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 676 Type *FromType) { 677 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 678 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 679 {{MI.getOperand(1).getReg(), FromType}}); 680 } 681 682 LegalizerHelper::LegalizeResult 683 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 684 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 685 unsigned Size = LLTy.getSizeInBits(); 686 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 687 688 switch (MI.getOpcode()) { 689 default: 690 return UnableToLegalize; 691 case TargetOpcode::G_SDIV: 692 case TargetOpcode::G_UDIV: 693 case TargetOpcode::G_SREM: 694 case TargetOpcode::G_UREM: 695 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 696 Type *HLTy = IntegerType::get(Ctx, Size); 697 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 698 if (Status != Legalized) 699 return Status; 700 break; 701 } 702 case TargetOpcode::G_FADD: 703 case TargetOpcode::G_FSUB: 704 case TargetOpcode::G_FMUL: 705 case TargetOpcode::G_FDIV: 706 case TargetOpcode::G_FMA: 707 case TargetOpcode::G_FPOW: 708 case TargetOpcode::G_FREM: 709 case TargetOpcode::G_FCOS: 710 case TargetOpcode::G_FSIN: 711 case TargetOpcode::G_FLOG10: 712 case TargetOpcode::G_FLOG: 713 case TargetOpcode::G_FLOG2: 714 case TargetOpcode::G_FEXP: 715 case TargetOpcode::G_FEXP2: 716 case TargetOpcode::G_FCEIL: 717 case TargetOpcode::G_FFLOOR: 718 case TargetOpcode::G_FMINNUM: 719 case TargetOpcode::G_FMAXNUM: 720 case TargetOpcode::G_FSQRT: 721 case TargetOpcode::G_FRINT: 722 case TargetOpcode::G_FNEARBYINT: 723 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 724 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 725 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 726 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 727 return UnableToLegalize; 728 } 729 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPEXT: 735 case TargetOpcode::G_FPTRUNC: { 736 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 737 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 738 if (!FromTy || !ToTy) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 741 if (Status != Legalized) 742 return Status; 743 break; 744 } 745 case TargetOpcode::G_FPTOSI: 746 case TargetOpcode::G_FPTOUI: { 747 // FIXME: Support other types 748 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 749 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 750 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 751 return UnableToLegalize; 752 LegalizeResult Status = conversionLibcall( 753 MI, MIRBuilder, 754 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 755 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 756 if (Status != Legalized) 757 return Status; 758 break; 759 } 760 case TargetOpcode::G_SITOFP: 761 case TargetOpcode::G_UITOFP: { 762 // FIXME: Support other types 763 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 764 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 765 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 766 return UnableToLegalize; 767 LegalizeResult Status = conversionLibcall( 768 MI, MIRBuilder, 769 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 770 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 case TargetOpcode::G_BZERO: 776 case TargetOpcode::G_MEMCPY: 777 case TargetOpcode::G_MEMMOVE: 778 case TargetOpcode::G_MEMSET: { 779 LegalizeResult Result = 780 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 781 if (Result != Legalized) 782 return Result; 783 MI.eraseFromParent(); 784 return Result; 785 } 786 } 787 788 MI.eraseFromParent(); 789 return Legalized; 790 } 791 792 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 793 unsigned TypeIdx, 794 LLT NarrowTy) { 795 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 796 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 797 798 switch (MI.getOpcode()) { 799 default: 800 return UnableToLegalize; 801 case TargetOpcode::G_IMPLICIT_DEF: { 802 Register DstReg = MI.getOperand(0).getReg(); 803 LLT DstTy = MRI.getType(DstReg); 804 805 // If SizeOp0 is not an exact multiple of NarrowSize, emit 806 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 807 // FIXME: Although this would also be legal for the general case, it causes 808 // a lot of regressions in the emitted code (superfluous COPYs, artifact 809 // combines not being hit). This seems to be a problem related to the 810 // artifact combiner. 811 if (SizeOp0 % NarrowSize != 0) { 812 LLT ImplicitTy = NarrowTy; 813 if (DstTy.isVector()) 814 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 815 816 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 817 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 818 819 MI.eraseFromParent(); 820 return Legalized; 821 } 822 823 int NumParts = SizeOp0 / NarrowSize; 824 825 SmallVector<Register, 2> DstRegs; 826 for (int i = 0; i < NumParts; ++i) 827 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 828 829 if (DstTy.isVector()) 830 MIRBuilder.buildBuildVector(DstReg, DstRegs); 831 else 832 MIRBuilder.buildMerge(DstReg, DstRegs); 833 MI.eraseFromParent(); 834 return Legalized; 835 } 836 case TargetOpcode::G_CONSTANT: { 837 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 838 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 839 unsigned TotalSize = Ty.getSizeInBits(); 840 unsigned NarrowSize = NarrowTy.getSizeInBits(); 841 int NumParts = TotalSize / NarrowSize; 842 843 SmallVector<Register, 4> PartRegs; 844 for (int I = 0; I != NumParts; ++I) { 845 unsigned Offset = I * NarrowSize; 846 auto K = MIRBuilder.buildConstant(NarrowTy, 847 Val.lshr(Offset).trunc(NarrowSize)); 848 PartRegs.push_back(K.getReg(0)); 849 } 850 851 LLT LeftoverTy; 852 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 853 SmallVector<Register, 1> LeftoverRegs; 854 if (LeftoverBits != 0) { 855 LeftoverTy = LLT::scalar(LeftoverBits); 856 auto K = MIRBuilder.buildConstant( 857 LeftoverTy, 858 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 859 LeftoverRegs.push_back(K.getReg(0)); 860 } 861 862 insertParts(MI.getOperand(0).getReg(), 863 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 864 865 MI.eraseFromParent(); 866 return Legalized; 867 } 868 case TargetOpcode::G_SEXT: 869 case TargetOpcode::G_ZEXT: 870 case TargetOpcode::G_ANYEXT: 871 return narrowScalarExt(MI, TypeIdx, NarrowTy); 872 case TargetOpcode::G_TRUNC: { 873 if (TypeIdx != 1) 874 return UnableToLegalize; 875 876 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 877 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 878 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 879 return UnableToLegalize; 880 } 881 882 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 883 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 884 MI.eraseFromParent(); 885 return Legalized; 886 } 887 888 case TargetOpcode::G_FREEZE: 889 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_ADD: 891 case TargetOpcode::G_SUB: 892 case TargetOpcode::G_SADDO: 893 case TargetOpcode::G_SSUBO: 894 case TargetOpcode::G_SADDE: 895 case TargetOpcode::G_SSUBE: 896 case TargetOpcode::G_UADDO: 897 case TargetOpcode::G_USUBO: 898 case TargetOpcode::G_UADDE: 899 case TargetOpcode::G_USUBE: 900 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 901 case TargetOpcode::G_MUL: 902 case TargetOpcode::G_UMULH: 903 return narrowScalarMul(MI, NarrowTy); 904 case TargetOpcode::G_EXTRACT: 905 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 906 case TargetOpcode::G_INSERT: 907 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 908 case TargetOpcode::G_LOAD: { 909 auto &MMO = **MI.memoperands_begin(); 910 Register DstReg = MI.getOperand(0).getReg(); 911 LLT DstTy = MRI.getType(DstReg); 912 if (DstTy.isVector()) 913 return UnableToLegalize; 914 915 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 916 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 917 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 918 MIRBuilder.buildAnyExt(DstReg, TmpReg); 919 MI.eraseFromParent(); 920 return Legalized; 921 } 922 923 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 924 } 925 case TargetOpcode::G_ZEXTLOAD: 926 case TargetOpcode::G_SEXTLOAD: { 927 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 928 Register DstReg = MI.getOperand(0).getReg(); 929 Register PtrReg = MI.getOperand(1).getReg(); 930 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 auto &MMO = **MI.memoperands_begin(); 933 unsigned MemSize = MMO.getSizeInBits(); 934 935 if (MemSize == NarrowSize) { 936 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 937 } else if (MemSize < NarrowSize) { 938 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 939 } else if (MemSize > NarrowSize) { 940 // FIXME: Need to split the load. 941 return UnableToLegalize; 942 } 943 944 if (ZExt) 945 MIRBuilder.buildZExt(DstReg, TmpReg); 946 else 947 MIRBuilder.buildSExt(DstReg, TmpReg); 948 949 MI.eraseFromParent(); 950 return Legalized; 951 } 952 case TargetOpcode::G_STORE: { 953 const auto &MMO = **MI.memoperands_begin(); 954 955 Register SrcReg = MI.getOperand(0).getReg(); 956 LLT SrcTy = MRI.getType(SrcReg); 957 if (SrcTy.isVector()) 958 return UnableToLegalize; 959 960 int NumParts = SizeOp0 / NarrowSize; 961 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 962 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 963 if (SrcTy.isVector() && LeftoverBits != 0) 964 return UnableToLegalize; 965 966 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 967 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 968 auto &MMO = **MI.memoperands_begin(); 969 MIRBuilder.buildTrunc(TmpReg, SrcReg); 970 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 971 MI.eraseFromParent(); 972 return Legalized; 973 } 974 975 return reduceLoadStoreWidth(MI, 0, NarrowTy); 976 } 977 case TargetOpcode::G_SELECT: 978 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_AND: 980 case TargetOpcode::G_OR: 981 case TargetOpcode::G_XOR: { 982 // Legalize bitwise operation: 983 // A = BinOp<Ty> B, C 984 // into: 985 // B1, ..., BN = G_UNMERGE_VALUES B 986 // C1, ..., CN = G_UNMERGE_VALUES C 987 // A1 = BinOp<Ty/N> B1, C2 988 // ... 989 // AN = BinOp<Ty/N> BN, CN 990 // A = G_MERGE_VALUES A1, ..., AN 991 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 992 } 993 case TargetOpcode::G_SHL: 994 case TargetOpcode::G_LSHR: 995 case TargetOpcode::G_ASHR: 996 return narrowScalarShift(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTLZ: 998 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 case TargetOpcode::G_CTPOP: 1002 if (TypeIdx == 1) 1003 switch (MI.getOpcode()) { 1004 case TargetOpcode::G_CTLZ: 1005 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1006 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1007 case TargetOpcode::G_CTTZ: 1008 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1009 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1010 case TargetOpcode::G_CTPOP: 1011 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1012 default: 1013 return UnableToLegalize; 1014 } 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_INTTOPTR: 1021 if (TypeIdx != 1) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarSrc(MI, NarrowTy, 1); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PTRTOINT: 1029 if (TypeIdx != 0) 1030 return UnableToLegalize; 1031 1032 Observer.changingInstr(MI); 1033 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1034 Observer.changedInstr(MI); 1035 return Legalized; 1036 case TargetOpcode::G_PHI: { 1037 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1038 // NarrowSize. 1039 if (SizeOp0 % NarrowSize != 0) 1040 return UnableToLegalize; 1041 1042 unsigned NumParts = SizeOp0 / NarrowSize; 1043 SmallVector<Register, 2> DstRegs(NumParts); 1044 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1045 Observer.changingInstr(MI); 1046 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1047 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1048 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1049 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1050 SrcRegs[i / 2]); 1051 } 1052 MachineBasicBlock &MBB = *MI.getParent(); 1053 MIRBuilder.setInsertPt(MBB, MI); 1054 for (unsigned i = 0; i < NumParts; ++i) { 1055 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1056 MachineInstrBuilder MIB = 1057 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1058 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1059 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1060 } 1061 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1062 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1063 Observer.changedInstr(MI); 1064 MI.eraseFromParent(); 1065 return Legalized; 1066 } 1067 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1068 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1069 if (TypeIdx != 2) 1070 return UnableToLegalize; 1071 1072 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1073 Observer.changingInstr(MI); 1074 narrowScalarSrc(MI, NarrowTy, OpIdx); 1075 Observer.changedInstr(MI); 1076 return Legalized; 1077 } 1078 case TargetOpcode::G_ICMP: { 1079 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1080 if (NarrowSize * 2 != SrcSize) 1081 return UnableToLegalize; 1082 1083 Observer.changingInstr(MI); 1084 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1085 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1086 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1087 1088 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1089 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1091 1092 CmpInst::Predicate Pred = 1093 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1094 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1095 1096 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1097 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1098 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1099 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1100 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1101 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1102 } else { 1103 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1104 MachineInstrBuilder CmpHEQ = 1105 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1106 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1107 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1108 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1109 } 1110 Observer.changedInstr(MI); 1111 MI.eraseFromParent(); 1112 return Legalized; 1113 } 1114 case TargetOpcode::G_SEXT_INREG: { 1115 if (TypeIdx != 0) 1116 return UnableToLegalize; 1117 1118 int64_t SizeInBits = MI.getOperand(2).getImm(); 1119 1120 // So long as the new type has more bits than the bits we're extending we 1121 // don't need to break it apart. 1122 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1123 Observer.changingInstr(MI); 1124 // We don't lose any non-extension bits by truncating the src and 1125 // sign-extending the dst. 1126 MachineOperand &MO1 = MI.getOperand(1); 1127 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1128 MO1.setReg(TruncMIB.getReg(0)); 1129 1130 MachineOperand &MO2 = MI.getOperand(0); 1131 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1132 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1133 MIRBuilder.buildSExt(MO2, DstExt); 1134 MO2.setReg(DstExt); 1135 Observer.changedInstr(MI); 1136 return Legalized; 1137 } 1138 1139 // Break it apart. Components below the extension point are unmodified. The 1140 // component containing the extension point becomes a narrower SEXT_INREG. 1141 // Components above it are ashr'd from the component containing the 1142 // extension point. 1143 if (SizeOp0 % NarrowSize != 0) 1144 return UnableToLegalize; 1145 int NumParts = SizeOp0 / NarrowSize; 1146 1147 // List the registers where the destination will be scattered. 1148 SmallVector<Register, 2> DstRegs; 1149 // List the registers where the source will be split. 1150 SmallVector<Register, 2> SrcRegs; 1151 1152 // Create all the temporary registers. 1153 for (int i = 0; i < NumParts; ++i) { 1154 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1155 1156 SrcRegs.push_back(SrcReg); 1157 } 1158 1159 // Explode the big arguments into smaller chunks. 1160 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1161 1162 Register AshrCstReg = 1163 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1164 .getReg(0); 1165 Register FullExtensionReg = 0; 1166 Register PartialExtensionReg = 0; 1167 1168 // Do the operation on each small part. 1169 for (int i = 0; i < NumParts; ++i) { 1170 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1171 DstRegs.push_back(SrcRegs[i]); 1172 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1173 assert(PartialExtensionReg && 1174 "Expected to visit partial extension before full"); 1175 if (FullExtensionReg) { 1176 DstRegs.push_back(FullExtensionReg); 1177 continue; 1178 } 1179 DstRegs.push_back( 1180 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1181 .getReg(0)); 1182 FullExtensionReg = DstRegs.back(); 1183 } else { 1184 DstRegs.push_back( 1185 MIRBuilder 1186 .buildInstr( 1187 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1188 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1189 .getReg(0)); 1190 PartialExtensionReg = DstRegs.back(); 1191 } 1192 } 1193 1194 // Gather the destination registers into the final destination. 1195 Register DstReg = MI.getOperand(0).getReg(); 1196 MIRBuilder.buildMerge(DstReg, DstRegs); 1197 MI.eraseFromParent(); 1198 return Legalized; 1199 } 1200 case TargetOpcode::G_BSWAP: 1201 case TargetOpcode::G_BITREVERSE: { 1202 if (SizeOp0 % NarrowSize != 0) 1203 return UnableToLegalize; 1204 1205 Observer.changingInstr(MI); 1206 SmallVector<Register, 2> SrcRegs, DstRegs; 1207 unsigned NumParts = SizeOp0 / NarrowSize; 1208 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1209 1210 for (unsigned i = 0; i < NumParts; ++i) { 1211 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1212 {SrcRegs[NumParts - 1 - i]}); 1213 DstRegs.push_back(DstPart.getReg(0)); 1214 } 1215 1216 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1217 1218 Observer.changedInstr(MI); 1219 MI.eraseFromParent(); 1220 return Legalized; 1221 } 1222 case TargetOpcode::G_PTR_ADD: 1223 case TargetOpcode::G_PTRMASK: { 1224 if (TypeIdx != 1) 1225 return UnableToLegalize; 1226 Observer.changingInstr(MI); 1227 narrowScalarSrc(MI, NarrowTy, 2); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 case TargetOpcode::G_FPTOUI: 1232 case TargetOpcode::G_FPTOSI: 1233 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1234 case TargetOpcode::G_FPEXT: 1235 if (TypeIdx != 0) 1236 return UnableToLegalize; 1237 Observer.changingInstr(MI); 1238 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 } 1242 } 1243 1244 Register LegalizerHelper::coerceToScalar(Register Val) { 1245 LLT Ty = MRI.getType(Val); 1246 if (Ty.isScalar()) 1247 return Val; 1248 1249 const DataLayout &DL = MIRBuilder.getDataLayout(); 1250 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1251 if (Ty.isPointer()) { 1252 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1253 return Register(); 1254 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1255 } 1256 1257 Register NewVal = Val; 1258 1259 assert(Ty.isVector()); 1260 LLT EltTy = Ty.getElementType(); 1261 if (EltTy.isPointer()) 1262 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1263 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1264 } 1265 1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1267 unsigned OpIdx, unsigned ExtOpcode) { 1268 MachineOperand &MO = MI.getOperand(OpIdx); 1269 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1270 MO.setReg(ExtB.getReg(0)); 1271 } 1272 1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1274 unsigned OpIdx) { 1275 MachineOperand &MO = MI.getOperand(OpIdx); 1276 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1277 MO.setReg(ExtB.getReg(0)); 1278 } 1279 1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1281 unsigned OpIdx, unsigned TruncOpcode) { 1282 MachineOperand &MO = MI.getOperand(OpIdx); 1283 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1284 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1285 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1286 MO.setReg(DstExt); 1287 } 1288 1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1290 unsigned OpIdx, unsigned ExtOpcode) { 1291 MachineOperand &MO = MI.getOperand(OpIdx); 1292 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1293 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1294 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1295 MO.setReg(DstTrunc); 1296 } 1297 1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1299 unsigned OpIdx) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1302 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1303 } 1304 1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1306 unsigned OpIdx) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 1309 LLT OldTy = MRI.getType(MO.getReg()); 1310 unsigned OldElts = OldTy.getNumElements(); 1311 unsigned NewElts = MoreTy.getNumElements(); 1312 1313 unsigned NumParts = NewElts / OldElts; 1314 1315 // Use concat_vectors if the result is a multiple of the number of elements. 1316 if (NumParts * OldElts == NewElts) { 1317 SmallVector<Register, 8> Parts; 1318 Parts.push_back(MO.getReg()); 1319 1320 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1321 for (unsigned I = 1; I != NumParts; ++I) 1322 Parts.push_back(ImpDef); 1323 1324 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1325 MO.setReg(Concat.getReg(0)); 1326 return; 1327 } 1328 1329 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1330 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1331 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1332 MO.setReg(MoreReg); 1333 } 1334 1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1336 MachineOperand &Op = MI.getOperand(OpIdx); 1337 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1338 } 1339 1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1341 MachineOperand &MO = MI.getOperand(OpIdx); 1342 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1343 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1344 MIRBuilder.buildBitcast(MO, CastDst); 1345 MO.setReg(CastDst); 1346 } 1347 1348 LegalizerHelper::LegalizeResult 1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1350 LLT WideTy) { 1351 if (TypeIdx != 1) 1352 return UnableToLegalize; 1353 1354 Register DstReg = MI.getOperand(0).getReg(); 1355 LLT DstTy = MRI.getType(DstReg); 1356 if (DstTy.isVector()) 1357 return UnableToLegalize; 1358 1359 Register Src1 = MI.getOperand(1).getReg(); 1360 LLT SrcTy = MRI.getType(Src1); 1361 const int DstSize = DstTy.getSizeInBits(); 1362 const int SrcSize = SrcTy.getSizeInBits(); 1363 const int WideSize = WideTy.getSizeInBits(); 1364 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1365 1366 unsigned NumOps = MI.getNumOperands(); 1367 unsigned NumSrc = MI.getNumOperands() - 1; 1368 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1369 1370 if (WideSize >= DstSize) { 1371 // Directly pack the bits in the target type. 1372 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1373 1374 for (unsigned I = 2; I != NumOps; ++I) { 1375 const unsigned Offset = (I - 1) * PartSize; 1376 1377 Register SrcReg = MI.getOperand(I).getReg(); 1378 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1379 1380 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1381 1382 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1383 MRI.createGenericVirtualRegister(WideTy); 1384 1385 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1386 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1387 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1388 ResultReg = NextResult; 1389 } 1390 1391 if (WideSize > DstSize) 1392 MIRBuilder.buildTrunc(DstReg, ResultReg); 1393 else if (DstTy.isPointer()) 1394 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1395 1396 MI.eraseFromParent(); 1397 return Legalized; 1398 } 1399 1400 // Unmerge the original values to the GCD type, and recombine to the next 1401 // multiple greater than the original type. 1402 // 1403 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1404 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1405 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1406 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1407 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1408 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1409 // %12:_(s12) = G_MERGE_VALUES %10, %11 1410 // 1411 // Padding with undef if necessary: 1412 // 1413 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1414 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1415 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1416 // %7:_(s2) = G_IMPLICIT_DEF 1417 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1418 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1419 // %10:_(s12) = G_MERGE_VALUES %8, %9 1420 1421 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1422 LLT GCDTy = LLT::scalar(GCD); 1423 1424 SmallVector<Register, 8> Parts; 1425 SmallVector<Register, 8> NewMergeRegs; 1426 SmallVector<Register, 8> Unmerges; 1427 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1428 1429 // Decompose the original operands if they don't evenly divide. 1430 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1431 Register SrcReg = MI.getOperand(I).getReg(); 1432 if (GCD == SrcSize) { 1433 Unmerges.push_back(SrcReg); 1434 } else { 1435 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1436 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1437 Unmerges.push_back(Unmerge.getReg(J)); 1438 } 1439 } 1440 1441 // Pad with undef to the next size that is a multiple of the requested size. 1442 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1443 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1444 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1445 Unmerges.push_back(UndefReg); 1446 } 1447 1448 const int PartsPerGCD = WideSize / GCD; 1449 1450 // Build merges of each piece. 