1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
64   } else {
65     LeftoverTy = LLT::scalar(LeftoverSize);
66   }
67 
68   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
69   return std::make_pair(NumParts, NumLeftover);
70 }
71 
72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
73 
74   if (!Ty.isScalar())
75     return nullptr;
76 
77   switch (Ty.getSizeInBits()) {
78   case 16:
79     return Type::getHalfTy(Ctx);
80   case 32:
81     return Type::getFloatTy(Ctx);
82   case 64:
83     return Type::getDoubleTy(Ctx);
84   case 80:
85     return Type::getX86_FP80Ty(Ctx);
86   case 128:
87     return Type::getFP128Ty(Ctx);
88   default:
89     return nullptr;
90   }
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &Builder)
96     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
97       LI(*MF.getSubtarget().getLegalizerInfo()),
98       TLI(*MF.getSubtarget().getTargetLowering()) { }
99 
100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
101                                  GISelChangeObserver &Observer,
102                                  MachineIRBuilder &B)
103   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
104     TLI(*MF.getSubtarget().getTargetLowering()) { }
105 
106 LegalizerHelper::LegalizeResult
107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
108                                    LostDebugLocObserver &LocObserver) {
109   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
110 
111   MIRBuilder.setInstrAndDebugLoc(MI);
112 
113   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
114       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
115     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
116   auto Step = LI.getAction(MI, MRI);
117   switch (Step.Action) {
118   case Legal:
119     LLVM_DEBUG(dbgs() << ".. Already legal\n");
120     return AlreadyLegal;
121   case Libcall:
122     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
123     return libcall(MI, LocObserver);
124   case NarrowScalar:
125     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
126     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
127   case WidenScalar:
128     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
129     return widenScalar(MI, Step.TypeIdx, Step.NewType);
130   case Bitcast:
131     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
132     return bitcast(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
145   default:
146     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
147     return UnableToLegalize;
148   }
149 }
150 
151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
152                                    SmallVectorImpl<Register> &VRegs) {
153   for (int i = 0; i < NumParts; ++i)
154     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
155   MIRBuilder.buildUnmerge(VRegs, Reg);
156 }
157 
158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
159                                    LLT MainTy, LLT &LeftoverTy,
160                                    SmallVectorImpl<Register> &VRegs,
161                                    SmallVectorImpl<Register> &LeftoverRegs) {
162   assert(!LeftoverTy.isValid() && "this is an out argument");
163 
164   unsigned RegSize = RegTy.getSizeInBits();
165   unsigned MainSize = MainTy.getSizeInBits();
166   unsigned NumParts = RegSize / MainSize;
167   unsigned LeftoverSize = RegSize - NumParts * MainSize;
168 
169   // Use an unmerge when possible.
170   if (LeftoverSize == 0) {
171     for (unsigned I = 0; I < NumParts; ++I)
172       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
173     MIRBuilder.buildUnmerge(VRegs, Reg);
174     return true;
175   }
176 
177   if (MainTy.isVector()) {
178     unsigned EltSize = MainTy.getScalarSizeInBits();
179     if (LeftoverSize % EltSize != 0)
180       return false;
181     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
182   } else {
183     LeftoverTy = LLT::scalar(LeftoverSize);
184   }
185 
186   // For irregular sizes, extract the individual parts.
187   for (unsigned I = 0; I != NumParts; ++I) {
188     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
189     VRegs.push_back(NewReg);
190     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
191   }
192 
193   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
194        Offset += LeftoverSize) {
195     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
196     LeftoverRegs.push_back(NewReg);
197     MIRBuilder.buildExtract(NewReg, Reg, Offset);
198   }
199 
200   return true;
201 }
202 
203 void LegalizerHelper::insertParts(Register DstReg,
204                                   LLT ResultTy, LLT PartTy,
205                                   ArrayRef<Register> PartRegs,
206                                   LLT LeftoverTy,
207                                   ArrayRef<Register> LeftoverRegs) {
208   if (!LeftoverTy.isValid()) {
209     assert(LeftoverRegs.empty());
210 
211     if (!ResultTy.isVector()) {
212       MIRBuilder.buildMerge(DstReg, PartRegs);
213       return;
214     }
215 
216     if (PartTy.isVector())
217       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
218     else
219       MIRBuilder.buildBuildVector(DstReg, PartRegs);
220     return;
221   }
222 
223   unsigned PartSize = PartTy.getSizeInBits();
224   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
225 
226   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
227   MIRBuilder.buildUndef(CurResultReg);
228 
229   unsigned Offset = 0;
230   for (Register PartReg : PartRegs) {
231     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
232     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
233     CurResultReg = NewResultReg;
234     Offset += PartSize;
235   }
236 
237   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
238     // Use the original output register for the final insert to avoid a copy.
239     Register NewResultReg = (I + 1 == E) ?
240       DstReg : MRI.createGenericVirtualRegister(ResultTy);
241 
242     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
243     CurResultReg = NewResultReg;
244     Offset += LeftoverPartSize;
245   }
246 }
247 
248 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
249 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
250                               const MachineInstr &MI) {
251   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
252 
253   const int StartIdx = Regs.size();
254   const int NumResults = MI.getNumOperands() - 1;
255   Regs.resize(Regs.size() + NumResults);
256   for (int I = 0; I != NumResults; ++I)
257     Regs[StartIdx + I] = MI.getOperand(I).getReg();
258 }
259 
260 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
261                                      LLT GCDTy, Register SrcReg) {
262   LLT SrcTy = MRI.getType(SrcReg);
263   if (SrcTy == GCDTy) {
264     // If the source already evenly divides the result type, we don't need to do
265     // anything.
266     Parts.push_back(SrcReg);
267   } else {
268     // Need to split into common type sized pieces.
269     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
270     getUnmergeResults(Parts, *Unmerge);
271   }
272 }
273 
274 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
275                                     LLT NarrowTy, Register SrcReg) {
276   LLT SrcTy = MRI.getType(SrcReg);
277   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
278   extractGCDType(Parts, GCDTy, SrcReg);
279   return GCDTy;
280 }
281 
282 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
283                                          SmallVectorImpl<Register> &VRegs,
284                                          unsigned PadStrategy) {
285   LLT LCMTy = getLCMType(DstTy, NarrowTy);
286 
287   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
288   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
289   int NumOrigSrc = VRegs.size();
290 
291   Register PadReg;
292 
293   // Get a value we can use to pad the source value if the sources won't evenly
294   // cover the result type.
295   if (NumOrigSrc < NumParts * NumSubParts) {
296     if (PadStrategy == TargetOpcode::G_ZEXT)
297       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
298     else if (PadStrategy == TargetOpcode::G_ANYEXT)
299       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
300     else {
301       assert(PadStrategy == TargetOpcode::G_SEXT);
302 
303       // Shift the sign bit of the low register through the high register.
304       auto ShiftAmt =
305         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
306       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
307     }
308   }
309 
310   // Registers for the final merge to be produced.
311   SmallVector<Register, 4> Remerge(NumParts);
312 
313   // Registers needed for intermediate merges, which will be merged into a
314   // source for Remerge.
315   SmallVector<Register, 4> SubMerge(NumSubParts);
316 
317   // Once we've fully read off the end of the original source bits, we can reuse
318   // the same high bits for remaining padding elements.
319   Register AllPadReg;
320 
321   // Build merges to the LCM type to cover the original result type.
322   for (int I = 0; I != NumParts; ++I) {
323     bool AllMergePartsArePadding = true;
324 
325     // Build the requested merges to the requested type.
326     for (int J = 0; J != NumSubParts; ++J) {
327       int Idx = I * NumSubParts + J;
328       if (Idx >= NumOrigSrc) {
329         SubMerge[J] = PadReg;
330         continue;
331       }
332 
333       SubMerge[J] = VRegs[Idx];
334 
335       // There are meaningful bits here we can't reuse later.
336       AllMergePartsArePadding = false;
337     }
338 
339     // If we've filled up a complete piece with padding bits, we can directly
340     // emit the natural sized constant if applicable, rather than a merge of
341     // smaller constants.
342     if (AllMergePartsArePadding && !AllPadReg) {
343       if (PadStrategy == TargetOpcode::G_ANYEXT)
344         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
345       else if (PadStrategy == TargetOpcode::G_ZEXT)
346         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
347 
348       // If this is a sign extension, we can't materialize a trivial constant
349       // with the right type and have to produce a merge.
350     }
351 
352     if (AllPadReg) {
353       // Avoid creating additional instructions if we're just adding additional
354       // copies of padding bits.
355       Remerge[I] = AllPadReg;
356       continue;
357     }
358 
359     if (NumSubParts == 1)
360       Remerge[I] = SubMerge[0];
361     else
362       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
363 
364     // In the sign extend padding case, re-use the first all-signbit merge.
365     if (AllMergePartsArePadding && !AllPadReg)
366       AllPadReg = Remerge[I];
367   }
368 
369   VRegs = std::move(Remerge);
370   return LCMTy;
371 }
372 
373 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
374                                                ArrayRef<Register> RemergeRegs) {
375   LLT DstTy = MRI.getType(DstReg);
376 
377   // Create the merge to the widened source, and extract the relevant bits into
378   // the result.
379 
380   if (DstTy == LCMTy) {
381     MIRBuilder.buildMerge(DstReg, RemergeRegs);
382     return;
383   }
384 
385   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
386   if (DstTy.isScalar() && LCMTy.isScalar()) {
387     MIRBuilder.buildTrunc(DstReg, Remerge);
388     return;
389   }
390 
391   if (LCMTy.isVector()) {
392     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
393     SmallVector<Register, 8> UnmergeDefs(NumDefs);
394     UnmergeDefs[0] = DstReg;
395     for (unsigned I = 1; I != NumDefs; ++I)
396       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
397 
398     MIRBuilder.buildUnmerge(UnmergeDefs,
399                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
400     return;
401   }
402 
403   llvm_unreachable("unhandled case");
404 }
405 
406 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
407 #define RTLIBCASE_INT(LibcallPrefix)                                           \
408   do {                                                                         \
409     switch (Size) {                                                            \
410     case 32:                                                                   \
411       return RTLIB::LibcallPrefix##32;                                         \
412     case 64:                                                                   \
413       return RTLIB::LibcallPrefix##64;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421 #define RTLIBCASE(LibcallPrefix)                                               \
422   do {                                                                         \
423     switch (Size) {                                                            \
424     case 32:                                                                   \
425       return RTLIB::LibcallPrefix##32;                                         \
426     case 64:                                                                   \
427       return RTLIB::LibcallPrefix##64;                                         \
428     case 80:                                                                   \
429       return RTLIB::LibcallPrefix##80;                                         \
430     case 128:                                                                  \
431       return RTLIB::LibcallPrefix##128;                                        \
432     default:                                                                   \
433       llvm_unreachable("unexpected size");                                     \
434     }                                                                          \
435   } while (0)
436 
437   switch (Opcode) {
438   case TargetOpcode::G_SDIV:
439     RTLIBCASE_INT(SDIV_I);
440   case TargetOpcode::G_UDIV:
441     RTLIBCASE_INT(UDIV_I);
442   case TargetOpcode::G_SREM:
443     RTLIBCASE_INT(SREM_I);
444   case TargetOpcode::G_UREM:
445     RTLIBCASE_INT(UREM_I);
446   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
447     RTLIBCASE_INT(CTLZ_I);
448   case TargetOpcode::G_FADD:
449     RTLIBCASE(ADD_F);
450   case TargetOpcode::G_FSUB:
451     RTLIBCASE(SUB_F);
452   case TargetOpcode::G_FMUL:
453     RTLIBCASE(MUL_F);
454   case TargetOpcode::G_FDIV:
455     RTLIBCASE(DIV_F);
456   case TargetOpcode::G_FEXP:
457     RTLIBCASE(EXP_F);
458   case TargetOpcode::G_FEXP2:
459     RTLIBCASE(EXP2_F);
460   case TargetOpcode::G_FREM:
461     RTLIBCASE(REM_F);
462   case TargetOpcode::G_FPOW:
463     RTLIBCASE(POW_F);
464   case TargetOpcode::G_FMA:
465     RTLIBCASE(FMA_F);
466   case TargetOpcode::G_FSIN:
467     RTLIBCASE(SIN_F);
468   case TargetOpcode::G_FCOS:
469     RTLIBCASE(COS_F);
470   case TargetOpcode::G_FLOG10:
471     RTLIBCASE(LOG10_F);
472   case TargetOpcode::G_FLOG:
473     RTLIBCASE(LOG_F);
474   case TargetOpcode::G_FLOG2:
475     RTLIBCASE(LOG2_F);
476   case TargetOpcode::G_FCEIL:
477     RTLIBCASE(CEIL_F);
478   case TargetOpcode::G_FFLOOR:
479     RTLIBCASE(FLOOR_F);
480   case TargetOpcode::G_FMINNUM:
481     RTLIBCASE(FMIN_F);
482   case TargetOpcode::G_FMAXNUM:
483     RTLIBCASE(FMAX_F);
484   case TargetOpcode::G_FSQRT:
485     RTLIBCASE(SQRT_F);
486   case TargetOpcode::G_FRINT:
487     RTLIBCASE(RINT_F);
488   case TargetOpcode::G_FNEARBYINT:
489     RTLIBCASE(NEARBYINT_F);
490   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
491     RTLIBCASE(ROUNDEVEN_F);
492   }
493   llvm_unreachable("Unknown libcall function");
494 }
495 
496 /// True if an instruction is in tail position in its caller. Intended for
497 /// legalizing libcalls as tail calls when possible.
498 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
499                                     MachineInstr &MI) {
500   MachineBasicBlock &MBB = *MI.getParent();
501   const Function &F = MBB.getParent()->getFunction();
502 
503   // Conservatively require the attributes of the call to match those of
504   // the return. Ignore NoAlias and NonNull because they don't affect the
505   // call sequence.
506   AttributeList CallerAttrs = F.getAttributes();
507   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
508           .removeAttribute(Attribute::NoAlias)
509           .removeAttribute(Attribute::NonNull)
510           .hasAttributes())
511     return false;
512 
513   // It's not safe to eliminate the sign / zero extension of the return value.
514   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
515       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
516     return false;
517 
518   // Only tail call if the following instruction is a standard return.
519   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
520   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
521     return false;
522 
523   return true;
524 }
525 
526 LegalizerHelper::LegalizeResult
527 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
528                     const CallLowering::ArgInfo &Result,
529                     ArrayRef<CallLowering::ArgInfo> Args,
530                     const CallingConv::ID CC) {
531   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
532 
533   CallLowering::CallLoweringInfo Info;
534   Info.CallConv = CC;
535   Info.Callee = MachineOperand::CreateES(Name);
536   Info.OrigRet = Result;
537   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
538   if (!CLI.lowerCall(MIRBuilder, Info))
539     return LegalizerHelper::UnableToLegalize;
540 
541   return LegalizerHelper::Legalized;
542 }
543 
544 LegalizerHelper::LegalizeResult
545 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
546                     const CallLowering::ArgInfo &Result,
547                     ArrayRef<CallLowering::ArgInfo> Args) {
548   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
549   const char *Name = TLI.getLibcallName(Libcall);
550   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
551   return createLibcall(MIRBuilder, Name, Result, Args, CC);
552 }
553 
554 // Useful for libcalls where all operands have the same type.
555 static LegalizerHelper::LegalizeResult
556 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
557               Type *OpType) {
558   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
559 
560   SmallVector<CallLowering::ArgInfo, 3> Args;
561   for (unsigned i = 1; i < MI.getNumOperands(); i++)
562     Args.push_back({MI.getOperand(i).getReg(), OpType});
563   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
564                        Args);
565 }
566 
567 LegalizerHelper::LegalizeResult
568 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
569                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
570   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
571 
572   SmallVector<CallLowering::ArgInfo, 3> Args;
573   // Add all the args, except for the last which is an imm denoting 'tail'.
574   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
575     Register Reg = MI.getOperand(i).getReg();
576 
577     // Need derive an IR type for call lowering.
578     LLT OpLLT = MRI.getType(Reg);
579     Type *OpTy = nullptr;
580     if (OpLLT.isPointer())
581       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
582     else
583       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
584     Args.push_back({Reg, OpTy});
585   }
586 
587   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
588   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
589   RTLIB::Libcall RTLibcall;
590   unsigned Opc = MI.getOpcode();
591   switch (Opc) {
592   case TargetOpcode::G_BZERO:
593     RTLibcall = RTLIB::BZERO;
594     break;
595   case TargetOpcode::G_MEMCPY:
596     RTLibcall = RTLIB::MEMCPY;
597     break;
598   case TargetOpcode::G_MEMMOVE:
599     RTLibcall = RTLIB::MEMMOVE;
600     break;
601   case TargetOpcode::G_MEMSET:
602     RTLibcall = RTLIB::MEMSET;
603     break;
604   default:
605     return LegalizerHelper::UnableToLegalize;
606   }
607   const char *Name = TLI.getLibcallName(RTLibcall);
608 
609   // Unsupported libcall on the target.
610   if (!Name) {
611     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
612                       << MIRBuilder.getTII().getName(Opc) << "\n");
613     return LegalizerHelper::UnableToLegalize;
614   }
615 
616   CallLowering::CallLoweringInfo Info;
617   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
618   Info.Callee = MachineOperand::CreateES(Name);
619   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
620   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
621                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
622 
623   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
624   if (!CLI.lowerCall(MIRBuilder, Info))
625     return LegalizerHelper::UnableToLegalize;
626 
627 
628   if (Info.LoweredTailCall) {
629     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
630 
631     // Check debug locations before removing the return.
632     LocObserver.checkpoint(true);
633 
634     // We must have a return following the call (or debug insts) to get past
635     // isLibCallInTailPosition.
636     do {
637       MachineInstr *Next = MI.getNextNode();
638       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
639              "Expected instr following MI to be return or debug inst?");
640       // We lowered a tail call, so the call is now the return from the block.
641       // Delete the old return.
642       Next->eraseFromParent();
643     } while (MI.getNextNode());
644 
645     // We expect to lose the debug location from the return.
646     LocObserver.checkpoint(false);
647   }
648 
649   return LegalizerHelper::Legalized;
650 }
651 
652 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
653                                        Type *FromType) {
654   auto ToMVT = MVT::getVT(ToType);
655   auto FromMVT = MVT::getVT(FromType);
656 
657   switch (Opcode) {
658   case TargetOpcode::G_FPEXT:
659     return RTLIB::getFPEXT(FromMVT, ToMVT);
660   case TargetOpcode::G_FPTRUNC:
661     return RTLIB::getFPROUND(FromMVT, ToMVT);
662   case TargetOpcode::G_FPTOSI:
663     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
664   case TargetOpcode::G_FPTOUI:
665     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
666   case TargetOpcode::G_SITOFP:
667     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
668   case TargetOpcode::G_UITOFP:
669     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
670   }
671   llvm_unreachable("Unsupported libcall function");
672 }
673 
674 static LegalizerHelper::LegalizeResult
675 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
676                   Type *FromType) {
677   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
678   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
679                        {{MI.getOperand(1).getReg(), FromType}});
680 }
681 
682 LegalizerHelper::LegalizeResult
683 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
684   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
685   unsigned Size = LLTy.getSizeInBits();
686   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
687 
688   switch (MI.getOpcode()) {
689   default:
690     return UnableToLegalize;
691   case TargetOpcode::G_SDIV:
692   case TargetOpcode::G_UDIV:
693   case TargetOpcode::G_SREM:
694   case TargetOpcode::G_UREM:
695   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
696     Type *HLTy = IntegerType::get(Ctx, Size);
697     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
698     if (Status != Legalized)
699       return Status;
700     break;
701   }
702   case TargetOpcode::G_FADD:
703   case TargetOpcode::G_FSUB:
704   case TargetOpcode::G_FMUL:
705   case TargetOpcode::G_FDIV:
706   case TargetOpcode::G_FMA:
707   case TargetOpcode::G_FPOW:
708   case TargetOpcode::G_FREM:
709   case TargetOpcode::G_FCOS:
710   case TargetOpcode::G_FSIN:
711   case TargetOpcode::G_FLOG10:
712   case TargetOpcode::G_FLOG:
713   case TargetOpcode::G_FLOG2:
714   case TargetOpcode::G_FEXP:
715   case TargetOpcode::G_FEXP2:
716   case TargetOpcode::G_FCEIL:
717   case TargetOpcode::G_FFLOOR:
718   case TargetOpcode::G_FMINNUM:
719   case TargetOpcode::G_FMAXNUM:
720   case TargetOpcode::G_FSQRT:
721   case TargetOpcode::G_FRINT:
722   case TargetOpcode::G_FNEARBYINT:
723   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
724     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
725     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
726       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
727       return UnableToLegalize;
728     }
729     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
730     if (Status != Legalized)
731       return Status;
732     break;
733   }
734   case TargetOpcode::G_FPEXT:
735   case TargetOpcode::G_FPTRUNC: {
736     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
737     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
738     if (!FromTy || !ToTy)
739       return UnableToLegalize;
740     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
741     if (Status != Legalized)
742       return Status;
743     break;
744   }
745   case TargetOpcode::G_FPTOSI:
746   case TargetOpcode::G_FPTOUI: {
747     // FIXME: Support other types
748     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
749     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
750     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
751       return UnableToLegalize;
752     LegalizeResult Status = conversionLibcall(
753         MI, MIRBuilder,
754         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
755         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
756     if (Status != Legalized)
757       return Status;
758     break;
759   }
760   case TargetOpcode::G_SITOFP:
761   case TargetOpcode::G_UITOFP: {
762     // FIXME: Support other types
763     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
764     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
765     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
766       return UnableToLegalize;
767     LegalizeResult Status = conversionLibcall(
768         MI, MIRBuilder,
769         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
770         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_BZERO:
776   case TargetOpcode::G_MEMCPY:
777   case TargetOpcode::G_MEMMOVE:
778   case TargetOpcode::G_MEMSET: {
779     LegalizeResult Result =
780         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
781     if (Result != Legalized)
782       return Result;
783     MI.eraseFromParent();
784     return Result;
785   }
786   }
787 
788   MI.eraseFromParent();
789   return Legalized;
790 }
791 
792 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
793                                                               unsigned TypeIdx,
794                                                               LLT NarrowTy) {
795   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
796   uint64_t NarrowSize = NarrowTy.getSizeInBits();
797 
798   switch (MI.getOpcode()) {
799   default:
800     return UnableToLegalize;
801   case TargetOpcode::G_IMPLICIT_DEF: {
802     Register DstReg = MI.getOperand(0).getReg();
803     LLT DstTy = MRI.getType(DstReg);
804 
805     // If SizeOp0 is not an exact multiple of NarrowSize, emit
806     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
807     // FIXME: Although this would also be legal for the general case, it causes
808     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
809     //  combines not being hit). This seems to be a problem related to the
810     //  artifact combiner.
811     if (SizeOp0 % NarrowSize != 0) {
812       LLT ImplicitTy = NarrowTy;
813       if (DstTy.isVector())
814         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
815 
816       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
817       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
818 
819       MI.eraseFromParent();
820       return Legalized;
821     }
822 
823     int NumParts = SizeOp0 / NarrowSize;
824 
825     SmallVector<Register, 2> DstRegs;
826     for (int i = 0; i < NumParts; ++i)
827       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
828 
829     if (DstTy.isVector())
830       MIRBuilder.buildBuildVector(DstReg, DstRegs);
831     else
832       MIRBuilder.buildMerge(DstReg, DstRegs);
833     MI.eraseFromParent();
834     return Legalized;
835   }
836   case TargetOpcode::G_CONSTANT: {
837     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
838     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
839     unsigned TotalSize = Ty.getSizeInBits();
840     unsigned NarrowSize = NarrowTy.getSizeInBits();
841     int NumParts = TotalSize / NarrowSize;
842 
843     SmallVector<Register, 4> PartRegs;
844     for (int I = 0; I != NumParts; ++I) {
845       unsigned Offset = I * NarrowSize;
846       auto K = MIRBuilder.buildConstant(NarrowTy,
847                                         Val.lshr(Offset).trunc(NarrowSize));
848       PartRegs.push_back(K.getReg(0));
849     }
850 
851     LLT LeftoverTy;
852     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
853     SmallVector<Register, 1> LeftoverRegs;
854     if (LeftoverBits != 0) {
855       LeftoverTy = LLT::scalar(LeftoverBits);
856       auto K = MIRBuilder.buildConstant(
857         LeftoverTy,
858         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
859       LeftoverRegs.push_back(K.getReg(0));
860     }
861 
862     insertParts(MI.getOperand(0).getReg(),
863                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
864 
865     MI.eraseFromParent();
866     return Legalized;
867   }
868   case TargetOpcode::G_SEXT:
869   case TargetOpcode::G_ZEXT:
870   case TargetOpcode::G_ANYEXT:
871     return narrowScalarExt(MI, TypeIdx, NarrowTy);
872   case TargetOpcode::G_TRUNC: {
873     if (TypeIdx != 1)
874       return UnableToLegalize;
875 
876     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
877     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
878       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
879       return UnableToLegalize;
880     }
881 
882     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
883     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
884     MI.eraseFromParent();
885     return Legalized;
886   }
887 
888   case TargetOpcode::G_FREEZE:
889     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_ADD:
891   case TargetOpcode::G_SUB:
892   case TargetOpcode::G_SADDO:
893   case TargetOpcode::G_SSUBO:
894   case TargetOpcode::G_SADDE:
895   case TargetOpcode::G_SSUBE:
896   case TargetOpcode::G_UADDO:
897   case TargetOpcode::G_USUBO:
898   case TargetOpcode::G_UADDE:
899   case TargetOpcode::G_USUBE:
900     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
901   case TargetOpcode::G_MUL:
902   case TargetOpcode::G_UMULH:
903     return narrowScalarMul(MI, NarrowTy);
904   case TargetOpcode::G_EXTRACT:
905     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
906   case TargetOpcode::G_INSERT:
907     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
908   case TargetOpcode::G_LOAD: {
909     auto &MMO = **MI.memoperands_begin();
910     Register DstReg = MI.getOperand(0).getReg();
911     LLT DstTy = MRI.getType(DstReg);
912     if (DstTy.isVector())
913       return UnableToLegalize;
914 
915     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
916       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
917       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
918       MIRBuilder.buildAnyExt(DstReg, TmpReg);
919       MI.eraseFromParent();
920       return Legalized;
921     }
922 
923     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
924   }
925   case TargetOpcode::G_ZEXTLOAD:
926   case TargetOpcode::G_SEXTLOAD: {
927     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
928     Register DstReg = MI.getOperand(0).getReg();
929     Register PtrReg = MI.getOperand(1).getReg();
930 
931     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932     auto &MMO = **MI.memoperands_begin();
933     unsigned MemSize = MMO.getSizeInBits();
934 
935     if (MemSize == NarrowSize) {
936       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
937     } else if (MemSize < NarrowSize) {
938       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
939     } else if (MemSize > NarrowSize) {
940       // FIXME: Need to split the load.