1451 ArrayRef<Register> Slicer(Unmerges); 1452 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1453 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1454 NewMergeRegs.push_back(Merge.getReg(0)); 1455 } 1456 1457 // A truncate may be necessary if the requested type doesn't evenly divide the 1458 // original result type. 1459 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1460 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1461 } else { 1462 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1463 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1464 } 1465 1466 MI.eraseFromParent(); 1467 return Legalized; 1468 } 1469 1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1471 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1472 LLT OrigTy = MRI.getType(OrigReg); 1473 LLT LCMTy = getLCMType(WideTy, OrigTy); 1474 1475 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1476 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1477 1478 Register UnmergeSrc = WideReg; 1479 1480 // Create a merge to the LCM type, padding with undef 1481 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1482 // => 1483 // %1:_(<4 x s32>) = G_FOO 1484 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1485 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1486 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1487 if (NumMergeParts > 1) { 1488 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1489 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1490 MergeParts[0] = WideReg; 1491 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1492 } 1493 1494 // Unmerge to the original register and pad with dead defs. 1495 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1496 UnmergeResults[0] = OrigReg; 1497 for (int I = 1; I != NumUnmergeParts; ++I) 1498 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1499 1500 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1501 return WideReg; 1502 } 1503 1504 LegalizerHelper::LegalizeResult 1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1506 LLT WideTy) { 1507 if (TypeIdx != 0) 1508 return UnableToLegalize; 1509 1510 int NumDst = MI.getNumOperands() - 1; 1511 Register SrcReg = MI.getOperand(NumDst).getReg(); 1512 LLT SrcTy = MRI.getType(SrcReg); 1513 if (SrcTy.isVector()) 1514 return UnableToLegalize; 1515 1516 Register Dst0Reg = MI.getOperand(0).getReg(); 1517 LLT DstTy = MRI.getType(Dst0Reg); 1518 if (!DstTy.isScalar()) 1519 return UnableToLegalize; 1520 1521 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1522 if (SrcTy.isPointer()) { 1523 const DataLayout &DL = MIRBuilder.getDataLayout(); 1524 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1525 LLVM_DEBUG( 1526 dbgs() << "Not casting non-integral address space integer\n"); 1527 return UnableToLegalize; 1528 } 1529 1530 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1531 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1532 } 1533 1534 // Widen SrcTy to WideTy. This does not affect the result, but since the 1535 // user requested this size, it is probably better handled than SrcTy and 1536 // should reduce the total number of legalization artifacts 1537 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1538 SrcTy = WideTy; 1539 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1540 } 1541 1542 // Theres no unmerge type to target. Directly extract the bits from the 1543 // source type 1544 unsigned DstSize = DstTy.getSizeInBits(); 1545 1546 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1547 for (int I = 1; I != NumDst; ++I) { 1548 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1549 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1550 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1551 } 1552 1553 MI.eraseFromParent(); 1554 return Legalized; 1555 } 1556 1557 // Extend the source to a wider type. 1558 LLT LCMTy = getLCMType(SrcTy, WideTy); 1559 1560 Register WideSrc = SrcReg; 1561 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1562 // TODO: If this is an integral address space, cast to integer and anyext. 1563 if (SrcTy.isPointer()) { 1564 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1565 return UnableToLegalize; 1566 } 1567 1568 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1569 } 1570 1571 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1572 1573 // Create a sequence of unmerges and merges to the original results. Since we 1574 // may have widened the source, we will need to pad the results with dead defs 1575 // to cover the source register. 1576 // e.g. widen s48 to s64: 1577 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1578 // 1579 // => 1580 // %4:_(s192) = G_ANYEXT %0:_(s96) 1581 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1582 // ; unpack to GCD type, with extra dead defs 1583 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1584 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1585 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1586 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1587 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1588 const LLT GCDTy = getGCDType(WideTy, DstTy); 1589 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1590 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1591 1592 // Directly unmerge to the destination without going through a GCD type 1593 // if possible 1594 if (PartsPerRemerge == 1) { 1595 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1596 1597 for (int I = 0; I != NumUnmerge; ++I) { 1598 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1599 1600 for (int J = 0; J != PartsPerUnmerge; ++J) { 1601 int Idx = I * PartsPerUnmerge + J; 1602 if (Idx < NumDst) 1603 MIB.addDef(MI.getOperand(Idx).getReg()); 1604 else { 1605 // Create dead def for excess components. 1606 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1607 } 1608 } 1609 1610 MIB.addUse(Unmerge.getReg(I)); 1611 } 1612 } else { 1613 SmallVector<Register, 16> Parts; 1614 for (int J = 0; J != NumUnmerge; ++J) 1615 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1616 1617 SmallVector<Register, 8> RemergeParts; 1618 for (int I = 0; I != NumDst; ++I) { 1619 for (int J = 0; J < PartsPerRemerge; ++J) { 1620 const int Idx = I * PartsPerRemerge + J; 1621 RemergeParts.emplace_back(Parts[Idx]); 1622 } 1623 1624 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1625 RemergeParts.clear(); 1626 } 1627 } 1628 1629 MI.eraseFromParent(); 1630 return Legalized; 1631 } 1632 1633 LegalizerHelper::LegalizeResult 1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1635 LLT WideTy) { 1636 Register DstReg = MI.getOperand(0).getReg(); 1637 Register SrcReg = MI.getOperand(1).getReg(); 1638 LLT SrcTy = MRI.getType(SrcReg); 1639 1640 LLT DstTy = MRI.getType(DstReg); 1641 unsigned Offset = MI.getOperand(2).getImm(); 1642 1643 if (TypeIdx == 0) { 1644 if (SrcTy.isVector() || DstTy.isVector()) 1645 return UnableToLegalize; 1646 1647 SrcOp Src(SrcReg); 1648 if (SrcTy.isPointer()) { 1649 // Extracts from pointers can be handled only if they are really just 1650 // simple integers. 1651 const DataLayout &DL = MIRBuilder.getDataLayout(); 1652 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1653 return UnableToLegalize; 1654 1655 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1656 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1657 SrcTy = SrcAsIntTy; 1658 } 1659 1660 if (DstTy.isPointer()) 1661 return UnableToLegalize; 1662 1663 if (Offset == 0) { 1664 // Avoid a shift in the degenerate case. 1665 MIRBuilder.buildTrunc(DstReg, 1666 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1667 MI.eraseFromParent(); 1668 return Legalized; 1669 } 1670 1671 // Do a shift in the source type. 1672 LLT ShiftTy = SrcTy; 1673 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1674 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1675 ShiftTy = WideTy; 1676 } 1677 1678 auto LShr = MIRBuilder.buildLShr( 1679 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1680 MIRBuilder.buildTrunc(DstReg, LShr); 1681 MI.eraseFromParent(); 1682 return Legalized; 1683 } 1684 1685 if (SrcTy.isScalar()) { 1686 Observer.changingInstr(MI); 1687 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1688 Observer.changedInstr(MI); 1689 return Legalized; 1690 } 1691 1692 if (!SrcTy.isVector()) 1693 return UnableToLegalize; 1694 1695 if (DstTy != SrcTy.getElementType()) 1696 return UnableToLegalize; 1697 1698 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1699 return UnableToLegalize; 1700 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1703 1704 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1705 Offset); 1706 widenScalarDst(MI, WideTy.getScalarType(), 0); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx != 0 || WideTy.isVector()) 1715 return UnableToLegalize; 1716 Observer.changingInstr(MI); 1717 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1718 widenScalarDst(MI, WideTy); 1719 Observer.changedInstr(MI); 1720 return Legalized; 1721 } 1722 1723 LegalizerHelper::LegalizeResult 1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1725 LLT WideTy) { 1726 if (TypeIdx == 1) 1727 return UnableToLegalize; // TODO 1728 1729 unsigned Opcode; 1730 unsigned ExtOpcode; 1731 Optional<Register> CarryIn = None; 1732 switch (MI.getOpcode()) { 1733 default: 1734 llvm_unreachable("Unexpected opcode!"); 1735 case TargetOpcode::G_SADDO: 1736 Opcode = TargetOpcode::G_ADD; 1737 ExtOpcode = TargetOpcode::G_SEXT; 1738 break; 1739 case TargetOpcode::G_SSUBO: 1740 Opcode = TargetOpcode::G_SUB; 1741 ExtOpcode = TargetOpcode::G_SEXT; 1742 break; 1743 case TargetOpcode::G_UADDO: 1744 Opcode = TargetOpcode::G_ADD; 1745 ExtOpcode = TargetOpcode::G_ZEXT; 1746 break; 1747 case TargetOpcode::G_USUBO: 1748 Opcode = TargetOpcode::G_SUB; 1749 ExtOpcode = TargetOpcode::G_ZEXT; 1750 break; 1751 case TargetOpcode::G_SADDE: 1752 Opcode = TargetOpcode::G_UADDE; 1753 ExtOpcode = TargetOpcode::G_SEXT; 1754 CarryIn = MI.getOperand(4).getReg(); 1755 break; 1756 case TargetOpcode::G_SSUBE: 1757 Opcode = TargetOpcode::G_USUBE; 1758 ExtOpcode = TargetOpcode::G_SEXT; 1759 CarryIn = MI.getOperand(4).getReg(); 1760 break; 1761 case TargetOpcode::G_UADDE: 1762 Opcode = TargetOpcode::G_UADDE; 1763 ExtOpcode = TargetOpcode::G_ZEXT; 1764 CarryIn = MI.getOperand(4).getReg(); 1765 break; 1766 case TargetOpcode::G_USUBE: 1767 Opcode = TargetOpcode::G_USUBE; 1768 ExtOpcode = TargetOpcode::G_ZEXT; 1769 CarryIn = MI.getOperand(4).getReg(); 1770 break; 1771 } 1772 1773 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1774 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1775 // Do the arithmetic in the larger type. 1776 Register NewOp; 1777 if (CarryIn) { 1778 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1779 NewOp = MIRBuilder 1780 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1781 {LHSExt, RHSExt, *CarryIn}) 1782 .getReg(0); 1783 } else { 1784 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1785 } 1786 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1787 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1788 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1789 // There is no overflow if the ExtOp is the same as NewOp. 1790 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1791 // Now trunc the NewOp to the original result. 1792 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1793 MI.eraseFromParent(); 1794 return Legalized; 1795 } 1796 1797 LegalizerHelper::LegalizeResult 1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1799 LLT WideTy) { 1800 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1801 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1802 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1803 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1804 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1805 // We can convert this to: 1806 // 1. Any extend iN to iM 1807 // 2. SHL by M-N 1808 // 3. [US][ADD|SUB|SHL]SAT 1809 // 4. L/ASHR by M-N 1810 // 1811 // It may be more efficient to lower this to a min and a max operation in 1812 // the higher precision arithmetic if the promoted operation isn't legal, 1813 // but this decision is up to the target's lowering request. 1814 Register DstReg = MI.getOperand(0).getReg(); 1815 1816 unsigned NewBits = WideTy.getScalarSizeInBits(); 1817 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1818 1819 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1820 // must not left shift the RHS to preserve the shift amount. 1821 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1822 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1823 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1824 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1825 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1826 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1827 1828 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1829 {ShiftL, ShiftR}, MI.getFlags()); 1830 1831 // Use a shift that will preserve the number of sign bits when the trunc is 1832 // folded away. 1833 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1834 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1835 1836 MIRBuilder.buildTrunc(DstReg, Result); 1837 MI.eraseFromParent(); 1838 return Legalized; 1839 } 1840 1841 LegalizerHelper::LegalizeResult 1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1843 LLT WideTy) { 1844 if (TypeIdx == 1) 1845 return UnableToLegalize; 1846 1847 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1848 Register Result = MI.getOperand(0).getReg(); 1849 Register OriginalOverflow = MI.getOperand(1).getReg(); 1850 Register LHS = MI.getOperand(2).getReg(); 1851 Register RHS = MI.getOperand(3).getReg(); 1852 LLT SrcTy = MRI.getType(LHS); 1853 LLT OverflowTy = MRI.getType(OriginalOverflow); 1854 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1855 1856 // To determine if the result overflowed in the larger type, we extend the 1857 // input to the larger type, do the multiply (checking if it overflows), 1858 // then also check the high bits of the result to see if overflow happened 1859 // there. 1860 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1861 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1862 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1863 1864 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1865 {LeftOperand, RightOperand}); 1866 auto Mul = Mulo->getOperand(0); 1867 MIRBuilder.buildTrunc(Result, Mul); 1868 1869 MachineInstrBuilder ExtResult; 1870 // Overflow occurred if it occurred in the larger type, or if the high part 1871 // of the result does not zero/sign-extend the low part. Check this second 1872 // possibility first. 1873 if (IsSigned) { 1874 // For signed, overflow occurred when the high part does not sign-extend 1875 // the low part. 1876 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1877 } else { 1878 // Unsigned overflow occurred when the high part does not zero-extend the 1879 // low part. 1880 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1881 } 1882 1883 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1884 // so we don't need to check the overflow result of larger type Mulo. 1885 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1886 auto Overflow = 1887 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1888 // Finally check if the multiplication in the larger type itself overflowed. 1889 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1890 } else { 1891 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1892 } 1893 MI.eraseFromParent(); 1894 return Legalized; 1895 } 1896 1897 LegalizerHelper::LegalizeResult 1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1899 switch (MI.getOpcode()) { 1900 default: 1901 return UnableToLegalize; 1902 case TargetOpcode::G_EXTRACT: 1903 return widenScalarExtract(MI, TypeIdx, WideTy); 1904 case TargetOpcode::G_INSERT: 1905 return widenScalarInsert(MI, TypeIdx, WideTy); 1906 case TargetOpcode::G_MERGE_VALUES: 1907 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1908 case TargetOpcode::G_UNMERGE_VALUES: 1909 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1910 case TargetOpcode::G_SADDO: 1911 case TargetOpcode::G_SSUBO: 1912 case TargetOpcode::G_UADDO: 1913 case TargetOpcode::G_USUBO: 1914 case TargetOpcode::G_SADDE: 1915 case TargetOpcode::G_SSUBE: 1916 case TargetOpcode::G_UADDE: 1917 case TargetOpcode::G_USUBE: 1918 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1919 case TargetOpcode::G_UMULO: 1920 case TargetOpcode::G_SMULO: 1921 return widenScalarMulo(MI, TypeIdx, WideTy); 1922 case TargetOpcode::G_SADDSAT: 1923 case TargetOpcode::G_SSUBSAT: 1924 case TargetOpcode::G_SSHLSAT: 1925 case TargetOpcode::G_UADDSAT: 1926 case TargetOpcode::G_USUBSAT: 1927 case TargetOpcode::G_USHLSAT: 1928 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1929 case TargetOpcode::G_CTTZ: 1930 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1931 case TargetOpcode::G_CTLZ: 1932 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1933 case TargetOpcode::G_CTPOP: { 1934 if (TypeIdx == 0) { 1935 Observer.changingInstr(MI); 1936 widenScalarDst(MI, WideTy, 0); 1937 Observer.changedInstr(MI); 1938 return Legalized; 1939 } 1940 1941 Register SrcReg = MI.getOperand(1).getReg(); 1942 1943 // First ZEXT the input. 1944 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1945 LLT CurTy = MRI.getType(SrcReg); 1946 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1947 // The count is the same in the larger type except if the original 1948 // value was zero. This can be handled by setting the bit just off 1949 // the top of the original type. 1950 auto TopBit = 1951 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1952 MIBSrc = MIRBuilder.buildOr( 1953 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1954 } 1955 1956 // Perform the operation at the larger size. 1957 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1958 // This is already the correct result for CTPOP and CTTZs 1959 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1960 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1961 // The correct result is NewOp - (Difference in widety and current ty). 1962 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1963 MIBNewOp = MIRBuilder.buildSub( 1964 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1965 } 1966 1967 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1968 MI.eraseFromParent(); 1969 return Legalized; 1970 } 1971 case TargetOpcode::G_BSWAP: { 1972 Observer.changingInstr(MI); 1973 Register DstReg = MI.getOperand(0).getReg(); 1974 1975 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1976 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1977 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1978 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1979 1980 MI.getOperand(0).setReg(DstExt); 1981 1982 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1983 1984 LLT Ty = MRI.getType(DstReg); 1985 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1986 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1987 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1988 1989 MIRBuilder.buildTrunc(DstReg, ShrReg); 1990 Observer.changedInstr(MI); 1991 return Legalized; 1992 } 1993 case TargetOpcode::G_BITREVERSE: { 1994 Observer.changingInstr(MI); 1995 1996 Register DstReg = MI.getOperand(0).getReg(); 1997 LLT Ty = MRI.getType(DstReg); 1998 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1999 2000 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2002 MI.getOperand(0).setReg(DstExt); 2003 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2004 2005 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2006 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2007 MIRBuilder.buildTrunc(DstReg, Shift); 2008 Observer.changedInstr(MI); 2009 return Legalized; 2010 } 2011 case TargetOpcode::G_FREEZE: 2012 Observer.changingInstr(MI); 2013 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2014 widenScalarDst(MI, WideTy); 2015 Observer.changedInstr(MI); 2016 return Legalized; 2017 2018 case TargetOpcode::G_ADD: 2019 case TargetOpcode::G_AND: 2020 case TargetOpcode::G_MUL: 2021 case TargetOpcode::G_OR: 2022 case TargetOpcode::G_XOR: 2023 case TargetOpcode::G_SUB: 2024 // Perform operation at larger width (any extension is fines here, high bits 2025 // don't affect the result) and then truncate the result back to the 2026 // original type. 2027 Observer.changingInstr(MI); 2028 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2029 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2030 widenScalarDst(MI, WideTy); 2031 Observer.changedInstr(MI); 2032 return Legalized; 2033 2034 case TargetOpcode::G_SHL: 2035 Observer.changingInstr(MI); 2036 2037 if (TypeIdx == 0) { 2038 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2039 widenScalarDst(MI, WideTy); 2040 } else { 2041 assert(TypeIdx == 1); 2042 // The "number of bits to shift" operand must preserve its value as an 2043 // unsigned integer: 2044 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2045 } 2046 2047 Observer.changedInstr(MI); 2048 return Legalized; 2049 2050 case TargetOpcode::G_SDIV: 2051 case TargetOpcode::G_SREM: 2052 case TargetOpcode::G_SMIN: 2053 case TargetOpcode::G_SMAX: 2054 Observer.changingInstr(MI); 2055 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2056 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2057 widenScalarDst(MI, WideTy); 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 2061 case TargetOpcode::G_SDIVREM: 2062 Observer.changingInstr(MI); 2063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2064 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2065 widenScalarDst(MI, WideTy); 2066 widenScalarDst(MI, WideTy, 1); 2067 Observer.changedInstr(MI); 2068 return Legalized; 2069 2070 case TargetOpcode::G_ASHR: 2071 case TargetOpcode::G_LSHR: 2072 Observer.changingInstr(MI); 2073 2074 if (TypeIdx == 0) { 2075 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2076 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2077 2078 widenScalarSrc(MI, WideTy, 1, CvtOp); 2079 widenScalarDst(MI, WideTy); 2080 } else { 2081 assert(TypeIdx == 1); 2082 // The "number of bits to shift" operand must preserve its value as an 2083 // unsigned integer: 2084 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2085 } 2086 2087 Observer.changedInstr(MI); 2088 return Legalized; 2089 case TargetOpcode::G_UDIV: 2090 case TargetOpcode::G_UREM: 2091 case TargetOpcode::G_UMIN: 2092 case TargetOpcode::G_UMAX: 2093 Observer.changingInstr(MI); 2094 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2095 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2096 widenScalarDst(MI, WideTy); 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 2100 case TargetOpcode::G_UDIVREM: 2101 Observer.changingInstr(MI); 2102 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2103 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2104 widenScalarDst(MI, WideTy); 2105 widenScalarDst(MI, WideTy, 1); 2106 Observer.changedInstr(MI); 2107 return Legalized; 2108 2109 case TargetOpcode::G_SELECT: 2110 Observer.changingInstr(MI); 2111 if (TypeIdx == 0) { 2112 // Perform operation at larger width (any extension is fine here, high 2113 // bits don't affect the result) and then truncate the result back to the 2114 // original type. 2115 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2116 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2117 widenScalarDst(MI, WideTy); 2118 } else { 2119 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2120 // Explicit extension is required here since high bits affect the result. 2121 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2122 } 2123 Observer.changedInstr(MI); 2124 return Legalized; 2125 2126 case TargetOpcode::G_FPTOSI: 2127 case TargetOpcode::G_FPTOUI: 2128 Observer.changingInstr(MI); 2129 2130 if (TypeIdx == 0) 2131 widenScalarDst(MI, WideTy); 2132 else 2133 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2134 2135 Observer.changedInstr(MI); 2136 return Legalized; 2137 case TargetOpcode::G_SITOFP: 2138 Observer.changingInstr(MI); 2139 2140 if (TypeIdx == 0) 2141 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2142 else 2143 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2144 2145 Observer.changedInstr(MI); 2146 return Legalized; 2147 case TargetOpcode::G_UITOFP: 2148 Observer.changingInstr(MI); 2149 2150 if (TypeIdx == 0) 2151 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2152 else 2153 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2154 2155 Observer.changedInstr(MI); 2156 return Legalized; 2157 case TargetOpcode::G_LOAD: 2158 case TargetOpcode::G_SEXTLOAD: 2159 case TargetOpcode::G_ZEXTLOAD: 2160 Observer.changingInstr(MI); 2161 widenScalarDst(MI, WideTy); 2162 Observer.changedInstr(MI); 2163 return Legalized; 2164 2165 case TargetOpcode::G_STORE: { 2166 if (TypeIdx != 0) 2167 return UnableToLegalize; 2168 2169 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2170 if (!Ty.isScalar()) 2171 return UnableToLegalize; 2172 2173 Observer.changingInstr(MI); 2174 2175 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2176 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2177 widenScalarSrc(MI, WideTy, 0, ExtType); 2178 2179 Observer.changedInstr(MI); 2180 return Legalized; 2181 } 2182 case TargetOpcode::G_CONSTANT: { 2183 MachineOperand &SrcMO = MI.getOperand(1); 2184 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2185 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2186 MRI.getType(MI.getOperand(0).getReg())); 2187 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2188 ExtOpc == TargetOpcode::G_ANYEXT) && 2189 "Illegal Extend"); 2190 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2191 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2192 ? SrcVal.sext(WideTy.getSizeInBits()) 2193 : SrcVal.zext(WideTy.getSizeInBits()); 2194 Observer.changingInstr(MI); 2195 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2196 2197 widenScalarDst(MI, WideTy); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 } 2201 case TargetOpcode::G_FCONSTANT: { 2202 MachineOperand &SrcMO = MI.getOperand(1); 2203 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2204 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2205 bool LosesInfo; 2206 switch (WideTy.getSizeInBits()) { 2207 case 32: 2208 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2209 &LosesInfo); 2210 break; 2211 case 64: 2212 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2213 &LosesInfo); 2214 break; 2215 default: 2216 return UnableToLegalize; 2217 } 2218 2219 assert(!LosesInfo && "extend should always be lossless"); 2220 2221 Observer.changingInstr(MI); 2222 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2223 2224 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 } 2228 case TargetOpcode::G_IMPLICIT_DEF: { 2229 Observer.changingInstr(MI); 2230 widenScalarDst(MI, WideTy); 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 } 2234 case TargetOpcode::G_BRCOND: 2235 Observer.changingInstr(MI); 2236 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2237 Observer.changedInstr(MI); 2238 return Legalized; 2239 2240 case TargetOpcode::G_FCMP: 2241 Observer.changingInstr(MI); 2242 if (TypeIdx == 0) 2243 widenScalarDst(MI, WideTy); 2244 else { 2245 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2246 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2247 } 2248 Observer.changedInstr(MI); 2249 return Legalized; 2250 2251 case TargetOpcode::G_ICMP: 2252 Observer.changingInstr(MI); 2253 if (TypeIdx == 0) 2254 widenScalarDst(MI, WideTy); 2255 else { 2256 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2257 MI.getOperand(1).getPredicate())) 2258 ? TargetOpcode::G_SEXT 2259 : TargetOpcode::G_ZEXT; 2260 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2261 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2262 } 2263 Observer.changedInstr(MI); 2264 return Legalized; 2265 2266 case TargetOpcode::G_PTR_ADD: 2267 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2268 Observer.changingInstr(MI); 2269 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 2273 case TargetOpcode::G_PHI: { 2274 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2275 2276 Observer.changingInstr(MI); 2277 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2278 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2279 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2280 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2281 } 2282 2283 MachineBasicBlock &MBB = *MI.getParent(); 2284 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2285 widenScalarDst(MI, WideTy); 2286 Observer.changedInstr(MI); 2287 return Legalized; 2288 } 2289 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2290 if (TypeIdx == 0) { 2291 Register VecReg = MI.getOperand(1).getReg(); 2292 LLT VecTy = MRI.getType(VecReg); 2293 Observer.changingInstr(MI); 2294 2295 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2296 WideTy.getSizeInBits()), 2297 1, TargetOpcode::G_SEXT); 2298 2299 widenScalarDst(MI, WideTy, 0); 2300 Observer.changedInstr(MI); 2301 return Legalized; 2302 } 2303 2304 if (TypeIdx != 2) 2305 return UnableToLegalize; 2306 Observer.changingInstr(MI); 2307 // TODO: Probably should be zext 2308 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2309 Observer.changedInstr(MI); 2310 return Legalized; 2311 } 2312 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2313 if (TypeIdx == 1) { 2314 Observer.changingInstr(MI); 2315 2316 Register VecReg = MI.getOperand(1).getReg(); 2317 LLT VecTy = MRI.getType(VecReg); 2318 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2319 2320 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2321 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2322 widenScalarDst(MI, WideVecTy, 0); 2323 Observer.changedInstr(MI); 2324 return Legalized; 2325 } 2326 2327 if (TypeIdx == 2) { 2328 Observer.changingInstr(MI); 2329 // TODO: Probably should be zext 2330 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 } 2334 2335 return UnableToLegalize; 2336 } 2337 case TargetOpcode::G_FADD: 2338 case TargetOpcode::G_FMUL: 2339 case TargetOpcode::G_FSUB: 2340 case TargetOpcode::G_FMA: 2341 case TargetOpcode::G_FMAD: 2342 case TargetOpcode::G_FNEG: 2343 case TargetOpcode::G_FABS: 2344 case TargetOpcode::G_FCANONICALIZE: 2345 case TargetOpcode::G_FMINNUM: 2346 case TargetOpcode::G_FMAXNUM: 2347 case TargetOpcode::G_FMINNUM_IEEE: 2348 case TargetOpcode::G_FMAXNUM_IEEE: 2349 case TargetOpcode::G_FMINIMUM: 2350 case TargetOpcode::G_FMAXIMUM: 2351 case TargetOpcode::G_FDIV: 2352 case TargetOpcode::G_FREM: 2353 case TargetOpcode::G_FCEIL: 2354 case TargetOpcode::G_FFLOOR: 2355 case TargetOpcode::G_FCOS: 2356 case TargetOpcode::G_FSIN: 2357 case TargetOpcode::G_FLOG10: 2358 case TargetOpcode::G_FLOG: 2359 case TargetOpcode::G_FLOG2: 2360 case TargetOpcode::G_FRINT: 2361 case TargetOpcode::G_FNEARBYINT: 2362 case TargetOpcode::G_FSQRT: 2363 case TargetOpcode::G_FEXP: 2364 case TargetOpcode::G_FEXP2: 2365 case TargetOpcode::G_FPOW: 2366 case TargetOpcode::G_INTRINSIC_TRUNC: 2367 case TargetOpcode::G_INTRINSIC_ROUND: 2368 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2369 assert(TypeIdx == 0); 2370 Observer.changingInstr(MI); 2371 2372 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2373 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2374 2375 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2376 Observer.changedInstr(MI); 2377 return Legalized; 2378 case TargetOpcode::G_FPOWI: { 2379 if (TypeIdx != 0) 2380 return UnableToLegalize; 2381 Observer.changingInstr(MI); 2382 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2383 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2384 Observer.changedInstr(MI); 2385 return Legalized; 2386 } 2387 case TargetOpcode::G_INTTOPTR: 2388 if (TypeIdx != 1) 2389 return UnableToLegalize; 2390 2391 Observer.changingInstr(MI); 2392 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2393 Observer.changedInstr(MI); 2394 return Legalized; 2395 case TargetOpcode::G_PTRTOINT: 2396 if (TypeIdx != 0) 2397 return UnableToLegalize; 2398 2399 Observer.changingInstr(MI); 2400 widenScalarDst(MI, WideTy, 0); 2401 Observer.changedInstr(MI); 2402 return Legalized; 2403 case TargetOpcode::G_BUILD_VECTOR: { 2404 Observer.changingInstr(MI); 2405 2406 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2407 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2408 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2409 2410 // Avoid changing the result vector type if the source element type was 2411 // requested. 2412 if (TypeIdx == 1) { 2413 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2414 } else { 2415 widenScalarDst(MI, WideTy, 0); 2416 } 2417 2418 Observer.changedInstr(MI); 2419 return Legalized; 2420 } 2421 case TargetOpcode::G_SEXT_INREG: 2422 if (TypeIdx != 0) 2423 return UnableToLegalize; 2424 2425 Observer.changingInstr(MI); 2426 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2427 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2428 Observer.changedInstr(MI); 2429 return Legalized; 2430 case TargetOpcode::G_PTRMASK: { 2431 if (TypeIdx != 1) 2432 return UnableToLegalize; 2433 Observer.changingInstr(MI); 2434 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2435 Observer.changedInstr(MI); 2436 return Legalized; 2437 } 2438 } 2439 } 2440 2441 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2442 MachineIRBuilder &B, Register Src, LLT Ty) { 2443 auto Unmerge = B.buildUnmerge(Ty, Src); 2444 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2445 Pieces.push_back(Unmerge.getReg(I)); 2446 } 2447 2448 LegalizerHelper::LegalizeResult 2449 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2450 Register Dst = MI.getOperand(0).getReg(); 2451 Register Src = MI.getOperand(1).getReg(); 2452 LLT DstTy = MRI.getType(Dst); 2453 LLT SrcTy = MRI.getType(Src); 2454 2455 if (SrcTy.isVector()) { 2456 LLT SrcEltTy = SrcTy.getElementType(); 2457 SmallVector<Register, 8> SrcRegs; 2458 2459 if (DstTy.isVector()) { 2460 int NumDstElt = DstTy.getNumElements(); 2461 int NumSrcElt = SrcTy.getNumElements(); 2462 2463 LLT DstEltTy = DstTy.getElementType(); 2464 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2465 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2466 2467 // If there's an element size mismatch, insert intermediate casts to match 2468 // the result element type. 2469 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2470 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2471 // 2472 // => 2473 // 2474 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2475 // %3:_(<2 x s8>) = G_BITCAST %2 2476 // %4:_(<2 x s8>) = G_BITCAST %3 2477 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2478 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2479 SrcPartTy = SrcEltTy; 2480 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2481 // 2482 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2483 // 2484 // => 2485 // 2486 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2487 // %3:_(s16) = G_BITCAST %2 2488 // %4:_(s16) = G_BITCAST %3 2489 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2490 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2491 DstCastTy = DstEltTy; 2492 } 2493 2494 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2495 for (Register &SrcReg : SrcRegs) 2496 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2497 } else 2498 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2499 2500 MIRBuilder.buildMerge(Dst, SrcRegs); 2501 MI.eraseFromParent(); 2502 return Legalized; 2503 } 2504 2505 if (DstTy.isVector()) { 2506 SmallVector<Register, 8> SrcRegs; 2507 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2508 MIRBuilder.buildMerge(Dst, SrcRegs); 2509 MI.eraseFromParent(); 2510 return Legalized; 2511 } 2512 2513 return UnableToLegalize; 2514 } 2515 2516 /// Figure out the bit offset into a register when coercing a vector index for 2517 /// the wide element type. This is only for the case when promoting vector to 2518 /// one with larger elements. 2519 // 2520 /// 2521 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2522 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2523 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2524 Register Idx, 2525 unsigned NewEltSize, 2526 unsigned OldEltSize) { 2527 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2528 LLT IdxTy = B.getMRI()->getType(Idx); 2529 2530 // Now figure out the amount we need to shift to get the target bits. 2531 auto OffsetMask = B.buildConstant( 2532 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2533 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2534 return B.buildShl(IdxTy, OffsetIdx, 2535 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2536 } 2537 2538 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2539 /// is casting to a vector with a smaller element size, perform multiple element 2540 /// extracts and merge the results. If this is coercing to a vector with larger 2541 /// elements, index the bitcasted vector and extract the target element with bit 2542 /// operations. This is intended to force the indexing in the native register 2543 /// size for architectures that can dynamically index the register file. 2544 LegalizerHelper::LegalizeResult 2545 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2546 LLT CastTy) { 2547 if (TypeIdx != 1) 2548 return UnableToLegalize; 2549 2550 Register Dst = MI.getOperand(0).getReg(); 2551 Register SrcVec = MI.getOperand(1).getReg(); 2552 Register Idx = MI.getOperand(2).getReg(); 2553 LLT SrcVecTy = MRI.getType(SrcVec); 2554 LLT IdxTy = MRI.getType(Idx); 2555 2556 LLT SrcEltTy = SrcVecTy.getElementType(); 2557 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2558 unsigned OldNumElts = SrcVecTy.getNumElements(); 2559 2560 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2561 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2562 2563 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2564 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2565 if (NewNumElts > OldNumElts) { 2566 // Decreasing the vector element size 2567 // 2568 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2569 // => 2570 // v4i32:castx = bitcast x:v2i64 2571 // 2572 // i64 = bitcast 2573 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2574 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2575 // 2576 if (NewNumElts % OldNumElts != 0) 2577 return UnableToLegalize; 2578 2579 // Type of the intermediate result vector. 2580 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2581 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2582 2583 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2584 2585 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2586 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2587 2588 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2589 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2590 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2591 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2592 NewOps[I] = Elt.getReg(0); 2593 } 2594 2595 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2596 MIRBuilder.buildBitcast(Dst, NewVec); 2597 MI.eraseFromParent(); 2598 return Legalized; 2599 } 2600 2601 if (NewNumElts < OldNumElts) { 2602 if (NewEltSize % OldEltSize != 0) 2603 return UnableToLegalize; 2604 2605 // This only depends on powers of 2 because we use bit tricks to figure out 2606 // the bit offset we need to shift to get the target element. A general 2607 // expansion could emit division/multiply. 2608 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2609 return UnableToLegalize; 2610 2611 // Increasing the vector element size. 2612 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2613 // 2614 // => 2615 // 2616 // %cast = G_BITCAST %vec 2617 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2618 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2619 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2620 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2621 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2622 // %elt = G_TRUNC %elt_bits 2623 2624 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2625 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2626 2627 // Divide to get the index in the wider element type. 2628 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2629 2630 Register WideElt = CastVec; 2631 if (CastTy.isVector()) { 2632 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2633 ScaledIdx).getReg(0); 2634 } 2635 2636 // Compute the bit offset into the register of the target element. 2637 Register OffsetBits = getBitcastWiderVectorElementOffset( 2638 MIRBuilder, Idx, NewEltSize, OldEltSize); 2639 2640 // Shift the wide element to get the target element. 2641 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2642 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2643 MI.eraseFromParent(); 2644 return Legalized; 2645 } 2646 2647 return UnableToLegalize; 2648 } 2649 2650 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2651 /// TargetReg, while preserving other bits in \p TargetReg. 2652 /// 2653 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2654 static Register buildBitFieldInsert(MachineIRBuilder &B, 2655 Register TargetReg, Register InsertReg, 2656 Register OffsetBits) { 2657 LLT TargetTy = B.getMRI()->getType(TargetReg); 2658 LLT InsertTy = B.getMRI()->getType(InsertReg); 2659 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2660 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2661 2662 // Produce a bitmask of the value to insert 2663 auto EltMask = B.buildConstant( 2664 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2665 InsertTy.getSizeInBits())); 2666 // Shift it into position 2667 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2668 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2669 2670 // Clear out the bits in the wide element 2671 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2672 2673 // The value to insert has all zeros already, so stick it into the masked 2674 // wide element. 2675 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2676 } 2677 2678 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2679 /// is increasing the element size, perform the indexing in the target element 2680 /// type, and use bit operations to insert at the element position. This is 2681 /// intended for architectures that can dynamically index the register file and 2682 /// want to force indexing in the native register size. 2683 LegalizerHelper::LegalizeResult 2684 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2685 LLT CastTy) { 2686 if (TypeIdx != 0) 2687 return UnableToLegalize; 2688 2689 Register Dst = MI.getOperand(0).getReg(); 2690 Register SrcVec = MI.getOperand(1).getReg(); 2691 Register Val = MI.getOperand(2).getReg(); 2692 Register Idx = MI.getOperand(3).getReg(); 2693 2694 LLT VecTy = MRI.getType(Dst); 2695 LLT IdxTy = MRI.getType(Idx); 2696 2697 LLT VecEltTy = VecTy.getElementType(); 2698 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2699 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2700 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2701 2702 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2703 unsigned OldNumElts = VecTy.getNumElements(); 2704 2705 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2706 if (NewNumElts < OldNumElts) { 2707 if (NewEltSize % OldEltSize != 0) 2708 return UnableToLegalize; 2709 2710 // This only depends on powers of 2 because we use bit tricks to figure out 2711 // the bit offset we need to shift to get the target element. A general 2712 // expansion could emit division/multiply. 2713 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2714 return UnableToLegalize; 2715 2716 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2717 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2718 2719 // Divide to get the index in the wider element type. 2720 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2721 2722 Register ExtractedElt = CastVec; 2723 if (CastTy.isVector()) { 2724 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2725 ScaledIdx).getReg(0); 2726 } 2727 2728 // Compute the bit offset into the register of the target element. 2729 Register OffsetBits = getBitcastWiderVectorElementOffset( 2730 MIRBuilder, Idx, NewEltSize, OldEltSize); 2731 2732 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2733 Val, OffsetBits); 2734 if (CastTy.isVector()) { 2735 InsertedElt = MIRBuilder.buildInsertVectorElement( 2736 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2737 } 2738 2739 MIRBuilder.buildBitcast(Dst, InsertedElt); 2740 MI.eraseFromParent(); 2741 return Legalized; 2742 } 2743 2744 return UnableToLegalize; 2745 } 2746 2747 LegalizerHelper::LegalizeResult 2748 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2749 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2750 Register DstReg = MI.getOperand(0).getReg(); 2751 Register PtrReg = MI.getOperand(1).getReg(); 2752 LLT DstTy = MRI.getType(DstReg); 2753 auto &MMO = **MI.memoperands_begin(); 2754 2755 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2756 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2757 // This load needs splitting into power of 2 sized loads. 2758 if (DstTy.isVector()) 2759 return UnableToLegalize; 2760 if (isPowerOf2_32(DstTy.getSizeInBits())) 2761 return UnableToLegalize; // Don't know what we're being asked to do. 2762 2763 // Our strategy here is to generate anyextending loads for the smaller 2764 // types up to next power-2 result type, and then combine the two larger 2765 // result values together, before truncating back down to the non-pow-2 2766 // type. 2767 // E.g. v1 = i24 load => 2768 // v2 = i32 zextload (2 byte) 2769 // v3 = i32 load (1 byte) 2770 // v4 = i32 shl v3, 16 2771 // v5 = i32 or v4, v2 2772 // v1 = i24 trunc v5 2773 // By doing this we generate the correct truncate which should get 2774 // combined away as an artifact with a matching extend. 2775 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2776 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2777 2778 MachineFunction &MF = MIRBuilder.getMF(); 2779 MachineMemOperand *LargeMMO = 2780 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2781 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2782 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2783 2784 LLT PtrTy = MRI.getType(PtrReg); 2785 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2786 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2787 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2788 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2789 auto LargeLoad = MIRBuilder.buildLoadInstr( 2790 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2791 2792 auto OffsetCst = MIRBuilder.buildConstant( 2793 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2794 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2795 auto SmallPtr = 2796 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2797 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2798 *SmallMMO); 2799 2800 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2801 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2802 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2803 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2804 MI.eraseFromParent(); 2805 return Legalized; 2806 } 2807 2808 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2809 MI.eraseFromParent(); 2810 return Legalized; 2811 } 2812 2813 return UnableToLegalize; 2814 } 2815 2816 LegalizerHelper::LegalizeResult 2817 LegalizerHelper::lowerStore(MachineInstr &MI) { 2818 // Lower a non-power of 2 store into multiple pow-2 stores. 2819 // E.g. split an i24 store into an i16 store + i8 store. 2820 // We do this by first extending the stored value to the next largest power 2821 // of 2 type, and then using truncating stores to store the components. 2822 // By doing this, likewise with G_LOAD, generate an extend that can be 2823 // artifact-combined away instead of leaving behind extracts. 2824 Register SrcReg = MI.getOperand(0).getReg(); 2825 Register PtrReg = MI.getOperand(1).getReg(); 2826 LLT SrcTy = MRI.getType(SrcReg); 2827 MachineMemOperand &MMO = **MI.memoperands_begin(); 2828 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2829 return UnableToLegalize; 2830 if (SrcTy.isVector()) 2831 return UnableToLegalize; 2832 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2833 return UnableToLegalize; // Don't know what we're being asked to do. 2834 2835 // Extend to the next pow-2. 2836 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2837 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2838 2839 // Obtain the smaller value by shifting away the larger value. 2840 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2841 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2842 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2843 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2844 2845 // Generate the PtrAdd and truncating stores. 2846 LLT PtrTy = MRI.getType(PtrReg); 2847 auto OffsetCst = MIRBuilder.buildConstant( 2848 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2849 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2850 auto SmallPtr = 2851 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2852 2853 MachineFunction &MF = MIRBuilder.getMF(); 2854 MachineMemOperand *LargeMMO = 2855 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2856 MachineMemOperand *SmallMMO = 2857 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2858 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2859 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2860 MI.eraseFromParent(); 2861 return Legalized; 2862 } 2863 2864 LegalizerHelper::LegalizeResult 2865 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2866 switch (MI.getOpcode()) { 2867 case TargetOpcode::G_LOAD: { 2868 if (TypeIdx != 0) 2869 return UnableToLegalize; 2870 2871 Observer.changingInstr(MI); 2872 bitcastDst(MI, CastTy, 0); 2873 Observer.changedInstr(MI); 2874 return Legalized; 2875 } 2876 case TargetOpcode::G_STORE: { 2877 if (TypeIdx != 0) 2878 return UnableToLegalize; 2879 2880 Observer.changingInstr(MI); 2881 bitcastSrc(MI, CastTy, 0); 2882 Observer.changedInstr(MI); 2883 return Legalized; 2884 } 2885 case TargetOpcode::G_SELECT: { 2886 if (TypeIdx != 0) 2887 return UnableToLegalize; 2888 2889 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2890 LLVM_DEBUG( 2891 dbgs() << "bitcast action not implemented for vector select\n"); 2892 return UnableToLegalize; 2893 } 2894 2895 Observer.changingInstr(MI); 2896 bitcastSrc(MI, CastTy, 2); 2897 bitcastSrc(MI, CastTy, 3); 2898 bitcastDst(MI, CastTy, 0); 2899 Observer.changedInstr(MI); 2900 return Legalized; 2901 } 2902 case TargetOpcode::G_AND: 2903 case TargetOpcode::G_OR: 2904 case TargetOpcode::G_XOR: { 2905 Observer.changingInstr(MI); 2906 bitcastSrc(MI, CastTy, 1); 2907 bitcastSrc(MI, CastTy, 2); 2908 bitcastDst(MI, CastTy, 0); 2909 Observer.changedInstr(MI); 2910 return Legalized; 2911 } 2912 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2913 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2914 case TargetOpcode::G_INSERT_VECTOR_ELT: 2915 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2916 default: 2917 return UnableToLegalize; 2918 } 2919 } 2920 2921 // Legalize an instruction by changing the opcode in place. 2922 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2923 Observer.changingInstr(MI); 2924 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2925 Observer.changedInstr(MI); 2926 } 2927 2928 LegalizerHelper::LegalizeResult 2929 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2930 using namespace TargetOpcode; 2931 2932 switch(MI.getOpcode()) { 2933 default: 2934 return UnableToLegalize; 2935 case TargetOpcode::G_BITCAST: 2936 return lowerBitcast(MI); 2937 case TargetOpcode::G_SREM: 2938 case TargetOpcode::G_UREM: { 2939 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2940 auto Quot = 2941 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2942 {MI.getOperand(1), MI.getOperand(2)}); 2943 2944 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2945 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2946 MI.eraseFromParent(); 2947 return Legalized; 2948 } 2949 case TargetOpcode::G_SADDO: 2950 case TargetOpcode::G_SSUBO: 2951 return lowerSADDO_SSUBO(MI); 2952 case TargetOpcode::G_UMULH: 2953 case TargetOpcode::G_SMULH: 2954 return lowerSMULH_UMULH(MI); 2955 case TargetOpcode::G_SMULO: 2956 case TargetOpcode::G_UMULO: { 2957 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2958 // result. 2959 Register Res = MI.getOperand(0).getReg(); 2960 Register Overflow = MI.getOperand(1).getReg(); 2961 Register LHS = MI.getOperand(2).getReg(); 2962 Register RHS = MI.getOperand(3).getReg(); 2963 LLT Ty = MRI.getType(Res); 2964 2965 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2966 ? TargetOpcode::G_SMULH 2967 : TargetOpcode::G_UMULH; 2968 2969 Observer.changingInstr(MI); 2970 const auto &TII = MIRBuilder.getTII(); 2971 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2972 MI.RemoveOperand(1); 2973 Observer.changedInstr(MI); 2974 2975 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2976 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2977 2978 // Move insert point forward so we can use the Res register if needed. 2979 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2980 2981 // For *signed* multiply, overflow is detected by checking: 2982 // (hi != (lo >> bitwidth-1)) 2983 if (Opcode == TargetOpcode::G_SMULH) { 2984 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2985 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2986 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2987 } else { 2988 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2989 } 2990 return Legalized; 2991 } 2992 case TargetOpcode::G_FNEG: { 2993 Register Res = MI.getOperand(0).getReg(); 2994 LLT Ty = MRI.getType(Res); 2995 2996 // TODO: Handle vector types once we are able to 2997 // represent them. 2998 if (Ty.isVector()) 2999 return UnableToLegalize; 3000 auto SignMask = 3001 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3002 Register SubByReg = MI.getOperand(1).getReg(); 3003 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 case TargetOpcode::G_FSUB: { 3008 Register Res = MI.getOperand(0).getReg(); 3009 LLT Ty = MRI.getType(Res); 3010 3011 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3012 // First, check if G_FNEG is marked as Lower. If so, we may 3013 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3014 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3015 return UnableToLegalize; 3016 Register LHS = MI.getOperand(1).getReg(); 3017 Register RHS = MI.getOperand(2).getReg(); 3018 Register Neg = MRI.createGenericVirtualRegister(Ty); 3019 MIRBuilder.buildFNeg(Neg, RHS); 3020 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3021 MI.eraseFromParent(); 3022 return Legalized; 3023 } 3024 case TargetOpcode::G_FMAD: 3025 return lowerFMad(MI); 3026 case TargetOpcode::G_FFLOOR: 3027 return lowerFFloor(MI); 3028 case TargetOpcode::G_INTRINSIC_ROUND: 3029 return lowerIntrinsicRound(MI); 3030 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3031 // Since round even is the assumed rounding mode for unconstrained FP 3032 // operations, rint and roundeven are the same operation. 