941       return UnableToLegalize;
942     }
943 
944     if (ZExt)
945       MIRBuilder.buildZExt(DstReg, TmpReg);
946     else
947       MIRBuilder.buildSExt(DstReg, TmpReg);
948 
949     MI.eraseFromParent();
950     return Legalized;
951   }
952   case TargetOpcode::G_STORE: {
953     const auto &MMO = **MI.memoperands_begin();
954 
955     Register SrcReg = MI.getOperand(0).getReg();
956     LLT SrcTy = MRI.getType(SrcReg);
957     if (SrcTy.isVector())
958       return UnableToLegalize;
959 
960     int NumParts = SizeOp0 / NarrowSize;
961     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
962     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
963     if (SrcTy.isVector() && LeftoverBits != 0)
964       return UnableToLegalize;
965 
966     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
967       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
968       auto &MMO = **MI.memoperands_begin();
969       MIRBuilder.buildTrunc(TmpReg, SrcReg);
970       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
971       MI.eraseFromParent();
972       return Legalized;
973     }
974 
975     return reduceLoadStoreWidth(MI, 0, NarrowTy);
976   }
977   case TargetOpcode::G_SELECT:
978     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_AND:
980   case TargetOpcode::G_OR:
981   case TargetOpcode::G_XOR: {
982     // Legalize bitwise operation:
983     // A = BinOp<Ty> B, C
984     // into:
985     // B1, ..., BN = G_UNMERGE_VALUES B
986     // C1, ..., CN = G_UNMERGE_VALUES C
987     // A1 = BinOp<Ty/N> B1, C2
988     // ...
989     // AN = BinOp<Ty/N> BN, CN
990     // A = G_MERGE_VALUES A1, ..., AN
991     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
992   }
993   case TargetOpcode::G_SHL:
994   case TargetOpcode::G_LSHR:
995   case TargetOpcode::G_ASHR:
996     return narrowScalarShift(MI, TypeIdx, NarrowTy);
997   case TargetOpcode::G_CTLZ:
998   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
999   case TargetOpcode::G_CTTZ:
1000   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001   case TargetOpcode::G_CTPOP:
1002     if (TypeIdx == 1)
1003       switch (MI.getOpcode()) {
1004       case TargetOpcode::G_CTLZ:
1005       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1006         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1007       case TargetOpcode::G_CTTZ:
1008       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1009         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1010       case TargetOpcode::G_CTPOP:
1011         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1012       default:
1013         return UnableToLegalize;
1014       }
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_INTTOPTR:
1021     if (TypeIdx != 1)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarSrc(MI, NarrowTy, 1);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PTRTOINT:
1029     if (TypeIdx != 0)
1030       return UnableToLegalize;
1031 
1032     Observer.changingInstr(MI);
1033     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1034     Observer.changedInstr(MI);
1035     return Legalized;
1036   case TargetOpcode::G_PHI: {
1037     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1038     // NarrowSize.
1039     if (SizeOp0 % NarrowSize != 0)
1040       return UnableToLegalize;
1041 
1042     unsigned NumParts = SizeOp0 / NarrowSize;
1043     SmallVector<Register, 2> DstRegs(NumParts);
1044     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1045     Observer.changingInstr(MI);
1046     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1047       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1048       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1049       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1050                    SrcRegs[i / 2]);
1051     }
1052     MachineBasicBlock &MBB = *MI.getParent();
1053     MIRBuilder.setInsertPt(MBB, MI);
1054     for (unsigned i = 0; i < NumParts; ++i) {
1055       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1056       MachineInstrBuilder MIB =
1057           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1058       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1059         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1060     }
1061     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1062     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1063     Observer.changedInstr(MI);
1064     MI.eraseFromParent();
1065     return Legalized;
1066   }
1067   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1068   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1069     if (TypeIdx != 2)
1070       return UnableToLegalize;
1071 
1072     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1073     Observer.changingInstr(MI);
1074     narrowScalarSrc(MI, NarrowTy, OpIdx);
1075     Observer.changedInstr(MI);
1076     return Legalized;
1077   }
1078   case TargetOpcode::G_ICMP: {
1079     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1080     if (NarrowSize * 2 != SrcSize)
1081       return UnableToLegalize;
1082 
1083     Observer.changingInstr(MI);
1084     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1085     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1086     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1087 
1088     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1089     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1090     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1091 
1092     CmpInst::Predicate Pred =
1093         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1094     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1095 
1096     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1097       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1098       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1099       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1100       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1101       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1102     } else {
1103       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1104       MachineInstrBuilder CmpHEQ =
1105           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1106       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1107           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1108       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1109     }
1110     Observer.changedInstr(MI);
1111     MI.eraseFromParent();
1112     return Legalized;
1113   }
1114   case TargetOpcode::G_SEXT_INREG: {
1115     if (TypeIdx != 0)
1116       return UnableToLegalize;
1117 
1118     int64_t SizeInBits = MI.getOperand(2).getImm();
1119 
1120     // So long as the new type has more bits than the bits we're extending we
1121     // don't need to break it apart.
1122     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1123       Observer.changingInstr(MI);
1124       // We don't lose any non-extension bits by truncating the src and
1125       // sign-extending the dst.
1126       MachineOperand &MO1 = MI.getOperand(1);
1127       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1128       MO1.setReg(TruncMIB.getReg(0));
1129 
1130       MachineOperand &MO2 = MI.getOperand(0);
1131       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1132       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1133       MIRBuilder.buildSExt(MO2, DstExt);
1134       MO2.setReg(DstExt);
1135       Observer.changedInstr(MI);
1136       return Legalized;
1137     }
1138 
1139     // Break it apart. Components below the extension point are unmodified. The
1140     // component containing the extension point becomes a narrower SEXT_INREG.
1141     // Components above it are ashr'd from the component containing the
1142     // extension point.
1143     if (SizeOp0 % NarrowSize != 0)
1144       return UnableToLegalize;
1145     int NumParts = SizeOp0 / NarrowSize;
1146 
1147     // List the registers where the destination will be scattered.
1148     SmallVector<Register, 2> DstRegs;
1149     // List the registers where the source will be split.
1150     SmallVector<Register, 2> SrcRegs;
1151 
1152     // Create all the temporary registers.
1153     for (int i = 0; i < NumParts; ++i) {
1154       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1155 
1156       SrcRegs.push_back(SrcReg);
1157     }
1158 
1159     // Explode the big arguments into smaller chunks.
1160     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1161 
1162     Register AshrCstReg =
1163         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1164             .getReg(0);
1165     Register FullExtensionReg = 0;
1166     Register PartialExtensionReg = 0;
1167 
1168     // Do the operation on each small part.
1169     for (int i = 0; i < NumParts; ++i) {
1170       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1171         DstRegs.push_back(SrcRegs[i]);
1172       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1173         assert(PartialExtensionReg &&
1174                "Expected to visit partial extension before full");
1175         if (FullExtensionReg) {
1176           DstRegs.push_back(FullExtensionReg);
1177           continue;
1178         }
1179         DstRegs.push_back(
1180             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1181                 .getReg(0));
1182         FullExtensionReg = DstRegs.back();
1183       } else {
1184         DstRegs.push_back(
1185             MIRBuilder
1186                 .buildInstr(
1187                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1188                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1189                 .getReg(0));
1190         PartialExtensionReg = DstRegs.back();
1191       }
1192     }
1193 
1194     // Gather the destination registers into the final destination.
1195     Register DstReg = MI.getOperand(0).getReg();
1196     MIRBuilder.buildMerge(DstReg, DstRegs);
1197     MI.eraseFromParent();
1198     return Legalized;
1199   }
1200   case TargetOpcode::G_BSWAP:
1201   case TargetOpcode::G_BITREVERSE: {
1202     if (SizeOp0 % NarrowSize != 0)
1203       return UnableToLegalize;
1204 
1205     Observer.changingInstr(MI);
1206     SmallVector<Register, 2> SrcRegs, DstRegs;
1207     unsigned NumParts = SizeOp0 / NarrowSize;
1208     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1209 
1210     for (unsigned i = 0; i < NumParts; ++i) {
1211       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1212                                            {SrcRegs[NumParts - 1 - i]});
1213       DstRegs.push_back(DstPart.getReg(0));
1214     }
1215 
1216     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1217 
1218     Observer.changedInstr(MI);
1219     MI.eraseFromParent();
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_PTR_ADD:
1223   case TargetOpcode::G_PTRMASK: {
1224     if (TypeIdx != 1)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarSrc(MI, NarrowTy, 2);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231   case TargetOpcode::G_FPTOUI:
1232   case TargetOpcode::G_FPTOSI:
1233     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1234   case TargetOpcode::G_FPEXT:
1235     if (TypeIdx != 0)
1236       return UnableToLegalize;
1237     Observer.changingInstr(MI);
1238     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1239     Observer.changedInstr(MI);
1240     return Legalized;
1241   }
1242 }
1243 
1244 Register LegalizerHelper::coerceToScalar(Register Val) {
1245   LLT Ty = MRI.getType(Val);
1246   if (Ty.isScalar())
1247     return Val;
1248 
1249   const DataLayout &DL = MIRBuilder.getDataLayout();
1250   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1251   if (Ty.isPointer()) {
1252     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1253       return Register();
1254     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1255   }
1256 
1257   Register NewVal = Val;
1258 
1259   assert(Ty.isVector());
1260   LLT EltTy = Ty.getElementType();
1261   if (EltTy.isPointer())
1262     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1263   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1264 }
1265 
1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1267                                      unsigned OpIdx, unsigned ExtOpcode) {
1268   MachineOperand &MO = MI.getOperand(OpIdx);
1269   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1270   MO.setReg(ExtB.getReg(0));
1271 }
1272 
1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1274                                       unsigned OpIdx) {
1275   MachineOperand &MO = MI.getOperand(OpIdx);
1276   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1277   MO.setReg(ExtB.getReg(0));
1278 }
1279 
1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1281                                      unsigned OpIdx, unsigned TruncOpcode) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1285   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1286   MO.setReg(DstExt);
1287 }
1288 
1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1290                                       unsigned OpIdx, unsigned ExtOpcode) {
1291   MachineOperand &MO = MI.getOperand(OpIdx);
1292   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1293   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1294   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1295   MO.setReg(DstTrunc);
1296 }
1297 
1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1299                                             unsigned OpIdx) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1302   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1303 }
1304 
1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1306                                             unsigned OpIdx) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308 
1309   LLT OldTy = MRI.getType(MO.getReg());
1310   unsigned OldElts = OldTy.getNumElements();
1311   unsigned NewElts = MoreTy.getNumElements();
1312 
1313   unsigned NumParts = NewElts / OldElts;
1314 
1315   // Use concat_vectors if the result is a multiple of the number of elements.
1316   if (NumParts * OldElts == NewElts) {
1317     SmallVector<Register, 8> Parts;
1318     Parts.push_back(MO.getReg());
1319 
1320     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1321     for (unsigned I = 1; I != NumParts; ++I)
1322       Parts.push_back(ImpDef);
1323 
1324     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1325     MO.setReg(Concat.getReg(0));
1326     return;
1327   }
1328 
1329   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1330   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1331   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1332   MO.setReg(MoreReg);
1333 }
1334 
1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1336   MachineOperand &Op = MI.getOperand(OpIdx);
1337   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1338 }
1339 
1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1341   MachineOperand &MO = MI.getOperand(OpIdx);
1342   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1343   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1344   MIRBuilder.buildBitcast(MO, CastDst);
1345   MO.setReg(CastDst);
1346 }
1347 
1348 LegalizerHelper::LegalizeResult
1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1350                                         LLT WideTy) {
1351   if (TypeIdx != 1)
1352     return UnableToLegalize;
1353 
1354   Register DstReg = MI.getOperand(0).getReg();
1355   LLT DstTy = MRI.getType(DstReg);
1356   if (DstTy.isVector())
1357     return UnableToLegalize;
1358 
1359   Register Src1 = MI.getOperand(1).getReg();
1360   LLT SrcTy = MRI.getType(Src1);
1361   const int DstSize = DstTy.getSizeInBits();
1362   const int SrcSize = SrcTy.getSizeInBits();
1363   const int WideSize = WideTy.getSizeInBits();
1364   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1365 
1366   unsigned NumOps = MI.getNumOperands();
1367   unsigned NumSrc = MI.getNumOperands() - 1;
1368   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1369 
1370   if (WideSize >= DstSize) {
1371     // Directly pack the bits in the target type.
1372     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1373 
1374     for (unsigned I = 2; I != NumOps; ++I) {
1375       const unsigned Offset = (I - 1) * PartSize;
1376 
1377       Register SrcReg = MI.getOperand(I).getReg();
1378       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1379 
1380       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1381 
1382       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1383         MRI.createGenericVirtualRegister(WideTy);
1384 
1385       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1386       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1387       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1388       ResultReg = NextResult;
1389     }
1390 
1391     if (WideSize > DstSize)
1392       MIRBuilder.buildTrunc(DstReg, ResultReg);
1393     else if (DstTy.isPointer())
1394       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1395 
1396     MI.eraseFromParent();
1397     return Legalized;
1398   }
1399 
1400   // Unmerge the original values to the GCD type, and recombine to the next
1401   // multiple greater than the original type.
1402   //
1403   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1404   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1405   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1406   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1407   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1408   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1409   // %12:_(s12) = G_MERGE_VALUES %10, %11
1410   //
1411   // Padding with undef if necessary:
1412   //
1413   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1414   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1415   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1416   // %7:_(s2) = G_IMPLICIT_DEF
1417   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1418   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1419   // %10:_(s12) = G_MERGE_VALUES %8, %9
1420 
1421   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1422   LLT GCDTy = LLT::scalar(GCD);
1423 
1424   SmallVector<Register, 8> Parts;
1425   SmallVector<Register, 8> NewMergeRegs;
1426   SmallVector<Register, 8> Unmerges;
1427   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1428 
1429   // Decompose the original operands if they don't evenly divide.
1430   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1431     Register SrcReg = MI.getOperand(I).getReg();
1432     if (GCD == SrcSize) {
1433       Unmerges.push_back(SrcReg);
1434     } else {
1435       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1436       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1437         Unmerges.push_back(Unmerge.getReg(J));
1438     }
1439   }
1440 
1441   // Pad with undef to the next size that is a multiple of the requested size.
1442   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1443     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1444     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1445       Unmerges.push_back(UndefReg);
1446   }
1447 
1448   const int PartsPerGCD = WideSize / GCD;
1449 
1450   // Build merges of each piece.
1451   ArrayRef<Register> Slicer(Unmerges);
1452   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1453     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1454     NewMergeRegs.push_back(Merge.getReg(0));
1455   }
1456 
1457   // A truncate may be necessary if the requested type doesn't evenly divide the
1458   // original result type.
1459   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1460     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1461   } else {
1462     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1463     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1464   }
1465 
1466   MI.eraseFromParent();
1467   return Legalized;
1468 }
1469 
1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1471   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1472   LLT OrigTy = MRI.getType(OrigReg);
1473   LLT LCMTy = getLCMType(WideTy, OrigTy);
1474 
1475   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1476   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1477 
1478   Register UnmergeSrc = WideReg;
1479 
1480   // Create a merge to the LCM type, padding with undef
1481   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1482   // =>
1483   // %1:_(<4 x s32>) = G_FOO
1484   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1485   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1486   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1487   if (NumMergeParts > 1) {
1488     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1489     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1490     MergeParts[0] = WideReg;
1491     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1492   }
1493 
1494   // Unmerge to the original register and pad with dead defs.
1495   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1496   UnmergeResults[0] = OrigReg;
1497   for (int I = 1; I != NumUnmergeParts; ++I)
1498     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1499 
1500   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1501   return WideReg;
1502 }
1503 
1504 LegalizerHelper::LegalizeResult
1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1506                                           LLT WideTy) {
1507   if (TypeIdx != 0)
1508     return UnableToLegalize;
1509 
1510   int NumDst = MI.getNumOperands() - 1;
1511   Register SrcReg = MI.getOperand(NumDst).getReg();
1512   LLT SrcTy = MRI.getType(SrcReg);
1513   if (SrcTy.isVector())
1514     return UnableToLegalize;
1515 
1516   Register Dst0Reg = MI.getOperand(0).getReg();
1517   LLT DstTy = MRI.getType(Dst0Reg);
1518   if (!DstTy.isScalar())
1519     return UnableToLegalize;
1520 
1521   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1522     if (SrcTy.isPointer()) {
1523       const DataLayout &DL = MIRBuilder.getDataLayout();
1524       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1525         LLVM_DEBUG(
1526             dbgs() << "Not casting non-integral address space integer\n");
1527         return UnableToLegalize;
1528       }
1529 
1530       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1531       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1532     }
1533 
1534     // Widen SrcTy to WideTy. This does not affect the result, but since the
1535     // user requested this size, it is probably better handled than SrcTy and
1536     // should reduce the total number of legalization artifacts
1537     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1538       SrcTy = WideTy;
1539       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1540     }
1541 
1542     // Theres no unmerge type to target. Directly extract the bits from the
1543     // source type
1544     unsigned DstSize = DstTy.getSizeInBits();
1545 
1546     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1547     for (int I = 1; I != NumDst; ++I) {
1548       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1549       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1550       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1551     }
1552 
1553     MI.eraseFromParent();
1554     return Legalized;
1555   }
1556 
1557   // Extend the source to a wider type.
1558   LLT LCMTy = getLCMType(SrcTy, WideTy);
1559 
1560   Register WideSrc = SrcReg;
1561   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1562     // TODO: If this is an integral address space, cast to integer and anyext.
1563     if (SrcTy.isPointer()) {
1564       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1565       return UnableToLegalize;
1566     }
1567 
1568     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1569   }
1570 
1571   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1572 
1573   // Create a sequence of unmerges and merges to the original results. Since we
1574   // may have widened the source, we will need to pad the results with dead defs
1575   // to cover the source register.
1576   // e.g. widen s48 to s64:
1577   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1578   //
1579   // =>
1580   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1581   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1582   //  ; unpack to GCD type, with extra dead defs
1583   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1584   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1585   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1586   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1587   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1588   const LLT GCDTy = getGCDType(WideTy, DstTy);
1589   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1590   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1591 
1592   // Directly unmerge to the destination without going through a GCD type
1593   // if possible
1594   if (PartsPerRemerge == 1) {
1595     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1596 
1597     for (int I = 0; I != NumUnmerge; ++I) {
1598       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1599 
1600       for (int J = 0; J != PartsPerUnmerge; ++J) {
1601         int Idx = I * PartsPerUnmerge + J;
1602         if (Idx < NumDst)
1603           MIB.addDef(MI.getOperand(Idx).getReg());
1604         else {
1605           // Create dead def for excess components.
1606           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1607         }
1608       }
1609 
1610       MIB.addUse(Unmerge.getReg(I));
1611     }
1612   } else {
1613     SmallVector<Register, 16> Parts;
1614     for (int J = 0; J != NumUnmerge; ++J)
1615       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1616 
1617     SmallVector<Register, 8> RemergeParts;
1618     for (int I = 0; I != NumDst; ++I) {
1619       for (int J = 0; J < PartsPerRemerge; ++J) {
1620         const int Idx = I * PartsPerRemerge + J;
1621         RemergeParts.emplace_back(Parts[Idx]);
1622       }
1623 
1624       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1625       RemergeParts.clear();
1626     }
1627   }
1628 
1629   MI.eraseFromParent();
1630   return Legalized;
1631 }
1632 
1633 LegalizerHelper::LegalizeResult
1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1635                                     LLT WideTy) {
1636   Register DstReg = MI.getOperand(0).getReg();
1637   Register SrcReg = MI.getOperand(1).getReg();
1638   LLT SrcTy = MRI.getType(SrcReg);
1639 
1640   LLT DstTy = MRI.getType(DstReg);
1641   unsigned Offset = MI.getOperand(2).getImm();
1642 
1643   if (TypeIdx == 0) {
1644     if (SrcTy.isVector() || DstTy.isVector())
1645       return UnableToLegalize;
1646 
1647     SrcOp Src(SrcReg);
1648     if (SrcTy.isPointer()) {
1649       // Extracts from pointers can be handled only if they are really just
1650       // simple integers.
1651       const DataLayout &DL = MIRBuilder.getDataLayout();
1652       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1653         return UnableToLegalize;
1654 
1655       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1656       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1657       SrcTy = SrcAsIntTy;
1658     }
1659 
1660     if (DstTy.isPointer())
1661       return UnableToLegalize;
1662 
1663     if (Offset == 0) {
1664       // Avoid a shift in the degenerate case.
1665       MIRBuilder.buildTrunc(DstReg,
1666                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1667       MI.eraseFromParent();
1668       return Legalized;
1669     }
1670 
1671     // Do a shift in the source type.
1672     LLT ShiftTy = SrcTy;
1673     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1674       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1675       ShiftTy = WideTy;
1676     }
1677 
1678     auto LShr = MIRBuilder.buildLShr(
1679       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1680     MIRBuilder.buildTrunc(DstReg, LShr);
1681     MI.eraseFromParent();
1682     return Legalized;
1683   }
1684 
1685   if (SrcTy.isScalar()) {
1686     Observer.changingInstr(MI);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     Observer.changedInstr(MI);
1689     return Legalized;
1690   }
1691 
1692   if (!SrcTy.isVector())
1693     return UnableToLegalize;
1694 
1695   if (DstTy != SrcTy.getElementType())
1696     return UnableToLegalize;
1697 
1698   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1699     return UnableToLegalize;
1700 
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703 
1704   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1705                           Offset);
1706   widenScalarDst(MI, WideTy.getScalarType(), 0);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1713                                    LLT WideTy) {
1714   if (TypeIdx != 0 || WideTy.isVector())
1715     return UnableToLegalize;
1716   Observer.changingInstr(MI);
1717   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718   widenScalarDst(MI, WideTy);
1719   Observer.changedInstr(MI);
1720   return Legalized;
1721 }
1722 
1723 LegalizerHelper::LegalizeResult
1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1725                                            LLT WideTy) {
1726   if (TypeIdx == 1)
1727     return UnableToLegalize; // TODO
1728 
1729   unsigned Opcode;
1730   unsigned ExtOpcode;
1731   Optional<Register> CarryIn = None;
1732   switch (MI.getOpcode()) {
1733   default:
1734     llvm_unreachable("Unexpected opcode!");
1735   case TargetOpcode::G_SADDO:
1736     Opcode = TargetOpcode::G_ADD;
1737     ExtOpcode = TargetOpcode::G_SEXT;
1738     break;
1739   case TargetOpcode::G_SSUBO:
1740     Opcode = TargetOpcode::G_SUB;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     break;
1743   case TargetOpcode::G_UADDO:
1744     Opcode = TargetOpcode::G_ADD;
1745     ExtOpcode = TargetOpcode::G_ZEXT;
1746     break;
1747   case TargetOpcode::G_USUBO:
1748     Opcode = TargetOpcode::G_SUB;
1749     ExtOpcode = TargetOpcode::G_ZEXT;
1750     break;
1751   case TargetOpcode::G_SADDE:
1752     Opcode = TargetOpcode::G_UADDE;
1753     ExtOpcode = TargetOpcode::G_SEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   case TargetOpcode::G_SSUBE:
1757     Opcode = TargetOpcode::G_USUBE;
1758     ExtOpcode = TargetOpcode::G_SEXT;
1759     CarryIn = MI.getOperand(4).getReg();
1760     break;
1761   case TargetOpcode::G_UADDE:
1762     Opcode = TargetOpcode::G_UADDE;
1763     ExtOpcode = TargetOpcode::G_ZEXT;
1764     CarryIn = MI.getOperand(4).getReg();
1765     break;
1766   case TargetOpcode::G_USUBE:
1767     Opcode = TargetOpcode::G_USUBE;
1768     ExtOpcode = TargetOpcode::G_ZEXT;
1769     CarryIn = MI.getOperand(4).getReg();
1770     break;
1771   }
1772 
1773   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1774   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1775   // Do the arithmetic in the larger type.
1776   Register NewOp;
1777   if (CarryIn) {
1778     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1779     NewOp = MIRBuilder
1780                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1781                             {LHSExt, RHSExt, *CarryIn})
1782                 .getReg(0);
1783   } else {
1784     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1785   }
1786   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1787   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1788   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1789   // There is no overflow if the ExtOp is the same as NewOp.
1790   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1791   // Now trunc the NewOp to the original result.
1792   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793   MI.eraseFromParent();
1794   return Legalized;
1795 }
1796 
1797 LegalizerHelper::LegalizeResult
1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1799                                          LLT WideTy) {
1800   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1801                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1802                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1803   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1804                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1805   // We can convert this to:
1806   //   1. Any extend iN to iM
1807   //   2. SHL by M-N
1808   //   3. [US][ADD|SUB|SHL]SAT
1809   //   4. L/ASHR by M-N
1810   //
1811   // It may be more efficient to lower this to a min and a max operation in
1812   // the higher precision arithmetic if the promoted operation isn't legal,
1813   // but this decision is up to the target's lowering request.