3033 changeOpcode(MI, TargetOpcode::G_FRINT); 3034 return Legalized; 3035 } 3036 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3037 Register OldValRes = MI.getOperand(0).getReg(); 3038 Register SuccessRes = MI.getOperand(1).getReg(); 3039 Register Addr = MI.getOperand(2).getReg(); 3040 Register CmpVal = MI.getOperand(3).getReg(); 3041 Register NewVal = MI.getOperand(4).getReg(); 3042 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3043 **MI.memoperands_begin()); 3044 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3045 MI.eraseFromParent(); 3046 return Legalized; 3047 } 3048 case TargetOpcode::G_LOAD: 3049 case TargetOpcode::G_SEXTLOAD: 3050 case TargetOpcode::G_ZEXTLOAD: 3051 return lowerLoad(MI); 3052 case TargetOpcode::G_STORE: 3053 return lowerStore(MI); 3054 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3055 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3056 case TargetOpcode::G_CTLZ: 3057 case TargetOpcode::G_CTTZ: 3058 case TargetOpcode::G_CTPOP: 3059 return lowerBitCount(MI); 3060 case G_UADDO: { 3061 Register Res = MI.getOperand(0).getReg(); 3062 Register CarryOut = MI.getOperand(1).getReg(); 3063 Register LHS = MI.getOperand(2).getReg(); 3064 Register RHS = MI.getOperand(3).getReg(); 3065 3066 MIRBuilder.buildAdd(Res, LHS, RHS); 3067 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3068 3069 MI.eraseFromParent(); 3070 return Legalized; 3071 } 3072 case G_UADDE: { 3073 Register Res = MI.getOperand(0).getReg(); 3074 Register CarryOut = MI.getOperand(1).getReg(); 3075 Register LHS = MI.getOperand(2).getReg(); 3076 Register RHS = MI.getOperand(3).getReg(); 3077 Register CarryIn = MI.getOperand(4).getReg(); 3078 LLT Ty = MRI.getType(Res); 3079 3080 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3081 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3082 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3083 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3084 3085 MI.eraseFromParent(); 3086 return Legalized; 3087 } 3088 case G_USUBO: { 3089 Register Res = MI.getOperand(0).getReg(); 3090 Register BorrowOut = MI.getOperand(1).getReg(); 3091 Register LHS = MI.getOperand(2).getReg(); 3092 Register RHS = MI.getOperand(3).getReg(); 3093 3094 MIRBuilder.buildSub(Res, LHS, RHS); 3095 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3096 3097 MI.eraseFromParent(); 3098 return Legalized; 3099 } 3100 case G_USUBE: { 3101 Register Res = MI.getOperand(0).getReg(); 3102 Register BorrowOut = MI.getOperand(1).getReg(); 3103 Register LHS = MI.getOperand(2).getReg(); 3104 Register RHS = MI.getOperand(3).getReg(); 3105 Register BorrowIn = MI.getOperand(4).getReg(); 3106 const LLT CondTy = MRI.getType(BorrowOut); 3107 const LLT Ty = MRI.getType(Res); 3108 3109 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3110 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3111 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3112 3113 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3114 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3115 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3116 3117 MI.eraseFromParent(); 3118 return Legalized; 3119 } 3120 case G_UITOFP: 3121 return lowerUITOFP(MI); 3122 case G_SITOFP: 3123 return lowerSITOFP(MI); 3124 case G_FPTOUI: 3125 return lowerFPTOUI(MI); 3126 case G_FPTOSI: 3127 return lowerFPTOSI(MI); 3128 case G_FPTRUNC: 3129 return lowerFPTRUNC(MI); 3130 case G_FPOWI: 3131 return lowerFPOWI(MI); 3132 case G_SMIN: 3133 case G_SMAX: 3134 case G_UMIN: 3135 case G_UMAX: 3136 return lowerMinMax(MI); 3137 case G_FCOPYSIGN: 3138 return lowerFCopySign(MI); 3139 case G_FMINNUM: 3140 case G_FMAXNUM: 3141 return lowerFMinNumMaxNum(MI); 3142 case G_MERGE_VALUES: 3143 return lowerMergeValues(MI); 3144 case G_UNMERGE_VALUES: 3145 return lowerUnmergeValues(MI); 3146 case TargetOpcode::G_SEXT_INREG: { 3147 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3148 int64_t SizeInBits = MI.getOperand(2).getImm(); 3149 3150 Register DstReg = MI.getOperand(0).getReg(); 3151 Register SrcReg = MI.getOperand(1).getReg(); 3152 LLT DstTy = MRI.getType(DstReg); 3153 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3154 3155 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3156 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3157 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3158 MI.eraseFromParent(); 3159 return Legalized; 3160 } 3161 case G_EXTRACT_VECTOR_ELT: 3162 case G_INSERT_VECTOR_ELT: 3163 return lowerExtractInsertVectorElt(MI); 3164 case G_SHUFFLE_VECTOR: 3165 return lowerShuffleVector(MI); 3166 case G_DYN_STACKALLOC: 3167 return lowerDynStackAlloc(MI); 3168 case G_EXTRACT: 3169 return lowerExtract(MI); 3170 case G_INSERT: 3171 return lowerInsert(MI); 3172 case G_BSWAP: 3173 return lowerBswap(MI); 3174 case G_BITREVERSE: 3175 return lowerBitreverse(MI); 3176 case G_READ_REGISTER: 3177 case G_WRITE_REGISTER: 3178 return lowerReadWriteRegister(MI); 3179 case G_UADDSAT: 3180 case G_USUBSAT: { 3181 // Try to make a reasonable guess about which lowering strategy to use. The 3182 // target can override this with custom lowering and calling the 3183 // implementation functions. 3184 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3185 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3186 return lowerAddSubSatToMinMax(MI); 3187 return lowerAddSubSatToAddoSubo(MI); 3188 } 3189 case G_SADDSAT: 3190 case G_SSUBSAT: { 3191 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3192 3193 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3194 // since it's a shorter expansion. However, we would need to figure out the 3195 // preferred boolean type for the carry out for the query. 3196 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3197 return lowerAddSubSatToMinMax(MI); 3198 return lowerAddSubSatToAddoSubo(MI); 3199 } 3200 case G_SSHLSAT: 3201 case G_USHLSAT: 3202 return lowerShlSat(MI); 3203 case G_ABS: { 3204 // Expand %res = G_ABS %a into: 3205 // %v1 = G_ASHR %a, scalar_size-1 3206 // %v2 = G_ADD %a, %v1 3207 // %res = G_XOR %v2, %v1 3208 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3209 Register OpReg = MI.getOperand(1).getReg(); 3210 auto ShiftAmt = 3211 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3212 auto Shift = 3213 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3214 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3215 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3216 MI.eraseFromParent(); 3217 return Legalized; 3218 } 3219 case G_SELECT: 3220 return lowerSelect(MI); 3221 case G_SDIVREM: 3222 case G_UDIVREM: 3223 return lowerDIVREM(MI); 3224 case G_FSHL: 3225 case G_FSHR: 3226 return lowerFunnelShift(MI); 3227 case G_ROTL: 3228 case G_ROTR: 3229 return lowerRotate(MI); 3230 } 3231 } 3232 3233 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3234 Align MinAlign) const { 3235 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3236 // datalayout for the preferred alignment. Also there should be a target hook 3237 // for this to allow targets to reduce the alignment and ignore the 3238 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3239 // the type. 3240 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3241 } 3242 3243 MachineInstrBuilder 3244 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3245 MachinePointerInfo &PtrInfo) { 3246 MachineFunction &MF = MIRBuilder.getMF(); 3247 const DataLayout &DL = MIRBuilder.getDataLayout(); 3248 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3249 3250 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3251 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3252 3253 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3254 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3255 } 3256 3257 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3258 LLT VecTy) { 3259 int64_t IdxVal; 3260 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3261 return IdxReg; 3262 3263 LLT IdxTy = B.getMRI()->getType(IdxReg); 3264 unsigned NElts = VecTy.getNumElements(); 3265 if (isPowerOf2_32(NElts)) { 3266 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3267 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3268 } 3269 3270 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3271 .getReg(0); 3272 } 3273 3274 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3275 Register Index) { 3276 LLT EltTy = VecTy.getElementType(); 3277 3278 // Calculate the element offset and add it to the pointer. 3279 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3280 assert(EltSize * 8 == EltTy.getSizeInBits() && 3281 "Converting bits to bytes lost precision"); 3282 3283 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3284 3285 LLT IdxTy = MRI.getType(Index); 3286 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3287 MIRBuilder.buildConstant(IdxTy, EltSize)); 3288 3289 LLT PtrTy = MRI.getType(VecPtr); 3290 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3291 } 3292 3293 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3294 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3295 Register DstReg = MI.getOperand(0).getReg(); 3296 LLT DstTy = MRI.getType(DstReg); 3297 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3298 3299 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3300 3301 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3302 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3303 3304 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3305 MI.eraseFromParent(); 3306 return Legalized; 3307 } 3308 3309 // Handle splitting vector operations which need to have the same number of 3310 // elements in each type index, but each type index may have a different element 3311 // type. 3312 // 3313 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3314 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3315 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3316 // 3317 // Also handles some irregular breakdown cases, e.g. 3318 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3319 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3320 // s64 = G_SHL s64, s32 3321 LegalizerHelper::LegalizeResult 3322 LegalizerHelper::fewerElementsVectorMultiEltType( 3323 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3324 if (TypeIdx != 0) 3325 return UnableToLegalize; 3326 3327 const LLT NarrowTy0 = NarrowTyArg; 3328 const unsigned NewNumElts = 3329 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3330 3331 const Register DstReg = MI.getOperand(0).getReg(); 3332 LLT DstTy = MRI.getType(DstReg); 3333 LLT LeftoverTy0; 3334 3335 // All of the operands need to have the same number of elements, so if we can 3336 // determine a type breakdown for the result type, we can for all of the 3337 // source types. 3338 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3339 if (NumParts < 0) 3340 return UnableToLegalize; 3341 3342 SmallVector<MachineInstrBuilder, 4> NewInsts; 3343 3344 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3345 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3346 3347 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3348 Register SrcReg = MI.getOperand(I).getReg(); 3349 LLT SrcTyI = MRI.getType(SrcReg); 3350 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3351 LLT LeftoverTyI; 3352 3353 // Split this operand into the requested typed registers, and any leftover 3354 // required to reproduce the original type. 3355 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3356 LeftoverRegs)) 3357 return UnableToLegalize; 3358 3359 if (I == 1) { 3360 // For the first operand, create an instruction for each part and setup 3361 // the result. 3362 for (Register PartReg : PartRegs) { 3363 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3364 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3365 .addDef(PartDstReg) 3366 .addUse(PartReg)); 3367 DstRegs.push_back(PartDstReg); 3368 } 3369 3370 for (Register LeftoverReg : LeftoverRegs) { 3371 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3372 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3373 .addDef(PartDstReg) 3374 .addUse(LeftoverReg)); 3375 LeftoverDstRegs.push_back(PartDstReg); 3376 } 3377 } else { 3378 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3379 3380 // Add the newly created operand splits to the existing instructions. The 3381 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3382 // pieces. 3383 unsigned InstCount = 0; 3384 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3385 NewInsts[InstCount++].addUse(PartRegs[J]); 3386 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3387 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3388 } 3389 3390 PartRegs.clear(); 3391 LeftoverRegs.clear(); 3392 } 3393 3394 // Insert the newly built operations and rebuild the result register. 3395 for (auto &MIB : NewInsts) 3396 MIRBuilder.insertInstr(MIB); 3397 3398 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3399 3400 MI.eraseFromParent(); 3401 return Legalized; 3402 } 3403 3404 LegalizerHelper::LegalizeResult 3405 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3406 LLT NarrowTy) { 3407 if (TypeIdx != 0) 3408 return UnableToLegalize; 3409 3410 Register DstReg = MI.getOperand(0).getReg(); 3411 Register SrcReg = MI.getOperand(1).getReg(); 3412 LLT DstTy = MRI.getType(DstReg); 3413 LLT SrcTy = MRI.getType(SrcReg); 3414 3415 LLT NarrowTy0 = NarrowTy; 3416 LLT NarrowTy1; 3417 unsigned NumParts; 3418 3419 if (NarrowTy.isVector()) { 3420 // Uneven breakdown not handled. 3421 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3422 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3423 return UnableToLegalize; 3424 3425 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3426 } else { 3427 NumParts = DstTy.getNumElements(); 3428 NarrowTy1 = SrcTy.getElementType(); 3429 } 3430 3431 SmallVector<Register, 4> SrcRegs, DstRegs; 3432 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3433 3434 for (unsigned I = 0; I < NumParts; ++I) { 3435 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3436 MachineInstr *NewInst = 3437 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3438 3439 NewInst->setFlags(MI.getFlags()); 3440 DstRegs.push_back(DstReg); 3441 } 3442 3443 if (NarrowTy.isVector()) 3444 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3445 else 3446 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3447 3448 MI.eraseFromParent(); 3449 return Legalized; 3450 } 3451 3452 LegalizerHelper::LegalizeResult 3453 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3454 LLT NarrowTy) { 3455 Register DstReg = MI.getOperand(0).getReg(); 3456 Register Src0Reg = MI.getOperand(2).getReg(); 3457 LLT DstTy = MRI.getType(DstReg); 3458 LLT SrcTy = MRI.getType(Src0Reg); 3459 3460 unsigned NumParts; 3461 LLT NarrowTy0, NarrowTy1; 3462 3463 if (TypeIdx == 0) { 3464 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3465 unsigned OldElts = DstTy.getNumElements(); 3466 3467 NarrowTy0 = NarrowTy; 3468 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3469 NarrowTy1 = NarrowTy.isVector() ? 3470 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3471 SrcTy.getElementType(); 3472 3473 } else { 3474 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3475 unsigned OldElts = SrcTy.getNumElements(); 3476 3477 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3478 NarrowTy.getNumElements(); 3479 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3480 DstTy.getScalarSizeInBits()); 3481 NarrowTy1 = NarrowTy; 3482 } 3483 3484 // FIXME: Don't know how to handle the situation where the small vectors 3485 // aren't all the same size yet. 3486 if (NarrowTy1.isVector() && 3487 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3488 return UnableToLegalize; 3489 3490 CmpInst::Predicate Pred 3491 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3492 3493 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3494 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3495 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3496 3497 for (unsigned I = 0; I < NumParts; ++I) { 3498 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3499 DstRegs.push_back(DstReg); 3500 3501 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3502 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3503 else { 3504 MachineInstr *NewCmp 3505 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3506 NewCmp->setFlags(MI.getFlags()); 3507 } 3508 } 3509 3510 if (NarrowTy1.isVector()) 3511 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3512 else 3513 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3514 3515 MI.eraseFromParent(); 3516 return Legalized; 3517 } 3518 3519 LegalizerHelper::LegalizeResult 3520 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3521 LLT NarrowTy) { 3522 Register DstReg = MI.getOperand(0).getReg(); 3523 Register CondReg = MI.getOperand(1).getReg(); 3524 3525 unsigned NumParts = 0; 3526 LLT NarrowTy0, NarrowTy1; 3527 3528 LLT DstTy = MRI.getType(DstReg); 3529 LLT CondTy = MRI.getType(CondReg); 3530 unsigned Size = DstTy.getSizeInBits(); 3531 3532 assert(TypeIdx == 0 || CondTy.isVector()); 3533 3534 if (TypeIdx == 0) { 3535 NarrowTy0 = NarrowTy; 3536 NarrowTy1 = CondTy; 3537 3538 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3539 // FIXME: Don't know how to handle the situation where the small vectors 3540 // aren't all the same size yet. 3541 if (Size % NarrowSize != 0) 3542 return UnableToLegalize; 3543 3544 NumParts = Size / NarrowSize; 3545 3546 // Need to break down the condition type 3547 if (CondTy.isVector()) { 3548 if (CondTy.getNumElements() == NumParts) 3549 NarrowTy1 = CondTy.getElementType(); 3550 else 3551 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3552 CondTy.getScalarSizeInBits()); 3553 } 3554 } else { 3555 NumParts = CondTy.getNumElements(); 3556 if (NarrowTy.isVector()) { 3557 // TODO: Handle uneven breakdown. 3558 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3559 return UnableToLegalize; 3560 3561 return UnableToLegalize; 3562 } else { 3563 NarrowTy0 = DstTy.getElementType(); 3564 NarrowTy1 = NarrowTy; 3565 } 3566 } 3567 3568 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3569 if (CondTy.isVector()) 3570 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3571 3572 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3573 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3574 3575 for (unsigned i = 0; i < NumParts; ++i) { 3576 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3577 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3578 Src1Regs[i], Src2Regs[i]); 3579 DstRegs.push_back(DstReg); 3580 } 3581 3582 if (NarrowTy0.isVector()) 3583 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3584 else 3585 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3586 3587 MI.eraseFromParent(); 3588 return Legalized; 3589 } 3590 3591 LegalizerHelper::LegalizeResult 3592 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3593 LLT NarrowTy) { 3594 const Register DstReg = MI.getOperand(0).getReg(); 3595 LLT PhiTy = MRI.getType(DstReg); 3596 LLT LeftoverTy; 3597 3598 // All of the operands need to have the same number of elements, so if we can 3599 // determine a type breakdown for the result type, we can for all of the 3600 // source types. 3601 int NumParts, NumLeftover; 3602 std::tie(NumParts, NumLeftover) 3603 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3604 if (NumParts < 0) 3605 return UnableToLegalize; 3606 3607 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3608 SmallVector<MachineInstrBuilder, 4> NewInsts; 3609 3610 const int TotalNumParts = NumParts + NumLeftover; 3611 3612 // Insert the new phis in the result block first. 3613 for (int I = 0; I != TotalNumParts; ++I) { 3614 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3615 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3616 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3617 .addDef(PartDstReg)); 3618 if (I < NumParts) 3619 DstRegs.push_back(PartDstReg); 3620 else 3621 LeftoverDstRegs.push_back(PartDstReg); 3622 } 3623 3624 MachineBasicBlock *MBB = MI.getParent(); 3625 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3626 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3627 3628 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3629 3630 // Insert code to extract the incoming values in each predecessor block. 3631 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3632 PartRegs.clear(); 3633 LeftoverRegs.clear(); 3634 3635 Register SrcReg = MI.getOperand(I).getReg(); 3636 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3637 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3638 3639 LLT Unused; 3640 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3641 LeftoverRegs)) 3642 return UnableToLegalize; 3643 3644 // Add the newly created operand splits to the existing instructions. The 3645 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3646 // pieces. 3647 for (int J = 0; J != TotalNumParts; ++J) { 3648 MachineInstrBuilder MIB = NewInsts[J]; 3649 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3650 MIB.addMBB(&OpMBB); 3651 } 3652 } 3653 3654 MI.eraseFromParent(); 3655 return Legalized; 3656 } 3657 3658 LegalizerHelper::LegalizeResult 3659 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3660 unsigned TypeIdx, 3661 LLT NarrowTy) { 3662 if (TypeIdx != 1) 3663 return UnableToLegalize; 3664 3665 const int NumDst = MI.getNumOperands() - 1; 3666 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3667 LLT SrcTy = MRI.getType(SrcReg); 3668 3669 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3670 3671 // TODO: Create sequence of extracts. 3672 if (DstTy == NarrowTy) 3673 return UnableToLegalize; 3674 3675 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3676 if (DstTy == GCDTy) { 3677 // This would just be a copy of the same unmerge. 3678 // TODO: Create extracts, pad with undef and create intermediate merges. 3679 return UnableToLegalize; 3680 } 3681 3682 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3683 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3684 const int PartsPerUnmerge = NumDst / NumUnmerge; 3685 3686 for (int I = 0; I != NumUnmerge; ++I) { 3687 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3688 3689 for (int J = 0; J != PartsPerUnmerge; ++J) 3690 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3691 MIB.addUse(Unmerge.getReg(I)); 3692 } 3693 3694 MI.eraseFromParent(); 3695 return Legalized; 3696 } 3697 3698 LegalizerHelper::LegalizeResult 3699 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3700 LLT NarrowTy) { 3701 Register Result = MI.getOperand(0).getReg(); 3702 Register Overflow = MI.getOperand(1).getReg(); 3703 Register LHS = MI.getOperand(2).getReg(); 3704 Register RHS = MI.getOperand(3).getReg(); 3705 3706 LLT SrcTy = MRI.getType(LHS); 3707 if (!SrcTy.isVector()) 3708 return UnableToLegalize; 3709 3710 LLT ElementType = SrcTy.getElementType(); 3711 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3712 const int NumResult = SrcTy.getNumElements(); 3713 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3714 3715 // Unmerge the operands to smaller parts of GCD type. 3716 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3717 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3718 3719 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3720 const int PartsPerUnmerge = NumResult / NumOps; 3721 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3722 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3723 3724 // Perform the operation over unmerged parts. 3725 SmallVector<Register, 8> ResultParts; 3726 SmallVector<Register, 8> OverflowParts; 3727 for (int I = 0; I != NumOps; ++I) { 3728 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3729 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3730 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3731 {Operand1, Operand2}); 3732 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3733 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3734 } 3735 3736 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3737 LLT OverflowLCMTy = 3738 LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy); 3739 3740 // Recombine the pieces to the original result and overflow registers. 3741 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3742 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3743 MI.eraseFromParent(); 3744 return Legalized; 3745 } 3746 3747 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3748 // a vector 3749 // 3750 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3751 // undef as necessary. 3752 // 3753 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3754 // -> <2 x s16> 3755 // 3756 // %4:_(s16) = G_IMPLICIT_DEF 3757 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3758 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3759 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3760 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3761 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3762 LegalizerHelper::LegalizeResult 3763 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3764 LLT NarrowTy) { 3765 Register DstReg = MI.getOperand(0).getReg(); 3766 LLT DstTy = MRI.getType(DstReg); 3767 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3768 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3769 3770 // Break into a common type 3771 SmallVector<Register, 16> Parts; 3772 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3773 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3774 3775 // Build the requested new merge, padding with undef. 3776 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3777 TargetOpcode::G_ANYEXT); 3778 3779 // Pack into the original result register. 3780 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3781 3782 MI.eraseFromParent(); 3783 return Legalized; 3784 } 3785 3786 LegalizerHelper::LegalizeResult 3787 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3788 unsigned TypeIdx, 3789 LLT NarrowVecTy) { 3790 Register DstReg = MI.getOperand(0).getReg(); 3791 Register SrcVec = MI.getOperand(1).getReg(); 3792 Register InsertVal; 3793 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3794 3795 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3796 if (IsInsert) 3797 InsertVal = MI.getOperand(2).getReg(); 3798 3799 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3800 3801 // TODO: Handle total scalarization case. 3802 if (!NarrowVecTy.isVector()) 3803 return UnableToLegalize; 3804 3805 LLT VecTy = MRI.getType(SrcVec); 3806 3807 // If the index is a constant, we can really break this down as you would 3808 // expect, and index into the target size pieces. 3809 int64_t IdxVal; 3810 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3811 // Avoid out of bounds indexing the pieces. 3812 if (IdxVal >= VecTy.getNumElements()) { 3813 MIRBuilder.buildUndef(DstReg); 3814 MI.eraseFromParent(); 3815 return Legalized; 3816 } 3817 3818 SmallVector<Register, 8> VecParts; 3819 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3820 3821 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3822 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3823 TargetOpcode::G_ANYEXT); 3824 3825 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3826 3827 LLT IdxTy = MRI.getType(Idx); 3828 int64_t PartIdx = IdxVal / NewNumElts; 3829 auto NewIdx = 3830 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3831 3832 if (IsInsert) { 3833 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3834 3835 // Use the adjusted index to insert into one of the subvectors. 3836 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3837 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3838 VecParts[PartIdx] = InsertPart.getReg(0); 3839 3840 // Recombine the inserted subvector with the others to reform the result 3841 // vector. 3842 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3843 } else { 3844 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3845 } 3846 3847 MI.eraseFromParent(); 3848 return Legalized; 3849 } 3850 3851 // With a variable index, we can't perform the operation in a smaller type, so 3852 // we're forced to expand this. 3853 // 3854 // TODO: We could emit a chain of compare/select to figure out which piece to 3855 // index. 3856 return lowerExtractInsertVectorElt(MI); 3857 } 3858 3859 LegalizerHelper::LegalizeResult 3860 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3861 LLT NarrowTy) { 3862 // FIXME: Don't know how to handle secondary types yet. 3863 if (TypeIdx != 0) 3864 return UnableToLegalize; 3865 3866 MachineMemOperand *MMO = *MI.memoperands_begin(); 3867 3868 // This implementation doesn't work for atomics. Give up instead of doing 3869 // something invalid. 3870 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3871 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3872 return UnableToLegalize; 3873 3874 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3875 Register ValReg = MI.getOperand(0).getReg(); 3876 Register AddrReg = MI.getOperand(1).getReg(); 3877 LLT ValTy = MRI.getType(ValReg); 3878 3879 // FIXME: Do we need a distinct NarrowMemory legalize action? 