1814   Register DstReg = MI.getOperand(0).getReg();
1815 
1816   unsigned NewBits = WideTy.getScalarSizeInBits();
1817   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1818 
1819   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1820   // must not left shift the RHS to preserve the shift amount.
1821   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1822   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1823                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1824   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1825   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1826   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1827 
1828   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1829                                         {ShiftL, ShiftR}, MI.getFlags());
1830 
1831   // Use a shift that will preserve the number of sign bits when the trunc is
1832   // folded away.
1833   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1834                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1835 
1836   MIRBuilder.buildTrunc(DstReg, Result);
1837   MI.eraseFromParent();
1838   return Legalized;
1839 }
1840 
1841 LegalizerHelper::LegalizeResult
1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1843                                  LLT WideTy) {
1844   if (TypeIdx == 1)
1845     return UnableToLegalize;
1846 
1847   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1848   Register Result = MI.getOperand(0).getReg();
1849   Register OriginalOverflow = MI.getOperand(1).getReg();
1850   Register LHS = MI.getOperand(2).getReg();
1851   Register RHS = MI.getOperand(3).getReg();
1852   LLT SrcTy = MRI.getType(LHS);
1853   LLT OverflowTy = MRI.getType(OriginalOverflow);
1854   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1855 
1856   // To determine if the result overflowed in the larger type, we extend the
1857   // input to the larger type, do the multiply (checking if it overflows),
1858   // then also check the high bits of the result to see if overflow happened
1859   // there.
1860   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1861   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1862   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1863 
1864   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1865                                     {LeftOperand, RightOperand});
1866   auto Mul = Mulo->getOperand(0);
1867   MIRBuilder.buildTrunc(Result, Mul);
1868 
1869   MachineInstrBuilder ExtResult;
1870   // Overflow occurred if it occurred in the larger type, or if the high part
1871   // of the result does not zero/sign-extend the low part.  Check this second
1872   // possibility first.
1873   if (IsSigned) {
1874     // For signed, overflow occurred when the high part does not sign-extend
1875     // the low part.
1876     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1877   } else {
1878     // Unsigned overflow occurred when the high part does not zero-extend the
1879     // low part.
1880     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1881   }
1882 
1883   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1884   // so we don't need to check the overflow result of larger type Mulo.
1885   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1886     auto Overflow =
1887         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1888     // Finally check if the multiplication in the larger type itself overflowed.
1889     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1890   } else {
1891     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1892   }
1893   MI.eraseFromParent();
1894   return Legalized;
1895 }
1896 
1897 LegalizerHelper::LegalizeResult
1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1899   switch (MI.getOpcode()) {
1900   default:
1901     return UnableToLegalize;
1902   case TargetOpcode::G_EXTRACT:
1903     return widenScalarExtract(MI, TypeIdx, WideTy);
1904   case TargetOpcode::G_INSERT:
1905     return widenScalarInsert(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_MERGE_VALUES:
1907     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UNMERGE_VALUES:
1909     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDO:
1911   case TargetOpcode::G_SSUBO:
1912   case TargetOpcode::G_UADDO:
1913   case TargetOpcode::G_USUBO:
1914   case TargetOpcode::G_SADDE:
1915   case TargetOpcode::G_SSUBE:
1916   case TargetOpcode::G_UADDE:
1917   case TargetOpcode::G_USUBE:
1918     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1919   case TargetOpcode::G_UMULO:
1920   case TargetOpcode::G_SMULO:
1921     return widenScalarMulo(MI, TypeIdx, WideTy);
1922   case TargetOpcode::G_SADDSAT:
1923   case TargetOpcode::G_SSUBSAT:
1924   case TargetOpcode::G_SSHLSAT:
1925   case TargetOpcode::G_UADDSAT:
1926   case TargetOpcode::G_USUBSAT:
1927   case TargetOpcode::G_USHLSAT:
1928     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1929   case TargetOpcode::G_CTTZ:
1930   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1931   case TargetOpcode::G_CTLZ:
1932   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1933   case TargetOpcode::G_CTPOP: {
1934     if (TypeIdx == 0) {
1935       Observer.changingInstr(MI);
1936       widenScalarDst(MI, WideTy, 0);
1937       Observer.changedInstr(MI);
1938       return Legalized;
1939     }
1940 
1941     Register SrcReg = MI.getOperand(1).getReg();
1942 
1943     // First ZEXT the input.
1944     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1945     LLT CurTy = MRI.getType(SrcReg);
1946     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1947       // The count is the same in the larger type except if the original
1948       // value was zero.  This can be handled by setting the bit just off
1949       // the top of the original type.
1950       auto TopBit =
1951           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1952       MIBSrc = MIRBuilder.buildOr(
1953         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1954     }
1955 
1956     // Perform the operation at the larger size.
1957     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1958     // This is already the correct result for CTPOP and CTTZs
1959     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1960         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1961       // The correct result is NewOp - (Difference in widety and current ty).
1962       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1963       MIBNewOp = MIRBuilder.buildSub(
1964           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1965     }
1966 
1967     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1968     MI.eraseFromParent();
1969     return Legalized;
1970   }
1971   case TargetOpcode::G_BSWAP: {
1972     Observer.changingInstr(MI);
1973     Register DstReg = MI.getOperand(0).getReg();
1974 
1975     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1976     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1977     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1978     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1979 
1980     MI.getOperand(0).setReg(DstExt);
1981 
1982     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1983 
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1987     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1988 
1989     MIRBuilder.buildTrunc(DstReg, ShrReg);
1990     Observer.changedInstr(MI);
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_BITREVERSE: {
1994     Observer.changingInstr(MI);
1995 
1996     Register DstReg = MI.getOperand(0).getReg();
1997     LLT Ty = MRI.getType(DstReg);
1998     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1999 
2000     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     MI.getOperand(0).setReg(DstExt);
2003     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2004 
2005     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2006     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2007     MIRBuilder.buildTrunc(DstReg, Shift);
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010   }
2011   case TargetOpcode::G_FREEZE:
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2014     widenScalarDst(MI, WideTy);
2015     Observer.changedInstr(MI);
2016     return Legalized;
2017 
2018   case TargetOpcode::G_ADD:
2019   case TargetOpcode::G_AND:
2020   case TargetOpcode::G_MUL:
2021   case TargetOpcode::G_OR:
2022   case TargetOpcode::G_XOR:
2023   case TargetOpcode::G_SUB:
2024     // Perform operation at larger width (any extension is fines here, high bits
2025     // don't affect the result) and then truncate the result back to the
2026     // original type.
2027     Observer.changingInstr(MI);
2028     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2029     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2030     widenScalarDst(MI, WideTy);
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033 
2034   case TargetOpcode::G_SHL:
2035     Observer.changingInstr(MI);
2036 
2037     if (TypeIdx == 0) {
2038       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2039       widenScalarDst(MI, WideTy);
2040     } else {
2041       assert(TypeIdx == 1);
2042       // The "number of bits to shift" operand must preserve its value as an
2043       // unsigned integer:
2044       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2045     }
2046 
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049 
2050   case TargetOpcode::G_SDIV:
2051   case TargetOpcode::G_SREM:
2052   case TargetOpcode::G_SMIN:
2053   case TargetOpcode::G_SMAX:
2054     Observer.changingInstr(MI);
2055     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2056     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2057     widenScalarDst(MI, WideTy);
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060 
2061   case TargetOpcode::G_SDIVREM:
2062     Observer.changingInstr(MI);
2063     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2064     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2065     widenScalarDst(MI, WideTy);
2066     widenScalarDst(MI, WideTy, 1);
2067     Observer.changedInstr(MI);
2068     return Legalized;
2069 
2070   case TargetOpcode::G_ASHR:
2071   case TargetOpcode::G_LSHR:
2072     Observer.changingInstr(MI);
2073 
2074     if (TypeIdx == 0) {
2075       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2076         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2077 
2078       widenScalarSrc(MI, WideTy, 1, CvtOp);
2079       widenScalarDst(MI, WideTy);
2080     } else {
2081       assert(TypeIdx == 1);
2082       // The "number of bits to shift" operand must preserve its value as an
2083       // unsigned integer:
2084       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2085     }
2086 
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   case TargetOpcode::G_UDIV:
2090   case TargetOpcode::G_UREM:
2091   case TargetOpcode::G_UMIN:
2092   case TargetOpcode::G_UMAX:
2093     Observer.changingInstr(MI);
2094     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2095     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2096     widenScalarDst(MI, WideTy);
2097     Observer.changedInstr(MI);
2098     return Legalized;
2099 
2100   case TargetOpcode::G_UDIVREM:
2101     Observer.changingInstr(MI);
2102     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2103     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2104     widenScalarDst(MI, WideTy);
2105     widenScalarDst(MI, WideTy, 1);
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108 
2109   case TargetOpcode::G_SELECT:
2110     Observer.changingInstr(MI);
2111     if (TypeIdx == 0) {
2112       // Perform operation at larger width (any extension is fine here, high
2113       // bits don't affect the result) and then truncate the result back to the
2114       // original type.
2115       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2116       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2117       widenScalarDst(MI, WideTy);
2118     } else {
2119       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2120       // Explicit extension is required here since high bits affect the result.
2121       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2122     }
2123     Observer.changedInstr(MI);
2124     return Legalized;
2125 
2126   case TargetOpcode::G_FPTOSI:
2127   case TargetOpcode::G_FPTOUI:
2128     Observer.changingInstr(MI);
2129 
2130     if (TypeIdx == 0)
2131       widenScalarDst(MI, WideTy);
2132     else
2133       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2134 
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137   case TargetOpcode::G_SITOFP:
2138     Observer.changingInstr(MI);
2139 
2140     if (TypeIdx == 0)
2141       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2142     else
2143       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2144 
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147   case TargetOpcode::G_UITOFP:
2148     Observer.changingInstr(MI);
2149 
2150     if (TypeIdx == 0)
2151       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2152     else
2153       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2154 
2155     Observer.changedInstr(MI);
2156     return Legalized;
2157   case TargetOpcode::G_LOAD:
2158   case TargetOpcode::G_SEXTLOAD:
2159   case TargetOpcode::G_ZEXTLOAD:
2160     Observer.changingInstr(MI);
2161     widenScalarDst(MI, WideTy);
2162     Observer.changedInstr(MI);
2163     return Legalized;
2164 
2165   case TargetOpcode::G_STORE: {
2166     if (TypeIdx != 0)
2167       return UnableToLegalize;
2168 
2169     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2170     if (!Ty.isScalar())
2171       return UnableToLegalize;
2172 
2173     Observer.changingInstr(MI);
2174 
2175     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2176       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2177     widenScalarSrc(MI, WideTy, 0, ExtType);
2178 
2179     Observer.changedInstr(MI);
2180     return Legalized;
2181   }
2182   case TargetOpcode::G_CONSTANT: {
2183     MachineOperand &SrcMO = MI.getOperand(1);
2184     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2185     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2186         MRI.getType(MI.getOperand(0).getReg()));
2187     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2188             ExtOpc == TargetOpcode::G_ANYEXT) &&
2189            "Illegal Extend");
2190     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2191     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2192                            ? SrcVal.sext(WideTy.getSizeInBits())
2193                            : SrcVal.zext(WideTy.getSizeInBits());
2194     Observer.changingInstr(MI);
2195     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2196 
2197     widenScalarDst(MI, WideTy);
2198     Observer.changedInstr(MI);
2199     return Legalized;
2200   }
2201   case TargetOpcode::G_FCONSTANT: {
2202     MachineOperand &SrcMO = MI.getOperand(1);
2203     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2204     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2205     bool LosesInfo;
2206     switch (WideTy.getSizeInBits()) {
2207     case 32:
2208       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2209                   &LosesInfo);
2210       break;
2211     case 64:
2212       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2213                   &LosesInfo);
2214       break;
2215     default:
2216       return UnableToLegalize;
2217     }
2218 
2219     assert(!LosesInfo && "extend should always be lossless");
2220 
2221     Observer.changingInstr(MI);
2222     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2223 
2224     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227   }
2228   case TargetOpcode::G_IMPLICIT_DEF: {
2229     Observer.changingInstr(MI);
2230     widenScalarDst(MI, WideTy);
2231     Observer.changedInstr(MI);
2232     return Legalized;
2233   }
2234   case TargetOpcode::G_BRCOND:
2235     Observer.changingInstr(MI);
2236     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239 
2240   case TargetOpcode::G_FCMP:
2241     Observer.changingInstr(MI);
2242     if (TypeIdx == 0)
2243       widenScalarDst(MI, WideTy);
2244     else {
2245       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2246       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2247     }
2248     Observer.changedInstr(MI);
2249     return Legalized;
2250 
2251   case TargetOpcode::G_ICMP:
2252     Observer.changingInstr(MI);
2253     if (TypeIdx == 0)
2254       widenScalarDst(MI, WideTy);
2255     else {
2256       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2257                                MI.getOperand(1).getPredicate()))
2258                                ? TargetOpcode::G_SEXT
2259                                : TargetOpcode::G_ZEXT;
2260       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2261       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2262     }
2263     Observer.changedInstr(MI);
2264     return Legalized;
2265 
2266   case TargetOpcode::G_PTR_ADD:
2267     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2268     Observer.changingInstr(MI);
2269     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2270     Observer.changedInstr(MI);
2271     return Legalized;
2272 
2273   case TargetOpcode::G_PHI: {
2274     assert(TypeIdx == 0 && "Expecting only Idx 0");
2275 
2276     Observer.changingInstr(MI);
2277     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2278       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2279       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2280       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2281     }
2282 
2283     MachineBasicBlock &MBB = *MI.getParent();
2284     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2285     widenScalarDst(MI, WideTy);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288   }
2289   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2290     if (TypeIdx == 0) {
2291       Register VecReg = MI.getOperand(1).getReg();
2292       LLT VecTy = MRI.getType(VecReg);
2293       Observer.changingInstr(MI);
2294 
2295       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2296                                      WideTy.getSizeInBits()),
2297                      1, TargetOpcode::G_SEXT);
2298 
2299       widenScalarDst(MI, WideTy, 0);
2300       Observer.changedInstr(MI);
2301       return Legalized;
2302     }
2303 
2304     if (TypeIdx != 2)
2305       return UnableToLegalize;
2306     Observer.changingInstr(MI);
2307     // TODO: Probably should be zext
2308     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2309     Observer.changedInstr(MI);
2310     return Legalized;
2311   }
2312   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2313     if (TypeIdx == 1) {
2314       Observer.changingInstr(MI);
2315 
2316       Register VecReg = MI.getOperand(1).getReg();
2317       LLT VecTy = MRI.getType(VecReg);
2318       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2319 
2320       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2321       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2322       widenScalarDst(MI, WideVecTy, 0);
2323       Observer.changedInstr(MI);
2324       return Legalized;
2325     }
2326 
2327     if (TypeIdx == 2) {
2328       Observer.changingInstr(MI);
2329       // TODO: Probably should be zext
2330       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2331       Observer.changedInstr(MI);
2332       return Legalized;
2333     }
2334 
2335     return UnableToLegalize;
2336   }
2337   case TargetOpcode::G_FADD:
2338   case TargetOpcode::G_FMUL:
2339   case TargetOpcode::G_FSUB:
2340   case TargetOpcode::G_FMA:
2341   case TargetOpcode::G_FMAD:
2342   case TargetOpcode::G_FNEG:
2343   case TargetOpcode::G_FABS:
2344   case TargetOpcode::G_FCANONICALIZE:
2345   case TargetOpcode::G_FMINNUM:
2346   case TargetOpcode::G_FMAXNUM:
2347   case TargetOpcode::G_FMINNUM_IEEE:
2348   case TargetOpcode::G_FMAXNUM_IEEE:
2349   case TargetOpcode::G_FMINIMUM:
2350   case TargetOpcode::G_FMAXIMUM:
2351   case TargetOpcode::G_FDIV:
2352   case TargetOpcode::G_FREM:
2353   case TargetOpcode::G_FCEIL:
2354   case TargetOpcode::G_FFLOOR:
2355   case TargetOpcode::G_FCOS:
2356   case TargetOpcode::G_FSIN:
2357   case TargetOpcode::G_FLOG10:
2358   case TargetOpcode::G_FLOG:
2359   case TargetOpcode::G_FLOG2:
2360   case TargetOpcode::G_FRINT:
2361   case TargetOpcode::G_FNEARBYINT:
2362   case TargetOpcode::G_FSQRT:
2363   case TargetOpcode::G_FEXP:
2364   case TargetOpcode::G_FEXP2:
2365   case TargetOpcode::G_FPOW:
2366   case TargetOpcode::G_INTRINSIC_TRUNC:
2367   case TargetOpcode::G_INTRINSIC_ROUND:
2368   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2369     assert(TypeIdx == 0);
2370     Observer.changingInstr(MI);
2371 
2372     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2373       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2374 
2375     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2376     Observer.changedInstr(MI);
2377     return Legalized;
2378   case TargetOpcode::G_FPOWI: {
2379     if (TypeIdx != 0)
2380       return UnableToLegalize;
2381     Observer.changingInstr(MI);
2382     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2383     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2384     Observer.changedInstr(MI);
2385     return Legalized;
2386   }
2387   case TargetOpcode::G_INTTOPTR:
2388     if (TypeIdx != 1)
2389       return UnableToLegalize;
2390 
2391     Observer.changingInstr(MI);
2392     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2393     Observer.changedInstr(MI);
2394     return Legalized;
2395   case TargetOpcode::G_PTRTOINT:
2396     if (TypeIdx != 0)
2397       return UnableToLegalize;
2398 
2399     Observer.changingInstr(MI);
2400     widenScalarDst(MI, WideTy, 0);
2401     Observer.changedInstr(MI);
2402     return Legalized;
2403   case TargetOpcode::G_BUILD_VECTOR: {
2404     Observer.changingInstr(MI);
2405 
2406     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2407     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2408       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2409 
2410     // Avoid changing the result vector type if the source element type was
2411     // requested.
2412     if (TypeIdx == 1) {
2413       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2414     } else {
2415       widenScalarDst(MI, WideTy, 0);
2416     }
2417 
2418     Observer.changedInstr(MI);
2419     return Legalized;
2420   }
2421   case TargetOpcode::G_SEXT_INREG:
2422     if (TypeIdx != 0)
2423       return UnableToLegalize;
2424 
2425     Observer.changingInstr(MI);
2426     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2427     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2428     Observer.changedInstr(MI);
2429     return Legalized;
2430   case TargetOpcode::G_PTRMASK: {
2431     if (TypeIdx != 1)
2432       return UnableToLegalize;
2433     Observer.changingInstr(MI);
2434     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2435     Observer.changedInstr(MI);
2436     return Legalized;
2437   }
2438   }
2439 }
2440 
2441 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2442                              MachineIRBuilder &B, Register Src, LLT Ty) {
2443   auto Unmerge = B.buildUnmerge(Ty, Src);
2444   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2445     Pieces.push_back(Unmerge.getReg(I));
2446 }
2447 
2448 LegalizerHelper::LegalizeResult
2449 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2450   Register Dst = MI.getOperand(0).getReg();
2451   Register Src = MI.getOperand(1).getReg();
2452   LLT DstTy = MRI.getType(Dst);
2453   LLT SrcTy = MRI.getType(Src);
2454 
2455   if (SrcTy.isVector()) {
2456     LLT SrcEltTy = SrcTy.getElementType();
2457     SmallVector<Register, 8> SrcRegs;
2458 
2459     if (DstTy.isVector()) {
2460       int NumDstElt = DstTy.getNumElements();
2461       int NumSrcElt = SrcTy.getNumElements();
2462 
2463       LLT DstEltTy = DstTy.getElementType();
2464       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2465       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2466 
2467       // If there's an element size mismatch, insert intermediate casts to match
2468       // the result element type.
2469       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2470         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2471         //
2472         // =>
2473         //
2474         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2475         // %3:_(<2 x s8>) = G_BITCAST %2
2476         // %4:_(<2 x s8>) = G_BITCAST %3
2477         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2478         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2479         SrcPartTy = SrcEltTy;
2480       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2481         //
2482         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2483         //
2484         // =>
2485         //
2486         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2487         // %3:_(s16) = G_BITCAST %2
2488         // %4:_(s16) = G_BITCAST %3
2489         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2490         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2491         DstCastTy = DstEltTy;
2492       }
2493 
2494       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2495       for (Register &SrcReg : SrcRegs)
2496         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2497     } else
2498       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2499 
2500     MIRBuilder.buildMerge(Dst, SrcRegs);
2501     MI.eraseFromParent();
2502     return Legalized;
2503   }
2504 
2505   if (DstTy.isVector()) {
2506     SmallVector<Register, 8> SrcRegs;
2507     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2508     MIRBuilder.buildMerge(Dst, SrcRegs);
2509     MI.eraseFromParent();
2510     return Legalized;
2511   }
2512 
2513   return UnableToLegalize;
2514 }
2515 
2516 /// Figure out the bit offset into a register when coercing a vector index for
2517 /// the wide element type. This is only for the case when promoting vector to
2518 /// one with larger elements.
2519 //
2520 ///
2521 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2522 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2523 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2524                                                    Register Idx,
2525                                                    unsigned NewEltSize,
2526                                                    unsigned OldEltSize) {
2527   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2528   LLT IdxTy = B.getMRI()->getType(Idx);
2529 
2530   // Now figure out the amount we need to shift to get the target bits.
2531   auto OffsetMask = B.buildConstant(
2532     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2533   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2534   return B.buildShl(IdxTy, OffsetIdx,
2535                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2536 }
2537 
2538 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2539 /// is casting to a vector with a smaller element size, perform multiple element
2540 /// extracts and merge the results. If this is coercing to a vector with larger
2541 /// elements, index the bitcasted vector and extract the target element with bit
2542 /// operations. This is intended to force the indexing in the native register
2543 /// size for architectures that can dynamically index the register file.
2544 LegalizerHelper::LegalizeResult
2545 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2546                                          LLT CastTy) {
2547   if (TypeIdx != 1)
2548     return UnableToLegalize;
2549 
2550   Register Dst = MI.getOperand(0).getReg();
2551   Register SrcVec = MI.getOperand(1).getReg();
2552   Register Idx = MI.getOperand(2).getReg();
2553   LLT SrcVecTy = MRI.getType(SrcVec);
2554   LLT IdxTy = MRI.getType(Idx);
2555 
2556   LLT SrcEltTy = SrcVecTy.getElementType();
2557   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2558   unsigned OldNumElts = SrcVecTy.getNumElements();
2559 
2560   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2561   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2562 
2563   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2564   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2565   if (NewNumElts > OldNumElts) {
2566     // Decreasing the vector element size
2567     //
2568     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2569     //  =>
2570     //  v4i32:castx = bitcast x:v2i64
2571     //
2572     // i64 = bitcast
2573     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2574     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2575     //
2576     if (NewNumElts % OldNumElts != 0)
2577       return UnableToLegalize;
2578 
2579     // Type of the intermediate result vector.
2580     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2581     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2582 
2583     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2584 
2585     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2586     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2587 
2588     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2589       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2590       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2591       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2592       NewOps[I] = Elt.getReg(0);
2593     }
2594 
2595     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2596     MIRBuilder.buildBitcast(Dst, NewVec);
2597     MI.eraseFromParent();
2598     return Legalized;
2599   }
2600 
2601   if (NewNumElts < OldNumElts) {
2602     if (NewEltSize % OldEltSize != 0)
2603       return UnableToLegalize;
2604 
2605     // This only depends on powers of 2 because we use bit tricks to figure out
2606     // the bit offset we need to shift to get the target element. A general
2607     // expansion could emit division/multiply.
2608     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2609       return UnableToLegalize;
2610 
2611     // Increasing the vector element size.
2612     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2613     //
2614     //   =>
2615     //
2616     // %cast = G_BITCAST %vec
2617     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2618     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2619     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2620     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2621     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2622     // %elt = G_TRUNC %elt_bits
2623 
2624     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2625     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2626 
2627     // Divide to get the index in the wider element type.
2628     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2629 
2630     Register WideElt = CastVec;
2631     if (CastTy.isVector()) {
2632       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2633                                                      ScaledIdx).getReg(0);
2634     }
2635 
2636     // Compute the bit offset into the register of the target element.
2637     Register OffsetBits = getBitcastWiderVectorElementOffset(
2638       MIRBuilder, Idx, NewEltSize, OldEltSize);
2639 
2640     // Shift the wide element to get the target element.
2641     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2642     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2643     MI.eraseFromParent();
2644     return Legalized;
2645   }
2646 
2647   return UnableToLegalize;
2648 }
2649 
2650 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2651 /// TargetReg, while preserving other bits in \p TargetReg.
2652 ///
2653 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2654 static Register buildBitFieldInsert(MachineIRBuilder &B,
2655                                     Register TargetReg, Register InsertReg,
2656                                     Register OffsetBits) {
2657   LLT TargetTy = B.getMRI()->getType(TargetReg);
2658   LLT InsertTy = B.getMRI()->getType(InsertReg);
2659   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2660   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2661 
2662   // Produce a bitmask of the value to insert
2663   auto EltMask = B.buildConstant(
2664     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2665                                    InsertTy.getSizeInBits()));
2666   // Shift it into position
2667   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2668   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2669 
2670   // Clear out the bits in the wide element
2671   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2672 
2673   // The value to insert has all zeros already, so stick it into the masked
2674   // wide element.
2675   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2676 }
2677 
2678 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2679 /// is increasing the element size, perform the indexing in the target element
2680 /// type, and use bit operations to insert at the element position. This is
2681 /// intended for architectures that can dynamically index the register file and
2682 /// want to force indexing in the native register size.
2683 LegalizerHelper::LegalizeResult
2684 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2685                                         LLT CastTy) {
2686   if (TypeIdx != 0)
2687     return UnableToLegalize;
2688 
2689   Register Dst = MI.getOperand(0).getReg();
2690   Register SrcVec = MI.getOperand(1).getReg();
2691   Register Val = MI.getOperand(2).getReg();
2692   Register Idx = MI.getOperand(3).getReg();
2693 
2694   LLT VecTy = MRI.getType(Dst);
2695   LLT IdxTy = MRI.getType(Idx);
2696 
2697   LLT VecEltTy = VecTy.getElementType();
2698   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2699   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2700   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2701 
2702   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2703   unsigned OldNumElts = VecTy.getNumElements();
2704 
2705   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2706   if (NewNumElts < OldNumElts) {
2707     if (NewEltSize % OldEltSize != 0)
2708       return UnableToLegalize;
2709 
2710     // This only depends on powers of 2 because we use bit tricks to figure out
2711     // the bit offset we need to shift to get the target element. A general
2712     // expansion could emit division/multiply.
2713     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2714       return UnableToLegalize;
2715 
2716     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2717     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2718 
2719     // Divide to get the index in the wider element type.
2720     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2721 
2722     Register ExtractedElt = CastVec;
2723     if (CastTy.isVector()) {
2724       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2725                                                           ScaledIdx).getReg(0);
2726     }
2727 
2728     // Compute the bit offset into the register of the target element.
2729     Register OffsetBits = getBitcastWiderVectorElementOffset(
2730       MIRBuilder, Idx, NewEltSize, OldEltSize);
2731 
2732     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2733                                                Val, OffsetBits);
2734     if (CastTy.isVector()) {
2735       InsertedElt = MIRBuilder.buildInsertVectorElement(
2736         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2737     }
2738 
2739     MIRBuilder.buildBitcast(Dst, InsertedElt);
2740     MI.eraseFromParent();
2741     return Legalized;
2742   }
2743 
2744   return UnableToLegalize;
2745 }
2746 
2747 LegalizerHelper::LegalizeResult
2748 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2749   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2750   Register DstReg = MI.getOperand(0).getReg();
2751   Register PtrReg = MI.getOperand(1).getReg();
2752   LLT DstTy = MRI.getType(DstReg);
2753   auto &MMO = **MI.memoperands_begin();
2754 
2755   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2756     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2757       // This load needs splitting into power of 2 sized loads.
2758       if (DstTy.isVector())
2759         return UnableToLegalize;
2760       if (isPowerOf2_32(DstTy.getSizeInBits()))
2761         return UnableToLegalize; // Don't know what we're being asked to do.
2762 
2763       // Our strategy here is to generate anyextending loads for the smaller
2764       // types up to next power-2 result type, and then combine the two larger
2765       // result values together, before truncating back down to the non-pow-2
2766       // type.
2767       // E.g. v1 = i24 load =>
2768       // v2 = i32 zextload (2 byte)
2769       // v3 = i32 load (1 byte)
2770       // v4 = i32 shl v3, 16
2771       // v5 = i32 or v4, v2
2772       // v1 = i24 trunc v5
2773       // By doing this we generate the correct truncate which should get
2774       // combined away as an artifact with a matching extend.
2775       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2776       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2777 
2778       MachineFunction &MF = MIRBuilder.getMF();
2779       MachineMemOperand *LargeMMO =
2780         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2781       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2782         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2783 
2784       LLT PtrTy = MRI.getType(PtrReg);
2785       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2786       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2787       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2788       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2789       auto LargeLoad = MIRBuilder.buildLoadInstr(
2790         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2791 
2792       auto OffsetCst = MIRBuilder.buildConstant(
2793         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2794       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2795       auto SmallPtr =
2796         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2797       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2798                                             *SmallMMO);
2799 
2800       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2801       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2802       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2803       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2804       MI.eraseFromParent();
2805       return Legalized;
2806     }
2807 
2808     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2809     MI.eraseFromParent();
2810     return Legalized;
2811   }
2812 
2813   return UnableToLegalize;
2814 }
2815 
2816 LegalizerHelper::LegalizeResult
2817 LegalizerHelper::lowerStore(MachineInstr &MI) {
2818   // Lower a non-power of 2 store into multiple pow-2 stores.
2819   // E.g. split an i24 store into an i16 store + i8 store.
2820   // We do this by first extending the stored value to the next largest power
2821   // of 2 type, and then using truncating stores to store the components.
2822   // By doing this, likewise with G_LOAD, generate an extend that can be
2823   // artifact-combined away instead of leaving behind extracts.
2824   Register SrcReg = MI.getOperand(0).getReg();
2825   Register PtrReg = MI.getOperand(1).getReg();
2826   LLT SrcTy = MRI.getType(SrcReg);
2827   MachineMemOperand &MMO = **MI.memoperands_begin();
2828   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2829     return UnableToLegalize;
2830   if (SrcTy.isVector())
2831     return UnableToLegalize;
2832   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2833     return UnableToLegalize; // Don't know what we're being asked to do.
2834 
2835   // Extend to the next pow-2.
2836   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2837   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2838 
2839   // Obtain the smaller value by shifting away the larger value.
2840   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2841   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2842   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2843   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2844 
2845   // Generate the PtrAdd and truncating stores.
2846   LLT PtrTy = MRI.getType(PtrReg);
2847   auto OffsetCst = MIRBuilder.buildConstant(
2848     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2849   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2850   auto SmallPtr =
2851     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2852 
2853   MachineFunction &MF = MIRBuilder.getMF();
2854   MachineMemOperand *LargeMMO =
2855     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2856   MachineMemOperand *SmallMMO =
2857     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2858   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2859   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2860   MI.eraseFromParent();
2861   return Legalized;
2862 }
2863 
2864 LegalizerHelper::LegalizeResult
2865 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2866   switch (MI.getOpcode()) {
2867   case TargetOpcode::G_LOAD: {
2868     if (TypeIdx != 0)
2869       return UnableToLegalize;
2870 
2871     Observer.changingInstr(MI);
2872     bitcastDst(MI, CastTy, 0);
2873     Observer.changedInstr(MI);
2874     return Legalized;
2875   }
2876   case TargetOpcode::G_STORE: {
2877     if (TypeIdx != 0)
2878       return UnableToLegalize;
2879 
2880     Observer.changingInstr(MI);
2881     bitcastSrc(MI, CastTy, 0);
2882     Observer.changedInstr(MI);
2883     return Legalized;
2884   }
2885   case TargetOpcode::G_SELECT: {
2886     if (TypeIdx != 0)
2887       return UnableToLegalize;
2888 
2889     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2890       LLVM_DEBUG(
2891           dbgs() << "bitcast action not implemented for vector select\n");
2892       return UnableToLegalize;
2893     }
2894 
2895     Observer.changingInstr(MI);
2896     bitcastSrc(MI, CastTy, 2);
2897     bitcastSrc(MI, CastTy, 3);
2898     bitcastDst(MI, CastTy, 0);
2899     Observer.changedInstr(MI);
2900     return Legalized;
2901   }
2902   case TargetOpcode::G_AND:
2903   case TargetOpcode::G_OR:
2904   case TargetOpcode::G_XOR: {
2905     Observer.changingInstr(MI);
2906     bitcastSrc(MI, CastTy, 1);
2907     bitcastSrc(MI, CastTy, 2);
2908     bitcastDst(MI, CastTy, 0);
2909     Observer.changedInstr(MI);
2910     return Legalized;
2911   }
2912   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2913     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2914   case TargetOpcode::G_INSERT_VECTOR_ELT:
2915     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2916   default:
2917     return UnableToLegalize;
2918   }
2919 }
2920 
2921 // Legalize an instruction by changing the opcode in place.
2922 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2923     Observer.changingInstr(MI);
2924     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2925     Observer.changedInstr(MI);
2926 }
2927 
2928 LegalizerHelper::LegalizeResult
2929 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2930   using namespace TargetOpcode;
2931 
2932   switch(MI.getOpcode()) {
2933   default:
2934     return UnableToLegalize;
2935   case TargetOpcode::G_BITCAST:
2936     return lowerBitcast(MI);
2937   case TargetOpcode::G_SREM:
2938   case TargetOpcode::G_UREM: {
2939     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2940     auto Quot =
2941         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2942                               {MI.getOperand(1), MI.getOperand(2)});
2943 
2944     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2945     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2946     MI.eraseFromParent();
2947     return Legalized;
2948   }
2949   case TargetOpcode::G_SADDO:
2950   case TargetOpcode::G_SSUBO:
2951     return lowerSADDO_SSUBO(MI);
2952   case TargetOpcode::G_UMULH:
2953   case TargetOpcode::G_SMULH:
2954     return lowerSMULH_UMULH(MI);
2955   case TargetOpcode::G_SMULO:
2956   case TargetOpcode::G_UMULO: {
2957     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2958     // result.
2959     Register Res = MI.getOperand(0).getReg();
2960     Register Overflow = MI.getOperand(1).getReg();
2961     Register LHS = MI.getOperand(2).getReg();
2962     Register RHS = MI.getOperand(3).getReg();
2963     LLT Ty = MRI.getType(Res);
2964 
2965     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2966                           ? TargetOpcode::G_SMULH
2967                           : TargetOpcode::G_UMULH;
2968 
2969     Observer.changingInstr(MI);
2970     const auto &TII = MIRBuilder.getTII();
2971     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2972     MI.RemoveOperand(1);
2973     Observer.changedInstr(MI);
2974 
2975     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2976     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2977 
2978     // Move insert point forward so we can use the Res register if needed.
2979     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2980 
2981     // For *signed* multiply, overflow is detected by checking:
2982     // (hi != (lo >> bitwidth-1))
2983     if (Opcode == TargetOpcode::G_SMULH) {
2984       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2985       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2986       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2987     } else {
2988       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2989     }
2990     return Legalized;
2991   }
2992   case TargetOpcode::G_FNEG: {
2993     Register Res = MI.getOperand(0).getReg();
2994     LLT Ty = MRI.getType(Res);
2995 
2996     // TODO: Handle vector types once we are able to
2997     // represent them.
2998     if (Ty.isVector())
2999       return UnableToLegalize;
3000     auto SignMask =
3001         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3002     Register SubByReg = MI.getOperand(1).getReg();
3003     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3004     MI.eraseFromParent();
3005     return Legalized;
3006   }
3007   case TargetOpcode::G_FSUB: {
3008     Register Res = MI.getOperand(0).getReg();
3009     LLT Ty = MRI.getType(Res);
3010 
3011     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3012     // First, check if G_FNEG is marked as Lower. If so, we may
3013     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3014     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3015       return UnableToLegalize;
3016     Register LHS = MI.getOperand(1).getReg();
3017     Register RHS = MI.getOperand(2).getReg();
3018     Register Neg = MRI.createGenericVirtualRegister(Ty);
3019     MIRBuilder.buildFNeg(Neg, RHS);
3020     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3021     MI.eraseFromParent();
3022     return Legalized;
3023   }
3024   case TargetOpcode::G_FMAD:
3025     return lowerFMad(MI);
3026   case TargetOpcode::G_FFLOOR:
3027     return lowerFFloor(MI);
3028   case TargetOpcode::G_INTRINSIC_ROUND:
3029     return lowerIntrinsicRound(MI);
3030   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3031     // Since round even is the assumed rounding mode for unconstrained FP
3032     // operations, rint and roundeven are the same operation.
3033     changeOpcode(MI, TargetOpcode::G_FRINT);
3034     return Legalized;
3035   }
3036   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3037     Register OldValRes = MI.getOperand(0).getReg();
3038     Register SuccessRes = MI.getOperand(1).getReg();
3039     Register Addr = MI.getOperand(2).getReg();
3040     Register CmpVal = MI.getOperand(3).getReg();
3041     Register NewVal = MI.getOperand(4).getReg();
3042     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3043                                   **MI.memoperands_begin());
3044     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3045     MI.eraseFromParent();
3046     return Legalized;
3047   }
3048   case TargetOpcode::G_LOAD:
3049   case TargetOpcode::G_SEXTLOAD:
3050   case TargetOpcode::G_ZEXTLOAD:
3051     return lowerLoad(MI);
3052   case TargetOpcode::G_STORE:
3053     return lowerStore(MI);
3054   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3055   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3056   case TargetOpcode::G_CTLZ:
3057   case TargetOpcode::G_CTTZ:
3058   case TargetOpcode::G_CTPOP:
3059     return lowerBitCount(MI);
3060   case G_UADDO: {
3061     Register Res = MI.getOperand(0).getReg();
3062     Register CarryOut = MI.getOperand(1).getReg();
3063     Register LHS = MI.getOperand(2).getReg();
3064     Register RHS = MI.getOperand(3).getReg();
3065 
3066     MIRBuilder.buildAdd(Res, LHS, RHS);
3067     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3068 
3069     MI.eraseFromParent();
3070     return Legalized;
3071   }
3072   case G_UADDE: {
3073     Register Res = MI.getOperand(0).getReg();
3074     Register CarryOut = MI.getOperand(1).getReg();
3075     Register LHS = MI.getOperand(2).getReg();
3076     Register RHS = MI.getOperand(3).getReg();
3077     Register CarryIn = MI.getOperand(4).getReg();
3078     LLT Ty = MRI.getType(Res);
3079 
3080     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3081     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3082     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3083     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3084 
3085     MI.eraseFromParent();
3086     return Legalized;
3087   }
3088   case G_USUBO: {
3089     Register Res = MI.getOperand(0).getReg();
3090     Register BorrowOut = MI.getOperand(1).getReg();
3091     Register LHS = MI.getOperand(2).getReg();
3092     Register RHS = MI.getOperand(3).getReg();
3093 
3094     MIRBuilder.buildSub(Res, LHS, RHS);
3095     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3096 
3097     MI.eraseFromParent();
3098     return Legalized;
3099   }
3100   case G_USUBE: {
3101     Register Res = MI.getOperand(0).getReg();
3102     Register BorrowOut = MI.getOperand(1).getReg();
3103     Register LHS = MI.getOperand(2).getReg();
3104     Register RHS = MI.getOperand(3).getReg();
3105     Register BorrowIn = MI.getOperand(4).getReg();
3106     const LLT CondTy = MRI.getType(BorrowOut);
3107     const LLT Ty = MRI.getType(Res);
3108 
3109     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3110     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3111     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3112 
3113     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3114     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3115     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3116 
3117     MI.eraseFromParent();
3118     return Legalized;
3119   }
3120   case G_UITOFP:
3121     return lowerUITOFP(MI);
3122   case G_SITOFP:
3123     return lowerSITOFP(MI);
3124   case G_FPTOUI:
3125     return lowerFPTOUI(MI);
3126   case G_FPTOSI:
3127     return lowerFPTOSI(MI);
3128   case G_FPTRUNC:
3129     return lowerFPTRUNC(MI);
3130   case G_FPOWI:
3131     return lowerFPOWI(MI);
3132   case G_SMIN:
3133   case G_SMAX:
3134   case G_UMIN:
3135   case G_UMAX:
3136     return lowerMinMax(MI);
3137   case G_FCOPYSIGN:
3138     return lowerFCopySign(MI);
3139   case G_FMINNUM:
3140   case G_FMAXNUM:
3141     return lowerFMinNumMaxNum(MI);
3142   case G_MERGE_VALUES:
3143     return lowerMergeValues(MI);
3144   case G_UNMERGE_VALUES:
3145     return lowerUnmergeValues(MI);
3146   case TargetOpcode::G_SEXT_INREG: {
3147     assert(MI.getOperand(2).isImm() && "Expected immediate");
3148     int64_t SizeInBits = MI.getOperand(2).getImm();
3149 
3150     Register DstReg = MI.getOperand(0).getReg();
3151     Register SrcReg = MI.getOperand(1).getReg();
3152     LLT DstTy = MRI.getType(DstReg);
3153     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3154 
3155     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3156     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3157     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3158     MI.eraseFromParent();
3159     return Legalized;
3160   }
3161   case G_EXTRACT_VECTOR_ELT:
3162   case G_INSERT_VECTOR_ELT:
3163     return lowerExtractInsertVectorElt(MI);
3164   case G_SHUFFLE_VECTOR:
3165     return lowerShuffleVector(MI);
3166   case G_DYN_STACKALLOC:
3167     return lowerDynStackAlloc(MI);
3168   case G_EXTRACT:
3169     return lowerExtract(MI);
3170   case G_INSERT:
3171     return lowerInsert(MI);
3172   case G_BSWAP:
3173     return lowerBswap(MI);
3174   case G_BITREVERSE:
3175     return lowerBitreverse(MI);
3176   case G_READ_REGISTER:
3177   case G_WRITE_REGISTER:
3178     return lowerReadWriteRegister(MI);
3179   case G_UADDSAT:
3180   case G_USUBSAT: {
3181     // Try to make a reasonable guess about which lowering strategy to use. The
3182     // target can override this with custom lowering and calling the
3183     // implementation functions.
3184     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3185     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3186       return lowerAddSubSatToMinMax(MI);
3187     return lowerAddSubSatToAddoSubo(MI);
3188   }
3189   case G_SADDSAT:
3190   case G_SSUBSAT: {
3191     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3192 
3193     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3194     // since it's a shorter expansion. However, we would need to figure out the
3195     // preferred boolean type for the carry out for the query.
3196     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3197       return lowerAddSubSatToMinMax(MI);
3198     return lowerAddSubSatToAddoSubo(MI);
3199   }
3200   case G_SSHLSAT:
3201   case G_USHLSAT:
3202     return lowerShlSat(MI);
3203   case G_ABS: {
3204     // Expand %res = G_ABS %a into:
3205     // %v1 = G_ASHR %a, scalar_size-1
3206     // %v2 = G_ADD %a, %v1
3207     // %res = G_XOR %v2, %v1
3208     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3209     Register OpReg = MI.getOperand(1).getReg();
3210     auto ShiftAmt =
3211         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3212     auto Shift =
3213         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3214     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3215     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3216     MI.eraseFromParent();
3217     return Legalized;
3218   }
3219   case G_SELECT:
3220     return lowerSelect(MI);
3221   case G_SDIVREM:
3222   case G_UDIVREM:
3223     return lowerDIVREM(MI);
3224   case G_FSHL:
3225   case G_FSHR:
3226     return lowerFunnelShift(MI);
3227   case G_ROTL:
3228   case G_ROTR:
3229     return lowerRotate(MI);
3230   }
3231 }
3232 
3233 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3234                                                   Align MinAlign) const {
3235   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3236   // datalayout for the preferred alignment. Also there should be a target hook
3237   // for this to allow targets to reduce the alignment and ignore the
3238   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3239   // the type.
3240   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3241 }
3242 
3243 MachineInstrBuilder
3244 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3245                                       MachinePointerInfo &PtrInfo) {
3246   MachineFunction &MF = MIRBuilder.getMF();
3247   const DataLayout &DL = MIRBuilder.getDataLayout();
3248   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3249 
3250   unsigned AddrSpace = DL.getAllocaAddrSpace();
3251   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3252 
3253   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3254   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3255 }
3256 
3257 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3258                                         LLT VecTy) {
3259   int64_t IdxVal;
3260   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3261     return IdxReg;
3262 
3263   LLT IdxTy = B.getMRI()->getType(IdxReg);
3264   unsigned NElts = VecTy.getNumElements();
3265   if (isPowerOf2_32(NElts)) {
3266     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3267     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3268   }
3269 
3270   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3271       .getReg(0);
3272 }
3273 
3274 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3275                                                   Register Index) {
3276   LLT EltTy = VecTy.getElementType();
3277 
3278   // Calculate the element offset and add it to the pointer.
3279   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3280   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3281          "Converting bits to bytes lost precision");
3282 
3283   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3284 
3285   LLT IdxTy = MRI.getType(Index);
3286   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3287                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3288 
3289   LLT PtrTy = MRI.getType(VecPtr);
3290   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3291 }
3292 
3293 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3294     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3295   Register DstReg = MI.getOperand(0).getReg();
3296   LLT DstTy = MRI.getType(DstReg);
3297   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3298 
3299   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3300 
3301   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3302   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3303 
3304   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3305   MI.eraseFromParent();
3306   return Legalized;
3307 }
3308 
3309 // Handle splitting vector operations which need to have the same number of
3310 // elements in each type index, but each type index may have a different element
3311 // type.
3312 //
3313 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3314 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3315 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3316 //
3317 // Also handles some irregular breakdown cases, e.g.
3318 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3319 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3320 //             s64 = G_SHL s64, s32
3321 LegalizerHelper::LegalizeResult
3322 LegalizerHelper::fewerElementsVectorMultiEltType(
3323   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3324   if (TypeIdx != 0)
3325     return UnableToLegalize;
3326 
3327   const LLT NarrowTy0 = NarrowTyArg;
3328   const unsigned NewNumElts =
3329       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3330 
3331   const Register DstReg = MI.getOperand(0).getReg();
3332   LLT DstTy = MRI.getType(DstReg);
3333   LLT LeftoverTy0;
3334 
3335   // All of the operands need to have the same number of elements, so if we can
3336   // determine a type breakdown for the result type, we can for all of the
3337   // source types.
3338   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3339   if (NumParts < 0)
3340     return UnableToLegalize;
3341 
3342   SmallVector<MachineInstrBuilder, 4> NewInsts;
3343 
3344   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3345   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3346 
3347   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3348     Register SrcReg = MI.getOperand(I).getReg();
3349     LLT SrcTyI = MRI.getType(SrcReg);
3350     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3351     LLT LeftoverTyI;
3352 
3353     // Split this operand into the requested typed registers, and any leftover
3354     // required to reproduce the original type.
3355     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3356                       LeftoverRegs))
3357       return UnableToLegalize;
3358 
3359     if (I == 1) {
3360       // For the first operand, create an instruction for each part and setup
3361       // the result.
3362       for (Register PartReg : PartRegs) {
3363         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3364         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3365                                .addDef(PartDstReg)
3366                                .addUse(PartReg));
3367         DstRegs.push_back(PartDstReg);
3368       }
3369 
3370       for (Register LeftoverReg : LeftoverRegs) {
3371         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3372         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3373                                .addDef(PartDstReg)
3374                                .addUse(LeftoverReg));
3375         LeftoverDstRegs.push_back(PartDstReg);
3376       }
3377     } else {
3378       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3379 
3380       // Add the newly created operand splits to the existing instructions. The
3381       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3382       // pieces.
3383       unsigned InstCount = 0;
3384       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3385         NewInsts[InstCount++].addUse(PartRegs[J]);
3386       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3387         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3388     }
3389 
3390     PartRegs.clear();
3391     LeftoverRegs.clear();
3392   }
3393 
3394   // Insert the newly built operations and rebuild the result register.
3395   for (auto &MIB : NewInsts)
3396     MIRBuilder.insertInstr(MIB);
3397 
3398   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3399 
3400   MI.eraseFromParent();
3401   return Legalized;
3402 }
3403 
3404 LegalizerHelper::LegalizeResult
3405 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3406                                           LLT NarrowTy) {
3407   if (TypeIdx != 0)
3408     return UnableToLegalize;
3409 
3410   Register DstReg = MI.getOperand(0).getReg();
3411   Register SrcReg = MI.getOperand(1).getReg();
3412   LLT DstTy = MRI.getType(DstReg);
3413   LLT SrcTy = MRI.getType(SrcReg);
3414 
3415   LLT NarrowTy0 = NarrowTy;
3416   LLT NarrowTy1;
3417   unsigned NumParts;
3418 
3419   if (NarrowTy.isVector()) {
3420     // Uneven breakdown not handled.
3421     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3422     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3423       return UnableToLegalize;
3424 
3425     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3426   } else {
3427     NumParts = DstTy.getNumElements();
3428     NarrowTy1 = SrcTy.getElementType();
3429   }
3430 
3431   SmallVector<Register, 4> SrcRegs, DstRegs;
3432   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3433 
3434   for (unsigned I = 0; I < NumParts; ++I) {
3435     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3436     MachineInstr *NewInst =
3437         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3438 
3439     NewInst->setFlags(MI.getFlags());
3440     DstRegs.push_back(DstReg);
3441   }
3442 
3443   if (NarrowTy.isVector())
3444     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3445   else
3446     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3447 
3448   MI.eraseFromParent();
3449   return Legalized;
3450 }
3451 
3452 LegalizerHelper::LegalizeResult
3453 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3454                                         LLT NarrowTy) {
3455   Register DstReg = MI.getOperand(0).getReg();
3456   Register Src0Reg = MI.getOperand(2).getReg();
3457   LLT DstTy = MRI.getType(DstReg);
3458   LLT SrcTy = MRI.getType(Src0Reg);
3459 
3460   unsigned NumParts;
3461   LLT NarrowTy0, NarrowTy1;
3462 
3463   if (TypeIdx == 0) {
3464     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3465     unsigned OldElts = DstTy.getNumElements();
3466 
3467     NarrowTy0 = NarrowTy;
3468     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3469     NarrowTy1 = NarrowTy.isVector() ?
3470       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3471       SrcTy.getElementType();
3472 
3473   } else {
3474     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3475     unsigned OldElts = SrcTy.getNumElements();
3476 
3477     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3478       NarrowTy.getNumElements();
3479     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3480                             DstTy.getScalarSizeInBits());
3481     NarrowTy1 = NarrowTy;
3482   }
3483 
3484   // FIXME: Don't know how to handle the situation where the small vectors
3485   // aren't all the same size yet.