3880 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3881 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3882 return UnableToLegalize; 3883 } 3884 3885 int NumParts = -1; 3886 int NumLeftover = -1; 3887 LLT LeftoverTy; 3888 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3889 if (IsLoad) { 3890 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3891 } else { 3892 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3893 NarrowLeftoverRegs)) { 3894 NumParts = NarrowRegs.size(); 3895 NumLeftover = NarrowLeftoverRegs.size(); 3896 } 3897 } 3898 3899 if (NumParts == -1) 3900 return UnableToLegalize; 3901 3902 LLT PtrTy = MRI.getType(AddrReg); 3903 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3904 3905 unsigned TotalSize = ValTy.getSizeInBits(); 3906 3907 // Split the load/store into PartTy sized pieces starting at Offset. If this 3908 // is a load, return the new registers in ValRegs. For a store, each elements 3909 // of ValRegs should be PartTy. Returns the next offset that needs to be 3910 // handled. 3911 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3912 unsigned Offset) -> unsigned { 3913 MachineFunction &MF = MIRBuilder.getMF(); 3914 unsigned PartSize = PartTy.getSizeInBits(); 3915 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3916 Offset += PartSize, ++Idx) { 3917 unsigned ByteSize = PartSize / 8; 3918 unsigned ByteOffset = Offset / 8; 3919 Register NewAddrReg; 3920 3921 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3922 3923 MachineMemOperand *NewMMO = 3924 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3925 3926 if (IsLoad) { 3927 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3928 ValRegs.push_back(Dst); 3929 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3930 } else { 3931 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3932 } 3933 } 3934 3935 return Offset; 3936 }; 3937 3938 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3939 3940 // Handle the rest of the register if this isn't an even type breakdown. 3941 if (LeftoverTy.isValid()) 3942 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3943 3944 if (IsLoad) { 3945 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3946 LeftoverTy, NarrowLeftoverRegs); 3947 } 3948 3949 MI.eraseFromParent(); 3950 return Legalized; 3951 } 3952 3953 LegalizerHelper::LegalizeResult 3954 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3955 LLT NarrowTy) { 3956 assert(TypeIdx == 0 && "only one type index expected"); 3957 3958 const unsigned Opc = MI.getOpcode(); 3959 const int NumDefOps = MI.getNumExplicitDefs(); 3960 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 3961 const unsigned Flags = MI.getFlags(); 3962 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3963 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3964 3965 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 3966 "result and 1-3 sources or 2 results and " 3967 "1-2 sources"); 3968 3969 SmallVector<Register, 2> DstRegs; 3970 for (int I = 0; I < NumDefOps; ++I) 3971 DstRegs.push_back(MI.getOperand(I).getReg()); 3972 3973 // First of all check whether we are narrowing (changing the element type) 3974 // or reducing the vector elements 3975 const LLT DstTy = MRI.getType(DstRegs[0]); 3976 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3977 3978 SmallVector<Register, 8> ExtractedRegs[3]; 3979 SmallVector<Register, 8> Parts; 3980 3981 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3982 3983 // Break down all the sources into NarrowTy pieces we can operate on. This may 3984 // involve creating merges to a wider type, padded with undef. 3985 for (int I = 0; I != NumSrcOps; ++I) { 3986 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 3987 LLT SrcTy = MRI.getType(SrcReg); 3988 3989 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3990 // For fewerElements, this is a smaller vector with the same element type. 3991 LLT OpNarrowTy; 3992 if (IsNarrow) { 3993 OpNarrowTy = NarrowScalarTy; 3994 3995 // In case of narrowing, we need to cast vectors to scalars for this to 3996 // work properly 3997 // FIXME: Can we do without the bitcast here if we're narrowing? 3998 if (SrcTy.isVector()) { 3999 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4000 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4001 } 4002 } else { 4003 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 4004 } 4005 4006 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4007 4008 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4009 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4010 TargetOpcode::G_ANYEXT); 4011 } 4012 4013 SmallVector<Register, 8> ResultRegs[2]; 4014 4015 // Input operands for each sub-instruction. 4016 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4017 4018 int NumParts = ExtractedRegs[0].size(); 4019 const unsigned DstSize = DstTy.getSizeInBits(); 4020 const LLT DstScalarTy = LLT::scalar(DstSize); 4021 4022 // Narrowing needs to use scalar types 4023 LLT DstLCMTy, NarrowDstTy; 4024 if (IsNarrow) { 4025 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4026 NarrowDstTy = NarrowScalarTy; 4027 } else { 4028 DstLCMTy = getLCMType(DstTy, NarrowTy); 4029 NarrowDstTy = NarrowTy; 4030 } 4031 4032 // We widened the source registers to satisfy merge/unmerge size 4033 // constraints. We'll have some extra fully undef parts. 4034 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4035 4036 for (int I = 0; I != NumRealParts; ++I) { 4037 // Emit this instruction on each of the split pieces. 4038 for (int J = 0; J != NumSrcOps; ++J) 4039 InputRegs[J] = ExtractedRegs[J][I]; 4040 4041 MachineInstrBuilder Inst; 4042 if (NumDefOps == 1) 4043 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4044 else 4045 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4046 Flags); 4047 4048 for (int J = 0; J != NumDefOps; ++J) 4049 ResultRegs[J].push_back(Inst.getReg(J)); 4050 } 4051 4052 // Fill out the widened result with undef instead of creating instructions 4053 // with undef inputs. 4054 int NumUndefParts = NumParts - NumRealParts; 4055 if (NumUndefParts != 0) { 4056 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4057 for (int I = 0; I != NumDefOps; ++I) 4058 ResultRegs[I].append(NumUndefParts, Undef); 4059 } 4060 4061 // Extract the possibly padded result. Use a scratch register if we need to do 4062 // a final bitcast, otherwise use the original result register. 4063 Register MergeDstReg; 4064 for (int I = 0; I != NumDefOps; ++I) { 4065 if (IsNarrow && DstTy.isVector()) 4066 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4067 else 4068 MergeDstReg = DstRegs[I]; 4069 4070 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4071 4072 // Recast to vector if we narrowed a vector 4073 if (IsNarrow && DstTy.isVector()) 4074 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4075 } 4076 4077 MI.eraseFromParent(); 4078 return Legalized; 4079 } 4080 4081 LegalizerHelper::LegalizeResult 4082 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4083 LLT NarrowTy) { 4084 Register DstReg = MI.getOperand(0).getReg(); 4085 Register SrcReg = MI.getOperand(1).getReg(); 4086 int64_t Imm = MI.getOperand(2).getImm(); 4087 4088 LLT DstTy = MRI.getType(DstReg); 4089 4090 SmallVector<Register, 8> Parts; 4091 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4092 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4093 4094 for (Register &R : Parts) 4095 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4096 4097 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4098 4099 MI.eraseFromParent(); 4100 return Legalized; 4101 } 4102 4103 LegalizerHelper::LegalizeResult 4104 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4105 LLT NarrowTy) { 4106 using namespace TargetOpcode; 4107 4108 switch (MI.getOpcode()) { 4109 case G_IMPLICIT_DEF: 4110 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4111 case G_TRUNC: 4112 case G_AND: 4113 case G_OR: 4114 case G_XOR: 4115 case G_ADD: 4116 case G_SUB: 4117 case G_MUL: 4118 case G_PTR_ADD: 4119 case G_SMULH: 4120 case G_UMULH: 4121 case G_FADD: 4122 case G_FMUL: 4123 case G_FSUB: 4124 case G_FNEG: 4125 case G_FABS: 4126 case G_FCANONICALIZE: 4127 case G_FDIV: 4128 case G_FREM: 4129 case G_FMA: 4130 case G_FMAD: 4131 case G_FPOW: 4132 case G_FEXP: 4133 case G_FEXP2: 4134 case G_FLOG: 4135 case G_FLOG2: 4136 case G_FLOG10: 4137 case G_FNEARBYINT: 4138 case G_FCEIL: 4139 case G_FFLOOR: 4140 case G_FRINT: 4141 case G_INTRINSIC_ROUND: 4142 case G_INTRINSIC_ROUNDEVEN: 4143 case G_INTRINSIC_TRUNC: 4144 case G_FCOS: 4145 case G_FSIN: 4146 case G_FSQRT: 4147 case G_BSWAP: 4148 case G_BITREVERSE: 4149 case G_SDIV: 4150 case G_UDIV: 4151 case G_SREM: 4152 case G_UREM: 4153 case G_SDIVREM: 4154 case G_UDIVREM: 4155 case G_SMIN: 4156 case G_SMAX: 4157 case G_UMIN: 4158 case G_UMAX: 4159 case G_FMINNUM: 4160 case G_FMAXNUM: 4161 case G_FMINNUM_IEEE: 4162 case G_FMAXNUM_IEEE: 4163 case G_FMINIMUM: 4164 case G_FMAXIMUM: 4165 case G_FSHL: 4166 case G_FSHR: 4167 case G_FREEZE: 4168 case G_SADDSAT: 4169 case G_SSUBSAT: 4170 case G_UADDSAT: 4171 case G_USUBSAT: 4172 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4173 case G_UMULO: 4174 case G_SMULO: 4175 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4176 case G_SHL: 4177 case G_LSHR: 4178 case G_ASHR: 4179 case G_SSHLSAT: 4180 case G_USHLSAT: 4181 case G_CTLZ: 4182 case G_CTLZ_ZERO_UNDEF: 4183 case G_CTTZ: 4184 case G_CTTZ_ZERO_UNDEF: 4185 case G_CTPOP: 4186 case G_FCOPYSIGN: 4187 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4188 case G_ZEXT: 4189 case G_SEXT: 4190 case G_ANYEXT: 4191 case G_FPEXT: 4192 case G_FPTRUNC: 4193 case G_SITOFP: 4194 case G_UITOFP: 4195 case G_FPTOSI: 4196 case G_FPTOUI: 4197 case G_INTTOPTR: 4198 case G_PTRTOINT: 4199 case G_ADDRSPACE_CAST: 4200 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4201 case G_ICMP: 4202 case G_FCMP: 4203 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4204 case G_SELECT: 4205 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4206 case G_PHI: 4207 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4208 case G_UNMERGE_VALUES: 4209 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4210 case G_BUILD_VECTOR: 4211 assert(TypeIdx == 0 && "not a vector type index"); 4212 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4213 case G_CONCAT_VECTORS: 4214 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4215 return UnableToLegalize; 4216 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4217 case G_EXTRACT_VECTOR_ELT: 4218 case G_INSERT_VECTOR_ELT: 4219 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4220 case G_LOAD: 4221 case G_STORE: 4222 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4223 case G_SEXT_INREG: 4224 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4225 GISEL_VECREDUCE_CASES_NONSEQ 4226 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4227 case G_SHUFFLE_VECTOR: 4228 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4229 default: 4230 return UnableToLegalize; 4231 } 4232 } 4233 4234 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4235 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4236 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4237 if (TypeIdx != 0) 4238 return UnableToLegalize; 4239 4240 Register DstReg = MI.getOperand(0).getReg(); 4241 Register Src1Reg = MI.getOperand(1).getReg(); 4242 Register Src2Reg = MI.getOperand(2).getReg(); 4243 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4244 LLT DstTy = MRI.getType(DstReg); 4245 LLT Src1Ty = MRI.getType(Src1Reg); 4246 LLT Src2Ty = MRI.getType(Src2Reg); 4247 // The shuffle should be canonicalized by now. 4248 if (DstTy != Src1Ty) 4249 return UnableToLegalize; 4250 if (DstTy != Src2Ty) 4251 return UnableToLegalize; 4252 4253 if (!isPowerOf2_32(DstTy.getNumElements())) 4254 return UnableToLegalize; 4255 4256 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4257 // Further legalization attempts will be needed to do split further. 4258 NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2); 4259 unsigned NewElts = NarrowTy.getNumElements(); 4260 4261 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4262 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4263 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4264 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4265 SplitSrc2Regs[1]}; 4266 4267 Register Hi, Lo; 4268 4269 // If Lo or Hi uses elements from at most two of the four input vectors, then 4270 // express it as a vector shuffle of those two inputs. Otherwise extract the 4271 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4272 SmallVector<int, 16> Ops; 4273 for (unsigned High = 0; High < 2; ++High) { 4274 Register &Output = High ? Hi : Lo; 4275 4276 // Build a shuffle mask for the output, discovering on the fly which 4277 // input vectors to use as shuffle operands (recorded in InputUsed). 4278 // If building a suitable shuffle vector proves too hard, then bail 4279 // out with useBuildVector set. 4280 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4281 unsigned FirstMaskIdx = High * NewElts; 4282 bool UseBuildVector = false; 4283 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4284 // The mask element. This indexes into the input. 4285 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4286 4287 // The input vector this mask element indexes into. 4288 unsigned Input = (unsigned)Idx / NewElts; 4289 4290 if (Input >= array_lengthof(Inputs)) { 4291 // The mask element does not index into any input vector. 4292 Ops.push_back(-1); 4293 continue; 4294 } 4295 4296 // Turn the index into an offset from the start of the input vector. 4297 Idx -= Input * NewElts; 4298 4299 // Find or create a shuffle vector operand to hold this input. 4300 unsigned OpNo; 4301 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4302 if (InputUsed[OpNo] == Input) { 4303 // This input vector is already an operand. 4304 break; 4305 } else if (InputUsed[OpNo] == -1U) { 4306 // Create a new operand for this input vector. 4307 InputUsed[OpNo] = Input; 4308 break; 4309 } 4310 } 4311 4312 if (OpNo >= array_lengthof(InputUsed)) { 4313 // More than two input vectors used! Give up on trying to create a 4314 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4315 UseBuildVector = true; 4316 break; 4317 } 4318 4319 // Add the mask index for the new shuffle vector. 4320 Ops.push_back(Idx + OpNo * NewElts); 4321 } 4322 4323 if (UseBuildVector) { 4324 LLT EltTy = NarrowTy.getElementType(); 4325 SmallVector<Register, 16> SVOps; 4326 4327 // Extract the input elements by hand. 4328 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4329 // The mask element. This indexes into the input. 4330 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4331 4332 // The input vector this mask element indexes into. 4333 unsigned Input = (unsigned)Idx / NewElts; 4334 4335 if (Input >= array_lengthof(Inputs)) { 4336 // The mask element is "undef" or indexes off the end of the input. 4337 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4338 continue; 4339 } 4340 4341 // Turn the index into an offset from the start of the input vector. 4342 Idx -= Input * NewElts; 4343 4344 // Extract the vector element by hand. 4345 SVOps.push_back(MIRBuilder 4346 .buildExtractVectorElement( 4347 EltTy, Inputs[Input], 4348 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4349 .getReg(0)); 4350 } 4351 4352 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4353 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4354 } else if (InputUsed[0] == -1U) { 4355 // No input vectors were used! The result is undefined. 4356 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4357 } else { 4358 Register Op0 = Inputs[InputUsed[0]]; 4359 // If only one input was used, use an undefined vector for the other. 4360 Register Op1 = InputUsed[1] == -1U 4361 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4362 : Inputs[InputUsed[1]]; 4363 // At least one input vector was used. Create a new shuffle vector. 4364 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4365 } 4366 4367 Ops.clear(); 4368 } 4369 4370 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4371 MI.eraseFromParent(); 4372 return Legalized; 4373 } 4374 4375 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4376 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4377 unsigned Opc = MI.getOpcode(); 4378 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4379 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4380 "Sequential reductions not expected"); 4381 4382 if (TypeIdx != 1) 4383 return UnableToLegalize; 4384 4385 // The semantics of the normal non-sequential reductions allow us to freely 4386 // re-associate the operation. 4387 Register SrcReg = MI.getOperand(1).getReg(); 4388 LLT SrcTy = MRI.getType(SrcReg); 4389 Register DstReg = MI.getOperand(0).getReg(); 4390 LLT DstTy = MRI.getType(DstReg); 4391 4392 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4393 return UnableToLegalize; 4394 4395 SmallVector<Register> SplitSrcs; 4396 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4397 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4398 SmallVector<Register> PartialReductions; 4399 for (unsigned Part = 0; Part < NumParts; ++Part) { 4400 PartialReductions.push_back( 4401 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4402 } 4403 4404 unsigned ScalarOpc; 4405 switch (Opc) { 4406 case TargetOpcode::G_VECREDUCE_FADD: 4407 ScalarOpc = TargetOpcode::G_FADD; 4408 break; 4409 case TargetOpcode::G_VECREDUCE_FMUL: 4410 ScalarOpc = TargetOpcode::G_FMUL; 4411 break; 4412 case TargetOpcode::G_VECREDUCE_FMAX: 4413 ScalarOpc = TargetOpcode::G_FMAXNUM; 4414 break; 4415 case TargetOpcode::G_VECREDUCE_FMIN: 4416 ScalarOpc = TargetOpcode::G_FMINNUM; 4417 break; 4418 case TargetOpcode::G_VECREDUCE_ADD: 4419 ScalarOpc = TargetOpcode::G_ADD; 4420 break; 4421 case TargetOpcode::G_VECREDUCE_MUL: 4422 ScalarOpc = TargetOpcode::G_MUL; 4423 break; 4424 case TargetOpcode::G_VECREDUCE_AND: 4425 ScalarOpc = TargetOpcode::G_AND; 4426 break; 4427 case TargetOpcode::G_VECREDUCE_OR: 4428 ScalarOpc = TargetOpcode::G_OR; 4429 break; 4430 case TargetOpcode::G_VECREDUCE_XOR: 4431 ScalarOpc = TargetOpcode::G_XOR; 4432 break; 4433 case TargetOpcode::G_VECREDUCE_SMAX: 4434 ScalarOpc = TargetOpcode::G_SMAX; 4435 break; 4436 case TargetOpcode::G_VECREDUCE_SMIN: 4437 ScalarOpc = TargetOpcode::G_SMIN; 4438 break; 4439 case TargetOpcode::G_VECREDUCE_UMAX: 4440 ScalarOpc = TargetOpcode::G_UMAX; 4441 break; 4442 case TargetOpcode::G_VECREDUCE_UMIN: 4443 ScalarOpc = TargetOpcode::G_UMIN; 4444 break; 4445 default: 4446 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4447 return UnableToLegalize; 4448 } 4449 4450 // If the types involved are powers of 2, we can generate intermediate vector 4451 // ops, before generating a final reduction operation. 4452 if (isPowerOf2_32(SrcTy.getNumElements()) && 4453 isPowerOf2_32(NarrowTy.getNumElements())) { 4454 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4455 } 4456 4457 Register Acc = PartialReductions[0]; 4458 for (unsigned Part = 1; Part < NumParts; ++Part) { 4459 if (Part == NumParts - 1) { 4460 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4461 {Acc, PartialReductions[Part]}); 4462 } else { 4463 Acc = MIRBuilder 4464 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4465 .getReg(0); 4466 } 4467 } 4468 MI.eraseFromParent(); 4469 return Legalized; 4470 } 4471 4472 LegalizerHelper::LegalizeResult 4473 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4474 LLT SrcTy, LLT NarrowTy, 4475 unsigned ScalarOpc) { 4476 SmallVector<Register> SplitSrcs; 4477 // Split the sources into NarrowTy size pieces. 4478 extractParts(SrcReg, NarrowTy, 4479 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4480 // We're going to do a tree reduction using vector operations until we have 4481 // one NarrowTy size value left. 4482 while (SplitSrcs.size() > 1) { 4483 SmallVector<Register> PartialRdxs; 4484 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4485 Register LHS = SplitSrcs[Idx]; 4486 Register RHS = SplitSrcs[Idx + 1]; 4487 // Create the intermediate vector op. 4488 Register Res = 4489 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4490 PartialRdxs.push_back(Res); 4491 } 4492 SplitSrcs = std::move(PartialRdxs); 4493 } 4494 // Finally generate the requested NarrowTy based reduction. 4495 Observer.changingInstr(MI); 4496 MI.getOperand(1).setReg(SplitSrcs[0]); 4497 Observer.changedInstr(MI); 4498 return Legalized; 4499 } 4500 4501 LegalizerHelper::LegalizeResult 4502 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4503 const LLT HalfTy, const LLT AmtTy) { 4504 4505 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4506 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4507 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4508 4509 if (Amt.isNullValue()) { 4510 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4511 MI.eraseFromParent(); 4512 return Legalized; 4513 } 4514 4515 LLT NVT = HalfTy; 4516 unsigned NVTBits = HalfTy.getSizeInBits(); 4517 unsigned VTBits = 2 * NVTBits; 4518 4519 SrcOp Lo(Register(0)), Hi(Register(0)); 4520 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4521 if (Amt.ugt(VTBits)) { 4522 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4523 } else if (Amt.ugt(NVTBits)) { 4524 Lo = MIRBuilder.buildConstant(NVT, 0); 4525 Hi = MIRBuilder.buildShl(NVT, InL, 4526 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4527 } else if (Amt == NVTBits) { 4528 Lo = MIRBuilder.buildConstant(NVT, 0); 4529 Hi = InL; 4530 } else { 4531 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4532 auto OrLHS = 4533 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4534 auto OrRHS = MIRBuilder.buildLShr( 4535 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4536 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4537 } 4538 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4539 if (Amt.ugt(VTBits)) { 4540 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4541 } else if (Amt.ugt(NVTBits)) { 4542 Lo = MIRBuilder.buildLShr(NVT, InH, 4543 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4544 Hi = MIRBuilder.buildConstant(NVT, 0); 4545 } else if (Amt == NVTBits) { 4546 Lo = InH; 4547 Hi = MIRBuilder.buildConstant(NVT, 0); 4548 } else { 4549 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4550 4551 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4552 auto OrRHS = MIRBuilder.buildShl( 4553 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4554 4555 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4556 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4557 } 4558 } else { 4559 if (Amt.ugt(VTBits)) { 4560 Hi = Lo = MIRBuilder.buildAShr( 4561 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4562 } else if (Amt.ugt(NVTBits)) { 4563 Lo = MIRBuilder.buildAShr(NVT, InH, 4564 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4565 Hi = MIRBuilder.buildAShr(NVT, InH, 4566 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4567 } else if (Amt == NVTBits) { 4568 Lo = InH; 4569 Hi = MIRBuilder.buildAShr(NVT, InH, 4570 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4571 } else { 4572 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4573 4574 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4575 auto OrRHS = MIRBuilder.buildShl( 4576 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4577 4578 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4579 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4580 } 4581 } 4582 4583 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4584 MI.eraseFromParent(); 4585 4586 return Legalized; 4587 } 4588 4589 // TODO: Optimize if constant shift amount. 4590 LegalizerHelper::LegalizeResult 4591 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4592 LLT RequestedTy) { 4593 if (TypeIdx == 1) { 4594 Observer.changingInstr(MI); 4595 narrowScalarSrc(MI, RequestedTy, 2); 4596 Observer.changedInstr(MI); 4597 return Legalized; 4598 } 4599 4600 Register DstReg = MI.getOperand(0).getReg(); 4601 LLT DstTy = MRI.getType(DstReg); 4602 if (DstTy.isVector()) 4603 return UnableToLegalize; 4604 4605 Register Amt = MI.getOperand(2).getReg(); 4606 LLT ShiftAmtTy = MRI.getType(Amt); 4607 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4608 if (DstEltSize % 2 != 0) 4609 return UnableToLegalize; 4610 4611 // Ignore the input type. We can only go to exactly half the size of the 4612 // input. If that isn't small enough, the resulting pieces will be further 4613 // legalized. 4614 const unsigned NewBitSize = DstEltSize / 2; 4615 const LLT HalfTy = LLT::scalar(NewBitSize); 4616 const LLT CondTy = LLT::scalar(1); 4617 4618 if (const MachineInstr *KShiftAmt = 4619 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4620 return narrowScalarShiftByConstant( 4621 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4622 } 4623 4624 // TODO: Expand with known bits. 4625 4626 // Handle the fully general expansion by an unknown amount. 