3486   if (NarrowTy1.isVector() &&
3487       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3488     return UnableToLegalize;
3489 
3490   CmpInst::Predicate Pred
3491     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3492 
3493   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3494   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3495   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3496 
3497   for (unsigned I = 0; I < NumParts; ++I) {
3498     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3499     DstRegs.push_back(DstReg);
3500 
3501     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3502       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3503     else {
3504       MachineInstr *NewCmp
3505         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3506       NewCmp->setFlags(MI.getFlags());
3507     }
3508   }
3509 
3510   if (NarrowTy1.isVector())
3511     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3512   else
3513     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3514 
3515   MI.eraseFromParent();
3516   return Legalized;
3517 }
3518 
3519 LegalizerHelper::LegalizeResult
3520 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3521                                            LLT NarrowTy) {
3522   Register DstReg = MI.getOperand(0).getReg();
3523   Register CondReg = MI.getOperand(1).getReg();
3524 
3525   unsigned NumParts = 0;
3526   LLT NarrowTy0, NarrowTy1;
3527 
3528   LLT DstTy = MRI.getType(DstReg);
3529   LLT CondTy = MRI.getType(CondReg);
3530   unsigned Size = DstTy.getSizeInBits();
3531 
3532   assert(TypeIdx == 0 || CondTy.isVector());
3533 
3534   if (TypeIdx == 0) {
3535     NarrowTy0 = NarrowTy;
3536     NarrowTy1 = CondTy;
3537 
3538     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3539     // FIXME: Don't know how to handle the situation where the small vectors
3540     // aren't all the same size yet.
3541     if (Size % NarrowSize != 0)
3542       return UnableToLegalize;
3543 
3544     NumParts = Size / NarrowSize;
3545 
3546     // Need to break down the condition type
3547     if (CondTy.isVector()) {
3548       if (CondTy.getNumElements() == NumParts)
3549         NarrowTy1 = CondTy.getElementType();
3550       else
3551         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3552                                 CondTy.getScalarSizeInBits());
3553     }
3554   } else {
3555     NumParts = CondTy.getNumElements();
3556     if (NarrowTy.isVector()) {
3557       // TODO: Handle uneven breakdown.
3558       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3559         return UnableToLegalize;
3560 
3561       return UnableToLegalize;
3562     } else {
3563       NarrowTy0 = DstTy.getElementType();
3564       NarrowTy1 = NarrowTy;
3565     }
3566   }
3567 
3568   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3569   if (CondTy.isVector())
3570     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3571 
3572   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3573   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3574 
3575   for (unsigned i = 0; i < NumParts; ++i) {
3576     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3577     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3578                            Src1Regs[i], Src2Regs[i]);
3579     DstRegs.push_back(DstReg);
3580   }
3581 
3582   if (NarrowTy0.isVector())
3583     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3584   else
3585     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3586 
3587   MI.eraseFromParent();
3588   return Legalized;
3589 }
3590 
3591 LegalizerHelper::LegalizeResult
3592 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3593                                         LLT NarrowTy) {
3594   const Register DstReg = MI.getOperand(0).getReg();
3595   LLT PhiTy = MRI.getType(DstReg);
3596   LLT LeftoverTy;
3597 
3598   // All of the operands need to have the same number of elements, so if we can
3599   // determine a type breakdown for the result type, we can for all of the
3600   // source types.
3601   int NumParts, NumLeftover;
3602   std::tie(NumParts, NumLeftover)
3603     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3604   if (NumParts < 0)
3605     return UnableToLegalize;
3606 
3607   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3608   SmallVector<MachineInstrBuilder, 4> NewInsts;
3609 
3610   const int TotalNumParts = NumParts + NumLeftover;
3611 
3612   // Insert the new phis in the result block first.
3613   for (int I = 0; I != TotalNumParts; ++I) {
3614     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3615     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3616     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3617                        .addDef(PartDstReg));
3618     if (I < NumParts)
3619       DstRegs.push_back(PartDstReg);
3620     else
3621       LeftoverDstRegs.push_back(PartDstReg);
3622   }
3623 
3624   MachineBasicBlock *MBB = MI.getParent();
3625   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3626   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3627 
3628   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3629 
3630   // Insert code to extract the incoming values in each predecessor block.
3631   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3632     PartRegs.clear();
3633     LeftoverRegs.clear();
3634 
3635     Register SrcReg = MI.getOperand(I).getReg();
3636     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3637     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3638 
3639     LLT Unused;
3640     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3641                       LeftoverRegs))
3642       return UnableToLegalize;
3643 
3644     // Add the newly created operand splits to the existing instructions. The
3645     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3646     // pieces.
3647     for (int J = 0; J != TotalNumParts; ++J) {
3648       MachineInstrBuilder MIB = NewInsts[J];
3649       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3650       MIB.addMBB(&OpMBB);
3651     }
3652   }
3653 
3654   MI.eraseFromParent();
3655   return Legalized;
3656 }
3657 
3658 LegalizerHelper::LegalizeResult
3659 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3660                                                   unsigned TypeIdx,
3661                                                   LLT NarrowTy) {
3662   if (TypeIdx != 1)
3663     return UnableToLegalize;
3664 
3665   const int NumDst = MI.getNumOperands() - 1;
3666   const Register SrcReg = MI.getOperand(NumDst).getReg();
3667   LLT SrcTy = MRI.getType(SrcReg);
3668 
3669   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3670 
3671   // TODO: Create sequence of extracts.
3672   if (DstTy == NarrowTy)
3673     return UnableToLegalize;
3674 
3675   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3676   if (DstTy == GCDTy) {
3677     // This would just be a copy of the same unmerge.
3678     // TODO: Create extracts, pad with undef and create intermediate merges.
3679     return UnableToLegalize;
3680   }
3681 
3682   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3683   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3684   const int PartsPerUnmerge = NumDst / NumUnmerge;
3685 
3686   for (int I = 0; I != NumUnmerge; ++I) {
3687     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3688 
3689     for (int J = 0; J != PartsPerUnmerge; ++J)
3690       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3691     MIB.addUse(Unmerge.getReg(I));
3692   }
3693 
3694   MI.eraseFromParent();
3695   return Legalized;
3696 }
3697 
3698 LegalizerHelper::LegalizeResult
3699 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3700                                          LLT NarrowTy) {
3701   Register Result = MI.getOperand(0).getReg();
3702   Register Overflow = MI.getOperand(1).getReg();
3703   Register LHS = MI.getOperand(2).getReg();
3704   Register RHS = MI.getOperand(3).getReg();
3705 
3706   LLT SrcTy = MRI.getType(LHS);
3707   if (!SrcTy.isVector())
3708     return UnableToLegalize;
3709 
3710   LLT ElementType = SrcTy.getElementType();
3711   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3712   const int NumResult = SrcTy.getNumElements();
3713   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3714 
3715   // Unmerge the operands to smaller parts of GCD type.
3716   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3717   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3718 
3719   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3720   const int PartsPerUnmerge = NumResult / NumOps;
3721   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3722   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3723 
3724   // Perform the operation over unmerged parts.
3725   SmallVector<Register, 8> ResultParts;
3726   SmallVector<Register, 8> OverflowParts;
3727   for (int I = 0; I != NumOps; ++I) {
3728     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3729     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3730     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3731                                          {Operand1, Operand2});
3732     ResultParts.push_back(PartMul->getOperand(0).getReg());
3733     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3734   }
3735 
3736   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3737   LLT OverflowLCMTy =
3738       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3739 
3740   // Recombine the pieces to the original result and overflow registers.
3741   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3742   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3743   MI.eraseFromParent();
3744   return Legalized;
3745 }
3746 
3747 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3748 // a vector
3749 //
3750 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3751 // undef as necessary.
3752 //
3753 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3754 //   -> <2 x s16>
3755 //
3756 // %4:_(s16) = G_IMPLICIT_DEF
3757 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3758 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3759 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3760 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3761 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3762 LegalizerHelper::LegalizeResult
3763 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3764                                           LLT NarrowTy) {
3765   Register DstReg = MI.getOperand(0).getReg();
3766   LLT DstTy = MRI.getType(DstReg);
3767   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3768   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3769 
3770   // Break into a common type
3771   SmallVector<Register, 16> Parts;
3772   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3773     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3774 
3775   // Build the requested new merge, padding with undef.
3776   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3777                                   TargetOpcode::G_ANYEXT);
3778 
3779   // Pack into the original result register.
3780   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3781 
3782   MI.eraseFromParent();
3783   return Legalized;
3784 }
3785 
3786 LegalizerHelper::LegalizeResult
3787 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3788                                                            unsigned TypeIdx,
3789                                                            LLT NarrowVecTy) {
3790   Register DstReg = MI.getOperand(0).getReg();
3791   Register SrcVec = MI.getOperand(1).getReg();
3792   Register InsertVal;
3793   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3794 
3795   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3796   if (IsInsert)
3797     InsertVal = MI.getOperand(2).getReg();
3798 
3799   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3800 
3801   // TODO: Handle total scalarization case.
3802   if (!NarrowVecTy.isVector())
3803     return UnableToLegalize;
3804 
3805   LLT VecTy = MRI.getType(SrcVec);
3806 
3807   // If the index is a constant, we can really break this down as you would
3808   // expect, and index into the target size pieces.
3809   int64_t IdxVal;
3810   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3811     // Avoid out of bounds indexing the pieces.
3812     if (IdxVal >= VecTy.getNumElements()) {
3813       MIRBuilder.buildUndef(DstReg);
3814       MI.eraseFromParent();
3815       return Legalized;
3816     }
3817 
3818     SmallVector<Register, 8> VecParts;
3819     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3820 
3821     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3822     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3823                                     TargetOpcode::G_ANYEXT);
3824 
3825     unsigned NewNumElts = NarrowVecTy.getNumElements();
3826 
3827     LLT IdxTy = MRI.getType(Idx);
3828     int64_t PartIdx = IdxVal / NewNumElts;
3829     auto NewIdx =
3830         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3831 
3832     if (IsInsert) {
3833       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3834 
3835       // Use the adjusted index to insert into one of the subvectors.
3836       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3837           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3838       VecParts[PartIdx] = InsertPart.getReg(0);
3839 
3840       // Recombine the inserted subvector with the others to reform the result
3841       // vector.
3842       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3843     } else {
3844       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3845     }
3846 
3847     MI.eraseFromParent();
3848     return Legalized;
3849   }
3850 
3851   // With a variable index, we can't perform the operation in a smaller type, so
3852   // we're forced to expand this.
3853   //
3854   // TODO: We could emit a chain of compare/select to figure out which piece to
3855   // index.
3856   return lowerExtractInsertVectorElt(MI);
3857 }
3858 
3859 LegalizerHelper::LegalizeResult
3860 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3861                                       LLT NarrowTy) {
3862   // FIXME: Don't know how to handle secondary types yet.
3863   if (TypeIdx != 0)
3864     return UnableToLegalize;
3865 
3866   MachineMemOperand *MMO = *MI.memoperands_begin();
3867 
3868   // This implementation doesn't work for atomics. Give up instead of doing
3869   // something invalid.
3870   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3871       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3872     return UnableToLegalize;
3873 
3874   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3875   Register ValReg = MI.getOperand(0).getReg();
3876   Register AddrReg = MI.getOperand(1).getReg();
3877   LLT ValTy = MRI.getType(ValReg);
3878 
3879   // FIXME: Do we need a distinct NarrowMemory legalize action?
3880   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3881     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3882     return UnableToLegalize;
3883   }
3884 
3885   int NumParts = -1;
3886   int NumLeftover = -1;
3887   LLT LeftoverTy;
3888   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3889   if (IsLoad) {
3890     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3891   } else {
3892     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3893                      NarrowLeftoverRegs)) {
3894       NumParts = NarrowRegs.size();
3895       NumLeftover = NarrowLeftoverRegs.size();
3896     }
3897   }
3898 
3899   if (NumParts == -1)
3900     return UnableToLegalize;
3901 
3902   LLT PtrTy = MRI.getType(AddrReg);
3903   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3904 
3905   unsigned TotalSize = ValTy.getSizeInBits();
3906 
3907   // Split the load/store into PartTy sized pieces starting at Offset. If this
3908   // is a load, return the new registers in ValRegs. For a store, each elements
3909   // of ValRegs should be PartTy. Returns the next offset that needs to be
3910   // handled.
3911   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3912                              unsigned Offset) -> unsigned {
3913     MachineFunction &MF = MIRBuilder.getMF();
3914     unsigned PartSize = PartTy.getSizeInBits();
3915     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3916          Offset += PartSize, ++Idx) {
3917       unsigned ByteSize = PartSize / 8;
3918       unsigned ByteOffset = Offset / 8;
3919       Register NewAddrReg;
3920 
3921       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3922 
3923       MachineMemOperand *NewMMO =
3924         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3925 
3926       if (IsLoad) {
3927         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3928         ValRegs.push_back(Dst);
3929         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3930       } else {
3931         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3932       }
3933     }
3934 
3935     return Offset;
3936   };
3937 
3938   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3939 
3940   // Handle the rest of the register if this isn't an even type breakdown.
3941   if (LeftoverTy.isValid())
3942     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3943 
3944   if (IsLoad) {
3945     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3946                 LeftoverTy, NarrowLeftoverRegs);
3947   }
3948 
3949   MI.eraseFromParent();
3950   return Legalized;
3951 }
3952 
3953 LegalizerHelper::LegalizeResult
3954 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3955                                       LLT NarrowTy) {
3956   assert(TypeIdx == 0 && "only one type index expected");
3957 
3958   const unsigned Opc = MI.getOpcode();
3959   const int NumDefOps = MI.getNumExplicitDefs();
3960   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3961   const unsigned Flags = MI.getFlags();
3962   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3963   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3964 
3965   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3966                                      "result and 1-3 sources or 2 results and "
3967                                      "1-2 sources");
3968 
3969   SmallVector<Register, 2> DstRegs;
3970   for (int I = 0; I < NumDefOps; ++I)
3971     DstRegs.push_back(MI.getOperand(I).getReg());
3972 
3973   // First of all check whether we are narrowing (changing the element type)
3974   // or reducing the vector elements
3975   const LLT DstTy = MRI.getType(DstRegs[0]);
3976   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3977 
3978   SmallVector<Register, 8> ExtractedRegs[3];
3979   SmallVector<Register, 8> Parts;
3980 
3981   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3982 
3983   // Break down all the sources into NarrowTy pieces we can operate on. This may
3984   // involve creating merges to a wider type, padded with undef.
3985   for (int I = 0; I != NumSrcOps; ++I) {
3986     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3987     LLT SrcTy = MRI.getType(SrcReg);
3988 
3989     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3990     // For fewerElements, this is a smaller vector with the same element type.
3991     LLT OpNarrowTy;
3992     if (IsNarrow) {
3993       OpNarrowTy = NarrowScalarTy;
3994 
3995       // In case of narrowing, we need to cast vectors to scalars for this to
3996       // work properly
3997       // FIXME: Can we do without the bitcast here if we're narrowing?
3998       if (SrcTy.isVector()) {
3999         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4000         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4001       }
4002     } else {
4003       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
4004     }
4005 
4006     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4007 
4008     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4009     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4010                         TargetOpcode::G_ANYEXT);
4011   }
4012 
4013   SmallVector<Register, 8> ResultRegs[2];
4014 
4015   // Input operands for each sub-instruction.
4016   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4017 
4018   int NumParts = ExtractedRegs[0].size();
4019   const unsigned DstSize = DstTy.getSizeInBits();
4020   const LLT DstScalarTy = LLT::scalar(DstSize);
4021 
4022   // Narrowing needs to use scalar types
4023   LLT DstLCMTy, NarrowDstTy;
4024   if (IsNarrow) {
4025     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4026     NarrowDstTy = NarrowScalarTy;
4027   } else {
4028     DstLCMTy = getLCMType(DstTy, NarrowTy);
4029     NarrowDstTy = NarrowTy;
4030   }
4031 
4032   // We widened the source registers to satisfy merge/unmerge size
4033   // constraints. We'll have some extra fully undef parts.
4034   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4035 
4036   for (int I = 0; I != NumRealParts; ++I) {
4037     // Emit this instruction on each of the split pieces.
4038     for (int J = 0; J != NumSrcOps; ++J)
4039       InputRegs[J] = ExtractedRegs[J][I];
4040 
4041     MachineInstrBuilder Inst;
4042     if (NumDefOps == 1)
4043       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4044     else
4045       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4046                                    Flags);
4047 
4048     for (int J = 0; J != NumDefOps; ++J)
4049       ResultRegs[J].push_back(Inst.getReg(J));
4050   }
4051 
4052   // Fill out the widened result with undef instead of creating instructions
4053   // with undef inputs.
4054   int NumUndefParts = NumParts - NumRealParts;
4055   if (NumUndefParts != 0) {
4056     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4057     for (int I = 0; I != NumDefOps; ++I)
4058       ResultRegs[I].append(NumUndefParts, Undef);
4059   }
4060 
4061   // Extract the possibly padded result. Use a scratch register if we need to do
4062   // a final bitcast, otherwise use the original result register.
4063   Register MergeDstReg;
4064   for (int I = 0; I != NumDefOps; ++I) {
4065     if (IsNarrow && DstTy.isVector())
4066       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4067     else
4068       MergeDstReg = DstRegs[I];
4069 
4070     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4071 
4072     // Recast to vector if we narrowed a vector
4073     if (IsNarrow && DstTy.isVector())
4074       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4075   }
4076 
4077   MI.eraseFromParent();
4078   return Legalized;
4079 }
4080 
4081 LegalizerHelper::LegalizeResult
4082 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4083                                               LLT NarrowTy) {
4084   Register DstReg = MI.getOperand(0).getReg();
4085   Register SrcReg = MI.getOperand(1).getReg();
4086   int64_t Imm = MI.getOperand(2).getImm();
4087 
4088   LLT DstTy = MRI.getType(DstReg);
4089 
4090   SmallVector<Register, 8> Parts;
4091   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4092   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4093 
4094   for (Register &R : Parts)
4095     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4096 
4097   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4098 
4099   MI.eraseFromParent();
4100   return Legalized;
4101 }
4102 
4103 LegalizerHelper::LegalizeResult
4104 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4105                                      LLT NarrowTy) {
4106   using namespace TargetOpcode;
4107 
4108   switch (MI.getOpcode()) {
4109   case G_IMPLICIT_DEF:
4110     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4111   case G_TRUNC:
4112   case G_AND:
4113   case G_OR:
4114   case G_XOR:
4115   case G_ADD:
4116   case G_SUB:
4117   case G_MUL:
4118   case G_PTR_ADD:
4119   case G_SMULH:
4120   case G_UMULH:
4121   case G_FADD:
4122   case G_FMUL:
4123   case G_FSUB:
4124   case G_FNEG:
4125   case G_FABS:
4126   case G_FCANONICALIZE:
4127   case G_FDIV:
4128   case G_FREM:
4129   case G_FMA:
4130   case G_FMAD:
4131   case G_FPOW:
4132   case G_FEXP:
4133   case G_FEXP2:
4134   case G_FLOG:
4135   case G_FLOG2:
4136   case G_FLOG10:
4137   case G_FNEARBYINT:
4138   case G_FCEIL:
4139   case G_FFLOOR:
4140   case G_FRINT:
4141   case G_INTRINSIC_ROUND:
4142   case G_INTRINSIC_ROUNDEVEN:
4143   case G_INTRINSIC_TRUNC:
4144   case G_FCOS:
4145   case G_FSIN:
4146   case G_FSQRT:
4147   case G_BSWAP:
4148   case G_BITREVERSE:
4149   case G_SDIV:
4150   case G_UDIV:
4151   case G_SREM:
4152   case G_UREM:
4153   case G_SDIVREM:
4154   case G_UDIVREM:
4155   case G_SMIN:
4156   case G_SMAX:
4157   case G_UMIN:
4158   case G_UMAX:
4159   case G_FMINNUM:
4160   case G_FMAXNUM:
4161   case G_FMINNUM_IEEE:
4162   case G_FMAXNUM_IEEE:
4163   case G_FMINIMUM:
4164   case G_FMAXIMUM:
4165   case G_FSHL:
4166   case G_FSHR:
4167   case G_FREEZE:
4168   case G_SADDSAT:
4169   case G_SSUBSAT:
4170   case G_UADDSAT:
4171   case G_USUBSAT:
4172     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4173   case G_UMULO:
4174   case G_SMULO:
4175     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4176   case G_SHL:
4177   case G_LSHR:
4178   case G_ASHR:
4179   case G_SSHLSAT:
4180   case G_USHLSAT:
4181   case G_CTLZ:
4182   case G_CTLZ_ZERO_UNDEF:
4183   case G_CTTZ:
4184   case G_CTTZ_ZERO_UNDEF:
4185   case G_CTPOP:
4186   case G_FCOPYSIGN:
4187     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4188   case G_ZEXT:
4189   case G_SEXT:
4190   case G_ANYEXT:
4191   case G_FPEXT:
4192   case G_FPTRUNC:
4193   case G_SITOFP:
4194   case G_UITOFP:
4195   case G_FPTOSI:
4196   case G_FPTOUI:
4197   case G_INTTOPTR:
4198   case G_PTRTOINT:
4199   case G_ADDRSPACE_CAST:
4200     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4201   case G_ICMP:
4202   case G_FCMP:
4203     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4204   case G_SELECT:
4205     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4206   case G_PHI:
4207     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4208   case G_UNMERGE_VALUES:
4209     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4210   case G_BUILD_VECTOR:
4211     assert(TypeIdx == 0 && "not a vector type index");
4212     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4213   case G_CONCAT_VECTORS:
4214     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4215       return UnableToLegalize;
4216     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4217   case G_EXTRACT_VECTOR_ELT:
4218   case G_INSERT_VECTOR_ELT:
4219     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4220   case G_LOAD:
4221   case G_STORE:
4222     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4223   case G_SEXT_INREG:
4224     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4225   GISEL_VECREDUCE_CASES_NONSEQ
4226     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4227   case G_SHUFFLE_VECTOR:
4228     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4229   default:
4230     return UnableToLegalize;
4231   }
4232 }
4233 
4234 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4235     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4236   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4237   if (TypeIdx != 0)
4238     return UnableToLegalize;
4239 
4240   Register DstReg = MI.getOperand(0).getReg();
4241   Register Src1Reg = MI.getOperand(1).getReg();
4242   Register Src2Reg = MI.getOperand(2).getReg();
4243   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4244   LLT DstTy = MRI.getType(DstReg);
4245   LLT Src1Ty = MRI.getType(Src1Reg);
4246   LLT Src2Ty = MRI.getType(Src2Reg);
4247   // The shuffle should be canonicalized by now.
4248   if (DstTy != Src1Ty)
4249     return UnableToLegalize;
4250   if (DstTy != Src2Ty)
4251     return UnableToLegalize;
4252 
4253   if (!isPowerOf2_32(DstTy.getNumElements()))
4254     return UnableToLegalize;
4255 
4256   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4257   // Further legalization attempts will be needed to do split further.
4258   NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2);
4259   unsigned NewElts = NarrowTy.getNumElements();
4260 
4261   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4262   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4263   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4264   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4265                         SplitSrc2Regs[1]};
4266 
4267   Register Hi, Lo;
4268 
4269   // If Lo or Hi uses elements from at most two of the four input vectors, then
4270   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4271   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4272   SmallVector<int, 16> Ops;
4273   for (unsigned High = 0; High < 2; ++High) {
4274     Register &Output = High ? Hi : Lo;
4275 
4276     // Build a shuffle mask for the output, discovering on the fly which
4277     // input vectors to use as shuffle operands (recorded in InputUsed).
4278     // If building a suitable shuffle vector proves too hard, then bail
4279     // out with useBuildVector set.
4280     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4281     unsigned FirstMaskIdx = High * NewElts;
4282     bool UseBuildVector = false;
4283     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4284       // The mask element.  This indexes into the input.
4285       int Idx = Mask[FirstMaskIdx + MaskOffset];
4286 
4287       // The input vector this mask element indexes into.
4288       unsigned Input = (unsigned)Idx / NewElts;
4289 
4290       if (Input >= array_lengthof(Inputs)) {
4291         // The mask element does not index into any input vector.
4292         Ops.push_back(-1);
4293         continue;
4294       }
4295 
4296       // Turn the index into an offset from the start of the input vector.
4297       Idx -= Input * NewElts;
4298 
4299       // Find or create a shuffle vector operand to hold this input.
4300       unsigned OpNo;
4301       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4302         if (InputUsed[OpNo] == Input) {
4303           // This input vector is already an operand.
4304           break;
4305         } else if (InputUsed[OpNo] == -1U) {
4306           // Create a new operand for this input vector.
4307           InputUsed[OpNo] = Input;
4308           break;
4309         }
4310       }
4311 
4312       if (OpNo >= array_lengthof(InputUsed)) {
4313         // More than two input vectors used!  Give up on trying to create a
4314         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4315         UseBuildVector = true;
4316         break;
4317       }
4318 
4319       // Add the mask index for the new shuffle vector.
4320       Ops.push_back(Idx + OpNo * NewElts);
4321     }
4322 
4323     if (UseBuildVector) {
4324       LLT EltTy = NarrowTy.getElementType();
4325       SmallVector<Register, 16> SVOps;
4326 
4327       // Extract the input elements by hand.
4328       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4329         // The mask element.  This indexes into the input.
4330         int Idx = Mask[FirstMaskIdx + MaskOffset];
4331 
4332         // The input vector this mask element indexes into.
4333         unsigned Input = (unsigned)Idx / NewElts;
4334 
4335         if (Input >= array_lengthof(Inputs)) {
4336           // The mask element is "undef" or indexes off the end of the input.
4337           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4338           continue;
4339         }
4340 
4341         // Turn the index into an offset from the start of the input vector.
4342         Idx -= Input * NewElts;
4343 
4344         // Extract the vector element by hand.
4345         SVOps.push_back(MIRBuilder
4346                             .buildExtractVectorElement(
4347                                 EltTy, Inputs[Input],
4348                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4349                             .getReg(0));
4350       }
4351 
4352       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4353       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4354     } else if (InputUsed[0] == -1U) {
4355       // No input vectors were used! The result is undefined.
4356       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4357     } else {
4358       Register Op0 = Inputs[InputUsed[0]];
4359       // If only one input was used, use an undefined vector for the other.
4360       Register Op1 = InputUsed[1] == -1U
4361                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4362                          : Inputs[InputUsed[1]];
4363       // At least one input vector was used. Create a new shuffle vector.
4364       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4365     }
4366 
4367     Ops.clear();
4368   }
4369 
4370   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4371   MI.eraseFromParent();
4372   return Legalized;
4373 }
4374 
4375 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4376     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4377   unsigned Opc = MI.getOpcode();
4378   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4379          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4380          "Sequential reductions not expected");
4381 
4382   if (TypeIdx != 1)
4383     return UnableToLegalize;
4384 
4385   // The semantics of the normal non-sequential reductions allow us to freely
4386   // re-associate the operation.
4387   Register SrcReg = MI.getOperand(1).getReg();
4388   LLT SrcTy = MRI.getType(SrcReg);
4389   Register DstReg = MI.getOperand(0).getReg();
4390   LLT DstTy = MRI.getType(DstReg);
4391 
4392   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4393     return UnableToLegalize;
4394 
4395   SmallVector<Register> SplitSrcs;
4396   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4397   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4398   SmallVector<Register> PartialReductions;
4399   for (unsigned Part = 0; Part < NumParts; ++Part) {
4400     PartialReductions.push_back(
4401         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4402   }
4403 
4404   unsigned ScalarOpc;
4405   switch (Opc) {
4406   case TargetOpcode::G_VECREDUCE_FADD:
4407     ScalarOpc = TargetOpcode::G_FADD;
4408     break;
4409   case TargetOpcode::G_VECREDUCE_FMUL:
4410     ScalarOpc = TargetOpcode::G_FMUL;
4411     break;
4412   case TargetOpcode::G_VECREDUCE_FMAX:
4413     ScalarOpc = TargetOpcode::G_FMAXNUM;
4414     break;
4415   case TargetOpcode::G_VECREDUCE_FMIN:
4416     ScalarOpc = TargetOpcode::G_FMINNUM;
4417     break;
4418   case TargetOpcode::G_VECREDUCE_ADD:
4419     ScalarOpc = TargetOpcode::G_ADD;
4420     break;
4421   case TargetOpcode::G_VECREDUCE_MUL:
4422     ScalarOpc = TargetOpcode::G_MUL;
4423     break;
4424   case TargetOpcode::G_VECREDUCE_AND:
4425     ScalarOpc = TargetOpcode::G_AND;
4426     break;
4427   case TargetOpcode::G_VECREDUCE_OR:
4428     ScalarOpc = TargetOpcode::G_OR;
4429     break;
4430   case TargetOpcode::G_VECREDUCE_XOR:
4431     ScalarOpc = TargetOpcode::G_XOR;
4432     break;
4433   case TargetOpcode::G_VECREDUCE_SMAX:
4434     ScalarOpc = TargetOpcode::G_SMAX;
4435     break;
4436   case TargetOpcode::G_VECREDUCE_SMIN:
4437     ScalarOpc = TargetOpcode::G_SMIN;
4438     break;
4439   case TargetOpcode::G_VECREDUCE_UMAX:
4440     ScalarOpc = TargetOpcode::G_UMAX;
4441     break;
4442   case TargetOpcode::G_VECREDUCE_UMIN:
4443     ScalarOpc = TargetOpcode::G_UMIN;
4444     break;
4445   default:
4446     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4447     return UnableToLegalize;
4448   }
4449 
4450   // If the types involved are powers of 2, we can generate intermediate vector
4451   // ops, before generating a final reduction operation.
4452   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4453       isPowerOf2_32(NarrowTy.getNumElements())) {
4454     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4455   }
4456 
4457   Register Acc = PartialReductions[0];
4458   for (unsigned Part = 1; Part < NumParts; ++Part) {
4459     if (Part == NumParts - 1) {
4460       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4461                             {Acc, PartialReductions[Part]});
4462     } else {
4463       Acc = MIRBuilder
4464                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4465                 .getReg(0);
4466     }
4467   }
4468   MI.eraseFromParent();
4469   return Legalized;
4470 }
4471 
4472 LegalizerHelper::LegalizeResult
4473 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4474                                         LLT SrcTy, LLT NarrowTy,
4475                                         unsigned ScalarOpc) {
4476   SmallVector<Register> SplitSrcs;
4477   // Split the sources into NarrowTy size pieces.
4478   extractParts(SrcReg, NarrowTy,
4479                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4480   // We're going to do a tree reduction using vector operations until we have
4481   // one NarrowTy size value left.
4482   while (SplitSrcs.size() > 1) {
4483     SmallVector<Register> PartialRdxs;
4484     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4485       Register LHS = SplitSrcs[Idx];
4486       Register RHS = SplitSrcs[Idx + 1];
4487       // Create the intermediate vector op.
4488       Register Res =
4489           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4490       PartialRdxs.push_back(Res);
4491     }
4492     SplitSrcs = std::move(PartialRdxs);
4493   }
4494   // Finally generate the requested NarrowTy based reduction.
4495   Observer.changingInstr(MI);
4496   MI.getOperand(1).setReg(SplitSrcs[0]);
4497   Observer.changedInstr(MI);
4498   return Legalized;
4499 }
4500 
4501 LegalizerHelper::LegalizeResult
4502 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4503                                              const LLT HalfTy, const LLT AmtTy) {
4504 
4505   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4506   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4507   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4508 
4509   if (Amt.isNullValue()) {
4510     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4511     MI.eraseFromParent();
4512     return Legalized;
4513   }
4514 
4515   LLT NVT = HalfTy;
4516   unsigned NVTBits = HalfTy.getSizeInBits();
4517   unsigned VTBits = 2 * NVTBits;
4518 
4519   SrcOp Lo(Register(0)), Hi(Register(0));
4520   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4521     if (Amt.ugt(VTBits)) {
4522       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4523     } else if (Amt.ugt(NVTBits)) {
4524       Lo = MIRBuilder.buildConstant(NVT, 0);
4525       Hi = MIRBuilder.buildShl(NVT, InL,
4526                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4527     } else if (Amt == NVTBits) {
4528       Lo = MIRBuilder.buildConstant(NVT, 0);
4529       Hi = InL;
4530     } else {
4531       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4532       auto OrLHS =
4533           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4534       auto OrRHS = MIRBuilder.buildLShr(
4535           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4536       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4537     }
4538   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4539     if (Amt.ugt(VTBits)) {
4540       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4541     } else if (Amt.ugt(NVTBits)) {
4542       Lo = MIRBuilder.buildLShr(NVT, InH,
4543                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4544       Hi = MIRBuilder.buildConstant(NVT, 0);
4545     } else if (Amt == NVTBits) {
4546       Lo = InH;
4547       Hi = MIRBuilder.buildConstant(NVT, 0);
4548     } else {
4549       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4550 
4551       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4552       auto OrRHS = MIRBuilder.buildShl(
4553           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4554 
4555       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4556       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4557     }
4558   } else {
4559     if (Amt.ugt(VTBits)) {
4560       Hi = Lo = MIRBuilder.buildAShr(
4561           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4562     } else if (Amt.ugt(NVTBits)) {
4563       Lo = MIRBuilder.buildAShr(NVT, InH,
4564                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4565       Hi = MIRBuilder.buildAShr(NVT, InH,
4566                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4567     } else if (Amt == NVTBits) {
4568       Lo = InH;
4569       Hi = MIRBuilder.buildAShr(NVT, InH,
4570                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4571     } else {
4572       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4573 
4574       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4575       auto OrRHS = MIRBuilder.buildShl(
4576           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4577 
4578       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4579       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4580     }
4581   }
4582 
4583   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4584   MI.eraseFromParent();
4585 
4586   return Legalized;
4587 }
4588 
4589 // TODO: Optimize if constant shift amount.
4590 LegalizerHelper::LegalizeResult
4591 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4592                                    LLT RequestedTy) {
4593   if (TypeIdx == 1) {
4594     Observer.changingInstr(MI);
4595     narrowScalarSrc(MI, RequestedTy, 2);
4596     Observer.changedInstr(MI);
4597     return Legalized;
4598   }
4599 
4600   Register DstReg = MI.getOperand(0).getReg();
4601   LLT DstTy = MRI.getType(DstReg);
4602   if (DstTy.isVector())
4603     return UnableToLegalize;
4604 
4605   Register Amt = MI.getOperand(2).getReg();
4606   LLT ShiftAmtTy = MRI.getType(Amt);
4607   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4608   if (DstEltSize % 2 != 0)
4609     return UnableToLegalize;
4610 
4611   // Ignore the input type. We can only go to exactly half the size of the
4612   // input. If that isn't small enough, the resulting pieces will be further
4613   // legalized.
4614   const unsigned NewBitSize = DstEltSize / 2;
4615   const LLT HalfTy = LLT::scalar(NewBitSize);
4616   const LLT CondTy = LLT::scalar(1);
4617 
4618   if (const MachineInstr *KShiftAmt =
4619           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4620     return narrowScalarShiftByConstant(
4621         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4622   }
4623 
4624   // TODO: Expand with known bits.
4625 
4626   // Handle the fully general expansion by an unknown amount.
4627   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4628 
4629   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4630   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4631   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4632 
4633   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4634   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4635 
4636   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4637   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4638   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4639 
4640   Register ResultRegs[2];
4641   switch (MI.getOpcode()) {
4642   case TargetOpcode::G_SHL: {
4643     // Short: ShAmt < NewBitSize
4644     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4645 
4646     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4647     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4648     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4649 
4650     // Long: ShAmt >= NewBitSize
4651     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4652     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4653 
4654     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4655     auto Hi = MIRBuilder.buildSelect(
4656         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4657 
4658     ResultRegs[0] = Lo.getReg(0);
4659     ResultRegs[1] = Hi.getReg(0);
4660     break;
4661   }
4662   case TargetOpcode::G_LSHR:
4663   case TargetOpcode::G_ASHR: {
4664     // Short: ShAmt < NewBitSize
4665     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4666 
4667     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4668     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4669     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4670 
4671     // Long: ShAmt >= NewBitSize
4672     MachineInstrBuilder HiL;
4673     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4674       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4675     } else {
4676       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4677       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4678     }
4679     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4680                                      {InH, AmtExcess});     // Lo from Hi part.
4681 
4682     auto Lo = MIRBuilder.buildSelect(
4683         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4684 
4685     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4686 
4687     ResultRegs[0] = Lo.getReg(0);
4688     ResultRegs[1] = Hi.getReg(0);
4689     break;
4690   }
4691   default:
4692     llvm_unreachable("not a shift");
4693   }
4694 
4695   MIRBuilder.buildMerge(DstReg, ResultRegs);
4696   MI.eraseFromParent();
4697   return Legalized;
4698 }
4699 
4700 LegalizerHelper::LegalizeResult
4701 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4702                                        LLT MoreTy) {
4703   assert(TypeIdx == 0 && "Expecting only Idx 0");
4704 
4705   Observer.changingInstr(MI);
4706   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4707     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4708     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4709     moreElementsVectorSrc(MI, MoreTy, I);
4710   }
4711 
4712   MachineBasicBlock &MBB = *MI.getParent();
4713   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4714   moreElementsVectorDst(MI, MoreTy, 0);
4715   Observer.changedInstr(MI);
4716   return Legalized;
4717 }
4718 
4719 LegalizerHelper::LegalizeResult
4720 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4721                                     LLT MoreTy) {
4722   unsigned Opc = MI.getOpcode();
4723   switch (Opc) {
4724   case TargetOpcode::G_IMPLICIT_DEF:
4725   case TargetOpcode::G_LOAD: {
4726     if (TypeIdx != 0)
4727       return UnableToLegalize;
4728     Observer.changingInstr(MI);
4729     moreElementsVectorDst(MI, MoreTy, 0);
4730     Observer.changedInstr(MI);
4731     return Legalized;
4732   }
4733   case TargetOpcode::G_STORE:
4734     if (TypeIdx != 0)
4735       return UnableToLegalize;
4736     Observer.changingInstr(MI);
4737     moreElementsVectorSrc(MI, MoreTy, 0);
4738     Observer.changedInstr(MI);
4739     return Legalized;
4740   case TargetOpcode::G_AND:
4741   case TargetOpcode::G_OR:
4742   case TargetOpcode::G_XOR:
4743   case TargetOpcode::G_SMIN:
4744   case TargetOpcode::G_SMAX:
4745   case TargetOpcode::G_UMIN:
4746   case TargetOpcode::G_UMAX:
4747   case TargetOpcode::G_FMINNUM:
4748   case TargetOpcode::G_FMAXNUM:
4749   case TargetOpcode::G_FMINNUM_IEEE:
4750   case TargetOpcode::G_FMAXNUM_IEEE:
4751   case TargetOpcode::G_FMINIMUM:
4752   case TargetOpcode::G_FMAXIMUM: {
4753     Observer.changingInstr(MI);
4754     moreElementsVectorSrc(MI, MoreTy, 1);
4755     moreElementsVectorSrc(MI, MoreTy, 2);
4756     moreElementsVectorDst(MI, MoreTy, 0);
4757     Observer.changedInstr(MI);
4758     return Legalized;
4759   }
4760   case TargetOpcode::G_EXTRACT:
4761     if (TypeIdx != 1)
4762       return UnableToLegalize;
4763     Observer.changingInstr(MI);
4764     moreElementsVectorSrc(MI, MoreTy, 1);
4765     Observer.changedInstr(MI);
4766     return Legalized;
4767   case TargetOpcode::G_INSERT:
4768   case TargetOpcode::G_FREEZE:
4769     if (TypeIdx != 0)
4770       return UnableToLegalize;
4771     Observer.changingInstr(MI);
4772     moreElementsVectorSrc(MI, MoreTy, 1);
4773     moreElementsVectorDst(MI, MoreTy, 0);
4774     Observer.changedInstr(MI);
4775     return Legalized;
4776   case TargetOpcode::G_SELECT:
4777     if (TypeIdx != 0)
4778       return UnableToLegalize;
4779     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4780       return UnableToLegalize;
4781 
4782     Observer.changingInstr(MI);
4783     moreElementsVectorSrc(MI, MoreTy, 2);
4784     moreElementsVectorSrc(MI, MoreTy, 3);
4785     moreElementsVectorDst(MI, MoreTy, 0);
4786     Observer.changedInstr(MI);
4787     return Legalized;
4788   case TargetOpcode::G_UNMERGE_VALUES: {
4789     if (TypeIdx != 1)
4790       return UnableToLegalize;
4791 
4792     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4793     int NumDst = MI.getNumOperands() - 1;
4794     moreElementsVectorSrc(MI, MoreTy, NumDst);
4795 
4796     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4797     for (int I = 0; I != NumDst; ++I)
4798       MIB.addDef(MI.getOperand(I).getReg());
4799 
4800     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4801     for (int I = NumDst; I != NewNumDst; ++I)
4802       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4803 
4804     MIB.addUse(MI.getOperand(NumDst).getReg());
4805     MI.eraseFromParent();
4806     return Legalized;
4807   }
4808   case TargetOpcode::G_PHI:
4809     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4810   default:
4811     return UnableToLegalize;
4812   }
4813 }
4814 
4815 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4816                                         ArrayRef<Register> Src1Regs,
4817                                         ArrayRef<Register> Src2Regs,
4818                                         LLT NarrowTy) {
4819   MachineIRBuilder &B = MIRBuilder;
4820   unsigned SrcParts = Src1Regs.size();
4821   unsigned DstParts = DstRegs.size();
4822 
4823   unsigned DstIdx = 0; // Low bits of the result.
4824   Register FactorSum =
4825       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4826   DstRegs[DstIdx] = FactorSum;
4827 
4828   unsigned CarrySumPrevDstIdx;
4829   SmallVector<Register, 4> Factors;
4830 
4831   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4832     // Collect low parts of muls for DstIdx.
4833     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4834          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4835       MachineInstrBuilder Mul =
4836           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4837       Factors.push_back(Mul.getReg(0));
4838     }
4839     // Collect high parts of muls from previous DstIdx.
4840     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4841          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4842       MachineInstrBuilder Umulh =
4843           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4844       Factors.push_back(Umulh.getReg(0));
4845     }
4846     // Add CarrySum from additions calculated for previous DstIdx.
4847     if (DstIdx != 1) {
4848       Factors.push_back(CarrySumPrevDstIdx);
4849     }
4850 
4851     Register CarrySum;
4852     // Add all factors and accumulate all carries into CarrySum.
4853     if (DstIdx != DstParts - 1) {
4854       MachineInstrBuilder Uaddo =
4855           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4856       FactorSum = Uaddo.getReg(0);
4857       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4858       for (unsigned i = 2; i < Factors.size(); ++i) {
4859         MachineInstrBuilder Uaddo =
4860             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4861         FactorSum = Uaddo.getReg(0);
4862         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4863         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4864       }
4865     } else {
4866       // Since value for the next index is not calculated, neither is CarrySum.
4867       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4868       for (unsigned i = 2; i < Factors.size(); ++i)
4869         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4870     }
4871 
4872     CarrySumPrevDstIdx = CarrySum;
4873     DstRegs[DstIdx] = FactorSum;
4874     Factors.clear();
4875   }
4876 }
4877 
4878 LegalizerHelper::LegalizeResult
4879 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4880                                     LLT NarrowTy) {
4881   if (TypeIdx != 0)
4882     return UnableToLegalize;
4883 
4884   Register DstReg = MI.getOperand(0).getReg();
4885   LLT DstType = MRI.getType(DstReg);
4886   // FIXME: add support for vector types
4887   if (DstType.isVector())
4888     return UnableToLegalize;
4889 
4890   uint64_t SizeOp0 = DstType.getSizeInBits();
4891   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4892 
4893   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4894   // NarrowSize.
4895   if (SizeOp0 % NarrowSize != 0)
4896     return UnableToLegalize;
4897 
4898   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4899   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4900 
4901   unsigned Opcode = MI.getOpcode();
4902   unsigned OpO, OpE, OpF;
4903   switch (Opcode) {
4904   case TargetOpcode::G_SADDO:
4905   case TargetOpcode::G_SADDE:
4906   case TargetOpcode::G_UADDO:
4907   case TargetOpcode::G_UADDE:
4908   case TargetOpcode::G_ADD:
4909     OpO = TargetOpcode::G_UADDO;
4910     OpE = TargetOpcode::G_UADDE;
4911     OpF = TargetOpcode::G_UADDE;
4912     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4913       OpF = TargetOpcode::G_SADDE;
4914     break;
4915   case TargetOpcode::G_SSUBO:
4916   case TargetOpcode::G_SSUBE:
4917   case TargetOpcode::G_USUBO:
4918   case TargetOpcode::G_USUBE:
4919   case TargetOpcode::G_SUB:
4920     OpO = TargetOpcode::G_USUBO;
4921     OpE = TargetOpcode::G_USUBE;
4922     OpF = TargetOpcode::G_USUBE;
4923     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4924       OpF = TargetOpcode::G_SSUBE;
4925     break;
4926   default:
4927     llvm_unreachable("Unexpected add/sub opcode!");
4928   }
4929 
4930   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4931   unsigned NumDefs = MI.getNumExplicitDefs();
4932   Register Src1 = MI.getOperand(NumDefs).getReg();
4933   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4934   Register CarryDst;
4935   if (NumDefs == 2)
4936     CarryDst = MI.getOperand(1).getReg();
4937   Register CarryIn;
4938   if (MI.getNumOperands() == NumDefs + 3)
4939     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4940 
4941   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4942   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4943   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4944 
4945   for (int i = 0; i < NumParts; ++i) {
4946     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4947     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4948     // Forward the final carry-out to the destination register
4949     if (i == NumParts - 1 && CarryDst)
4950       CarryOut = CarryDst;
4951 
4952     if (!CarryIn) {
4953       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4954                             {Src1Regs[i], Src2Regs[i]});
4955     } else if (i == NumParts - 1) {
4956       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4957                             {Src1Regs[i], Src2Regs[i], CarryIn});
4958     } else {
4959       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4960                             {Src1Regs[i], Src2Regs[i], CarryIn});
4961     }
4962 
4963     DstRegs.push_back(DstReg);
4964     CarryIn = CarryOut;
4965   }
4966   MIRBuilder.buildMerge(DstReg, DstRegs);
4967   MI.eraseFromParent();
4968   return Legalized;
4969 }
4970 
4971 LegalizerHelper::LegalizeResult
4972 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4973   Register DstReg = MI.getOperand(0).getReg();
4974   Register Src1 = MI.getOperand(1).getReg();
4975   Register Src2 = MI.getOperand(2).getReg();
4976 
4977   LLT Ty = MRI.getType(DstReg);
4978   if (Ty.isVector())
4979     return UnableToLegalize;
4980 
4981   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4982   unsigned DstSize = Ty.getSizeInBits();
4983   unsigned NarrowSize = NarrowTy.getSizeInBits();
4984   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4985     return UnableToLegalize;
4986 
4987   unsigned NumDstParts = DstSize / NarrowSize;
4988   unsigned NumSrcParts = SrcSize / NarrowSize;
4989   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4990   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4991 
4992   SmallVector<Register, 2> Src1Parts, Src2Parts;
4993   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4994   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4995   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4996   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4997 
4998   // Take only high half of registers if this is high mul.
4999   ArrayRef<Register> DstRegs(
5000       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5001   MIRBuilder.buildMerge(DstReg, DstRegs);
5002   MI.eraseFromParent();
5003   return Legalized;
5004 }
5005 
5006 LegalizerHelper::LegalizeResult
5007 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5008                                    LLT NarrowTy) {
5009   if (TypeIdx != 0)
5010     return UnableToLegalize;
5011 
5012   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5013 
5014   Register Src = MI.getOperand(1).getReg();
5015   LLT SrcTy = MRI.getType(Src);
5016 
5017   // If all finite floats fit into the narrowed integer type, we can just swap
5018   // out the result type. This is practically only useful for conversions from
5019   // half to at least 16-bits, so just handle the one case.
5020   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5021       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5022     return UnableToLegalize;
5023 
5024   Observer.changingInstr(MI);
5025   narrowScalarDst(MI, NarrowTy, 0,
5026                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5027   Observer.changedInstr(MI);
5028   return Legalized;
5029 }
5030 
5031 LegalizerHelper::LegalizeResult
5032 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5033                                      LLT NarrowTy) {
5034   if (TypeIdx != 1)
5035     return UnableToLegalize;
5036 
5037   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5038 
5039   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5040   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5041   // NarrowSize.
5042   if (SizeOp1 % NarrowSize != 0)
5043     return UnableToLegalize;
5044   int NumParts = SizeOp1 / NarrowSize;
5045 
5046   SmallVector<Register, 2> SrcRegs, DstRegs;
5047   SmallVector<uint64_t, 2> Indexes;
5048   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5049 
5050   Register OpReg = MI.getOperand(0).getReg();
5051   uint64_t OpStart = MI.getOperand(2).getImm();
5052   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5053   for (int i = 0; i < NumParts; ++i) {
5054     unsigned SrcStart = i * NarrowSize;
5055 
5056     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5057       // No part of the extract uses this subregister, ignore it.
5058       continue;
5059     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5060       // The entire subregister is extracted, forward the value.
5061       DstRegs.push_back(SrcRegs[i]);
5062       continue;
5063     }
5064 
5065     // OpSegStart is where this destination segment would start in OpReg if it
5066     // extended infinitely in both directions.
5067     int64_t ExtractOffset;
5068     uint64_t SegSize;
5069     if (OpStart < SrcStart) {
5070       ExtractOffset = 0;
5071       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5072     } else {
5073       ExtractOffset = OpStart - SrcStart;
5074       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5075     }
5076 
5077     Register SegReg = SrcRegs[i];
5078     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5079       // A genuine extract is needed.
5080       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5081       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5082     }
5083 
5084     DstRegs.push_back(SegReg);
5085   }
5086 
5087   Register DstReg = MI.getOperand(0).getReg();
5088   if (MRI.getType(DstReg).isVector())
5089     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5090   else if (DstRegs.size() > 1)
5091     MIRBuilder.buildMerge(DstReg, DstRegs);
5092   else
5093     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5094   MI.eraseFromParent();
5095   return Legalized;
5096 }
5097 
5098 LegalizerHelper::LegalizeResult
5099 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5100                                     LLT NarrowTy) {
5101   // FIXME: Don't know how to handle secondary types yet.
5102   if (TypeIdx != 0)
5103     return UnableToLegalize;
5104 
5105   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
5106   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5107 
5108   // FIXME: add support for when SizeOp0 isn't an exact multiple of
5109   // NarrowSize.
5110   if (SizeOp0 % NarrowSize != 0)
5111     return UnableToLegalize;
5112 
5113   int NumParts = SizeOp0 / NarrowSize;
5114 
5115   SmallVector<Register, 2> SrcRegs, DstRegs;
5116   SmallVector<uint64_t, 2> Indexes;
5117   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5118 
5119   Register OpReg = MI.getOperand(2).getReg();
5120   uint64_t OpStart = MI.getOperand(3).getImm();
5121   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5122   for (int i = 0; i < NumParts; ++i) {
5123     unsigned DstStart = i * NarrowSize;
5124 
5125     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5126       // No part of the insert affects this subregister, forward the original.
5127       DstRegs.push_back(SrcRegs[i]);
5128       continue;
5129     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5130       // The entire subregister is defined by this insert, forward the new
5131       // value.
5132       DstRegs.push_back(OpReg);
5133       continue;
5134     }
5135 
5136     // OpSegStart is where this destination segment would start in OpReg if it
5137     // extended infinitely in both directions.