4627 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4628 4629 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4630 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4631 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4632 4633 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4634 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4635 4636 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4637 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4638 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4639 4640 Register ResultRegs[2]; 4641 switch (MI.getOpcode()) { 4642 case TargetOpcode::G_SHL: { 4643 // Short: ShAmt < NewBitSize 4644 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4645 4646 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4647 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4648 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4649 4650 // Long: ShAmt >= NewBitSize 4651 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4652 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4653 4654 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4655 auto Hi = MIRBuilder.buildSelect( 4656 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4657 4658 ResultRegs[0] = Lo.getReg(0); 4659 ResultRegs[1] = Hi.getReg(0); 4660 break; 4661 } 4662 case TargetOpcode::G_LSHR: 4663 case TargetOpcode::G_ASHR: { 4664 // Short: ShAmt < NewBitSize 4665 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4666 4667 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4668 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4669 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4670 4671 // Long: ShAmt >= NewBitSize 4672 MachineInstrBuilder HiL; 4673 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4674 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4675 } else { 4676 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4677 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4678 } 4679 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4680 {InH, AmtExcess}); // Lo from Hi part. 4681 4682 auto Lo = MIRBuilder.buildSelect( 4683 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4684 4685 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4686 4687 ResultRegs[0] = Lo.getReg(0); 4688 ResultRegs[1] = Hi.getReg(0); 4689 break; 4690 } 4691 default: 4692 llvm_unreachable("not a shift"); 4693 } 4694 4695 MIRBuilder.buildMerge(DstReg, ResultRegs); 4696 MI.eraseFromParent(); 4697 return Legalized; 4698 } 4699 4700 LegalizerHelper::LegalizeResult 4701 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4702 LLT MoreTy) { 4703 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4704 4705 Observer.changingInstr(MI); 4706 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4707 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4708 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4709 moreElementsVectorSrc(MI, MoreTy, I); 4710 } 4711 4712 MachineBasicBlock &MBB = *MI.getParent(); 4713 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4714 moreElementsVectorDst(MI, MoreTy, 0); 4715 Observer.changedInstr(MI); 4716 return Legalized; 4717 } 4718 4719 LegalizerHelper::LegalizeResult 4720 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4721 LLT MoreTy) { 4722 unsigned Opc = MI.getOpcode(); 4723 switch (Opc) { 4724 case TargetOpcode::G_IMPLICIT_DEF: 4725 case TargetOpcode::G_LOAD: { 4726 if (TypeIdx != 0) 4727 return UnableToLegalize; 4728 Observer.changingInstr(MI); 4729 moreElementsVectorDst(MI, MoreTy, 0); 4730 Observer.changedInstr(MI); 4731 return Legalized; 4732 } 4733 case TargetOpcode::G_STORE: 4734 if (TypeIdx != 0) 4735 return UnableToLegalize; 4736 Observer.changingInstr(MI); 4737 moreElementsVectorSrc(MI, MoreTy, 0); 4738 Observer.changedInstr(MI); 4739 return Legalized; 4740 case TargetOpcode::G_AND: 4741 case TargetOpcode::G_OR: 4742 case TargetOpcode::G_XOR: 4743 case TargetOpcode::G_SMIN: 4744 case TargetOpcode::G_SMAX: 4745 case TargetOpcode::G_UMIN: 4746 case TargetOpcode::G_UMAX: 4747 case TargetOpcode::G_FMINNUM: 4748 case TargetOpcode::G_FMAXNUM: 4749 case TargetOpcode::G_FMINNUM_IEEE: 4750 case TargetOpcode::G_FMAXNUM_IEEE: 4751 case TargetOpcode::G_FMINIMUM: 4752 case TargetOpcode::G_FMAXIMUM: { 4753 Observer.changingInstr(MI); 4754 moreElementsVectorSrc(MI, MoreTy, 1); 4755 moreElementsVectorSrc(MI, MoreTy, 2); 4756 moreElementsVectorDst(MI, MoreTy, 0); 4757 Observer.changedInstr(MI); 4758 return Legalized; 4759 } 4760 case TargetOpcode::G_EXTRACT: 4761 if (TypeIdx != 1) 4762 return UnableToLegalize; 4763 Observer.changingInstr(MI); 4764 moreElementsVectorSrc(MI, MoreTy, 1); 4765 Observer.changedInstr(MI); 4766 return Legalized; 4767 case TargetOpcode::G_INSERT: 4768 case TargetOpcode::G_FREEZE: 4769 if (TypeIdx != 0) 4770 return UnableToLegalize; 4771 Observer.changingInstr(MI); 4772 moreElementsVectorSrc(MI, MoreTy, 1); 4773 moreElementsVectorDst(MI, MoreTy, 0); 4774 Observer.changedInstr(MI); 4775 return Legalized; 4776 case TargetOpcode::G_SELECT: 4777 if (TypeIdx != 0) 4778 return UnableToLegalize; 4779 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4780 return UnableToLegalize; 4781 4782 Observer.changingInstr(MI); 4783 moreElementsVectorSrc(MI, MoreTy, 2); 4784 moreElementsVectorSrc(MI, MoreTy, 3); 4785 moreElementsVectorDst(MI, MoreTy, 0); 4786 Observer.changedInstr(MI); 4787 return Legalized; 4788 case TargetOpcode::G_UNMERGE_VALUES: { 4789 if (TypeIdx != 1) 4790 return UnableToLegalize; 4791 4792 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4793 int NumDst = MI.getNumOperands() - 1; 4794 moreElementsVectorSrc(MI, MoreTy, NumDst); 4795 4796 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4797 for (int I = 0; I != NumDst; ++I) 4798 MIB.addDef(MI.getOperand(I).getReg()); 4799 4800 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4801 for (int I = NumDst; I != NewNumDst; ++I) 4802 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4803 4804 MIB.addUse(MI.getOperand(NumDst).getReg()); 4805 MI.eraseFromParent(); 4806 return Legalized; 4807 } 4808 case TargetOpcode::G_PHI: 4809 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4810 default: 4811 return UnableToLegalize; 4812 } 4813 } 4814 4815 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4816 ArrayRef<Register> Src1Regs, 4817 ArrayRef<Register> Src2Regs, 4818 LLT NarrowTy) { 4819 MachineIRBuilder &B = MIRBuilder; 4820 unsigned SrcParts = Src1Regs.size(); 4821 unsigned DstParts = DstRegs.size(); 4822 4823 unsigned DstIdx = 0; // Low bits of the result. 4824 Register FactorSum = 4825 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4826 DstRegs[DstIdx] = FactorSum; 4827 4828 unsigned CarrySumPrevDstIdx; 4829 SmallVector<Register, 4> Factors; 4830 4831 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4832 // Collect low parts of muls for DstIdx. 4833 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4834 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4835 MachineInstrBuilder Mul = 4836 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4837 Factors.push_back(Mul.getReg(0)); 4838 } 4839 // Collect high parts of muls from previous DstIdx. 4840 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4841 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4842 MachineInstrBuilder Umulh = 4843 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4844 Factors.push_back(Umulh.getReg(0)); 4845 } 4846 // Add CarrySum from additions calculated for previous DstIdx. 4847 if (DstIdx != 1) { 4848 Factors.push_back(CarrySumPrevDstIdx); 4849 } 4850 4851 Register CarrySum; 4852 // Add all factors and accumulate all carries into CarrySum. 4853 if (DstIdx != DstParts - 1) { 4854 MachineInstrBuilder Uaddo = 4855 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4856 FactorSum = Uaddo.getReg(0); 4857 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4858 for (unsigned i = 2; i < Factors.size(); ++i) { 4859 MachineInstrBuilder Uaddo = 4860 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4861 FactorSum = Uaddo.getReg(0); 4862 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4863 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4864 } 4865 } else { 4866 // Since value for the next index is not calculated, neither is CarrySum. 4867 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4868 for (unsigned i = 2; i < Factors.size(); ++i) 4869 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4870 } 4871 4872 CarrySumPrevDstIdx = CarrySum; 4873 DstRegs[DstIdx] = FactorSum; 4874 Factors.clear(); 4875 } 4876 } 4877 4878 LegalizerHelper::LegalizeResult 4879 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4880 LLT NarrowTy) { 4881 if (TypeIdx != 0) 4882 return UnableToLegalize; 4883 4884 Register DstReg = MI.getOperand(0).getReg(); 4885 LLT DstType = MRI.getType(DstReg); 4886 // FIXME: add support for vector types 4887 if (DstType.isVector()) 4888 return UnableToLegalize; 4889 4890 uint64_t SizeOp0 = DstType.getSizeInBits(); 4891 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4892 4893 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4894 // NarrowSize. 4895 if (SizeOp0 % NarrowSize != 0) 4896 return UnableToLegalize; 4897 4898 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4899 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4900 4901 unsigned Opcode = MI.getOpcode(); 4902 unsigned OpO, OpE, OpF; 4903 switch (Opcode) { 4904 case TargetOpcode::G_SADDO: 4905 case TargetOpcode::G_SADDE: 4906 case TargetOpcode::G_UADDO: 4907 case TargetOpcode::G_UADDE: 4908 case TargetOpcode::G_ADD: 4909 OpO = TargetOpcode::G_UADDO; 4910 OpE = TargetOpcode::G_UADDE; 4911 OpF = TargetOpcode::G_UADDE; 4912 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4913 OpF = TargetOpcode::G_SADDE; 4914 break; 4915 case TargetOpcode::G_SSUBO: 4916 case TargetOpcode::G_SSUBE: 4917 case TargetOpcode::G_USUBO: 4918 case TargetOpcode::G_USUBE: 4919 case TargetOpcode::G_SUB: 4920 OpO = TargetOpcode::G_USUBO; 4921 OpE = TargetOpcode::G_USUBE; 4922 OpF = TargetOpcode::G_USUBE; 4923 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4924 OpF = TargetOpcode::G_SSUBE; 4925 break; 4926 default: 4927 llvm_unreachable("Unexpected add/sub opcode!"); 4928 } 4929 4930 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4931 unsigned NumDefs = MI.getNumExplicitDefs(); 4932 Register Src1 = MI.getOperand(NumDefs).getReg(); 4933 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4934 Register CarryDst; 4935 if (NumDefs == 2) 4936 CarryDst = MI.getOperand(1).getReg(); 4937 Register CarryIn; 4938 if (MI.getNumOperands() == NumDefs + 3) 4939 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4940 4941 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4942 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4943 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4944 4945 for (int i = 0; i < NumParts; ++i) { 4946 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4947 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4948 // Forward the final carry-out to the destination register 4949 if (i == NumParts - 1 && CarryDst) 4950 CarryOut = CarryDst; 4951 4952 if (!CarryIn) { 4953 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4954 {Src1Regs[i], Src2Regs[i]}); 4955 } else if (i == NumParts - 1) { 4956 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4957 {Src1Regs[i], Src2Regs[i], CarryIn}); 4958 } else { 4959 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4960 {Src1Regs[i], Src2Regs[i], CarryIn}); 4961 } 4962 4963 DstRegs.push_back(DstReg); 4964 CarryIn = CarryOut; 4965 } 4966 MIRBuilder.buildMerge(DstReg, DstRegs); 4967 MI.eraseFromParent(); 4968 return Legalized; 4969 } 4970 4971 LegalizerHelper::LegalizeResult 4972 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4973 Register DstReg = MI.getOperand(0).getReg(); 4974 Register Src1 = MI.getOperand(1).getReg(); 4975 Register Src2 = MI.getOperand(2).getReg(); 4976 4977 LLT Ty = MRI.getType(DstReg); 4978 if (Ty.isVector()) 4979 return UnableToLegalize; 4980 4981 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4982 unsigned DstSize = Ty.getSizeInBits(); 4983 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4984 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4985 return UnableToLegalize; 4986 4987 unsigned NumDstParts = DstSize / NarrowSize; 4988 unsigned NumSrcParts = SrcSize / NarrowSize; 4989 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4990 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4991 4992 SmallVector<Register, 2> Src1Parts, Src2Parts; 4993 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4994 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4995 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4996 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4997 4998 // Take only high half of registers if this is high mul. 4999 ArrayRef<Register> DstRegs( 5000 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5001 MIRBuilder.buildMerge(DstReg, DstRegs); 5002 MI.eraseFromParent(); 5003 return Legalized; 5004 } 5005 5006 LegalizerHelper::LegalizeResult 5007 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5008 LLT NarrowTy) { 5009 if (TypeIdx != 0) 5010 return UnableToLegalize; 5011 5012 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5013 5014 Register Src = MI.getOperand(1).getReg(); 5015 LLT SrcTy = MRI.getType(Src); 5016 5017 // If all finite floats fit into the narrowed integer type, we can just swap 5018 // out the result type. This is practically only useful for conversions from 5019 // half to at least 16-bits, so just handle the one case. 5020 if (SrcTy.getScalarType() != LLT::scalar(16) || 5021 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5022 return UnableToLegalize; 5023 5024 Observer.changingInstr(MI); 5025 narrowScalarDst(MI, NarrowTy, 0, 5026 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5027 Observer.changedInstr(MI); 5028 return Legalized; 5029 } 5030 5031 LegalizerHelper::LegalizeResult 5032 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5033 LLT NarrowTy) { 5034 if (TypeIdx != 1) 5035 return UnableToLegalize; 5036 5037 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5038 5039 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5040 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5041 // NarrowSize. 5042 if (SizeOp1 % NarrowSize != 0) 5043 return UnableToLegalize; 5044 int NumParts = SizeOp1 / NarrowSize; 5045 5046 SmallVector<Register, 2> SrcRegs, DstRegs; 5047 SmallVector<uint64_t, 2> Indexes; 5048 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5049 5050 Register OpReg = MI.getOperand(0).getReg(); 5051 uint64_t OpStart = MI.getOperand(2).getImm(); 5052 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5053 for (int i = 0; i < NumParts; ++i) { 5054 unsigned SrcStart = i * NarrowSize; 5055 5056 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5057 // No part of the extract uses this subregister, ignore it. 5058 continue; 5059 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5060 // The entire subregister is extracted, forward the value. 5061 DstRegs.push_back(SrcRegs[i]); 5062 continue; 5063 } 5064 5065 // OpSegStart is where this destination segment would start in OpReg if it 5066 // extended infinitely in both directions. 5067 int64_t ExtractOffset; 5068 uint64_t SegSize; 5069 if (OpStart < SrcStart) { 5070 ExtractOffset = 0; 5071 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5072 } else { 5073 ExtractOffset = OpStart - SrcStart; 5074 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5075 } 5076 5077 Register SegReg = SrcRegs[i]; 5078 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5079 // A genuine extract is needed. 5080 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5081 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5082 } 5083 5084 DstRegs.push_back(SegReg); 5085 } 5086 5087 Register DstReg = MI.getOperand(0).getReg(); 5088 if (MRI.getType(DstReg).isVector()) 5089 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5090 else if (DstRegs.size() > 1) 5091 MIRBuilder.buildMerge(DstReg, DstRegs); 5092 else 5093 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5094 MI.eraseFromParent(); 5095 return Legalized; 5096 } 5097 5098 LegalizerHelper::LegalizeResult 5099 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5100 LLT NarrowTy) { 5101 // FIXME: Don't know how to handle secondary types yet. 5102 if (TypeIdx != 0) 5103 return UnableToLegalize; 5104 5105 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 5106 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5107 5108 // FIXME: add support for when SizeOp0 isn't an exact multiple of 5109 // NarrowSize. 5110 if (SizeOp0 % NarrowSize != 0) 5111 return UnableToLegalize; 5112 5113 int NumParts = SizeOp0 / NarrowSize; 5114 5115 SmallVector<Register, 2> SrcRegs, DstRegs; 5116 SmallVector<uint64_t, 2> Indexes; 5117 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5118 5119 Register OpReg = MI.getOperand(2).getReg(); 5120 uint64_t OpStart = MI.getOperand(3).getImm(); 5121 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5122 for (int i = 0; i < NumParts; ++i) { 5123 unsigned DstStart = i * NarrowSize; 5124 5125 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5126 // No part of the insert affects this subregister, forward the original. 5127 DstRegs.push_back(SrcRegs[i]); 5128 continue; 5129 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5130 // The entire subregister is defined by this insert, forward the new 5131 // value. 5132 DstRegs.push_back(OpReg); 5133 continue; 5134 } 5135 5136 // OpSegStart is where this destination segment would start in OpReg if it 5137 // extended infinitely in both directions. 5138 int64_t ExtractOffset, InsertOffset; 5139 uint64_t SegSize; 5140 if (OpStart < DstStart) { 5141 InsertOffset = 0; 5142 ExtractOffset = DstStart - OpStart; 5143 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5144 } else { 5145 InsertOffset = OpStart - DstStart; 5146 ExtractOffset = 0; 5147 SegSize = 5148 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5149 } 5150 5151 Register SegReg = OpReg; 5152 if (ExtractOffset != 0 || SegSize != OpSize) { 5153 // A genuine extract is needed. 5154 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5155 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5156 } 5157 5158 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5159 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 5160 DstRegs.push_back(DstReg); 5161 } 5162 5163 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 5164 Register DstReg = MI.getOperand(0).getReg(); 5165 if(MRI.getType(DstReg).isVector()) 5166 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5167 else 5168 MIRBuilder.buildMerge(DstReg, DstRegs); 5169 MI.eraseFromParent(); 5170 return Legalized; 5171 } 5172 5173 LegalizerHelper::LegalizeResult 5174 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5175 LLT NarrowTy) { 5176 Register DstReg = MI.getOperand(0).getReg(); 5177 LLT DstTy = MRI.getType(DstReg); 5178 5179 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5180 5181 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5182 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5183 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5184 LLT LeftoverTy; 5185 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5186 Src0Regs, Src0LeftoverRegs)) 5187 return UnableToLegalize; 5188 5189 LLT Unused; 5190 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5191 Src1Regs, Src1LeftoverRegs)) 5192 llvm_unreachable("inconsistent extractParts result"); 5193 5194 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5195 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5196 {Src0Regs[I], Src1Regs[I]}); 5197 DstRegs.push_back(Inst.getReg(0)); 5198 } 5199 5200 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5201 auto Inst = MIRBuilder.buildInstr( 5202 MI.getOpcode(), 5203 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5204 DstLeftoverRegs.push_back(Inst.getReg(0)); 5205 } 5206 5207 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5208 LeftoverTy, DstLeftoverRegs); 5209 5210 MI.eraseFromParent(); 5211 return Legalized; 5212 } 5213 5214 LegalizerHelper::LegalizeResult 5215 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5216 LLT NarrowTy) { 5217 if (TypeIdx != 0) 5218 return UnableToLegalize; 5219 5220 Register DstReg = MI.getOperand(0).getReg(); 5221 Register SrcReg = MI.getOperand(1).getReg(); 5222 5223 LLT DstTy = MRI.getType(DstReg); 5224 if (DstTy.isVector()) 5225 return UnableToLegalize; 5226 5227 SmallVector<Register, 8> Parts; 5228 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5229 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5230 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5231 5232 MI.eraseFromParent(); 5233 return Legalized; 5234 } 5235 5236 LegalizerHelper::LegalizeResult 5237 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5238 LLT NarrowTy) { 5239 if (TypeIdx != 0) 5240 return UnableToLegalize; 5241 5242 Register CondReg = MI.getOperand(1).getReg(); 5243 LLT CondTy = MRI.getType(CondReg); 5244 if (CondTy.isVector()) // TODO: Handle vselect 5245 return UnableToLegalize; 5246 5247 Register DstReg = MI.getOperand(0).getReg(); 5248 LLT DstTy = MRI.getType(DstReg); 5249 5250 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5251 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5252 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5253 LLT LeftoverTy; 5254 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5255 Src1Regs, Src1LeftoverRegs)) 5256 return UnableToLegalize; 5257 5258 LLT Unused; 5259 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5260 Src2Regs, Src2LeftoverRegs)) 5261 llvm_unreachable("inconsistent extractParts result"); 5262 5263 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5264 auto Select = MIRBuilder.buildSelect(NarrowTy, 5265 CondReg, Src1Regs[I], Src2Regs[I]); 5266 DstRegs.push_back(Select.getReg(0)); 5267 } 5268 5269 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5270 auto Select = MIRBuilder.buildSelect( 5271 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5272 DstLeftoverRegs.push_back(Select.getReg(0)); 5273 } 5274 5275 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5276 LeftoverTy, DstLeftoverRegs); 5277 5278 MI.eraseFromParent(); 5279 return Legalized; 5280 } 5281 5282 LegalizerHelper::LegalizeResult 5283 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5284 LLT NarrowTy) { 5285 if (TypeIdx != 1) 5286 return UnableToLegalize; 5287 5288 Register DstReg = MI.getOperand(0).getReg(); 5289 Register SrcReg = MI.getOperand(1).getReg(); 5290 LLT DstTy = MRI.getType(DstReg); 5291 LLT SrcTy = MRI.getType(SrcReg); 5292 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5293 5294 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5295 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5296 5297 MachineIRBuilder &B = MIRBuilder; 5298 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5299 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5300 auto C_0 = B.buildConstant(NarrowTy, 0); 5301 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5302 UnmergeSrc.getReg(1), C_0); 5303 auto LoCTLZ = IsUndef ? 5304 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5305 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5306 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5307 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5308 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5309 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5310 5311 MI.eraseFromParent(); 5312 return Legalized; 5313 } 5314 5315 return UnableToLegalize; 5316 } 5317 5318 LegalizerHelper::LegalizeResult 5319 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5320 LLT NarrowTy) { 5321 if (TypeIdx != 1) 5322 return UnableToLegalize; 5323 5324 Register DstReg = MI.getOperand(0).getReg(); 5325 Register SrcReg = MI.getOperand(1).getReg(); 5326 LLT DstTy = MRI.getType(DstReg); 5327 LLT SrcTy = MRI.getType(SrcReg); 5328 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5329 5330 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5331 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5332 5333 MachineIRBuilder &B = MIRBuilder; 5334 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5335 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5336 auto C_0 = B.buildConstant(NarrowTy, 0); 5337 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5338 UnmergeSrc.getReg(0), C_0); 5339 auto HiCTTZ = IsUndef ? 5340 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5341 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5342 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5343 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5344 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5345 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5346 5347 MI.eraseFromParent(); 5348 return Legalized; 5349 } 5350 5351 return UnableToLegalize; 5352 } 5353 5354 LegalizerHelper::LegalizeResult 5355 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5356 LLT NarrowTy) { 5357 if (TypeIdx != 1) 5358 return UnableToLegalize; 5359 5360 Register DstReg = MI.getOperand(0).getReg(); 5361 LLT DstTy = MRI.getType(DstReg); 5362 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5363 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5364 5365 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5366 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5367 5368 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5369 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5370 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5371 5372 MI.eraseFromParent(); 5373 return Legalized; 5374 } 5375 5376 return UnableToLegalize; 5377 } 5378 5379 LegalizerHelper::LegalizeResult 5380 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5381 unsigned Opc = MI.getOpcode(); 5382 const auto &TII = MIRBuilder.getTII(); 5383 auto isSupported = [this](const LegalityQuery &Q) { 5384 auto QAction = LI.getAction(Q).Action; 5385 return QAction == Legal || QAction == Libcall || QAction == Custom; 5386 }; 5387 switch (Opc) { 5388 default: 5389 return UnableToLegalize; 5390 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5391 // This trivially expands to CTLZ. 5392 Observer.changingInstr(MI); 5393 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5394 Observer.changedInstr(MI); 5395 return Legalized; 5396 } 5397 case TargetOpcode::G_CTLZ: { 5398 Register DstReg = MI.getOperand(0).getReg(); 5399 Register SrcReg = MI.getOperand(1).getReg(); 5400 LLT DstTy = MRI.getType(DstReg); 5401 LLT SrcTy = MRI.getType(SrcReg); 5402 unsigned Len = SrcTy.getSizeInBits(); 5403 5404 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5405 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5406 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5407 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5408 auto ICmp = MIRBuilder.buildICmp( 5409 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5410 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5411 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5412 MI.eraseFromParent(); 5413 return Legalized; 5414 } 5415 // for now, we do this: 5416 // NewLen = NextPowerOf2(Len); 5417 // x = x | (x >> 1); 5418 // x = x | (x >> 2); 5419 // ... 5420 // x = x | (x >>16); 5421 // x = x | (x >>32); // for 64-bit input 5422 // Upto NewLen/2 5423 // return Len - popcount(x); 5424 // 5425 // Ref: "Hacker's Delight" by Henry Warren 5426 Register Op = SrcReg; 5427 unsigned NewLen = PowerOf2Ceil(Len); 5428 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5429 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5430 auto MIBOp = MIRBuilder.buildOr( 5431 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5432 Op = MIBOp.getReg(0); 5433 } 5434 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5435 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5436 MIBPop); 5437 MI.eraseFromParent(); 5438 return Legalized; 5439 } 5440 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5441 // This trivially expands to CTTZ. 5442 Observer.changingInstr(MI); 5443 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5444 Observer.changedInstr(MI); 5445 return Legalized; 5446 } 5447 case TargetOpcode::G_CTTZ: { 5448 Register DstReg = MI.getOperand(0).getReg(); 5449 Register SrcReg = MI.getOperand(1).getReg(); 5450 LLT DstTy = MRI.getType(DstReg); 5451 LLT SrcTy = MRI.getType(SrcReg); 5452 5453 unsigned Len = SrcTy.getSizeInBits(); 5454 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5455 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5456 // zero. 5457 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5458 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5459 auto ICmp = MIRBuilder.buildICmp( 5460 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5461 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5462 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5463 MI.eraseFromParent(); 5464 return Legalized; 5465 } 5466 // for now, we use: { return popcount(~x & (x - 1)); } 5467 // unless the target has ctlz but not ctpop, in which case we use: 5468 // { return 32 - nlz(~x & (x-1)); } 5469 // Ref: "Hacker's Delight" by Henry Warren 5470 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5471 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5472 auto MIBTmp = MIRBuilder.buildAnd( 5473 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5474 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5475 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5476 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5477 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5478 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5479 MI.eraseFromParent(); 5480 return Legalized; 5481 } 5482 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5483 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5484 return Legalized; 5485 } 5486 case TargetOpcode::G_CTPOP: { 5487 Register SrcReg = MI.getOperand(1).getReg(); 5488 LLT Ty = MRI.getType(SrcReg); 5489 unsigned Size = Ty.getSizeInBits(); 5490 MachineIRBuilder &B = MIRBuilder; 5491 5492 // Count set bits in blocks of 2 bits. Default approach would be 5493 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5494 // We use following formula instead: 5495 // B2Count = val - { (val >> 1) & 0x55555555 } 5496 // since it gives same result in blocks of 2 with one instruction less. 5497 auto C_1 = B.buildConstant(Ty, 1); 5498 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5499 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5500 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5501 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5502 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5503 5504 // In order to get count in blocks of 4 add values from adjacent block of 2. 