5138     int64_t ExtractOffset, InsertOffset;
5139     uint64_t SegSize;
5140     if (OpStart < DstStart) {
5141       InsertOffset = 0;
5142       ExtractOffset = DstStart - OpStart;
5143       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5144     } else {
5145       InsertOffset = OpStart - DstStart;
5146       ExtractOffset = 0;
5147       SegSize =
5148         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5149     }
5150 
5151     Register SegReg = OpReg;
5152     if (ExtractOffset != 0 || SegSize != OpSize) {
5153       // A genuine extract is needed.
5154       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5155       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5156     }
5157 
5158     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5159     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
5160     DstRegs.push_back(DstReg);
5161   }
5162 
5163   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
5164   Register DstReg = MI.getOperand(0).getReg();
5165   if(MRI.getType(DstReg).isVector())
5166     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5167   else
5168     MIRBuilder.buildMerge(DstReg, DstRegs);
5169   MI.eraseFromParent();
5170   return Legalized;
5171 }
5172 
5173 LegalizerHelper::LegalizeResult
5174 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5175                                    LLT NarrowTy) {
5176   Register DstReg = MI.getOperand(0).getReg();
5177   LLT DstTy = MRI.getType(DstReg);
5178 
5179   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5180 
5181   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5182   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5183   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5184   LLT LeftoverTy;
5185   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5186                     Src0Regs, Src0LeftoverRegs))
5187     return UnableToLegalize;
5188 
5189   LLT Unused;
5190   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5191                     Src1Regs, Src1LeftoverRegs))
5192     llvm_unreachable("inconsistent extractParts result");
5193 
5194   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5195     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5196                                         {Src0Regs[I], Src1Regs[I]});
5197     DstRegs.push_back(Inst.getReg(0));
5198   }
5199 
5200   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5201     auto Inst = MIRBuilder.buildInstr(
5202       MI.getOpcode(),
5203       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5204     DstLeftoverRegs.push_back(Inst.getReg(0));
5205   }
5206 
5207   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5208               LeftoverTy, DstLeftoverRegs);
5209 
5210   MI.eraseFromParent();
5211   return Legalized;
5212 }
5213 
5214 LegalizerHelper::LegalizeResult
5215 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5216                                  LLT NarrowTy) {
5217   if (TypeIdx != 0)
5218     return UnableToLegalize;
5219 
5220   Register DstReg = MI.getOperand(0).getReg();
5221   Register SrcReg = MI.getOperand(1).getReg();
5222 
5223   LLT DstTy = MRI.getType(DstReg);
5224   if (DstTy.isVector())
5225     return UnableToLegalize;
5226 
5227   SmallVector<Register, 8> Parts;
5228   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5229   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5230   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5231 
5232   MI.eraseFromParent();
5233   return Legalized;
5234 }
5235 
5236 LegalizerHelper::LegalizeResult
5237 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5238                                     LLT NarrowTy) {
5239   if (TypeIdx != 0)
5240     return UnableToLegalize;
5241 
5242   Register CondReg = MI.getOperand(1).getReg();
5243   LLT CondTy = MRI.getType(CondReg);
5244   if (CondTy.isVector()) // TODO: Handle vselect
5245     return UnableToLegalize;
5246 
5247   Register DstReg = MI.getOperand(0).getReg();
5248   LLT DstTy = MRI.getType(DstReg);
5249 
5250   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5251   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5252   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5253   LLT LeftoverTy;
5254   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5255                     Src1Regs, Src1LeftoverRegs))
5256     return UnableToLegalize;
5257 
5258   LLT Unused;
5259   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5260                     Src2Regs, Src2LeftoverRegs))
5261     llvm_unreachable("inconsistent extractParts result");
5262 
5263   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5264     auto Select = MIRBuilder.buildSelect(NarrowTy,
5265                                          CondReg, Src1Regs[I], Src2Regs[I]);
5266     DstRegs.push_back(Select.getReg(0));
5267   }
5268 
5269   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5270     auto Select = MIRBuilder.buildSelect(
5271       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5272     DstLeftoverRegs.push_back(Select.getReg(0));
5273   }
5274 
5275   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5276               LeftoverTy, DstLeftoverRegs);
5277 
5278   MI.eraseFromParent();
5279   return Legalized;
5280 }
5281 
5282 LegalizerHelper::LegalizeResult
5283 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5284                                   LLT NarrowTy) {
5285   if (TypeIdx != 1)
5286     return UnableToLegalize;
5287 
5288   Register DstReg = MI.getOperand(0).getReg();
5289   Register SrcReg = MI.getOperand(1).getReg();
5290   LLT DstTy = MRI.getType(DstReg);
5291   LLT SrcTy = MRI.getType(SrcReg);
5292   unsigned NarrowSize = NarrowTy.getSizeInBits();
5293 
5294   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5295     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5296 
5297     MachineIRBuilder &B = MIRBuilder;
5298     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5299     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5300     auto C_0 = B.buildConstant(NarrowTy, 0);
5301     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5302                                 UnmergeSrc.getReg(1), C_0);
5303     auto LoCTLZ = IsUndef ?
5304       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5305       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5306     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5307     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5308     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5309     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5310 
5311     MI.eraseFromParent();
5312     return Legalized;
5313   }
5314 
5315   return UnableToLegalize;
5316 }
5317 
5318 LegalizerHelper::LegalizeResult
5319 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5320                                   LLT NarrowTy) {
5321   if (TypeIdx != 1)
5322     return UnableToLegalize;
5323 
5324   Register DstReg = MI.getOperand(0).getReg();
5325   Register SrcReg = MI.getOperand(1).getReg();
5326   LLT DstTy = MRI.getType(DstReg);
5327   LLT SrcTy = MRI.getType(SrcReg);
5328   unsigned NarrowSize = NarrowTy.getSizeInBits();
5329 
5330   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5331     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5332 
5333     MachineIRBuilder &B = MIRBuilder;
5334     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5335     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5336     auto C_0 = B.buildConstant(NarrowTy, 0);
5337     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5338                                 UnmergeSrc.getReg(0), C_0);
5339     auto HiCTTZ = IsUndef ?
5340       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5341       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5342     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5343     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5344     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5345     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5346 
5347     MI.eraseFromParent();
5348     return Legalized;
5349   }
5350 
5351   return UnableToLegalize;
5352 }
5353 
5354 LegalizerHelper::LegalizeResult
5355 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5356                                    LLT NarrowTy) {
5357   if (TypeIdx != 1)
5358     return UnableToLegalize;
5359 
5360   Register DstReg = MI.getOperand(0).getReg();
5361   LLT DstTy = MRI.getType(DstReg);
5362   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5363   unsigned NarrowSize = NarrowTy.getSizeInBits();
5364 
5365   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5366     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5367 
5368     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5369     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5370     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5371 
5372     MI.eraseFromParent();
5373     return Legalized;
5374   }
5375 
5376   return UnableToLegalize;
5377 }
5378 
5379 LegalizerHelper::LegalizeResult
5380 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5381   unsigned Opc = MI.getOpcode();
5382   const auto &TII = MIRBuilder.getTII();
5383   auto isSupported = [this](const LegalityQuery &Q) {
5384     auto QAction = LI.getAction(Q).Action;
5385     return QAction == Legal || QAction == Libcall || QAction == Custom;
5386   };
5387   switch (Opc) {
5388   default:
5389     return UnableToLegalize;
5390   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5391     // This trivially expands to CTLZ.
5392     Observer.changingInstr(MI);
5393     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5394     Observer.changedInstr(MI);
5395     return Legalized;
5396   }
5397   case TargetOpcode::G_CTLZ: {
5398     Register DstReg = MI.getOperand(0).getReg();
5399     Register SrcReg = MI.getOperand(1).getReg();
5400     LLT DstTy = MRI.getType(DstReg);
5401     LLT SrcTy = MRI.getType(SrcReg);
5402     unsigned Len = SrcTy.getSizeInBits();
5403 
5404     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5405       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5406       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5407       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5408       auto ICmp = MIRBuilder.buildICmp(
5409           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5410       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5411       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5412       MI.eraseFromParent();
5413       return Legalized;
5414     }
5415     // for now, we do this:
5416     // NewLen = NextPowerOf2(Len);
5417     // x = x | (x >> 1);
5418     // x = x | (x >> 2);
5419     // ...
5420     // x = x | (x >>16);
5421     // x = x | (x >>32); // for 64-bit input
5422     // Upto NewLen/2
5423     // return Len - popcount(x);
5424     //
5425     // Ref: "Hacker's Delight" by Henry Warren
5426     Register Op = SrcReg;
5427     unsigned NewLen = PowerOf2Ceil(Len);
5428     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5429       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5430       auto MIBOp = MIRBuilder.buildOr(
5431           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5432       Op = MIBOp.getReg(0);
5433     }
5434     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5435     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5436                         MIBPop);
5437     MI.eraseFromParent();
5438     return Legalized;
5439   }
5440   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5441     // This trivially expands to CTTZ.
5442     Observer.changingInstr(MI);
5443     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5444     Observer.changedInstr(MI);
5445     return Legalized;
5446   }
5447   case TargetOpcode::G_CTTZ: {
5448     Register DstReg = MI.getOperand(0).getReg();
5449     Register SrcReg = MI.getOperand(1).getReg();
5450     LLT DstTy = MRI.getType(DstReg);
5451     LLT SrcTy = MRI.getType(SrcReg);
5452 
5453     unsigned Len = SrcTy.getSizeInBits();
5454     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5455       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5456       // zero.
5457       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5458       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5459       auto ICmp = MIRBuilder.buildICmp(
5460           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5461       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5462       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5463       MI.eraseFromParent();
5464       return Legalized;
5465     }
5466     // for now, we use: { return popcount(~x & (x - 1)); }
5467     // unless the target has ctlz but not ctpop, in which case we use:
5468     // { return 32 - nlz(~x & (x-1)); }
5469     // Ref: "Hacker's Delight" by Henry Warren
5470     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5471     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5472     auto MIBTmp = MIRBuilder.buildAnd(
5473         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5474     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5475         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5476       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5477       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5478                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5479       MI.eraseFromParent();
5480       return Legalized;
5481     }
5482     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5483     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5484     return Legalized;
5485   }
5486   case TargetOpcode::G_CTPOP: {
5487     Register SrcReg = MI.getOperand(1).getReg();
5488     LLT Ty = MRI.getType(SrcReg);
5489     unsigned Size = Ty.getSizeInBits();
5490     MachineIRBuilder &B = MIRBuilder;
5491 
5492     // Count set bits in blocks of 2 bits. Default approach would be
5493     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5494     // We use following formula instead:
5495     // B2Count = val - { (val >> 1) & 0x55555555 }
5496     // since it gives same result in blocks of 2 with one instruction less.
5497     auto C_1 = B.buildConstant(Ty, 1);
5498     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5499     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5500     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5501     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5502     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5503 
5504     // In order to get count in blocks of 4 add values from adjacent block of 2.
5505     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5506     auto C_2 = B.buildConstant(Ty, 2);
5507     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5508     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5509     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5510     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5511     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5512     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5513 
5514     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5515     // addition since count value sits in range {0,...,8} and 4 bits are enough
5516     // to hold such binary values. After addition high 4 bits still hold count
5517     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5518     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5519     auto C_4 = B.buildConstant(Ty, 4);
5520     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5521     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5522     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5523     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5524     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5525 
5526     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5527     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5528     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5529     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5530     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5531 
5532     // Shift count result from 8 high bits to low bits.
5533     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5534     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5535 
5536     MI.eraseFromParent();
5537     return Legalized;
5538   }
5539   }
5540 }
5541 
5542 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5543 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5544                                         Register Reg, unsigned BW) {
5545   return matchUnaryPredicate(
5546       MRI, Reg,
5547       [=](const Constant *C) {
5548         // Null constant here means an undef.
5549         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5550         return !CI || CI->getValue().urem(BW) != 0;
5551       },
5552       /*AllowUndefs*/ true);
5553 }
5554 
5555 LegalizerHelper::LegalizeResult
5556 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5557   Register Dst = MI.getOperand(0).getReg();
5558   Register X = MI.getOperand(1).getReg();
5559   Register Y = MI.getOperand(2).getReg();
5560   Register Z = MI.getOperand(3).getReg();
5561   LLT Ty = MRI.getType(Dst);
5562   LLT ShTy = MRI.getType(Z);
5563 
5564   unsigned BW = Ty.getScalarSizeInBits();
5565 
5566   if (!isPowerOf2_32(BW))
5567     return UnableToLegalize;
5568 
5569   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5570   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5571 
5572   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5573     // fshl X, Y, Z -> fshr X, Y, -Z
5574     // fshr X, Y, Z -> fshl X, Y, -Z
5575     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5576     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5577   } else {
5578     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5579     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5580     auto One = MIRBuilder.buildConstant(ShTy, 1);
5581     if (IsFSHL) {
5582       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5583       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5584     } else {
5585       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5586       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5587     }
5588 
5589     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5590   }
5591 
5592   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5593   MI.eraseFromParent();
5594   return Legalized;
5595 }
5596 
5597 LegalizerHelper::LegalizeResult
5598 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5599   Register Dst = MI.getOperand(0).getReg();
5600   Register X = MI.getOperand(1).getReg();
5601   Register Y = MI.getOperand(2).getReg();
5602   Register Z = MI.getOperand(3).getReg();
5603   LLT Ty = MRI.getType(Dst);
5604   LLT ShTy = MRI.getType(Z);
5605 
5606   const unsigned BW = Ty.getScalarSizeInBits();
5607   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5608 
5609   Register ShX, ShY;
5610   Register ShAmt, InvShAmt;
5611 
5612   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5613   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5614     // fshl: X << C | Y >> (BW - C)
5615     // fshr: X << (BW - C) | Y >> C
5616     // where C = Z % BW is not zero
5617     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5618     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5619     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5620     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5621     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5622   } else {
5623     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5624     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5625     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5626     if (isPowerOf2_32(BW)) {
5627       // Z % BW -> Z & (BW - 1)
5628       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5629       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5630       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5631       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5632     } else {
5633       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5634       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5635       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5636     }
5637 
5638     auto One = MIRBuilder.buildConstant(ShTy, 1);
5639     if (IsFSHL) {
5640       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5641       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5642       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5643     } else {
5644       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5645       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5646       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5647     }
5648   }
5649 
5650   MIRBuilder.buildOr(Dst, ShX, ShY);
5651   MI.eraseFromParent();
5652   return Legalized;
5653 }
5654 
5655 LegalizerHelper::LegalizeResult
5656 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5657   // These operations approximately do the following (while avoiding undefined
5658   // shifts by BW):
5659   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5660   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5661   Register Dst = MI.getOperand(0).getReg();
5662   LLT Ty = MRI.getType(Dst);
5663   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5664 
5665   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5666   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5667 
5668   // TODO: Use smarter heuristic that accounts for vector legalization.
5669   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5670     return lowerFunnelShiftAsShifts(MI);
5671 
5672   // This only works for powers of 2, fallback to shifts if it fails.
5673   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5674   if (Result == UnableToLegalize)
5675     return lowerFunnelShiftAsShifts(MI);
5676   return Result;
5677 }
5678 
5679 LegalizerHelper::LegalizeResult
5680 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5681   Register Dst = MI.getOperand(0).getReg();
5682   Register Src = MI.getOperand(1).getReg();
5683   Register Amt = MI.getOperand(2).getReg();
5684   LLT AmtTy = MRI.getType(Amt);
5685   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5686   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5687   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5688   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5689   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5690   MI.eraseFromParent();
5691   return Legalized;
5692 }
5693 
5694 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5695   Register Dst = MI.getOperand(0).getReg();
5696   Register Src = MI.getOperand(1).getReg();
5697   Register Amt = MI.getOperand(2).getReg();
5698   LLT DstTy = MRI.getType(Dst);
5699   LLT SrcTy = MRI.getType(Dst);
5700   LLT AmtTy = MRI.getType(Amt);
5701 
5702   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5703   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5704 
5705   MIRBuilder.setInstrAndDebugLoc(MI);
5706 
5707   // If a rotate in the other direction is supported, use it.
5708   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5709   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5710       isPowerOf2_32(EltSizeInBits))
5711     return lowerRotateWithReverseRotate(MI);
5712 
5713   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5714   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5715   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5716   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5717   Register ShVal;
5718   Register RevShiftVal;
5719   if (isPowerOf2_32(EltSizeInBits)) {
5720     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5721     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5722     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5723     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5724     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5725     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5726     RevShiftVal =
5727         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5728   } else {
5729     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5730     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5731     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5732     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5733     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5734     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5735     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5736     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5737     RevShiftVal =
5738         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5739   }
5740   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5741   MI.eraseFromParent();
5742   return Legalized;
5743 }
5744 
5745 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5746 // representation.
5747 LegalizerHelper::LegalizeResult
5748 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5749   Register Dst = MI.getOperand(0).getReg();
5750   Register Src = MI.getOperand(1).getReg();
5751   const LLT S64 = LLT::scalar(64);
5752   const LLT S32 = LLT::scalar(32);
5753   const LLT S1 = LLT::scalar(1);
5754 
5755   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5756 
5757   // unsigned cul2f(ulong u) {
5758   //   uint lz = clz(u);
5759   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5760   //   u = (u << lz) & 0x7fffffffffffffffUL;
5761   //   ulong t = u & 0xffffffffffUL;
5762   //   uint v = (e << 23) | (uint)(u >> 40);
5763   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5764   //   return as_float(v + r);
5765   // }
5766 
5767   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5768   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5769 
5770   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5771 
5772   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5773   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5774 
5775   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5776   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5777 
5778   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5779   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5780 
5781   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5782 
5783   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5784   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5785 
5786   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5787   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5788   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5789 
5790   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5791   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5792   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5793   auto One = MIRBuilder.buildConstant(S32, 1);
5794 
5795   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5796   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5797   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5798   MIRBuilder.buildAdd(Dst, V, R);
5799 
5800   MI.eraseFromParent();
5801   return Legalized;
5802 }
5803 
5804 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5805   Register Dst = MI.getOperand(0).getReg();
5806   Register Src = MI.getOperand(1).getReg();
5807   LLT DstTy = MRI.getType(Dst);
5808   LLT SrcTy = MRI.getType(Src);
5809 
5810   if (SrcTy == LLT::scalar(1)) {
5811     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5812     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5813     MIRBuilder.buildSelect(Dst, Src, True, False);
5814     MI.eraseFromParent();
5815     return Legalized;
5816   }
5817 
5818   if (SrcTy != LLT::scalar(64))
5819     return UnableToLegalize;
5820 
5821   if (DstTy == LLT::scalar(32)) {
5822     // TODO: SelectionDAG has several alternative expansions to port which may
5823     // be more reasonble depending on the available instructions. If a target
5824     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5825     // intermediate type, this is probably worse.
5826     return lowerU64ToF32BitOps(MI);
5827   }
5828 
5829   return UnableToLegalize;
5830 }
5831 
5832 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5833   Register Dst = MI.getOperand(0).getReg();
5834   Register Src = MI.getOperand(1).getReg();
5835   LLT DstTy = MRI.getType(Dst);
5836   LLT SrcTy = MRI.getType(Src);
5837 
5838   const LLT S64 = LLT::scalar(64);
5839   const LLT S32 = LLT::scalar(32);
5840   const LLT S1 = LLT::scalar(1);
5841 
5842   if (SrcTy == S1) {
5843     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5844     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5845     MIRBuilder.buildSelect(Dst, Src, True, False);
5846     MI.eraseFromParent();
5847     return Legalized;
5848   }
5849 
5850   if (SrcTy != S64)
5851     return UnableToLegalize;
5852 
5853   if (DstTy == S32) {
5854     // signed cl2f(long l) {
5855     //   long s = l >> 63;
5856     //   float r = cul2f((l + s) ^ s);
5857     //   return s ? -r : r;
5858     // }
5859     Register L = Src;
5860     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5861     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5862 
5863     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5864     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5865     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5866 
5867     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5868     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5869                                             MIRBuilder.buildConstant(S64, 0));
5870     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5871     MI.eraseFromParent();
5872     return Legalized;
5873   }
5874 
5875   return UnableToLegalize;
5876 }
5877 
5878 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5879   Register Dst = MI.getOperand(0).getReg();
5880   Register Src = MI.getOperand(1).getReg();
5881   LLT DstTy = MRI.getType(Dst);
5882   LLT SrcTy = MRI.getType(Src);
5883   const LLT S64 = LLT::scalar(64);
5884   const LLT S32 = LLT::scalar(32);
5885 
5886   if (SrcTy != S64 && SrcTy != S32)
5887     return UnableToLegalize;
5888   if (DstTy != S32 && DstTy != S64)
5889     return UnableToLegalize;
5890 
5891   // FPTOSI gives same result as FPTOUI for positive signed integers.
5892   // FPTOUI needs to deal with fp values that convert to unsigned integers
5893   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5894 
5895   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5896   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5897                                                 : APFloat::IEEEdouble(),
5898                     APInt::getNullValue(SrcTy.getSizeInBits()));
5899   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5900 
5901   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5902 
5903   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5904   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5905   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5906   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5907   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5908   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5909   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5910 
5911   const LLT S1 = LLT::scalar(1);
5912 
5913   MachineInstrBuilder FCMP =
5914       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5915   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5916 
5917   MI.eraseFromParent();
5918   return Legalized;
5919 }
5920 
5921 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5922   Register Dst = MI.getOperand(0).getReg();
5923   Register Src = MI.getOperand(1).getReg();
5924   LLT DstTy = MRI.getType(Dst);
5925   LLT SrcTy = MRI.getType(Src);
5926   const LLT S64 = LLT::scalar(64);
5927   const LLT S32 = LLT::scalar(32);
5928 
5929   // FIXME: Only f32 to i64 conversions are supported.
5930   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5931     return UnableToLegalize;
5932 
5933   // Expand f32 -> i64 conversion
5934   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5935   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5936 
5937   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5938 
5939   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5940   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5941 
5942   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5943   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5944 
5945   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5946                                            APInt::getSignMask(SrcEltBits));
5947   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5948   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5949   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5950   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5951 
5952   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5953   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5954   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5955 
5956   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5957   R = MIRBuilder.buildZExt(DstTy, R);
5958 
5959   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5960   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5961   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5962   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5963 
5964   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5965   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5966 
5967   const LLT S1 = LLT::scalar(1);
5968   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5969                                     S1, Exponent, ExponentLoBit);
5970 
5971   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5972 
5973   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5974   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5975 
5976   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5977 
5978   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5979                                           S1, Exponent, ZeroSrcTy);
5980 
5981   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5982   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5983 
5984   MI.eraseFromParent();
5985   return Legalized;
5986 }
5987 
5988 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5989 LegalizerHelper::LegalizeResult
5990 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5991   Register Dst = MI.getOperand(0).getReg();
5992   Register Src = MI.getOperand(1).getReg();
5993 
5994   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5995     return UnableToLegalize;
5996 
5997   const unsigned ExpMask = 0x7ff;
5998   const unsigned ExpBiasf64 = 1023;
5999   const unsigned ExpBiasf16 = 15;
6000   const LLT S32 = LLT::scalar(32);
6001   const LLT S1 = LLT::scalar(1);
6002 
6003   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6004   Register U = Unmerge.getReg(0);
6005   Register UH = Unmerge.getReg(1);
6006 
6007   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6008   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6009 
6010   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6011   // add the f16 bias (15) to get the biased exponent for the f16 format.
6012   E = MIRBuilder.buildAdd(
6013     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6014 
6015   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6016   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6017 
6018   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6019                                        MIRBuilder.buildConstant(S32, 0x1ff));
6020   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6021 
6022   auto Zero = MIRBuilder.buildConstant(S32, 0);
6023   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6024   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6025   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6026 
6027   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6028   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6029   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6030   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6031 
6032   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6033   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6034 
6035   // N = M | (E << 12);
6036   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6037   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6038 
6039   // B = clamp(1-E, 0, 13);
6040   auto One = MIRBuilder.buildConstant(S32, 1);
6041   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6042   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6043   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6044 
6045   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6046                                        MIRBuilder.buildConstant(S32, 0x1000));
6047 
6048   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6049   auto D0 = MIRBuilder.buildShl(S32, D, B);
6050 
6051   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6052                                              D0, SigSetHigh);
6053   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6054   D = MIRBuilder.buildOr(S32, D, D1);
6055 
6056   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6057   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6058 
6059   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6060   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6061 
6062   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6063                                        MIRBuilder.buildConstant(S32, 3));
6064   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6065 
6066   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6067                                        MIRBuilder.buildConstant(S32, 5));
6068   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6069 
6070   V1 = MIRBuilder.buildOr(S32, V0, V1);
6071   V = MIRBuilder.buildAdd(S32, V, V1);
6072 
6073   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6074                                        E, MIRBuilder.buildConstant(S32, 30));
6075   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6076                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6077 
6078   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6079                                          E, MIRBuilder.buildConstant(S32, 1039));
6080   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6081 
6082   // Extract the sign bit.
6083   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6084   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6085 
6086   // Insert the sign bit
6087   V = MIRBuilder.buildOr(S32, Sign, V);
6088 
6089   MIRBuilder.buildTrunc(Dst, V);
6090   MI.eraseFromParent();
6091   return Legalized;
6092 }
6093 
6094 LegalizerHelper::LegalizeResult
6095 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6096   Register Dst = MI.getOperand(0).getReg();
6097   Register Src = MI.getOperand(1).getReg();
6098 
6099   LLT DstTy = MRI.getType(Dst);
6100   LLT SrcTy = MRI.getType(Src);
6101   const LLT S64 = LLT::scalar(64);
6102   const LLT S16 = LLT::scalar(16);
6103 
6104   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6105     return lowerFPTRUNC_F64_TO_F16(MI);
6106 
6107   return UnableToLegalize;
6108 }
6109 
6110 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6111 // multiplication tree.
6112 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6113   Register Dst = MI.getOperand(0).getReg();
6114   Register Src0 = MI.getOperand(1).getReg();
6115   Register Src1 = MI.getOperand(2).getReg();
6116   LLT Ty = MRI.getType(Dst);
6117 
6118   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6119   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6120   MI.eraseFromParent();
6121   return Legalized;
6122 }
6123 
6124 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6125   switch (Opc) {
6126   case TargetOpcode::G_SMIN:
6127     return CmpInst::ICMP_SLT;
6128   case TargetOpcode::G_SMAX:
6129     return CmpInst::ICMP_SGT;
6130   case TargetOpcode::G_UMIN:
6131     return CmpInst::ICMP_ULT;
6132   case TargetOpcode::G_UMAX:
6133     return CmpInst::ICMP_UGT;
6134   default:
6135     llvm_unreachable("not in integer min/max");
6136   }
6137 }
6138 
6139 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6140   Register Dst = MI.getOperand(0).getReg();
6141   Register Src0 = MI.getOperand(1).getReg();
6142   Register Src1 = MI.getOperand(2).getReg();
6143 
6144   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6145   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6146 
6147   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6148   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6149 
6150   MI.eraseFromParent();
6151   return Legalized;
6152 }
6153 
6154 LegalizerHelper::LegalizeResult
6155 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6156   Register Dst = MI.getOperand(0).getReg();
6157   Register Src0 = MI.getOperand(1).getReg();
6158   Register Src1 = MI.getOperand(2).getReg();
6159 
6160   const LLT Src0Ty = MRI.getType(Src0);
6161   const LLT Src1Ty = MRI.getType(Src1);
6162 
6163   const int Src0Size = Src0Ty.getScalarSizeInBits();
6164   const int Src1Size = Src1Ty.getScalarSizeInBits();
6165 
6166   auto SignBitMask = MIRBuilder.buildConstant(
6167     Src0Ty, APInt::getSignMask(Src0Size));
6168 
6169   auto NotSignBitMask = MIRBuilder.buildConstant(
6170     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6171 
6172   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6173   Register And1;
6174   if (Src0Ty == Src1Ty) {
6175     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6176   } else if (Src0Size > Src1Size) {
6177     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6178     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6179     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6180     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6181   } else {
6182     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6183     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6184     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6185     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6186   }
6187 
6188   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6189   // constants are a nan and -0.0, but the final result should preserve
6190   // everything.
6191   unsigned Flags = MI.getFlags();
6192   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6193 
6194   MI.eraseFromParent();
6195   return Legalized;
6196 }
6197 
6198 LegalizerHelper::LegalizeResult
6199 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6200   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6201     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6202 
6203   Register Dst = MI.getOperand(0).getReg();
6204   Register Src0 = MI.getOperand(1).getReg();
6205   Register Src1 = MI.getOperand(2).getReg();
6206   LLT Ty = MRI.getType(Dst);
6207 
6208   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6209     // Insert canonicalizes if it's possible we need to quiet to get correct
6210     // sNaN behavior.
6211 
6212     // Note this must be done here, and not as an optimization combine in the
6213     // absence of a dedicate quiet-snan instruction as we're using an
6214     // omni-purpose G_FCANONICALIZE.
6215     if (!isKnownNeverSNaN(Src0, MRI))
6216       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6217 
6218     if (!isKnownNeverSNaN(Src1, MRI))
6219       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6220   }
6221 
6222   // If there are no nans, it's safe to simply replace this with the non-IEEE
6223   // version.
6224   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6225   MI.eraseFromParent();
6226   return Legalized;
6227 }
6228 
6229 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6230   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6231   Register DstReg = MI.getOperand(0).getReg();
6232   LLT Ty = MRI.getType(DstReg);
6233   unsigned Flags = MI.getFlags();
6234 
6235   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6236                                   Flags);
6237   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6238   MI.eraseFromParent();
6239   return Legalized;
6240 }
6241 
6242 LegalizerHelper::LegalizeResult
6243 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6244   Register DstReg = MI.getOperand(0).getReg();
6245   Register X = MI.getOperand(1).getReg();
6246   const unsigned Flags = MI.getFlags();
6247   const LLT Ty = MRI.getType(DstReg);
6248   const LLT CondTy = Ty.changeElementSize(1);
6249 
6250   // round(x) =>
6251   //  t = trunc(x);
6252   //  d = fabs(x - t);
6253   //  o = copysign(1.0f, x);
6254   //  return t + (d >= 0.5 ? o : 0.0);
6255 
6256   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6257 
6258   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6259   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6260   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6261   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6262   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6263   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6264 
6265   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6266                                   Flags);
6267   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6268 
6269   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6270 
6271   MI.eraseFromParent();
6272   return Legalized;
6273 }
6274 
6275 LegalizerHelper::LegalizeResult
6276 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6277   Register DstReg = MI.getOperand(0).getReg();
6278   Register SrcReg = MI.getOperand(1).getReg();
6279   unsigned Flags = MI.getFlags();
6280   LLT Ty = MRI.getType(DstReg);
6281   const LLT CondTy = Ty.changeElementSize(1);
6282 
6283   // result = trunc(src);
6284   // if (src < 0.0 && src != result)
6285   //   result += -1.0.
6286 
6287   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6288   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6289 
6290   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6291                                   SrcReg, Zero, Flags);
6292   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6293                                       SrcReg, Trunc, Flags);
6294   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6295   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6296 
6297   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6298   MI.eraseFromParent();
6299   return Legalized;
6300 }
6301 
6302 LegalizerHelper::LegalizeResult
6303 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6304   const unsigned NumOps = MI.getNumOperands();
6305   Register DstReg = MI.getOperand(0).getReg();
6306   Register Src0Reg = MI.getOperand(1).getReg();
6307   LLT DstTy = MRI.getType(DstReg);
6308   LLT SrcTy = MRI.getType(Src0Reg);
6309   unsigned PartSize = SrcTy.getSizeInBits();
6310 
6311   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6312   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6313 
6314   for (unsigned I = 2; I != NumOps; ++I) {
6315     const unsigned Offset = (I - 1) * PartSize;
6316 
6317     Register SrcReg = MI.getOperand(I).getReg();
6318     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6319 
6320     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6321       MRI.createGenericVirtualRegister(WideTy);
6322 
6323     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6324     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6325     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6326     ResultReg = NextResult;
6327   }
6328 
6329   if (DstTy.isPointer()) {
6330     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6331           DstTy.getAddressSpace())) {
6332       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6333       return UnableToLegalize;
6334     }
6335 
6336     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6337   }
6338 
6339   MI.eraseFromParent();
6340   return Legalized;
6341 }
6342 
6343 LegalizerHelper::LegalizeResult
6344 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6345   const unsigned NumDst = MI.getNumOperands() - 1;
6346   Register SrcReg = MI.getOperand(NumDst).getReg();
6347   Register Dst0Reg = MI.getOperand(0).getReg();
6348   LLT DstTy = MRI.getType(Dst0Reg);
6349   if (DstTy.isPointer())
6350     return UnableToLegalize; // TODO
6351 
6352   SrcReg = coerceToScalar(SrcReg);
6353   if (!SrcReg)
6354     return UnableToLegalize;
6355 
6356   // Expand scalarizing unmerge as bitcast to integer and shift.
6357   LLT IntTy = MRI.getType(SrcReg);
6358 
6359   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6360 
6361   const unsigned DstSize = DstTy.getSizeInBits();
6362   unsigned Offset = DstSize;
6363   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6364     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6365     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6366     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6367   }
6368 
6369   MI.eraseFromParent();
6370   return Legalized;
6371 }
6372 
6373 /// Lower a vector extract or insert by writing the vector to a stack temporary
6374 /// and reloading the element or vector.
6375 ///
6376 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6377 ///  =>
6378 ///  %stack_temp = G_FRAME_INDEX
6379 ///  G_STORE %vec, %stack_temp
6380 ///  %idx = clamp(%idx, %vec.getNumElements())
6381 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6382 ///  %dst = G_LOAD %element_ptr
6383 LegalizerHelper::LegalizeResult
6384 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6385   Register DstReg = MI.getOperand(0).getReg();
6386   Register SrcVec = MI.getOperand(1).getReg();
6387   Register InsertVal;
6388   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6389     InsertVal = MI.getOperand(2).getReg();
6390 
6391   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6392 
6393   LLT VecTy = MRI.getType(SrcVec);
6394   LLT EltTy = VecTy.getElementType();
6395   if (!EltTy.isByteSized()) { // Not implemented.
6396     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6397     return UnableToLegalize;
6398   }
6399 
6400   unsigned EltBytes = EltTy.getSizeInBytes();
6401   Align VecAlign = getStackTemporaryAlignment(VecTy);
6402   Align EltAlign;
6403 
6404   MachinePointerInfo PtrInfo;
6405   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6406                                         VecAlign, PtrInfo);
6407   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6408 
6409   // Get the pointer to the element, and be sure not to hit undefined behavior
6410   // if the index is out of bounds.
6411   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6412 
6413   int64_t IdxVal;
6414   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6415     int64_t Offset = IdxVal * EltBytes;
6416     PtrInfo = PtrInfo.getWithOffset(Offset);
6417     EltAlign = commonAlignment(VecAlign, Offset);
6418   } else {
6419     // We lose information with a variable offset.
6420     EltAlign = getStackTemporaryAlignment(EltTy);
6421     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6422   }
6423 
6424   if (InsertVal) {
6425     // Write the inserted element
6426     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6427 
6428     // Reload the whole vector.
6429     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6430   } else {
6431     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6432   }
6433 
6434   MI.eraseFromParent();
6435   return Legalized;
6436 }
6437 
6438 LegalizerHelper::LegalizeResult
6439 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6440   Register DstReg = MI.getOperand(0).getReg();
6441   Register Src0Reg = MI.getOperand(1).getReg();
6442   Register Src1Reg = MI.getOperand(2).getReg();
6443   LLT Src0Ty = MRI.getType(Src0Reg);
6444   LLT DstTy = MRI.getType(DstReg);
6445   LLT IdxTy = LLT::scalar(32);
6446 
6447   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6448 
6449   if (DstTy.isScalar()) {
6450     if (Src0Ty.isVector())
6451       return UnableToLegalize;
6452 
6453     // This is just a SELECT.
6454     assert(Mask.size() == 1 && "Expected a single mask element");
6455     Register Val;
6456     if (Mask[0] < 0 || Mask[0] > 1)
6457       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6458     else
6459       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6460     MIRBuilder.buildCopy(DstReg, Val);
6461     MI.eraseFromParent();
6462     return Legalized;
6463   }
6464 
6465   Register Undef;
6466   SmallVector<Register, 32> BuildVec;
6467   LLT EltTy = DstTy.getElementType();
6468 
6469   for (int Idx : Mask) {
6470     if (Idx < 0) {
6471       if (!Undef.isValid())
6472         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6473       BuildVec.push_back(Undef);
6474       continue;
6475     }
6476 
6477     if (Src0Ty.isScalar()) {
6478       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6479     } else {
6480       int NumElts = Src0Ty.getNumElements();
6481       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6482       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6483       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6484       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6485       BuildVec.push_back(Extract.getReg(0));
6486     }
6487   }
6488 
6489   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6490   MI.eraseFromParent();
6491   return Legalized;
6492 }
6493 
6494 LegalizerHelper::LegalizeResult
6495 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6496   const auto &MF = *MI.getMF();
6497   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6498   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6499     return UnableToLegalize;
6500 
6501   Register Dst = MI.getOperand(0).getReg();
6502   Register AllocSize = MI.getOperand(1).getReg();
6503   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6504 
6505   LLT PtrTy = MRI.getType(Dst);
6506   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6507 
6508   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6509   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6510   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6511 
6512   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6513   // have to generate an extra instruction to negate the alloc and then use
6514   // G_PTR_ADD to add the negative offset.
6515   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6516   if (Alignment > Align(1)) {
6517     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6518     AlignMask.negate();
6519     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6520     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6521   }
6522 
6523   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6524   MIRBuilder.buildCopy(SPReg, SPTmp);
6525   MIRBuilder.buildCopy(Dst, SPTmp);
6526 
6527   MI.eraseFromParent();
6528   return Legalized;
6529 }
6530 
6531 LegalizerHelper::LegalizeResult
6532 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6533   Register Dst = MI.getOperand(0).getReg();
6534   Register Src = MI.getOperand(1).getReg();
6535   unsigned Offset = MI.getOperand(2).getImm();
6536 
6537   LLT DstTy = MRI.getType(Dst);
6538   LLT SrcTy = MRI.getType(Src);
6539 
6540   if (DstTy.isScalar() &&
6541       (SrcTy.isScalar() ||
6542        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6543     LLT SrcIntTy = SrcTy;
6544     if (!SrcTy.isScalar()) {
6545       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6546       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6547     }
6548 
6549     if (Offset == 0)
6550       MIRBuilder.buildTrunc(Dst, Src);
6551     else {
6552       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6553       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6554       MIRBuilder.buildTrunc(Dst, Shr);
6555     }
6556 
6557     MI.eraseFromParent();
6558     return Legalized;
6559   }
6560 
6561   return UnableToLegalize;
6562 }
6563 
6564 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6565   Register Dst = MI.getOperand(0).getReg();
6566   Register Src = MI.getOperand(1).getReg();
6567   Register InsertSrc = MI.getOperand(2).getReg();
6568   uint64_t Offset = MI.getOperand(3).getImm();
6569 
6570   LLT DstTy = MRI.getType(Src);
6571   LLT InsertTy = MRI.getType(InsertSrc);
6572 
6573   if (InsertTy.isVector() ||
6574       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6575     return UnableToLegalize;
6576 
6577   const DataLayout &DL = MIRBuilder.getDataLayout();
6578   if ((DstTy.isPointer() &&
6579        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6580       (InsertTy.isPointer() &&
6581        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6582     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6583     return UnableToLegalize;
6584   }
6585 
6586   LLT IntDstTy = DstTy;
6587 
6588   if (!DstTy.isScalar()) {
6589     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6590     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6591   }
6592 
6593   if (!InsertTy.isScalar()) {
6594     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6595     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6596   }
6597 
6598   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6599   if (Offset != 0) {
6600     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6601     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6602   }
6603 
6604   APInt MaskVal = APInt::getBitsSetWithWrap(
6605       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6606 
6607   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6608   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6609   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6610 
6611   MIRBuilder.buildCast(Dst, Or);
6612   MI.eraseFromParent();
6613   return Legalized;
6614 }
6615 
6616 LegalizerHelper::LegalizeResult
6617 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6618   Register Dst0 = MI.getOperand(0).getReg();
6619   Register Dst1 = MI.getOperand(1).getReg();
6620   Register LHS = MI.getOperand(2).getReg();
6621   Register RHS = MI.getOperand(3).getReg();
6622   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6623 
6624   LLT Ty = MRI.getType(Dst0);
6625   LLT BoolTy = MRI.getType(Dst1);
6626 
6627   if (IsAdd)
6628     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6629   else
6630     MIRBuilder.buildSub(Dst0, LHS, RHS);
6631 
6632   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6633 
6634   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6635 
6636   // For an addition, the result should be less than one of the operands (LHS)
6637   // if and only if the other operand (RHS) is negative, otherwise there will
6638   // be overflow.
6639   // For a subtraction, the result should be less than one of the operands
6640   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6641   // otherwise there will be overflow.
6642   auto ResultLowerThanLHS =
6643       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6644   auto ConditionRHS = MIRBuilder.buildICmp(
6645       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6646 
6647   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6648   MI.eraseFromParent();
6649   return Legalized;
6650 }
6651 
6652 LegalizerHelper::LegalizeResult
6653 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6654   Register Res = MI.getOperand(0).getReg();
6655   Register LHS = MI.getOperand(1).getReg();
6656   Register RHS = MI.getOperand(2).getReg();
6657   LLT Ty = MRI.getType(Res);
6658   bool IsSigned;
6659   bool IsAdd;
6660   unsigned BaseOp;
6661   switch (MI.getOpcode()) {
6662   default:
6663     llvm_unreachable("unexpected addsat/subsat opcode");
6664   case TargetOpcode::G_UADDSAT:
6665     IsSigned = false;
6666     IsAdd = true;
6667     BaseOp = TargetOpcode::G_ADD;
6668     break;
6669   case TargetOpcode::G_SADDSAT:
6670     IsSigned = true;
6671     IsAdd = true;
6672     BaseOp = TargetOpcode::G_ADD;
6673     break;
6674   case TargetOpcode::G_USUBSAT:
6675     IsSigned = false;
6676     IsAdd = false;
6677     BaseOp = TargetOpcode::G_SUB;
6678     break;
6679   case TargetOpcode::G_SSUBSAT:
6680     IsSigned = true;
6681     IsAdd = false;
6682     BaseOp = TargetOpcode::G_SUB;
6683     break;
6684   }
6685 
6686   if (IsSigned) {
6687     // sadd.sat(a, b) ->
6688     //   hi = 0x7fffffff - smax(a, 0)
6689     //   lo = 0x80000000 - smin(a, 0)
6690     //   a + smin(smax(lo, b), hi)
6691     // ssub.sat(a, b) ->
6692     //   lo = smax(a, -1) - 0x7fffffff
6693     //   hi = smin(a, -1) - 0x80000000
6694     //   a - smin(smax(lo, b), hi)
6695     // TODO: AMDGPU can use a "median of 3" instruction here:
6696     //   a +/- med3(lo, b, hi)
6697     uint64_t NumBits = Ty.getScalarSizeInBits();
6698     auto MaxVal =
6699         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6700     auto MinVal =
6701         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6702     MachineInstrBuilder Hi, Lo;
6703     if (IsAdd) {
6704       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6705       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6706       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6707     } else {
6708       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6709       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6710                                MaxVal);
6711       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6712                                MinVal);
6713     }
6714     auto RHSClamped =
6715         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6716     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6717   } else {
6718     // uadd.sat(a, b) -> a + umin(~a, b)
6719     // usub.sat(a, b) -> a - umin(a, b)
6720     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6721     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6722     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6723   }
6724 
6725   MI.eraseFromParent();
6726   return Legalized;
6727 }
6728 
6729 LegalizerHelper::LegalizeResult
6730 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6731   Register Res = MI.getOperand(0).getReg();
6732   Register LHS = MI.getOperand(1).getReg();
6733   Register RHS = MI.getOperand(2).getReg();
6734   LLT Ty = MRI.getType(Res);
6735   LLT BoolTy = Ty.changeElementSize(1);
6736   bool IsSigned;
6737   bool IsAdd;
6738   unsigned OverflowOp;
6739   switch (MI.getOpcode()) {
6740   default:
6741     llvm_unreachable("unexpected addsat/subsat opcode");
6742   case TargetOpcode::G_UADDSAT:
6743     IsSigned = false;
6744     IsAdd = true;
6745     OverflowOp = TargetOpcode::G_UADDO;
6746     break;
6747   case TargetOpcode::G_SADDSAT:
6748     IsSigned = true;
6749     IsAdd = true;
6750     OverflowOp = TargetOpcode::G_SADDO;
6751     break;
6752   case TargetOpcode::G_USUBSAT:
6753     IsSigned = false;
6754     IsAdd = false;
6755     OverflowOp = TargetOpcode::G_USUBO;
6756     break;
6757   case TargetOpcode::G_SSUBSAT:
6758     IsSigned = true;
6759     IsAdd = false;
6760     OverflowOp = TargetOpcode::G_SSUBO;
6761     break;
6762   }
6763 
6764   auto OverflowRes =
6765       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6766   Register Tmp = OverflowRes.getReg(0);
6767   Register Ov = OverflowRes.getReg(1);
6768   MachineInstrBuilder Clamp;
6769   if (IsSigned) {
6770     // sadd.sat(a, b) ->
6771     //   {tmp, ov} = saddo(a, b)
6772     //   ov ? (tmp >>s 31) + 0x80000000 : r
6773     // ssub.sat(a, b) ->
6774     //   {tmp, ov} = ssubo(a, b)
6775     //   ov ? (tmp >>s 31) + 0x80000000 : r
6776     uint64_t NumBits = Ty.getScalarSizeInBits();
6777     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6778     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6779     auto MinVal =
6780         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6781     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6782   } else {
6783     // uadd.sat(a, b) ->
6784     //   {tmp, ov} = uaddo(a, b)
6785     //   ov ? 0xffffffff : tmp
6786     // usub.sat(a, b) ->
6787     //   {tmp, ov} = usubo(a, b)
6788     //   ov ? 0 : tmp
6789     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6790   }
6791   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6792 
6793   MI.eraseFromParent();
6794   return Legalized;
6795 }
6796 
6797 LegalizerHelper::LegalizeResult
6798 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6799   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6800           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6801          "Expected shlsat opcode!");
6802   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6803   Register Res = MI.getOperand(0).getReg();
6804   Register LHS = MI.getOperand(1).getReg();
6805   Register RHS = MI.getOperand(2).getReg();
6806   LLT Ty = MRI.getType(Res);
6807   LLT BoolTy = Ty.changeElementSize(1);
6808 
6809   unsigned BW = Ty.getScalarSizeInBits();
6810   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6811   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6812                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6813 
6814   MachineInstrBuilder SatVal;
6815   if (IsSigned) {
6816     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6817     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6818     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6819                                     MIRBuilder.buildConstant(Ty, 0));
6820     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6821   } else {
6822     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6823   }
6824   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6825   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6826 
6827   MI.eraseFromParent();
6828   return Legalized;
6829 }
6830 
6831 LegalizerHelper::LegalizeResult
6832 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6833   Register Dst = MI.getOperand(0).getReg();
6834   Register Src = MI.getOperand(1).getReg();
6835   const LLT Ty = MRI.getType(Src);
6836   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6837   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6838 
6839   // Swap most and least significant byte, set remaining bytes in Res to zero.
6840   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6841   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6842   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6843   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6844 
6845   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6846   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6847     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6848     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6849     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6850     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6851     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6852     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6853     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6854     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6855     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6856     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6857     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6858     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6859   }
6860   Res.getInstr()->getOperand(0).setReg(Dst);
6861 
6862   MI.eraseFromParent();
6863   return Legalized;
6864 }
6865 
6866 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6867 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6868                                  MachineInstrBuilder Src, APInt Mask) {
6869   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6870   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6871   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6872   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6873   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6874   return B.buildOr(Dst, LHS, RHS);
6875 }
6876 
6877 LegalizerHelper::LegalizeResult
6878 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6879   Register Dst = MI.getOperand(0).getReg();
6880   Register Src = MI.getOperand(1).getReg();
6881   const LLT Ty = MRI.getType(Src);
6882   unsigned Size = Ty.getSizeInBits();
6883 
6884   MachineInstrBuilder BSWAP =
6885       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6886 
6887   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6888   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6889   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6890   MachineInstrBuilder Swap4 =
6891       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6892 
6893   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6894   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6895   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6896   MachineInstrBuilder Swap2 =
6897       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6898 
6899   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6900   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6901   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6902   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6903 
6904   MI.eraseFromParent();
6905   return Legalized;
6906 }
6907 
6908 LegalizerHelper::LegalizeResult
6909 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6910   MachineFunction &MF = MIRBuilder.getMF();
6911 
6912   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6913   int NameOpIdx = IsRead ? 1 : 0;
6914   int ValRegIndex = IsRead ? 0 : 1;
6915 
6916   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6917   const LLT Ty = MRI.getType(ValReg);
6918   const MDString *RegStr = cast<MDString>(
6919     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6920 
6921   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6922   if (!PhysReg.isValid())
6923     return UnableToLegalize;
6924 
6925   if (IsRead)
6926     MIRBuilder.buildCopy(ValReg, PhysReg);
6927   else
6928     MIRBuilder.buildCopy(PhysReg, ValReg);
6929 
6930   MI.eraseFromParent();
6931   return Legalized;
6932 }
6933 
6934 LegalizerHelper::LegalizeResult
6935 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6936   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6937   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6938   Register Result = MI.getOperand(0).getReg();
6939   LLT OrigTy = MRI.getType(Result);
6940   auto SizeInBits = OrigTy.getScalarSizeInBits();
6941   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6942 
6943   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6944   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6945   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6946   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6947 
6948   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6949   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6950   MIRBuilder.buildTrunc(Result, Shifted);
6951 
6952   MI.eraseFromParent();
6953   return Legalized;
6954 }
6955 
6956 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6957   // Implement vector G_SELECT in terms of XOR, AND, OR.
6958   Register DstReg = MI.getOperand(0).getReg();
6959   Register MaskReg = MI.getOperand(1).getReg();
6960   Register Op1Reg = MI.getOperand(2).getReg();
6961   Register Op2Reg = MI.getOperand(3).getReg();
6962   LLT DstTy = MRI.getType(DstReg);
6963   LLT MaskTy = MRI.getType(MaskReg);
6964   LLT Op1Ty = MRI.getType(Op1Reg);
6965   if (!DstTy.isVector())
6966     return UnableToLegalize;
6967 
6968   // Vector selects can have a scalar predicate. If so, splat into a vector and
6969   // finish for later legalization attempts to try again.
6970   if (MaskTy.isScalar()) {
6971     Register MaskElt = MaskReg;
6972     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6973       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6974     // Generate a vector splat idiom to be pattern matched later.
6975     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6976     Observer.changingInstr(MI);
6977     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6978     Observer.changedInstr(MI);
6979     return Legalized;
6980   }
6981 
6982   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6983     return UnableToLegalize;
6984   }
6985 
6986   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6987   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6988   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6989   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6990   MI.eraseFromParent();
6991   return Legalized;
6992 }
6993 
6994 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6995   // Split DIVREM into individual instructions.
6996   unsigned Opcode = MI.getOpcode();
6997 
6998   MIRBuilder.buildInstr(
6999       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7000                                         : TargetOpcode::G_UDIV,
7001       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7002   MIRBuilder.buildInstr(
7003       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7004                                         : TargetOpcode::G_UREM,
7005       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7006   MI.eraseFromParent();
7007   return Legalized;
7008 }
7009