5505 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5506 auto C_2 = B.buildConstant(Ty, 2); 5507 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5508 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5509 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5510 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5511 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5512 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5513 5514 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5515 // addition since count value sits in range {0,...,8} and 4 bits are enough 5516 // to hold such binary values. After addition high 4 bits still hold count 5517 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5518 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5519 auto C_4 = B.buildConstant(Ty, 4); 5520 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5521 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5522 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5523 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5524 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5525 5526 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5527 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5528 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5529 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5530 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5531 5532 // Shift count result from 8 high bits to low bits. 5533 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5534 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5535 5536 MI.eraseFromParent(); 5537 return Legalized; 5538 } 5539 } 5540 } 5541 5542 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5543 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5544 Register Reg, unsigned BW) { 5545 return matchUnaryPredicate( 5546 MRI, Reg, 5547 [=](const Constant *C) { 5548 // Null constant here means an undef. 5549 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5550 return !CI || CI->getValue().urem(BW) != 0; 5551 }, 5552 /*AllowUndefs*/ true); 5553 } 5554 5555 LegalizerHelper::LegalizeResult 5556 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5557 Register Dst = MI.getOperand(0).getReg(); 5558 Register X = MI.getOperand(1).getReg(); 5559 Register Y = MI.getOperand(2).getReg(); 5560 Register Z = MI.getOperand(3).getReg(); 5561 LLT Ty = MRI.getType(Dst); 5562 LLT ShTy = MRI.getType(Z); 5563 5564 unsigned BW = Ty.getScalarSizeInBits(); 5565 5566 if (!isPowerOf2_32(BW)) 5567 return UnableToLegalize; 5568 5569 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5570 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5571 5572 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5573 // fshl X, Y, Z -> fshr X, Y, -Z 5574 // fshr X, Y, Z -> fshl X, Y, -Z 5575 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5576 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5577 } else { 5578 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5579 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5580 auto One = MIRBuilder.buildConstant(ShTy, 1); 5581 if (IsFSHL) { 5582 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5583 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5584 } else { 5585 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5586 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5587 } 5588 5589 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5590 } 5591 5592 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5593 MI.eraseFromParent(); 5594 return Legalized; 5595 } 5596 5597 LegalizerHelper::LegalizeResult 5598 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5599 Register Dst = MI.getOperand(0).getReg(); 5600 Register X = MI.getOperand(1).getReg(); 5601 Register Y = MI.getOperand(2).getReg(); 5602 Register Z = MI.getOperand(3).getReg(); 5603 LLT Ty = MRI.getType(Dst); 5604 LLT ShTy = MRI.getType(Z); 5605 5606 const unsigned BW = Ty.getScalarSizeInBits(); 5607 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5608 5609 Register ShX, ShY; 5610 Register ShAmt, InvShAmt; 5611 5612 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5613 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5614 // fshl: X << C | Y >> (BW - C) 5615 // fshr: X << (BW - C) | Y >> C 5616 // where C = Z % BW is not zero 5617 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5618 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5619 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5620 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5621 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5622 } else { 5623 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5624 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5625 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5626 if (isPowerOf2_32(BW)) { 5627 // Z % BW -> Z & (BW - 1) 5628 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5629 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5630 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5631 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5632 } else { 5633 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5634 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5635 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5636 } 5637 5638 auto One = MIRBuilder.buildConstant(ShTy, 1); 5639 if (IsFSHL) { 5640 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5641 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5642 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5643 } else { 5644 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5645 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5646 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5647 } 5648 } 5649 5650 MIRBuilder.buildOr(Dst, ShX, ShY); 5651 MI.eraseFromParent(); 5652 return Legalized; 5653 } 5654 5655 LegalizerHelper::LegalizeResult 5656 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5657 // These operations approximately do the following (while avoiding undefined 5658 // shifts by BW): 5659 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5660 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5661 Register Dst = MI.getOperand(0).getReg(); 5662 LLT Ty = MRI.getType(Dst); 5663 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5664 5665 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5666 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5667 5668 // TODO: Use smarter heuristic that accounts for vector legalization. 5669 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5670 return lowerFunnelShiftAsShifts(MI); 5671 5672 // This only works for powers of 2, fallback to shifts if it fails. 5673 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5674 if (Result == UnableToLegalize) 5675 return lowerFunnelShiftAsShifts(MI); 5676 return Result; 5677 } 5678 5679 LegalizerHelper::LegalizeResult 5680 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5681 Register Dst = MI.getOperand(0).getReg(); 5682 Register Src = MI.getOperand(1).getReg(); 5683 Register Amt = MI.getOperand(2).getReg(); 5684 LLT AmtTy = MRI.getType(Amt); 5685 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5686 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5687 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5688 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5689 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5690 MI.eraseFromParent(); 5691 return Legalized; 5692 } 5693 5694 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5695 Register Dst = MI.getOperand(0).getReg(); 5696 Register Src = MI.getOperand(1).getReg(); 5697 Register Amt = MI.getOperand(2).getReg(); 5698 LLT DstTy = MRI.getType(Dst); 5699 LLT SrcTy = MRI.getType(Dst); 5700 LLT AmtTy = MRI.getType(Amt); 5701 5702 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5703 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5704 5705 MIRBuilder.setInstrAndDebugLoc(MI); 5706 5707 // If a rotate in the other direction is supported, use it. 5708 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5709 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5710 isPowerOf2_32(EltSizeInBits)) 5711 return lowerRotateWithReverseRotate(MI); 5712 5713 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5714 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5715 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5716 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5717 Register ShVal; 5718 Register RevShiftVal; 5719 if (isPowerOf2_32(EltSizeInBits)) { 5720 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5721 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5722 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5723 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5724 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5725 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5726 RevShiftVal = 5727 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5728 } else { 5729 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5730 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5731 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5732 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5733 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5734 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5735 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5736 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5737 RevShiftVal = 5738 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5739 } 5740 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5741 MI.eraseFromParent(); 5742 return Legalized; 5743 } 5744 5745 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5746 // representation. 5747 LegalizerHelper::LegalizeResult 5748 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5749 Register Dst = MI.getOperand(0).getReg(); 5750 Register Src = MI.getOperand(1).getReg(); 5751 const LLT S64 = LLT::scalar(64); 5752 const LLT S32 = LLT::scalar(32); 5753 const LLT S1 = LLT::scalar(1); 5754 5755 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5756 5757 // unsigned cul2f(ulong u) { 5758 // uint lz = clz(u); 5759 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5760 // u = (u << lz) & 0x7fffffffffffffffUL; 5761 // ulong t = u & 0xffffffffffUL; 5762 // uint v = (e << 23) | (uint)(u >> 40); 5763 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5764 // return as_float(v + r); 5765 // } 5766 5767 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5768 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5769 5770 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5771 5772 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5773 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5774 5775 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5776 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5777 5778 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5779 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5780 5781 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5782 5783 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5784 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5785 5786 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5787 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5788 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5789 5790 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5791 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5792 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5793 auto One = MIRBuilder.buildConstant(S32, 1); 5794 5795 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5796 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5797 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5798 MIRBuilder.buildAdd(Dst, V, R); 5799 5800 MI.eraseFromParent(); 5801 return Legalized; 5802 } 5803 5804 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5805 Register Dst = MI.getOperand(0).getReg(); 5806 Register Src = MI.getOperand(1).getReg(); 5807 LLT DstTy = MRI.getType(Dst); 5808 LLT SrcTy = MRI.getType(Src); 5809 5810 if (SrcTy == LLT::scalar(1)) { 5811 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5812 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5813 MIRBuilder.buildSelect(Dst, Src, True, False); 5814 MI.eraseFromParent(); 5815 return Legalized; 5816 } 5817 5818 if (SrcTy != LLT::scalar(64)) 5819 return UnableToLegalize; 5820 5821 if (DstTy == LLT::scalar(32)) { 5822 // TODO: SelectionDAG has several alternative expansions to port which may 5823 // be more reasonble depending on the available instructions. If a target 5824 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5825 // intermediate type, this is probably worse. 5826 return lowerU64ToF32BitOps(MI); 5827 } 5828 5829 return UnableToLegalize; 5830 } 5831 5832 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5833 Register Dst = MI.getOperand(0).getReg(); 5834 Register Src = MI.getOperand(1).getReg(); 5835 LLT DstTy = MRI.getType(Dst); 5836 LLT SrcTy = MRI.getType(Src); 5837 5838 const LLT S64 = LLT::scalar(64); 5839 const LLT S32 = LLT::scalar(32); 5840 const LLT S1 = LLT::scalar(1); 5841 5842 if (SrcTy == S1) { 5843 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5844 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5845 MIRBuilder.buildSelect(Dst, Src, True, False); 5846 MI.eraseFromParent(); 5847 return Legalized; 5848 } 5849 5850 if (SrcTy != S64) 5851 return UnableToLegalize; 5852 5853 if (DstTy == S32) { 5854 // signed cl2f(long l) { 5855 // long s = l >> 63; 5856 // float r = cul2f((l + s) ^ s); 5857 // return s ? -r : r; 5858 // } 5859 Register L = Src; 5860 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5861 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5862 5863 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5864 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5865 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5866 5867 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5868 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5869 MIRBuilder.buildConstant(S64, 0)); 5870 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5871 MI.eraseFromParent(); 5872 return Legalized; 5873 } 5874 5875 return UnableToLegalize; 5876 } 5877 5878 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5879 Register Dst = MI.getOperand(0).getReg(); 5880 Register Src = MI.getOperand(1).getReg(); 5881 LLT DstTy = MRI.getType(Dst); 5882 LLT SrcTy = MRI.getType(Src); 5883 const LLT S64 = LLT::scalar(64); 5884 const LLT S32 = LLT::scalar(32); 5885 5886 if (SrcTy != S64 && SrcTy != S32) 5887 return UnableToLegalize; 5888 if (DstTy != S32 && DstTy != S64) 5889 return UnableToLegalize; 5890 5891 // FPTOSI gives same result as FPTOUI for positive signed integers. 5892 // FPTOUI needs to deal with fp values that convert to unsigned integers 5893 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5894 5895 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5896 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5897 : APFloat::IEEEdouble(), 5898 APInt::getNullValue(SrcTy.getSizeInBits())); 5899 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5900 5901 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5902 5903 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5904 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5905 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5906 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5907 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5908 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5909 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5910 5911 const LLT S1 = LLT::scalar(1); 5912 5913 MachineInstrBuilder FCMP = 5914 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5915 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5916 5917 MI.eraseFromParent(); 5918 return Legalized; 5919 } 5920 5921 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5922 Register Dst = MI.getOperand(0).getReg(); 5923 Register Src = MI.getOperand(1).getReg(); 5924 LLT DstTy = MRI.getType(Dst); 5925 LLT SrcTy = MRI.getType(Src); 5926 const LLT S64 = LLT::scalar(64); 5927 const LLT S32 = LLT::scalar(32); 5928 5929 // FIXME: Only f32 to i64 conversions are supported. 5930 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5931 return UnableToLegalize; 5932 5933 // Expand f32 -> i64 conversion 5934 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5935 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5936 5937 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5938 5939 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5940 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5941 5942 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5943 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5944 5945 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5946 APInt::getSignMask(SrcEltBits)); 5947 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5948 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5949 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5950 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5951 5952 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5953 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5954 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5955 5956 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5957 R = MIRBuilder.buildZExt(DstTy, R); 5958 5959 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5960 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5961 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5962 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5963 5964 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5965 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5966 5967 const LLT S1 = LLT::scalar(1); 5968 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5969 S1, Exponent, ExponentLoBit); 5970 5971 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5972 5973 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5974 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5975 5976 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5977 5978 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5979 S1, Exponent, ZeroSrcTy); 5980 5981 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5982 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5983 5984 MI.eraseFromParent(); 5985 return Legalized; 5986 } 5987 5988 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5989 LegalizerHelper::LegalizeResult 5990 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5991 Register Dst = MI.getOperand(0).getReg(); 5992 Register Src = MI.getOperand(1).getReg(); 5993 5994 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5995 return UnableToLegalize; 5996 5997 const unsigned ExpMask = 0x7ff; 5998 const unsigned ExpBiasf64 = 1023; 5999 const unsigned ExpBiasf16 = 15; 6000 const LLT S32 = LLT::scalar(32); 6001 const LLT S1 = LLT::scalar(1); 6002 6003 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6004 Register U = Unmerge.getReg(0); 6005 Register UH = Unmerge.getReg(1); 6006 6007 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6008 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6009 6010 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6011 // add the f16 bias (15) to get the biased exponent for the f16 format. 6012 E = MIRBuilder.buildAdd( 6013 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6014 6015 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6016 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6017 6018 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6019 MIRBuilder.buildConstant(S32, 0x1ff)); 6020 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6021 6022 auto Zero = MIRBuilder.buildConstant(S32, 0); 6023 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6024 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6025 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6026 6027 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6028 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6029 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6030 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6031 6032 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6033 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6034 6035 // N = M | (E << 12); 6036 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6037 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6038 6039 // B = clamp(1-E, 0, 13); 6040 auto One = MIRBuilder.buildConstant(S32, 1); 6041 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6042 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6043 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6044 6045 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6046 MIRBuilder.buildConstant(S32, 0x1000)); 6047 6048 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6049 auto D0 = MIRBuilder.buildShl(S32, D, B); 6050 6051 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6052 D0, SigSetHigh); 6053 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6054 D = MIRBuilder.buildOr(S32, D, D1); 6055 6056 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6057 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6058 6059 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6060 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6061 6062 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6063 MIRBuilder.buildConstant(S32, 3)); 6064 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6065 6066 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6067 MIRBuilder.buildConstant(S32, 5)); 6068 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6069 6070 V1 = MIRBuilder.buildOr(S32, V0, V1); 6071 V = MIRBuilder.buildAdd(S32, V, V1); 6072 6073 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6074 E, MIRBuilder.buildConstant(S32, 30)); 6075 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6076 MIRBuilder.buildConstant(S32, 0x7c00), V); 6077 6078 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6079 E, MIRBuilder.buildConstant(S32, 1039)); 6080 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6081 6082 // Extract the sign bit. 6083 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6084 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6085 6086 // Insert the sign bit 6087 V = MIRBuilder.buildOr(S32, Sign, V); 6088 6089 MIRBuilder.buildTrunc(Dst, V); 6090 MI.eraseFromParent(); 6091 return Legalized; 6092 } 6093 6094 LegalizerHelper::LegalizeResult 6095 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6096 Register Dst = MI.getOperand(0).getReg(); 6097 Register Src = MI.getOperand(1).getReg(); 6098 6099 LLT DstTy = MRI.getType(Dst); 6100 LLT SrcTy = MRI.getType(Src); 6101 const LLT S64 = LLT::scalar(64); 6102 const LLT S16 = LLT::scalar(16); 6103 6104 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6105 return lowerFPTRUNC_F64_TO_F16(MI); 6106 6107 return UnableToLegalize; 6108 } 6109 6110 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6111 // multiplication tree. 6112 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6113 Register Dst = MI.getOperand(0).getReg(); 6114 Register Src0 = MI.getOperand(1).getReg(); 6115 Register Src1 = MI.getOperand(2).getReg(); 6116 LLT Ty = MRI.getType(Dst); 6117 6118 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6119 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6120 MI.eraseFromParent(); 6121 return Legalized; 6122 } 6123 6124 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6125 switch (Opc) { 6126 case TargetOpcode::G_SMIN: 6127 return CmpInst::ICMP_SLT; 6128 case TargetOpcode::G_SMAX: 6129 return CmpInst::ICMP_SGT; 6130 case TargetOpcode::G_UMIN: 6131 return CmpInst::ICMP_ULT; 6132 case TargetOpcode::G_UMAX: 6133 return CmpInst::ICMP_UGT; 6134 default: 6135 llvm_unreachable("not in integer min/max"); 6136 } 6137 } 6138 6139 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6140 Register Dst = MI.getOperand(0).getReg(); 6141 Register Src0 = MI.getOperand(1).getReg(); 6142 Register Src1 = MI.getOperand(2).getReg(); 6143 6144 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6145 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6146 6147 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6148 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6149 6150 MI.eraseFromParent(); 6151 return Legalized; 6152 } 6153 6154 LegalizerHelper::LegalizeResult 6155 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6156 Register Dst = MI.getOperand(0).getReg(); 6157 Register Src0 = MI.getOperand(1).getReg(); 6158 Register Src1 = MI.getOperand(2).getReg(); 6159 6160 const LLT Src0Ty = MRI.getType(Src0); 6161 const LLT Src1Ty = MRI.getType(Src1); 6162 6163 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6164 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6165 6166 auto SignBitMask = MIRBuilder.buildConstant( 6167 Src0Ty, APInt::getSignMask(Src0Size)); 6168 6169 auto NotSignBitMask = MIRBuilder.buildConstant( 6170 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6171 6172 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6173 Register And1; 6174 if (Src0Ty == Src1Ty) { 6175 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6176 } else if (Src0Size > Src1Size) { 6177 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6178 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6179 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6180 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6181 } else { 6182 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6183 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6184 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6185 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6186 } 6187 6188 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6189 // constants are a nan and -0.0, but the final result should preserve 6190 // everything. 6191 unsigned Flags = MI.getFlags(); 6192 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6193 6194 MI.eraseFromParent(); 6195 return Legalized; 6196 } 6197 6198 LegalizerHelper::LegalizeResult 6199 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6200 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6201 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6202 6203 Register Dst = MI.getOperand(0).getReg(); 6204 Register Src0 = MI.getOperand(1).getReg(); 6205 Register Src1 = MI.getOperand(2).getReg(); 6206 LLT Ty = MRI.getType(Dst); 6207 6208 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6209 // Insert canonicalizes if it's possible we need to quiet to get correct 6210 // sNaN behavior. 6211 6212 // Note this must be done here, and not as an optimization combine in the 6213 // absence of a dedicate quiet-snan instruction as we're using an 6214 // omni-purpose G_FCANONICALIZE. 6215 if (!isKnownNeverSNaN(Src0, MRI)) 6216 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6217 6218 if (!isKnownNeverSNaN(Src1, MRI)) 6219 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6220 } 6221 6222 // If there are no nans, it's safe to simply replace this with the non-IEEE 6223 // version. 6224 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6225 MI.eraseFromParent(); 6226 return Legalized; 6227 } 6228 6229 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6230 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6231 Register DstReg = MI.getOperand(0).getReg(); 6232 LLT Ty = MRI.getType(DstReg); 6233 unsigned Flags = MI.getFlags(); 6234 6235 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6236 Flags); 6237 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6238 MI.eraseFromParent(); 6239 return Legalized; 6240 } 6241 6242 LegalizerHelper::LegalizeResult 6243 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6244 Register DstReg = MI.getOperand(0).getReg(); 6245 Register X = MI.getOperand(1).getReg(); 6246 const unsigned Flags = MI.getFlags(); 6247 const LLT Ty = MRI.getType(DstReg); 6248 const LLT CondTy = Ty.changeElementSize(1); 6249 6250 // round(x) => 6251 // t = trunc(x); 6252 // d = fabs(x - t); 6253 // o = copysign(1.0f, x); 6254 // return t + (d >= 0.5 ? o : 0.0); 6255 6256 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6257 6258 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6259 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6260 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6261 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6262 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6263 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6264 6265 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6266 Flags); 6267 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6268 6269 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6270 6271 MI.eraseFromParent(); 6272 return Legalized; 6273 } 6274 6275 LegalizerHelper::LegalizeResult 6276 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6277 Register DstReg = MI.getOperand(0).getReg(); 6278 Register SrcReg = MI.getOperand(1).getReg(); 6279 unsigned Flags = MI.getFlags(); 6280 LLT Ty = MRI.getType(DstReg); 6281 const LLT CondTy = Ty.changeElementSize(1); 6282 6283 // result = trunc(src); 6284 // if (src < 0.0 && src != result) 6285 // result += -1.0. 6286 6287 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6288 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6289 6290 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6291 SrcReg, Zero, Flags); 6292 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6293 SrcReg, Trunc, Flags); 6294 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6295 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6296 6297 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6298 MI.eraseFromParent(); 6299 return Legalized; 6300 } 6301 6302 LegalizerHelper::LegalizeResult 6303 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6304 const unsigned NumOps = MI.getNumOperands(); 6305 Register DstReg = MI.getOperand(0).getReg(); 6306 Register Src0Reg = MI.getOperand(1).getReg(); 6307 LLT DstTy = MRI.getType(DstReg); 6308 LLT SrcTy = MRI.getType(Src0Reg); 6309 unsigned PartSize = SrcTy.getSizeInBits(); 6310 6311 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6312 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6313 6314 for (unsigned I = 2; I != NumOps; ++I) { 6315 const unsigned Offset = (I - 1) * PartSize; 6316 6317 Register SrcReg = MI.getOperand(I).getReg(); 6318 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6319 6320 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6321 MRI.createGenericVirtualRegister(WideTy); 6322 6323 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6324 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6325 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6326 ResultReg = NextResult; 6327 } 6328 6329 if (DstTy.isPointer()) { 6330 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6331 DstTy.getAddressSpace())) { 6332 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6333 return UnableToLegalize; 6334 } 6335 6336 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6337 } 6338 6339 MI.eraseFromParent(); 6340 return Legalized; 6341 } 6342 6343 LegalizerHelper::LegalizeResult 6344 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6345 const unsigned NumDst = MI.getNumOperands() - 1; 6346 Register SrcReg = MI.getOperand(NumDst).getReg(); 6347 Register Dst0Reg = MI.getOperand(0).getReg(); 6348 LLT DstTy = MRI.getType(Dst0Reg); 6349 if (DstTy.isPointer()) 6350 return UnableToLegalize; // TODO 6351 6352 SrcReg = coerceToScalar(SrcReg); 6353 if (!SrcReg) 6354 return UnableToLegalize; 6355 6356 // Expand scalarizing unmerge as bitcast to integer and shift. 6357 LLT IntTy = MRI.getType(SrcReg); 6358 6359 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6360 6361 const unsigned DstSize = DstTy.getSizeInBits(); 6362 unsigned Offset = DstSize; 6363 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6364 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6365 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6366 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6367 } 6368 6369 MI.eraseFromParent(); 6370 return Legalized; 6371 } 6372 6373 /// Lower a vector extract or insert by writing the vector to a stack temporary 6374 /// and reloading the element or vector. 6375 /// 6376 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6377 /// => 6378 /// %stack_temp = G_FRAME_INDEX 6379 /// G_STORE %vec, %stack_temp 6380 /// %idx = clamp(%idx, %vec.getNumElements()) 6381 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6382 /// %dst = G_LOAD %element_ptr 6383 LegalizerHelper::LegalizeResult 6384 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6385 Register DstReg = MI.getOperand(0).getReg(); 6386 Register SrcVec = MI.getOperand(1).getReg(); 6387 Register InsertVal; 6388 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6389 InsertVal = MI.getOperand(2).getReg(); 6390 6391 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6392 6393 LLT VecTy = MRI.getType(SrcVec); 6394 LLT EltTy = VecTy.getElementType(); 6395 if (!EltTy.isByteSized()) { // Not implemented. 6396 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6397 return UnableToLegalize; 6398 } 6399 6400 unsigned EltBytes = EltTy.getSizeInBytes(); 6401 Align VecAlign = getStackTemporaryAlignment(VecTy); 6402 Align EltAlign; 6403 6404 MachinePointerInfo PtrInfo; 6405 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6406 VecAlign, PtrInfo); 6407 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6408 6409 // Get the pointer to the element, and be sure not to hit undefined behavior 6410 // if the index is out of bounds. 6411 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6412 6413 int64_t IdxVal; 6414 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6415 int64_t Offset = IdxVal * EltBytes; 6416 PtrInfo = PtrInfo.getWithOffset(Offset); 6417 EltAlign = commonAlignment(VecAlign, Offset); 6418 } else { 6419 // We lose information with a variable offset. 6420 EltAlign = getStackTemporaryAlignment(EltTy); 6421 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6422 } 6423 6424 if (InsertVal) { 6425 // Write the inserted element 6426 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6427 6428 // Reload the whole vector. 6429 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6430 } else { 6431 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6432 } 6433 6434 MI.eraseFromParent(); 6435 return Legalized; 6436 } 6437 6438 LegalizerHelper::LegalizeResult 6439 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6440 Register DstReg = MI.getOperand(0).getReg(); 6441 Register Src0Reg = MI.getOperand(1).getReg(); 6442 Register Src1Reg = MI.getOperand(2).getReg(); 6443 LLT Src0Ty = MRI.getType(Src0Reg); 6444 LLT DstTy = MRI.getType(DstReg); 6445 LLT IdxTy = LLT::scalar(32); 6446 6447 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6448 6449 if (DstTy.isScalar()) { 6450 if (Src0Ty.isVector()) 6451 return UnableToLegalize; 6452 6453 // This is just a SELECT. 6454 assert(Mask.size() == 1 && "Expected a single mask element"); 6455 Register Val; 6456 if (Mask[0] < 0 || Mask[0] > 1) 6457 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6458 else 6459 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6460 MIRBuilder.buildCopy(DstReg, Val); 6461 MI.eraseFromParent(); 6462 return Legalized; 6463 } 6464 6465 Register Undef; 6466 SmallVector<Register, 32> BuildVec; 6467 LLT EltTy = DstTy.getElementType(); 6468 6469 for (int Idx : Mask) { 6470 if (Idx < 0) { 6471 if (!Undef.isValid()) 6472 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6473 BuildVec.push_back(Undef); 6474 continue; 6475 } 6476 6477 if (Src0Ty.isScalar()) { 6478 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6479 } else { 6480 int NumElts = Src0Ty.getNumElements(); 6481 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6482 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6483 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6484 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6485 BuildVec.push_back(Extract.getReg(0)); 6486 } 6487 } 6488 6489 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6490 MI.eraseFromParent(); 6491 return Legalized; 6492 } 6493 6494 LegalizerHelper::LegalizeResult 6495 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6496 const auto &MF = *MI.getMF(); 6497 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6498 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6499 return UnableToLegalize; 6500 6501 Register Dst = MI.getOperand(0).getReg(); 6502 Register AllocSize = MI.getOperand(1).getReg(); 6503 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6504 6505 LLT PtrTy = MRI.getType(Dst); 6506 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6507 6508 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6509 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6510 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6511 6512 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6513 // have to generate an extra instruction to negate the alloc and then use 6514 // G_PTR_ADD to add the negative offset. 6515 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6516 if (Alignment > Align(1)) { 6517 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6518 AlignMask.negate(); 6519 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6520 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6521 } 6522 6523 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6524 MIRBuilder.buildCopy(SPReg, SPTmp); 6525 MIRBuilder.buildCopy(Dst, SPTmp); 6526 6527 MI.eraseFromParent(); 6528 return Legalized; 6529 } 6530 6531 LegalizerHelper::LegalizeResult 6532 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6533 Register Dst = MI.getOperand(0).getReg(); 6534 Register Src = MI.getOperand(1).getReg(); 6535 unsigned Offset = MI.getOperand(2).getImm(); 6536 6537 LLT DstTy = MRI.getType(Dst); 6538 LLT SrcTy = MRI.getType(Src); 6539 6540 if (DstTy.isScalar() && 6541 (SrcTy.isScalar() || 6542 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6543 LLT SrcIntTy = SrcTy; 6544 if (!SrcTy.isScalar()) { 6545 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6546 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6547 } 6548 6549 if (Offset == 0) 6550 MIRBuilder.buildTrunc(Dst, Src); 6551 else { 6552 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6553 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6554 MIRBuilder.buildTrunc(Dst, Shr); 6555 } 6556 6557 MI.eraseFromParent(); 6558 return Legalized; 6559 } 6560 6561 return UnableToLegalize; 6562 } 6563 6564 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6565 Register Dst = MI.getOperand(0).getReg(); 6566 Register Src = MI.getOperand(1).getReg(); 6567 Register InsertSrc = MI.getOperand(2).getReg(); 6568 uint64_t Offset = MI.getOperand(3).getImm(); 6569 6570 LLT DstTy = MRI.getType(Src); 6571 LLT InsertTy = MRI.getType(InsertSrc); 6572 6573 if (InsertTy.isVector() || 6574 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6575 return UnableToLegalize; 6576 6577 const DataLayout &DL = MIRBuilder.getDataLayout(); 6578 if ((DstTy.isPointer() && 6579 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6580 (InsertTy.isPointer() && 6581 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6582 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6583 return UnableToLegalize; 6584 } 6585 6586 LLT IntDstTy = DstTy; 6587 6588 if (!DstTy.isScalar()) { 6589 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6590 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6591 } 6592 6593 if (!InsertTy.isScalar()) { 6594 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6595 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6596 } 6597 6598 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6599 if (Offset != 0) { 6600 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6601 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6602 } 6603 6604 APInt MaskVal = APInt::getBitsSetWithWrap( 6605 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6606 6607 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6608 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6609 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6610 6611 MIRBuilder.buildCast(Dst, Or); 6612 MI.eraseFromParent(); 6613 return Legalized; 6614 } 6615 6616 LegalizerHelper::LegalizeResult 6617 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6618 Register Dst0 = MI.getOperand(0).getReg(); 6619 Register Dst1 = MI.getOperand(1).getReg(); 6620 Register LHS = MI.getOperand(2).getReg(); 6621 Register RHS = MI.getOperand(3).getReg(); 6622 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6623 6624 LLT Ty = MRI.getType(Dst0); 6625 LLT BoolTy = MRI.getType(Dst1); 6626 6627 if (IsAdd) 6628 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6629 else 6630 MIRBuilder.buildSub(Dst0, LHS, RHS); 6631 6632 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6633 6634 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6635 6636 // For an addition, the result should be less than one of the operands (LHS) 6637 // if and only if the other operand (RHS) is negative, otherwise there will 6638 // be overflow. 6639 // For a subtraction, the result should be less than one of the operands 6640 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6641 // otherwise there will be overflow. 6642 auto ResultLowerThanLHS = 6643 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6644 auto ConditionRHS = MIRBuilder.buildICmp( 6645 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6646 6647 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6648 MI.eraseFromParent(); 6649 return Legalized; 6650 } 6651 6652 LegalizerHelper::LegalizeResult 6653 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6654 Register Res = MI.getOperand(0).getReg(); 6655 Register LHS = MI.getOperand(1).getReg(); 6656 Register RHS = MI.getOperand(2).getReg(); 6657 LLT Ty = MRI.getType(Res); 6658 bool IsSigned; 6659 bool IsAdd; 6660 unsigned BaseOp; 6661 switch (MI.getOpcode()) { 6662 default: 6663 llvm_unreachable("unexpected addsat/subsat opcode"); 6664 case TargetOpcode::G_UADDSAT: 6665 IsSigned = false; 6666 IsAdd = true; 6667 BaseOp = TargetOpcode::G_ADD; 6668 break; 6669 case TargetOpcode::G_SADDSAT: 6670 IsSigned = true; 6671 IsAdd = true; 6672 BaseOp = TargetOpcode::G_ADD; 6673 break; 6674 case TargetOpcode::G_USUBSAT: 6675 IsSigned = false; 6676 IsAdd = false; 6677 BaseOp = TargetOpcode::G_SUB; 6678 break; 6679 case TargetOpcode::G_SSUBSAT: 6680 IsSigned = true; 6681 IsAdd = false; 6682 BaseOp = TargetOpcode::G_SUB; 6683 break; 6684 } 6685 6686 if (IsSigned) { 6687 // sadd.sat(a, b) -> 6688 // hi = 0x7fffffff - smax(a, 0) 6689 // lo = 0x80000000 - smin(a, 0) 6690 // a + smin(smax(lo, b), hi) 6691 // ssub.sat(a, b) -> 6692 // lo = smax(a, -1) - 0x7fffffff 6693 // hi = smin(a, -1) - 0x80000000 6694 // a - smin(smax(lo, b), hi) 6695 // TODO: AMDGPU can use a "median of 3" instruction here: 6696 // a +/- med3(lo, b, hi) 6697 uint64_t NumBits = Ty.getScalarSizeInBits(); 6698 auto MaxVal = 6699 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6700 auto MinVal = 6701 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6702 MachineInstrBuilder Hi, Lo; 6703 if (IsAdd) { 6704 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6705 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6706 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6707 } else { 6708 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6709 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6710 MaxVal); 6711 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6712 MinVal); 6713 } 6714 auto RHSClamped = 6715 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6716 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6717 } else { 6718 // uadd.sat(a, b) -> a + umin(~a, b) 6719 // usub.sat(a, b) -> a - umin(a, b) 6720 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6721 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6722 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6723 } 6724 6725 MI.eraseFromParent(); 6726 return Legalized; 6727 } 6728 6729 LegalizerHelper::LegalizeResult 6730 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6731 Register Res = MI.getOperand(0).getReg(); 6732 Register LHS = MI.getOperand(1).getReg(); 6733 Register RHS = MI.getOperand(2).getReg(); 6734 LLT Ty = MRI.getType(Res); 6735 LLT BoolTy = Ty.changeElementSize(1); 6736 bool IsSigned; 6737 bool IsAdd; 6738 unsigned OverflowOp; 6739 switch (MI.getOpcode()) { 6740 default: 6741 llvm_unreachable("unexpected addsat/subsat opcode"); 6742 case TargetOpcode::G_UADDSAT: 6743 IsSigned = false; 6744 IsAdd = true; 6745 OverflowOp = TargetOpcode::G_UADDO; 6746 break; 6747 case TargetOpcode::G_SADDSAT: 6748 IsSigned = true; 6749 IsAdd = true; 6750 OverflowOp = TargetOpcode::G_SADDO; 6751 break; 6752 case TargetOpcode::G_USUBSAT: 6753 IsSigned = false; 6754 IsAdd = false; 6755 OverflowOp = TargetOpcode::G_USUBO; 6756 break; 6757 case TargetOpcode::G_SSUBSAT: 6758 IsSigned = true; 6759 IsAdd = false; 6760 OverflowOp = TargetOpcode::G_SSUBO; 6761 break; 6762 } 6763 6764 auto OverflowRes = 6765 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6766 Register Tmp = OverflowRes.getReg(0); 6767 Register Ov = OverflowRes.getReg(1); 6768 MachineInstrBuilder Clamp; 6769 if (IsSigned) { 6770 // sadd.sat(a, b) -> 6771 // {tmp, ov} = saddo(a, b) 6772 // ov ? (tmp >>s 31) + 0x80000000 : r 6773 // ssub.sat(a, b) -> 6774 // {tmp, ov} = ssubo(a, b) 6775 // ov ? (tmp >>s 31) + 0x80000000 : r 6776 uint64_t NumBits = Ty.getScalarSizeInBits(); 6777 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6778 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6779 auto MinVal = 6780 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6781 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6782 } else { 6783 // uadd.sat(a, b) -> 6784 // {tmp, ov} = uaddo(a, b) 6785 // ov ? 0xffffffff : tmp 6786 // usub.sat(a, b) -> 6787 // {tmp, ov} = usubo(a, b) 6788 // ov ? 0 : tmp 6789 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6790 } 6791 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6792 6793 MI.eraseFromParent(); 6794 return Legalized; 6795 } 6796 6797 LegalizerHelper::LegalizeResult 6798 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6799 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6800 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6801 "Expected shlsat opcode!"); 6802 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6803 Register Res = MI.getOperand(0).getReg(); 6804 Register LHS = MI.getOperand(1).getReg(); 6805 Register RHS = MI.getOperand(2).getReg(); 6806 LLT Ty = MRI.getType(Res); 6807 LLT BoolTy = Ty.changeElementSize(1); 6808 6809 unsigned BW = Ty.getScalarSizeInBits(); 6810 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6811 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6812 : MIRBuilder.buildLShr(Ty, Result, RHS); 6813 6814 MachineInstrBuilder SatVal; 6815 if (IsSigned) { 6816 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6817 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6818 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6819 MIRBuilder.buildConstant(Ty, 0)); 6820 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6821 } else { 6822 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6823 } 6824 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6825 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6826 6827 MI.eraseFromParent(); 6828 return Legalized; 6829 } 6830 6831 LegalizerHelper::LegalizeResult 6832 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6833 Register Dst = MI.getOperand(0).getReg(); 6834 Register Src = MI.getOperand(1).getReg(); 6835 const LLT Ty = MRI.getType(Src); 6836 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6837 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6838 6839 // Swap most and least significant byte, set remaining bytes in Res to zero. 6840 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6841 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6842 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6843 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6844 6845 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6846 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6847 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6848 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6849 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6850 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6851 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6852 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6853 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6854 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6855 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6856 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6857 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6858 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6859 } 6860 Res.getInstr()->getOperand(0).setReg(Dst); 6861 6862 MI.eraseFromParent(); 6863 return Legalized; 6864 } 6865 6866 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6867 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6868 MachineInstrBuilder Src, APInt Mask) { 6869 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6870 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6871 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6872 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6873 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6874 return B.buildOr(Dst, LHS, RHS); 6875 } 6876 6877 LegalizerHelper::LegalizeResult 6878 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6879 Register Dst = MI.getOperand(0).getReg(); 6880 Register Src = MI.getOperand(1).getReg(); 6881 const LLT Ty = MRI.getType(Src); 6882 unsigned Size = Ty.getSizeInBits(); 6883 6884 MachineInstrBuilder BSWAP = 6885 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6886 6887 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6888 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6889 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6890 MachineInstrBuilder Swap4 = 6891 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6892 6893 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6894 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6895 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6896 MachineInstrBuilder Swap2 = 6897 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6898 6899 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6900 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6901 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6902 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6903 6904 MI.eraseFromParent(); 6905 return Legalized; 6906 } 6907 6908 LegalizerHelper::LegalizeResult 6909 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6910 MachineFunction &MF = MIRBuilder.getMF(); 6911 6912 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6913 int NameOpIdx = IsRead ? 1 : 0; 6914 int ValRegIndex = IsRead ? 0 : 1; 6915 6916 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6917 const LLT Ty = MRI.getType(ValReg); 6918 const MDString *RegStr = cast<MDString>( 6919 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6920 6921 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6922 if (!PhysReg.isValid()) 6923 return UnableToLegalize; 6924 6925 if (IsRead) 6926 MIRBuilder.buildCopy(ValReg, PhysReg); 6927 else 6928 MIRBuilder.buildCopy(PhysReg, ValReg); 6929 6930 MI.eraseFromParent(); 6931 return Legalized; 6932 } 6933 6934 LegalizerHelper::LegalizeResult 6935 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6936 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6937 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6938 Register Result = MI.getOperand(0).getReg(); 6939 LLT OrigTy = MRI.getType(Result); 6940 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6941 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6942 6943 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6944 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6945 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6946 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6947 6948 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6949 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6950 MIRBuilder.buildTrunc(Result, Shifted); 6951 6952 MI.eraseFromParent(); 6953 return Legalized; 6954 } 6955 6956 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6957 // Implement vector G_SELECT in terms of XOR, AND, OR. 6958 Register DstReg = MI.getOperand(0).getReg(); 6959 Register MaskReg = MI.getOperand(1).getReg(); 6960 Register Op1Reg = MI.getOperand(2).getReg(); 6961 Register Op2Reg = MI.getOperand(3).getReg(); 6962 LLT DstTy = MRI.getType(DstReg); 6963 LLT MaskTy = MRI.getType(MaskReg); 6964 LLT Op1Ty = MRI.getType(Op1Reg); 6965 if (!DstTy.isVector()) 6966 return UnableToLegalize; 6967 6968 // Vector selects can have a scalar predicate. If so, splat into a vector and 6969 // finish for later legalization attempts to try again. 6970 if (MaskTy.isScalar()) { 6971 Register MaskElt = MaskReg; 6972 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6973 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6974 // Generate a vector splat idiom to be pattern matched later. 6975 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6976 Observer.changingInstr(MI); 6977 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6978 Observer.changedInstr(MI); 6979 return Legalized; 6980 } 6981 6982 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6983 return UnableToLegalize; 6984 } 6985 6986 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6987 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6988 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6989 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6990 MI.eraseFromParent(); 6991 return Legalized; 6992 } 6993 6994 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 6995 // Split DIVREM into individual instructions. 6996 unsigned Opcode = MI.getOpcode(); 6997 6998 MIRBuilder.buildInstr( 6999 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7000 : TargetOpcode::G_UDIV, 7001 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7002 MIRBuilder.buildInstr( 7003 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7004 : TargetOpcode::G_UREM, 7005 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7006 MI.eraseFromParent(); 7007 return Legalized; 7008 } 7009